$\begin{array}{c} {\rm MAT0105} \\ {\rm IF - Prova} \ 1 - 04/05/2018 \end{array}$

Turma A

Nome :	Q	N
	1	
$N^{\underline{O}}$ USP :	 2	
	3	
	4	
	Total	

Respostas sem justificativa não serão consideradas!

- Desligue celulares, smartfones, smartwatches;
- A prova pode ser feita à lápis;
- \bullet É proibido o uso dos livros, cadernos, apostilas, anotações;
- Na carteira só lápis, borracha e documento;
- Qualquer tipo de cola = nota "zero"na prova!!!

$1^{\underline{a}}$ Questão: (2.5 pontos)

Sendo ABCDEF um hexágono regular de centro O. Expresse os seguintes vetores em função dos vetores $\overrightarrow{OD}, \overrightarrow{OE}$.

a) (1.5 pontos)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EF}$$
;

b) (1 ponto)
$$\overrightarrow{OC} + \overrightarrow{AF} + \overrightarrow{EF}$$
.

 $\mathbf{2}^{\underline{a}}$ Questão: (2 pontos) Prove que se os vetores $\vec{u}, \vec{v}, \vec{w}$ formam uma base, então os vetores $\vec{u} - 2\vec{v} + 3\vec{w}, 2\vec{v} - \vec{w}, \vec{u} - \vec{v} + 2\vec{w}$ também formam uma base.

 $3^{\underline{a}}$ Questão: (2.5 pontos) Determine vetor \vec{u} que tem norma $\sqrt{3}$ e seja ortogonal aos vetores de coordenadas (1,1,0) e (-1,0,1) numa base ortonormal.

$4^{\underline{a}}$ Questão: (3 pontos)

- a) (1.2 pontos) O lado de um triânulo ABC equilátero mede 2. Ache $||\overrightarrow{AB} \times \overrightarrow{AC}||$.
- b) (0.5 pontos) Ache a área do paralelogramo \overrightarrow{ABCD} sabendo $\overrightarrow{AB} = (1, 1, -1), \overrightarrow{AD} = (2, 1, 4)$ na base ortonormal.
- c) (1.3 pontos) Determine x para que os pontos A=(x,1,2), B=(2,-2,-3), C=(5,-1,1), D=(3,-2,-2) (no sistema de coordenadas cartesiano) sejam coplanares.