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Bochner-Kähler Structures (after R. Bryant)

This talk is based on:

RLF & I. Stuchiner, The Classifying Algebroid of a G-structure I
& II, (see arXive).

R. Bryant, Bochner-Kähler metrics. J. of Amer. Math. Soc., 14
(2001), 623–715.

Aim:

Describe a systematic method allowing to treat classifications
problems of geometric structures of finite type.

Plan:

1 Bochner-Kähler metrics

2 Classification problems and Lie algebroids

3 Lie algebroids and Lie groupoids

4 Main results
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Bochner-Kähler Structures (after R. Bryant)

Bochner-Kähler metrics

Notations
(M, g, J, ω) – Kähler manifold with curvature tensor R : (TM)4 → R

Ricci tensor:

S(X ,Y ) =
n∑

i=1

R(X , JY , ei , Jei ), ({ei , Jei}i=1,...,n, orthonormal basis)

Holomorphic sectional curvature:

K (X , JX ) = R(X , JX ,X , JX ), (||X || = 1)

Scalar curvature:

s = 2
n∑

i,j=1

R(ei , Jei , ej , Jej ) =
n∑

i=1

S(ei , Jei )

Traceless Ricci tensor:

S0(X ,Y ) = S(X ,Y )− s
2n
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Bochner-Kähler Structures (after R. Bryant)

Bochner-Kähler metrics

Bochner Tensor

Symmetries of the curvature tensor R : (TM)4 → R:

R(X ,Y ,Z ,W ) = R(Z ,W ,X ,Y = −R(Y ,X ,Z ,W ) = −R(X ,Y ,W ,Z ))

R(X ,Y ,Z ,W ) + R(X ,Z ,W ,Y ) + R(X ,W ,Y ,Z ) = 0

R(X ,Y ,Z ,W ) = R(JX , JY ,Z ,W ) = R(X ,Y , JZ , JW )

Decomposing the action of U(n) on such tensors into irreducible factors:

R = R0 + R1 + R2
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Bochner-Kähler metrics

Bochner Tensor

Symmetries of the curvature tensor R : (TM)4 → R:

R(X ,Y ,Z ,W ) = R(Z ,W ,X ,Y = −R(Y ,X ,Z ,W ) = −R(X ,Y ,W ,Z ))

R(X ,Y ,Z ,W ) + R(X ,Z ,W ,Y ) + R(X ,W ,Y ,Z ) = 0

R(X ,Y ,Z ,W ) = R(JX , JY ,Z ,W ) = R(X ,Y , JZ , JW )

Decomposing the action of U(n) on such tensors into irreducible factors:

R = R0 + R1 + R2

Given Kähler metric g and scalar s, the tensor:

R0(X , Y , Z ,W ) :=
s

4

 g(X , Z )g(Y ,W )− g(X ,W )g(Y , Z )+
+g(JX , Z )g(JY ,W )− g(JX ,W )g(JY , Z )+

+2g(X , Y )g(Z ,W )

satisfies all symmetries. R0 = 0 if Kähler metric is scalar-flat and
R = R0 iff it has constant holomorphic scalar curvature.
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Bochner-Kähler metrics

Bochner Tensor

Symmetries of the curvature tensor R : (TM)4 → R:

R(X ,Y ,Z ,W ) = R(Z ,W ,X ,Y = −R(Y ,X ,Z ,W ) = −R(X ,Y ,W ,Z ))

R(X ,Y ,Z ,W ) + R(X ,Z ,W ,Y ) + R(X ,W ,Y ,Z ) = 0

R(X ,Y ,Z ,W ) = R(JX , JY ,Z ,W ) = R(X ,Y , JZ , JW )

Decomposing the action of U(n) on such tensors into irreducible factors:

R = R0 + R1 + R2

Given traceless symmetric 2-tensor S0, the tensor:

R1(X , Y , Z ,W ) :=
1

4

 g(X , Z )S0(Y ,W )− g(X ,W )S0(Y , Z )− g(Y , Z )S0(X ,W ) + g(Y ,W )S0(X , Z )
g(JX , Z )S0(JY ,W )− g(JX ,W )S0(JY , Z )− g(JY , Z )S0(JX ,W ) + g(JY ,W )S0(JX , Z )

+2g(X , Y )S0(Z ,W ) + 2g(Z ,W )S0(X , Y )

satisfies all symmetries. The trace of R1 is S0, and R1 = 0 iff metric is
Kähler-Einstein.
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Bochner-Kähler metrics

Bochner Tensor

Symmetries of the curvature tensor R : (TM)4 → R:

R(X ,Y ,Z ,W ) = R(Z ,W ,X ,Y = −R(Y ,X ,Z ,W ) = −R(X ,Y ,W ,Z ))

R(X ,Y ,Z ,W ) + R(X ,Z ,W ,Y ) + R(X ,W ,Y ,Z ) = 0

R(X ,Y ,Z ,W ) = R(JX , JY ,Z ,W ) = R(X ,Y , JZ , JW )

Decomposing the action of U(n) on such tensors into irreducible factors:

R = R0 + R1 + R2

R0 represents scalar curvature;

R1 represents traceless Ricci;

R2 := R − R0 − R1 is called the Bochner tensor.
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Bochner-Kähler metrics

Bochner-Kähler manifolds

Definition

We say that (M, g, J, ω) is Bochner-Kähler if R2 = 0.

Examples:
CP(n)c – complex projective space of constant holomorphic sectional
curvature c
CP(p)c × CP(n − p)−c – also with constant holomorphic sectional
curvature;
locally symmetric spaces: must have constant holomorphic sectional
curvature and are locally isomorphic to CP(p)c × CP(n − p)−c ;
Cn – with symplectic form

ω =
i
2
∂∂f (|z|), f ′′(t) = (a f ′(t) t + k)f ′(t)2.

Up to scalar multiples, there is exactly one complete such example
which is not locally symmetric (Tachibana & Liu).
Bochner-Kähler orbifolds, e.g., weighted projective spaces.
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Bochner-Kähler metrics

Structure equations

(M, g, J, ω) Bochner-Kähler:

unitary frame bundle: FU(n) → M

connection 1-form: η ∈ Ω1(FU(n); u(n)),

tautological 1-form: θ ∈ Ω1(FU(n);Cn), θp(ξ) = p−1(dpπ(ξ))
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Bochner-Kähler metrics

Structure equations

(M, g, J, ω) Bochner-Kähler:

unitary frame bundle: FU(n) → M

connection 1-form: η ∈ Ω1(FU(n); u(n)),

tautological 1-form: θ ∈ Ω1(FU(n);Cn), θp(ξ) = p−1(dpπ(ξ))

The coframe (η, θ) on FU(n) satisfies the structure equations:{
dθ = −η ∧ θ
dη = −η ∧ η + R(θ ∧ θ)

Using the Bochner-Kähler condition, the curvature can be written:

.R(θ ∧ θ) = (Sθ∗) ∧ θ − (Sθ) ∧ θ∗ − (θ ∧ θ∗)S + (θ∗ ∧ Sθ)I,

where S : FU(n) → i u(n) takes values in hermitian symmetric matrices.

Rui Loja Fernandes Bochner-Kähler Structures (after R. Bryant)



Bochner-Kähler Structures (after R. Bryant)

Bochner-Kähler metrics

Invariants

Differentiating the structure equations and using d2 = 0, we find functions
T ∈ C∞(FU(n),Cn) and U ∈ C∞(FU(n),R) such that:

dS = −ηS + Sη + Tθ∗ + θT ∗ + 1
2 (T ∗θ + θ∗T )In

dT = −ηT + (UIn + S2)θ
dU = T ∗Sθ + θ∗ST

The functions (S,T ,U) : FU(n) → i u(n)⊕ Cn ⊕ R provide a set of invariants.
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Bochner-Kähler metrics

(Local) Classification Problem

Find all (germs of) manifolds P carrying:

1 a free action of U(n),

2 a coframe (η, θ) ∈ Ω1(P, u(n)⊕ Cn) and

3 functions (S,T ,U) : P → i u(n)⊕ Cn ⊕ R,

such that the following equations are satisfied:
dθ = −η ∧ θ
dη = −η ∧ η + Sθ∗ ∧ θ − Sθ ∧ θ∗ − θ ∧ θ∗S + (θ∗ ∧ Sθ)In
dS = −ηS + Sη + Tθ∗ + θT ∗ + 1

2 (T ∗θ + θ∗T )In
dT = −ηT + (UIn + S2)θ
dU = T ∗Sθ + θ∗ST

Then M = P/U(n) is Bochner-Kähler and P = FU(n) is its unitary frame
bundle.
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Bochner-Kähler metrics

Example : : Metrics of Hessian Type

Find all (germs of) 3-manifolds P carrying:
1 a free action of SO(2),
2 a coframe (η, θ) ∈ Ω1(P, so(2)⊕ R2) and
3 functions (k , k1, k2) : P → R3,

such that the following equations are satisfied:
dη = kθ ∧ θ
dθ = −η ∧ θ
dk = k1θ1 + k2θ2

dk1 = 1
2 (1− k2)θ1 − k2η

dk2 = 1
2 (1− k2)θ2 + k1η.

Then Σ = P/SO(2) is a surface with a metric g of Hessian type, i.e., its
Gaussian curvature satisfies

Hessg(k) =
1
2

(1− k2)g,

and P = FSO(2) is its orthogonal frame bundle.
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Classification problems and Lie algebroids

Cartan’s Realization problem

One is given Cartan Data:
a closed Lie subgroup G ⊂ GLn

a G-manifold X
equivariant maps c : X → Hom(∧2Rn,Rn), and R : X → Hom(∧2Rn, g)

an equivariant vector bundle maps F : X × Rn → TX
and asks for the existence of realizations:

a principal G-bundle P with a coframe (η, θ) ∈ Ω1(P, g⊕ Rn) and an equivariant
map h : P → X

satisfying the structure equations: dθ = c(h)(θ ∧ θ)− η ∧ θ
dη = R(h)(θ ∧ θ)− η ∧ η
dh = F (h, θ) + ψ(h, η)

(1)

(ψ : X × g→ TX is the infinitesimal g-action determined by the G action)

⇒ M = P/G and P = FG(M) is a G-structure with connection η
and tautological 1-form θ, satisfying the structure equations (1)
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Classification problems and Lie algebroids

Example : : Bochner-Kähler

X = i u(n)⊕ Cn ⊕ R with global coordinates (S,T ,U)

G = U(n) acts diagonally on X by
- conjugation on i u(n);
- defining action on Cn;
- trivially on R.

R : X → Hom(∧2Cn, u(n)):

z∧w 7→ (z∗Sw−w∗Sz)In−(zw∗−wz∗)S−S(wz∗−zw∗)+(tr S)(z∗w−w∗z)In

c : X → Hom(∧2Cn,Cn) identically zero (no torsion)
F : X × Cn → TX ,

z 7→ (Tz∗ + zT +
1
2

(T ∗z + z∗T )In,Uz + S2z,T ∗Sz + z∗ST )

Classification of
Bochner-Kähler metrics

⇔ Cartan’s Realization
Problem
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Classification problems and Lie algebroids

Example : : Metrics of Hessian Type

X = so(2)⊕ R2 ' R3

G = SO(2) acts diagonally on X by
- trivially on so(2);
- defining action on R2;

R : X → Hom(∧2R2, so(2)) ' R, (k , k1, k2) 7→ k ;

c : X → Hom(∧2Rn,Rn) identically zero (no torsion)

F : X × R2 → TX ,

(v1, v2) 7→ (v1k1 + v2k2,
v1

2
(1− k2),

v2

2
(1− k2)).

Classification of surfaces
(Σ,g) of Hessian type ⇔ Cartan’s Realization

Problem
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Classification problems and Lie algebroids

Cartan’s Data and Lie algebroids
How to encode Cartan’s data in a geometric way?

vector bundle A→ X : trivial bundle with fiber Rn ⊕ g;
anchor ρ : A→ TX : bundle map ρ(u, α) = F (u) + ψ(α);
bracket [ , ] : Γ(A)× Γ(A)→ Γ(A): skew-symmetric bracket defined on constant
sections by

[(u, α), (v , β)] = (α · v − β · u − c(u, v), [α, β]g − R(u, v)).

and extended to any sections so that Leibniz holds:

[s1, fs2] = f [s1, s2] + (Lρ(s1)f )s2.

How to encode realizations?

Each realization gives a bundle map:

TP
(θ,η) //

��

A

��
P

h
// X
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Classification problems and Lie algebroids

Cartan’s Data and Lie algebroids

Proposition

If there is a solution to Cartan’s realization problem for every x ∈ X then the
bracket satisfies the Jacobi identity:

[[s1, s2], s3] + [[s2, s3], s1] + [[s3, s1], s2] = 0.

Remarks.

In examples above (and all relevant ones) the bracket does satisfy
Jacobi;
The triple (A, ρ, [ , ]) is then an example of a Lie algebroid.
(A, ρ, [ , ]) encodes Cartan’s problem without making any reference to
the original manifolds/bundles/coframes.

Questions.

How can one solve the classification problem using (A, ρ, [ , ])?
What does (A, ρ, [ , ]) say about symmetries? Moduli space of
solutions? etc.
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Crash Course on Lie algebroids/groupoids

Lie algebroids

Definition

A Lie algebroid is a vector bundle A→ X , with a Lie bracket [ , ] : Γ(A)× Γ(A)→ Γ(A)
and a bundle map ρ : A→ TX , called the anchor, such that:

[s1, fs2] = f [s1, s2] + (Lρ(s1)f )s2,

[[s1, s2], s3] + [[s2, s3], s1] + [[s3, s1], s2] = 0.

Examples:
Tangent bundle: A = TX → X , [ , ] usual Lie bracket of vector fields and ρ =id;

Lie algebra: A = g→ {∗}, [ , ] = [ , ]g and ρ ≡ 0;

Infinitesimal action algebroid: A = X × g→ X , on constant sections
[ei , ej ] = [ei , ej ]g and ρ(ei ) = (ei )X ,

Basic concepts:
Orbits O: ρ([s1, s2]) = [ρ(s1), ρ(s2)]⇒ Im ρ is integrable (singular) distribution.

Isotropy Lie algebras gx : For x ∈ X , [ , ] restricts to Lie bracket on gx := ker ρ.
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Crash Course on Lie algebroids/groupoids

Example : : Bochner-Kähler classifying algebroid

X = iun ⊕ Cn ⊕ R, A = X × (Cn ⊕ un)→ X ,

• Lie bracket of constant sections (u, α), (v , β) ∈ Cn ⊕ un:

[(u, α), (v , β)]|(S,T ,U) = (α · v − β · u, [α, β]un − (uv∗ − vu∗)S − S(vu∗ − uv∗) + · · · )

• anchor map:

ρ(u, α)|(S,T ,U) = (Sα− αS + Tα∗ + αT∗ + 1/2(T∗α+ αT∗))
∂

∂S

+(αT + S2α+ Uα)
∂

∂T
+ (T∗Su+u∗ST )

∂

∂U

Each Bochner-Kähler manifold, has an associated Un-structure P = FUn (M) yielding a
Lie algebroid map:

TP
(θ,η) //

��

A

��
P

h=(S,T ,U)
// X
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Crash Course on Lie algebroids/groupoids

Groupoids

X – topological space; look at paths γ : [0, 1]→ X

X

0

γ

γ
1

η Π1(X)

t

��
s

��

{[γ] | γ : [0, 1]→ X}

X
•
γ(1)

•
γ(0)

[γ]
tt
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product:

•
τ(1)

•
τ(0)=γ(1)

[τ ]

ss
•
γ(0)

[γ]
rr

[τ ·γ]

~~
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Crash Course on Lie algebroids/groupoids

Groupoids

X – topological space; look at paths γ : [0, 1]→ X

X
0

γ

γ
1

η Π1(X)

t

��
s

��

{[γ] | γ : [0, 1]→ X}

X
•
γ(1)

•
γ(0)

[γ]
tt

identity:

u : X ↪→ Π1(X) •
x

[x ]

��
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ι : G // G •
γ(1)

[γ]

33
•
γ(0)

[γ]
ss
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The space Π1(X) has a natural topology and the source, target, multiplication
and inverse are all continous maps: Π1(X) ⇒ X is an example of a topological
groupoid.

If X is a manifold, the space Π1(X) is a manifold and the source, target,
multiplication and inverse are all smooth maps: then Π1(X) ⇒ X is an example
of a Lie groupoid.
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Crash Course on Lie algebroids/groupoids

Lie Groupoids

A Lie groupoid is a pair of submersions s, t : G ⇒ X , together with partial composition,
identity and inversion maps satisfying the obvious axioms.

•
t(γ)

•
s(γ)=t(τ)

γ
ss

•
s(τ)

hrr

γ·τ

��
•
x

1x

�� •
t(γ)

γ−1

44
•

s(γ)

γ
tt

Examples:
Pair groupoid: X × X ⇒ X ;

Lie groups: G ⇒ {∗};
Action groupoid: G × X ⇒ X .
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Crash Course on Lie algebroids/groupoids

Lie Groupoids
Given a Lie groupoid G ⇒ X :

source fibers s−1(x) and target fibers t−1(x);
orbits: Ox = t(s−1(x));
isotropy Lie groups: Gx = s−1(x) ∩ t−1(x);

and there is an associated Lie algebroid A→ X :

A := T s
XG, ρ := dt |A, [ , ]A := Lie bracket of XR-inv(G) ≡ Γ(A).

t( )

s-fibers

t-fibers

X

γτ

τγ

γ

Γ

γ τs( )s( )=t( )τ

X
s
ΓA=T   = dt

ρ

A
ρ

τ
R

[α,β]=
α

X
[X , X  ]

β
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Crash Course on Lie algebroids/groupoids

Lie Groupoids

Examples:
The pair groupoid X × X ⇒ X and fundamental groupod Π1(X) ⇒ X integrate
the same Lie algebroid: A = TX ;

The action groupoid G × X ⇒ X integrates the action Lie algebroid X × g→ X ,
so there can be many integrations (arising from different Lie groups G)

Basic Theorems:
Lie I: Given a source connected Lie groupoid G ⇒ X there is a unique source
1-connected Lie groupoid G̃ ⇒ X with the same Lie algebroid and a unique étale
morphism of Lie groupoids G̃ → G;

Lie II: GIven a source 1-connected Lie groupoid G1 ⇒ X1 with algebroid
A1 → X1 and a Lie groupoid G2 ⇒ X2 with algebroid A2 → X2, each Lie
algebroid morphism φ : A1 → A2 integrates to a unique Lie groupoid morphism
Φ : G1 → G2;

Lie III: Not every Lie algebroid integrates to a Lie groupoid. Obstructions are
completely understood [Crainic & RLF, 2003].
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Crash Course on Lie algebroids/groupoids

Lie Groupoids
For a Lie groupoid G ⇒ X with algebroid A→ X , its Maurer-Cartan form is the s-foliated A-valued 1-form:

ωMC ∈ Ω1(T sG; A), ωMC(v)γ = dγR
γ−1 · v.

Theorem (RLF & Struchiner, 2014)

If A = X × Rn → X is the trivial vector bundle, then the restrition ωMC|s−1(x)
to any source fiber s−1(x) is a

coframe, and together with the target gives a Lie algebroid morphism:

T (s−1(x))

ωMC|s−1(x) //

��

A

��
s−1(x)

t
// X

These solutions are universal: if a coframe (P, θ) induces an algebroid map TP → A, there is a unique (local)
isomorphism:

TP
φ∗ //

��

θ ''

T sG

��

ωMCvv
A

��
P

φ //

h ''
G

tvv
X
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Main Results

Lie Algebroids and G-structures

Back to G-structures... notice that:

The previous construction was about coframes (⇔ {e}-structures);

The algebroids associated with G-structures, where G 6= {e} should
have more structure.

Key Remark: should take into consideration that the coframe in P = FG(M)
takes the special form (θ, η), where θ ∈ Ω1(P,Rn) and η ∈ Ω1(P, g).

Simplifying assumption: Henceforth, we assume that G is a compact,
connected, Lie group.
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Main Results

Cartan Data and Realizations are formalized as follows:

Definition

Let G ⊂ GLn(R) and X a G-manifold. A Lie G-algebroid is a Lie algebroid A→ X :

A is the trivial vector bundle with fiber Rn ⊕ g;

ρ : A→ TX is defined by G-equivariant map F : X × Rn → TX :

ρ(u, α) = F (u) + ψ(α), (u, α) ∈ Rn ⊕ g,

the bracket on constant sections (u, α), (v , β) ∈ Γ(A) takes the form

[(u, α), (v , β)] = (α · v − β · u − c(u, v), [α, β]g − R(u, v)),

where c : X → Hom(∧2Rn,Rn) and R : X → Hom(∧2Rn, g) are G-equivariant.

Definition

A G-realization of a Lie G-algebroid A→ X consists of a manifold P, equipped with a
locally free, proper, G-action, together with an equivariant Lie algebroid map:

TP

��

(θ,η) // A

��
P

h // X
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Main Results

Lie G-groupoids
Main Problem. How can one find G-realizations?

Main Idea: Integrate!
If A→ X is a Lie G-groupoid we have an injective algebroid morphism:

i : g n X → A, α 7→ (0, α).

Definition

A Lie G-groupoid is a Lie groupoid G ⇒ X such that:

its Lie algebroid A→ X is a Lie G-algebroid;

there is a groupoid morphism Υ : G n X → G integrating i : g n X → A;

Remark: The morphism Υ : G n X → G defines a right G-action on G by:

G × G→ G, (γ, g) 7→ Υ(g−1, t(γ)) · γ.

such that:
t : G → X is a G-invariant map;
preserves the source fibers;
is proper and (locally) free.

In particular, each source fiber s−1(x) is a principal G-bundle over the orbifold

M = s−1(x)/G.
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Main Results

Solving the classification problem

Theorem

If G ⇒ X is a Lie G-groupoid integrating a Lie G-algebroid A→ X, then each source
fiber s−1(x) equipped with the restriction of the Maurer-Cartan form ωMC yields a
G-realization of A. Moreover, any G-realization of A is isomorphic to a G-invariant,
open subset of one such G-realization (up to cover).

Corollary

For any value of (S0,T0,U0), there is unique, up to isomorphism, (germ of)
Bochner-Kähler orbifold (M, g, J, ω) whose invariants (S,T ,U) take the value
(S0,T0,U0).

Remarks:
Finding complete solutions, depends on having G-integrations. There is an
obstruction theory (G-monodromy) that solves this problem and does not require
finding explicit G-integrations!
Finding explicit solutions, depend on finding explicit G-integrations. One can
recover in this way all known Bochner-Kähler metrics
Similar results hold for other problems...
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Main Results

An explicit example : : Metrics of Hessian Curvature
Given a surfaces (Σ, g) whose Gaussian curvature k satisfies:

Hessg(k) =
1
2

(1− k2)g

Passing to the SO-frame bundle, one obtains:

dθ1 = −η ∧ θ2 dk = k1θ1 + k2θ2

dθ2 = η ∧ θ1 dk1 = 1/2(1− k2)θ1 − k2η

dη = kθ1 ∧ θ2 dk2 = 1/2(1− k2)θ2 + k1η.

The associated classifying Lie G-algebroid is A = R3 × R3 → R3, with Lie bracket and
anchor:

[α1, α2] = −kβ [α1, β] = α2 [α2, β] = −α1

ρ(α1) = k1
∂

∂k
+

1
2

(1− k2)
∂

∂k1

ρ(α2) = k2
∂

∂k
+

1
2

(1− k2)
∂

∂k2

ρ(β) = −k2
∂

∂k1
+ k1

∂

∂k2
.
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Main Results

An example : : Metrics of Hessian Curvature
Computing the obstructions (infinitesimal G-monodromy):

Orbit foliation of A: level sets of

F (k1, k2, k) := k2
1 + k2

2 +
1
3

k3 − k

At the two fixed points (0, 0, 1) and
(0, 0,−1), there are solutions
(constant curvature metrics);
In the region filled by spheres there
does not exist a G-integration for
almost every leaf (but there exists
G-integrations on some spheres);
Over every other leaf in the other
regions there exist G-integrations.

k − 1

k1

k2

k21 + k22 +
1
3k

3 − k = c
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Main Results

Closing Remarks/Open Problems

Classifying G-algebroids have several other applications: symmetries,
moduli spaces, . . . ;

We have assumed G compact. All we said before applies more
generally to G-structures of type-1, i.e., G-structures FG(M) whose first
prolongation is trivial;

For a G-structure of finite type-k , a similar (more cumbersome)
discussion holds: one applies the previous formalism to the
(k − 1)-prolongation F(M)

(k−1)
G ;

In many examples (Bochner-Kähler, connections w/ special
holonomy,. . . ) the algebroids are related to the cotangent algebroids
associated with Poisson manifolds, and this allows for its explicit
integration. It is an open problem to understand how/why this happens.

THANK YOU!
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