Bochner-Kähler Structures (after R. Bryant)

Rui Loja Fernandes

Department of Mathematics
University of Illinois at Urbana-Champaign, USA

Modern Trends in Differential Geometry IME-USP, July , 2018

This talk is based on:
■ RLF \& I. Stuchiner, The Classifying Algebroid of a G-structure I \& II, (see arXive).
■ R. Bryant, Bochner-Kähler metrics. J. of Amer. Math. Soc., 14 (2001), 623-715.

This talk is based on:
■ RLF \& I. Stuchiner, The Classifying Algebroid of a G-structure I \& II, (see arXive).
■ R. Bryant, Bochner-Kähler metrics. J. of Amer. Math. Soc., 14 (2001), 623-715.

Aim:

■ Describe a systematic method allowing to treat classifications problems of geometric structures of finite type.

This talk is based on:
■ RLF \& I. Stuchiner, The Classifying Algebroid of a G-structure I \& II, (see arXive).
■ R. Bryant, Bochner-Kähler metrics. J. of Amer. Math. Soc., 14 (2001), 623-715.

Aim:

■ Describe a systematic method allowing to treat classifications problems of geometric structures of finite type.

Plan:

1 Bochner-Kähler metrics
2 Classification problems and Lie algebroids
3 Lie algebroids and Lie groupoids
4 Main results

Notations

(M, g, J, ω) - Kähler manifold with curvature tensor $R:(T M)^{4} \rightarrow \mathbb{R}$

Notations

(M, g, J, ω) - Kähler manifold with curvature tensor $R:(T M)^{4} \rightarrow \mathbb{R}$
Ricci tensor:

$$
S(X, Y)=\sum_{i=1}^{n} R\left(X, J Y, e_{i}, J e_{i}\right), \quad\left(\left\{e_{i}, J e_{i}\right\}_{i=1, \ldots, n}, \text { orthonormal basis }\right)
$$

Notations

(M, g, J, ω) - Kähler manifold with curvature tensor $R:(T M)^{4} \rightarrow \mathbb{R}$
Ricci tensor:

$$
S(X, Y)=\sum_{i=1}^{n} R\left(X, J Y, e_{i}, J e_{i}\right), \quad\left(\left\{e_{i}, J e_{i}\right\}_{i=1, \ldots, n}, \text { orthonormal basis }\right)
$$

Holomorphic sectional curvature:

$$
K(X, J X)=R(X, J X, X, J X), \quad(\|X\|=1)
$$

Notations

(M, g, J, ω) - Kähler manifold with curvature tensor $R:(T M)^{4} \rightarrow \mathbb{R}$
Ricci tensor:

$$
S(X, Y)=\sum_{i=1}^{n} R\left(X, J Y, e_{i}, J e_{i}\right), \quad\left(\left\{e_{i}, J e_{i}\right\}_{i=1, \ldots, n}, \text { orthonormal basis }\right)
$$

Holomorphic sectional curvature:

$$
K(X, J X)=R(X, J X, X, J X), \quad(\|X\|=1)
$$

Scalar curvature:

$$
s=2 \sum_{i, j=1}^{n} R\left(e_{i}, J e_{i}, e_{j}, J e_{j}\right)=\sum_{i=1}^{n} S\left(e_{i}, J e_{i}\right)
$$

Notations

(M, g, J, ω) - Kähler manifold with curvature tensor $R:(T M)^{4} \rightarrow \mathbb{R}$
Ricci tensor:

$$
S(X, Y)=\sum_{i=1}^{n} R\left(X, J Y, e_{i}, J e_{i}\right), \quad\left(\left\{e_{i}, J e_{i}\right\}_{i=1, \ldots, n}, \text { orthonormal basis }\right)
$$

Holomorphic sectional curvature:

$$
K(X, J X)=R(X, J X, X, J X), \quad(\|X\|=1)
$$

Scalar curvature:

$$
s=2 \sum_{i, j=1}^{n} R\left(e_{i}, J e_{i}, e_{j}, J e_{j}\right)=\sum_{i=1}^{n} S\left(e_{i}, J e_{i}\right)
$$

Traceless Ricci tensor:

$$
S_{0}(X, Y)=S(X, Y)-\frac{s}{2 n}
$$

Bochner Tensor

Symmetries of the curvature tensor $R:(T M)^{4} \rightarrow \mathbb{R}$:

$$
\begin{aligned}
& R(X, Y, Z, W)=R(Z, W, X, Y=-R(Y, X, Z, W)=-R(X, Y, W, Z)) \\
& R(X, Y, Z, W)+R(X, Z, W, Y)+R(X, W, Y, Z)=0 \\
& R(X, Y, Z, W)=R(J X, J Y, Z, W)=R(X, Y, J Z, J W)
\end{aligned}
$$

Bochner Tensor

Symmetries of the curvature tensor $R:(T M)^{4} \rightarrow \mathbb{R}$:

$$
\begin{aligned}
& R(X, Y, Z, W)=R(Z, W, X, Y=-R(Y, X, Z, W)=-R(X, Y, W, Z)) \\
& R(X, Y, Z, W)+R(X, Z, W, Y)+R(X, W, Y, Z)=0 \\
& R(X, Y, Z, W)=R(J X, J Y, Z, W)=R(X, Y, J Z, J W)
\end{aligned}
$$

Decomposing the action of $U(n)$ on such tensors into irreducible factors:

$$
R=R_{0}+R_{1}+R_{2}
$$

Bochner Tensor

Symmetries of the curvature tensor $R:(T M)^{4} \rightarrow \mathbb{R}$:

$$
\begin{aligned}
& R(X, Y, Z, W)=R(Z, W, X, Y=-R(Y, X, Z, W)=-R(X, Y, W, Z)) \\
& R(X, Y, Z, W)+R(X, Z, W, Y)+R(X, W, Y, Z)=0 \\
& R(X, Y, Z, W)=R(J X, J Y, Z, W)=R(X, Y, J Z, J W)
\end{aligned}
$$

Decomposing the action of $U(n)$ on such tensors into irreducible factors:

$$
R=R_{0}+R_{1}+R_{2}
$$

- Given Kähler metric g and scalar s, the tensor:

$$
R_{0}(X, Y, Z, W):=\frac{s}{4}\left\{\begin{array}{c}
g(X, Z) g(Y, W)-g(X, W) g(Y, Z)+ \\
+g(J X, Z) g(J Y, W)-g(J X, W) g(J Y, Z)+ \\
+2 g(X, Y) g(Z, W)
\end{array}\right.
$$

satisfies all symmetries. $R_{0}=0$ if Kähler metric is scalar-flat and $R=R_{0}$ iff it has constant holomorphic scalar curvature.

-Bochner-Kähler metrics

Bochner Tensor

Symmetries of the curvature tensor $R:(T M)^{4} \rightarrow \mathbb{R}:$

$$
\begin{aligned}
& R(X, Y, Z, W)=R(Z, W, X, Y=-R(Y, X, Z, W)=-R(X, Y, W, Z)) \\
& R(X, Y, Z, W)+R(X, Z, W, Y)+R(X, W, Y, Z)=0 \\
& R(X, Y, Z, W)=R(J X, J Y, Z, W)=R(X, Y, J Z, J W)
\end{aligned}
$$

Decomposing the action of $U(n)$ on such tensors into irreducible factors:

$$
R=R_{0}+R_{1}+R_{2}
$$

■ Given traceless symmetric 2-tensor S_{0}, the tensor:

$$
R_{1}(X, Y, Z, W):=\frac{1}{4}\left\{\begin{array}{c}
g(X, Z) S_{0}(Y, W)-g(X, W) S_{0}(Y, Z)-g(Y, Z) S_{0}(X, W)+g(Y, W) S_{0}(X, Z) \\
g(J X, Z) S_{0}(J Y, W)-g(J X, W) S_{0}(J Y, Z)-g(J Y, Z) S_{0}(J X, W)+g(J Y, W) S_{0}(J X, Z \\
+2 g(X, Y) S_{0}(Z, W)+2 g(Z, W) S_{0}(X, Y)
\end{array}\right.
$$

satisfies all symmetries. The trace of R_{1} is S_{0}, and $R_{1}=0$ iff metric is Kähler-Einstein.

Bochner Tensor

Symmetries of the curvature tensor $R:(T M)^{4} \rightarrow \mathbb{R}$:

$$
\begin{aligned}
& R(X, Y, Z, W)=R(Z, W, X, Y=-R(Y, X, Z, W)=-R(X, Y, W, Z)) \\
& R(X, Y, Z, W)+R(X, Z, W, Y)+R(X, W, Y, Z)=0 \\
& R(X, Y, Z, W)=R(J X, J Y, Z, W)=R(X, Y, J Z, J W)
\end{aligned}
$$

Decomposing the action of $U(n)$ on such tensors into irreducible factors:

$$
R=R_{0}+R_{1}+R_{2}
$$

- R_{0} represents scalar curvature;
- R_{1} represents traceless Ricci;
- $R_{2}:=R-R_{0}-R_{1}$ is called the Bochner tensor.

Bochner-Kähler manifolds

Definition

We say that (M, g, J, ω) is Bochner-Kähler if $R_{2}=0$.

Bochner-Kähler manifolds

Definition

We say that (M, g, J, ω) is Bochner-Kähler if $R_{2}=0$.

Examples:

■ $\mathbb{C P}(n)_{c}$ - complex projective space of constant holomorphic sectional curvature c

- $\mathbb{C P}(p)_{c} \times \mathbb{C P}(n-p)_{-c}-$ also with constant holomorphic sectional curvature;

Bochner-Kähler manifolds

Definition

We say that (M, g, J, ω) is Bochner-Kähler if $R_{2}=0$.

Examples:

■ $\mathbb{C P}(n)_{c}$ - complex projective space of constant holomorphic sectional curvature c

- $\mathbb{C P}(p)_{c} \times \mathbb{C P}(n-p)_{-c}-$ also with constant holomorphic sectional curvature;
- locally symmetric spaces: must have constant holomorphic sectional curvature and are locally isomorphic to $\mathbb{C P}(p)_{c} \times \mathbb{C P}(n-p)_{-c}$;

Bochner-Kähler manifolds

Definition

We say that (M, g, J, ω) is Bochner-Kähler if $R_{2}=0$.

Examples:

■ $\mathbb{C P}(n)_{c}$ - complex projective space of constant holomorphic sectional curvature c

- $\mathbb{C P}(p)_{c} \times \mathbb{C P}(n-p)_{-c}-$ also with constant holomorphic sectional curvature;
- locally symmetric spaces: must have constant holomorphic sectional curvature and are locally isomorphic to $\mathbb{C P}(p)_{c} \times \mathbb{C P}(n-p)_{-c}$;
- \mathbb{C}^{n} - with symplectic form

$$
\omega=\frac{i}{2} \partial \bar{\partial} f(|z|), \quad f^{\prime \prime}(t)=\left(a f^{\prime}(t) t+k\right) f^{\prime}(t)^{2}
$$

Up to scalar multiples, there is exactly one complete such example which is not locally symmetric (Tachibana \& Liu).

Bochner-Kähler manifolds

Definition

We say that (M, g, J, ω) is Bochner-Kähler if $R_{2}=0$.

Examples:

■ $\mathbb{C P}(n)_{c}$ - complex projective space of constant holomorphic sectional curvature c

- $\mathbb{C P}(p)_{c} \times \mathbb{C P}(n-p)_{-c}-$ also with constant holomorphic sectional curvature;
- locally symmetric spaces: must have constant holomorphic sectional curvature and are locally isomorphic to $\mathbb{C P}(p)_{c} \times \mathbb{C P}(n-p)_{-c}$;
- \mathbb{C}^{n} - with symplectic form

$$
\omega=\frac{i}{2} \partial \bar{\partial} f(|z|), \quad f^{\prime \prime}(t)=\left(a f^{\prime}(t) t+k\right) f^{\prime}(t)^{2}
$$

Up to scalar multiples, there is exactly one complete such example which is not locally symmetric (Tachibana \& Liu).
■ Bochner-Kähler orbifolds, e.g., weighted projective spaces.

Structure equations

(M, g, J, ω) Bochner-Kähler:
■ unitary frame bundle: $\mathrm{F}_{U(n)} \rightarrow M$

Structure equations

(M, g, J, ω) Bochner-Kähler:
■ unitary frame bundle: $\mathrm{F}_{U(n)} \rightarrow M$

- connection 1-form: $\eta \in \Omega^{1}\left(\mathrm{~F}_{U(n)} ; \mathfrak{u}(n)\right)$,

Structure equations

(M, g, J, ω) Bochner-Kähler:
■ unitary frame bundle: $\mathrm{F}_{\mathrm{U}(n)} \rightarrow M$

- connection 1-form: $\eta \in \Omega^{1}\left(\mathrm{~F}_{U(n)} ; \mathfrak{u}(n)\right)$,

■ tautological 1-form: $\theta \in \Omega^{1}\left(\mathrm{~F}_{U(n)} ; \mathbb{C}^{n}\right), \theta_{p}(\xi)=p^{-1}\left(\mathrm{~d}_{p} \pi(\xi)\right)$

Structure equations

(M, g, J, ω) Bochner-Kähler:
\square unitary frame bundle: $\mathrm{F}_{U(n)} \rightarrow M$
■ connection 1-form: $\eta \in \Omega^{1}\left(\mathrm{~F}_{U(n)} ; \mathfrak{u}(n)\right)$,
■ tautological 1-form: $\theta \in \Omega^{1}\left(\mathrm{~F}_{U(n)} ; \mathbb{C}^{n}\right), \theta_{p}(\xi)=p^{-1}\left(\mathrm{~d}_{p} \pi(\xi)\right)$
The coframe (η, θ) on $\mathrm{F}_{U(n)}$ satisfies the structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=-\eta \wedge \theta \\
\mathrm{d} \eta=-\eta \wedge \eta+R(\theta \wedge \theta)
\end{array}\right.
$$

Structure equations

(M, g, J, ω) Bochner-Kähler:
\square unitary frame bundle: $\mathrm{F}_{U(n)} \rightarrow M$
■ connection 1-form: $\eta \in \Omega^{1}\left(\mathrm{~F}_{U(n)} ; \mathfrak{u}(n)\right)$,
■ tautological 1-form: $\theta \in \Omega^{1}\left(\mathrm{~F}_{U(n)} ; \mathbb{C}^{n}\right), \theta_{p}(\xi)=p^{-1}\left(\mathrm{~d}_{p} \pi(\xi)\right)$
The coframe (η, θ) on $\mathrm{F}_{U(n)}$ satisfies the structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=-\eta \wedge \theta \\
\mathrm{d} \eta=-\eta \wedge \eta+R(\theta \wedge \theta)
\end{array}\right.
$$

Using the Bochner-Kähler condition, the curvature can be written:

$$
R(\theta \wedge \theta)=\left(S \theta^{*}\right) \wedge \theta-(S \theta) \wedge \theta^{*}-\left(\theta \wedge \theta^{*}\right) S+\left(\theta^{*} \wedge S \theta\right) I
$$

where $S: \mathrm{F}_{U(n)} \rightarrow i \mathfrak{u}(n)$ takes values in hermitian symmetric matrices.

Invariants

Differentiating the structure equations and using $\mathrm{d}^{2}=0$, we find functions $T \in C^{\infty}\left(\mathrm{F}_{U(n)}, \mathbb{C}^{n}\right)$ and $U \in C^{\infty}\left(\mathrm{F}_{U(n)}, \mathbb{R}\right)$ such that:

$$
\left\{\begin{array}{l}
\mathrm{d} S=-\eta S+S \eta+T \theta^{*}+\theta T^{*}+\frac{1}{2}\left(T^{*} \theta+\theta^{*} T\right) I_{n} \\
\mathrm{~d} T=-\eta T+\left(U U_{n}+S^{2}\right) \theta \\
\mathrm{d} U=T^{*} S \theta+\theta^{*} S T
\end{array}\right.
$$

Invariants

Differentiating the structure equations and using $\mathrm{d}^{2}=0$, we find functions $T \in C^{\infty}\left(\mathrm{F}_{U(n)}, \mathbb{C}^{n}\right)$ and $U \in C^{\infty}\left(\mathrm{F}_{U(n)}, \mathbb{R}\right)$ such that:

$$
\left\{\begin{array}{l}
\mathrm{d} S=-\eta S+S \eta+T \theta^{*}+\theta T^{*}+\frac{1}{2}\left(T^{*} \theta+\theta^{*} T\right) I_{n} \\
\mathrm{~d} T=-\eta T+\left(U U_{n}+S^{2}\right) \theta \\
\mathrm{d} U=T^{*} S \theta+\theta^{*} S T
\end{array}\right.
$$

The functions $(S, T, U): \mathrm{F}_{U(n)} \rightarrow i \mathfrak{u}(n) \oplus \mathbb{C}^{n} \oplus \mathbb{R}$ provide a set of invariants.

-Bochner-Kähler metrics

(Local) Classification Problem

Find all (germs of) manifolds P carrying:
1 a free action of $U(n)$,
2 a coframe $(\eta, \theta) \in \Omega^{1}\left(P, u(n) \oplus \mathbb{C}^{n}\right)$ and
3 functions $(S, T, U): P \rightarrow i \mathfrak{u}(n) \oplus \mathbb{C}^{n} \oplus \mathbb{R}$,
such that the following equations are satisfied:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=-\eta \wedge \theta \\
\mathrm{d} \eta=-\eta \wedge \eta+S \theta^{*} \wedge \theta-S \theta \wedge \theta^{*}-\theta \wedge \theta^{*} S+\left(\theta^{*} \wedge S \theta\right) I_{n} \\
\mathrm{~d} S=-\eta S+S \eta+T \theta^{*}+\theta T^{*}+\frac{1}{2}\left(T^{*} \theta+\theta^{*} T\right) I_{n} \\
\mathrm{~d} T=-\eta T+\left(U I_{n}+S^{2}\right) \theta \\
\mathrm{d} U=T^{*} S \theta+\theta^{*} S T
\end{array}\right.
$$

(Local) Classification Problem

Find all (germs of) manifolds P carrying:
1 a free action of $U(n)$,
2 a coframe $(\eta, \theta) \in \Omega^{1}\left(P, u(n) \oplus \mathbb{C}^{n}\right)$ and
3 functions $(S, T, U): P \rightarrow i \mathfrak{u}(n) \oplus \mathbb{C}^{n} \oplus \mathbb{R}$,
such that the following equations are satisfied:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=-\eta \wedge \theta \\
\mathrm{d} \eta=-\eta \wedge \eta+S \theta^{*} \wedge \theta-S \theta \wedge \theta^{*}-\theta \wedge \theta^{*} S+\left(\theta^{*} \wedge S \theta\right) I_{n} \\
\mathrm{~d} S=-\eta S+S \eta+T \theta^{*}+\theta T^{*}+\frac{1}{2}\left(T^{*} \theta+\theta^{*} T\right) I_{n} \\
\mathrm{~d} T=-\eta T+\left(U I_{n}+S^{2}\right) \theta \\
\mathrm{d} U=T^{*} S \theta+\theta^{*} S T
\end{array}\right.
$$

Then $M=P / U(n)$ is Bochner-Kähler and $P=\mathrm{F}_{U(n)}$ is its unitary frame bundle.

Example : : Metrics of Hessian Type

Example : : Metrics of Hessian Type

Find all (germs of) 3-manifolds P carrying:
1 a free action of $S O(2)$,
2 a coframe $(\eta, \theta) \in \Omega^{1}\left(P, \mathfrak{s o}(2) \oplus \mathbb{R}^{2}\right)$ and
3 functions $\left(k, k_{1}, k_{2}\right): P \rightarrow \mathbb{R}^{3}$,
such that the following equations are satisfied:

$$
\left\{\begin{array}{l}
\mathrm{d} \eta=k \theta \wedge \theta \\
\mathrm{~d} \theta=-\eta \wedge \theta \\
\mathrm{d} k=k_{1} \theta_{1}+k_{2} \theta_{2} \\
\mathrm{~d} k_{1}=\frac{1}{2}\left(1-k^{2}\right) \theta_{1}-k_{2} \eta \\
\mathrm{~d} k_{2}=\frac{1}{2}\left(1-k^{2}\right) \theta_{2}+k_{1} \eta
\end{array}\right.
$$

Example : : Metrics of Hessian Type

Find all (germs of) 3-manifolds P carrying:
1 a free action of $S O(2)$,
2 a coframe $(\eta, \theta) \in \Omega^{1}\left(P, \mathfrak{s o}(2) \oplus \mathbb{R}^{2}\right)$ and
3 functions $\left(k, k_{1}, k_{2}\right): P \rightarrow \mathbb{R}^{3}$,
such that the following equations are satisfied:

$$
\left\{\begin{array}{l}
\mathrm{d} \eta=k \theta \wedge \theta \\
\mathrm{~d} \theta=-\eta \wedge \theta \\
\mathrm{d} k=k_{1} \theta_{1}+k_{2} \theta_{2} \\
\mathrm{~d} k_{1}=\frac{1}{2}\left(1-k^{2}\right) \theta_{1}-k_{2} \eta \\
\mathrm{~d} k_{2}=\frac{1}{2}\left(1-k^{2}\right) \theta_{2}+k_{1} \eta
\end{array}\right.
$$

Then $\Sigma=P / S O(2)$ is a surface with a metric g of Hessian type, i.e., its Gaussian curvature satisfies

$$
\operatorname{Hess}_{g}(k)=\frac{1}{2}\left(1-k^{2}\right) g
$$

and $P=\mathrm{F}_{S O(2)}$ is its orthogonal frame bundle.

Cartan's Realization problem

Cartan's Realization problem

One is given Cartan Data:

- a closed Lie subgroup $G \subset \mathrm{GL}_{n}$
- a G-manifold X

■ equivariant maps $c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right)$, and $R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathfrak{g}\right)$

- an equivariant vector bundle maps $F: X \times \mathbb{R}^{n} \rightarrow T X$

Cartan's Realization problem

One is given Cartan Data:

- a closed Lie subgroup $G \subset \mathrm{GL}_{n}$
- a G-manifold X

■ equivariant maps $c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right)$, and $R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathfrak{g}\right)$

- an equivariant vector bundle maps $F: X \times \mathbb{R}^{n} \rightarrow T X$ and asks for the existence of realizations:

■ a principal G-bundle P with a coframe $(\eta, \theta) \in \Omega^{1}\left(P, \mathfrak{g} \oplus \mathbb{R}^{n}\right)$ and an equivariant map $h: P \rightarrow X$
satisfying the structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=c(h)(\theta \wedge \theta)-\eta \wedge \theta \tag{1}\\
\mathrm{d} \eta=R(h)(\theta \wedge \theta)-\eta \wedge \eta \\
\mathrm{d} h=F(h, \theta)+\psi(h, \eta)
\end{array}\right.
$$

($\psi: X \times \mathfrak{g} \rightarrow T X$ is the infinitesimal \mathfrak{g}-action determined by the G action)

Cartan's Realization problem

One is given Cartan Data:

- a closed Lie subgroup $G \subset \mathrm{GL}_{n}$
- a G-manifold X

■ equivariant maps $c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right)$, and $R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathfrak{g}\right)$
■ an equivariant vector bundle maps $F: X \times \mathbb{R}^{n} \rightarrow T X$ and asks for the existence of realizations:

■ a principal G-bundle P with a coframe $(\eta, \theta) \in \Omega^{1}\left(P, \mathfrak{g} \oplus \mathbb{R}^{n}\right)$ and an equivariant map $h: P \rightarrow X$
satisfying the structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=c(h)(\theta \wedge \theta)-\eta \wedge \theta \tag{1}\\
\mathrm{d} \eta=R(h)(\theta \wedge \theta)-\eta \wedge \eta \\
\mathrm{d} h=F(h, \theta)+\psi(h, \eta)
\end{array}\right.
$$

($\psi: X \times \mathfrak{g} \rightarrow T X$ is the infinitesimal \mathfrak{g}-action determined by the G action)
$\Rightarrow M=P / G$ and $P=F_{G}(M)$ is a G-structure with connection η and tautological 1 -form θ, satisfying the structure equations (1)

Example : : Bochner-Kähler

■ $X=i \mathfrak{u}(n) \oplus \mathbb{C}^{n} \oplus \mathbb{R}$ with global coordinates (S, T, U)

- $G=U(n)$ acts diagonally on X by
- conjugation on $i \mathfrak{u}(n)$;
- defining action on \mathbb{C}^{n};
- trivially on \mathbb{R}.

Example : : Bochner-Kähler

■ $X=i \mathfrak{u}(n) \oplus \mathbb{C}^{n} \oplus \mathbb{R}$ with global coordinates (S, T, U)

- $G=U(n)$ acts diagonally on X by
- conjugation on $i \mathfrak{u}(n)$;
- defining action on \mathbb{C}^{n};
- trivially on \mathbb{R}.
- $R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{C}^{n}, \mathfrak{u}(n)\right)$:
$z \wedge w \mapsto\left(z^{*} S w-w^{*} S z\right) I_{n}-\left(z w^{*}-w z^{*}\right) S-S\left(w z^{*}-z w^{*}\right)+(\operatorname{tr} S)\left(z^{*} w-w^{*} z\right) I_{n}$
- c: $X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{C}^{n}, \mathbb{C}^{n}\right)$ identically zero (no torsion)
- $F: X \times \mathbb{C}^{n} \rightarrow T X$,

$$
z \mapsto\left(T z^{*}+z T+\frac{1}{2}\left(T^{*} z+z^{*} T\right) I_{n}, U z+S^{2} z, T^{*} S z+z^{*} S T\right)
$$

Example : : Bochner-Kähler

■ $X=i \mathfrak{u}(n) \oplus \mathbb{C}^{n} \oplus \mathbb{R}$ with global coordinates (S, T, U)

- $G=U(n)$ acts diagonally on X by
- conjugation on $i \mathfrak{u}(n)$;
- defining action on \mathbb{C}^{n};
- trivially on \mathbb{R}.
- $R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{C}^{n}, \mathfrak{u}(n)\right)$:
$z \wedge w \mapsto\left(z^{*} S w-w^{*} S z\right) I_{n}-\left(z w^{*}-w z^{*}\right) S-S\left(w z^{*}-z w^{*}\right)+(\operatorname{tr} S)\left(z^{*} w-w^{*} z\right) I_{n}$
- $c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{C}^{n}, \mathbb{C}^{n}\right)$ identically zero (no torsion)
- $F: X \times \mathbb{C}^{n} \rightarrow T X$,

$$
z \mapsto\left(T z^{*}+z T+\frac{1}{2}\left(T^{*} z+z^{*} T\right) I_{n}, U z+S^{2} z, T^{*} S z+z^{*} S T\right)
$$

Classification of
Bochner-Kähler metrics

Cartan's Realization Problem

Example : : Metrics of Hessian Type

■ $X=\mathfrak{s o}(2) \oplus \mathbb{R}^{2} \simeq \mathbb{R}^{3}$

- $G=S O(2)$ acts diagonally on X by
- trivially on $\mathfrak{s o}(2)$;
- defining action on \mathbb{R}^{2};

Example : : Metrics of Hessian Type

■ $X=\mathfrak{s o}(2) \oplus \mathbb{R}^{2} \simeq \mathbb{R}^{3}$
■ $G=S O(2)$ acts diagonally on X by

- trivially on $\mathfrak{s o}(2)$;
- defining action on \mathbb{R}^{2};

■ $R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{2}, \mathfrak{s o}(2)\right) \simeq \mathbb{R},\left(k, k_{1}, k_{2}\right) \mapsto k ;$
■ $c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right)$ identically zero (no torsion)
■ $F: X \times \mathbb{R}^{2} \rightarrow T X$,

$$
\left(v_{1}, v_{2}\right) \mapsto\left(v_{1} k_{1}+v_{2} k_{2}, \frac{v_{1}}{2}\left(1-k^{2}\right), \frac{v_{2}}{2}\left(1-k^{2}\right)\right)
$$

Example : : Metrics of Hessian Type

■ $X=\mathfrak{s o}(2) \oplus \mathbb{R}^{2} \simeq \mathbb{R}^{3}$

- $G=S O(2)$ acts diagonally on X by
- trivially on $\mathfrak{s o}(2)$;
- defining action on \mathbb{R}^{2};

■ $R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{2}, \mathfrak{s o}(2)\right) \simeq \mathbb{R},\left(k, k_{1}, k_{2}\right) \mapsto k ;$
■ c: $X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right)$ identically zero (no torsion)
■ $F: X \times \mathbb{R}^{2} \rightarrow T X$,

$$
\left(v_{1}, v_{2}\right) \mapsto\left(v_{1} k_{1}+v_{2} k_{2}, \frac{v_{1}}{2}\left(1-k^{2}\right), \frac{v_{2}}{2}\left(1-k^{2}\right)\right)
$$

Classification of surfaces (Σ, g) of Hessian type

Cartan's Data and Lie algebroids

How to encode Cartan's data in a geometric way?

Cartan's Data and Lie algebroids

How to encode Cartan's data in a geometric way?
■ vector bundle $A \rightarrow X$: trivial bundle with fiber $\mathbb{R}^{n} \oplus \mathfrak{g}$;

- anchor $\rho: A \rightarrow T X$: bundle map $\rho(u, \alpha)=F(u)+\psi(\alpha)$;

■ bracket [,]: $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$: skew-symmetric bracket defined on constant sections by

$$
[(u, \alpha),(v, \beta)]=\left(\alpha \cdot v-\beta \cdot u-c(u, v),[\alpha, \beta]_{\mathfrak{g}}-R(u, v)\right)
$$

and extended to any sections so that Leibniz holds:

$$
\left[s_{1}, f s_{2}\right]=f\left[s_{1}, s_{2}\right]+\left(\mathcal{L}_{\rho\left(s_{1}\right)} f\right) s_{2}
$$

Cartan's Data and Lie algebroids

How to encode Cartan's data in a geometric way?
■ vector bundle $A \rightarrow X$: trivial bundle with fiber $\mathbb{R}^{n} \oplus \mathfrak{g}$;

- anchor $\rho: A \rightarrow T X$: bundle map $\rho(u, \alpha)=F(u)+\psi(\alpha)$;

■ bracket [,]: $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$: skew-symmetric bracket defined on constant sections by

$$
[(u, \alpha),(v, \beta)]=\left(\alpha \cdot v-\beta \cdot u-c(u, v),[\alpha, \beta]_{\mathfrak{g}}-R(u, v)\right)
$$

and extended to any sections so that Leibniz holds:

$$
\left[s_{1}, f s_{2}\right]=f\left[s_{1}, s_{2}\right]+\left(\mathcal{L}_{\rho\left(s_{1}\right)} f\right) s_{2}
$$

How to encode realizations?

Cartan's Data and Lie algebroids

How to encode Cartan's data in a geometric way?
■ vector bundle $A \rightarrow X$: trivial bundle with fiber $\mathbb{R}^{n} \oplus \mathfrak{g}$;
■ anchor $\rho: A \rightarrow T X$: bundle map $\rho(u, \alpha)=F(u)+\psi(\alpha)$;
■ bracket [,]: $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$: skew-symmetric bracket defined on constant sections by

$$
[(u, \alpha),(v, \beta)]=\left(\alpha \cdot v-\beta \cdot u-c(u, v),[\alpha, \beta]_{\mathfrak{g}}-R(u, v)\right)
$$

and extended to any sections so that Leibniz holds:

$$
\left[s_{1}, f s_{2}\right]=f\left[s_{1}, s_{2}\right]+\left(\mathcal{L}_{\rho\left(s_{1}\right)} f\right) s_{2}
$$

How to encode realizations?
■ Each realization gives a bundle map:

Cartan's Data and Lie algebroids

Proposition

If there is a solution to Cartan's realization problem for every $x \in X$ then the bracket satisfies the Jacobi identity:

$$
\left[\left[s_{1}, s_{2}\right], s_{3}\right]+\left[\left[s_{2}, s_{3}\right], s_{1}\right]+\left[\left[s_{3}, s_{1}\right], s_{2}\right]=0
$$

Cartan's Data and Lie algebroids

Proposition

If there is a solution to Cartan's realization problem for every $x \in X$ then the bracket satisfies the Jacobi identity:

$$
\left[\left[s_{1}, s_{2}\right], s_{3}\right]+\left[\left[s_{2}, s_{3}\right], s_{1}\right]+\left[\left[s_{3}, s_{1}\right], s_{2}\right]=0
$$

Remarks.

■ In examples above (and all relevant ones) the bracket does satisfy Jacobi;

Cartan's Data and Lie algebroids

Proposition

If there is a solution to Cartan's realization problem for every $x \in X$ then the bracket satisfies the Jacobi identity:

$$
\left[\left[s_{1}, s_{2}\right], s_{3}\right]+\left[\left[s_{2}, s_{3}\right], s_{1}\right]+\left[\left[s_{3}, s_{1}\right], s_{2}\right]=0
$$

Remarks.

■ In examples above (and all relevant ones) the bracket does satisfy Jacobi;

- The triple $(A, \rho,[]$,$) is then an example of a Lie algebroid.$

Cartan's Data and Lie algebroids

Proposition

If there is a solution to Cartan's realization problem for every $x \in X$ then the bracket satisfies the Jacobi identity:

$$
\left[\left[s_{1}, s_{2}\right], s_{3}\right]+\left[\left[s_{2}, s_{3}\right], s_{1}\right]+\left[\left[s_{3}, s_{1}\right], s_{2}\right]=0
$$

Remarks.

■ In examples above (and all relevant ones) the bracket does satisfy Jacobi;
■ The triple $(A, \rho,[]$,$) is then an example of a Lie algebroid.$
■ ($A, \rho,[$,$]) encodes Cartan's problem without making any reference to$ the original manifolds/bundles/coframes.

Cartan's Data and Lie algebroids

Proposition

If there is a solution to Cartan's realization problem for every $x \in X$ then the bracket satisfies the Jacobi identity:

$$
\left[\left[s_{1}, s_{2}\right], s_{3}\right]+\left[\left[s_{2}, s_{3}\right], s_{1}\right]+\left[\left[s_{3}, s_{1}\right], s_{2}\right]=0
$$

Remarks.

■ In examples above (and all relevant ones) the bracket does satisfy Jacobi;
■ The triple $(A, \rho,[]$,$) is then an example of a Lie algebroid.$
■ ($A, \rho,[$,$]) encodes Cartan's problem without making any reference to$ the original manifolds/bundles/coframes.

Questions.

■ How can one solve the classification problem using $(A, \rho,[]$,$) ?$

Cartan's Data and Lie algebroids

Proposition

If there is a solution to Cartan's realization problem for every $x \in X$ then the bracket satisfies the Jacobi identity:

$$
\left[\left[s_{1}, s_{2}\right], s_{3}\right]+\left[\left[s_{2}, s_{3}\right], s_{1}\right]+\left[\left[s_{3}, s_{1}\right], s_{2}\right]=0
$$

Remarks.

■ In examples above (and all relevant ones) the bracket does satisfy Jacobi;

- The triple $(A, \rho,[]$,$) is then an example of a Lie algebroid.$

■ ($A, \rho,[$,$]) encodes Cartan's problem without making any reference to$ the original manifolds/bundles/coframes.

Questions.

■ How can one solve the classification problem using $(A, \rho,[]$,$) ?$
■ What does $(A, \rho,[]$,$) say about symmetries? Moduli space of$ solutions? etc.

Lie algebroids

Definition

A Lie algebroid is a vector bundle $A \rightarrow X$, with a Lie bracket [,]: $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$ and a bundle map $\rho: A \rightarrow T X$, called the anchor, such that:

$$
\begin{gathered}
{\left[s_{1}, f s_{2}\right]=f\left[s_{1}, s_{2}\right]+\left(\mathcal{L}_{\rho\left(s_{1}\right)} f\right) s_{2},} \\
{\left[\left[s_{1}, s_{2}\right], s_{3}\right]+\left[\left[s_{2}, s_{3}\right], s_{1}\right]+\left[\left[s_{3}, s_{1}\right], s_{2}\right]=0 .}
\end{gathered}
$$

Lie algebroids

Definition

A Lie algebroid is a vector bundle $A \rightarrow X$, with a Lie bracket [,]: $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$ and a bundle map $\rho: A \rightarrow T X$, called the anchor, such that:

$$
\begin{gathered}
{\left[s_{1}, f s_{2}\right]=f\left[s_{1}, s_{2}\right]+\left(\mathcal{L}_{\rho\left(s_{1}\right)} f\right) s_{2}} \\
{\left[\left[s_{1}, s_{2}\right], s_{3}\right]+\left[\left[s_{2}, s_{3}\right], s_{1}\right]+\left[\left[s_{3}, s_{1}\right], s_{2}\right]=0}
\end{gathered}
$$

Examples:

■ Tangent bundle: $A=T X \rightarrow X$, [,] usual Lie bracket of vector fields and $\rho=\mathrm{id}$;
■ Lie algebra: $A=\mathfrak{g} \rightarrow\{*\},[]=,[,]_{\mathfrak{g}}$ and $\rho \equiv 0$;

- Infinitesimal action algebroid: $A=X \times \mathfrak{g} \rightarrow X$, on constant sections $\left[e_{i}, e_{j}\right]=\left[e_{i}, e_{j}\right]_{\mathfrak{g}}$ and $\rho\left(e_{i}\right)=\left(e_{i}\right)_{X}$,

Lie algebroids

Definition

A Lie algebroid is a vector bundle $A \rightarrow X$, with a Lie bracket [,]: $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$ and a bundle map $\rho: A \rightarrow T X$, called the anchor, such that:

$$
\begin{gathered}
{\left[s_{1}, f s_{2}\right]=f\left[s_{1}, s_{2}\right]+\left(\mathcal{L}_{\rho\left(s_{1}\right)} f\right) s_{2}} \\
{\left[\left[s_{1}, s_{2}\right], s_{3}\right]+\left[\left[s_{2}, s_{3}\right], s_{1}\right]+\left[\left[s_{3}, s_{1}\right], s_{2}\right]=0}
\end{gathered}
$$

Examples:

■ Tangent bundle: $A=T X \rightarrow X$, [,] usual Lie bracket of vector fields and $\rho=\mathrm{id}$;
■ Lie algebra: $A=\mathfrak{g} \rightarrow\{*\},[]=,[,]_{\mathfrak{g}}$ and $\rho \equiv 0$;

- Infinitesimal action algebroid: $A=X \times \mathfrak{g} \rightarrow X$, on constant sections $\left[e_{i}, e_{j}\right]=\left[e_{i}, e_{j}\right]_{\mathfrak{g}}$ and $\rho\left(e_{i}\right)=\left(e_{i}\right)_{X}$,

Basic concepts:

■ Orbits $\mathcal{O}: \rho\left(\left[s_{1}, s_{2}\right]\right)=\left[\rho\left(s_{1}\right), \rho\left(s_{2}\right)\right] \Rightarrow \operatorname{Im} \rho$ is integrable (singular) distribution.
■ Isotropy Lie algebras \mathfrak{g}_{x} : For $x \in X,[$,$] restricts to Lie bracket on \mathfrak{g}_{x}:=\operatorname{ker} \rho$.

Example : : Bochner-Kähler classifying algebroid

$$
X=i u_{n} \oplus \mathbb{C}^{n} \oplus \mathbb{R}, \quad A=X \times\left(\mathbb{C}^{n} \oplus \mathfrak{u}_{n}\right) \rightarrow X
$$

- Lie bracket of constant sections $(u, \alpha),(v, \beta) \in \mathbb{C}^{n} \oplus \mathfrak{u}_{n}$:
$\left.[(u, \alpha),(v, \beta)]\right|_{(S, T, U)}=\left(\alpha \cdot v-\beta \cdot u,[\alpha, \beta]_{\mathfrak{u}_{n}}-\left(u v^{*}-v u^{*}\right) S-S\left(v u^{*}-u v^{*}\right)+\cdots\right)$
- anchor map:

$$
\begin{aligned}
\left.\rho(u, \alpha)\right|_{(S, T, U)}=(S \alpha-\alpha S+ & \left.T \alpha^{*}+\alpha T^{*}+1 / 2\left(T^{*} \alpha+\alpha T^{*}\right)\right) \frac{\partial}{\partial S} \\
& +\left(\alpha T+S^{2} \alpha+U \alpha\right) \frac{\partial}{\partial T}+\left(T^{*} S u+u^{*} S T\right) \frac{\partial}{\partial U}
\end{aligned}
$$

Example : : Bochner-Kähler classifying algebroid

$$
X=i u_{n} \oplus \mathbb{C}^{n} \oplus \mathbb{R}, \quad A=X \times\left(\mathbb{C}^{n} \oplus \mathfrak{u}_{n}\right) \rightarrow X
$$

- Lie bracket of constant sections $(u, \alpha),(v, \beta) \in \mathbb{C}^{n} \oplus \mathfrak{u}_{n}$:
$\left.[(u, \alpha),(v, \beta)]\right|_{(S, T, U)}=\left(\alpha \cdot v-\beta \cdot u,[\alpha, \beta]_{\mathfrak{u}_{n}}-\left(u v^{*}-v u^{*}\right) S-S\left(v u^{*}-u v^{*}\right)+\cdots\right)$
- anchor map:

$$
\begin{aligned}
\left.\rho(u, \alpha)\right|_{(S, T, U)}=(S \alpha-\alpha S+ & \left.T \alpha^{*}+\alpha T^{*}+1 / 2\left(T^{*} \alpha+\alpha T^{*}\right)\right) \frac{\partial}{\partial S} \\
& +\left(\alpha T+S^{2} \alpha+U \alpha\right) \frac{\partial}{\partial T}+\left(T^{*} S u+u^{*} S T\right) \frac{\partial}{\partial U}
\end{aligned}
$$

Each Bochner-Kähler manifold, has an associated U_{n}-structure $P=F_{\mathrm{U}_{n}}(M)$ yielding a Lie algebroid map:

Groupoids

X - topological space; look at paths $\gamma:[0,1] \rightarrow X$

Groupoids

X - topological space; look at paths $\gamma:[0,1] \rightarrow X$

Groupoids

X - topological space; look at paths $\gamma:[0,1] \rightarrow X$

Groupoids

X - topological space; look at paths $\gamma:[0,1] \rightarrow X$

Groupoids

X - topological space; look at paths $\gamma:[0,1] \rightarrow X$

Groupoids

X - topological space; look at paths $\gamma:[0,1] \rightarrow X$

$$
\begin{aligned}
& \Pi_{1}(X)=\{[\gamma] \mid \gamma:[0,1] \rightarrow X\} \\
& \mathbf{t} \mid \|_{\downarrow} \\
& \quad X
\end{aligned}
$$

- product:

Groupoids

X - topological space; look at paths $\gamma:[0,1] \rightarrow X$

- identity:

$$
u: X \hookrightarrow \Pi_{1}(X)
$$

Groupoids

X - topological space; look at paths $\gamma:[0,1] \rightarrow X$

$$
\Pi_{1}(X)=\{[\gamma] \mid \gamma:[0,1] \rightarrow X\}
$$

■ inverse:

Groupoids

X - topological space; look at paths $\gamma:[0,1] \rightarrow X$

- The space $\Pi_{1}(X)$ has a natural topology and the source, target, multiplication and inverse are all continous maps: $\Pi_{1}(X) \rightrightarrows X$ is an example of a topological groupoid.

Groupoids

X - topological space; look at paths $\gamma:[0,1] \rightarrow X$

- The space $\Pi_{1}(X)$ has a natural topology and the source, target, multiplication and inverse are all continous maps: $\Pi_{1}(X) \rightrightarrows X$ is an example of a topological groupoid.
- If X is a manifold, the space $\Pi_{1}(X)$ is a manifold and the source, target, multiplication and inverse are all smooth maps: then $\Pi_{1}(X) \rightrightarrows X$ is an example of a Lie groupoid.

Lie Groupoids

A Lie groupoid is a pair of submersions $s, t: \mathcal{G} \rightrightarrows X$, together with partial composition, identity and inversion maps satisfying the obvious axioms.

Lie Groupoids

A Lie groupoid is a pair of submersions $s, t: \mathcal{G} \rightrightarrows X$, together with partial composition, identity and inversion maps satisfying the obvious axioms.

Examples:

- Pair groupoid: $X \times X \rightrightarrows X$;

■ Lie groups: $G \rightrightarrows\{*\}$;

- Action groupoid: $G \times X \rightrightarrows X$.

Lie Groupoids

Given a Lie groupoid $\mathcal{G} \rightrightarrows X$:

- source fibers $s^{-1}(x)$ and target fibers $t^{-1}(x)$;
- orbits: $\mathcal{O}_{x}=t\left(s^{-1}(x)\right)$;

■ isotropy Lie groups: $\mathcal{G}_{X}=s^{-1}(x) \cap t^{-1}(x)$;

Lie Groupoids

Given a Lie groupoid $\mathcal{G} \rightrightarrows X$:
■ source fibers $s^{-1}(x)$ and target fibers $t^{-1}(x)$;

- orbits: $\mathcal{O}_{x}=t\left(s^{-1}(x)\right)$;

■ isotropy Lie groups: $\mathcal{G}_{X}=s^{-1}(x) \cap t^{-1}(x)$; and there is an associated Lie algebroid $A \rightarrow X$:

$$
A:=T_{X}^{s} \mathcal{G}, \quad \rho:=\left.\mathrm{d} t\right|_{A}, \quad[,]_{A}:=\text { Lie bracket of } \mathfrak{X}_{\mathrm{R} \text {-inv }}(\mathcal{G}) \equiv \Gamma(A)
$$

Lie Groupoids

Given a Lie groupoid $\mathcal{G} \rightrightarrows X$:
■ source fibers $s^{-1}(x)$ and target fibers $t^{-1}(x)$;

- orbits: $\mathcal{O}_{x}=t\left(s^{-1}(x)\right)$;

■ isotropy Lie groups: $\mathcal{G}_{X}=s^{-1}(x) \cap t^{-1}(x)$; and there is an associated Lie algebroid $A \rightarrow X$:

$$
A:=T_{X}^{S} \mathcal{G}, \quad \rho:=\left.\mathrm{d} t\right|_{A}, \quad[,]_{A}:=\text { Lie bracket of } \mathfrak{X}_{\mathrm{R} \text {-inv }}(\mathcal{G}) \equiv \Gamma(A)
$$

Lie Groupoids

Given a Lie groupoid $\mathcal{G} \rightrightarrows X$:
■ source fibers $s^{-1}(x)$ and target fibers $t^{-1}(x)$;

- orbits: $\mathcal{O}_{x}=t\left(s^{-1}(x)\right)$;
- isotropy Lie groups: $\mathcal{G}_{x}=s^{-1}(x) \cap t^{-1}(x)$; and there is an associated Lie algebroid $A \rightarrow X$:

$$
A:=T_{X}^{S} \mathcal{G}, \quad \rho:=\left.\mathrm{d} t\right|_{A}, \quad[,]_{A}:=\text { Lie bracket of } \mathfrak{X}_{\mathrm{R} \text {-inv }}(\mathcal{G}) \equiv \Gamma(A)
$$

$$
\mathrm{A}=\mathrm{T}_{\mathrm{X}}^{\mathrm{s}} \Gamma
$$

Lie Groupoids

Given a Lie groupoid $\mathcal{G} \rightrightarrows X$:
■ source fibers $s^{-1}(x)$ and target fibers $t^{-1}(x)$;

- orbits: $\mathcal{O}_{x}=t\left(s^{-1}(x)\right)$;
- isotropy Lie groups: $\mathcal{G}_{x}=s^{-1}(x) \cap t^{-1}(x)$; and there is an associated Lie algebroid $A \rightarrow X$:

$$
A:=T_{X}^{S} \mathcal{G}, \quad \rho:=\left.\mathrm{d} t\right|_{A}, \quad[,]_{A}:=\text { Lie bracket of } \mathfrak{X}_{\mathrm{R} \text {-inv }}(\mathcal{G}) \equiv \Gamma(A)
$$

$$
\mathrm{A}=\mathrm{T}_{\mathrm{X}}^{\mathrm{s}} \Gamma
$$

Lie Groupoids

Given a Lie groupoid $\mathcal{G} \rightrightarrows X$:
■ source fibers $s^{-1}(x)$ and target fibers $t^{-1}(x)$;

- orbits: $\mathcal{O}_{x}=t\left(s^{-1}(x)\right)$;
- isotropy Lie groups: $\mathcal{G}_{x}=s^{-1}(x) \cap t^{-1}(x)$; and there is an associated Lie algebroid $A \rightarrow X$:

$$
A:=T_{X}^{S} \mathcal{G}, \quad \rho:=\left.\mathrm{d} t\right|_{A}, \quad[,]_{A}:=\text { Lie bracket of } \mathfrak{X}_{\mathrm{R} \text {-inv }}(\mathcal{G}) \equiv \Gamma(A)
$$

$$
\mathrm{A}=\mathrm{T}_{\mathrm{X}}^{\mathrm{s}} \Gamma \quad \rho=\left.\mathrm{dt}\right|_{\mathrm{A}}
$$

Lie Groupoids

Given a Lie groupoid $\mathcal{G} \rightrightarrows X$:
■ source fibers $s^{-1}(x)$ and target fibers $t^{-1}(x)$;

- orbits: $\mathcal{O}_{x}=t\left(s^{-1}(x)\right)$;
- isotropy Lie groups: $\mathcal{G}_{x}=s^{-1}(x) \cap t^{-1}(x)$; and there is an associated Lie algebroid $A \rightarrow X$:

$$
A:=T_{X}^{S} \mathcal{G}, \quad \rho:=\left.\mathrm{d} t\right|_{A}, \quad[,]_{A}:=\text { Lie bracket of } \mathfrak{X}_{\mathrm{R} \text {-inv }}(\mathcal{G}) \equiv \Gamma(A)
$$

$$
\mathrm{A}=\mathrm{T}_{\mathrm{X}}^{\mathrm{s}} \Gamma \quad \rho=\left.\mathrm{dt}\right|_{\mathrm{A}}
$$

Lie Groupoids

Given a Lie groupoid $\mathcal{G} \rightrightarrows X$:
■ source fibers $s^{-1}(x)$ and target fibers $t^{-1}(x)$;

- orbits: $\mathcal{O}_{x}=t\left(s^{-1}(x)\right)$;
- isotropy Lie groups: $\mathcal{G}_{x}=s^{-1}(x) \cap t^{-1}(x)$; and there is an associated Lie algebroid $A \rightarrow X$:

$$
A:=T_{X}^{S} \mathcal{G}, \quad \rho:=\left.\mathrm{d} t\right|_{A}, \quad[,]_{A}:=\text { Lie bracket of } \mathfrak{X}_{\mathrm{R} \text {-inv }}(\mathcal{G}) \equiv \Gamma(A)
$$

$$
\mathrm{A}=\mathrm{T}_{\mathrm{X}}^{\mathrm{s}} \Gamma \quad \rho=\left.\mathrm{dt}\right|_{\mathrm{A}}
$$

Lie Groupoids

Given a Lie groupoid $\mathcal{G} \rightrightarrows X$:
■ source fibers $s^{-1}(x)$ and target fibers $t^{-1}(x)$;

- orbits: $\mathcal{O}_{x}=t\left(s^{-1}(x)\right)$;

■ isotropy Lie groups: $\mathcal{G}_{X}=s^{-1}(x) \cap t^{-1}(x)$; and there is an associated Lie algebroid $A \rightarrow X$:

$$
A:=T_{X}^{S} \mathcal{G}, \quad \rho:=\left.\mathrm{d} t\right|_{A}, \quad[,]_{A}:=\text { Lie bracket of } \mathfrak{X}_{\mathrm{R} \text {-inv }}(\mathcal{G}) \equiv \Gamma(A)
$$

$$
\mathrm{A}=\mathrm{T}_{\mathrm{X}}^{\mathrm{s}} \Gamma \quad \rho=\left.\mathrm{dt}\right|_{\mathrm{A}} \quad[\alpha, \beta]=\left.\left[\mathrm{X}^{\alpha}, \mathrm{X}^{\beta}\right]\right|_{\mathrm{X}}
$$

Lie Groupoids

Examples:

■ The pair groupoid $X \times X \rightrightarrows X$ and fundamental groupod $\Pi_{1}(X) \rightrightarrows X$ integrate the same Lie algebroid: $A=T X$;

- The action groupoid $G \times X \rightrightarrows X$ integrates the action Lie algebroid $X \times \mathfrak{g} \rightarrow X$, so there can be many integrations (arising from different Lie groups G)

Lie Groupoids

Examples:

■ The pair groupoid $X \times X \rightrightarrows X$ and fundamental groupod $\Pi_{1}(X) \rightrightarrows X$ integrate the same Lie algebroid: $A=T X$;

- The action groupoid $G \times X \rightrightarrows X$ integrates the action Lie algebroid $X \times \mathfrak{g} \rightarrow X$, so there can be many integrations (arising from different Lie groups G)

Basic Theorems:

■ Lie I: Given a source connected Lie groupoid $\mathcal{G} \rightrightarrows X$ there is a unique source 1 -connected Lie groupoid $\tilde{\mathcal{G}} \rightrightarrows X$ with the same Lie algebroid and a unique étale morphism of Lie groupoids $\tilde{\mathcal{G}} \rightarrow \mathcal{G}$;

Lie Groupoids

Examples:

■ The pair groupoid $X \times X \rightrightarrows X$ and fundamental groupod $\Pi_{1}(X) \rightrightarrows X$ integrate the same Lie algebroid: $A=T X$;

- The action groupoid $G \times X \rightrightarrows X$ integrates the action Lie algebroid $X \times \mathfrak{g} \rightarrow X$, so there can be many integrations (arising from different Lie groups G)

Basic Theorems:

■ Lie I: Given a source connected Lie groupoid $\mathcal{G} \rightrightarrows X$ there is a unique source 1 -connected Lie groupoid $\tilde{\mathcal{G}} \rightrightarrows X$ with the same Lie algebroid and a unique étale morphism of Lie groupoids $\tilde{\mathcal{G}} \rightarrow \mathcal{G}$;
■ Lie II: Glven a source 1-connected Lie groupoid $\mathcal{G}_{1} \rightrightarrows X_{1}$ with algebroid $A_{1} \rightarrow X_{1}$ and a Lie groupoid $\mathcal{G}_{2} \rightrightarrows X_{2}$ with algebroid $A_{2} \rightarrow X_{2}$, each Lie algebroid morphism $\phi: A_{1} \rightarrow A_{2}$ integrates to a unique Lie groupoid morphism $\Phi: \mathcal{G}_{1} \rightarrow \mathcal{G}_{2} ;$

Lie Groupoids

Examples:

■ The pair groupoid $X \times X \rightrightarrows X$ and fundamental groupod $\Pi_{1}(X) \rightrightarrows X$ integrate the same Lie algebroid: $A=T X$;

- The action groupoid $G \times X \rightrightarrows X$ integrates the action Lie algebroid $X \times \mathfrak{g} \rightarrow X$, so there can be many integrations (arising from different Lie groups G)

Basic Theorems:

■ Lie I: Given a source connected Lie groupoid $\mathcal{G} \rightrightarrows X$ there is a unique source 1-connected Lie groupoid $\tilde{\mathcal{G}} \rightrightarrows X$ with the same Lie algebroid and a unique étale morphism of Lie groupoids $\tilde{\mathcal{G}} \rightarrow \mathcal{G}$;
■ Lie II: Glven a source 1-connected Lie groupoid $\mathcal{G}_{1} \rightrightarrows X_{1}$ with algebroid $A_{1} \rightarrow X_{1}$ and a Lie groupoid $\mathcal{G}_{2} \rightrightarrows X_{2}$ with algebroid $A_{2} \rightarrow X_{2}$, each Lie algebroid morphism $\phi: A_{1} \rightarrow A_{2}$ integrates to a unique Lie groupoid morphism $\Phi: \mathcal{G}_{1} \rightarrow \mathcal{G}_{2} ;$

- Lie III: Not every Lie algebroid integrates to a Lie groupoid. Obstructions are completely understood [Crainic \& RLF, 2003].

Lie Groupoids

For a Lie groupoid $\mathcal{G} \rightrightarrows X$ with algebroid $A \rightarrow X$, its Maurer-Cartan form is the s-foliated A-valued 1 -form:

$$
\omega_{\mathrm{MC}} \in \Omega^{1}\left(T^{s} \mathcal{G} ; A\right), \quad \omega_{\mathrm{MC}}(v)_{\gamma}=\mathrm{d}_{\gamma} R_{\gamma-1} \cdot v
$$

Crash Course on Lie algebroids/groupoids

Lie Groupoids

For a Lie groupoid $\mathcal{G} \rightrightarrows X$ with algebroid $A \rightarrow X$, its Maurer-Cartan form is the s-foliated A-valued 1 -form:

$$
\omega_{\mathrm{MC}} \in \Omega^{1}\left(T^{s} \mathcal{G} ; A\right), \quad \omega_{\mathrm{MC}}(v)_{\gamma}=\mathrm{d}_{\gamma} R_{\gamma-1} \cdot v
$$

Theorem (RLF \& Struchiner, 2014)

If $A=X \times \mathbb{R}^{n} \rightarrow X$ is the trivial vector bundle, then the restrition $\left.\omega_{M C}\right|_{s^{-1}(x)}$ to any source fiber $s^{-1}(x)$ is a coframe, and together with the target gives a Lie algebroid morphism:

These solutions are universal: if a coframe (P, θ) induces an algebroid map $T P \rightarrow A$, there is a unique (local) isomorphism:

Rui Loja Fernandes
Bochner-Kähler Structures (after R. Bryant)

Lie Algebroids and G-structures

Back to G-structures... notice that:

- The previous construction was about coframes ($\Leftrightarrow\{e\}$-structures);

■ The algebroids associated with G-structures, where $G \neq\{e\}$ should have more structure.

Lie Algebroids and G-structures

Back to G-structures... notice that:

- The previous construction was about coframes ($\Leftrightarrow\{e\}$-structures);

■ The algebroids associated with G-structures, where $G \neq\{e\}$ should have more structure.

Key Remark: should take into consideration that the coframe in $P=\mathrm{F}_{G}(M)$ takes the special form (θ, η), where $\theta \in \Omega^{1}\left(P, \mathbb{R}^{n}\right)$ and $\eta \in \Omega^{1}(P, \mathfrak{g})$.

Lie Algebroids and G-structures

Back to G-structures... notice that:

- The previous construction was about coframes ($\Leftrightarrow\{e\}$-structures);

■ The algebroids associated with G-structures, where $G \neq\{e\}$ should have more structure.

Key Remark: should take into consideration that the coframe in $P=\mathrm{F}_{G}(M)$ takes the special form (θ, η), where $\theta \in \Omega^{1}\left(P, \mathbb{R}^{n}\right)$ and $\eta \in \Omega^{1}(P, \mathfrak{g})$.

Simplifying assumption: Henceforth, we assume that G is a compact, connected, Lie group.

Cartan Data and Realizations are formalized as follows:

Definition

Let $G \subset G L_{n}(\mathbb{R})$ and X a G-manifold. A Lie G-algebroid is a Lie algebroid $A \rightarrow X$:
■ A is the trivial vector bundle with fiber $\mathbb{R}^{n} \oplus \mathfrak{g}$;
■ $\rho: A \rightarrow T X$ is defined by G-equivariant map $F: X \times \mathbb{R}^{n} \rightarrow T X$:

$$
\rho(u, \alpha)=F(u)+\psi(\alpha), \quad(u, \alpha) \in \mathbb{R}^{n} \oplus \mathfrak{g},
$$

■ the bracket on constant sections $(u, \alpha),(v, \beta) \in \Gamma(A)$ takes the form

$$
[(u, \alpha),(v, \beta)]=\left(\alpha \cdot v-\beta \cdot u-c(u, v),[\alpha, \beta]_{\mathfrak{g}}-R(u, v)\right)
$$

where $c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathfrak{g}\right)$ are G-equivariant.

Cartan Data and Realizations are formalized as follows:

Definition

Let $G \subset G L_{n}(\mathbb{R})$ and X a G-manifold. A Lie G-algebroid is a Lie algebroid $A \rightarrow X$:
■ A is the trivial vector bundle with fiber $\mathbb{R}^{n} \oplus \mathfrak{g}$;
■ $\rho: A \rightarrow T X$ is defined by G-equivariant map $F: X \times \mathbb{R}^{n} \rightarrow T X$:

$$
\rho(u, \alpha)=F(u)+\psi(\alpha), \quad(u, \alpha) \in \mathbb{R}^{n} \oplus \mathfrak{g}
$$

■ the bracket on constant sections $(u, \alpha),(v, \beta) \in \Gamma(A)$ takes the form

$$
[(u, \alpha),(v, \beta)]=\left(\alpha \cdot v-\beta \cdot u-c(u, v),[\alpha, \beta]_{\mathfrak{g}}-R(u, v)\right)
$$

where $c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathfrak{g}\right)$ are G-equivariant.

Definition

A G-realization of a Lie G-algebroid $A \rightarrow X$ consists of a manifold P, equipped with a locally free, proper, G-action, together with an equivariant Lie algebroid map:

Lie G-groupoids

Main Problem. How can one find G-realizations?

Lie G-groupoids

Main Problem. How can one find G-realizations? Main Idea: Integrate!

Lie G-groupoids

Main Problem. How can one find G-realizations? Main Idea: Integrate! If $A \rightarrow X$ is a Lie G-groupoid we have an injective algebroid morphism:

$$
i: \mathfrak{g} \ltimes X \rightarrow A, \quad \alpha \mapsto(0, \alpha) .
$$

Lie G-groupoids

Main Problem. How can one find G-realizations? Main Idea: Integrate! If $A \rightarrow X$ is a Lie G-groupoid we have an injective algebroid morphism:

$$
i: \mathfrak{g} \ltimes X \rightarrow A, \quad \alpha \mapsto(0, \alpha) .
$$

Definition

A Lie G-groupoid is a Lie groupoid $\mathcal{G} \rightrightarrows X$ such that:

- its Lie algebroid $A \rightarrow X$ is a Lie G-algebroid;

■ there is a groupoid morphism $\Upsilon: G \ltimes X \rightarrow \mathcal{G}$ integrating $i: \mathfrak{g} \ltimes X \rightarrow A$;

Lie G-groupoids

Main Problem. How can one find G-realizations? Main Idea: Integrate!
If $A \rightarrow X$ is a Lie G-groupoid we have an injective algebroid morphism:

$$
i: \mathfrak{g} \ltimes X \rightarrow A, \quad \alpha \mapsto(0, \alpha) .
$$

Definition

A Lie G-groupoid is a Lie groupoid $\mathcal{G} \rightrightarrows X$ such that:

- its Lie algebroid $A \rightarrow X$ is a Lie G-algebroid;

■ there is a groupoid morphism $\Upsilon: G \ltimes X \rightarrow \mathcal{G}$ integrating $i: \mathfrak{g} \ltimes X \rightarrow A$;
Remark: The morphism $\Upsilon: G \ltimes X \rightarrow \mathcal{G}$ defines a right G-action on \mathcal{G} by:

$$
\mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}, \quad(\gamma, g) \mapsto \Upsilon\left(g^{-1}, t(\gamma)\right) \cdot \gamma
$$

Lie G-groupoids

Main Problem. How can one find G-realizations? Main Idea: Integrate!
If $A \rightarrow X$ is a Lie G-groupoid we have an injective algebroid morphism:

$$
i: \mathfrak{g} \ltimes X \rightarrow A, \quad \alpha \mapsto(0, \alpha) .
$$

Definition

A Lie G-groupoid is a Lie groupoid $\mathcal{G} \rightrightarrows X$ such that:

- its Lie algebroid $A \rightarrow X$ is a Lie G-algebroid;

■ there is a groupoid morphism $\Upsilon: G \ltimes X \rightarrow \mathcal{G}$ integrating $i: \mathfrak{g} \ltimes X \rightarrow A$;
Remark: The morphism $\Upsilon: G \ltimes X \rightarrow \mathcal{G}$ defines a right G-action on \mathcal{G} by:

$$
\mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}, \quad(\gamma, g) \mapsto \Upsilon\left(g^{-1}, t(\gamma)\right) \cdot \gamma
$$

such that:

- $t: \mathcal{G} \rightarrow X$ is a G-invariant map;
- preserves the source fibers;
- is proper and (locally) free.

Lie G-groupoids

Main Problem. How can one find G-realizations? Main Idea: Integrate!
If $A \rightarrow X$ is a Lie G-groupoid we have an injective algebroid morphism:

$$
i: \mathfrak{g} \ltimes X \rightarrow A, \quad \alpha \mapsto(0, \alpha) .
$$

Definition

A Lie G-groupoid is a Lie groupoid $\mathcal{G} \rightrightarrows X$ such that:
■ its Lie algebroid $A \rightarrow X$ is a Lie G-algebroid;
■ there is a groupoid morphism $\Upsilon: G \ltimes X \rightarrow \mathcal{G}$ integrating $i: \mathfrak{g} \ltimes X \rightarrow A$;
Remark: The morphism $\Upsilon: G \ltimes X \rightarrow \mathcal{G}$ defines a right G-action on \mathcal{G} by:

$$
\mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}, \quad(\gamma, g) \mapsto \Upsilon\left(g^{-1}, t(\gamma)\right) \cdot \gamma
$$

such that:

- $t: \mathcal{G} \rightarrow X$ is a G-invariant map;
- preserves the source fibers;
- is proper and (locally) free.

In particular, each source fiber $s^{-1}(x)$ is a principal G-bundle over the orbifold

$$
M=s^{-1}(x) / G .
$$

Solving the classification problem

Theorem

If $\mathcal{G} \rightrightarrows X$ is a Lie G-groupoid integrating a Lie G-algebroid $A \rightarrow X$, then each source fiber $\mathbf{s}^{-1}(x)$ equipped with the restriction of the Maurer-Cartan form $\omega_{M C}$ yields a G-realization of A. Moreover, any G-realization of A is isomorphic to a G-invariant, open subset of one such G-realization (up to cover).

Solving the classification problem

Theorem

If $\mathcal{G} \rightrightarrows X$ is a Lie G-groupoid integrating a Lie G-algebroid $A \rightarrow X$, then each source fiber $\mathbf{s}^{-1}(x)$ equipped with the restriction of the Maurer-Cartan form $\omega_{M C}$ yields a G-realization of A. Moreover, any G-realization of A is isomorphic to a G-invariant, open subset of one such G-realization (up to cover).

Corollary

For any value of $\left(S_{0}, T_{0}, U_{0}\right)$, there is unique, up to isomorphism, (germ of) Bochner-Kähler orbifold (M, g, J, ω) whose invariants (S, T, U) take the value $\left(S_{0}, T_{0}, U_{0}\right)$.

Solving the classification problem

Theorem

If $\mathcal{G} \rightrightarrows X$ is a Lie G-groupoid integrating a Lie G-algebroid $A \rightarrow X$, then each source fiber $\mathbf{s}^{-1}(x)$ equipped with the restriction of the Maurer-Cartan form $\omega_{M C}$ yields a G-realization of A. Moreover, any G-realization of A is isomorphic to a G-invariant, open subset of one such G-realization (up to cover).

Corollary

For any value of $\left(S_{0}, T_{0}, U_{0}\right)$, there is unique, up to isomorphism, (germ of) Bochner-Kähler orbifold (M, g, J, ω) whose invariants (S, T, U) take the value $\left(S_{0}, T_{0}, U_{0}\right)$.

Remarks:

- Finding complete solutions, depends on having G-integrations. There is an obstruction theory (G-monodromy) that solves this problem and does not require finding explicit G-integrations!
- Finding explicit solutions, depend on finding explicit G-integrations. One can recover in this way all known Bochner-Kähler metrics
- Similar results hold for other problems...

An explicit example : : Metrics of Hessian Curvature

Given a surfaces (Σ, g) whose Gaussian curvature k satisfies:

$$
\operatorname{Hess}_{g}(k)=\frac{1}{2}\left(1-k^{2}\right) g
$$

An explicit example : : Metrics of Hessian Curvature

Given a surfaces (Σ, g) whose Gaussian curvature k satisfies:

$$
\operatorname{Hess}_{g}(k)=\frac{1}{2}\left(1-k^{2}\right) g
$$

Passing to the SO-frame bundle, one obtains:

$$
\begin{array}{rlrl}
\mathrm{d} \theta_{1} & =-\eta \wedge \theta_{2} & \mathrm{~d} k & =k_{1} \theta_{1}+k_{2} \theta_{2} \\
\mathrm{~d} \theta_{2} & =\eta \wedge \theta_{1} & \mathrm{~d} k_{1} & =1 / 2\left(1-k^{2}\right) \theta_{1}-k_{2} \eta \\
\mathrm{~d} \eta & =k \theta_{1} \wedge \theta_{2} & \mathrm{~d} k_{2} & =1 / 2\left(1-k^{2}\right) \theta_{2}+k_{1} \eta .
\end{array}
$$

An explicit example : : Metrics of Hessian Curvature

Given a surfaces (Σ, g) whose Gaussian curvature k satisfies:

$$
\operatorname{Hess}_{g}(k)=\frac{1}{2}\left(1-k^{2}\right) g
$$

Passing to the SO-frame bundle, one obtains:

$$
\begin{array}{rlrl}
\mathrm{d} \theta_{1} & =-\eta \wedge \theta_{2} & \mathrm{~d} k & =k_{1} \theta_{1}+k_{2} \theta_{2} \\
\mathrm{~d} \theta_{2} & =\eta \wedge \theta_{1} & \mathrm{~d} k_{1} & =1 / 2\left(1-k^{2}\right) \theta_{1}-k_{2} \eta \\
\mathrm{~d} \eta & =k \theta_{1} \wedge \theta_{2} & \mathrm{~d} k_{2} & =1 / 2\left(1-k^{2}\right) \theta_{2}+k_{1} \eta .
\end{array}
$$

The associated classifying Lie G-algebroid is $A=\mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, with Lie bracket and anchor:

$$
\begin{gathered}
{\left[\alpha_{1}, \alpha_{2}\right]=-k \beta \quad\left[\alpha_{1}, \beta\right]=\alpha_{2} \quad\left[\alpha_{2}, \beta\right]=-\alpha_{1}} \\
\rho\left(\alpha_{1}\right)=k_{1} \frac{\partial}{\partial k}+\frac{1}{2}\left(1-k^{2}\right) \frac{\partial}{\partial k_{1}} \\
\rho\left(\alpha_{2}\right)=k_{2} \frac{\partial}{\partial k}+\frac{1}{2}\left(1-k^{2}\right) \frac{\partial}{\partial k_{2}} \\
\rho(\beta)=-k_{2} \frac{\partial}{\partial k_{1}}+k_{1} \frac{\partial}{\partial k_{2}} .
\end{gathered}
$$

An example : : Metrics of Hessian Curvature

Computing the obstructions (infinitesimal G-monodromy):
Orbit foliation of A : level sets of

$$
F\left(k_{1}, k_{2}, k\right):=k_{1}^{2}+k_{2}^{2}+\frac{1}{3} k^{3}-k
$$

An example : : Metrics of Hessian Curvature

Computing the obstructions (infinitesimal G-monodromy):
Orbit foliation of A : level sets of

$$
F\left(k_{1}, k_{2}, k\right):=k_{1}^{2}+k_{2}^{2}+\frac{1}{3} k^{3}-k
$$

- At the two fixed points $(0,0,1)$ and $(0,0,-1)$, there are solutions (constant curvature metrics);
- In the region filled by spheres there does not exist a G-integration for almost every leaf (but there exists G-integrations on some spheres);
- Over every other leaf in the other regions there exist G-integrations.

Closing Remarks/Open Problems

■ Classifying G-algebroids have several other applications: symmetries, moduli spaces, ...;

Closing Remarks/Open Problems

■ Classifying G-algebroids have several other applications: symmetries, moduli spaces, ...;
■ We have assumed G compact. All we said before applies more generally to G-structures of type-1, i.e., G-structures $\mathrm{F}_{G}(M)$ whose first prolongation is trivial;

Closing Remarks/Open Problems

■ Classifying G-algebroids have several other applications: symmetries, moduli spaces, ...;

- We have assumed G compact. All we said before applies more generally to G-structures of type-1, i.e., G-structures $\mathrm{F}_{G}(M)$ whose first prolongation is trivial;
- For a G-structure of finite type-k, a similar (more cumbersome) discussion holds: one applies the previous formalism to the $(k-1)$-prolongation $\mathrm{F}(M)_{G}^{(k-1)}$;

Closing Remarks/Open Problems

■ Classifying G-algebroids have several other applications: symmetries, moduli spaces, ...;

- We have assumed G compact. All we said before applies more generally to G-structures of type-1, i.e., G-structures $\mathrm{F}_{G}(M)$ whose first prolongation is trivial;
- For a G-structure of finite type-k, a similar (more cumbersome) discussion holds: one applies the previous formalism to the $(k-1)$-prolongation $\mathrm{F}(M)_{G}^{(k-1)}$;
- In many examples (Bochner-Kähler, connections w/ special holonomy,...) the algebroids are related to the cotangent algebroids associated with Poisson manifolds, and this allows for its explicit integration. It is an open problem to understand how/why this happens.

Closing Remarks/Open Problems

■ Classifying G-algebroids have several other applications: symmetries, moduli spaces, ...;

- We have assumed G compact. All we said before applies more generally to G-structures of type-1, i.e., G-structures $\mathrm{F}_{G}(M)$ whose first prolongation is trivial;
■ For a G-structure of finite type- k, a similar (more cumbersome) discussion holds: one applies the previous formalism to the $(k-1)$-prolongation $\mathrm{F}(M)_{G}^{(k-1)}$;
- In many examples (Bochner-Kähler, connections w/ special holonomy,...) the algebroids are related to the cotangent algebroids associated with Poisson manifolds, and this allows for its explicit integration. It is an open problem to understand how/why this happens.

> Thank you!

