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This talk is based on:

m RLF & I. Stuchiner, The Classifying Algebroid of a G-structure |
& ll, (see arxive).

m R. Bryant, Bochner-Kahler metrics. J. of Amer. Math. Soc., 14
(2001), 623-715.
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Aim:

m Describe a systematic method allowing to treat classifications
problems of geometric structures of finite type.
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This talk is based on:
m RLF & I. Stuchiner, The Classifying Algebroid of a G-structure |
& ll, (see arxive).

m R. Bryant, Bochner-Kahler metrics. J. of Amer. Math. Soc., 14
(2001), 623-715.

Aim:
m Describe a systematic method allowing to treat classifications
problems of geometric structures of finite type.

Plan:
Bl Bochner-Kahler metrics
H Classification problems and Lie algebroids
Kl Lie algebroids and Lie groupoids
1 Main results
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L Bochner-Kahler metrics

Notations

(M, g, J,w) — Kahler manifold with curvature tensor R : (TM)4 —R
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L Bochner-Kahler metrics

Notations

(M, g, J,w) — Kahler manifold with curvature tensor R : (TM)4 —R
Ricci tensor:
n
S(X,Y) = Z R(X,JY, e;, Jei), ({ei, Jei}iz1,....n, orthonormal basis)
i=1
Holomorphic sectional curvature:
K(X,JX) = R(X,JX, X, JX), (X =1)

Scalar curvature:
n

s=2) R(e;,Je,e,Je)=>_ S(e;,Je)

ij=1 i=1

Traceless Ricci tensor:
S
2n
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L Bochner-Kahler metrics

Bochner Tensor

Symmetries of the curvature tensor R : (TM)* — R:

R(X,Y,Z,W)=R(Z,W,X,Y = —R(Y,X,Z,W) = —R(X, Y, W, Z))
R(X,Y,Z,W)+R(X,Z,W,Y)+R(X,W,Y,Z)=0
R(X,Y,Z, W)= R(JX,JY,Z, W) = R(X, Y, JZ,JW)
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L Bochner-Kahler metrics

Bochner Tensor

Symmetries of the curvature tensor R : (TM)* — R:

R(X,Y,Z,W)=R(Z,W,X,Y = —R(Y,X,Z,W) = —R(X, Y, W, Z))
R(X,Y,Z,W)+R(X,Z,W,Y)+R(X,W,Y,Z)=0
R(X,Y,Z, W)= R(JX,JY,Z, W) = R(X, Y, JZ,JW)

Decomposing the action of U(n) on such tensors into irreducible factors:

R=Ry+ R+ R
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L Bochner-Kahler metrics

Bochner Tensor

Symmetries of the curvature tensor R : (TM)* — R:

R(X7 sza W) = R(Zv W7X7 Y = _R(Y7X7Z7 W) = _R(X7 Y7 WaZ))
R(X,Y,Z, W)+ R(X,Z,W,Y) + R(X, W, Y,Z) =0
R(X,Y,Z, W) = R(X,JY,Z, W) = R(X, Y, JZ, W)

Decomposing the action of U(n) on such tensors into irreducible factors:

R=Ro+Ri+ R

m Given Kahler metric g and scalar s, the tensor:

Ro(X, Y, 2, W):= 2 4 +9(JX, Z)g(JY, W) — g(JX, W)g(JY’ Z)+

s 9(X, 2)g9(Y, W) — g(X, W)g(Y, 2)+
+29(X, Y)g(Z, W)

satisfies all symmetries. Ry = 0 if Kahler metric is scalar-flat and
R = Ry iff it has constant holomorphic scalar curvature.
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L Bochner-Kahler metrics

Bochner Tensor

Symmetries of the curvature tensor R : (TM)* — R:

R(Xa Y7Za W) = R(Zv W7Xa Y = 7R(Y,X,Z, W) = 7R(X7 Y? WaZ))
R(X,Y,Z, W)+ R(X,Z,W,Y)+R(X,W,Y,Z) =0
R(X,Y,Z, W) = R(JX,JY,Z, W) = R(X, Y, JZ, JW)

Decomposing the action of U(n) on such tensors into irreducible factors:

R=R+Ri+R

m Given traceless symmetric 2-tensor Sy, the tensor:
1 9(X, 2)So(Y, W) — g(X, W)So(Y, Z) — g(Y, Z)Sp(X, W) + (Y, W)Sp(X, Z)
Ri(X,Y,Z, W) := — g(JX, Z)Sy(JY, W) — g(JX, W)Sy(JY, Z) — g(JY, Z)Sy(JX, W) + g(JY, W)Sy(JX, 2
4 +29(X, ¥)So(Z, W) +29(Z, W)So(X, Y)

satisfies all symmetries. The trace of Ry is Sp, and Ry = 0 iff metric is
Kahler-Einstein.
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L Bochner-Kahler metrics

Bochner Tensor

Symmetries of the curvature tensor R : (TM)* — R:

R(Xa Y7Za W) = R(Zv W7Xa Y = 7R(Y,X,Z, W) = 7R(X7 Y? WaZ))
R(X,Y,Z, W)+ R(X,Z,W,Y)+R(X,W,Y,Z) =0
R(X,Y,Z, W) = R(JX,JY,Z, W) = R(X, Y, JZ, JW)

Decomposing the action of U(n) on such tensors into irreducible factors:

R=R+Ri+R

m Ry represents scalar curvature;
m Ry represents traceless Ricci;
m R, := R— Ry — Ry is called the Bochner tensor.
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L Bochner-Kahler metrics

Bochner-Kahler manifolds

Definition
We say that (M, g, J, w) is Bochner-Kéhler if R, = 0.
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L Bochner-Kahler metrics

Bochner-Kahler manifolds

Definition
We say that (M, g, J, w) is Bochner-Kéhler if R, = 0.

Examples:
m CP(n). — complex projective space of constant holomorphic sectional
curvature ¢
m CP(p)c x CP(n — p)—c — also with constant holomorphic sectional
curvature;
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L Bochner-Kahler metrics

Bochner-Kahler manifolds

Definition
We say that (M, g, J, w) is Bochner-Kéhler if R, = 0.

Examples:

m CP(n). — complex projective space of constant holomorphic sectional
curvature ¢

m CP(p)c x CP(n — p)—c — also with constant holomorphic sectional
curvature;

m |ocally symmetric spaces: must have constant holomorphic sectional
curvature and are locally isomorphic to CP(p). x CP(n — p)—c;

m C" — with symplectic form

w= LORNZl), 1(t) = @r (t) t+ K)F (07,

Up to scalar multiples, there is exactly one complete such example
which is not locally symmetric (Tachibana & Liu).
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L Bochner-Kahler metrics

Bochner-Kahler manifolds

Definition
We say that (M, g, J, w) is Bochner-Kéhler if R, = 0.

Examples:

m CP(n). — complex projective space of constant holomorphic sectional
curvature ¢

m CP(p)c x CP(n — p)—c — also with constant holomorphic sectional
curvature;

m |ocally symmetric spaces: must have constant holomorphic sectional
curvature and are locally isomorphic to CP(p). x CP(n — p)—c;

m C" — with symplectic form

w= LORNZl), 1(t) = @r (t) t+ K)F (07,

Up to scalar multiples, there is exactly one complete such example
which is not locally symmetric (Tachibana & Liu).
m Bochner-Kéhler orbifolds, e.g., weighted projective spaces.
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L Bochner-Kahler metrics

Structure equations

(M, g,J,w) Bochner-Kahler:
m unitary frame bundle: Fy,) — M
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L Bochner-Kahler metrics

Structure equations

(M, g,J,w) Bochner-Kahler:
m unitary frame bundle: Fy,) — M
m connection 1-form: 1 € Q' (Fy(n); u(n)),

Rui Loja Fernandes Bochner-Kéhler Structures (after R. Bryant)



Bochner-Kahler Structures (after R. Bryant)
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Structure equations

(M, g,J,w) Bochner-Kahler:
m unitary frame bundle: Fy,) — M
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L Bochner-Kahler metrics

Structure equations

(M, g,J,w) Bochner-Kahler:

m unitary frame bundle: Fy,) — M

m connection 1-form: 1 € Q' (Fy(n); u(n)),

m tautological 1-form: 6 € Q" (Fy(n); C"), 05(¢) = p~' (do7(€))
The coframe (), 0) on Fy,) satisfies the structure equations:

dd=—-nn6o
dn=-nAn+ RO A0
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L Bochner-Kahler metrics

Structure equations

(M, g, J,w) Bochner-Kéhler:

m unitary frame bundle: Fy,) — M

m connection 1-form: € Q" (Fy(y); u(n)),

m tautological 1-form: 6 € Q" (Fy(n); C"), 65(€) = p~ ' (do7(€))
The coframe (7, 0) on Fy,) satisfies the structure equations:

dd=-nNno
dn=—-nAn+ RO A0

Using the Bochner-Kéhler condition, the curvature can be written:
RONO)= (SO )YNO—(SOYANO" — (O ANO7)S+ (0" A SH)I,

where S : Fy(;) — iu(n) takes values in hermitian symmetric matrices.
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L Bochner-Kahler metrics

Invariants

Differentiating the structure equations and using d? = 0, we find functions
TeC™ (Fu(n), (Cn) and U € COO(FU(,]), R) such that:

dS=-nS+Sn+TO0" +0T" + H(T*0+0"T)l

dT = —nT + (Ul + §%)0
dU =TS0+ 6"ST
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L Bochner-Kahler metrics

Invariants

Differentiating the structure equations and using d? = 0, we find functions
TeC™ (Fu(n), (Cn) and U € COO(FU(,]), R) such that:

dS=-nS+Sn+TO0" +0T" + H(T*0+0"T)l
dT = —nT + (Ul + §%)0
dU=T"56 + 6*ST

The functions (S, T, U) : Fy(,) — iu(n) & C" & R provide a set of invariants.
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L Bochner-Kahler metrics

(Local) Classification Problem

Find all (germs of) manifolds P carrying:
El afree action of U(n),
E a coframe (1,6) € Q' (P, u(n) ® C") and
El functions (S, T,U): P — iu(n) @ C"® R,
such that the following equations are satisfied:
dd=-nn60
dn=-nAn+S0*NO—SONO*—0OANO*S+ (0° A SO)I,
dS=-nS+Sn+TO" +0T" + (T 0+06"T)h
dT = —nT + (U, + S?)6
dU=T"S0+06*ST
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L Bochner-Kahler metrics

(Local) Classification Problem

Find all (germs of) manifolds P carrying:
El afree action of U(n),
E a coframe (1,6) € Q' (P, u(n) ® C") and
El functions (S, T,U): P — iu(n) @ C"® R,
such that the following equations are satisfied:
dd=-nn60
dn=-nAn+S0*NO—SONO*—0OANO*S+ (0° A SO)I,
dS=-nS+Sn+TO" +0T" + (T 0+06"T)h
dT = —nT + (U, + S?)6
dU=T"S0+06*ST

Then M = P/U(n) is Bochner-Kahler and P = Fy ;) is its unitary frame
bundle.
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L Bochner-Kahler metrics

Example : : Metrics of Hessian Type
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L Bochner-Kahler metrics

Example : : Metrics of Hessian Type

Find all (germs of) 3-manifolds P carrying:
El afree action of SO(2),
B a coframe (n,0) € Q'(P,s0(2) & R?) and
H functions (k, ki, k2) : P — R®,
such that the following equations are satisfied:
dn=koAO
dd=—-nno
dk = k101 + ko0
dki = 3(1 — k*)01 — kan
dko = %(1 — k2)92 + k1’l7.
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L Bochner-Kahler metrics

Example : : Metrics of Hessian Type

Find all (germs of) 3-manifolds P carrying:
El afree action of SO(2),
B a coframe (n,0) € Q'(P,s0(2) & R?) and
H functions (k, ki, k2) : P — R®,
such that the following equations are satisfied:
dn=koAO
dd=—-nno
dk = k101 + ko0
dki = 3(1 — k*)01 — kan
dko = %(1 — k2)92 + k1’l7.

Then ¥ = P/SO(2) is a surface with a metric g of Hessian type, i.e., its
Gaussian curvature satisfies

Hessg(k) = %(1 - KYg,

and P = Fgp(y) is its orthogonal frame bundle.
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LClassification problems and Lie algebroids

Cartan’s Realization problem
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LClassification problems and Lie algebroids

Cartan’s Realization problem

One is given Cartan Data:
m aclosed Lie subgroup G C GLp
m a G-manifold X
m equivariant maps ¢ : X — Hom(A2R",R"), and R : X — Hom(A%R", g)
® an equivariant vector bundle maps F : X x R" — TX
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LClassification problems and Lie algebroids

Cartan’s Realization problem

One is given Cartan Data:
m aclosed Lie subgroup G C GLp
m a G-manifold X
m equivariant maps ¢ : X — Hom(A2R",R"), and R : X — Hom(A%R", g)
® an equivariant vector bundle maps F : X x R" — TX
and asks for the existence of realizations:
m a principal G-bundle P with a coframe (7,0) € Q'(P, g ® R") and an equivariant
maph: P— X
satisfying the structure equations:

A0 =c(h) (O A0) —n b
{ dn = R(h)(OA0) —nAn M
dh= F(h,0) + ¢(h,n)

(v : X x g — TX is the infinitesimal g-action determined by the G action)

ja Fernandes Bochner-Kéhler Structures (after R. Bryant)
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LClassification problems and Lie algebroids

Cartan’s Realization problem

One is given Cartan Data:
m aclosed Lie subgroup G C GLp
m a G-manifold X
m equivariant maps ¢ : X — Hom(A2R",R"), and R : X — Hom(A%R", g)
® an equivariant vector bundle maps F : X x R" — TX
and asks for the existence of realizations:
m a principal G-bundle P with a coframe (7,0) € Q'(P, g ® R") and an equivariant
maph: P— X
satisfying the structure equations:

A0 =c(h) (O A0) —n b
{ dn = R(h)(OA0) —nAn M
dh= F(h,0) + ¢(h,n)

(v : X x g — TX is the infinitesimal g-action determined by the G action)

= M = P/Gand P = Fg(M) is a G-structure with connection
and tautological 1-form 6, satisfying the structure equations (1)
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LClassification problems and Lie algebroids

Example : : Bochner-Kahler

m X = ju(n) ® C" ® R with global coordinates (S, T, U)
m G = U(n) acts diagonally on X by

- conjugation on iu(n);

- defining action on C”;

- trivially on R.
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LClassification problems and Lie algebroids

Example : : Bochner-Kahler

m X = ju(n) ® C" ® R with global coordinates (S, T, U)
m G = U(n) acts diagonally on X by
- conjugation on iu(n);
- defining action on C";
- trivially on R.
® R: X — Hom(A2C",u(n)):
ZAW — (2 SW—w" 82)Ih—(zw* —wz")S—S(wz" —zw™ )+ (tr S)(Z*w—w"Z2)I,
m c: X — Hom(A2C",C") identically zero (no torsion)
mF: XxC"— TX,

2z (TZ" 4+ 2T + %(T*z—k Z*T)lp, Uz + S%z, T*Sz + z* ST)
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LClassification problems and Lie algebroids

Example : : Bochner-Kahler

m X = ju(n) ® C" ® R with global coordinates (S, T, U)
m G = U(n) acts diagonally on X by
- conjugation on iu(n);
- defining action on C";
- trivially on R.
® R: X — Hom(A2C",u(n)):
ZAW — (2 SW—w" 82)Ih—(zw* —wz")S—S(wz" —zw™ )+ (tr S)(Z*w—w"Z2)I,
m c: X — Hom(A2C",C") identically zero (no torsion)
mF: XxC"— TX,

2z (TZ" 4+ 2T + %(T*z—k Z*T)lp, Uz + S%z, T*Sz + z* ST)

Classification of N Cartan’s Realization

Bochner-Kéhler metrics Problem

Rui Loja Fernandes Bochner-Kéhler Structures (after R. Bryant)




Bochner-Kahler Structures (after R. Bryant)

LClassification problems and Lie algebroids

Example : : Metrics of Hessian Type

B X=s502)®R2~R3
m G = SO(2) acts diagonally on X by

- trivially on so(2);
- defining action on R?;
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LClassification problems and Lie algebroids

Example : : Metrics of Hessian Type

X =s50(2) ®R2 ~R3
m G = SO(2) acts diagonally on X by

- trivially on so(2);
- defining action on R?;

R : X — Hom(A%R2? s50(2)) ~ R, (k, ki, ko) — k;
¢ : X — Hom(A2R", R") identically zero (no torsion)
F:XxR?—= TX,

V2
(1= k%), 2 (1~ K2)).

Vi

(v1, v2) = (vik1 + Waka, 5
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LClassification problems and Lie algebroids

Example : : Metrics of Hessian Type

X =s50(2) ®R2 ~R3
m G = SO(2) acts diagonally on X by

- trivially on so(2);
- defining action on R?;

m R: X — Hom(A%R? 50(2)) ~ R, (k, ki, ko) — K;
m c: X — Hom(A?R",R") identically zero (no torsion)
B F: X xR TX,
V- V.
(vi, v2) = (Viky + Vako, 51(1 — k?), 52(1 — K?)).
Classification of surfaces PN Cartan’s Realization
(X, g) of Hessian type Problem
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LClassification problems and Lie algebroids

Cartan’s Data and Lie algebroids

How to encode Cartan’s data in a geometric way?
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LClassification problems and Lie algebroids

Cartan’s Data and Lie algebroids

How to encode Cartan’s data in a geometric way?

m vector bundle A — X: trivial bundle with fiber R” & g;

m anchor p : A — TX: bundle map p(u, o) = F(u) + ¢(«);

m bracket [, ]: ['(A) x T(A) — ['(A): skew-symmetric bracket defined on constant
sections by

[(U, CY), (V) B)] = (a V= 6 U — C(U, V)’ [ayﬁ]ﬂ - H(U, V))
and extended to any sections so that Leibniz holds:

[s1, fs2] = f[s1, 2] + (L sy F)S2-
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Cartan’s Data and Lie algebroids

How to encode Cartan’s data in a geometric way?

m vector bundle A — X: trivial bundle with fiber R” & g;

m anchor p : A — TX: bundle map p(u, o) = F(u) + ¢(«);

m bracket [, ]: ['(A) x T(A) — ['(A): skew-symmetric bracket defined on constant
sections by

[(U, CY), (V) B)] = (a V= 6 U — C(U, V)’ [ayﬁ]ﬂ - H(U, V))
and extended to any sections so that Leibniz holds:

[s1, fs2] = f[s1, 2] + (L sy F)S2-

How to encode realizations?
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LClassification problems and Lie algebroids

Cartan’s Data and Lie algebroids

How to encode Cartan’s data in a geometric way?

m vector bundle A — X: trivial bundle with fiber R” & g;

m anchor p : A — TX: bundle map p(u, o) = F(u) + ¢(«);

m bracket [, ]: ['(A) x T(A) — ['(A): skew-symmetric bracket defined on constant
sections by

[(U, CY), (V) B)] = (a V= 6 U — C(U, V)’ [ayﬁ]ﬂ - H(U, V))
and extended to any sections so that Leibniz holds:

[s1, fs2] = f[s1, 2] + (L sy F)S2-

How to encode realizations?

m Each realization gives a bundle map:
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LClassification problems and Lie algebroids

Cartan’s Data and Lie algebroids

Proposition

If there is a solution to Cartan’s realization problem for every x € X then the
bracket satisfies the Jacobi identity:

[[s1, 2], S3] + [[S2, S3], 1] + [[S3, S1], S2] = O.
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Cartan’s Data and Lie algebroids

Proposition

If there is a solution to Cartan’s realization problem for every x € X then the
bracket satisfies the Jacobi identity:

[[s1, 2], S3] + [[S2, S3], 1] + [[S3, S1], S2] = O.

Remarks.

m In examples above (and all relevant ones) the bracket does satisfy
Jacobi;
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Cartan’s Data and Lie algebroids

Proposition

If there is a solution to Cartan’s realization problem for every x € X then the
bracket satisfies the Jacobi identity:

[[s1, 2], S3] + [[S2, S3], 1] + [[S3, S1], S2] = O.

Remarks.

m In examples above (and all relevant ones) the bracket does satisfy
Jacobi;

m The triple (A, p,[, ]) is then an example of a Lie algebroid.
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LClassification problems and Lie algebroids

Cartan’s Data and Lie algebroids

Proposition
If there is a solution to Cartan’s realization problem for every x € X then the
bracket satisfies the Jacobi identity:

[[s1, 2], S3] + [[S2, S3], 1] + [[S3, S1], S2] = O.

Remarks.
m In examples above (and all relevant ones) the bracket does satisfy
Jacobi;
m The triple (A, p,[, ]) is then an example of a Lie algebroid.

m (A p,[, ]) encodes Cartan’s problem without making any reference to
the original manifolds/bundles/coframes.
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LClassification problems and Lie algebroids

Cartan’s Data and Lie algebroids

Proposition

If there is a solution to Cartan’s realization problem for every x € X then the
bracket satisfies the Jacobi identity:

[[s1, 2], S3] + [[S2, S3], 1] + [[S3, S1], S2] = O.

Remarks.

m In examples above (and all relevant ones) the bracket does satisfy
Jacobi;
m The triple (A, p,[, ]) is then an example of a Lie algebroid.

m (A p,[, ]) encodes Cartan’s problem without making any reference to
the original manifolds/bundles/coframes.

Questions.
m How can one solve the classification problem using (A, p, [, ])?
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LClassification problems and Lie algebroids

Cartan’s Data and Lie algebroids

Proposition

If there is a solution to Cartan’s realization problem for every x € X then the
bracket satisfies the Jacobi identity:

[[s1, 2], S3] + [[S2, S3], 1] + [[S3, S1], S2] = O.

Remarks.
m In examples above (and all relevant ones) the bracket does satisfy
Jacobi;
m The triple (A, p,[, ]) is then an example of a Lie algebroid.
m (A p,[, ]) encodes Cartan’s problem without making any reference to
the original manifolds/bundles/coframes.
Questions.

m How can one solve the classification problem using (A, p, [, ])?

m What does (A, p, [, ]) say about symmetries? Moduli space of
solutions? efc.
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LCrash Course on Lie algebroids/groupoids

Lie algebroids

Definition

A Lie algebroid is a vector bundle A — X, with a Lie bracket [, ] : [(A) x [(A) — ['(A)
and a bundle map p : A — TX, called the anchor, such that:

[51 ) fsg] = f[S1 ) SZ] + (‘Cp(S1 ) f)527
[[s1, s2], s3] + [[s2, 53], s1] + [[s3, s1], 52] = 0.
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LCrash Course on Lie algebroids/groupoids

Lie algebroids

Definition

A Lie algebroid is a vector bundle A — X, with a Lie bracket [, ] : [(A) x [(A) — ['(A)
and a bundle map p : A — TX, called the anchor, such that:

[51 ) fsg] = f[S1 ) SZ] + (‘Cp(S1 ) f)527
[[s1, s2], s3] + [[s2, 53], s1] + [[s3, s1], 52] = 0.

Examples:
m Tangent bundle: A= TX — X, [, ] usual Lie bracket of vector fields and p =id;
m Liealgebra: A=g— {x},[,]=1[, ]gand p =0;
m Infinitesimal action algebroid: A= X x g — X, on constant sections
[ei, ] = [ei, g]]g and p(&;) = (&))x,
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LCrash Course on Lie algebroids/groupoids

Lie algebroids

Definition

A Lie algebroid is a vector bundle A — X, with a Lie bracket [, ] : [(A) x [(A) — ['(A)
and a bundle map p : A — TX, called the anchor, such that:

[51 ) fsg] = f[S1 ) SZ] + (‘Cp(S1 ) f)527
[[s1, s2], s3] + [[s2, 53], s1] + [[s3, s1], 52] = 0.

Examples:
m Tangent bundle: A= TX — X, [, ] usual Lie bracket of vector fields and p =id;
m Liealgebra: A=g— {x},[,]=1[, ]gand p =0;
m Infinitesimal action algebroid: A= X x g — X, on constant sections
[ei, ] = [ei, g]]g and p(&;) = (&))x,
Basic concepts:
m Orbits O: p([s1, s2]) = [p(51), p(S2)] = Im p is integrable (singular) distribution.
m Isotropy Lie algebras gx: For x € X, [, ] restricts to Lie bracket on gy := ker p.
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LCrash Course on Lie algebroids/groupoids

Example : : Bochner-Kahler classifying algebroid

X=iup®C" PR, A=Xx (C"®uy) — X,
e Lie bracket of constant sections (u, «), (v, 3) € C" ® up:
[(u; ), (v, Ais, 10y = (@ v =B u,[e, Blu, — (uv* —w*)S — S(w* —uv*) +---)

e anchor map:

o
p(u, a)‘(STU (Sa—aS+Ta*+aT*+1/2(T a+aT*))8S

+(aT + SPa+ Ua)% + (T*Su+u*ST) ;U
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LCrash Course on Lie algebroids/groupoids

Example : : Bochner-Kahler classifying algebroid

X=iup®C" PR, A=Xx (C"®uy) — X,
e Lie bracket of constant sections (u, «), (v, 3) € C" ® up:
[(u; ), (v, Ais, 10y = (@ v =B u,[e, Blu, — (uv* —w*)S — S(w* —uv*) +---)

e anchor map:

o
p(u, a)‘(STU (Sa—aS+Ta*+aT*+1/2(T a+aT*))8S

+(aT + SPa+ Ua)% + (T*Su+u*ST) ;U

Each Bochner-Kéhler manifold, has an associated Up-structure P = Fy, (M) yielding a
Lie algebroid map:

0,
" A

! !

_—
h=(S,T,0)
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LCrash Course on Lie algebroids/groupoids

Groupoids

X — topological space; look at paths v : [0,1] — X

=
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LCrash Course on Lie algebroids/groupoids

Groupoids

X — topological space; look at paths v : [0,1] — X

M (X) = {011~ :[0,1] = X}

3k 3
P

X (1) 7(0)
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LCrash Course on Lie algebroids/groupoids

Groupoids

X — topological space; look at paths v : [0,1] — X

M4 (X) ={0]~:[0,1] = X}

m product:

(7]
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LCrash Course on Lie algebroids/groupoids

Groupoids

X — topological space; look at paths v : [0,1] — X

M (X) ={0] 1~ :[0,1] = X}

‘us ]
L

X ~(1) +(0)

m identity:

u: X < My(X) X
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LCrash Course on Lie algebroids/groupoids

Groupoids

X —topological space; look at paths v : [0, 1] = X

M (X) ={D] [~ :[0,1] = X}

m inverse:

t:G —— G ~(1) 7('0)
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LCrash Course on Lie algebroids/groupoids

Groupoids

X — topological space; look at paths v : [0, 1] = X

M (X) ={D] [~ :[0,1] = X}

b% 1) +(0)

m The space IN4(X) has a natural topology and the source, target, multiplication
and inverse are all continous maps: M4(X) = X is an example of a topological
groupoid.
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LCrash Course on Lie algebroids/groupoids

Groupoids

X — topological space; look at paths v : [0, 1] = X

M (X) ={D] [~ :[0,1] = X}

b% 1) +(0)

m The space IN4(X) has a natural topology and the source, target, multiplication
and inverse are all continous maps: M4(X) = X is an example of a topological
groupoid.

m If X is a manifold, the space MM (X) is a manifold and the source, target,
multiplication and inverse are all smooth maps: then Ny (X) = X is an example
of a Lie groupoid.

Rui Loja Fernandes Bochner-Kéhler Structures (after R. Bryant)



Bochner-Kahler Structures (after R. Bryant)

LCrash Course on Lie algebroids/groupoids

Lie Groupoids

A Lie groupoid is a pair of submersions s, t : G = X, together with partial composition,
identity and inversion maps satisfying the obvious axioms.

vT
1x
h
AT O
t(v) s(v)=t(r) s(7) x t(~) s(v)
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LCrash Course on Lie algebroids/groupoids

Lie Groupoids

A Lie groupoid is a pair of submersions s, t : G = X, together with partial composition,
identity and inversion maps satisfying the obvious axioms.

T
/_\ 1X
h
Lo PELEED O) A
t(v) s(v)=t(r) s(7) x t(~) s(v)
771

Examples:
m Pair groupoid: X x X = X;
m Lie groups: G = {x};
m Action groupoid: G x X = X.
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LCrash Course on Lie algebroids/groupoids

Lie Groupoids

Given a Lie groupoid G = X:
m source fibers s—'(x) and target fibers t—'(x);
m orbits: Ox = t(s~1(x));
m isotropy Lie groups: Gx = s~ '(x) Nt~ (x);
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LCrash Course on Lie algebroids/groupoids

Lie Groupoids

Given a Lie groupoid G = X:
m source fibers s—'(x) and target fibers t—'(x);
m orbits: Ox = t(s~1(x));
m isotropy Lie groups: Gx = s~ '(x) Nt~ (x);
and there is an associated Lie algebroid A — X:

A:=TG, p:=dtls, [, ]a:= Lie bracket of Xgin (G) = (A).
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LCrash Course on Lie algebroids/groupoids

Lie Groupoids

Given a Lie groupoid G = X:
m source fibers s—'(x) and target fibers t—'(x);
m orbits: Ox = t(s~1(x));
m isotropy Lie groups: Gx = s~ '(x) Nt~ (x);
and there is an associated Lie algebroid A — X:

A:=TG, p:=dtls, [, ]a:= Lie bracket of Xgin (G) = (A).

t-fibers

s-fibers
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Lie Groupoids

Given a Lie groupoid G = X:
m source fibers s—'(x) and target fibers t—'(x);
m orbits: Ox = t(s~1(x));
m isotropy Lie groups: Gx = s~ '(x) Nt~ (x);
and there is an associated Lie algebroid A — X:

A:=TG, p:=dtls, [, ]a:= Lie bracket of Xgin (G) = (A).

t-fibers

s-fibers

A=Ty T
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LCrash Course on Lie algebroids/groupoids

Lie Groupoids

Given a Lie groupoid G = X:
m source fibers s—'(x) and target fibers t—'(x);
m orbits: Ox = t(s~1(x));
m isotropy Lie groups: Gx = s~ '(x) Nt~ (x);
and there is an associated Lie algebroid A — X:

A:=TG, p:=dtls, [, ]a:= Lie bracket of Xgin (G) = (A).

t-fibers

s-fibers

A=TyT P=dt |A opl= X% x) |
X

Rui Loja Fernandes Bochner-Kéhler Structures (after R. Bryant)



Bochner-Kahler Structures (after R. Bryant)

LCrash Course on Lie algebroids/groupoids

Lie Groupoids

Examples:

m The pair groupoid X x X = X and fundamental groupod M4(X) = X integrate
the same Lie algebroid: A = TX;

m The action groupoid G x X = X integrates the action Lie algebroid X x g — X,
so there can be many integrations (arising from different Lie groups G)
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LCrash Course on Lie algebroids/groupoids

Lie Groupoids

Examples:

m The pair groupoid X x X = X and fundamental groupod M4(X) = X integrate
the same Lie algebroid: A = TX;

m The action groupoid G x X = X integrates the action Lie algebroid X x g — X,
so there can be many integrations (arising from different Lie groups G)

Basic Theorems:

m Lie I: Given a source connected Lie groupoid G = X there is a unique source
1-connected Lie groupoid G = X with the same Lie algebroid and a unique étale
morphism of Lie groupoids G — G;
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LCrash Course on Lie algebroids/groupoids

Lie Groupoids

Examples:
m The pair groupoid X x X = X and fundamental groupod M4(X) = X integrate
the same Lie algebroid: A = TX;
m The action groupoid G x X = X integrates the action Lie algebroid X x g — X,
so there can be many integrations (arising from different Lie groups G)

Basic Theorems:

m Lie I: Given a source connected Lie groupoid G = X there is a unique source
1-connected Lie groupoid G = X with the same Lie algebroid and a unique étale
morphism of Lie groupoids G — G;

m Lie ll: Glven a source 1-connected Lie groupoid Gy = X; with algebroid
Aq — Xy and a Lie groupoid Go = X with algebroid A, — X5, each Lie
algebroid morphism ¢ : Ay — A, integrates to a unique Lie groupoid morphism
& : Gy — Go;
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LCrash Course on Lie algebroids/groupoids

Lie Groupoids

Examples:
m The pair groupoid X x X = X and fundamental groupod M4(X) = X integrate
the same Lie algebroid: A = TX;
m The action groupoid G x X = X integrates the action Lie algebroid X x g — X,
so there can be many integrations (arising from different Lie groups G)

Basic Theorems:

m Lie I: Given a source connected Lie groupoid G = X there is a unique source
1-connected Lie groupoid G = X with the same Lie algebroid and a unique étale
morphism of Lie groupoids G — G;

m Lie ll: Glven a source 1-connected Lie groupoid Gy = X; with algebroid
Aq — Xy and a Lie groupoid Go = X with algebroid A, — X5, each Lie
algebroid morphism ¢ : Ay — A, integrates to a unique Lie groupoid morphism
& : Gy — Go;

m Lie lll: Not every Lie algebroid integrates to a Lie groupoid. Obstructions are
completely understood [Crainic & RLF, 2003].
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LCrash Course on Lie algebroids/groupoids

Lie Groupoids

For a Lie groupoid G = X with algebroid A — X, its Maurer-Cartan form is the s-foliated A-valued 1-form:

wye € Q'(T°G1A), wyc(v)y = dyR, 1 - V.
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LCrash Course on Lie algebroids/groupoids

Lie Groupoids

For a Lie groupoid G = X with algebroid A — X, its Maurer-Cartan form is the s-foliated A-valued 1-form:

wye € Q'(T°G1A), wyc(v)y = dyR, 1 - V.

Theorem (RLF & Struchiner, 2014)

to any source fiber s~ (x) is a

IfA= X x R" — X is the trivial vector bundle, then the restrition wmelg—1 o
coframe, and together with the target gives a Lie algebroid morphism:
wmclg—1(x)
T(s™'(x) ———— = A

l |

s (X)) ——8M8 X
t

)

These solutions are universal: if a coframe (P, 6) induces an algebroid map TP — A, there is a unique (local)
isomorphism:
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L Main Results

Lie Algebroids and G-structures

Back to G-structures... notice that:
m The previous construction was about coframes (< {e}-structures);

m The algebroids associated with G-structures, where G # {e} should
have more structure.
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L Main Results

Lie Algebroids and G-structures

Back to G-structures... notice that:
m The previous construction was about coframes (< {e}-structures);

m The algebroids associated with G-structures, where G # {e} should
have more structure.

Key Remark: should take into consideration that the coframe in P = Fg(M)
takes the special form (8,7), where § € Q'(P,R") and 5 € Q'(P, g).
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L Main Results

Lie Algebroids and G-structures

Back to G-structures... notice that:
m The previous construction was about coframes (< {e}-structures);

m The algebroids associated with G-structures, where G # {e} should
have more structure.

Key Remark: should take into consideration that the coframe in P = Fg(M)
takes the special form (8,7), where § € Q'(P,R") and 5 € Q'(P, g).

Simplifying assumption: Henceforth, we assume that G is a compact,
connected, Lie group.
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L Main Results

Cartan Data and Realizations are formalized as follows:

Let G C GLx(R) and X a G-manifold. A Lie G-algebroid is a Lie algebroid A — X:
m Ais the trivial vector bundle with fiber R” & g;

m p: A— TXis defined by G-equivariant map F : X x R" — TX:
p(u,a) = F(u) + ¢(a), (u,0) ER"@ g,

m the bracket on constant sections (u, @), (v, B) € I'(A) takes the form
[(U, 04)7 (V7 B)] = (a V= ﬁ cu— C(”v V)7 [Oév B]U - R(Uv V))a

where ¢ : X — Hom(A’R”,R") and R : X — Hom(A?R", g) are G-equivariant.

o’
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Cartan Data and Realizations are formalized as follows:

Let G C GLx(R) and X a G-manifold. A Lie G-algebroid is a Lie algebroid A — X:
m Ais the trivial vector bundle with fiber R” & g;

m p: A— TXis defined by G-equivariant map F : X x R" — TX:
p(u,a) = F(u) + ¢(a), (u,0) ER"@ g,

m the bracket on constant sections (u, @), (v, B) € I'(A) takes the form
[(U, 04)7 (V7 B)] = (O‘ V= ﬁ cu— C(“v V)7 [Oé, B]U - R(Uv V)),

where ¢ : X — Hom(A’R”,R") and R : X — Hom(A?R", g) are G-equivariant.

A G-realization of a Lie G-algebroid A — X consists of a manifold P, equipped with a

locally free, proper, G-action, together with an equivariant Lie algebroid map:

0,
07 A

Vo

pP—" s x

ja Fernandes Bochner-Kéhler Structures (after R. Bryant)



Bochner-Kahler Structures (after R. Bryant)
L Main Results

Lie G-groupoids

Main Problem. How can one find G-realizations?
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Lie G-groupoids

Main Problem. How can one find G-realizations? Main Idea: Integrate!
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Lie G-groupoids

Main Problem. How can one find G-realizations? Main Idea: Integrate!

If A— Xis a Lie G-groupoid we have an injective algebroid morphism:

itgx X = A a—(0,a).
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L Main Results

Lie G-groupoids

Main Problem. How can one find G-realizations? Main Idea: Integrate!
If A— Xis a Lie G-groupoid we have an injective algebroid morphism:

itgx X = A a—(0,a).

Definition

A Lie G-groupoid is a Lie groupoid G = X such that:
m its Lie algebroid A — X is a Lie G-algebroid;
m there is a groupoid morphism T : G x X — G integrating i : g x X — A;
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Lie G-groupoids

Main Problem. How can one find G-realizations? Main Idea: Integrate!
If A— Xis a Lie G-groupoid we have an injective algebroid morphism:

itgx X = A a—(0,a).

Definition

A Lie G-groupoid is a Lie groupoid G = X such that:
m its Lie algebroid A — X is a Lie G-algebroid;
m there is a groupoid morphism T : G x X — G integrating i : g x X — A;

Remark: The morphism T : G x X — G defines a right G-action on G by:
GxG—=G, (7,9)~ T )
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L Main Results

Lie G-groupoids

Main Problem. How can one find G-realizations? Main Idea: Integrate!
If A— Xis a Lie G-groupoid we have an injective algebroid morphism:

itgx X = A a—(0,a).

Definition

A Lie G-groupoid is a Lie groupoid G = X such that:
m its Lie algebroid A — X is a Lie G-algebroid;
m there is a groupoid morphism T : G x X — G integrating i : g x X — A;

Remark: The morphism T : G x X — G defines a right G-action on G by:
GxG—=G, (7,9)~ T )

such that:
® t: G — Xis a G-invariant map;
m preserves the source fibers;
m is proper and (locally) free.
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Lie G-groupoids

Main Problem. How can one find G-realizations? Main Idea: Integrate!
If A— Xis a Lie G-groupoid we have an injective algebroid morphism:

itgx X = A a—(0,a).

Definition

A Lie G-groupoid is a Lie groupoid G = X such that:
m its Lie algebroid A — X is a Lie G-algebroid;
m there is a groupoid morphism T : G x X — G integrating i : g x X — A;

Remark: The morphism T : G x X — G defines a right G-action on G by:

GxG—G, (7,9~ T@ " tr)

such that:
® t: G — Xis a G-invariant map;
m preserves the source fibers;
m is proper and (locally) free.
In particular, each source fiber s~'(x) is a principal G-bundle over the orbifold

M=s""(x)/G.
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Solving the classification problem

IfG = X is a Lie G-groupoid integrating a Lie G-algebroid A — X, then each source
fiber s—'(x) equipped with the restriction of the Maurer-Cartan form wyc yields a
G-realization of A. Moreover, any G-realization of A is isomorphic to a G-invariant,
open subset of one such G-realization (up to cover).
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Solving the classification problem

IfG = X is a Lie G-groupoid integrating a Lie G-algebroid A — X, then each source
fiber s—'(x) equipped with the restriction of the Maurer-Cartan form wyc yields a
G-realization of A. Moreover, any G-realization of A is isomorphic to a G-invariant,
open subset of one such G-realization (up to cover).

For any value of (S, Ty, Up), there is unique, up to isomorphism, (germ of)
Bochner-Kéhler orbifold (M, g, J, w) whose invariants (S, T, U) take the value
(S0, To, Up)-
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Solving the classification problem

IfG = X is a Lie G-groupoid integrating a Lie G-algebroid A — X, then each source
fiber s—'(x) equipped with the restriction of the Maurer-Cartan form wyc yields a
G-realization of A. Moreover, any G-realization of A is isomorphic to a G-invariant,
open subset of one such G-realization (up to cover).

For any value of (S, Ty, Up), there is unique, up to isomorphism, (germ of)
Bochner-Kéhler orbifold (M, g, J, w) whose invariants (S, T, U) take the value
(S0, To, Up)-

Remarks:

m Finding complete solutions, depends on having G-integrations. There is an
obstruction theory (G-monodromy) that solves this problem and does not require
finding explicit G-integrations!

m Finding explicit solutions, depend on finding explicit G-integrations. One can
recover in this way all known Bochner-Kahler metrics

m Similar results hold for other problems...
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An explicit example : : Metrics of Hessian Curvature

Given a surfaces (X, g) whose Gaussian curvature k satisfies:

Hessg(k) = %(1 - k?)g
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An explicit example : : Metrics of Hessian Curvature

Given a surfaces (X, g) whose Gaussian curvature k satisfies:
1 2
Hessg (k) = 5(1 —k%)g

Passing to the SO-frame bundle, one obtains:

dfy = —n A 6b2 dk = k161 + ko>
df> = n A 04 dky = 1/2(1 — k?)61 — ko
dn = k61 A 65 dkp = 1/2(1 — k?)05 + kym.
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An explicit example : : Metrics of Hessian Curvature

Given a surfaces (X, g) whose Gaussian curvature k satisfies:
1 2
Hessg (k) = 5(1 —k%)g

Passing to the SO-frame bundle, one obtains:

dfy = —n A 6b2 dk = k161 + koo
df> = n A 04 dky = 1/2(1 — k?)61 — ko
dn = k61 A 65 dkp = 1/2(1 — k?)05 + kym.

The associated classifying Lie G-algebroid is A= R3 x R® — R3, with Lie bracket and
anchor:

a1, 0] = —kB  [a1,8] =az [ag, ] = —a4

0 0
— 2 1
plar) =k +3 ( )8k1
0 0
ko2 _
plaz) = 25k T3 ( )8k2
(9 6]
k i
p(B) = Bk + ok
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An example : : Metrics of Hessian Curvature

Computing the obstructions (infinitesimal G-monodromy):

Orbit foliation of A: level sets of

1
F(ky, ko, k) := K2 + k2 + 5k3 —k
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An example : : Metrics of Hessian Curvature

Computing the obstructions (infinitesimal G-monodromy):

Orbit foliation of A: level sets of

Ak +ie—k=c

1
F(ky, ko, k) := K2 + k2 + 5k3 —k

m At the two fixed points (0,0, 1) and
(0,0, —1), there are solutions
(constant curvature metrics);

m In the region filled by spheres there
does not exist a G-integration for
almost every leaf (but there exists
G-integrations on some spheres);

m Over every other leaf in the other
regions there exist G-integrations.
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Closing Remarks/Open Problems

m Classifying G-algebroids have several other applications: symmetries,
moduli spaces, ...;
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Closing Remarks/Open Problems

m Classifying G-algebroids have several other applications: symmetries,
moduli spaces, ...;

m We have assumed G compact. All we said before applies more
generally to G-structures of type-1, i.e., G-structures Fg(M) whose first
prolongation is trivial;
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Closing Remarks/Open Problems

m Classifying G-algebroids have several other applications: symmetries,
moduli spaces, ...;

m We have assumed G compact. All we said before applies more
generally to G-structures of type-1, i.e., G-structures Fg(M) whose first
prolongation is trivial;

m For a G-structure of finite type-k, a similar (more cumbersome)
discussion holds: one applies the previous formalism to the
(k — 1)-prolongation F(M)g‘_”;
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Closing Remarks/Open Problems

m Classifying G-algebroids have several other applications: symmetries,
moduli spaces, ...;

m We have assumed G compact. All we said before applies more
generally to G-structures of type-1, i.e., G-structures Fg(M) whose first
prolongation is trivial;

m For a G-structure of finite type-k, a similar (more cumbersome)
discussion holds: one applies the previous formalism to the
(k — 1)-prolongation F(M)g‘_”;

m In many examples (Bochner-Kahler, connections w/ special
holonomy,. . . ) the algebroids are related to the cotangent algebroids
associated with Poisson manifolds, and this allows for its explicit
integration. It is an open problem to understand how/why this happens.
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Closing Remarks/Open Problems

m Classifying G-algebroids have several other applications: symmetries,
moduli spaces, ...;

m We have assumed G compact. All we said before applies more
generally to G-structures of type-1, i.e., G-structures Fg(M) whose first
prolongation is trivial;

m For a G-structure of finite type-k, a similar (more cumbersome)
discussion holds: one applies the previous formalism to the
(k — 1)-prolongation F(M)g‘_”;

m In many examples (Bochner-Kahler, connections w/ special
holonomy,. . . ) the algebroids are related to the cotangent algebroids
associated with Poisson manifolds, and this allows for its explicit
integration. It is an open problem to understand how/why this happens.

THANK YOU!
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