Manifold submetries, and polynomial algebras

Marco Radeschi

Modern Trends in Differential Geometry

Sao Paulo, July 25 2018

M Riemannian manifold, *X* metric space.

Manifold submetry

Continuous map $\pi: M \to X$ such that:

- π is a submetry: $\pi(B_r(p)) = B_r(\pi(p))$.
- 2 For all $x \in X$, $\pi^{-1}(x)$ is a smooth manifold.

M Riemannian manifold, X metric space.

Manifold submetry

Continuous map $\pi: M \to X$ such that:

- π is a submetry: $\pi(B_r(p)) = B_r(\pi(p))$.
- 2 For all $x \in X$, $\pi^{-1}(x)$ is a smooth manifold.

Remarks:

• Equivalent to partition of M by equidistant submanifolds.

M Riemannian manifold, X metric space.

Manifold submetry

Continuous map $\pi: M \to X$ such that:

- π is a submetry: $\pi(B_r(p)) = B_r(\pi(p))$.
- 2 For all $x \in X$, $\pi^{-1}(x)$ is a smooth manifold.

Remarks:

- Equivalent to partition of *M* by equidistant submanifolds.
- Fibers can have varying dimension.

M Riemannian manifold, X metric space.

Manifold submetry

Continuous map $\pi: M \to X$ such that:

- π is a submetry: $\pi(B_r(p)) = B_r(\pi(p))$.
- 2 For all $x \in X$, $\pi^{-1}(x)$ is a smooth manifold.

Remarks:

- Equivalent to partition of *M* by equidistant submanifolds.
- Fibers can have varying dimension.
- Fibers can be disconnected, but different components have same dimension.

M Riemannian manifold, X metric space.

Manifold submetry

Continuous map $\pi: M \to X$ such that:

- π is a submetry: $\pi(B_r(p)) = B_r(\pi(p))$.
- 2 For all $x \in X$, $\pi^{-1}(x)$ is a smooth manifold.

Remarks:

- Equivalent to partition of *M* by equidistant submanifolds.
- Fibers can have varying dimension.
- Fibers can be disconnected, but different components have same dimension.

Want to look at local structure of manifolds submetries.

Examples

• Riemannian submersions $M \rightarrow N$.

- Riemannian submersions $M \rightarrow N$.
- $G \subset \operatorname{Iso}(M)$ closed Lie group $\Rightarrow \pi: M \to M/G$.

- Riemannian submersions $M \rightarrow N$.
- $G \subset \operatorname{Iso}(M)$ closed Lie group $\Rightarrow \pi: M \to M/G$.
- (M, \mathcal{F}) singular Riemannian foliation $\Rightarrow \pi : M \to M/\overline{\mathcal{F}}$.

- Riemannian submersions $M \rightarrow N$.
- $G \subset \operatorname{Iso}(M)$ closed Lie group $\Rightarrow \pi: M \to M/G$.
- (M, \mathcal{F}) singular Riemannian foliation $\Rightarrow \pi : M \to M/\overline{\mathcal{F}}$.
- L ⊂ Sⁿ isoparametric hypersurface (Almost classification by Cartan, Münzner, Cecil, Jensen, Abresch, Dorfmeister-Neher, Immervoll,...)

- Riemannian submersions $M \rightarrow N$.
- $G \subset \operatorname{Iso}(M)$ closed Lie group $\Rightarrow \pi: M \to M/G$.
- (M, \mathcal{F}) singular Riemannian foliation $\Rightarrow \pi : M \to M/\overline{\mathcal{F}}$.
- L ⊂ Sⁿ isoparametric hypersurface (Almost classification by Cartan, Münzner, Cecil, Jensen, Abresch, Dorfmeister-Neher, Immervoll,...) ↔ π : Sⁿ → [a, b] manifold submetry.

- Riemannian submersions $M \rightarrow N$.
- $G \subset \operatorname{Iso}(M)$ closed Lie group $\Rightarrow \pi: M \to M/G$.
- (M, \mathcal{F}) singular Riemannian foliation $\Rightarrow \pi : M \to M/\overline{\mathcal{F}}$.
- L ⊂ Sⁿ isoparametric hypersurface (Almost classification by Cartan, Münzner, Cecil, Jensen, Abresch, Dorfmeister-Neher, Immervoll,...) ↔ π : Sⁿ → [a, b] manifold submetry.
- Related to collapse with lower curvature bounds (Cheeger, Yamaguchi, Shioya-Yamaguchi, Wilking, ...).

(Lytchak) Manifold submetries are locally modeled around manifold submetries $\mathbb{S}^{n-1} \to X$.

(Lytchak) Manifold submetries are locally modeled around manifold submetries $\mathbb{S}^{n-1} \to X$.

Spherical manifold submetry (SMS)

Manifold submetry $\pi : \mathbb{S}^{n-1} \to X$.

(Lytchak) Manifold submetries are locally modeled around manifold submetries $\mathbb{S}^{n-1} \to X$.

Spherical manifold submetry (SMS)

Manifold submetry $\pi : \mathbb{S}^{n-1} \to X$.

Question 1 Classify all SMS's.

(Lytchak) Manifold submetries are locally modeled around manifold submetries $\mathbb{S}^{n-1} \to X$.

Spherical manifold submetry (SMS)

Manifold submetry $\pi : \mathbb{S}^{n-1} \to X$.

Question 1

Classify all SMS's.

Question 2

Find constructions and structure of SMS's.

Examples

Homogeneous: $G \subseteq O(n) \Rightarrow \pi : \mathbb{S}^{n-1} \to \mathbb{S}^{n-1}/G$.

Examples

Homogeneous:
$$G \subseteq O(n) \Rightarrow \pi : \mathbb{S}^{n-1} \to \mathbb{S}^{n-1}/G$$
.

Clifford:

Theorem (R. '14)

 $C = \{P_0, \dots P_m\} \subset Sym^2(n)$ Clifford system

$$\pi_{\mathcal{C}}: \mathbb{S}^{n-1} \longrightarrow \mathbb{D}^{m+1} \subset \mathbb{R}^{m+1}$$
$$v \longmapsto (\langle P_0 v, v \rangle, \dots \langle P_m v, v \rangle)$$

Examples

Homogeneous:
$$G \subseteq O(n) \Rightarrow \pi : \mathbb{S}^{n-1} \to \mathbb{S}^{n-1}/G$$
.

Clifford:

Theorem (R. '14)

 $C = \{P_0, \dots P_m\} \subset Sym^2(n)$ Clifford system

$$\pi_{\mathcal{C}}: \mathbb{S}^{n-1} \longrightarrow \mathbb{D}^{m+1} \subset \mathbb{R}^{m+1}$$
$$v \longmapsto (\langle P_0 v, v \rangle, \dots \langle P_m v, v \rangle)$$

Then $\pi_{\mathcal{C}}$ is a SMS, with \mathbb{D}^{m+1} equipped with the hemisphere metric of sec \equiv 4.

Examples

Homogeneous:
$$G \subseteq O(n) \Rightarrow \pi : \mathbb{S}^{n-1} \to \mathbb{S}^{n-1}/G$$
.

Clifford:

Theorem (R. '14)

 $\mathcal{C} = \{P_0, \dots P_m\} \subset \text{Sym}^2(n)$ Clifford system

$$\pi_{\mathcal{C}}: \mathbb{S}^{n-1} \longrightarrow \mathbb{D}^{m+1} \subset \mathbb{R}^{m+1}$$
$$v \longmapsto (\langle P_0 v, v \rangle, \dots \langle P_m v, v \rangle)$$

Then $\pi_{\mathcal{C}}$ is a SMS, with \mathbb{D}^{m+1} equipped with the hemisphere metric of sec $\equiv 4$.

All known SMS's are obtained from Clifford and homogeneous examples, together with two operations between them (spherical join, composition).

Classification, and results

(Grove-Gromoll, Wilking, Lytchak-Wilking): If fibers have constant dimension, then π is either homogeneous, or S¹⁵ → S⁸ (Clifford).

- (Grove-Gromoll, Wilking, Lytchak-Wilking): If fibers have constant dimension, then π is either homogeneous, or S¹⁵ → S⁸ (Clifford).
- (Cartan, Munzner,...): If dim X = 1, π is homogeneous or FKM ($f : \mathbb{S}^{n-1} \to [0,1]$, $f(x) = \sum_i \langle P_i x, x \rangle^2$), except possibly few cases.

- (Grove-Gromoll, Wilking, Lytchak-Wilking): If fibers have constant dimension, then π is either homogeneous, or S¹⁵ → S⁸ (Clifford).
- (Cartan, Munzner,...): If dim X = 1, π is homogeneous or FKM ($f : \mathbb{S}^{n-1} \to [0, 1]$, $f(x) = \sum_i \langle P_i x, x \rangle^2$), except possibly few cases.
- (Thorbergsson): If sec(X) ≡ 1, then π is a join of homogeneous and FKM.

- (Grove-Gromoll, Wilking, Lytchak-Wilking): If fibers have constant dimension, then π is either homogeneous, or S¹⁵ → S⁸ (Clifford).
- (Cartan, Munzner,...): If dim X = 1, π is homogeneous or FKM ($f : \mathbb{S}^{n-1} \to [0, 1]$, $f(x) = \sum_i \langle P_i x, x \rangle^2$), except possibly few cases.
- (Thorbergsson): If sec(X) ≡ 1, then π is a join of homogeneous and FKM.
- (R. '14) if $X = \frac{1}{2}\mathbb{S}^m_+$ then π is Clifford.

- (Grove-Gromoll, Wilking, Lytchak-Wilking): If fibers have constant dimension, then π is either homogeneous, or S¹⁵ → S⁸ (Clifford).
- (Cartan, Munzner,...): If dim X = 1, π is homogeneous or FKM ($f : \mathbb{S}^{n-1} \to [0, 1]$, $f(x) = \sum_i \langle P_i x, x \rangle^2$), except possibly few cases.
- (Thorbergsson): If sec(X) ≡ 1, then π is a join of homogeneous and FKM.
- (R. '14) if $X = \frac{1}{2}\mathbb{S}^m_+$ then π is Clifford.
- (R. '12) If fibers have dimension \leq 3, then π is homogeneous.

- (Grove-Gromoll, Wilking, Lytchak-Wilking): If fibers have constant dimension, then π is either homogeneous, or S¹⁵ → S⁸ (Clifford).
- (Cartan, Munzner,...): If dim X = 1, π is homogeneous or FKM ($f : \mathbb{S}^{n-1} \to [0, 1]$, $f(x) = \sum_i \langle P_i x, x \rangle^2$), except possibly few cases.
- (Thorbergsson): If sec(X) ≡ 1, then π is a join of homogeneous and FKM.
- (R. '14) if $X = \frac{1}{2}\mathbb{S}^m_+$ then π is Clifford.
- (R. '12) If fibers have dimension \leq 3, then π is homogeneous.

(Gorodski-Lytchak): Study of orthogonal representations, from the point of view of $\pi: \mathbb{S}^{n-1} \to \mathbb{S}^{n-1}/G$.

 $\pi : \mathbb{S}^{n-1} \to X$ SMS, $A \subseteq \mathbb{R}[x_1, \dots x_n]$ algebra of homogeneous π -basic polynomials. Then:

 $\pi: \mathbb{S}^{n-1} \to X$ SMS, $A \subseteq \mathbb{R}[x_1, \dots x_n]$ algebra of homogeneous π -basic polynomials. Then:

• A is finitely generated, say by $\rho_1, \ldots \rho_k$.

 $\pi : \mathbb{S}^{n-1} \to X$ SMS, $A \subseteq \mathbb{R}[x_1, \dots x_n]$ algebra of homogeneous π -basic polynomials. Then:

• A is finitely generated, say by
$$\rho_1, \ldots \rho_k$$
.
 $\rho: (\rho_1, \ldots \rho_k) : \mathbb{S}^{n-1} \to X' \subseteq \mathbb{R}^k$.

 $\pi: \mathbb{S}^{n-1} \to X$ SMS, $A \subseteq \mathbb{R}[x_1, \dots x_n]$ algebra of homogeneous π -basic polynomials. Then:

- A is finitely generated, say by $\rho_1, \ldots \rho_k$. $\rho: (\rho_1, \ldots \rho_k) : \mathbb{S}^{n-1} \to X' \subseteq \mathbb{R}^k$.
- ② The map ρ descends to a homeomorphism $\rho_* : X \to X'$, such that $\rho = \rho_* \circ \pi$ (we say that $\pi \sim \rho$).

 $\pi: \mathbb{S}^{n-1} \to X$ SMS, $A \subseteq \mathbb{R}[x_1, \dots x_n]$ algebra of homogeneous π -basic polynomials. Then:

• A is finitely generated, say by
$$\rho_1, \ldots \rho_k$$
.
 $\rho: (\rho_1, \ldots \rho_k) : \mathbb{S}^{n-1} \to X' \subseteq \mathbb{R}^k$.

2 The map ρ descends to a homeomorphism $\rho_* : X \to X'$, such that $\rho = \rho_* \circ \pi$ (we say that $\pi \sim \rho$).

This is a theorem of Hilbert in homogeneous case.

 $\pi: \mathbb{S}^{n-1} \to X$ SMS, $A \subseteq \mathbb{R}[x_1, \dots x_n]$ algebra of homogeneous π -basic polynomials. Then:

• A is finitely generated, say by
$$\rho_1, \ldots \rho_k$$
.
 $\rho: (\rho_1, \ldots \rho_k) : \mathbb{S}^{n-1} \to X' \subseteq \mathbb{R}^k$.

2 The map ρ descends to a homeomorphism $\rho_* : X \to X'$, such that $\rho = \rho_* \circ \pi$ (we say that $\pi \sim \rho$).

This is a theorem of Hilbert in homogeneous case. **Key point:** Averaging operator.

 $\mathcal{B}(\pi) = \text{Algebra of homogeneous } \pi\text{-basic polynomials.}$

 $\mathcal{B}(\pi) = \text{Algebra of homogeneous } \pi\text{-basic polynomials.}$

 $\mathcal{B}(\pi) = \text{Algebra of homogeneous } \pi\text{-basic polynomials.}$

Given $A \subset \mathbb{R}[x_1, \ldots x_n]$, define:

 $\mathcal{B}(\pi) = \text{Algebra of homogeneous } \pi\text{-basic polynomials.}$

Given $A \subset \mathbb{R}[x_1, \dots x_n]$, define: • \sim_A on \mathbb{S}^{n-1} by $v \sim_A w \Leftrightarrow P(v) = P(w) \quad \forall P \in A$.

 $\mathcal{B}(\pi) = \text{Algebra of homogeneous } \pi\text{-basic polynomials.}$

Given $A \subset \mathbb{R}[x_1, \dots x_n]$, define: • \sim_A on \mathbb{S}^{n-1} by $v \sim_A w \Leftrightarrow P(v) = P(w) \quad \forall P \in A$. • $X_A = \mathbb{S}^{n-1} / \sim_A$.

 $\mathcal{B}(\pi) = \mathsf{Algebra}$ of homogeneous π -basic polynomials.

Given $A \subset \mathbb{R}[x_1, \dots x_n]$, define: • \sim_A on \mathbb{S}^{n-1} by $v \sim_A w \Leftrightarrow P(v) = P(w) \quad \forall P \in A$. • $X_A = \mathbb{S}^{n-1} / \sim_A$. Finally, $\pi_{\bullet}(A) = \pi_A : \mathbb{S}^{n-1} \to X_A$.

 $\mathcal{B}(\pi) = \mathsf{Algebra}$ of homogeneous π -basic polynomials.

Given $A \subset \mathbb{R}[x_1, \dots x_n]$, define: • \sim_A on \mathbb{S}^{n-1} by $v \sim_A w \Leftrightarrow P(v) = P(w) \quad \forall P \in A$. • $X_A = \mathbb{S}^{n-1} / \sim_A$. Finally, $\pi_{\bullet}(A) = \pi_A : \mathbb{S}^{n-1} \to X_A$.

 π_{\bullet} is not a SMS in general

 $\mathcal{B}(\pi) = \mathsf{Algebra}$ of homogeneous π -basic polynomials.

Given $A \subset \mathbb{R}[x_1, \dots x_n]$, define: • \sim_A on \mathbb{S}^{n-1} by $v \sim_A w \Leftrightarrow P(v) = P(w) \quad \forall P \in A$. • $X_A = \mathbb{S}^{n-1} / \sim_A$. Finally, $\pi_{\bullet}(A) = \pi_A : \mathbb{S}^{n-1} \to X_A$.

 π_{\bullet} is not a SMS in general, but $\pi_{\bullet}(\mathcal{B}(\pi)) \sim \pi$.

An algebra $A \subseteq \mathbb{R}[x_1, \ldots x_n]$ is called:

An algebra $A \subseteq \mathbb{R}[x_1, \ldots x_n]$ is called:

• Laplacian if $r^2 = \sum_i x_i^2 \in A$ and for all $P \in A$, $\Delta P \in A$.

An algebra $A \subseteq \mathbb{R}[x_1, \dots x_n]$ is called:

- Laplacian if $r^2 = \sum_i x_i^2 \in A$ and for all $P \in A$, $\Delta P \in A$.
- Maximal

An algebra $A \subseteq \mathbb{R}[x_1, \ldots x_n]$ is called:

- Laplacian if $r^2 = \sum_i x_i^2 \in A$ and for all $P \in A$, $\Delta P \in A$.
- *Maximal* if $\forall P \notin A$, there are $v, w \in \mathbb{S}^{n-1}$ such that $v \sim_A w$ and $P(v) \neq P(w)$.

An algebra $A \subseteq \mathbb{R}[x_1, \ldots x_n]$ is called:

- Laplacian if $r^2 = \sum_i x_i^2 \in A$ and for all $P \in A$, $\Delta P \in A$.
- Maximal if ∀P ∉ A, there are v, w ∈ Sⁿ⁻¹ such that v ~_A w and P(v) ≠ P(w).

Theorem (Alexandrino, R.)

For any SMS $\pi : \mathbb{S}^{n-1} \to X$, $\mathcal{B}(\pi)$ is maximal and Laplacian.

Constructing SMS's

Theorem (Mendes, R. '18)

Let $A \subset \mathbb{R}[x_1, \ldots x_n]$ be a Laplacian algebra.

Theorem (Mendes, R. '18)

Let $A \subset \mathbb{R}[x_1, \dots x_n]$ be a Laplacian algebra.

• There exists $\hat{\pi}_A : \mathbb{S}^{n-1} \to \hat{X}_A$ SMS, such that $\hat{\pi}_A \sim \pi_A$ on an open dense set.

Constructing SMS's

Theorem (Mendes, R. '18)

Let $A \subset \mathbb{R}[x_1, \dots x_n]$ be a Laplacian algebra.

- There exists $\hat{\pi}_A : \mathbb{S}^{n-1} \to \hat{X}_A$ SMS, such that $\hat{\pi}_A \sim \pi_A$ on an open dense set.
- If A is also maximal, then $\hat{\pi}_A \sim \pi_A$, and $\mathcal{B}(\pi_A) = A$.

Constructing SMS's

Theorem (Mendes, R. '18)

Let $A \subset \mathbb{R}[x_1, \dots x_n]$ be a Laplacian algebra.

- There exists $\hat{\pi}_A : \mathbb{S}^{n-1} \to \hat{X}_A$ SMS, such that $\hat{\pi}_A \sim \pi_A$ on an open dense set.
- If A is also maximal, then $\hat{\pi}_A \sim \pi_A$, and $\mathcal{B}(\pi_A) = A$.

Corollary

A Laplacian algebra. Want to construct SMS $\hat{\pi}_A : \mathbb{S}^{n-1} \to \hat{X}_A$.

Step 1: A is finitely generated.

Step 1: *A* is finitely generated. Construct products \bullet_d on $\mathbb{R}[x_1, \dots x_n]$:

$$f \bullet_0 = fg, \quad f \bullet_{d+1} g = \Delta(f \bullet_d g) - \Delta f \bullet_d g - f \bullet_d \Delta g.$$

Step 1: *A* is finitely generated. Construct products \bullet_d on $\mathbb{R}[x_1, \dots x_n]$:

$$f \bullet_0 = fg, \quad f \bullet_{d+1} g = \Delta(f \bullet_d g) - \Delta f \bullet_d g - f \bullet_d \Delta g.$$

Then:

Step 1: *A* is finitely generated. Construct products \bullet_d on $\mathbb{R}[x_1, \dots x_n]$:

$$f \bullet_0 = fg, \quad f \bullet_{d+1} g = \Delta(f \bullet_d g) - \Delta f \bullet_d g - f \bullet_d \Delta g.$$

Then:

• • d is (the standard) inner product on $\mathbb{R}[x_1, \ldots x_n]_d$.

Step 1: *A* is finitely generated. Construct products \bullet_d on $\mathbb{R}[x_1, \dots x_n]$:

$$f \bullet_0 = fg, \quad f \bullet_{d+1} g = \Delta(f \bullet_d g) - \Delta f \bullet_d g - f \bullet_d \Delta g.$$

Then:

● •_d is (the standard) inner product on ℝ[x₁,...x_n]_d.
② A •_d A ⊆ A ∀d.

Step 1: *A* is finitely generated. Construct products \bullet_d on $\mathbb{R}[x_1, \dots x_n]$:

$$f \bullet_0 = fg, \quad f \bullet_{d+1} g = \Delta(f \bullet_d g) - \Delta f \bullet_d g - f \bullet_d \Delta g.$$

Then:

• • d is (the standard) inner product on
$$\mathbb{R}[x_1, \dots, x_n]_d$$
.
• $A \bullet_d A \subseteq A \quad \forall d$.

→ The orthogonal projection $[\cdot]_A : \mathbb{R}[x_1, \dots x_n] \to A$ w.r.t. the metrics \bullet_d satisfies $[fg]_A = f[g]_A \quad \forall f \in A$ (*Reynolds operator*)

Step 1: *A* is finitely generated. Construct products \bullet_d on $\mathbb{R}[x_1, \dots x_n]$:

$$f \bullet_0 = fg, \quad f \bullet_{d+1} g = \Delta(f \bullet_d g) - \Delta f \bullet_d g - f \bullet_d \Delta g.$$

Then:

• • d is (the standard) inner product on $\mathbb{R}[x_1, \dots, x_n]_d$. • $A \bullet_d A \subseteq A \quad \forall d$.

→ The orthogonal projection $[\cdot]_A : \mathbb{R}[x_1, \dots, x_n] \to A$ w.r.t. the metrics \bullet_d satisfies $[fg]_A = f[g]_A \quad \forall f \in A \ (Reynolds \ operator) \Rightarrow A$ finitely generated.

Take $\rho_1, \ldots \rho_k \in A$ generators.

$$\rho = (\rho_1, \dots \rho_k) : \mathbb{S}^{n-1} \to X_A = Im(\rho) \subseteq \mathbb{R}^k$$

Take $\rho_1, \ldots \rho_k \in A$ generators.

$$\rho = (\rho_1, \dots, \rho_k) : \mathbb{S}^{n-1} \to X_A = Im(\rho) \subseteq \mathbb{R}^k$$

 $\mathbb{S}_{reg}^{n-1} = \{ v \mid \mathsf{rk}(d_v \rho) \text{ maximal} \} \quad X_A^{reg} = \rho(\mathbb{S}_{reg}^{n-1}) \text{ (smooth manifold)}.$

Take $\rho_1, \ldots \rho_k \in A$ generators.

$$\rho = (\rho_1, \dots, \rho_k) : \mathbb{S}^{n-1} \to X_A = Im(\rho) \subseteq \mathbb{R}^k$$

 $\mathbb{S}_{reg}^{n-1} = \{ v \mid \mathsf{rk}(d_v \rho) \text{ maximal} \} \quad X_A^{reg} = \rho(\mathbb{S}_{reg}^{n-1}) \text{ (smooth manifold)}.$

Step 2: $\rho_{reg} : \mathbb{S}_{reg}^{n-1} \to X_A^{reg}$ is a Riemannian submersion.

Take $\rho_1, \ldots, \rho_k \in A$ generators.

$$\rho = (\rho_1, \dots, \rho_k) : \mathbb{S}^{n-1} \to X_A = Im(\rho) \subseteq \mathbb{R}^k$$

 $\mathbb{S}_{reg}^{n-1} = \{ v \mid \mathsf{rk}(d_v \rho) \text{ maximal} \} \quad X_A^{reg} = \rho(\mathbb{S}_{reg}^{n-1}) \text{ (smooth manifold).}$

Step 2: $\rho_{reg} : \mathbb{S}_{reg}^{n-1} \to X_A^{reg}$ is a Riemannian submersion. Key point is defining a metric on X_A^{reg} . Induced by $B_{ij} = (\rho_i \bullet_1 \rho_j) = (\langle \nabla \rho_i, \nabla \rho_j \rangle).$ Take $\rho_1, \ldots, \rho_k \in A$ generators.

$$\rho = (\rho_1, \dots, \rho_k) : \mathbb{S}^{n-1} \to X_A = Im(\rho) \subseteq \mathbb{R}^k$$

 $\mathbb{S}_{reg}^{n-1} = \{ v \mid \mathsf{rk}(d_v \rho) \text{ maximal} \} \quad X_A^{reg} = \rho(\mathbb{S}_{reg}^{n-1}) \text{ (smooth manifold).}$

Step 2: $\rho_{reg} : \mathbb{S}_{reg}^{n-1} \to X_A^{reg}$ is a Riemannian submersion. Key point is defining a metric on X_A^{reg} . Induced by $B_{ij} = (\rho_i \bullet_1 \rho_j) = (\langle \nabla \rho_i, \nabla \rho_j \rangle).$

 \hat{X}_A = metric completion of X_A .

Take $\rho_1, \ldots, \rho_k \in A$ generators.

$$\rho = (\rho_1, \dots \rho_k) : \mathbb{S}^{n-1} \to X_A = Im(\rho) \subseteq \mathbb{R}^k$$

 $\mathbb{S}_{reg}^{n-1} = \{ v \mid \mathsf{rk}(d_v \rho) \text{ maximal} \} \quad X_A^{reg} = \rho(\mathbb{S}_{reg}^{n-1}) \text{ (smooth manifold)}.$

Step 2: $\rho_{reg} : \mathbb{S}_{reg}^{n-1} \to X_A^{reg}$ is a Riemannian submersion. Key point is defining a metric on X_A^{reg} . Induced by $B_{ij} = (\rho_i \bullet_1 \rho_j) = (\langle \nabla \rho_i, \nabla \rho_j \rangle).$

 \hat{X}_A = metric completion of X_A .

Step 3: ρ_{reg} extends to a manifold submetry $\hat{\pi} : \mathbb{S}^{n-1} \to \hat{X}_A$.

 $A \subseteq \mathbb{R}[x_1, \dots x_n]$ Laplacian algebra $\Rightarrow \hat{\pi}_A : \mathbb{S}^{n-1} \to A$ SMS.

- A might not separate fibers.
- A might separate fibers, but not contain all the invariants.

- A might not separate fibers.
- 2 A might separate fibers, but not contain all the invariants.

Example

O(n)-action on $(\mathbb{R}^n)^p = \mathbb{R}^n \oplus \ldots \oplus \mathbb{R}^n$, $g \cdot (v_1, \ldots v_p) = (g \cdot v_1, \ldots g \cdot v_p)$. Want to compute invariants.

- A might not separate fibers.
- 2 A might separate fibers, but not contain all the invariants.

Example

O(n)-action on $(\mathbb{R}^n)^p = \mathbb{R}^n \oplus \ldots \oplus \mathbb{R}^n$, $g \cdot (v_1, \ldots v_p) = (g \cdot v_1, \ldots g \cdot v_p)$. Want to compute invariants. Define $P_{ij}(v_1, \ldots v_p) = \langle v_i, v_j \rangle O(n)$ -invariant polynomials.

- A might not separate fibers.
- 2 A might separate fibers, but not contain all the invariants.

Example

O(n)-action on $(\mathbb{R}^n)^p = \mathbb{R}^n \oplus \ldots \oplus \mathbb{R}^n$, $g \cdot (v_1, \ldots v_p) = (g \cdot v_1, \ldots g \cdot v_p)$. Want to compute invariants. Define $P_{ij}(v_1, \ldots v_p) = \langle v_i, v_j \rangle O(n)$ -invariant polynomials.

Theorem (First fundamental theorem of O(n), Weyl)

The algebra of O(n)-invariant polynomials is generated by the P_{ij} .

Theorem (Mendes, R., '18) If A is maximal, then $\mathcal{B}(\hat{\pi}_A) = A$
Theorem (Mendes, R., '18) If A is maximal, then $\mathcal{B}(\hat{\pi}_A) = A$

Question

Is every Laplacian algebra maximal?

Theorem (Mendes, R., '18) If A is maximal, then $\mathcal{B}(\hat{\pi}_A) = A$

Question

Is every Laplacian algebra maximal?

Theorem (Mendes, R., '16)

YES, in the following situations:

- A generated by 2 polynomials.
- A is generated by quadratic polynomials.

Obtained via generalization of Weyl's First Fundamental Theorem, in the non homogeneous setting.

An application to (inverse) Invariant theory

Inverse invariant theory

Which algebras occur as algebras of invariant polynomials?

Inverse invariant theory

Which algebras occur as algebras of invariant polynomials?

Corollary (Mendes, R.)

Suppose $A \subset \mathbb{R}[x_1, ..., x_n]$ is a maximal Laplacian algebra, with trdeg.K(A) = n (K(A) = field of fractions of A). Then $A = \mathbb{R}[x_1, ..., x_n]^{\Gamma}$ for some finite group $\Gamma \subset O(n)$.

Thank you!

