Manifold submetries, and polynomial algebras

Marco Radeschi

Modern Trends in Differential Geometry

Sao Paulo, July 252018

M Riemannian manifold, X metric space.

Manifold submetry

Continuous map $\pi: M \rightarrow X$ such that:
(1) π is a submetry: $\pi\left(B_{r}(p)\right)=B_{r}(\pi(p))$.
(2) For all $x \in X, \pi^{-1}(x)$ is a smooth manifold.
M Riemannian manifold, X metric space.

Manifold submetry

Continuous map $\pi: M \rightarrow X$ such that:
(1) π is a submetry: $\pi\left(B_{r}(p)\right)=B_{r}(\pi(p))$.
(2) For all $x \in X, \pi^{-1}(x)$ is a smooth manifold.

Remarks:

- Equivalent to partition of M by equidistant submanifolds.
M Riemannian manifold, X metric space.

Manifold submetry

Continuous map $\pi: M \rightarrow X$ such that:
(1) π is a submetry: $\pi\left(B_{r}(p)\right)=B_{r}(\pi(p))$.
(2) For all $x \in X, \pi^{-1}(x)$ is a smooth manifold.

Remarks:

- Equivalent to partition of M by equidistant submanifolds.
- Fibers can have varying dimension.

Manifold submetries

M Riemannian manifold, X metric space.

Manifold submetry

Continuous map $\pi: M \rightarrow X$ such that:
(1) π is a submetry: $\pi\left(B_{r}(p)\right)=B_{r}(\pi(p))$.
(2) For all $x \in X, \pi^{-1}(x)$ is a smooth manifold.

Remarks:

- Equivalent to partition of M by equidistant submanifolds.
- Fibers can have varying dimension.
- Fibers can be disconnected, but different components have same dimension.

Manifold submetries

M Riemannian manifold, X metric space.

Manifold submetry

Continuous map $\pi: M \rightarrow X$ such that:
(1) π is a submetry: $\pi\left(B_{r}(p)\right)=B_{r}(\pi(p))$.
(2) For all $x \in X, \pi^{-1}(x)$ is a smooth manifold.

Remarks:

- Equivalent to partition of M by equidistant submanifolds.
- Fibers can have varying dimension.
- Fibers can be disconnected, but different components have same dimension.

Want to look at local structure of manifolds submetries.

Manifold submetries

Examples

- Riemannian submersions $M \rightarrow N$.

Manifold submetries

Examples

- Riemannian submersions $M \rightarrow N$.
- $G \subset \operatorname{Iso}(M)$ closed Lie group $\Rightarrow \pi: M \rightarrow M / G$.

Manifold submetries

Examples

- Riemannian submersions $M \rightarrow N$.
- $G \subset \operatorname{Iso}(M)$ closed Lie group $\Rightarrow \pi: M \rightarrow M / G$.
- (M, \mathcal{F}) singular Riemannian foliation $\Rightarrow \pi: M \rightarrow M / \overline{\mathcal{F}}$.

Examples

- Riemannian submersions $M \rightarrow N$.
- $G \subset \operatorname{Iso}(M)$ closed Lie group $\Rightarrow \pi: M \rightarrow M / G$.
- (M, \mathcal{F}) singular Riemannian foliation $\Rightarrow \pi: M \rightarrow M / \overline{\mathcal{F}}$.
- $L \subset \mathbb{S}^{n}$ isoparametric hypersurface (Almost classification by Cartan, Münzner, Cecil, Jensen, Abresch, Dorfmeister-Neher, Immervoll,...)

Examples

- Riemannian submersions $M \rightarrow N$.
- $G \subset \operatorname{Iso}(M)$ closed Lie group $\Rightarrow \pi: M \rightarrow M / G$.
- (M, \mathcal{F}) singular Riemannian foliation $\Rightarrow \pi: M \rightarrow M / \overline{\mathcal{F}}$.
- $L \subset \mathbb{S}^{n}$ isoparametric hypersurface (Almost classification by Cartan, Münzner, Cecil, Jensen, Abresch, Dorfmeister-Neher, Immervoll, $\ldots) \longleftrightarrow \pi: \mathbb{S}^{n} \rightarrow[a, b]$ manifold submetry.

Manifold submetries

Examples

- Riemannian submersions $M \rightarrow N$.
- $G \subset \operatorname{Iso}(M)$ closed Lie group $\Rightarrow \pi: M \rightarrow M / G$.
- (M, \mathcal{F}) singular Riemannian foliation $\Rightarrow \pi: M \rightarrow M / \overline{\mathcal{F}}$.
- $L \subset \mathbb{S}^{n}$ isoparametric hypersurface (Almost classification by Cartan, Münzner, Cecil, Jensen, Abresch, Dorfmeister-Neher, Immervoll, $\ldots) \longleftrightarrow \pi: \mathbb{S}^{n} \rightarrow[a, b]$ manifold submetry.
- Related to collapse with lower curvature bounds (Cheeger, Yamaguchi, Shioya-Yamaguchi, Wilking, ...).

Local model

$\pi: M \rightarrow X$ manifold submetry $\Rightarrow X$ is an Alexandrov space, stratified by smooth manifolds.
$\pi: M \rightarrow X$ manifold submetry $\Rightarrow X$ is an Alexandrov space, stratified by smooth manifolds.
(Lytchak) Manifold submetries are locally modeled around manifold submetries $\mathbb{S}^{n-1} \rightarrow X$.
$\pi: M \rightarrow X$ manifold submetry $\Rightarrow X$ is an Alexandrov space, stratified by smooth manifolds.
(Lytchak) Manifold submetries are locally modeled around manifold submetries $\mathbb{S}^{n-1} \rightarrow X$.

Spherical manifold submetry (SMS)
Manifold submetry $\pi: \mathbb{S}^{n-1} \rightarrow X$.

Local model

$\pi: M \rightarrow X$ manifold submetry $\Rightarrow X$ is an Alexandrov space, stratified by smooth manifolds.
(Lytchak) Manifold submetries are locally modeled around manifold submetries $\mathbb{S}^{n-1} \rightarrow X$.

Spherical manifold submetry (SMS)
Manifold submetry $\pi: \mathbb{S}^{n-1} \rightarrow X$.

Question 1
Classify all SMS's.

Local model

$\pi: M \rightarrow X$ manifold submetry $\Rightarrow X$ is an Alexandrov space, stratified by smooth manifolds.
(Lytchak) Manifold submetries are locally modeled around manifold submetries $\mathbb{S}^{n-1} \rightarrow X$.

Spherical manifold submetry (SMS)
Manifold submetry $\pi: \mathbb{S}^{n-1} \rightarrow X$.

```
Question 1
Classify all SMS's.
```


Question 2

Find constructions and structure of SMS's.

Examples of SMS

Examples

Homogeneous: $G \subseteq O(n) \Rightarrow \pi: \mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1} / G$.

Examples of SMS

Examples

Homogeneous: $G \subseteq O(n) \Rightarrow \pi: \mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1} / G$.

Clifford:

Theorem (R. '14)
$\mathcal{C}=\left\{P_{0}, \ldots P_{m}\right\} \subset \operatorname{Sym}^{2}(n)$ Clifford system

$$
\begin{aligned}
\pi_{\mathcal{C}}: \mathbb{S}^{n-1} & \longrightarrow \mathbb{D}^{m+1} \subset \mathbb{R}^{m+1} \\
v & \longmapsto\left(\left\langle P_{0} v, v\right\rangle, \ldots\left\langle P_{m} v, v\right\rangle\right)
\end{aligned}
$$

Examples

Homogeneous: $G \subseteq O(n) \Rightarrow \pi: \mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1} / G$.
Clifford:
Theorem (R. '14)
$\mathcal{C}=\left\{P_{0}, \ldots P_{m}\right\} \subset \operatorname{Sym}^{2}(n)$ Clifford system

$$
\begin{aligned}
\pi_{\mathcal{C}}: \mathbb{S}^{n-1} & \longrightarrow \mathbb{D}^{m+1} \subset \mathbb{R}^{m+1} \\
v & \longmapsto\left(\left\langle P_{0} v, v\right\rangle, \ldots\left\langle P_{m} v, v\right\rangle\right)
\end{aligned}
$$

Then $\pi_{\mathcal{C}}$ is a SMS, with \mathbb{D}^{m+1} equipped with the hemisphere metric of $\mathrm{sec} \equiv 4$.

Examples

Homogeneous: $G \subseteq O(n) \Rightarrow \pi: \mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1} / G$.
Clifford:
Theorem (R. '14)
$\mathcal{C}=\left\{P_{0}, \ldots P_{m}\right\} \subset \operatorname{Sym}^{2}(n)$ Clifford system

$$
\begin{aligned}
\pi_{\mathcal{C}}: \mathbb{S}^{n-1} & \longrightarrow \mathbb{D}^{m+1} \subset \mathbb{R}^{m+1} \\
v & \longmapsto\left(\left\langle P_{0} v, v\right\rangle, \ldots\left\langle P_{m} v, v\right\rangle\right)
\end{aligned}
$$

Then $\pi_{\mathcal{C}}$ is a $S M S$, with \mathbb{D}^{m+1} equipped with the hemisphere metric of $\mathrm{sec} \equiv 4$.

All known SMS's are obtained from Clifford and homogeneous examples, together with two operations between them (spherical join, composition).

Classification, and results

$\pi: \mathbb{S}^{n-1} \rightarrow X$ SMS.

Classification, and results

$\pi: \mathbb{S}^{n-1} \rightarrow X$ SMS.

- (Grove-Gromoll, Wilking, Lytchak-Wilking): If fibers have constant dimension, then π is either homogeneous, or $\mathbb{S}^{15} \rightarrow \mathbb{S}^{8}$ (Clifford).

Classification, and results

$\pi: \mathbb{S}^{n-1} \rightarrow X$ SMS.

- (Grove-Gromoll, Wilking, Lytchak-Wilking): If fibers have constant dimension, then π is either homogeneous, or $\mathbb{S}^{15} \rightarrow \mathbb{S}^{8}$ (Clifford).
- (Cartan, Munzner, ...): If $\operatorname{dim} X=1, \pi$ is homogeneous or FKM $\left(f: \mathbb{S}^{n-1} \rightarrow[0,1], f(x)=\sum_{i}\left\langle P_{i} x, x\right\rangle^{2}\right)$, except possibly few cases.

Classification, and results

$\pi: \mathbb{S}^{n-1} \rightarrow X$ SMS

- (Grove-Gromoll, Wilking, Lytchak-Wilking): If fibers have constant dimension, then π is either homogeneous, or $\mathbb{S}^{15} \rightarrow \mathbb{S}^{8}$ (Clifford).
- (Cartan, Munzner, ...): If $\operatorname{dim} X=1, \pi$ is homogeneous or FKM $\left(f: \mathbb{S}^{n-1} \rightarrow[0,1], f(x)=\sum_{i}\left\langle P_{i} x, x\right\rangle^{2}\right)$, except possibly few cases.
- (Thorbergsson): If $\sec (X) \equiv 1$, then π is a join of homogeneous and FKM.

Classification, and results

$\pi: \mathbb{S}^{n-1} \rightarrow X$ SMS.

- (Grove-Gromoll, Wilking, Lytchak-Wilking): If fibers have constant dimension, then π is either homogeneous, or $\mathbb{S}^{15} \rightarrow \mathbb{S}^{8}$ (Clifford).
- (Cartan, Munzner, ...): If $\operatorname{dim} X=1, \pi$ is homogeneous or FKM $\left(f: \mathbb{S}^{n-1} \rightarrow[0,1], f(x)=\sum_{i}\left\langle P_{i} x, x\right\rangle^{2}\right)$, except possibly few cases.
- (Thorbergsson): If $\sec (X) \equiv 1$, then π is a join of homogeneous and FKM.
- (R. '14) if $X=\frac{1}{2} \mathbb{S}_{+}^{m}$ then π is Clifford.

Classification, and results

$\pi: \mathbb{S}^{n-1} \rightarrow X$ SMS.

- (Grove-Gromoll, Wilking, Lytchak-Wilking): If fibers have constant dimension, then π is either homogeneous, or $\mathbb{S}^{15} \rightarrow \mathbb{S}^{8}$ (Clifford).
- (Cartan, Munzner, ...): If $\operatorname{dim} X=1, \pi$ is homogeneous or FKM $\left(f: \mathbb{S}^{n-1} \rightarrow[0,1], f(x)=\sum_{i}\left\langle P_{i} x, x\right\rangle^{2}\right)$, except possibly few cases.
- (Thorbergsson): If $\sec (X) \equiv 1$, then π is a join of homogeneous and FKM.
- (R. '14) if $X=\frac{1}{2} \mathbb{S}_{+}^{m}$ then π is Clifford.
- (R. '12) If fibers have dimension ≤ 3, then π is homogeneous.

Classification, and results

$\pi: \mathbb{S}^{n-1} \rightarrow X$ SMS.

- (Grove-Gromoll, Wilking, Lytchak-Wilking): If fibers have constant dimension, then π is either homogeneous, or $\mathbb{S}^{15} \rightarrow \mathbb{S}^{8}$ (Clifford).
- (Cartan, Munzner, ...): If $\operatorname{dim} X=1, \pi$ is homogeneous or FKM $\left(f: \mathbb{S}^{n-1} \rightarrow[0,1], f(x)=\sum_{i}\left\langle P_{i} x, x\right\rangle^{2}\right)$, except possibly few cases.
- (Thorbergsson): If $\sec (X) \equiv 1$, then π is a join of homogeneous and FKM.
- (R. '14) if $X=\frac{1}{2} \mathbb{S}_{+}^{m}$ then π is Clifford.
- (R. '12) If fibers have dimension ≤ 3, then π is homogeneous.
(Gorodski-Lytchak): Study of orthogonal representations, from the point of view of $\pi: \mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1} / G$.

Algebraic structure

Algebraicity Theorem (Lytchak, R., '15)
$\pi: \mathbb{S}^{n-1} \rightarrow X \mathrm{SMS}, A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ algebra of homogeneous π-basic polynomials. Then:

Algebraic structure

Algebraicity Theorem (Lytchak, R., '15)
$\pi: \mathbb{S}^{n-1} \rightarrow X \mathrm{SMS}, A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ algebra of homogeneous π-basic polynomials. Then:
(1) A is finitely generated, say by $\rho_{1}, \ldots \rho_{k}$.

Algebraic structure

Algebraicity Theorem (Lytchak, R., '15)
$\pi: \mathbb{S}^{n-1} \rightarrow X \mathrm{SMS}, A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ algebra of homogeneous π-basic polynomials. Then:
(1) A is finitely generated, say by $\rho_{1}, \ldots \rho_{k}$.

$$
\rho:\left(\rho_{1}, \ldots \rho_{k}\right): \mathbb{S}^{n-1} \rightarrow X^{\prime} \subseteq \mathbb{R}^{k}
$$

Algebraic structure

Algebraicity Theorem (Lytchak, R., '15)
$\pi: \mathbb{S}^{n-1} \rightarrow X \mathrm{SMS}, A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ algebra of homogeneous π-basic polynomials. Then:
(1) A is finitely generated, say by $\rho_{1}, \ldots \rho_{k}$. $\rho:\left(\rho_{1}, \ldots \rho_{k}\right): \mathbb{S}^{n-1} \rightarrow X^{\prime} \subseteq \mathbb{R}^{k}$.
(2) The map ρ descends to a homeomorphism $\rho_{*}: X \rightarrow X^{\prime}$, such that $\rho=\rho_{*} \circ \pi$ (we say that $\pi \sim \rho$).

Algebraic structure

Algebraicity Theorem (Lytchak, R., '15)
$\pi: \mathbb{S}^{n-1} \rightarrow X \mathrm{SMS}, A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ algebra of homogeneous π-basic polynomials. Then:
(1) A is finitely generated, say by $\rho_{1}, \ldots \rho_{k}$. $\rho:\left(\rho_{1}, \ldots \rho_{k}\right): \mathbb{S}^{n-1} \rightarrow X^{\prime} \subseteq \mathbb{R}^{k}$.
(2) The map ρ descends to a homeomorphism $\rho_{*}: X \rightarrow X^{\prime}$, such that $\rho=\rho_{*} \circ \pi$ (we say that $\pi \sim \rho$).

This is a theorem of Hilbert in homogeneous case.

Algebraic structure

Algebraicity Theorem (Lytchak, R., '15)
$\pi: \mathbb{S}^{n-1} \rightarrow X \mathrm{SMS}, A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ algebra of homogeneous π-basic polynomials. Then:
(1) A is finitely generated, say by $\rho_{1}, \ldots \rho_{k}$. $\rho:\left(\rho_{1}, \ldots \rho_{k}\right): \mathbb{S}^{n-1} \rightarrow X^{\prime} \subseteq \mathbb{R}^{k}$.
(2) The map ρ descends to a homeomorphism $\rho_{*}: X \rightarrow X^{\prime}$, such that $\rho=\rho_{*} \circ \pi$ (we say that $\pi \sim \rho$).

This is a theorem of Hilbert in homogeneous case.
Key point: Averaging operator.

$$
\left\{\begin{array}{c}
\text { SMS } \\
\left.\pi: \mathbb{S}^{n-1} \rightarrow x\right\} / \sim
\end{array}\right.
$$

$\mathcal{B}(\pi)=$ Algebra of homogeneous π-basic polynomials.

$$
\left\{\begin{array}{c}
\underset{\mathcal{B}}{\text { SMS }} \\
\left.\pi: \mathbb{S}^{n-1} \rightarrow x\right\}^{K} / \sim
\end{array} \begin{array}{c}
\left.\begin{array}{c}
\text { Graded algebras } \\
A \subset \mathbb{R}\left[x_{1}, \ldots x_{n}\right]
\end{array}\right\}
\end{array}\right.
$$

$\mathcal{B}(\pi)=$ Algebra of homogeneous π-basic polynomials.

$$
\{\underset{\mathcal{B}}{\substack{\text { SMS } \\ \pi: \mathbb{S}^{n-1} \rightarrow X}} \underbrace{\substack{\text { Graded algebras } \\ A \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]}}\}
$$

$\mathcal{B}(\pi)=$ Algebra of homogeneous π-basic polynomials.
Given $A \subset \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$, define:

$$
\{\underset{\mathcal{B}}{\substack{\text { SMS } \\ \pi: \mathbb{S}^{n-1} \rightarrow X}} \underbrace{\substack{\mathbf{G}^{\text {Graded algebras }} \\ A \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]}}\}
$$

$\mathcal{B}(\pi)=$ Algebra of homogeneous π-basic polynomials.
Given $A \subset \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$, define:

- \sim_{A} on \mathbb{S}^{n-1} by $v \sim_{A} w \Leftrightarrow P(v)=P(w) \quad \forall P \in A$.

$$
\left\{\underset{\mathcal{B}}{\substack{\text { SMS } \\ \mathbb{S}^{n-1} \rightarrow X}}\right\}^{K^{\prime}} \sim \underbrace{\substack{\text { Graded algebras } \\ A \subset \mathbb{R}\left[x_{1}, \ldots x_{n}\right]}}_{\mathcal{B}}\}
$$

$\mathcal{B}(\pi)=$ Algebra of homogeneous π-basic polynomials.
Given $A \subset \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$, define:

- \sim_{A} on \mathbb{S}^{n-1} by $v \sim_{A} w \Leftrightarrow P(v)=P(w) \quad \forall P \in A$.
- $X_{A}=\mathbb{S}^{n-1} / \sim_{A}$.

$$
\left\{\pi: \mathbb{S}^{\mathrm{SMS}} \rightarrow X\right\} / \sim \underbrace{}_{\mathcal{B}} \quad\left\{\begin{array}{l}
\text { Graded algebras } \\
A \subset \mathbb{R}\left[x_{1}, \ldots x_{n}\right]
\end{array}\right\}
$$

$\mathcal{B}(\pi)=$ Algebra of homogeneous π-basic polynomials.
Given $A \subset \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$, define:

- \sim_{A} on \mathbb{S}^{n-1} by $v \sim_{A} w \Leftrightarrow P(v)=P(w) \quad \forall P \in A$.
- $X_{A}=\mathbb{S}^{n-1} / \sim_{A}$.

Finally, $\pi_{\bullet}(A)=\pi_{A}: \mathbb{S}^{n-1} \rightarrow X_{A}$.

$$
\left.\left\{\begin{array}{c}
\underset{\mathcal{B}}{\text { SMS }} \\
\pi: \mathbb{S}^{n-1} \rightarrow x
\end{array}\right\}^{\substack{\mathbf{G}^{\prime} \\
A \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]}}\right\}
$$

$\mathcal{B}(\pi)=$ Algebra of homogeneous π-basic polynomials.
Given $A \subset \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$, define:

- \sim_{A} on \mathbb{S}^{n-1} by $v \sim_{A} w \Leftrightarrow P(v)=P(w) \quad \forall P \in A$.
- $X_{A}=\mathbb{S}^{n-1} / \sim_{A}$.

Finally, $\pi_{\bullet}(A)=\pi_{A}: \mathbb{S}^{n-1} \rightarrow X_{A}$.
π_{\bullet} is not a SMS in general

$$
\left\{\begin{array}{c}
\text { SMS } \\
\pi: \mathbb{S}^{n-1} \rightarrow X
\end{array}\right\} / \sim \quad\left\{\begin{array}{l}
\text { Graded algebras } \\
A \subset \mathbb{R}\left[x_{1}, \ldots x_{n}\right]
\end{array}\right\}
$$

$\mathcal{B}(\pi)=$ Algebra of homogeneous π-basic polynomials.
Given $A \subset \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$, define:

- \sim_{A} on \mathbb{S}^{n-1} by $v \sim_{A} w \Leftrightarrow P(v)=P(w) \quad \forall P \in A$.
- $X_{A}=\mathbb{S}^{n-1} / \sim_{A}$.

Finally, $\pi_{\bullet}(A)=\pi_{A}: \mathbb{S}^{n-1} \rightarrow X_{A}$.
π_{\bullet} is not a SMS in general, but $\pi_{\bullet}(\mathcal{B}(\pi)) \sim \pi$.

Maximal and Laplacian algebras

Definition

An algebra $A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ is called:

Maximal and Laplacian algebras

Definition

An algebra $A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ is called:

- Laplacian if $r^{2}=\sum_{i} x_{i}^{2} \in A$ and for all $P \in A, \Delta P \in A$.

Maximal and Laplacian algebras

Definition

An algebra $A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ is called:

- Laplacian if $r^{2}=\sum_{i} x_{i}^{2} \in A$ and for all $P \in A, \Delta P \in A$.
- Maximal

Maximal and Laplacian algebras

Definition

An algebra $A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ is called:

- Laplacian if $r^{2}=\sum_{i} x_{i}^{2} \in A$ and for all $P \in A, \Delta P \in A$.
- Maximal if $\forall P \notin A$, there are $v, w \in \mathbb{S}^{n-1}$ such that $v \sim_{A} w$ and $P(v) \neq P(w)$.

Maximal and Laplacian algebras

Definition

An algebra $A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ is called:

- Laplacian if $r^{2}=\sum_{i} x_{i}^{2} \in A$ and for all $P \in A, \Delta P \in A$.
- Maximal if $\forall P \notin A$, there are $v, w \in \mathbb{S}^{n-1}$ such that $v \sim_{A} w$ and $P(v) \neq P(w)$.

Theorem (Alexandrino, R.)

For any $S M S \pi: \mathbb{S}^{n-1} \rightarrow X, \mathcal{B}(\pi)$ is maximal and Laplacian.

Constructing SMS's

Theorem (Mendes, R. '18)
Let $A \subset \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ be a Laplacian algebra.

Constructing SMS's

Theorem (Mendes, R. '18)
Let $A \subset \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ be a Laplacian algebra.

- There exists $\hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow \hat{X}_{A} S M S$, such that $\hat{\pi}_{A} \sim \pi_{A}$ on an open dense set.

Constructing SMS's

Theorem (Mendes, R. '18)
Let $A \subset \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ be a Laplacian algebra.

- There exists $\hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow \hat{X}_{A} S M S$, such that $\hat{\pi}_{A} \sim \pi_{A}$ on an open dense set.
- If A is also maximal, then $\hat{\pi}_{A} \sim \pi_{A}$, and $\mathcal{B}\left(\pi_{A}\right)=A$.

Constructing SMS's

Theorem (Mendes, R. '18)

Let $A \subset \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ be a Laplacian algebra.

- There exists $\hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow \hat{X}_{A} S M S$, such that $\hat{\pi}_{A} \sim \pi_{A}$ on an open dense set.
- If A is also maximal, then $\hat{\pi}_{A} \sim \pi_{A}$, and $\mathcal{B}\left(\pi_{A}\right)=A$.

Corollary

There is a bijection

$$
\left\{\begin{array}{c}
\text { SMS } \\
\pi: \mathbb{S}^{n-1} \rightarrow X
\end{array}\right\} / \sim \underbrace{\left\{\begin{array}{c}
\pi_{\bullet} \\
\text { Maximal } \\
\text { Laplacian algebras } \\
A \subset \mathbb{R}\left[x_{1}, \ldots x_{n}\right]
\end{array}\right\}}_{\mathcal{B}}
$$

From Laplacian algebras to SMS

A Laplacian algebra. Want to construct $\operatorname{SMS} \hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow \hat{X}_{A}$.

A Laplacian algebra. Want to construct $\operatorname{SMS} \hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow \hat{X}_{A}$.
Step 1: A is finitely generated.

A Laplacian algebra. Want to construct $\operatorname{SMS} \hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow \hat{X}_{A}$.
Step 1: A is finitely generated.
Construct products \bullet_{d} on $\mathbb{R}\left[x_{1}, \ldots x_{n}\right]$:

$$
f \bullet_{0}=f g, \quad f \bullet_{d+1} g=\Delta\left(f \bullet_{d} g\right)-\Delta f \bullet_{d} g-f \bullet_{d} \Delta g .
$$

A Laplacian algebra. Want to construct $\operatorname{SMS} \hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow \hat{X}_{A}$.
Step 1: A is finitely generated.
Construct products \bullet_{d} on $\mathbb{R}\left[x_{1}, \ldots x_{n}\right]$:

$$
f \bullet_{0}=f g, \quad f \bullet_{d+1} g=\Delta\left(f \bullet_{d} g\right)-\Delta f \bullet_{d} g-f \bullet_{d} \Delta g .
$$

Then:
A Laplacian algebra. Want to construct $\operatorname{SMS} \hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow \hat{X}_{A}$.
Step 1: A is finitely generated.
Construct products \bullet_{d} on $\mathbb{R}\left[x_{1}, \ldots x_{n}\right]$:

$$
f \bullet_{0}=f g, \quad f \bullet_{d+1} g=\Delta\left(f \bullet_{d} g\right)-\Delta f \bullet_{d} g-f \bullet_{d} \Delta g .
$$

Then:
(1) \bullet_{d} is (the standard) inner product on $\mathbb{R}\left[x_{1}, \ldots x_{n}\right]_{d}$.
A Laplacian algebra. Want to construct $\operatorname{SMS} \hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow \hat{X}_{A}$.
Step 1: A is finitely generated.
Construct products \bullet_{d} on $\mathbb{R}\left[x_{1}, \ldots x_{n}\right]$:

$$
f \bullet_{0}=f g, \quad f \bullet_{d+1} g=\Delta\left(f \bullet_{d} g\right)-\Delta f \bullet_{d} g-f \bullet_{d} \Delta g .
$$

Then:
(1) \bullet_{d} is (the standard) inner product on $\mathbb{R}\left[x_{1}, \ldots x_{n}\right]_{d}$.
(2) $A \bullet{ }_{d} A \subseteq A \quad \forall d$.

A Laplacian algebra. Want to construct $\operatorname{SMS} \hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow \hat{X}_{A}$.
Step 1: A is finitely generated.
Construct products \bullet_{d} on $\mathbb{R}\left[x_{1}, \ldots x_{n}\right]$:

$$
f \bullet_{0}=f g, \quad f \bullet_{d+1} g=\Delta\left(f \bullet_{d} g\right)-\Delta f \bullet_{d} g-f \bullet_{d} \Delta g .
$$

Then:
(1) \bullet_{d} is (the standard) inner product on $\mathbb{R}\left[x_{1}, \ldots x_{n}\right]_{d}$.
(2) $A \bullet{ }_{d} A \subseteq A \quad \forall d$.
\rightarrow The orthogonal projection $[\cdot]_{A}: \mathbb{R}\left[x_{1}, \ldots x_{n}\right] \rightarrow A$ w.r.t. the
metrics \bullet_{d} satisfies $[f g]_{A}=f[g]_{A} \quad \forall f \in A$ (Reynolds operator)

A Laplacian algebra. Want to construct $\operatorname{SMS} \hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow \hat{X}_{A}$.
Step 1: A is finitely generated.
Construct products \bullet_{d} on $\mathbb{R}\left[x_{1}, \ldots x_{n}\right]$:

$$
f \bullet_{0}=f g, \quad f \bullet_{d+1} g=\Delta\left(f \bullet_{d} g\right)-\Delta f \bullet_{d} g-f \bullet_{d} \Delta g .
$$

Then:
(1) \bullet_{d} is (the standard) inner product on $\mathbb{R}\left[x_{1}, \ldots x_{n}\right]_{d}$.
(2) $A \bullet{ }_{d} A \subseteq A \quad \forall d$.
\rightarrow The orthogonal projection $[\cdot]_{A}: \mathbb{R}\left[x_{1}, \ldots x_{n}\right] \rightarrow A$ w.r.t. the metrics \bullet_{d} satisfies $[f g]_{A}=f[g]_{A} \quad \forall f \in A$ (Reynolds operator) \Rightarrow A finitely generated.

From Laplacian algebras to SMS

Take $\rho_{1}, \ldots \rho_{k} \in A$ generators.

$$
\rho=\left(\rho_{1}, \ldots \rho_{k}\right): \mathbb{S}^{n-1} \rightarrow X_{A}=\operatorname{Im}(\rho) \subseteq \mathbb{R}^{k}
$$

Take $\rho_{1}, \ldots \rho_{k} \in A$ generators.

$$
\begin{aligned}
& \quad \rho=\left(\rho_{1}, \ldots \rho_{k}\right): \mathbb{S}^{n-1} \rightarrow X_{A}=\operatorname{Im}(\rho) \subseteq \mathbb{R}^{k} \\
& \mathbb{S}_{\text {reg }}^{n-1}=\left\{v \mid \operatorname{rk}\left(d_{v} \rho\right) \text { maximal }\right\} \quad X_{A}^{\text {reg }}=\rho\left(\mathbb{S}_{\text {reg }}^{n-1}\right) \text { (smooth } \\
& \text { manifold). }
\end{aligned}
$$

Take $\rho_{1}, \ldots \rho_{k} \in A$ generators.

$$
\rho=\left(\rho_{1}, \ldots \rho_{k}\right): \mathbb{S}^{n-1} \rightarrow X_{A}=\operatorname{Im}(\rho) \subseteq \mathbb{R}^{k}
$$

$\mathbb{S}_{\text {reg }}^{n-1}=\left\{v \mid \operatorname{rk}\left(d_{v} \rho\right)\right.$ maximal $\} \quad X_{A}^{\text {reg }}=\rho\left(\mathbb{S}_{\text {reg }}^{n-1}\right)$ (smooth manifold).

Step 2: $\rho_{\text {reg }}: \mathbb{S}_{\text {reg }}^{n-1} \rightarrow X_{A}^{\text {reg }}$ is a Riemannian submersion.

Take $\rho_{1}, \ldots \rho_{k} \in A$ generators.

$$
\rho=\left(\rho_{1}, \ldots \rho_{k}\right): \mathbb{S}^{n-1} \rightarrow X_{A}=\operatorname{Im}(\rho) \subseteq \mathbb{R}^{k}
$$

$\mathbb{S}_{\text {reg }}^{n-1}=\left\{v \mid \operatorname{rk}\left(d_{v} \rho\right)\right.$ maximal $\} \quad X_{A}^{r e g}=\rho\left(\mathbb{S}_{\text {reg }}^{n-1}\right)$ (smooth manifold).

Step 2: $\rho_{\text {reg }}: \mathbb{S}_{\text {reg }}^{n-1} \rightarrow X_{A}^{\text {reg }}$ is a Riemannian submersion. Key point is defining a metric on $X_{A}^{\text {reg }}$. Induced by $B_{i j}=\left(\rho_{i} \bullet 1 \rho_{j}\right)=\left(\left\langle\nabla \rho_{i}, \nabla \rho_{j}\right\rangle\right)$.

Take $\rho_{1}, \ldots \rho_{k} \in A$ generators.

$$
\rho=\left(\rho_{1}, \ldots \rho_{k}\right): \mathbb{S}^{n-1} \rightarrow X_{A}=\operatorname{Im}(\rho) \subseteq \mathbb{R}^{k}
$$

$\mathbb{S}_{\text {reg }}^{n-1}=\left\{v \mid \operatorname{rk}\left(d_{v} \rho\right)\right.$ maximal $\} \quad X_{A}^{r e g}=\rho\left(\mathbb{S}_{\text {reg }}^{n-1}\right)$ (smooth manifold).

Step 2: $\rho_{\text {reg }}: \mathbb{S}_{\text {reg }}^{n-1} \rightarrow X_{A}^{\text {reg }}$ is a Riemannian submersion. Key point is defining a metric on $X_{A}^{\text {reg }}$. Induced by $B_{i j}=\left(\rho_{i} \bullet 1 \rho_{j}\right)=\left(\left\langle\nabla \rho_{i}, \nabla \rho_{j}\right\rangle\right)$.
$\hat{X}_{A}=$ metric completion of X_{A}.

Take $\rho_{1}, \ldots \rho_{k} \in A$ generators.

$$
\rho=\left(\rho_{1}, \ldots \rho_{k}\right): \mathbb{S}^{n-1} \rightarrow X_{A}=\operatorname{Im}(\rho) \subseteq \mathbb{R}^{k}
$$

$\mathbb{S}_{\text {reg }}^{n-1}=\left\{v \mid \operatorname{rk}\left(d_{v} \rho\right)\right.$ maximal $\} \quad X_{A}^{r e g}=\rho\left(\mathbb{S}_{\text {reg }}^{n-1}\right)$ (smooth manifold).

Step 2: $\rho_{\text {reg }}: \mathbb{S}_{\text {reg }}^{n-1} \rightarrow X_{A}^{\text {reg }}$ is a Riemannian submersion. Key point is defining a metric on $X_{A}^{\text {reg }}$. Induced by $B_{i j}=\left(\rho_{i} \bullet_{1} \rho_{j}\right)=\left(\left\langle\nabla \rho_{i}, \nabla \rho_{j}\right\rangle\right)$.
$\hat{X}_{A}=$ metric completion of X_{A}.
Step 3: $\rho_{\text {reg }}$ extends to a manifold submetry $\hat{\pi}: \mathbb{S}^{n-1} \rightarrow \hat{X}_{A}$.

Maximality

$A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ Laplacian algebra $\Rightarrow \hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow A$ SMS.

Maximality

$A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ Laplacian algebra $\Rightarrow \hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow A$ SMS. Polynomials in A are $\hat{\pi}_{A}$-basic $\left(A \subseteq \mathcal{B}\left(\hat{\pi}_{A}\right)\right)$. Are they all?

Maximality

$A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ Laplacian algebra $\Rightarrow \hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow A$ SMS.
Polynomials in A are $\hat{\pi}_{A}$-basic $\left(A \subseteq \mathcal{B}\left(\hat{\pi}_{A}\right)\right)$. Are they all?
(1) A might not separate fibers.
(2) A might separate fibers, but not contain all the invariants.

Maximality

$A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ Laplacian algebra $\Rightarrow \hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow A$ SMS. Polynomials in A are $\hat{\pi}_{A}$-basic $\left(A \subseteq \mathcal{B}\left(\hat{\pi}_{A}\right)\right)$. Are they all?
(1) A might not separate fibers.
(2) A might separate fibers, but not contain all the invariants.

Example

$O(n)$-action on $\left(\mathbb{R}^{n}\right)^{p}=\mathbb{R}^{n} \oplus \ldots \oplus \mathbb{R}^{n}$, $g \cdot\left(v_{1}, \ldots v_{p}\right)=\left(g \cdot v_{1}, \ldots g \cdot v_{p}\right)$. Want to compute invariants.

Maximality

$A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ Laplacian algebra $\Rightarrow \hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow A$ SMS. Polynomials in A are $\hat{\pi}_{A}$-basic $\left(A \subseteq \mathcal{B}\left(\hat{\pi}_{A}\right)\right)$. Are they all?
(1) A might not separate fibers.
(2) A might separate fibers, but not contain all the invariants.

Example

$O(n)$-action on $\left(\mathbb{R}^{n}\right)^{p}=\mathbb{R}^{n} \oplus \ldots \oplus \mathbb{R}^{n}$, $g \cdot\left(v_{1}, \ldots v_{p}\right)=\left(g \cdot v_{1}, \ldots g \cdot v_{p}\right)$. Want to compute invariants.
Define $P_{i j}\left(v_{1}, \ldots v_{p}\right)=\left\langle v_{i}, v_{j}\right\rangle O(n)$-invariant polynomials.

Maximality

$A \subseteq \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ Laplacian algebra $\Rightarrow \hat{\pi}_{A}: \mathbb{S}^{n-1} \rightarrow A$ SMS. Polynomials in A are $\hat{\pi}_{A}$-basic $\left(A \subseteq \mathcal{B}\left(\hat{\pi}_{A}\right)\right)$. Are they all?
(1) A might not separate fibers.
(2) A might separate fibers, but not contain all the invariants.

Example

$O(n)$-action on $\left(\mathbb{R}^{n}\right)^{p}=\mathbb{R}^{n} \oplus \ldots \oplus \mathbb{R}^{n}$, $g \cdot\left(v_{1}, \ldots v_{p}\right)=\left(g \cdot v_{1}, \ldots g \cdot v_{p}\right)$. Want to compute invariants. Define $P_{i j}\left(v_{1}, \ldots v_{p}\right)=\left\langle v_{i}, v_{j}\right\rangle O(n)$-invariant polynomials.

Theorem (First fundamental theorem of $O(n)$, Weyl)

The algebra of $O(n)$-invariant polynomials is generated by the $P_{i j}$.

Maximality

Theorem (Mendes, R., '18)
If A is maximal, then $\mathcal{B}\left(\hat{\pi}_{A}\right)=A$

Maximality

Theorem (Mendes, $\mathrm{R} .$, ' 18)
If A is maximal, then $\mathcal{B}\left(\hat{\pi}_{A}\right)=A$
Question
Is every Laplacian algebra maximal?

Theorem (Mendes, R., '18)
 If A is maximal, then $\mathcal{B}\left(\hat{\pi}_{A}\right)=A$

Question

Is every Laplacian algebra maximal?

Theorem (Mendes, R., '16)
YES, in the following situations:

- A generated by 2 polynomials.
- A is generated by quadratic polynomials.

Obtained via generalization of Weyl's First Fundamental Theorem, in the non homogeneous setting.

An application to (inverse) Invariant theory

Inverse invariant theory

Which algebras occur as algebras of invariant polynomials?

An application to (inverse) Invariant theory

Inverse invariant theory

Which algebras occur as algebras of invariant polynomials?

Corollary (Mendes, R.)
Suppose $A \subset \mathbb{R}\left[x_{1}, \ldots x_{n}\right]$ is a maximal Laplacian algebra, with trdeg. $K(A)=n(K(A)=$ field of fractions of $A)$. Then $A=\mathbb{R}\left[x_{1}, \ldots x_{n}\right]^{\ulcorner }$for some finite group $\Gamma \subset O(n)$.

Thank you!

