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(All surfaces are orientable)

Mc = {M C R3? complete embedded minimal surface | g(M) < oo}
Mc(g)={Me Mc | g(M) =g}
Mp ={M e Mc | proper}, Mp(g)=MpnNMc(g)

Main goals:
1. Examples; special families 4. Classification
2. Conformal structure 5. Properness vs completeness
3. Asymptotics 6. Limits

Me Mc = M noncompact = E(M) = {ends of M} # @.

Definition 1

A= {a: [0,00) = M proper arc}.

ag ~ ap if YC C M cpt set, ag, as lie eventually in the same compnt of M — C.
E(M)=A/. <— set of ends of M.

E C M proper subdomain, 9E cpt.

E represents [o] € M(E) if a[ty, 00) C E for some to.

Mc(g, k) ={M e Mc(g) | #E(M) =k}, k€ NU{oco}
Mp(g, k) = Mp N Mc(g, k).
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Surfaces with finite topology  (#&(M) < c0)

“Classical” examples:

plane  catenoid (1744) helicoid (1776) Costa (1982) Hoffman-Meeks (1990)

Theorem 1 (Colding-Minicozzi, Annals 2008)
Me Mc, #EM) <o = Me Mp.

Calabi-Yau problem:
Mc = Mp?
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#E(M) =1 (one-ended surfaces)

Theorem 2 (Meeks-Rosenberg, Annals 2005)
Mp(0,1) = {plane, helicoid }  (conformally C).
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#E(M) =1 (one-ended surfaces)

Theorem 2 (Meeks-Rosenberg, Annals 2005)
Mp(0,1) = {plane, helicoid }  (conformally C). J

Theorem 3 (Bernstein-Breiner' Commentarii 2011, Meeks-P)
M e Mp(g,1), g > 1 = M asymptotic to helicoid (conformally parabolic) J

M parabolic Q:e;/ﬂf € C*(M) nonconstant s.t. f <0, Af > 0.
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#E(M) =1 (one-ended surfaces)

Theorem 2 (Meeks-Rosenberg, Annals 2005)
Mp(0,1) = {plane, helicoid }  (conformally C).

Theorem 3 (Bernstein-Breiner' Commentarii 2011, Meeks-P)
M e Mp(g,1), g > 1 = M asymptotic to helicoid (conformally parabolic)

Theorem 4 (Hoffman-Weber-Wolf, Annals 2009)
Mp(1,1) # @ (existence of a genus 1 helicoid).
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#E(M) =1 (one-ended surfaces)

Theorem 2 (Meeks-Rosenberg, Annals 2005)
Mp(0,1) = {plane, helicoid }  (conformally C).

Theorem 3 (Bernstein-Breiner' Commentarii 2011, Meeks-P)
M e Mp(g,1), g > 1 = M asymptotic to helicoid (conformally parabolic)

Theorem 4 (Hoffman-Weber-Wolf, Annals 2009)
Mp(1,1) # @ (existence of a genus 1 helicoid).

Theorem 5 (Hoffman-Traizet-White, Acta 2016)
Vg e N, Mp(g,1) £ @ (existence of a genus g helicoid). Uniqueness?
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2 < #E(M) = k < o0

Theorem 6 (Collin, Annals 1997)
M e Mp(g, k), 2< k <oo = finite total curvature (f,, K > —oc0)

conf.

Consequence: M = Mg — {p1,...,p«}, ends asymptotic to planes or
half-catenoids, Gauss map extends meromorphically through the p; (Osserman)

Theorem 7 (Schoen, JDG 1983)

M e Mc(g,?2) + finite total curvature = catenoid.

Theorem 8 (Lépez-Ros, JDG 1991)
M € Mc(0, k) + finite total curvature = plane, catenoid.

Theorem 9 (Costa, Inventiones 1991)

M e Mc(1,3) + finite total curvature = M deformed Costa-Hoffman-Meeks
(1-parameter family).

v
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2 < #E(M) = k < oo: The Hoffman-Meeks Conjecture

Conjecture 1
If M € Mc(g, k) + finite total curvature (FTC) — k < g+ 2. J

Theorem 10 (Meeks-P-Ros, 2016)
Given g e N, 3C = C(g) e Nsit. k < C(g), VM € Mc(g, k). J

M C R? minimal surface, f € C§°(M) = dt2

L= A — 2K (Jacobi operator).

Q cC M. Index(Q2) = #{negative eigenvalues of L for Dirichlet problem on Q}
Index(M) = sup{Index(L,Q) | Q CcC M}.

If M complete, then FTC < Index(M) < oo (Fischer-Colbrie)

If M € Mc(g, k) FTC =Index(M)=Index(A + ||[VN|?) on compactification M,
¢: M — S? holom map on M cpt = Index(A + || V|[2) < 7.7 deg(¢) (Tysk)

If M € Mc(g,k) has FTC = deg(N) = g + k — 1 (Jorge-Meeks)

Corollary 1 (Meeks-P-Ros, 2016) J

Area(/Vl—i—th — [y fFLf dA,

Given g € N, 3G = Ci(g) € N s.t. Index(M) < Gi(g), YM € Mc(g, k).
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#E(M) = oo: EMS with infinite topology

\
\
o
Riemann (1867) Hauswirth-Pacard (2007) Traizet (2012) g =

Definition 2

E(M) < [0, 1] embedding. e € £(M) simple end if e isolated in E(M).
e € £(M) limit end if not isolated.

Theorem 11 (Collin-Kusner-Meeks-Rosenberg, JDG 2004)
If M € Mp(g,00) = M has at most two limit ends (top and/or bottom).

Theorem 12 (Hauswirth-Pacard, Inventiones 2007)
If1<g <37 = Mp(g,00)# @D (g > 38 Morabito IUMJ 2008).
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#E(M) = oo: EMS with infinite topology
Theorem 13 (Meeks-P-Ros, Inventiones 2004)
IfM e Mp(g,x), g <oo = M cannot have just 1 limit end.

Theorem 14 (Meeks-P-Ros, Annals 2015)

Mp(0,00) = {Riemann minimal examples}.

IfM e Mp(g,0), g < oo (two limit ends) = simple (middle) ends are
asymptotic to planes, and limit ends are asymptotic to Riemann limit ends
(conformally parabolic)

Theorem 15 (Traizet, IUMJ 2012)

IM c R3 CEMS with infinite genus and 1 limit end, all whose simple ends are
asymptotic to half-catenoids.

Theorem 16 (Meeks-P-Ros, 2018, Calabi-Yau for finite genus @ )

If M € Mc(g,00) countably many limit ends = M € Mp, exactly 2 limit ends,
conformally parabolic.

v
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Limits of EMS
{M,CA c R3}, emb min surf (EMS), OM, cpt (possibly empty).

Classical limits (Arzela-Ascoli)
Locally bded curvature + Area(M,) locally unifly bded + 3 accumulation point

= My} 555 M. EMS inside A, with finite multiplicity.

Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005)

Locally bded curv + 3 accum point = {M,}, Sgeq[loo minimal lamination of A
(closed union of disjoint EMS, called leaves).
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Limits of EMS
{M, CA c R3}, emb min surf (EMS), OM, cpt (possibly empty).

Classical limits (Arzela-Ascoli)
Locally bded curvature + Area(M,) locally unifly bded + 3 accumulation point

= My} 555 M. EMS inside A, with finite multiplicity.

Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005)

Locally bded curv + 3 accum point = {M,}, Sgeqﬁw minimal lamination of A
(closed union of disjoint EMS, called leaves).

T U ;
R e i !
0% =--m--om < Y5
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Limits of EMS
{M,CA c R3}, emb min surf (EMS), OM, cpt (possibly empty).

Classical limits (Arzela-Ascoli)
Locally bded curvature + Area(M,) locally unifly bded + 3 accumulation point

= My} 555 M. EMS inside A, with finite multiplicity.

Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005)

Locally bded curv + 3 accum point = {M,}, Sgeq[loo minimal lamination of A
(closed union of disjoint EMS, called leaves).

S = {x € A sup Ky, ~Hx,nl = 00, Vr> O}.
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Limits of EMS
{M, C AT R3},, emb min surf (EMS), OM,, cpt (possibly empty).

Classical limits (Arzela-Ascoli)
Locally bded curvature + Area(M,) locally unifly bded + 3 accumulation point
= {M,}n SUbseq My EMS inside A, with finite multiplicity.

Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005)

Locally bded curv + 3 accum point = {M,}, Slgeqﬁoo minimal lamination of A
(closed union of disjoint EMS, called leaves).

S= {xeA|sup|KMmB )| = o0, Vr>0}

Theorem 18 (Colding-Minicozzi, Annals 2004)
M, C B(R,), OM, C OB(R,) emb min disks, R, — oo.

IFSNB(1) # @ = {M,}n subseq Foo foliation of R® by planes,
outside S(L) = {1 line} (smgular set of convergence) <— Meeks, Duke 2004

v

In particular, no singularities for limit lamination. Example: % helicoid.
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Limits of EMS
(Colding-Minicozzi, 2003):
Singular minimal lamination
L=1tUL UD=lim, M,
M, C B(1) emb min disks,
oM, C IB(1).

(0 = isolated singularity)

When does a minimal lamination extend across an isolated singularity?

Theorem 19 (Local Removable Sing Thm, Meeks-P-Ros, JDG 2016)

L£LcB(1)-{0},0eL. B
L extends to a minimal lamination of B(1) < |K.|(x) - |x|> bded on L.

Valid in a Riemannian 3-mfd (N, g): L C Bun(p,r)—{p}. p€ L.
L extends to a minimal lamination of By(p,r) < |oz|(x) - dn(p, x) bded on L.

Theorem 20 (Quadratic Curv Decay Thm, Meeks-P-Ros, JDG 2016)

If £  R® — {0} minimal lamination with |K.|(x) - |x|? bded on £ =
L ={M}, M C Mp with FTC  (in particular, |Km|(x) - |x|* bded on M).
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Limits of EMS: Locally simply connected sequences

. - open - (def)
{M,}, locally simply connected (LSC) in A C R*® "&7VqC A, Je4 > 0s.t.

B(q,eq) C A and for n suf large, M, NB(q,q) consists of disks Dy, m with
0Dpm C 9B(q,eq).

Theorem 21 (Meeks-P-Ros, 2016)

closed

C R3 countable, {M,}, EMS, LSC in A=TR3 — W, M, cpt (or @),
g(M,) < g. Then:
3L c R3 minimal lamination, 3S(L) e

L—W st {M}, 5"
on cpt subsets of A— S(L). Furthermore:

Q@ IfS(L) # O = L foliation of R by planes, S(L) = { 1 or 2 lines }
(limit parking garage structure). In part: no singularities for L.  FIGURE

@ /f3L € L nonflat leaf = S(L) =0, L={L}, Le Mp and g(L) < g.
Furthermore, L lies in one of three cases:

® LeMp(g(l),1) (helicoid with handles)
@ Le Mp(g(L),k), k>2  (finite total curvature)
© Le Mp(g(L), ) (two limit ends)

v
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Back to the Calabi-Yau problem

Theorem 22 (Min Lam Closure Thm, Meeks-Rosenberg, DMJ 2006)

M C R® CEMS, OM cpt (or @). If Iyy > 6(g) > 0 outside of some intrinsic
e-neighb of OM (I = inj radius fct) = M proper.

Valid in a Riemannian 3-mfd (N, g) with the conclusion: M = min lamin of N

Sketch of proof of
Take M € M (g, 0) with countably many limit ends. Baire's Thm = isolated
points in Ejimir(M) (simple limit ends) are dense. So it suffices to show:

© If M has 2 simple limit ends = M proper.
@ M cannot have 3 simple limit ends (Thm 13 discards 1 limit end).

Proposition 1 (Christmas tree picture)

E simple limit end of M C R® CEMS, g(E)=0 = E proper and after passing to a
smaller end representative, translation, rotation & homothety:
(1) Simple ends of E have FTC & log <0 | (4) 3f: Ry — E orient preserving
(2) The limit end of E is the top end diffeo (R4 = top half of a

(3) OE = 0D, D < {x3 =0}, D NE = @ | Riemann min example)

v
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simple limit end

A

5

4
simple ends
logarithmic 3
growths < 0

genus zero

Flux along
boundary

(Christmas tree picture)
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(Discarding 3 simple limit ends)
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