Recent advances in minimal surface theory in \mathbb{R}^3

Joaquín Pérez (joint work with Bill Meeks & Antonio Ros)

email: jperez@ugr.es
http://wdb.ugr.es/~jperez/

Work partially supported by the State Research Agency (SRA) and European Regional Development Fund (ERDF) Grants no. MTM2014-52368-P and MTM2017-89677-P (AEI/FEDER, UE)

Modern Trends in Differential Geometry São Paulo, 23-27 July 2018

(All surfaces are orientable)

$$\begin{split} \mathcal{M}_C &= \{ M \subset \mathbb{R}^3 \text{ complete embedded minimal surface } | \ \underline{g(M)} < \infty \} \\ \mathcal{M}_C(g) &= \{ M \in \mathcal{M}_C \mid g(M) = g \} \\ \mathcal{M}_P &= \{ M \in \mathcal{M}_C \mid \text{proper} \}, \ \ \mathcal{M}_P(g) = \mathcal{M}_P \cap \mathcal{M}_C(g) \end{split}$$

Main goals:

- 1. Examples; special families
- 2. Conformal structure
- 3. Asymptotics

- Classification
 - 5. Properness vs completeness
 - 6. Limits

$$M \in \mathcal{M}_C \Rightarrow M \text{ noncompact } \Rightarrow \mathcal{E}(M) = \{\text{ends of } M\} \neq \emptyset.$$

Definition 1

$$\mathcal{A} = \{\alpha \colon [0, \infty) \to M \text{ proper arc}\}.$$

 $\alpha_1 \sim \alpha_2$ if $\forall C \subset M$ cpt set, α_1, α_2 lie eventually in the same comput of M - C.

$$\mathcal{E}(M) = \mathcal{A}/_{\sim} \leftarrow$$
 set of ends of M .

$$E \subset M$$
 proper subdomain, ∂E cpt.

E represents $[\alpha] \in \mathcal{M}(E)$ if $\alpha[t_0, \infty) \subset E$ for some t_0 .

$$\mathcal{M}_{\mathcal{C}}(g,k) = \{ M \in \mathcal{M}_{\mathcal{C}}(g) \mid \#\mathcal{E}(M) = k \}, \quad k \in \mathbb{N} \cup \{ \infty \}$$

$$\mathcal{M}_{\mathcal{P}}(g,k) = \mathcal{M}_{\mathcal{P}} \cap \mathcal{M}_{\mathcal{C}}(g,k).$$

Surfaces with finite topology $(\#\mathcal{E}(M) < \infty)$

"Classical" examples:

plane catenoid (1744) helicoid (1776) Costa (1982) Hoffman-Meeks (1990)

Theorem 1 (Colding-Minicozzi, Annals 2008)

 $M \in \mathcal{M}_C$, $\#\mathcal{E}(M) < \infty \Rightarrow M \in \mathcal{M}_P$.

Calabi-Yau problem:

$$\mathcal{M}_{C} = \mathcal{M}_{P}$$
?

 $\#\mathcal{E}(M) = 1$ (one-ended surfaces)

Theorem 2 (Meeks-Rosenberg, Annals 2005)

 $\mathcal{M}_{\mathbf{P}}(0,1) = \{ \text{plane, helicoid } \} \quad \text{(conformally } \mathbb{C} \text{)}.$

```
\#\mathcal{E}(M) = 1 (one-ended surfaces)
```

Theorem 2 (Meeks-Rosenberg, Annals 2005)

 $\mathcal{M}_{P}(0,1) = \{ plane, helicoid \}$ (conformally \mathbb{C}).

Theorem 3 (Bernstein-Breiner' Commentarii 2011, Meeks-P)

M parabolic $\stackrel{\text{def}}{\Leftrightarrow} \not\exists f \in C^{\infty}(M)$ nonconstant s.t. $f \leq 0$, $\Delta f \geq 0$.

```
\#\mathcal{E}(M) = 1 (one-ended surfaces)
```

Theorem 2 (Meeks-Rosenberg, Annals 2005)

 $\mathcal{M}_{\mathbf{P}}(0,1) = \{ plane, helicoid \}$ (conformally \mathbb{C}).

Theorem 3 (Bernstein-Breiner' Commentarii 2011, Meeks-P)

Theorem 4 (Hoffman-Weber-Wolf, Annals 2009)

 $\mathcal{M}_P(1,1) \neq \emptyset$ (existence of a genus 1 helicoid).

 $\#\mathcal{E}(M) = 1$ (one-ended surfaces)

Theorem 2 (Meeks-Rosenberg, Annals 2005)

 $\mathcal{M}_{P}(0,1) = \{ plane, helicoid \}$ (conformally \mathbb{C}).

Theorem 3 (Bernstein-Breiner' Commentarii 2011, Meeks-P)

 $M \in \mathcal{M}_{P}(g,1), \ g \geq 1 \ \Rightarrow M$ asymptotic to helicoid (conformally parabolic)

Theorem 4 (Hoffman-Weber-Wolf, Annals 2009)

 $\mathcal{M}_P(1,1) \neq \emptyset$ (existence of a genus 1 helicoid).

Theorem 5 (Hoffman-Traizet-White, Acta 2016)

 $\forall g \in \mathbb{N}, \ \mathcal{M}_P(g,1) \neq \emptyset$ (existence of a genus g helicoid).

Uniqueness?

$$2 \leq \#\mathcal{E}(M) = k < \infty$$

Theorem 6 (Collin, Annals 1997)

$$M \in \mathcal{M}_P(g,k)$$
, $2 \le k < \infty \implies \textit{finite total curvature} \quad \left(\int_M K > -\infty \right)$

Consequence: $M \stackrel{\text{conf.}}{\cong} \mathbb{M}_g - \{p_1, \dots, p_k\}$, ends asymptotic to planes or half-catenoids, Gauss map extends meromorphically through the p_i (Osserman)

Theorem 7 (Schoen, JDG 1983)

 $M \in \mathcal{M}_{\mathcal{C}}(g,2) + finite total curvature \Rightarrow catenoid.$

Theorem 8 (López-Ros, JDG 1991)

 $M \in \mathcal{M}_{\mathcal{C}}(0,k)$ + finite total curvature \Rightarrow plane, catenoid.

Theorem 9 (Costa, Inventiones 1991)

 $M \in \mathcal{M}_{\mathcal{C}}(1,3)$ + finite total curvature \Rightarrow M deformed Costa-Hoffman-Meeks (1-parameter family).

$2 \le \#\mathcal{E}(M) = k < \infty$: The Hoffman-Meeks Conjecture

Conjecture 1

If $M \in \mathcal{M}_{C}(g, k) + \text{finite total curvature (FTC)} \implies k \leq g + 2$.

Theorem 10 (Meeks-P-Ros, 2016)

Given
$$g \in \mathbb{N}$$
, $\exists C = C(g) \in \mathbb{N}$ s.t. $k \leq C(g)$, $\forall M \in \mathcal{M}_C(g, k)$.

$$M \subset \mathbb{R}^3$$
 minimal surface, $f \in C_0^\infty(M) \Rightarrow \left. \frac{d^2}{dt^2} \right|_0 \operatorname{Area}(M + tfN) = -\int_M f L f \, dA$, $L = \Delta - 2K$ (Jacobi operator).

 $\Omega \subset\subset M$. Index $(\Omega)=\#\{\text{negative eigenvalues of } L \text{ for Dirichlet problem on } \Omega\}$ Index $(M)=\sup\{\text{Index}(L,\Omega)\mid \Omega\subset\subset M\}$.

If M complete, then FTC \Leftrightarrow Index(M) $< \infty$ (Fischer-Colbrie)

If $M \in \mathcal{M}_C(g, k)$ FTC \Rightarrow Index $(M) = Index(\Delta + \|\nabla N\|^2)$ on compactification \mathbb{M}_g $\phi \colon \mathbb{M} \to \mathbb{S}^2$ holom map on \mathbb{M} cpt \Rightarrow Index $(\Delta + \|\nabla \phi\|^2) < 7.7 \deg(\phi)$ (Tysk) If $M \in \mathcal{M}_C(g, k)$ has FTC $\Rightarrow \deg(N) = g + k - 1$ (Jorge-Meeks)

Corollary 1 (Meeks-P-Ros, 2016)

Given $g \in \mathbb{N}$, $\exists C_1 = C_1(g) \in \mathbb{N}$ s.t. $Index(M) \leq C_1(g)$, $\forall M \in \mathcal{M}_C(g, k)$.

$\#\mathcal{E}(M) = \infty$: EMS with infinite topology

Riemann (1867) Hauswirth-Pacard (2007)

Traizet (2012) $g = \infty$

Definition 2

 $\mathcal{E}(M) \hookrightarrow [0,1]$ embedding. $\mathbf{e} \in \mathcal{E}(M)$ simple end if \mathbf{e} isolated in $\mathcal{E}(M)$. $\mathbf{e} \in \mathcal{E}(M)$ limit end if not isolated.

Theorem 11 (Collin-Kusner-Meeks-Rosenberg, JDG 2004)

If $M \in \mathcal{M}_P(g,\infty) \Rightarrow M$ has at most two limit ends (top and/or bottom).

Theorem 12 (Hauswirth-Pacard, Inventiones 2007)

If $1 \le g \le \frac{37}{2} \implies \mathcal{M}_P(g, \infty) \ne \emptyset$ $(g \ge 38 \text{ Morabito IUMJ 2008})$.

$\#\mathcal{E}(M) = \infty$: EMS with infinite topology

Theorem 13 (Meeks-P-Ros, Inventiones 2004)

If $M \in \mathcal{M}_P(g,\infty)$, $g < \infty \Rightarrow M$ cannot have just 1 limit end.

Theorem 14 (Meeks-P-Ros, Annals 2015)

 $\mathcal{M}_P(0,\infty) = \{ \text{Riemann minimal examples} \}.$

If $M \in \mathcal{M}_P(g,\infty)$, $g < \infty$ (two limit ends) \Rightarrow simple (middle) ends are asymptotic to planes, and limit ends are asymptotic to Riemann limit ends (conformally parabolic)

Theorem 15 (Traizet, IUMJ 2012)

 $\exists M \subset \mathbb{R}^3$ CEMS with infinite genus and 1 limit end, all whose simple ends are asymptotic to half-catenoids.

Theorem 16 (Meeks-P-Ros, 2018, Calabi-Yau for finite genus)

If $M \in \mathcal{M}_C(g,\infty)$ countably many limit ends $\Rightarrow M \in \mathcal{M}_P$, exactly 2 limit ends, conformally parabolic.

 $\{M_n \subset A \overset{\text{open}}{\subset} \mathbb{R}^3\}_n$ emb min surf (EMS), ∂M_n cpt (possibly empty).

Classical limits (Arzelá-Ascoli)

Locally bded curvature + Area (M_n) locally unifly bded + \exists accumulation point $\Rightarrow \{M_n\}_n \overset{\text{subseq}}{\to} M_\infty$ EMS inside A, with finite multiplicity.

Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005)

 $\{M_n \subset A \overset{\text{open}}{\subset} \mathbb{R}^3\}_n$ emb min surf (EMS), ∂M_n cpt (possibly empty).

Classical limits (Arzelá-Ascoli)

Locally bded curvature + Area (M_n) locally unifly bded + \exists accumulation point $\Rightarrow \{M_n\}_n \overset{\text{subseq}}{\to} M_\infty$ EMS inside A, with finite multiplicity.

Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005)

 $\{M_n \subset A \stackrel{\text{open}}{\subset} \mathbb{R}^3\}_n$ emb min surf (EMS), ∂M_n cpt (possibly empty).

Classical limits (Arzelá-Ascoli)

Locally bded curvature + Area (M_n) locally unifly bded + \exists accumulation point $\Rightarrow \{M_n\}_n \overset{\text{subseq}}{\to} M_\infty$ EMS inside A, with finite multiplicity.

Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005)

 $\{M_n \subset A \stackrel{\text{open}}{\subset} \mathbb{R}^3\}_n$ emb min surf (EMS), ∂M_n cpt (possibly empty).

Classical limits (Arzelá-Ascoli)

Locally bded curvature + Area (M_n) locally unifly bded + \exists accumulation point $\Rightarrow \{M_n\}_n \overset{\text{subseq}}{\to} M_\infty$ EMS inside A, with finite multiplicity.

Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005)

$$\widehat{\mathcal{S}} = \Big\{ x \in A \mid \sup |K_{M_n \cap \overline{\mathbb{B}}(x,r)}| \to \infty, \ \forall r > 0 \Big\}.$$

 $\{M_n \subset A \stackrel{\text{open}}{\subset} \mathbb{R}^3\}_n$ emb min surf (EMS), ∂M_n cpt (possibly empty).

Classical limits (Arzelá-Ascoli)

Locally bded curvature + Area (M_n) locally unifly bded + \exists accumulation point $\Rightarrow \{M_n\}_n \overset{\text{subseq}}{\to} M_\infty$ EMS inside A, with finite multiplicity.

Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005)

Locally bded curv $+\exists$ accum point $\Rightarrow \{M_n\}_n \overset{\text{subseq}}{\to} \mathcal{L}_{\infty}$ minimal lamination of A (closed union of disjoint EMS, called leaves).

$$\widehat{\mathcal{S}} = \Big\{ x \in A \mid \ \sup |\mathcal{K}_{M_n \cap \overline{\mathbb{B}}(x,r)}| \to \infty, \ \forall r > 0 \Big\}.$$

Theorem 18 (Colding-Minicozzi, Annals 2004)

 $M_n \subset \mathbb{B}(R_n)$, $\partial M_n \subset \partial \mathbb{B}(R_n)$ emb min disks, $R_n \to \infty$.

If $\widehat{S} \cap \overline{\mathbb{B}}(1) \neq \emptyset \Rightarrow \{M_n\}_n \overset{subseq}{\to} \mathcal{F}_{\infty}$ foliation of \mathbb{R}^3 by planes, outside $S(\mathcal{L}) = \{1 \text{ line}\}$ (singular set of convergence) \longleftarrow Meeks, Duke 2004

In particular, no singularities for limit lamination. Example: $\frac{1}{n}$ helicoid.

(Colding-Minicozzi, 2003): Singular minimal lamination $\mathcal{L} = L^+ \cup L^- \cup \mathbb{D} = \lim_n M_n$ $M_n \subset \mathbb{B}(1)$ emb min disks, $\partial M_n \subset \partial \mathbb{B}(1)$.

 $(\vec{0} = isolated singularity)$

When does a minimal lamination extend across an isolated singularity?

Theorem 19 (Local Removable Sing Thm, Meeks-P-Ros, JDG 2016)

 $\mathcal{L} \subset \overline{\mathbb{B}}(1) - \{\vec{0}\}, \ \vec{0} \in \overline{\mathcal{L}}.$

 \mathcal{L} extends to a minimal lamination of $\overline{\mathbb{B}}(1) \Leftrightarrow |\mathcal{K}_{\mathcal{L}}|(x) \cdot |x|^2$ bded on \mathcal{L} .

Valid in a Riemannian 3-mfd (N,g): $\underline{\mathcal{L}} \subset \overline{\mathcal{B}}_N(p,r) - \{p\}, \ p \in \overline{\mathcal{L}}$.

 \mathcal{L} extends to a minimal lamination of $\overline{B}_N(p,r) \Leftrightarrow |\sigma_{\mathcal{L}}|(x) \cdot d_N(p,x)$ bded on \mathcal{L} .

Theorem 20 (Quadratic Curv Decay Thm, Meeks-P-Ros, JDG 2016)

If $\mathcal{L} \subset \mathbb{R}^3 - \{\vec{0}\}$ minimal lamination with $|K_{\mathcal{L}}|(x) \cdot |x|^2$ bded on $\mathcal{L} \Rightarrow \mathcal{L} = \{M\}, \ M \subset \mathcal{M}_P \ \text{with FTC}$ (in particular, $|K_M|(x) \cdot |x|^4$ bded on M).

Limits of EMS: Locally simply connected sequences

 $\{M_n\}_n$ locally simply connected (LSC) in $A \subset \mathbb{R}^3 \stackrel{\text{(def)}}{\Leftrightarrow} \forall q \subset A, \exists \varepsilon_q > 0 \text{ s.t.}$ $\mathbb{B}(q, \varepsilon_q) \subset A$ and for n suf large, $M_n \cap \mathbb{B}(q, \varepsilon_q)$ consists of disks $D_{n,m}$ with $\partial D_{n,m} \subset \partial \mathbb{B}(q, \varepsilon_q)$.

Theorem 21 (Meeks-P-Ros, 2016)

 $W \subset^{closed} \mathbb{R}^3$ countable, $\{M_n\}_n$ EMS, LSC in $A = \mathbb{R}^3 - W$, ∂M_n cpt (or \emptyset), $g(M_n) \leq g$. Then:

 $\exists \mathcal{L} \subset \mathbb{R}^3$ minimal lamination, $\exists \mathcal{S}(\mathcal{L}) \overset{closed}{\subset} \mathcal{L} - W$ s.t. $\{M_n\}_n \overset{(subseq)}{\to} \mathcal{L}$ on cpt subsets of $A - S(\mathcal{L})$. Furthermore:

- If $S(\mathcal{L}) \neq \emptyset \Rightarrow \mathcal{L}$ foliation of \mathbb{R}^3 by planes, $S(\mathcal{L}) = \{ 1 \text{ or } 2 \text{ lines } \}$ (limit parking garage structure). In part: no singularities for \mathcal{L} . FIGURE
- ② If $\exists L \in \mathcal{L}$ nonflat leaf $\Rightarrow S(\mathcal{L}) = \emptyset$, $\mathcal{L} = \{L\}$, $L \in \mathcal{M}_P$ and $g(L) \leq g$. Furthermore, L lies in one of three cases:

 - 2 $L \in \mathcal{M}_P(g(L), k), k \ge 2$ (finite total curvature)

Back to the Calabi-Yau problem

Theorem 22 (Min Lam Closure Thm, Meeks-Rosenberg, DMJ 2006)

 $M \subset \mathbb{R}^3$ CEMS, ∂M cpt (or \emptyset). If $I_M \geq \delta(\varepsilon) > 0$ outside of some intrinsic ε -neighb of ∂M ($I_M = inj \ radius \ fct$) $\Rightarrow M$ proper.

Valid in a Riemannian 3-mfd (N,g) with the conclusion: $\overline{M} = \min$ lamin of N

Sketch of proof of Thm 16

Take $M \in \mathcal{M}_{\mathcal{C}}(g,\infty)$ with countably many limit ends. Baire's Thm \Rightarrow isolated points in $\mathcal{E}_{limit}(M)$ (simple limit ends) are dense. So it suffices to show:

- 1 If M has 2 simple limit ends $\Rightarrow M$ proper.
- M cannot have 3 simple limit ends (Thm 13 discards 1 limit end).

Proposition 1 (Christmas tree picture)

E simple limit end of $M \subset \mathbb{R}^3$ CEMS, $g(E)=0 \Rightarrow E$ proper and after passing to a smaller end representative, translation, rotation & homothety:

- (1) Simple ends of E have FTC & $\log < 0$
- (2) The limit end of E is the top end
- (3) $\partial E = \partial D$, $D \subset \{x_3 = 0\}$, $D \cap E = \emptyset$ | Riemann min example)

(4) $\exists f: \mathcal{R}_+ \to E$ orient preserving diffeo ($\mathcal{R}_+ = top \ half \ of \ a$

(Discarding 3 simple limit ends)