Recent advances in minimal surface theory in \mathbb{R}^{3}

Joaquín Pérez
(joint work with Bill Meeks \& Antonio Ros)
email: jperez@ugr.es
http://wdb.ugr.es/~jperez/

UNIVERSIDAD DE GRANADA

Work partially supported by the State Research Agency (SRA) and European Regional Development Fund (ERDF) Grants no. MTM2014-52368-P and MTM2017-89677-P (AEI/FEDER, UE)

Modern Trends in Differential Geometry São Paulo, 23-27 July 2018

(All surfaces are orientable)

$\mathcal{M}_{C}=\left\{M \subset \mathbb{R}^{3}\right.$ complete embedded minimal surface $\left.\mid g(M)<\infty\right\}$
$\mathcal{M}_{C}(g)=\left\{M \in \mathcal{M}_{C} \mid g(M)=g\right\}$
$\mathcal{M}_{P}=\left\{M \in \mathcal{M}_{C} \mid\right.$ proper $\}, \quad \mathcal{M}_{P}(g)=\mathcal{M}_{P} \cap \mathcal{M}_{C}(g)$

Main goals:

1. Examples; special families
2. Conformal structure
3. Asymptotics
4. Classification
5. Properness vs completeness
6. Limits
$M \in \mathcal{M}_{C} \Rightarrow M$ noncompact $\Rightarrow \mathcal{E}(M)=\{$ ends of $M\} \neq \varnothing$.

Definition 1

$\mathcal{A}=\{\alpha:[0, \infty) \rightarrow M$ proper arc $\}$.
$\alpha_{1} \sim \alpha_{2}$ if $\forall C \subset M$ cpt set, α_{1}, α_{2} lie eventually in the same compnt of $M-C$.
$\mathcal{E}(M)=\mathcal{A} / \sim \longleftarrow$ set of ends of M.
$E \subset M$ proper subdomain, $\partial E \mathrm{cpt}$.
E represents $[\alpha] \in \mathcal{M}(E)$ if $\alpha\left[t_{0}, \infty\right) \subset E$ for some t_{0}.
$\mathcal{M}_{C}(g, k)=\left\{M \in \mathcal{M}_{C}(g) \mid \# \mathcal{E}(M)=k\right\}, \quad k \in \mathbb{N} \cup\{\infty\}$
$\mathcal{M}_{P}(g, k)=\mathcal{M}_{P} \cap \mathcal{M}_{C}(g, k)$.

Surfaces with finite topology $\quad(\# \mathcal{E}(M)<\infty)$

"Classical" examples:

plane catenoid (1744) helicoid (1776) Costa (1982) Hoffman-Meeks (1990)
Theorem 1 (Colding-Minicozzi, Annals 2008)
$M \in \mathcal{M}_{C}, \# \mathcal{E}(M)<\infty \Rightarrow M \in \mathcal{M}_{p}$.

Calabi-Yau problem:
$\mathcal{M}_{C}=\mathcal{M}_{p}$?

$\# \mathcal{E}(M)=1$ (one-ended surfaces)

Theorem 2 (Meeks-Rosenberg, Annals 2005)
$\mathcal{M}_{P}(0,1)=\{$ plane, helicoid $\} \quad$ (conformally \mathbb{C}).

$\# \mathcal{E}(M)=1$ (one-ended surfaces)

Theorem 2 (Meeks-Rosenberg, Annals 2005)
$\mathcal{M}_{P}(0,1)=\{$ plane, helicoid $\} \quad$ (conformally \mathbb{C}).
Theorem 3 (Bernstein-Breiner' Commentarii 2011, Meeks-P)
$M \in \mathcal{M}_{P}(g, 1), g \geq 1 \Rightarrow M$ asymptotic to helicoid (conformally parabolic)
M parabolic $\stackrel{\text { def }}{\Leftrightarrow} \nexists f \in C^{\infty}(M)$ nonconstant s.t. $f \leq 0, \Delta f \geq 0$.

$\# \mathcal{E}(M)=1$ (one-ended surfaces)

Theorem 2 (Meeks-Rosenberg, Annals 2005)
$\mathcal{M}_{P}(0,1)=\{$ plane, helicoid $\} \quad$ (conformally \mathbb{C}).
Theorem 3 (Bernstein-Breiner' Commentarii 2011, Meeks-P)
$M \in \mathcal{M}_{P}(g, 1), g \geq 1 \Rightarrow M$ asymptotic to helicoid (conformally parabolic)
Theorem 4 (Hoffman-Weber-Wolf, Annals 2009)
$\mathcal{M}_{P}(1,1) \neq \varnothing \quad$ (existence of a genus 1 helicoid).

$\# \mathcal{E}(M)=1$ (one-ended surfaces)

Theorem 2 (Meeks-Rosenberg, Annals 2005)
$\mathcal{M}_{P}(0,1)=\{$ plane, helicoid $\} \quad$ (conformally \mathbb{C}).
Theorem 3 (Bernstein-Breiner' Commentarii 2011, Meeks-P)
$M \in \mathcal{M}_{P}(g, 1), g \geq 1 \Rightarrow M$ asymptotic to helicoid (conformally parabolic)
Theorem 4 (Hoffman-Weber-Wolf, Annals 2009)
$\mathcal{M}_{P}(1,1) \neq \varnothing$ (existence of a genus 1 helicoid).
Theorem 5 (Hoffman-Traizet-White, Acta 2016)
$\forall g \in \mathbb{N}, \mathcal{M}_{P}(g, 1) \neq \varnothing \quad$ (existence of a genus g helicoid).
Uniqueness?

$2 \leq \# \mathcal{E}(M)=k<\infty$

Theorem 6 (Collin, Annals 1997)
$M \in \mathcal{M}_{P}(g, k), 2 \leq k<\infty \Rightarrow$ finite total curvature $\quad\left(\int_{M} K>-\infty\right)$
Consequence: $M \stackrel{\text { conf. }}{=} \mathbb{M}_{g}-\left\{p_{1}, \ldots, p_{k}\right\}$, ends asymptotic to planes or half-catenoids, Gauss map extends meromorphically through the p_{i} (Osserman)

Theorem 7 (Schoen, JDG 1983)
$M \in \mathcal{M}_{C}(g, 2)+$ finite total curvature \Rightarrow catenoid.

Theorem 8 (López-Ros, JDG 1991)
$M \in \mathcal{M}_{C}(0, k)+$ finite total curvature \Rightarrow plane, catenoid.

Theorem 9 (Costa, Inventiones 1991)
$M \in \mathcal{M}_{C}(1,3)+$ finite total curvature $\Rightarrow M$ deformed Costa-Hoffman-Meeks (1-parameter family).

$2 \leq \# \mathcal{E}(M)=k<\infty$: The Hoffman-Meeks Conjecture

Conjecture 1

If $M \in \mathcal{M}_{C}(g, k)+$ finite total curvature $(F T C) \Longrightarrow k \leq g+2$.

Theorem 10 (Meeks-P-Ros, 2016)

Given $g \in \mathbb{N}, \exists C=C(g) \in \mathbb{N}$ s.t. $k \leq C(g), \forall M \in \mathcal{M}_{C}(g, k)$.
$M \subset \mathbb{R}^{3}$ minimal surface, $\left.f \in C_{0}^{\infty}(M) \Rightarrow \frac{d^{2}}{d t^{2}}\right|_{0} \operatorname{Area}(M+t f N)=-\int_{M} f L f d A$, $L=\Delta-2 K$ (Jacobi operator).
$\Omega \subset \subset M$. Index $(\Omega)=\#\{$ negative eigenvalues of L for Dirichlet problem on $\Omega\}$
$\operatorname{Index}(M)=\sup \{\operatorname{Index}(L, \Omega) \mid \Omega \subset \subset M\}$.
If M complete, then $\mathrm{FTC} \Leftrightarrow \operatorname{Index}(M)<\infty$ (Fischer-Colbrie)
If $M \in \mathcal{M}_{C}(g, k)$ FTC $\Rightarrow \operatorname{Index}(M)=\operatorname{Index}\left(\Delta+\|\nabla N\|^{2}\right)$ on compactification \mathbb{M}_{g} $\phi: \mathbb{M} \rightarrow \mathbb{S}^{2}$ holom map on $\mathbb{M} \mathrm{cpt} \Rightarrow \operatorname{Index}\left(\Delta+\|\nabla \phi\|^{2}\right)<7.7 \operatorname{deg}(\phi)$ (Tysk) If $M \in \mathcal{M}_{C}(g, k)$ has FTC $\Rightarrow \operatorname{deg}(N)=g+k-1$ (Jorge-Meeks)

Corollary 1 (Meeks-P-Ros, 2016)

Given $g \in \mathbb{N}, \exists C_{1}=C_{1}(g) \in \mathbb{N}$ s.t. $\operatorname{Index}(M) \leq C_{1}(g), \forall M \in \mathcal{M}_{C}(g, k)$.
$\# \mathcal{E}(M)=\infty:$ EMS with infinite topology

Riemann (1867) Hauswirth-Pacard (2007) Traizet (2012) $g=\infty$

Definition 2

$\mathcal{E}(M) \hookrightarrow[0,1]$ embedding. $\mathbf{e} \in \mathcal{E}(M)$ simple end if \mathbf{e} isolated in $\mathcal{E}(M)$. $\mathbf{e} \in \mathcal{E}(M)$ limit end if not isolated.

Theorem 11 (Collin-Kusner-Meeks-Rosenberg, JDG 2004)
If $M \in \mathcal{M}_{P}(g, \infty) \Rightarrow M$ has at most two limit ends (top and/or bottom).
Theorem 12 (Hauswirth-Pacard, Inventiones 2007) If $1 \leq g \leq 37 \Rightarrow \mathcal{M}_{P}(g, \infty) \neq \varnothing \quad(g \geq 38$ Morabito IUMJ 2008).
$\# \mathcal{E}(M)=\infty:$ EMS with infinite topology
Theorem 13 (Meeks-P-Ros, Inventiones 2004)
If $M \in \mathcal{M}_{P}(g, \infty), g<\infty \Rightarrow M$ cannot have just 1 limit end.
Theorem 14 (Meeks-P-Ros, Annals 2015)
$\mathcal{M}_{P}(0, \infty)=\{$ Riemann minimal examples $\}$.
If $M \in \mathcal{M}_{P}(g, \infty), \quad g<\infty$ (two limit ends) \Rightarrow simple (middle) ends are asymptotic to planes, and limit ends are asymptotic to Riemann limit ends (conformally parabolic)

Theorem 15 (Traizet, IUMJ 2012)
$\exists M \subset \mathbb{R}^{3} C E M S$ with infinite genus and 1 limit end, all whose simple ends are asymptotic to half-catenoids.

Theorem 16 (Meeks-P-Ros, 2018, Calabi-Yau for finite genus)
If $M \in \mathcal{M}_{C}(g, \infty)$ countably many limit ends $\Rightarrow M \in \mathcal{M}_{P}$, exactly 2 limit ends, conformally parabolic.

Limits of EMS

$\left\{M_{n} \subset A \stackrel{\text { open }}{\subset} \mathbb{R}^{3}\right\}_{n}$ emb min surf (EMS), ∂M_{n} cpt (possibly empty).
Classical limits (Arzelá-Ascoli)
Locally bded curvature $+\operatorname{Area}\left(M_{n}\right)$ locally unifly bded $+\exists$ accumulation point $\Rightarrow\left\{M_{n}\right\}_{n} \xrightarrow{\text { subseq }} M_{\infty}$ EMS inside A, with finite multiplicity.

Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005)
Locally bded curv $+\exists$ accum point $\Rightarrow\left\{M_{n}\right\}_{n} \xrightarrow{\text { subseq }} \mathcal{L}_{\infty}$ minimal lamination of A (closed union of disjoint EMS, called leaves).

Limits of EMS

$\left\{M_{n} \subset A \stackrel{\text { open }}{\subset} \mathbb{R}^{3}\right\}_{n}$ emb min surf (EMS), ∂M_{n} cpt (possibly empty).
Classical limits (Arzelá-Ascoli)
Locally bded curvature $+\operatorname{Area}\left(M_{n}\right)$ locally unifly bded $+\exists$ accumulation point $\Rightarrow\left\{M_{n}\right\}_{n} \xrightarrow{\text { subseq }} M_{\infty}$ EMS inside A, with finite multiplicity.

Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005)
Locally bded curv $+\exists$ accum point $\Rightarrow\left\{M_{n}\right\}_{n} \xrightarrow{\text { subseq }} \mathcal{L}_{\infty}$ minimal lamination of A (closed union of disjoint EMS, called leaves).

Limits of EMS

$\left\{M_{n} \subset A \stackrel{\text { open }}{\subset} \mathbb{R}^{3}\right\}_{n}$ emb min surf (EMS), ∂M_{n} cpt (possibly empty).
Classical limits (Arzelá-Ascoli)
Locally bded curvature $+\operatorname{Area}\left(M_{n}\right)$ locally unifly bded $+\exists$ accumulation point $\Rightarrow\left\{M_{n}\right\}_{n} \xrightarrow{\text { subseq }} M_{\infty}$ EMS inside A, with finite multiplicity.

Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005)
Locally bded curv $+\exists$ accum point $\Rightarrow\left\{M_{n}\right\}_{n} \xrightarrow{\text { subseq }} \mathcal{L}_{\infty}$ minimal lamination of A (closed union of disjoint EMS, called leaves).

Limits of EMS

$\left\{M_{n} \subset A \stackrel{\text { open }}{\subset} \mathbb{R}^{3}\right\}_{n}$ emb min surf (EMS), ∂M_{n} cpt (possibly empty).
Classical limits (Arzelá-Ascoli)
Locally bded curvature + Area $\left(M_{n}\right)$ locally unifly bded $+\exists$ accumulation point $\Rightarrow\left\{M_{n}\right\}_{n} \xrightarrow{\text { subseq }} M_{\infty}$ EMS inside A, with finite multiplicity.

Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005)
Locally bded curv $+\exists$ accum point $\Rightarrow\left\{M_{n}\right\}_{n} \xrightarrow{\text { subseq }} \mathcal{L}_{\infty}$ minimal lamination of A (closed union of disjoint EMS, called leaves).
$\widehat{\mathcal{S}}=\left\{x \in A|\sup | K_{M_{n} \cap \overline{\mathbb{B}}(x, r)} \mid \rightarrow \infty, \forall r>0\right\}$.

Limits of EMS

$\left\{M_{n} \subset A \stackrel{\text { open }}{\subset} \mathbb{R}^{3}\right\}_{n}$ emb min surf (EMS), ∂M_{n} cpt (possibly empty).
Classical limits (Arzelá-Ascoli)
Locally bded curvature $+\operatorname{Area}\left(M_{n}\right)$ locally unifly bded $+\exists$ accumulation point $\Rightarrow\left\{M_{n}\right\}_{n} \xrightarrow{\text { subseq }} M_{\infty}$ EMS inside A, with finite multiplicity.

Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005)
Locally bded curv $+\exists$ accum point $\Rightarrow\left\{M_{n}\right\}_{n} \xrightarrow{\text { subseq }} \mathcal{L}_{\infty}$ minimal lamination of A (closed union of disjoint EMS, called leaves).
$\widehat{\mathcal{S}}=\left\{x \in A|\sup | K_{M_{n} n \overline{\mathbb{B}}(x, r)} \mid \rightarrow \infty, \forall r>0\right\}$.
Theorem 18 (Colding-Minicozzi, Annals 2004)
$M_{n} \subset \mathbb{B}\left(R_{n}\right), \partial M_{n} \subset \partial \mathbb{B}\left(R_{n}\right)$ emb min disks, $R_{n} \rightarrow \infty$.
If $\widehat{\mathcal{S}} \cap \overline{\mathbb{B}}(1) \neq \varnothing \Rightarrow\left\{M_{n}\right\}_{n} \xrightarrow{\text { subseq }} \mathcal{F}_{\infty}$ foliation of \mathbb{R}^{3} by planes, outside $S(\mathcal{L})=\{1$ line $\}$ (singular set of convergence) \longleftarrow Meeks, Duke 2004

In particular, no singularities for limit lamination. Example: $\frac{1}{n}$ helicoid.

Limits of EMS

(Colding-Minicozzi, 2003):
Singular minimal lamination
$\mathcal{L}=L^{+} \cup L^{-} \cup \mathbb{D}=\lim _{n} M_{n}$ $M_{n} \subset \mathbb{B}(1)$ emb min disks, $\partial M_{n} \subset \partial \mathbb{B}(1)$.

($\overrightarrow{0}=$ isolated singularity)

When does a minimal lamination extend across an isolated singularity?
Theorem 19 (Local Removable Sing Thm, Meeks-P-Ros, JDG 2016)
$\mathcal{L} \subset \overline{\mathbb{B}}(1)-\{\overrightarrow{0}\}, \overrightarrow{0} \in \overline{\mathcal{L}}$.
\mathcal{L} extends to a minimal lamination of $\overline{\mathbb{B}}(1) \Leftrightarrow\left|K_{\mathcal{L}}\right|(x) \cdot|x|^{2}$ bded on \mathcal{L}.
Valid in a Riemannian 3-mfd $(N, g): \quad \mathcal{L} \subset \bar{B}_{N}(p, r)-\{p\}, p \in \overline{\mathcal{L}}$. \mathcal{L} extends to a minimal lamination of $\bar{B}_{N}(p, r) \Leftrightarrow\left|\sigma_{\mathcal{L}}\right|(x) \cdot d_{N}(p, x)$ bded on \mathcal{L}.

Theorem 20 (Quadratic Curv Decay Thm, Meeks-P-Ros, JDG 2016)
If $\mathcal{L} \subset \mathbb{R}^{3}-\{\overrightarrow{0}\}$ minimal lamination with $\left|K_{\mathcal{L}}\right|(x) \cdot|x|^{2}$ bded on $\mathcal{L} \Rightarrow$
$\mathcal{L}=\{M\}, M \subset \mathcal{M}_{P}$ with FTC (in particular, $\left|K_{M}\right|(x) \cdot|x|^{4}$ bded on M).

Limits of EMS: Locally simply connected sequences

$\left\{M_{n}\right\}_{n}$ locally simply connected (LSC) in $A \subset \mathbb{R}^{3} \stackrel{(\text { def })}{\Leftrightarrow} \forall q \subset A, \exists \varepsilon_{q}>0$ s.t. $\mathbb{B}\left(q, \varepsilon_{q}\right) \subset A$ and for n suf large, $M_{n} \cap \mathbb{B}\left(q, \varepsilon_{q}\right)$ consists of disks $D_{n, m}$ with $\partial D_{n, m} \subset \partial \mathbb{B}\left(q, \varepsilon_{q}\right)$.

Theorem 21 (Meeks-P-Ros, 2016)

$W \stackrel{\text { closed }}{\subset} \mathbb{R}^{3}$ countable, $\left\{M_{n}\right\}_{n} E M S, L S C$ in $A=\mathbb{R}^{3}-W, \partial M_{n}$ cpt (or \emptyset), $g\left(M_{n}\right) \leq g$. Then:
$\exists \mathcal{L} \subset \mathbb{R}^{3}$ minimal lamination, $\exists \mathcal{S}(\mathcal{L}) \stackrel{\text { closed }}{\subset} \mathcal{L}-W$ s.t. $\left\{M_{n}\right\}_{n} \xrightarrow{\text { (subseq) }} \mathcal{L}$ on cpt subsets of $A-S(\mathcal{L})$. Furthermore:
(1) If $S(\mathcal{L}) \neq \varnothing \Rightarrow \mathcal{L}$ foliation of \mathbb{R}^{3} by planes, $S(\mathcal{L})=\{1$ or 2 lines $\}$ (limit parking garage structure). In part: no singularities for \mathcal{L}. FIGURE
(2) If $\exists L \in \mathcal{L}$ nonflat leaf $\Rightarrow S(\mathcal{L})=\emptyset, \mathcal{L}=\{L\}, L \in \mathcal{M}_{P}$ and $g(L) \leq g$. Furthermore, L lies in one of three cases:
(1) $L \in \mathcal{M}_{p}(g(L), 1)$
(helicoid with handles)
(2) $L \in \mathcal{M}_{P}(g(L), k), k \geq 2$
(finite total curvature)
(3 $L \in \mathcal{M}_{P}(g(L), \infty)$ (two limit ends)

Back to the Calabi-Yau problem

Theorem 22 (Min Lam Closure Thm, Meeks-Rosenberg, DMJ 2006)
$M \subset \mathbb{R}^{3} C E M S, \partial M \operatorname{cpt}$ (or \varnothing). If $I_{M} \geq \delta(\varepsilon)>0$ outside of some intrinsic ε-neighb of $\partial M\left(I_{M}=i n j\right.$ radius $\left.f \subset t\right) \Rightarrow M$ proper.

Valid in a Riemannian 3-mfd (N, g) with the conclusion: $\bar{M}=\min$ lamin of N
Sketch of proof of © Thm 16
Take $M \in \mathcal{M}_{C}(g, \infty)$ with countably many limit ends. Baire's Thm \Rightarrow isolated points in $\mathcal{E}_{\text {limit }}(M)$ (simple limit ends) are dense. So it suffices to show:
(1) If M has 2 simple limit ends $\Rightarrow M$ proper.
(2) M cannot have 3 simple limit ends (Thm 13 discards 1 limit end).

Proposition 1 (Christmas tree picture)

E simple limit end of $M \subset \mathbb{R}^{3}$ CEMS, $g(E)=0 \Rightarrow E$ proper and after passing to a smaller end representative, translation, rotation \& homothety:
(1) Simple ends of E have FTC \& $\log \leq 0$
(2) The limit end of E is the top end
(3) $\partial E=\partial D, D \stackrel{c n v x}{\subset}\left\{x_{3}=0\right\}, \stackrel{\circ}{D} \cap E=\varnothing$
(4) $\exists f: \mathcal{R}_{+} \rightarrow E$ orient preserving diffeo ($\mathcal{R}_{+}=$top half of a
Riemann min example)

