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• Ricci flow and relative volume comparison

• Sketched proof for the relative volume comparison

•An application



Let M be a closed manifold of dimension n.

Consider the Ricci flow introduced by R. Hamilton in 1982:

∂

∂t
g(t) = −2 Ric(t) (1)

where Ric(t) stands for the Ricci curvature tensor of g(t).



Many powerful analytic tools for Ricci flow were developed
in 90s, e.g.,

•Maximal principle for tensors (Hamilton)

•Differential Harnack (Hamilton)

•Derivative estimates of curvature (Shi)

In 2002, Perelman gave a non-collapsing estimate which is
a breakthrough.



Perelman: For any A > 0 and dimension n, there exists κ =
κ(n,A) > 0 with the following property. If g(t), 0 ≤ t ≤ r2

0,
is a solution to the Ricci flow on an n-dimensional manifold
satisfying:

|Rm|(x, t) ≤ r−2
0 , ∀(x, t) ∈ Bg(0)(x0, r0)× [0, r2

0]

and
vol
(
Bg(0)(x0, r0)

)
≥ A−1rn0 ,

then, for Bg(r2
0)(x, r) ⊂ Bg(r2

0)(x0, Ar0) such that

|Rm|(y, t) ≤ r−2, ∀(y, t) ∈ Bg(r2
0)(x, r)×[r2

0−r
2, r2

0], (2)

we have
volg(r2

0)

(
Bg(r2

0)(x, r)
)
≥ κrn. (3)



This theorem is proved by Perelman by using monotonicity
of the reduced volume he introduced. It plays a crucial role
in his proof towards the Poincaré Conjecture and was used
to rule out possibility of developing finite-time singularity
along surfaces of positive genera.



The assumption (2) on the parabolic ball can be weakened to
be

R(y, r2
0) ≤ r−2

0 , ∀y ∈ Bg(r2
0)(x, r) (4)

on the time slice r2
0.

This was first proved by Q. Zhang in his book and also by
W. Bing more recently.

Such an improvement of Perelman’s non-collapsing estimate
is very useful and requires new ideas in its proof.



Z. L Zhang and I proved (2018):

For any n and A ≥ 1, there exists κ = κ(n,A) > 0 such that
the following holds. Let g(t), 0 ≤ t ≤ r2

0, be a solution to
the Ricci flow on an n-dimensional manifold M such that

|Ric(t)| ≤ r−2
0 , on Bg(0)(x0, r0)× [0, r2

0]. (5)

Then, forBg(r2
0)(x, r) ⊂ Bg(r2

0)(x0, Ar0) (r ≤ r0) satisfying:

R(·, r2
0) ≤ r−2 in Bg(r2

0)(x, r), (6)

we have
volg(r2

0)(Bg(r2
0)(x, r))

rn
≥ κ

volg(0)(Bg(0)(x0, r0))

rn0
. (7)



This theorem generalizes Perelman’s non-local collapsing
theorem.

It can be also regarded as a generalization of the Bishop-
Gromov volume comparison: If (M, g) is a Riemannian
manifold with Ric(g) ≥ 0, then for any 0 < r ≤ r0,

volg(B(x, r))

rn
≥

volg(B(x, r0))

rn0
.

This volume comparison has played a crucial role in
the study of Riemannian manifolds with Ricci curvature
bounded from below, e.g., in the Cheeger-Colding theory.



The proof uses a localized version of the entropy, instead of
the reduced volume as Perelman did.

The crucial difference between Perelman’s theorem and
ours is that the initial metric may collapse. This causes sub-
stantial difficulties, so that our proof is more involved than
Perelman’s non-collapsing.

Next we will show some ideas in the proof.



Let us recall Perelman’sW-functional

W(g, f, τ ) =

∫
M

[
τ (R+ |∇f |2) +f −n

]
(4πτ )−n/2e−fdv.

Putting u = (4πτ )−n/4e−f/2, we can rewrite it as

τ

∫
M

(Ru2 + 4|∇u|2)dv−
∫
M
u2 log u2dv− n

2
log(4πτ )−n.

(8)



Let Ω be any bounded domain of M . Define the local en-
tropy

µΩ(g, τ ) = inf
{
W(g, u, τ )

∣∣u ∈ C∞0 (Ω),

∫
Ω
u2 = 1

}
.

When Ω = M , it is Perelman’s original entropy which is
monotonic along Ricci flow as Perelman showed. However,
in general, local entropy is not monotonic. This causes new
difficulties in using it.
.



The local entropy relates closely to the local volume ratio.

Let B(x, 2r) ⊂M be a metric ball with ∂B(x, 2r) 6= ∅. If

Ric ≥ −r−2, on B(x, 2r), (9)

then

log
volg(B(x, r))

rn
≤ inf

0<τ≤r2
µB(x,r)(g, τ ) + C(n). (10)



Conversely, if the scalar curvature

R ≤ n r−2, on B(x, r), (11)

then,

log
vol(B(x, r))

rn
≥ inf

0<τ≤r2
µB(x,r)(g, τ )− C(n). (12)



We may assume that (M, g(t)) exists on [0, 1] and r0 =
1. Let x0 ∈ M , A ≥ 1 and uA be a minimizer of
µBg(1)(x0,A)(g(1), τ ) for some 0 < τ ≤ 1. Let v be a so-
lution to the conjugate heat equation of Ricci flow

− ∂
∂t
v = 4v −Rv, v(1) = u2

A. (13)

Put Bt = Bg(t)(x0, 1). We have

µBt
(
g(t), τ + 1− t

)
≤ µBg(1)(x0,A)(g(1), τ )

+ C ·
(∫

Bg(t)(x0,
1
4)
v(t)dvg(t)

)−1

.



Let B′ = Bg(1)(x, r) ⊂ Bg(1)(x0, A) at t = 1, then

µBt
(
g(t), τ + 1− t

)
≤ µB′(g(1), τ )

+ C

(∫
B
g(t)(x0,

1
4)

v(t)dvg(t)

)−1

.



If Ric ≥ −1 in Bg(t)(x0, 2) and R ≤ r−2 in B′, then, at time
t,

log vol(Bt) ≤ log
vol(B′)
rn

+C(n)+C

(∫
Bg(t)(x0,

r
2)

v(t)dvg(t)

)−1

.

(14)

How to estimate lower bound of
∫
Bg(t)(x0,

r
2)
v(t)dvg(t)?



We will need a new estimate on the following heat kernel.

Let H(x, t; y, s) (0 ≤ t < s ≤ 1) be the heat kernel to the
conjugate heat equation which satisfies

−∂H
∂t

= ∆g(t),xH − R(x, t)H (15)

with limt→sH(x, t; y, s) = δg(s),y(x). Also we have

∂H

∂s
= ∆g(s),yH, lim

s→t
H(x, t; y, s) = δg(t),x(y). (16)

Here δg(t),x denotes the Dirac function concentrated at (x, t)

w.r.t. the measure induced by g(t).



The solution v satisfies:

v(x, t) =

∫
M
H(x, t; y, 1) · v(y) dvg(1)(y) (17)

for any t < 1. So it suffices to prove lower bound of the
conjugate heat kernel.

Tian-Z.L.Zhang (2018): There exists 0 < t0 = t0(n) ≤ 1
200

such that for any A ≥ 1 and 0 < t ≤ t0,

H(x, 1− t; y, 1) ≥ C(n,A)−1

volg(1)(Bg(1)(x0,
√
t))

(18)

for any x ∈ Bg(1)(x0, e
−2) and y ∈ Bg(1)(x0, A

√
t).



Now we give an application of our relative volume compar-
ison.

Let X be a compact Kähler manifold of complex dimen-
sion m with a Kähler metric g. In complex coordinate
z1, · · · , zm), g is represented by a positive Hermitian matrix-
valued function (gij̄), moreover, its associated Kähler form
ω is closed, where

ω =
√
−1 gij̄ dzi ∧ dz̄j.

Then the Ricci flow reads (up to a scaling)

∂ω

∂t
= −Ric, (19)

where Ric =
√
−1Rij̄dzi ∧ dz̄j is the Ricci form of ω.



Tian-Zhou Zhang (2006): For any initial metric ω0, the
Kähler-Ricci flow exists up to

T = sup{t > 0 | [ω0] − 2πtc1 > 0}. (20)

Hence, if KX = det(T ∗X) is nef, then the Kähler-Ricci
flow has a global solution for all time.



Suppose that X is a smooth minimal model, i.e., KX ≥ 0.
Then

•When the Kodaira dimension κ = 0, i.e., X is Calabi-Yau,
Cao proved (1986) that the Kähler-Ricci flow converges to
the unique Ricci flat metric in [ω0].

• When κ = n, i.e., X is of general type, we consider the
”normalized Kähler-Ricci flow” on X:

∂ω

∂t
= −Ric −ω. (21)

We observe that if ω(t) is a soultion, then

[ω(t)] = e−t[ω0] + (1− e−t)2πKX .



When κ = n, we have:

• Tsuji and Tian-Zhang: ω(t) converges to the unique
Kähler-Einstein current ωKE in 2πKX ; the convergence
is smooth on the ample locus of the canonical class KX .

• J. Song: the Kähler-Einstein current ωKE defines a metric
on the canonical model Xcan.

•When dimension n ≤ 3, Tian-Z.L.Zhang proved that
(X,ω(t)) converges globally to (Xcan, ωKE) in the
Cheeger-Gromov sense. (Guo-Song-Weinkove gave an-
other proof when n = 2.)

• B. Wang: (X,ω(t)) has uniform diameter bound and has
a limit space. The limit should be (Xcan, ωKE) due to the
AMMP, proposed by Song-Tian.



When 0 < κ < n, we have

• Song-Tian proved the convergence of the Kähler-Ricci
flow to π∗ωGKE in the current sense; they also proved
the C0-convergence on the potential level. If X is an el-
liptic surface, we have the C1,α

loc -convergence of potentials
on Xreg = π−1(Xcan\S) for any α < 1.

• Fong-Zhang proved the C1,α-convergence of potentials
when X is a global submersion over Xcan and the
Gromov-Hausdorff convergence in this special case.

• Tosatti-Weinkove-Yang improved Fong-Zhang estimate
and showed that the metric ω(t) converges to π∗ωGKE
in the C0

loc-topology on Xreg.

•When the generic fibres are tori, Fong-Zhang, Tosatti-
Zhang proved the smooth convergence of ω(t) to π∗ωGKE
on Xreg.



Let XGKE = (Xcan\S, ωGKE), the metric completion of
the regular set.

It was conjectured by Song-Tian that (X,ω(t)) converges in
the Gromov-Hausdorff topology to the generalized Kähler-
Einstein space XGKE.

It is known from Fong-Zhang and Tosatti-Weinkove-Yang
that (X,ω(t)) collapses the fibres locally uniformly onXreg.
The difficulty is how to control the size of the singular fibres
under the Kähler-Ricci flow.

The relative volume comparison along Ricci flow opens up a
way of overcoming this difficulty in controlling the singular
fibres.



In 2018, Tian-Z.L. Zhang proved:

Let X be a compact Kähler manifold with KX ≥ 0 and
Kodaira dimension 1. Suppose a Kähler-Ricci flow ω(t) on
X satisfies

|Ric | ≤ Λ, on π−1(U)× [0,∞), (22)

where Λ is a uniform constant and U ⊂ Xcan\S. Then
(X,ω(t)) converges in the Gromov-Hausdorff topology to
the generalized Kähler-Einstein metric space Xcan.



To prove the above, we first recall a result of Y.S. Zhang:

When κ = 1, the generalized Kähler-Einstein space XGKE
is compact. So, combining with the C0-convergence of met-
ric on the regular set Xreg, under the Kähler-Ricci flow, the
singular fibres locates ”in a finite region”, with a uniformly
bounded distance to U .



By using the relative volume comparison, we further show:

Choose any base point x0 ∈ U , the collapsing rate of the
singular fibres is controlled by the collapsing rate of regular
fibres at x0. Then our theorem follows.



Let X be a Kähler manifold with KX ≥ 0 and Kodaira
dimension 1. If the generic fibres of π : X → Xcan are tori,
then any Kähler-Ricci flow on X converges in the Gromov-
Hausdorff topology to the generalized Kähler-Einstein met-
ric space XGKE.

In particular, any Kähler-Ricci flow on a smooth mini-
mal elliptic surface of Kodaira dimension 1 converges in
the Gromov-Hausdorff topology to the generalized Kähler-
Einstein metric space XGKE.



Final Remarks:

• The last statement was conjectured by Song-Tian in 2006.

• The case of higher Kodaira dimension is not totally clear.
One difficulty is about the diameter bound of the general-
ized Kähler-Einstein current ωGKE. Another technical dif-
ficulty is about the Ricci curvature estimate under Kähler-
Ricci flow.


