Positive scalar curvature on manifolds with abelian fundamental groups

Bernhard Hanke

University of Augsburg
São Paulo, 25th of July 2018

Conjecture (M. Gromov / B. Lawson 1980, J. Rosenberg 1986)

A closed connected manifold M^{d} of dimension $d \geq 5$ admits a positive scalar curvature metric, if and only if a generalized index invariant on M vanishes.

Conjecture (M. Gromov / B. Lawson 1980, J. Rosenberg 1986)

A closed connected manifold M^{d} of dimension $d \geq 5$ admits a positive scalar curvature metric, if and only if a generalized index invariant on M vanishes.

Remarks:

- The conjecture holds in the simply connected case (Gromov-Lawson, 1980; Stolz, 1992).

Conjecture (M. Gromov / B. Lawson 1980, J. Rosenberg 1986)

A closed connected manifold M^{d} of dimension $d \geq 5$ admits a positive scalar curvature metric, if and only if a generalized index invariant on M vanishes.

Remarks:

- The conjecture holds in the simply connected case (Gromov-Lawson, 1980; Stolz, 1992).
- If the universal cover \widetilde{M} is not spin, then the conjecture predicts that M admits a positive scalar curvature metric.

Conjecture (M. Gromov / B. Lawson 1980, J. Rosenberg 1986)

A closed connected manifold M^{d} of dimension $d \geq 5$ admits a positive scalar curvature metric, if and only if a generalized index invariant on M vanishes.

Remarks:

- The conjecture holds in the simply connected case (Gromov-Lawson, 1980; Stolz, 1992).
- If the universal cover \tilde{M} is not spin, then the conjecture predicts that M admits a positive scalar curvature metric.
- The conjecture is false in general for infinite fundamental groups (Schick, 1998).

Conjecture (M. Gromov / B. Lawson 1980, J. Rosenberg 1986)

A closed connected manifold M^{d} of dimension $d \geq 5$ admits a positive scalar curvature metric, if and only if a generalized index invariant on M vanishes.

Remarks:

- The conjecture holds in the simply connected case (Gromov-Lawson, 1980; Stolz, 1992).
- If the universal cover \widetilde{M} is not spin, then the conjecture predicts that M admits a positive scalar curvature metric.
- The conjecture is false in general for infinite fundamental groups (Schick, 1998).
- If M is spin, then a stable version of the GLR conjecture holds, if the Baum-Connjecture conjecture holds for $\pi_{1}(M)$ (Stolz 1994).

Conjecture (M. Gromov / B. Lawson 1980, J. Rosenberg 1986)

A closed connected manifold M^{d} of dimension $d \geq 5$ admits a positive scalar curvature metric, if and only if a generalized index invariant on M vanishes.

Remarks:

- The conjecture holds in the simply connected case (Gromov-Lawson, 1980; Stolz, 1992).
- If the universal cover \widetilde{M} is not spin, then the conjecture predicts that M admits a positive scalar curvature metric.
- The conjecture is false in general for infinite fundamental groups (Schick, 1998).
- If M is spin, then a stable version of the GLR conjecture holds, if the Baum-Connjecture conjecture holds for $\pi_{1}(M)$ (Stolz 1994).
- For finite fundamental groups no counterxample is known.

Special case: Odd order fundamental groups

Conjecture (J. Rosenberg, 1986)
Let $\pi_{1}\left(M^{d \geq 5}\right)$ be finite of odd order. Then M admits a positive scalar curvature metric, if and only if the universal cover M admits a positive scalar curvature metric.

Special case: Odd order fundamental groups

Conjecture (J. Rosenberg, 1986)
Let $\pi_{1}\left(M^{d \geq 5}\right)$ be finite of odd order. Then M admits a positive scalar curvature metric, if and only if the universal cover \widetilde{M} admits a positive scalar curvature metric.
Known cases (p an odd prime):

- All p-Sylow subgroups of $\pi_{1}(M)$ cyclic (Rosenberg, 1986; Kwasik-Schultz, 1990).
- $\pi_{1}(M)=(\mathbb{Z} / p)^{r}$ and M is p-atoral, (Botvinnik-Rosenberg 2001, H . 2016).

Special case: Odd order fundamental groups

Conjecture (J. Rosenberg, 1986)
Let $\pi_{1}\left(M^{d \geq 5}\right)$ be finite of odd order. Then M admits a positive scalar curvature metric, if and only if the universal cover \tilde{M} admits a positive scalar curvature metric.
Known cases (p an odd prime):

- All p-Sylow subgroups of $\pi_{1}(M)$ cyclic (Rosenberg, 1986; Kwasik-Schultz, 1990).
- $\pi_{1}(M)=(\mathbb{Z} / p)^{r}$ and M is p-atoral, (Botvinnik-Rosenberg 2001, H . 2016).

Definition
M^{d} is p-atoral, if for all $k \geq 1$ and $c_{1}, \ldots, c_{d} \in H^{1}\left(M ; \mathbb{Z} / p^{k}\right)$

$$
\left\langle c_{1} \cup \cdots \cup c_{d},[M]\right\rangle=0 \in \mathbb{Z} / p^{k} .
$$

Special case: Odd order fundamental groups

Conjecture (J. Rosenberg, 1986)
Let $\pi_{1}\left(M^{d \geq 5}\right)$ be finite of odd order. Then M admits a positive scalar curvature metric, if and only if the universal cover \widetilde{M} admits a positive scalar curvature metric.
Known cases (p an odd prime):

- All p-Sylow subgroups of $\pi_{1}(M)$ cyclic (Rosenberg, 1986; Kwasik-Schultz, 1990).
- $\pi_{1}(M)=(\mathbb{Z} / p)^{r}$ and M is p-atoral, (Botvinnik-Rosenberg 2001, H . 2016).

Definition
M^{d} is p-atoral, if for all $k \geq 1$ and $c_{1}, \ldots, c_{d} \in H^{1}\left(M ; \mathbb{Z} / p^{k}\right)$

$$
\left\langle c_{1} \cup \cdots \cup c_{d},[M]\right\rangle=0 \in \mathbb{Z} / p^{k}
$$

Note that M is p-atoral, if $\pi_{1}(M)$ is abelian and $\operatorname{dim} M>\operatorname{rk}\left(\pi_{1}(M)\right)$.

Odd order fundamental groups

Definition

M is p-atoral, if for all $k \geq 1$ and $c_{1}, \cdots, c_{d} \in H^{1}\left(M ; \mathbb{Z} / p^{k}\right)$

$$
\left\langle c_{1} \cup \ldots \cup c_{d},[M]\right\rangle=0 \in \mathbb{Z} / p^{k}
$$

Odd order fundamental groups

Definition
M is p-atoral, if for all $k \geq 1$ and $c_{1}, \cdots, c_{d} \in H^{1}\left(M ; \mathbb{Z} / p^{k}\right)$

$$
\left\langle c_{1} \cup \ldots \cup c_{d},[M]\right\rangle=0 \in \mathbb{Z} / p^{k} .
$$

- "0-toral" manifolds do not admit positive scalar curvature metrics: In the spin case one uses the index obstruction; in the non-spin case one uses the minimal hypersurface technique (if available).

Odd order fundamental groups

Definition

M is p-atoral, if for all $k \geq 1$ and $c_{1}, \cdots, c_{d} \in H^{1}\left(M ; \mathbb{Z} / p^{k}\right)$

$$
\left\langle c_{1} \cup \ldots \cup c_{d},[M]\right\rangle=0 \in \mathbb{Z} / p^{k} .
$$

- "0-toral" manifolds do not admit positive scalar curvature metrics: In the spin case one uses the index obstruction; in the non-spin case one uses the minimal hypersurface technique (if available).
- For $d \geq 5$ one can construct a p-toral M^{d} from the d-torus T^{d} by surgery, killing $(p \cdot \mathbb{Z})^{d} \subset \mathbb{Z}^{d}=\pi_{1}\left(T^{d}\right)$.

Odd order fundamental groups

Definition

M is p-atoral, if for all $k \geq 1$ and $c_{1}, \cdots, c_{d} \in H^{1}\left(M ; \mathbb{Z} / p^{k}\right)$

$$
\left\langle c_{1} \cup \ldots \cup c_{d},[M]\right\rangle=0 \in \mathbb{Z} / p^{k} .
$$

- "0-toral" manifolds do not admit positive scalar curvature metrics: In the spin case one uses the index obstruction; in the non-spin case one uses the minimal hypersurface technique (if available).
- For $d \geq 5$ one can construct a p-toral M^{d} from the d-torus T^{d} by surgery, killing $(p \cdot \mathbb{Z})^{d} \subset \mathbb{Z}^{d}=\pi_{1}\left(T^{d}\right)$. Open problem (p odd): Does this M^{d} admit a positive scalar curvature metric?

Odd order fundamental groups

Definition
M is p-atoral, if for all $k \geq 1$ and $c_{1}, \cdots, c_{d} \in H^{1}\left(M ; \mathbb{Z} / p^{k}\right)$

$$
\left\langle c_{1} \cup \ldots \cup c_{d},[M]\right\rangle=0 \in \mathbb{Z} / p^{k}
$$

- "0-toral" manifolds do not admit positive scalar curvature metrics: In the spin case one uses the index obstruction; in the non-spin case one uses the minimal hypersurface technique (if available).
- For $d \geq 5$ one can construct a p-toral M^{d} from the d-torus T^{d} by surgery, killing $(p \cdot \mathbb{Z})^{d} \subset \mathbb{Z}^{d}=\pi_{1}\left(T^{d}\right)$. Open problem (p odd): Does this M^{d} admit a positive scalar curvature metric?

Theorem (H.)

Let $M^{d \geq 5}$ be a closed connected oriented non-spin manifold. Let $\pi_{1}(M)$ be abelian of odd order and let M be atoral (for all odd p). Then M carries a metric of positive scalar curvature.

Construction machine I: Positive bordism

For a topological space X let

$$
\Omega_{d}(X):=\left\{f: N^{d} \rightarrow X\right\} / \text { bordism }
$$

be the (oriented or spin) bordism of X.

Construction machine I: Positive bordism

For a topological space X let

$$
\Omega_{d}(X):=\left\{f: N^{d} \rightarrow X\right\} / \text { bordism }
$$

be the (oriented or spin) bordism of X.

Construction machine I: Positive bordism

For a topological space X let

$$
\Omega_{d}(X):=\left\{f: N^{d} \rightarrow X\right\} / \text { bordism }
$$

be the (oriented or spin) bordism of X.

Let

$$
\Omega_{d}^{+}(X) \subset \Omega_{d}(X)
$$

only contain $[f: N \rightarrow X], N$ admitting a positive scalar curvature metric.

Bordism principle (Gromov-Lawson, Rosenberg-Stolz)

Let $M^{d \geq 5}$ be a closed oriented manifold and let $\phi: M \rightarrow B \pi_{1}(M)$ be the classifying map of the universal cover of M. Then the following assertions are equivalent.

Bordism principle (Gromov-Lawson, Rosenberg-Stolz)

Let $M^{d \geq 5}$ be a closed oriented manifold and let $\phi: M \rightarrow B \pi_{1}(M)$ be the classifying map of the universal cover of M. Then the following assertions are equivalent.

- M carries a positive scalar curvature metric.

Bordism principle (Gromov-Lawson, Rosenberg-Stolz)

Let $M^{d \geq 5}$ be a closed oriented manifold and let $\phi: M \rightarrow B \pi_{1}(M)$ be the classifying map of the universal cover of M. Then the following assertions are equivalent.

- M carries a positive scalar curvature metric.
- $\left[\phi: M \rightarrow B \pi_{1}(M)\right] \in \Omega_{d}^{+}\left(B \pi_{1}(M)\right)$.

Here we assume:

Bordism principle (Gromov-Lawson, Rosenberg-Stolz)

Let $M^{d \geq 5}$ be a closed oriented manifold and let $\phi: M \rightarrow B \pi_{1}(M)$ be the classifying map of the universal cover of M. Then the following assertions are equivalent.

- M carries a positive scalar curvature metric.
- $\left[\phi: M \rightarrow B \pi_{1}(M)\right] \in \Omega_{d}^{+}\left(B \pi_{1}(M)\right)$.

Here we assume:

- M is spin and we work with spin bordism or

Bordism principle (Gromov-Lawson, Rosenberg-Stolz)

Let $M^{d \geq 5}$ be a closed oriented manifold and let $\phi: M \rightarrow B \pi_{1}(M)$ be the classifying map of the universal cover of M. Then the following assertions are equivalent.

- M carries a positive scalar curvature metric.
- $\left[\phi: M \rightarrow B \pi_{1}(M)\right] \in \Omega_{d}^{+}\left(B \pi_{1}(M)\right)$.

Here we assume:

- M is spin and we work with spin bordism or
- \widetilde{M} is not spin and we work with oriented bordism.

Computation: Elementary abelian groups

Let $L^{2 m+1}=S^{2 m+1} /(\mathbb{Z} / p)$ denote the standard lens space.

Computation: Elementary abelian groups

Let $L^{2 m+1}=S^{2 m+1} /(\mathbb{Z} / p)$ denote the standard lens space.

Theorem (H., 2016)

The reduced bordism $\widetilde{\Omega}_{*}\left(B(\mathbb{Z} / p)^{r}\right)$ is generated by "generalized products of lens spaces"

$$
\left[L^{2 m_{1}+1} \times \cdots \times L^{2 m_{k}+1} \rightarrow B(\mathbb{Z} / p)^{k} \xrightarrow{B \phi} B(\mathbb{Z} / p)^{r}\right] .
$$

Here $1 \leq k \leq r$ and

$$
\phi:(\mathbb{Z} / p)^{k} \rightarrow(\mathbb{Z} / p)^{r}
$$

is some group homomorphism. In particular all atoral classes in $\widetilde{\Omega}_{*}\left(B(\mathbb{Z} / p)^{r}\right)$ are positive.

Computation: Elementary abelian groups

Let $L^{2 m+1}=S^{2 m+1} /(\mathbb{Z} / p)$ denote the standard lens space.

Theorem (H., 2016)

The reduced bordism $\widetilde{\Omega}_{*}\left(B(\mathbb{Z} / p)^{r}\right)$ is generated by "generalized products of lens spaces"

$$
\left[L^{2 m_{1}+1} \times \cdots \times L^{2 m_{k}+1} \rightarrow B(\mathbb{Z} / p)^{k} \xrightarrow{B \phi} B(\mathbb{Z} / p)^{r}\right] .
$$

Here $1 \leq k \leq r$ and

$$
\phi:(\mathbb{Z} / p)^{k} \rightarrow(\mathbb{Z} / p)^{r}
$$

is some group homomorphism. In particular all atoral classes in $\widetilde{\Omega}_{*}\left(B(\mathbb{Z} / p)^{r}\right)$ are positive.

Unfortunaley $\Omega_{*}\left(B \pi_{1}(M)\right)$ is very difficult to compute in general.

Manifolds with Baas-Sullivan singularities

Fix a family of closed smooth manifolds $\mathcal{P}=\left(P_{0}=*, P_{1}, P_{2}, \ldots\right)$ ("singularity types"). A \mathcal{P}-manifold A consists of the following data:

Manifolds with Baas-Sullivan singularities

Fix a family of closed smooth manifolds $\mathcal{P}=\left(P_{0}=*, P_{1}, P_{2}, \ldots\right)$
("singularity types"). A \mathcal{P}-manifold A consists of the following data:

- A family $(A(\omega))_{\omega \subset\{0, \ldots, n\}}$ of manifolds with corners together with decompositions into codimension-1-faces

$$
\partial A(\omega)=\partial_{0} A(\omega) \cup \cdots \cup \partial_{n} A(\omega)
$$

where $\partial_{i} A(\omega)=\emptyset$, if $i \in \omega$.

Manifolds with Baas-Sullivan singularities

Fix a family of closed smooth manifolds $\mathcal{P}=\left(P_{0}=*, P_{1}, P_{2}, \ldots\right)$
("singularity types"). A \mathcal{P}-manifold A consists of the following data:

- A family $(A(\omega))_{\omega \subset\{0, \ldots, n\}}$ of manifolds with corners together with decompositions into codimension-1-faces

$$
\partial A(\omega)=\partial_{0} A(\omega) \cup \cdots \cup \partial_{n} A(\omega)
$$

where $\partial_{i} A(\omega)=\emptyset$, if $i \in \omega$.

- Diffeomorphisms $\partial_{i} A(\omega) \cong A(\omega, i) \times P_{i}$ for $i \notin \omega$, such that for $i, j \notin \omega$ with $i \neq j$ we have

$$
\partial_{i}\left(\partial_{j} A(\omega)\right)=\partial_{i} A(\omega) \cap \partial_{j} A(\omega)=\partial_{j}\left(\partial_{i} A(\omega)\right)
$$

Manifolds with Baas-Sullivan singularities

Fix a family of closed smooth manifolds $\mathcal{P}=\left(P_{0}=*, P_{1}, P_{2}, \ldots\right)$
("singularity types"). A \mathcal{P}-manifold A consists of the following data:

- A family $(A(\omega))_{\omega \subset\{0, \ldots, n\}}$ of manifolds with corners together with decompositions into codimension-1-faces

$$
\partial A(\omega)=\partial_{0} A(\omega) \cup \cdots \cup \partial_{n} A(\omega)
$$

where $\partial_{i} A(\omega)=\emptyset$, if $i \in \omega$.

- Diffeomorphisms $\partial_{i} A(\omega) \cong A(\omega, i) \times P_{i}$ for $i \notin \omega$, such that for $i, j \notin \omega$ with $i \neq j$ we have

$$
\partial_{i}\left(\partial_{j} A(\omega)\right)=\partial_{i} A(\omega) \cap \partial_{j} A(\omega)=\partial_{j}\left(\partial_{i} A(\omega)\right)
$$

and the identifications

$$
\begin{aligned}
\partial_{j}\left(\partial_{i} A(\omega)\right) & \cong \partial_{j} A(\omega, i) \times P_{i} \cong A(\omega, i, j) \times P_{j} \times P_{i} \\
\partial_{i}\left(\partial_{j} A(\omega)\right) & \cong \partial_{i} A(\omega, j) \times P_{j} \cong A(\omega, j, i) \times P_{i} \times P_{i}
\end{aligned}
$$

coincide after applying the interchange map $P_{j} \times P_{i} \rightarrow P_{i} \times P_{j}$.

Manifolds with Baas-Sullivan singularities

Fix a family of closed smooth manifolds $\mathcal{P}=\left(P_{0}=*, P_{1}, P_{2}, \ldots\right)$
("singularity types"). A \mathcal{P}-manifold A consists of the following data:

- A family $(A(\omega))_{\omega \subset\{0, \ldots, n\}}$ of manifolds with corners together with decompositions into codimension-1-faces

$$
\partial A(\omega)=\partial_{0} A(\omega) \cup \cdots \cup \partial_{n} A(\omega)
$$

where $\partial_{i} A(\omega)=\emptyset$, if $i \in \omega$.

- Diffeomorphisms $\partial_{i} A(\omega) \cong A(\omega, i) \times P_{i}$ for $i \notin \omega$, such that for $i, j \notin \omega$ with $i \neq j$ we have

$$
\partial_{i}\left(\partial_{j} A(\omega)\right)=\partial_{i} A(\omega) \cap \partial_{j} A(\omega)=\partial_{j}\left(\partial_{i} A(\omega)\right)
$$

and the identifications

$$
\begin{aligned}
\partial_{j}\left(\partial_{i} A(\omega)\right) & \cong \partial_{j} A(\omega, i) \times P_{i} \cong A(\omega, i, j) \times P_{j} \times P_{i} \\
\partial_{i}\left(\partial_{j} A(\omega)\right) & \cong \partial_{i} A(\omega, j) \times P_{j} \cong A(\omega, j, i) \times P_{i} \times P_{i}
\end{aligned}
$$

coincide after applying the interchange map $P_{j} \times P_{i} \rightarrow P_{i} \times P_{j}$. $\partial_{0} A$ is the boundary of A. If A is compact and $\partial_{0} A=\emptyset$, then A is closed.

Distinguished metrics on \mathcal{P}-manifolds

Distinguished metrics on \mathcal{P}-manifolds

Now assume that the singularity types $P_{i}, i \geq 1$ are equipped with positive scalar curvature metrics h_{i}.

Distinguished metrics on \mathcal{P}-manifolds

$$
\partial_{i} A=A(i) \times P_{i} \quad \partial_{i} A \cap \partial_{j} A=A(i, j) \times P_{i} \times P_{j}
$$

$$
\partial_{j} A=A(j) \times P_{j}
$$

Now assume that the singularity types $P_{i}, i \geq 1$ are equipped with positive scalar curvature metrics h_{i}.

Definition

A distinguished metric on a \mathcal{P}-manifold A is a family of metrics $g(\omega)$ on $A(\omega), \omega \subset\{0, \ldots, n\}$, such that the following holds:

- For $i \notin \omega$ we have $\left.g(\omega)\right|_{\partial_{i} A(\omega)}=g(\omega, i) \times h_{i}$.
- For $i \in \omega, i \neq 0$, the metric $g(\omega) \oplus h_{i}$ is of positive scalar curvature.

Theorem (H.)

Let A be a compact \mathcal{P}-manifold, possibly with boundary. Then the space of distinguished metrics on A is non-empty and contractible.

Theorem (H.)

Let A be a compact \mathcal{P}-manifold, possibly with boundary. Then the space of distinguished metrics on A is non-empty and contractible.

Choose $\lambda \gg 0$ and add a wide collar to A for interpolation.

Bordism with Baas-Sullivan singularities and homology

We can choose the singularity types in $\mathcal{P}=\left(P_{1}, P_{2}, \ldots\right)$ with

$$
\Omega_{*}^{S O} / \text { torsion } \cong \mathbb{Z}\left[\left[P_{1}\right],\left[P_{2}\right], \ldots\right]
$$

The following is a special case of a theorem of Baas.

Bordism with Baas-Sullivan singularities and homology

We can choose the singularity types in $\mathcal{P}=\left(P_{1}, P_{2}, \ldots\right)$ with

$$
\Omega_{*}^{S O} / \text { torsion } \cong \mathbb{Z}\left[\left[P_{1}\right],\left[P_{2}\right], \ldots\right]
$$

The following is a special case of a theorem of Baas.

Theorem

Let Γ be of odd order. Then there is a canonical isomorphism

$$
\widetilde{\Omega}_{*}^{S O, \mathcal{P}}(B \Gamma) \cong \widetilde{H}_{*}(B \Gamma ; \mathbb{Z}) .
$$

Bordism with Baas-Sullivan singularities and homology

We can choose the singularity types in $\mathcal{P}=\left(P_{1}, P_{2}, \ldots\right)$ with

$$
\Omega_{*}^{S O} / \text { torsion } \cong \mathbb{Z}\left[\left[P_{1}\right],\left[P_{2}\right], \ldots\right]
$$

The following is a special case of a theorem of Baas.

Theorem

Let Γ be of odd order. Then there is a canonical isomorphism

$$
\widetilde{\Omega}_{*}^{S O, \mathcal{P}}(B \Gamma) \cong \widetilde{H}_{*}(B \Gamma ; \mathbb{Z})
$$

In other words:
Homological cycles in $H_{*}(B \Gamma)$ are modelled by oriented \mathcal{P}-manifolds.

Bordism with Baas-Sullivan singularities and homology

We can choose the singularity types in $\mathcal{P}=\left(P_{1}, P_{2}, \ldots\right)$ with

$$
\Omega_{*}^{S O} / \text { torsion } \cong \mathbb{Z}\left[\left[P_{1}\right],\left[P_{2}\right], \ldots\right]
$$

The following is a special case of a theorem of Baas.

Theorem

Let Γ be of odd order. Then there is a canonical isomorphism

$$
\widetilde{\Omega}_{*}^{S O, \mathcal{P}}(B \Gamma) \cong \widetilde{H}_{*}(B \Gamma ; \mathbb{Z})
$$

In other words:
Homological cycles in $H_{*}(B \Gamma)$ are modelled by oriented \mathcal{P}-manifolds.
A similar result holds for K-homology and Spin bordism.

Construction machine II: Positive homology

In addition we can assume that each P_{i} carries a positive scalar curvature metric h_{i}.

Construction machine II: Positive homology

In addition we can assume that each P_{i} carries a positive scalar curvature metric h_{i}. Let

$$
H_{d}^{+}(B \Gamma) \subset H_{d}(B \Gamma) \cong \widetilde{\Omega}_{d}^{S O, \mathcal{P}}(B \Gamma)
$$

be represented by bordism classes $\left[f: A^{d} \rightarrow B \Gamma\right.$] where A is a closed oriented \mathcal{P}-manifold carrying a distinguished metric of positive scalar curvature.

Construction machine II: Positive homology

In addition we can assume that each P_{i} carries a positive scalar curvature metric h_{i}. Let

$$
H_{d}^{+}(B \Gamma) \subset H_{d}(B \Gamma) \cong \widetilde{\Omega}_{d}^{S O, \mathcal{P}}(B \Gamma)
$$

be represented by bordism classes $\left[f: A^{d} \rightarrow B \Gamma\right]$ where A is a closed oriented \mathcal{P}-manifold carrying a distinguished metric of positive scalar curvature.

Theorem (S. Führing, 2013; H.)

Let $M^{d \geq 5}$ be oriented, smooth, non-spin and with $\pi_{1}(M)$ of odd order. Then the following are equivalent.

- M carries a positive scalar curvature metric.
- $\phi_{*}([M]) \in \mathrm{H}_{d}^{+}\left(B \pi_{1}(M)\right)$.

Construction machine II: Positive homology

In addition we can assume that each P_{i} carries a positive scalar curvature metric h_{i}. Let

$$
H_{d}^{+}(B \Gamma) \subset H_{d}(B \Gamma) \cong \widetilde{\Omega}_{d}^{S O, \mathcal{P}}(B \Gamma)
$$

be represented by bordism classes $\left[f: A^{d} \rightarrow B \Gamma\right]$ where A is a closed oriented \mathcal{P}-manifold carrying a distinguished metric of positive scalar curvature.

Theorem (S. Führing, 2013; H.)

Let $M^{d \geq 5}$ be oriented, smooth, non-spin and with $\pi_{1}(M)$ of odd order. Then the following are equivalent.

- M carries a positive scalar curvature metric.
- $\phi_{*}([M]) \in \mathrm{H}_{d}^{+}\left(B \pi_{1}(M)\right)$.

A similar result holds for spin manifolds and positive K-homology. For \mathcal{P}-manifolds M we can prove a corresponding statement only in the non-spin case.

Computing positive homology

Compute the positive homology of $B \Gamma$ for $\Gamma=\mathbb{Z} / p^{k_{1}} \times \cdots \times \mathbb{Z} / p^{k_{r}}$ by induction on r.

Computing positive homology

Compute the positive homology of $B \Gamma$ for $\Gamma=\mathbb{Z} / p^{k_{1}} \times \cdots \times \mathbb{Z} / p^{k_{r}}$ by induction on r. For $r=1$ we have

$$
\widetilde{H}_{d}\left(B \mathbb{Z} / p^{k}\right)=\left\{\begin{array}{l}
\mathbb{Z} / p^{k} \text { for } d \text { odd } \\
0 \text { for } d \text { even }
\end{array}\right.
$$

Computing positive homology

Compute the positive homology of $B \Gamma$ for $\Gamma=\mathbb{Z} / p^{k_{1}} \times \cdots \times \mathbb{Z} / p^{k_{r}}$ by induction on r. For $r=1$ we have

$$
\widetilde{H}_{d}\left(B \mathbb{Z} / p^{k}\right)=\left\{\begin{array}{l}
\mathbb{Z} / p^{k} \text { for } d \text { odd } \\
0 \text { for } d \text { even }
\end{array}\right.
$$

Generators for $d=2 m+1$ are represented by lens spaces. Hence

$$
H_{*}^{+}\left(B \mathbb{Z} / p^{k}\right)=H_{>1}\left(B \mathbb{Z} / p^{k}\right) .
$$

Computing positive homology

Compute the positive homology of $B \Gamma$ for $\Gamma=\mathbb{Z} / p^{k_{1}} \times \cdots \times \mathbb{Z} / p^{k_{r}}$ by induction on r. For $r=1$ we have

$$
\widetilde{H}_{d}\left(B \mathbb{Z} / p^{k}\right)=\left\{\begin{array}{l}
\mathbb{Z} / p^{k} \text { for } d \text { odd } \\
0 \text { for } d \text { even }
\end{array}\right.
$$

Generators for $d=2 m+1$ are represented by lens spaces. Hence

$$
H_{*}^{+}\left(B \mathbb{Z} / p^{k}\right)=H_{>1}\left(B \mathbb{Z} / p^{k}\right) .
$$

For $\Gamma^{\prime}=\Gamma \times \mathbb{Z} / p^{\ell}$ consider the Künneth exact sequence

$$
0 \rightarrow H_{*}(B \Gamma) \otimes H_{*}\left(B \mathbb{Z} / p^{\ell}\right) \xrightarrow{\alpha} H_{*}\left(B \Gamma^{\prime}\right) \xrightarrow{\beta} \operatorname{Tor}\left(H_{*}(B \Gamma), H_{*}\left(B \mathbb{Z} / p^{\ell}\right)\right) \rightarrow 0 .
$$

Computing positive homology

Compute the positive homology of $B \Gamma$ for $\Gamma=\mathbb{Z} / p^{k_{1}} \times \cdots \times \mathbb{Z} / p^{k_{r}}$ by induction on r. For $r=1$ we have

$$
\widetilde{H}_{d}\left(B \mathbb{Z} / p^{k}\right)=\left\{\begin{array}{l}
\mathbb{Z} / p^{k} \text { for } d \text { odd } \\
0 \text { for } d \text { even }
\end{array}\right.
$$

Generators for $d=2 m+1$ are represented by lens spaces. Hence

$$
H_{*}^{+}\left(B \mathbb{Z} / p^{k}\right)=H_{>1}\left(B \mathbb{Z} / p^{k}\right) .
$$

For $\Gamma^{\prime}=\Gamma \times \mathbb{Z} / p^{\ell}$ consider the Künneth exact sequence

$$
0 \rightarrow H_{*}(B \Gamma) \otimes H_{*}\left(B \mathbb{Z} / p^{\ell}\right) \xrightarrow{\alpha} H_{*}\left(B \Gamma^{\prime}\right) \xrightarrow{\beta} \operatorname{Tor}\left(H_{*}(B \Gamma), H_{*}\left(B \mathbb{Z} / p^{\ell}\right)\right) \rightarrow 0 .
$$

- α is represented by taking cartesian products of \mathcal{P}-manifolds.

Computing positive homology

Compute the positive homology of $B \Gamma$ for $\Gamma=\mathbb{Z} / p^{k_{1}} \times \cdots \times \mathbb{Z} / p^{k_{r}}$ by induction on r. For $r=1$ we have

$$
\widetilde{H}_{d}\left(B \mathbb{Z} / p^{k}\right)=\left\{\begin{array}{l}
\mathbb{Z} / p^{k} \text { for } d \text { odd } \\
0 \text { for } d \text { even }
\end{array}\right.
$$

Generators for $d=2 m+1$ are represented by lens spaces. Hence

$$
H_{*}^{+}\left(B \mathbb{Z} / p^{k}\right)=H_{>1}\left(B \mathbb{Z} / p^{k}\right) .
$$

For $\Gamma^{\prime}=\Gamma \times \mathbb{Z} / p^{\ell}$ consider the Künneth exact sequence

$$
0 \rightarrow H_{*}(B \Gamma) \otimes H_{*}\left(B \mathbb{Z} / p^{\ell}\right) \xrightarrow{\alpha} H_{*}\left(B \Gamma^{\prime}\right) \xrightarrow{\beta} \operatorname{Tor}\left(H_{*}(B \Gamma), H_{*}\left(B \mathbb{Z} / p^{\ell}\right)\right) \rightarrow 0 .
$$

- α is represented by taking cartesian products of \mathcal{P}-manifolds.
- Preimages of β are represented by Toda brackets of \mathcal{P}-manifolds.

Toda brackets

- Let Γ_{i} be finite p-groups, $i=1,2$.

Toda brackets

- Let Γ_{i} be finite p-groups, $i=1,2$.
- Let $c_{i}=\left[f_{i}: A_{i} \rightarrow B \Gamma\right] \in H_{d_{i}}\left(B \Gamma_{i}\right)$ have order p^{k}.

Toda brackets

- Let Γ_{i} be finite p-groups, $i=1,2$.
- Let $c_{i}=\left[f_{i}: A_{i} \rightarrow B \Gamma\right] \in H_{d_{i}}\left(B \Gamma_{i}\right)$ have order p^{k}.
- Then $\bigsqcup_{p^{k}} f_{i}: \bigsqcup_{p^{k}} A_{i} \rightarrow B \Gamma_{i}$ bound maps $F_{i}: W_{i} \rightarrow B \Gamma_{i}$.

Toda brackets

- Let Γ_{i} be finite p-groups, $i=1,2$.
- Let $c_{i}=\left[f_{i}: A_{i} \rightarrow B \Gamma\right] \in H_{d_{i}}\left(B \Gamma_{i}\right)$ have order p^{k}.
- Then $\bigsqcup_{p^{k}} f_{i}: \bigsqcup_{p^{k}} A_{i} \rightarrow B \Gamma_{i}$ bound maps $F_{i}: W_{i} \rightarrow B \Gamma_{i}$.
- The Toda bracket $\left\langle c_{1}, p^{k}, c_{2}\right\rangle \subset H_{d_{1}+d_{2}+1}\left(B\left(\Gamma_{1} \times \Gamma_{2}\right)\right)$ is represented by

$$
\left(W_{1} \times A_{2}\right) \cup\left(A_{1} \times W_{2}\right) \xrightarrow{\left(F_{1} \times f_{2}\right) \cup\left(f_{1} \times F_{2}\right)} B \Gamma_{1} \times B \Gamma_{2} .
$$

Toda brackets

- Let Γ_{i} be finite p-groups, $i=1,2$.
- Let $c_{i}=\left[f_{i}: A_{i} \rightarrow B \Gamma\right] \in H_{d_{i}}\left(B \Gamma_{i}\right)$ have order p^{k}.
- Then $\bigsqcup_{p^{k}} f_{i}: \bigsqcup_{p^{k}} A_{i} \rightarrow B \Gamma_{i}$ bound maps $F_{i}: W_{i} \rightarrow B \Gamma_{i}$.
- The Toda bracket $\left\langle c_{1}, p^{k}, c_{2}\right\rangle \subset H_{d_{1}+d_{2}+1}\left(B\left(\Gamma_{1} \times \Gamma_{2}\right)\right)$ is represented by

$$
\left(W_{1} \times A_{2}\right) \cup\left(A_{1} \times W_{2}\right) \xrightarrow{\left(F_{1} \times f_{2}\right) \cup\left(f_{1} \times F_{2}\right)} B \Gamma_{1} \times B \Gamma_{2} .
$$

- $\left\langle c_{1}, p^{k}, c_{2}\right\rangle$ is well defined modulo $\left(c_{1} \otimes H_{*}\left(B \Gamma_{2}\right)\right) \oplus\left(H_{*}\left(B \Gamma_{1}\right) \otimes c_{2}\right)$.

Toda brackets

- Let Γ_{i} be finite p-groups, $i=1,2$.
- Let $c_{i}=\left[f_{i}: A_{i} \rightarrow B \Gamma\right] \in H_{d_{i}}\left(B \Gamma_{i}\right)$ have order p^{k}.
- Then $\bigsqcup_{p^{k}} f_{i}: \bigsqcup_{p^{k}} A_{i} \rightarrow B \Gamma_{i}$ bound maps $F_{i}: W_{i} \rightarrow B \Gamma_{i}$.
- The Toda bracket $\left\langle c_{1}, p^{k}, c_{2}\right\rangle \subset H_{d_{1}+d_{2}+1}\left(B\left(\Gamma_{1} \times \Gamma_{2}\right)\right)$ is represented by

$$
\left(W_{1} \times A_{2}\right) \cup\left(A_{1} \times W_{2}\right) \xrightarrow{\left(F_{1} \times f_{2}\right) \cup\left(f_{1} \times F_{2}\right)} B \Gamma_{1} \times B \Gamma_{2} .
$$

- $\left\langle c_{1}, p^{k}, c_{2}\right\rangle$ is well defined modulo $\left(c_{1} \otimes H_{*}\left(B \Gamma_{2}\right)\right) \oplus\left(H_{*}\left(B \Gamma_{1}\right) \otimes c_{2}\right)$.
- If c_{1} and c_{2} are positive, then $\left\langle c_{1}, p^{k}, c_{2}\right\rangle \subset H_{d_{1}+d_{2}+1}^{+}\left(B\left(\Gamma_{1} \times \Gamma_{2}\right)\right)$.

Interlude: Admissible products of \mathcal{P}-manifolds

- $\partial_{i} A=A(i) \times P_{i}$.
- $\partial_{i} B=B(i) \times P_{i}$.
- $\partial_{i}(A \times B)=\left(\partial_{i} A \times B\right) \cup\left(A \times \partial_{i} B\right)$.
- $\left(\partial_{i} A \times B\right) \cap\left(A \times \partial_{i} B\right)=\partial_{i} A \times \partial_{i} B=A(i) \times B(i) \times P_{i} \times P_{i}$.

Use this region to interchange the two factors in $P_{i} \times P_{i}$

Computing positive homology: Induction step

$$
0 \rightarrow H_{*}(B \Gamma) \otimes H_{*}\left(B \mathbb{Z} / p^{\ell}\right) \xrightarrow{\alpha} H_{*}\left(B \Gamma^{\prime}\right) \xrightarrow{\beta} \operatorname{Tor}\left(H_{*}(B \Gamma), H_{*}\left(B \mathbb{Z} / p^{\ell}\right)\right) \rightarrow 0
$$

Computing positive homology: Induction step

$$
0 \rightarrow H_{*}(B \Gamma) \otimes H_{*}\left(B \mathbb{Z} / p^{\ell}\right) \xrightarrow{\alpha} H_{*}\left(B \Gamma^{\prime}\right) \xrightarrow{\beta} \operatorname{Tor}\left(H_{*}(B \Gamma), H_{*}\left(B \mathbb{Z} / p^{\ell}\right)\right) \rightarrow 0
$$

- α is represented by cartesian products of \mathcal{P}-manifolds. These are positive, if one of the factors is positive.

Computing positive homology: Induction step

$$
0 \rightarrow H_{*}(B \Gamma) \otimes H_{*}\left(B \mathbb{Z} / p^{\ell}\right) \xrightarrow{\alpha} H_{*}\left(B \Gamma^{\prime}\right) \xrightarrow{\beta} \operatorname{Tor}\left(H_{*}(B \Gamma), H_{*}\left(B \mathbb{Z} / p^{\ell}\right)\right) \rightarrow 0
$$

- α is represented by cartesian products of \mathcal{P}-manifolds. These are positive, if one of the factors is positive.
- Preimages of β are represented by Toda brackets of \mathcal{P}-manifolds. These are positive, if both factors are positive.

Computing positive homology: Induction step

$$
0 \rightarrow H_{*}(B \Gamma) \otimes H_{*}\left(B \mathbb{Z} / p^{\ell}\right) \xrightarrow{\alpha} H_{*}\left(B \Gamma^{\prime}\right) \xrightarrow{\beta} \operatorname{Tor}\left(H_{*}(B \Gamma), H_{*}\left(B \mathbb{Z} / p^{\ell}\right)\right) \rightarrow 0
$$

- α is represented by cartesian products of \mathcal{P}-manifolds. These are positive, if one of the factors is positive.
- Preimages of β are represented by Toda brackets of \mathcal{P}-manifolds. These are positive, if both factors are positive.
- We cannot show positivity of Toda brackets involving homology classes of degree 1 .

Computing positive homology: Induction step

$$
0 \rightarrow H_{*}(B \Gamma) \otimes H_{*}\left(B \mathbb{Z} / p^{\ell}\right) \xrightarrow{\alpha} H_{*}\left(B \Gamma^{\prime}\right) \xrightarrow{\beta} \operatorname{Tor}\left(H_{*}(B \Gamma), H_{*}\left(B \mathbb{Z} / p^{\ell}\right)\right) \rightarrow 0
$$

- α is represented by cartesian products of \mathcal{P}-manifolds. These are positive, if one of the factors is positive.
- Preimages of β are represented by Toda brackets of \mathcal{P}-manifolds. These are positive, if both factors are positive.
- We cannot show positivity of Toda brackets involving homology classes of degree 1.
- Hence we cannot show that all p-atoral classes in $H_{*}\left(B \Gamma^{\prime}\right)$ are positive.

Computing positive homology: Induction step

$$
0 \rightarrow H_{*}(B \Gamma) \otimes H_{*}\left(B \mathbb{Z} / p^{\ell}\right) \xrightarrow{\alpha} H_{*}\left(B \Gamma^{\prime}\right) \xrightarrow{\beta} \operatorname{Tor}\left(H_{*}(B \Gamma), H_{*}\left(B \mathbb{Z} / p^{\ell}\right)\right) \rightarrow 0
$$

- α is represented by cartesian products of \mathcal{P}-manifolds. These are positive, if one of the factors is positive.
- Preimages of β are represented by Toda brackets of \mathcal{P}-manifolds. These are positive, if both factors are positive.
- We cannot show positivity of Toda brackets involving homology classes of degree 1.
- Hence we cannot show that all p-atoral classes in $H_{*}\left(B \Gamma^{\prime}\right)$ are positive.
- We need to restrict attention to specific atoral classes in $H_{*}\left(B \Gamma^{\prime}\right)$.

Linear Brown-Peterson theory

Linear Brown-Peterson theory

- Recall that Brown-Peterson theory for the prime p has coefficients

$$
\mathrm{BP}_{*}=\mathbb{Z}_{(\mathrm{p})}\left[\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right]
$$

where $\left|v_{i}\right|=2 p^{i}-2$.

Linear Brown-Peterson theory

- Recall that Brown-Peterson theory for the prime p has coefficients

$$
\mathrm{BP}_{*}=\mathbb{Z}_{(\mathrm{p})}\left[\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right]
$$

where $\left|v_{i}\right|=2 p^{i}-2$.

- Unitary bordism MU localized at p is a sum of suspensions of BP.

Linear Brown-Peterson theory

- Recall that Brown-Peterson theory for the prime p has coefficients

$$
\mathrm{BP}_{*}=\mathbb{Z}_{(\mathrm{p})}\left[\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right]
$$

where $\left|v_{i}\right|=2 p^{i}-2$.

- Unitary bordism MU localized at p is a sum of suspensions of BP. We construct a homology theory BPL with coefficients

$$
\mathrm{BPL}_{*}:=\left\langle v_{1}, v_{2}, \ldots\right\rangle_{(p)}=\mathrm{BP}_{*} / \mathrm{I}^{2}
$$

where $I=\left(v_{1}, v_{2}, \ldots\right)$, and get a factorization of homology theories

$$
\Omega_{*}^{S O}(-) \rightarrow \mathrm{BPL}_{*}(-) \rightarrow H_{*}(-)
$$

Linear Brown-Peterson theory

- Recall that Brown-Peterson theory for the prime p has coefficients

$$
\mathrm{BP}_{*}=\mathbb{Z}_{(\mathrm{p})}\left[\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right]
$$

where $\left|v_{i}\right|=2 p^{i}-2$.

- Unitary bordism MU localized at p is a sum of suspensions of BP. We construct a homology theory BPL with coefficients

$$
\mathrm{BPL}_{*}:=\left\langle v_{1}, v_{2}, \ldots\right\rangle_{(p)}=\mathrm{BP}_{*} / \mathrm{I}^{2}
$$

where $I=\left(v_{1}, v_{2}, \ldots\right)$, and get a factorization of homology theories

$$
\Omega_{*}^{S O}(-) \rightarrow \mathrm{BPL}_{*}(-) \rightarrow H_{*}(-) .
$$

Theorem (H.)

Let Γ be an abelian p-group, p odd. Then all p-atoral classes in the image of $\mathrm{BPL}_{*}(B \Gamma) \rightarrow H_{*}(В \Gamma)$ are positive.

