Positive scalar curvature on manifolds with abelian fundamental groups

Bernhard Hanke

University of Augsburg

São Paulo, 25th of July 2018

Conjecture (M. Gromov / B. Lawson 1980, J. Rosenberg 1986) A closed connected manifold M^d of dimension $d \ge 5$ admits a positive scalar curvature metric, if and only if a generalized index invariant on Mvanishes. Conjecture (M. Gromov / B. Lawson 1980, J. Rosenberg 1986) A closed connected manifold M^d of dimension $d \ge 5$ admits a positive

scalar curvature metric, if and only if a generalized index invariant on M vanishes.

Remarks:

The conjecture holds in the simply connected case (Gromov-Lawson, 1980; Stolz, 1992). Conjecture (M. Gromov / B. Lawson 1980, J. Rosenberg 1986) A closed connected manifold M^d of dimension $d \ge 5$ admits a positive scalar curvature metric, if and only if a generalized index invariant on Mvanishes.

- The conjecture holds in the simply connected case (Gromov-Lawson, 1980; Stolz, 1992).
- If the universal cover *M* is not spin, then the conjecture predicts that *M* admits a positive scalar curvature metric.

Conjecture (M. Gromov / B. Lawson 1980, J. Rosenberg 1986)

A closed connected manifold M^d of dimension $d \ge 5$ admits a positive scalar curvature metric, if and only if a generalized index invariant on M vanishes.

- The conjecture holds in the simply connected case (Gromov-Lawson, 1980; Stolz, 1992).
- If the universal cover *M* is not spin, then the conjecture predicts that *M* admits a positive scalar curvature metric.
- The conjecture is false in general for infinite fundamental groups (Schick, 1998).

Conjecture (M. Gromov / B. Lawson 1980, J. Rosenberg 1986) A closed connected manifold M^d of dimension $d \ge 5$ admits a positive

A closed connected manifold M^{α} of dimension $a \ge 5$ admits a positive scalar curvature metric, if and only if a generalized index invariant on M vanishes.

- The conjecture holds in the simply connected case (Gromov-Lawson, 1980; Stolz, 1992).
- If the universal cover *M* is not spin, then the conjecture predicts that *M* admits a positive scalar curvature metric.
- The conjecture is false in general for infinite fundamental groups (Schick, 1998).
- ► If *M* is spin, then a stable version of the GLR conjecture holds, if the Baum-Connjecture conjecture holds for π₁(*M*) (Stolz 1994).

Conjecture (M. Gromov / B. Lawson 1980, J. Rosenberg 1986)

A closed connected manifold M^d of dimension $d \ge 5$ admits a positive scalar curvature metric, if and only if a generalized index invariant on M vanishes.

- The conjecture holds in the simply connected case (Gromov-Lawson, 1980; Stolz, 1992).
- If the universal cover *M* is not spin, then the conjecture predicts that *M* admits a positive scalar curvature metric.
- The conjecture is false in general for infinite fundamental groups (Schick, 1998).
- If M is spin, then a stable version of the GLR conjecture holds, if the Baum-Connjecture conjecture holds for π₁(M) (Stolz 1994).
- ► For finite fundamental groups no counterxample is known.

Conjecture (J. Rosenberg, 1986)

Let $\pi_1(M^{d\geq 5})$ be finite of odd order. Then M admits a positive scalar curvature metric, if and only if the universal cover \widetilde{M} admits a positive scalar curvature metric.

Conjecture (J. Rosenberg, 1986)

Let $\pi_1(M^{d\geq 5})$ be finite of odd order. Then M admits a positive scalar curvature metric, if and only if the universal cover \widetilde{M} admits a positive scalar curvature metric.

Known cases (*p* an odd prime):

- ► All *p*-Sylow subgroups of π₁(*M*) cyclic (Rosenberg, 1986; Kwasik-Schultz, 1990).
- ▶ $\pi_1(M) = (\mathbb{Z}/p)^r$ and M is *p*-atoral, (Botvinnik-Rosenberg 2001, H. 2016).

Conjecture (J. Rosenberg, 1986)

Let $\pi_1(M^{d\geq 5})$ be finite of odd order. Then M admits a positive scalar curvature metric, if and only if the universal cover \widetilde{M} admits a positive scalar curvature metric.

Known cases (*p* an odd prime):

- ► All *p*-Sylow subgroups of π₁(*M*) cyclic (Rosenberg, 1986; Kwasik-Schultz, 1990).
- ▶ $\pi_1(M) = (\mathbb{Z}/p)^r$ and *M* is *p*-atoral, (Botvinnik-Rosenberg 2001, H. 2016).

Definition

 M^d is *p*-atoral, if for all $k \geq 1$ and $c_1, \ldots, c_d \in H^1(M; \mathbb{Z}/p^k)$

$$\langle c_1 \cup \cdots \cup c_d, [M] \rangle = 0 \in \mathbb{Z}/p^k.$$

Conjecture (J. Rosenberg, 1986)

Let $\pi_1(M^{d\geq 5})$ be finite of odd order. Then M admits a positive scalar curvature metric, if and only if the universal cover \widetilde{M} admits a positive scalar curvature metric.

Known cases (*p* an odd prime):

- ► All *p*-Sylow subgroups of π₁(*M*) cyclic (Rosenberg, 1986; Kwasik-Schultz, 1990).
- ▶ $\pi_1(M) = (\mathbb{Z}/p)^r$ and *M* is *p*-atoral, (Botvinnik-Rosenberg 2001, H. 2016).

Definition

 M^d is *p*-atoral, if for all $k \geq 1$ and $c_1, \ldots, c_d \in H^1(M; \mathbb{Z}/p^k)$

$$\langle c_1 \cup \cdots \cup c_d, [M] \rangle = 0 \in \mathbb{Z}/p^k.$$

Note that *M* is *p*-atoral, if $\pi_1(M)$ is abelian and dim $M > \operatorname{rk}(\pi_1(M))$.

Definition

M is *p*-atoral, if for all $k \ge 1$ and $c_1, \cdots, c_d \in H^1(M; \mathbb{Z}/p^k)$

$$\langle c_1 \cup \ldots \cup c_d, [M] \rangle = 0 \in \mathbb{Z}/p^k.$$

Definition

M is *p*-atoral, if for all $k \ge 1$ and $c_1, \cdots, c_d \in H^1(M; \mathbb{Z}/p^k)$

$$\langle c_1 \cup \ldots \cup c_d, [M] \rangle = 0 \in \mathbb{Z}/p^k.$$

 "0-toral" manifolds do not admit positive scalar curvature metrics: In the spin case one uses the index obstruction; in the non-spin case one uses the minimal hypersurface technique (if available).

Definition

M is *p*-atoral, if for all $k \ge 1$ and $c_1, \cdots, c_d \in H^1(M; \mathbb{Z}/p^k)$

$$\langle c_1 \cup \ldots \cup c_d, [M] \rangle = 0 \in \mathbb{Z}/p^k.$$

- "0-toral" manifolds do not admit positive scalar curvature metrics: In the spin case one uses the index obstruction; in the non-spin case one uses the minimal hypersurface technique (if available).
- For d ≥ 5 one can construct a p-toral M^d from the d-torus T^d by surgery, killing (p · Z)^d ⊂ Z^d = π₁(T^d).

Definition

M is *p*-atoral, if for all $k \ge 1$ and $c_1, \cdots, c_d \in H^1(M; \mathbb{Z}/p^k)$

$$\langle c_1 \cup \ldots \cup c_d, [M] \rangle = 0 \in \mathbb{Z}/p^k.$$

- "0-toral" manifolds do not admit positive scalar curvature metrics: In the spin case one uses the index obstruction; in the non-spin case one uses the minimal hypersurface technique (if available).
- For d ≥ 5 one can construct a p-toral M^d from the d-torus T^d by surgery, killing (p · Z)^d ⊂ Z^d = π₁(T^d). Open problem (p odd): Does this M^d admit a positive scalar curvature metric?

Definition

M is *p*-atoral, if for all $k \ge 1$ and $c_1, \cdots, c_d \in H^1(M; \mathbb{Z}/p^k)$

$$\langle c_1 \cup \ldots \cup c_d, [M] \rangle = 0 \in \mathbb{Z}/p^k.$$

- "0-toral" manifolds do not admit positive scalar curvature metrics: In the spin case one uses the index obstruction; in the non-spin case one uses the minimal hypersurface technique (if available).
- For d ≥ 5 one can construct a p-toral M^d from the d-torus T^d by surgery, killing (p · Z)^d ⊂ Z^d = π₁(T^d). Open problem (p odd): Does this M^d admit a positive scalar curvature metric?

Theorem (H.)

Let $M^{d\geq 5}$ be a closed connected oriented non-spin manifold. Let $\pi_1(M)$ be abelian of odd order and let M be atoral (for all odd p). Then M carries a metric of positive scalar curvature.

Construction machine I: Positive bordism For a topological space X let

$$\Omega_d(X) := \{f : N^d \to X\} / \text{bordism}$$

be the (oriented or spin) bordism of X.

Construction machine I: Positive bordism For a topological space X let

$$\Omega_d(X) := \{f : N^d \to X\} / \text{bordism}$$

be the (oriented or spin) bordism of X.

Construction machine I: Positive bordism For a topological space X let

$$\Omega_d(X) := \{f : N^d \to X\} / \text{bordism}$$

be the (oriented or spin) bordism of X.

Let

 $\Omega_d^+(X) \subset \Omega_d(X)$

only contain $[f: N \rightarrow X]$, N admitting a positive scalar curvature metric.

Bernhard Hanke

Let $M^{d\geq 5}$ be a closed oriented manifold and let $\phi: M \to B\pi_1(M)$ be the classifying map of the universal cover of M. Then the following assertions are equivalent.

Let $M^{d\geq 5}$ be a closed oriented manifold and let $\phi: M \to B\pi_1(M)$ be the classifying map of the universal cover of M. Then the following assertions are equivalent.

► *M* carries a positive scalar curvature metric.

Let $M^{d\geq 5}$ be a closed oriented manifold and let $\phi: M \to B\pi_1(M)$ be the classifying map of the universal cover of M. Then the following assertions are equivalent.

- *M* carries a positive scalar curvature metric.
- $[\phi: M \to B\pi_1(M)] \in \Omega^+_d(B\pi_1(M)).$

Here we assume:

Let $M^{d\geq 5}$ be a closed oriented manifold and let $\phi: M \to B\pi_1(M)$ be the classifying map of the universal cover of M. Then the following assertions are equivalent.

- *M* carries a positive scalar curvature metric.
- $[\phi: M \to B\pi_1(M)] \in \Omega^+_d(B\pi_1(M)).$

Here we assume:

▶ *M* is spin and we work with spin bordism or

Let $M^{d\geq 5}$ be a closed oriented manifold and let $\phi: M \to B\pi_1(M)$ be the classifying map of the universal cover of M. Then the following assertions are equivalent.

- *M* carries a positive scalar curvature metric.
- $[\phi: M \to B\pi_1(M)] \in \Omega^+_d(B\pi_1(M)).$

Here we assume:

- M is spin and we work with spin bordism or
- M is not spin and we work with oriented bordism.

Computation: Elementary abelian groups

Let $L^{2m+1} = S^{2m+1}/(\mathbb{Z}/p)$ denote the standard lens space.

Computation: Elementary abelian groups

Let $L^{2m+1} = S^{2m+1}/(\mathbb{Z}/p)$ denote the standard lens space.

Theorem (H., 2016)

The reduced bordism $\widetilde{\Omega}_*(B(\mathbb{Z}/p)^r)$ is generated by "generalized products of lens spaces"

$$[L^{2m_1+1}\times\cdots\times L^{2m_k+1}\to B(\mathbb{Z}/p)^k\xrightarrow{B\phi}B(\mathbb{Z}/p)^r].$$

Here $1 \leq k \leq r$ and

$$\phi: (\mathbb{Z}/p)^k o (\mathbb{Z}/p)^r$$

is some group homomorphism. In particular all atoral classes in $\widetilde{\Omega}_*(B(\mathbb{Z}/p)^r)$ are positive.

Computation: Elementary abelian groups

Let $L^{2m+1} = S^{2m+1}/(\mathbb{Z}/p)$ denote the standard lens space.

Theorem (H., 2016)

The reduced bordism $\widetilde{\Omega}_*(B(\mathbb{Z}/p)^r)$ is generated by "generalized products of lens spaces"

$$[L^{2m_1+1}\times\cdots\times L^{2m_k+1}\to B(\mathbb{Z}/p)^k\xrightarrow{B\phi}B(\mathbb{Z}/p)^r].$$

Here $1 \leq k \leq r$ and

$$\phi: (\mathbb{Z}/p)^k o (\mathbb{Z}/p)^r$$

is some group homomorphism. In particular all atoral classes in $\widetilde{\Omega}_*(B(\mathbb{Z}/p)^r)$ are positive.

Unfortunaley $\Omega_*(B\pi_1(M))$ is very difficult to compute in general.

Fix a family of closed smooth manifolds $\mathcal{P} = (P_0 = *, P_1, P_2, ...)$ ("singularity types"). A \mathcal{P} -manifold A consists of the following data:

Fix a family of closed smooth manifolds $\mathcal{P} = (P_0 = *, P_1, P_2, ...)$ ("singularity types"). A \mathcal{P} -manifold A consists of the following data:

A family (A(ω))_{ω⊂{0,...,n}} of manifolds with corners together with decompositions into codimension-1-faces

$$\partial A(\omega) = \partial_0 A(\omega) \cup \cdots \cup \partial_n A(\omega),$$

where $\partial_i A(\omega) = \emptyset$, if $i \in \omega$.

Fix a family of closed smooth manifolds $\mathcal{P} = (P_0 = *, P_1, P_2, ...)$ ("singularity types"). A \mathcal{P} -manifold A consists of the following data:

A family (A(ω))_{ω⊂{0,...,n}} of manifolds with corners together with decompositions into codimension-1-faces

$$\partial A(\omega) = \partial_0 A(\omega) \cup \cdots \cup \partial_n A(\omega),$$

where $\partial_i A(\omega) = \emptyset$, if $i \in \omega$.

▶ Diffeomorphisms $\partial_i A(\omega) \cong A(\omega, i) \times P_i$ for $i \notin \omega$, such that for $i, j \notin \omega$ with $i \neq j$ we have

$$\partial_i(\partial_j A(\omega)) = \partial_i A(\omega) \cap \partial_j A(\omega) = \partial_j(\partial_i A(\omega))$$

Fix a family of closed smooth manifolds $\mathcal{P} = (P_0 = *, P_1, P_2, ...)$ ("singularity types"). A \mathcal{P} -manifold A consists of the following data:

A family (A(ω))_{ω⊂{0,...,n}} of manifolds with corners together with decompositions into codimension-1-faces

$$\partial A(\omega) = \partial_0 A(\omega) \cup \cdots \cup \partial_n A(\omega),$$

where $\partial_i A(\omega) = \emptyset$, if $i \in \omega$.

▶ Diffeomorphisms $\partial_i A(\omega) \cong A(\omega, i) \times P_i$ for $i \notin \omega$, such that for $i, j \notin \omega$ with $i \neq j$ we have

$$\partial_i(\partial_j A(\omega)) = \partial_i A(\omega) \cap \partial_j A(\omega) = \partial_j(\partial_i A(\omega))$$

and the identifications

$$\begin{array}{ll} \partial_j(\partial_i A(\omega)) &\cong & \partial_j A(\omega,i) \times P_i \cong A(\omega,i,j) \times P_j \times P_i \\ \partial_i(\partial_j A(\omega)) &\cong & \partial_i A(\omega,j) \times P_j \cong A(\omega,j,i) \times P_i \times P_i \end{array}$$

coincide after applying the interchange map $P_j \times P_i \rightarrow P_i \times P_j$.

Fix a family of closed smooth manifolds $\mathcal{P} = (P_0 = *, P_1, P_2, ...)$ ("singularity types"). A \mathcal{P} -manifold A consists of the following data:

A family (A(ω))_{ω⊂{0,...,n}} of manifolds with corners together with decompositions into codimension-1-faces

$$\partial A(\omega) = \partial_0 A(\omega) \cup \cdots \cup \partial_n A(\omega),$$

where $\partial_i A(\omega) = \emptyset$, if $i \in \omega$.

▶ Diffeomorphisms $\partial_i A(\omega) \cong A(\omega, i) \times P_i$ for $i \notin \omega$, such that for $i, j \notin \omega$ with $i \neq j$ we have

$$\partial_i(\partial_j A(\omega)) = \partial_i A(\omega) \cap \partial_j A(\omega) = \partial_j(\partial_i A(\omega))$$

and the identifications

$$\begin{array}{lll} \partial_j(\partial_i A(\omega)) &\cong & \partial_j A(\omega,i) \times P_i \cong A(\omega,i,j) \times P_j \times P_i \\ \partial_i(\partial_j A(\omega)) &\cong & \partial_i A(\omega,j) \times P_j \cong A(\omega,j,i) \times P_i \times P_i \end{array}$$

coincide after applying the interchange map $P_j \times P_i \rightarrow P_i \times P_j$. $\partial_0 A$ is the boundary of A. If A is compact and $\partial_0 A = \emptyset$, then A is closed.

Distinguished metrics on \mathcal{P} -manifolds

Distinguished metrics on \mathcal{P} -manifolds

Now assume that the singularity types P_i , $i \ge 1$ are equipped with positive scalar curvature metrics h_i .

Distinguished metrics on \mathcal{P} -manifolds

Now assume that the singularity types P_i , $i \ge 1$ are equipped with positive scalar curvature metrics h_i .

Definition

A distinguished metric on a \mathcal{P} -manifold A is a family of metrics $g(\omega)$ on $A(\omega)$, $\omega \subset \{0, \ldots, n\}$, such that the following holds:

For
$$i \notin \omega$$
 we have $g(\omega)|_{\partial_i A(\omega)} = g(\omega, i) \times h_i$.

▶ For $i \in \omega$, $i \neq 0$, the metric $g(\omega) \oplus h_i$ is of positive scalar curvature.

Theorem (H.)

Let A be a compact \mathcal{P} -manifold, possibly with boundary. Then the space of distinguished metrics on A is non-empty and contractible.

Theorem (H.)

Let A be a compact \mathcal{P} -manifold, possibly with boundary. Then the space of distinguished metrics on A is non-empty and contractible.

Choose $\lambda \gg 0$ and add a wide collar to A for interpolation.

We can choose the singularity types in $\mathcal{P} = (P_1, P_2, \ldots)$ with

$$\Omega^{SO}_*$$
/torsion $\cong \mathbb{Z}[[P_1], [P_2], \ldots]$

The following is a special case of a theorem of Baas.

We can choose the singularity types in $\mathcal{P} = (P_1, P_2, \ldots)$ with

$$\Omega^{SO}_*$$
/torsion $\cong \mathbb{Z}[[P_1], [P_2], \ldots]$

The following is a special case of a theorem of Baas.

Theorem

Let Γ be of odd order. Then there is a canonical isomorphism

$$\widetilde{\Omega}^{SO,\mathcal{P}}_*(B\Gamma)\cong \widetilde{H}_*(B\Gamma;\mathbb{Z}).$$

We can choose the singularity types in $\mathcal{P} = (P_1, P_2, \ldots)$ with

$$\Omega^{SO}_*$$
/torsion $\cong \mathbb{Z}[[P_1], [P_2], \ldots]$

The following is a special case of a theorem of Baas.

Theorem

Let Γ be of odd order. Then there is a canonical isomorphism

$$\widetilde{\Omega}^{SO,\mathcal{P}}_*(B\Gamma)\cong \widetilde{H}_*(B\Gamma;\mathbb{Z}).$$

In other words:

Homological cycles in $H_*(B\Gamma)$ are modelled by oriented \mathcal{P} -manifolds.

We can choose the singularity types in $\mathcal{P} = (P_1, P_2, \ldots)$ with

$$\Omega^{SO}_*$$
/torsion $\cong \mathbb{Z}[[P_1], [P_2], \ldots]$

The following is a special case of a theorem of Baas.

Theorem

Let Γ be of odd order. Then there is a canonical isomorphism

$$\widetilde{\Omega}^{SO,\mathcal{P}}_*(B\Gamma)\cong\widetilde{H}_*(B\Gamma;\mathbb{Z}).$$

In other words:

Homological cycles in $H_*(B\Gamma)$ are modelled by oriented \mathcal{P} -manifolds.

A similar result holds for K-homology and Spin bordism.

In addition we can assume that each P_i carries a positive scalar curvature metric h_i .

In addition we can assume that each P_i carries a positive scalar curvature metric h_i . Let

$$H_d^+(B\Gamma) \subset H_d(B\Gamma) \cong \widetilde{\Omega}_d^{SO,\mathcal{P}}(B\Gamma)$$

be represented by bordism classes $[f : A^d \to B\Gamma]$ where A is a closed oriented \mathcal{P} -manifold carrying a distinguished metric of positive scalar curvature.

In addition we can assume that each P_i carries a positive scalar curvature metric h_i . Let

$$H_d^+(B\Gamma) \subset H_d(B\Gamma) \cong \widetilde{\Omega}_d^{SO,\mathcal{P}}(B\Gamma)$$

be represented by bordism classes $[f : A^d \to B\Gamma]$ where A is a closed oriented \mathcal{P} -manifold carrying a distinguished metric of positive scalar curvature.

Theorem (S. Führing, 2013; H.)

Let $M^{d \ge 5}$ be oriented, smooth, non-spin and with $\pi_1(M)$ of odd order. Then the following are equivalent.

- M carries a positive scalar curvature metric.
- $\phi_*([M]) \in H^+_d(B\pi_1(M)).$

In addition we can assume that each P_i carries a positive scalar curvature metric h_i . Let

$$H_d^+(B\Gamma) \subset H_d(B\Gamma) \cong \widetilde{\Omega}_d^{SO,\mathcal{P}}(B\Gamma)$$

be represented by bordism classes $[f : A^d \to B\Gamma]$ where A is a closed oriented \mathcal{P} -manifold carrying a distinguished metric of positive scalar curvature.

Theorem (S. Führing, 2013; H.)

Let $M^{d \ge 5}$ be oriented, smooth, non-spin and with $\pi_1(M)$ of odd order. Then the following are equivalent.

- M carries a positive scalar curvature metric.
- $\phi_*([M]) \in \mathrm{H}^+_d(B\pi_1(M)).$

A similar result holds for spin manifolds and positive K-homology. For \mathcal{P} -manifolds M we can prove a corresponding statement only in the non-spin case.

Compute the positive homology of $B\Gamma$ for $\Gamma = \mathbb{Z}/p^{k_1} \times \cdots \times \mathbb{Z}/p^{k_r}$ by induction on r.

Compute the positive homology of $B\Gamma$ for $\Gamma = \mathbb{Z}/p^{k_1} \times \cdots \times \mathbb{Z}/p^{k_r}$ by induction on r. For r = 1 we have

$$\widetilde{H}_d(B\mathbb{Z}/p^k) = egin{cases} \mathbb{Z}/p^k \ ext{for} \ d \ ext{odd} \ 0 \ ext{for} \ d \ ext{even} \ . \end{cases}$$

Compute the positive homology of $B\Gamma$ for $\Gamma = \mathbb{Z}/p^{k_1} \times \cdots \times \mathbb{Z}/p^{k_r}$ by induction on r. For r = 1 we have

$$\widetilde{H}_d(B\mathbb{Z}/p^k) = egin{cases} \mathbb{Z}/p^k \ ext{for} \ d \ ext{odd} \ 0 \ ext{for} \ d \ ext{even} \ . \end{cases}$$

Generators for d = 2m + 1 are represented by lens spaces. Hence

$$H^+_*(B\mathbb{Z}/p^k) = H_{>1}(B\mathbb{Z}/p^k).$$

Compute the positive homology of $B\Gamma$ for $\Gamma = \mathbb{Z}/p^{k_1} \times \cdots \times \mathbb{Z}/p^{k_r}$ by induction on r. For r = 1 we have

$$\widetilde{H}_d(B\mathbb{Z}/p^k) = egin{cases} \mathbb{Z}/p^k \ ext{for} \ d \ ext{odd} \ 0 \ ext{for} \ d \ ext{even} \ . \end{cases}$$

Generators for d = 2m + 1 are represented by lens spaces. Hence

$$H^+_*(B\mathbb{Z}/p^k) = H_{>1}(B\mathbb{Z}/p^k).$$

For $\Gamma' = \Gamma \times \mathbb{Z}/p^{\ell}$ consider the Künneth exact sequence

 $0 \to H_*(B\Gamma) \otimes H_*(B\mathbb{Z}/p^\ell) \xrightarrow{\alpha} H_*(B\Gamma') \xrightarrow{\beta} \operatorname{Tor}(H_*(B\Gamma), H_*(B\mathbb{Z}/p^\ell)) \to 0.$

Compute the positive homology of $B\Gamma$ for $\Gamma = \mathbb{Z}/p^{k_1} \times \cdots \times \mathbb{Z}/p^{k_r}$ by induction on r. For r = 1 we have

$$\widetilde{H}_d(B\mathbb{Z}/p^k) = egin{cases} \mathbb{Z}/p^k ext{ for } d ext{ odd} \\ 0 ext{ for } d ext{ even }. \end{cases}$$

Generators for d = 2m + 1 are represented by lens spaces. Hence

$$H^+_*(B\mathbb{Z}/p^k) = H_{>1}(B\mathbb{Z}/p^k).$$

For $\Gamma' = \Gamma \times \mathbb{Z}/p^{\ell}$ consider the Künneth exact sequence

 $0 \to H_*(B\Gamma) \otimes H_*(B\mathbb{Z}/p^\ell) \stackrel{\alpha}{\to} H_*(B\Gamma') \stackrel{\beta}{\to} \operatorname{Tor}(H_*(B\Gamma), H_*(B\mathbb{Z}/p^\ell)) \to 0.$

 $\blacktriangleright \alpha$ is represented by taking cartesian products of $\mathcal P\text{-manifolds}.$

Compute the positive homology of $B\Gamma$ for $\Gamma = \mathbb{Z}/p^{k_1} \times \cdots \times \mathbb{Z}/p^{k_r}$ by induction on r. For r = 1 we have

$$\widetilde{H}_d(B\mathbb{Z}/p^k) = egin{cases} \mathbb{Z}/p^k ext{ for } d ext{ odd} \\ 0 ext{ for } d ext{ even }. \end{cases}$$

Generators for d = 2m + 1 are represented by lens spaces. Hence

$$H^+_*(B\mathbb{Z}/p^k) = H_{>1}(B\mathbb{Z}/p^k).$$

For $\Gamma' = \Gamma \times \mathbb{Z}/p^{\ell}$ consider the Künneth exact sequence

- α is represented by taking cartesian products of \mathcal{P} -manifolds.
- Preimages of β are represented by Toda brackets of \mathcal{P} -manifolds.

• Let Γ_i be finite *p*-groups, i = 1, 2.

- Let Γ_i be finite *p*-groups, i = 1, 2.
- Let $c_i = [f_i : A_i \to B\Gamma] \in H_{d_i}(B\Gamma_i)$ have order p^k .

- Let Γ_i be finite *p*-groups, i = 1, 2.
- Let $c_i = [f_i : A_i \to B\Gamma] \in H_{d_i}(B\Gamma_i)$ have order p^k .
- ► Then $\bigsqcup_{p^k} f_i : \bigsqcup_{p^k} A_i \to B\Gamma_i$ bound maps $F_i : W_i \to B\Gamma_i$.

- Let Γ_i be finite *p*-groups, i = 1, 2.
- Let $c_i = [f_i : A_i \to B\Gamma] \in H_{d_i}(B\Gamma_i)$ have order p^k .
- Then $\bigsqcup_{p^k} f_i : \bigsqcup_{p^k} A_i \to B\Gamma_i$ bound maps $F_i : W_i \to B\Gamma_i$.
- ► The Toda bracket ⟨c₁, p^k, c₂⟩ ⊂ H_{d1+d2+1}(B(Γ₁ × Γ₂)) is represented by

$$(W_1 \times A_2) \cup (A_1 \times W_2) \stackrel{(F_1 \times F_2) \cup (f_1 \times F_2)}{\longrightarrow} B\Gamma_1 \times B\Gamma_2.$$

- Let Γ_i be finite *p*-groups, i = 1, 2.
- Let $c_i = [f_i : A_i \to B\Gamma] \in H_{d_i}(B\Gamma_i)$ have order p^k .
- ▶ Then $\bigsqcup_{p^k} f_i : \bigsqcup_{p^k} A_i \to B\Gamma_i$ bound maps $F_i : W_i \to B\Gamma_i$.
- ► The Toda bracket ⟨c₁, p^k, c₂⟩ ⊂ H_{d1+d2+1}(B(Γ₁ × Γ₂)) is represented by

$$(W_1 \times A_2) \cup (A_1 \times W_2) \stackrel{(F_1 \times F_2) \cup (f_1 \times F_2)}{\longrightarrow} B\Gamma_1 \times B\Gamma_2.$$

• $\langle c_1, p^k, c_2 \rangle$ is well defined modulo $(c_1 \otimes H_*(B\Gamma_2)) \oplus (H_*(B\Gamma_1) \otimes c_2)$.

- Let Γ_i be finite *p*-groups, i = 1, 2.
- Let $c_i = [f_i : A_i \to B\Gamma] \in H_{d_i}(B\Gamma_i)$ have order p^k .
- ▶ Then $\bigsqcup_{p^k} f_i : \bigsqcup_{p^k} A_i \to B\Gamma_i$ bound maps $F_i : W_i \to B\Gamma_i$.
- ► The Toda bracket ⟨c₁, p^k, c₂⟩ ⊂ H_{d1+d2+1}(B(Γ₁ × Γ₂)) is represented by

$$(W_1 \times A_2) \cup (A_1 \times W_2) \stackrel{(F_1 \times F_2) \cup (f_1 \times F_2)}{\longrightarrow} B\Gamma_1 \times B\Gamma_2$$

- $\langle c_1, p^k, c_2 \rangle$ is well defined modulo $(c_1 \otimes H_*(B\Gamma_2)) \oplus (H_*(B\Gamma_1) \otimes c_2)$.
- If c_1 and c_2 are positive, then $\langle c_1, p^k, c_2 \rangle \subset H^+_{d_1+d_2+1}(B(\Gamma_1 \times \Gamma_2))$.

Interlude: Admissible products of \mathcal{P} -manifolds

- $\triangleright \ \partial_i A = A(i) \times P_i.$
- $\triangleright \ \partial_i B = B(i) \times P_i.$
- $\blacktriangleright \ \partial_i(A \times B) = (\partial_i A \times B) \cup (A \times \partial_i B).$
- $\blacktriangleright (\partial_i A \times B) \cap (A \times \partial_i B) = \partial_i A \times \partial_i B = A(i) \times B(i) \times P_i \times P_i.$

Use this region to interchange the two factors in $P_i \times P_i$

 $0 \to H_*(B\Gamma) \otimes H_*(B\mathbb{Z}/p^\ell) \xrightarrow{\alpha} H_*(B\Gamma') \xrightarrow{\beta} \operatorname{Tor}(H_*(B\Gamma), H_*(B\mathbb{Z}/p^\ell)) \to 0$

 $0 \to H_*(B\Gamma) \otimes H_*(B\mathbb{Z}/p^\ell) \stackrel{\alpha}{\to} H_*(B\Gamma') \stackrel{\beta}{\to} \operatorname{Tor}(H_*(B\Gamma), H_*(B\mathbb{Z}/p^\ell)) \to 0$

▶ a is represented by cartesian products of *P*-manifolds. These are positive, if one of the factors is positive.

- α is represented by cartesian products of *P*-manifolds. These are positive, if one of the factors is positive.
- Preimages of β are represented by Toda brackets of P-manifolds. These are positive, if both factors are positive.

- α is represented by cartesian products of *P*-manifolds. These are positive, if one of the factors is positive.
- Preimages of β are represented by Toda brackets of P-manifolds. These are positive, if both factors are positive.
- We cannot show positivity of Toda brackets involving homology classes of degree 1.

- α is represented by cartesian products of *P*-manifolds. These are positive, if one of the factors is positive.
- Preimages of β are represented by Toda brackets of P-manifolds. These are positive, if both factors are positive.
- We cannot show positivity of Toda brackets involving homology classes of degree 1.
- ► Hence we cannot show that all *p*-atoral classes in H_{*}(BΓ') are positive.

- α is represented by cartesian products of *P*-manifolds. These are positive, if one of the factors is positive.
- Preimages of β are represented by Toda brackets of P-manifolds. These are positive, if both factors are positive.
- We cannot show positivity of Toda brackets involving homology classes of degree 1.
- ► Hence we cannot show that all *p*-atoral classes in H_{*}(BΓ') are positive.
- We need to restrict attention to specific atoral classes in $H_*(B\Gamma')$.

▶ Recall that Brown-Peterson theory for the prime *p* has coefficients

$$BP_* = \mathbb{Z}_{(p)}[v_1, v_2, \ldots]$$

where $|v_i| = 2p^i - 2$.

▶ Recall that Brown-Peterson theory for the prime *p* has coefficients

$$BP_* = \mathbb{Z}_{(p)}[v_1, v_2, \ldots]$$

where $|v_i| = 2p^i - 2$.

• Unitary bordism MU localized at p is a sum of suspensions of BP.

▶ Recall that Brown-Peterson theory for the prime *p* has coefficients

$$BP_* = \mathbb{Z}_{(p)}[v_1, v_2, \ldots]$$

where $|v_i| = 2p^i - 2$.

Unitary bordism MU localized at p is a sum of suspensions of BP.
We construct a homology theory BPL with coefficients

$$\mathrm{BPL}_* := \langle \mathbf{v}_1, \mathbf{v}_2, \ldots \rangle_{\mathbb{Z}_{(p)}} = \mathrm{BP}_* / \mathrm{I}^2,$$

where $I = (v_1, v_2, ...)$, and get a factorization of homology theories

$$\Omega^{SO}_*(-) \to \mathrm{BPL}_*(-) \to H_*(-).$$

▶ Recall that Brown-Peterson theory for the prime *p* has coefficients

$$BP_* = \mathbb{Z}_{(p)}[v_1, v_2, \ldots]$$

where $|v_i| = 2p^i - 2$.

Unitary bordism MU localized at p is a sum of suspensions of BP.
We construct a homology theory BPL with coefficients

$$\mathrm{BPL}_* := \langle \mathbf{v}_1, \mathbf{v}_2, \ldots \rangle_{\mathbb{Z}_{(p)}} = \mathrm{BP}_* / \mathrm{I}^2,$$

where $I = (v_1, v_2, ...)$, and get a factorization of homology theories

$$\Omega^{SO}_*(-) \to \mathrm{BPL}_*(-) \to H_*(-).$$

Theorem (H.)

Let Γ be an abelian p-group, p odd. Then all p-atoral classes in the image of $BPL_*(B\Gamma) \rightarrow H_*(B\Gamma)$ are positive.