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Conjecture (M. Gromov / B. Lawson 1980, J. Rosenberg 1986)

A closed connected manifold Md of dimension d ≥ 5 admits a positive
scalar curvature metric, if and only if a generalized index invariant on M
vanishes.

Remarks:

I The conjecture holds in the simply connected case (Gromov-Lawson,
1980; Stolz, 1992).

I If the universal cover M̃ is not spin, then the conjecture predicts that
M admits a positive scalar curvature metric.

I The conjecture is false in general for infinite fundamental groups
(Schick, 1998).

I If M is spin, then a stable version of the GLR conjecture holds, if the
Baum-Connjecture conjecture holds for π1(M) (Stolz 1994).

I For finite fundamental groups no counterxample is known.
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Special case: Odd order fundamental groups

Conjecture (J. Rosenberg, 1986)

Let π1(Md≥5) be finite of odd order. Then M admits a positive scalar
curvature metric, if and only if the universal cover M̃ admits a positive
scalar curvature metric.

Known cases (p an odd prime):

I All p-Sylow subgroups of π1(M) cyclic (Rosenberg, 1986;
Kwasik-Schultz, 1990).

I π1(M) = (Z/p)r and M is p-atoral, (Botvinnik-Rosenberg 2001, H.
2016).

Definition
Md is p-atoral, if for all k ≥ 1 and c1, . . . , cd ∈ H1(M;Z/pk)

〈c1 ∪ · · · ∪ cd , [M]〉 = 0 ∈ Z/pk .

Note that M is p-atoral, if π1(M) is abelian and dimM > rk(π1(M)).
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Odd order fundamental groups

Definition
M is p-atoral, if for all k ≥ 1 and c1, · · · , cd ∈ H1(M;Z/pk)

〈c1 ∪ . . . ∪ cd , [M]〉 = 0 ∈ Z/pk .

I “0-toral” manifolds do not admit positive scalar curvature metrics: In
the spin case one uses the index obstruction; in the non-spin case one
uses the minimal hypersurface technique (if available).

I For d ≥ 5 one can construct a p-toral Md from the d-torus T d by
surgery, killing (p · Z)d ⊂ Zd = π1(T d). Open problem (p odd): Does
this Md admit a positive scalar curvature metric?

Theorem (H.)

Let Md≥5 be a closed connected oriented non-spin manifold. Let π1(M) be
abelian of odd order and let M be atoral (for all odd p). Then M carries a
metric of positive scalar curvature.
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Construction machine I: Positive bordism
For a topological space X let

Ωd(X ) := {f : Nd → X}/bordism

be the (oriented or spin) bordism of X .

X

f1 f2

N1 N2

Let
Ω+
d (X ) ⊂ Ωd(X )

only contain [f : N → X ], N admitting a positive scalar curvature metric.

Bernhard Hanke 5 / 17



Construction machine I: Positive bordism
For a topological space X let

Ωd(X ) := {f : Nd → X}/bordism

be the (oriented or spin) bordism of X .

X

f1 f2

N1 N2

Let
Ω+
d (X ) ⊂ Ωd(X )

only contain [f : N → X ], N admitting a positive scalar curvature metric.

Bernhard Hanke 5 / 17



Construction machine I: Positive bordism
For a topological space X let

Ωd(X ) := {f : Nd → X}/bordism

be the (oriented or spin) bordism of X .

X

f1 f2

N1 N2

Let
Ω+
d (X ) ⊂ Ωd(X )

only contain [f : N → X ], N admitting a positive scalar curvature metric.
Bernhard Hanke 5 / 17



Bordism principle (Gromov-Lawson, Rosenberg-Stolz)
Let Md≥5 be a closed oriented manifold and let φ : M → Bπ1(M) be the
classifying map of the universal cover of M. Then the following assertions
are equivalent.

I M carries a positive scalar curvature metric.

I [φ : M → Bπ1(M)] ∈ Ω+
d (Bπ1(M)).

Bπ1(M)

f φ

(N, g0) M

Here we assume:

I M is spin and we work with spin bordism or

I M̃ is not spin and we work with oriented bordism.
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Computation: Elementary abelian groups

Let L2m+1 = S2m+1/(Z/p) denote the standard lens space.

Theorem (H., 2016)

The reduced bordism Ω̃∗(B(Z/p)r ) is generated by “generalized products
of lens spaces”

[L2m1+1 × · · · × L2mk+1 → B(Z/p)k
Bφ−→ B(Z/p)r ] .

Here 1 ≤ k ≤ r and
φ : (Z/p)k → (Z/p)r

is some group homomorphism. In particular all atoral classes in
Ω̃∗(B(Z/p)r ) are positive.

Unfortunaley Ω∗(Bπ1(M)) is very difficult to compute in general.
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Manifolds with Baas-Sullivan singularities
Fix a family of closed smooth manifolds P = (P0 = ∗,P1,P2, . . .)
(“singularity types”). A P-manifold A consists of the following data:

I A family (A(ω))ω⊂{0,...,n} of manifolds with corners together with
decompositions into codimension-1-faces

∂A(ω) = ∂0A(ω) ∪ · · · ∪ ∂nA(ω) ,

where ∂iA(ω) = ∅, if i ∈ ω.
I Diffeomorphisms ∂iA(ω) ∼= A(ω, i)× Pi for i /∈ ω, such that for

i , j /∈ ω with i 6= j we have

∂i (∂jA(ω)) = ∂iA(ω) ∩ ∂jA(ω) = ∂j(∂iA(ω))

and the identifications

∂j(∂iA(ω)) ∼= ∂jA(ω, i)× Pi
∼= A(ω, i , j)× Pj × Pi

∂i (∂jA(ω)) ∼= ∂iA(ω, j)× Pj
∼= A(ω, j , i)× Pi × Pi

coincide after applying the interchange map Pj × Pi → Pi × Pj .

∂0A is the boundary of A. If A is compact and ∂0A = ∅, then A is closed.
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Distinguished metrics on P-manifolds

∂jA = A(j)× Pj

∂iA = A(i)× Pi ∂iA ∩ ∂jA = A(i , j)× Pi × Pj

A(∅)

Now assume that the singularity types Pi , i ≥ 1 are equipped with positive
scalar curvature metrics hi .

Definition
A distinguished metric on a P-manifold A is a family of metrics g(ω) on
A(ω), ω ⊂ {0, . . . , n}, such that the following holds:

I For i /∈ ω we have g(ω)|∂iA(ω) = g(ω, i)× hi .

I For i ∈ ω, i 6= 0, the metric g(ω)⊕ hi is of positive scalar curvature.
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Theorem (H.)

Let A be a compact P-manifold, possibly with boundary. Then the space
of distinguished metrics on A is non-empty and contractible.

λg(i , j)⊕ hi ⊕ λhj

λg(i , j)⊕ λhi ⊕ λhj

λg(j)⊕ λhj

λg(i)⊕ λhi

λg(i)⊕ hi λg(i , j)⊕ hi ⊕ hj

λg(i , j)⊕ λhi ⊕ hj

λg(j)⊕ hj

λg(∅)

A

∂iA

∂jA

Choose λ� 0 and add a wide collar to A for interpolation.
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Bordism with Baas-Sullivan singularities and homology

We can choose the singularity types in P = (P1,P2, . . .) with

ΩSO
∗ /torsion ∼= Z[[P1], [P2], . . .]

The following is a special case of a theorem of Baas.

Theorem

Let Γ be of odd order. Then there is a canonical isomorphism

Ω̃SO,P
∗ (BΓ) ∼= H̃∗(BΓ;Z).

In other words:

Homological cycles in H∗(BΓ) are modelled by oriented P-manifolds.

A similar result holds for K -homology and Spin bordism.
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Construction machine II: Positive homology
In addition we can assume that each Pi carries a positive scalar curvature
metric hi .

Let
H+
d (BΓ) ⊂ Hd(BΓ) ∼= Ω̃SO,P

d (BΓ)

be represented by bordism classes [f : Ad → BΓ] where A is a closed
oriented P-manifold carrying a distinguished metric of positive scalar
curvature.

Theorem (S. Führing, 2013; H.)

Let Md≥5 be oriented, smooth, non-spin and with π1(M) of odd order.
Then the following are equivalent.

I M carries a positive scalar curvature metric.

I φ∗([M]) ∈ H+
d (Bπ1(M)).

A similar result holds for spin manifolds and positive K -homology. For
P-manifolds M we can prove a corresponding statement only in the
non-spin case.
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Computing positive homology

Compute the positive homology of BΓ for Γ = Z/pk1 × · · · × Z/pkr by
induction on r .

For r = 1 we have

H̃d(BZ/pk) =

{
Z/pk for d odd

0 for d even .

Generators for d = 2m + 1 are represented by lens spaces. Hence

H+
∗ (BZ/pk) = H>1(BZ/pk).

For Γ′ = Γ× Z/p` consider the Künneth exact sequence

0→ H∗(BΓ)⊗ H∗(BZ/p`)
α→ H∗(BΓ′)

β→ Tor(H∗(BΓ),H∗(BZ/p`))→ 0.

I α is represented by taking cartesian products of P-manifolds.

I Preimages of β are represented by Toda brackets of P-manifolds.
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0→ H∗(BΓ)⊗ H∗(BZ/p`)
α→ H∗(BΓ′)

β→ Tor(H∗(BΓ),H∗(BZ/p`))→ 0.

I α is represented by taking cartesian products of P-manifolds.

I Preimages of β are represented by Toda brackets of P-manifolds.

Bernhard Hanke 13 / 17



Computing positive homology

Compute the positive homology of BΓ for Γ = Z/pk1 × · · · × Z/pkr by
induction on r . For r = 1 we have

H̃d(BZ/pk) =

{
Z/pk for d odd

0 for d even .

Generators for d = 2m + 1 are represented by lens spaces. Hence

H+
∗ (BZ/pk) = H>1(BZ/pk).

For Γ′ = Γ× Z/p` consider the Künneth exact sequence
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Toda brackets

I Let Γi be finite p-groups, i = 1, 2.

I Let ci = [fi : Ai → BΓ] ∈ Hdi (BΓi ) have order pk .

I Then
⊔

pk fi :
⊔

pk Ai → BΓi bound maps Fi : Wi → BΓi .

I The Toda bracket 〈c1, pk , c2〉 ⊂ Hd1+d2+1(B(Γ1 × Γ2)) is represented
by

(W1 × A2) ∪ (A1 ×W2)
(F1×f2)∪(f1×F2)−→ BΓ1 × BΓ2.

I 〈c1, pk , c2〉 is well defined modulo (c1 ⊗ H∗(BΓ2))⊕ (H∗(BΓ1)⊗ c2).

I If c1 and c2 are positive, then 〈c1, pk , c2〉 ⊂ H+
d1+d2+1(B(Γ1 × Γ2)).
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Interlude: Admissible products of P-manifolds

I ∂iA = A(i)× Pi .

I ∂iB = B(i)× Pi .

I ∂i (A× B) = (∂iA× B) ∪ (A× ∂iB).

I (∂iA× B) ∩ (A× ∂iB) = ∂iA× ∂iB = A(i)× B(i)× Pi × Pi .

(∂iA× ∂iB)× [0, 1)2

Use this region to interchange the two factors in Pi × Pi

(∂iA× B)× [0, 1)

(A× ∂iB)× [0, 1)

(A× ∂iB)× [0, 1)

(∂iA× B)× [0, 1)
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Computing positive homology: Induction step

0→ H∗(BΓ)⊗ H∗(BZ/p`)
α→ H∗(BΓ′)

β→ Tor(H∗(BΓ),H∗(BZ/p`))→ 0

I α is represented by cartesian products of P-manifolds. These are
positive, if one of the factors is positive.

I Preimages of β are represented by Toda brackets of P-manifolds.
These are positive, if both factors are positive.

I We cannot show positivity of Toda brackets involving homology
classes of degree 1.

I Hence we cannot show that all p-atoral classes in H∗(BΓ′) are
positive.

I We need to restrict attention to specific atoral classes in H∗(BΓ′).
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Linear Brown-Peterson theory

I Recall that Brown-Peterson theory for the prime p has coefficients

BP∗ = Z(p)[v1, v2, . . .]

where |vi | = 2pi − 2.
I Unitary bordism MU localized at p is a sum of suspensions of BP.

We construct a homology theory BPL with coefficients

BPL∗ := 〈v1, v2, . . .〉Z(p)
= BP∗/I

2,

where I = (v1, v2, . . .), and get a factorization of homology theories

ΩSO
∗ (−)→ BPL∗(−)→ H∗(−).

Theorem (H.)

Let Γ be an abelian p-group, p odd. Then all p-atoral classes in the image
of BPL∗(BΓ)→ H∗(BΓ) are positive.

Bernhard Hanke 17 / 17



Linear Brown-Peterson theory
I Recall that Brown-Peterson theory for the prime p has coefficients

BP∗ = Z(p)[v1, v2, . . .]

where |vi | = 2pi − 2.

I Unitary bordism MU localized at p is a sum of suspensions of BP.

We construct a homology theory BPL with coefficients

BPL∗ := 〈v1, v2, . . .〉Z(p)
= BP∗/I

2,

where I = (v1, v2, . . .), and get a factorization of homology theories

ΩSO
∗ (−)→ BPL∗(−)→ H∗(−).

Theorem (H.)

Let Γ be an abelian p-group, p odd. Then all p-atoral classes in the image
of BPL∗(BΓ)→ H∗(BΓ) are positive.

Bernhard Hanke 17 / 17



Linear Brown-Peterson theory
I Recall that Brown-Peterson theory for the prime p has coefficients

BP∗ = Z(p)[v1, v2, . . .]

where |vi | = 2pi − 2.
I Unitary bordism MU localized at p is a sum of suspensions of BP.

We construct a homology theory BPL with coefficients

BPL∗ := 〈v1, v2, . . .〉Z(p)
= BP∗/I

2,

where I = (v1, v2, . . .), and get a factorization of homology theories

ΩSO
∗ (−)→ BPL∗(−)→ H∗(−).

Theorem (H.)

Let Γ be an abelian p-group, p odd. Then all p-atoral classes in the image
of BPL∗(BΓ)→ H∗(BΓ) are positive.

Bernhard Hanke 17 / 17



Linear Brown-Peterson theory
I Recall that Brown-Peterson theory for the prime p has coefficients

BP∗ = Z(p)[v1, v2, . . .]

where |vi | = 2pi − 2.
I Unitary bordism MU localized at p is a sum of suspensions of BP.

We construct a homology theory BPL with coefficients

BPL∗ := 〈v1, v2, . . .〉Z(p)
= BP∗/I

2,

where I = (v1, v2, . . .), and get a factorization of homology theories

ΩSO
∗ (−)→ BPL∗(−)→ H∗(−).

Theorem (H.)

Let Γ be an abelian p-group, p odd. Then all p-atoral classes in the image
of BPL∗(BΓ)→ H∗(BΓ) are positive.

Bernhard Hanke 17 / 17



Linear Brown-Peterson theory
I Recall that Brown-Peterson theory for the prime p has coefficients

BP∗ = Z(p)[v1, v2, . . .]

where |vi | = 2pi − 2.
I Unitary bordism MU localized at p is a sum of suspensions of BP.

We construct a homology theory BPL with coefficients

BPL∗ := 〈v1, v2, . . .〉Z(p)
= BP∗/I

2,

where I = (v1, v2, . . .), and get a factorization of homology theories

ΩSO
∗ (−)→ BPL∗(−)→ H∗(−).

Theorem (H.)

Let Γ be an abelian p-group, p odd. Then all p-atoral classes in the image
of BPL∗(BΓ)→ H∗(BΓ) are positive.

Bernhard Hanke 17 / 17


