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Objectives

The goal of this project is to study the inaudible properties
of the G-invariant spectrum. We will:
• Define the G-invariant spectrum of the Laplacian on an
orbit space M/G

• Generalize the Sunada-Pesce-Sutton technique to the
G-invariant setting

• Construct pairs of isospectral non-isometric orbit spaces
• Study the geometry of these spaces to identify inaudible
properties

Introduction

When M is a compact Riemannian manifold one considers the
eigenvalues of the Laplace-Beltrami operator ∆, i.e. those real
numbers λ for which there exists a solution to the equation

∆(f ) = λf, f ∈ C∞(M).
These eigenvalues form a discrete sequence of non-negative real
numbers which we refer to as the spectrum ofM . Given a com-
pact subgroup of the isometry group G ≤ Isom(M) we con-
sider the subsequence of eigenvalues that correspond to eigen-
functions which are constant on the G-orbits, again counting
multiplicities. We will refer to this subsequence as the G-
invariant spectrum of M . Given closed subgroups Hi ≤ G for
i ∈ {1, 2} we say that the quotient spaces M/H1 and M/H2
are isospectral if the Hi-invariant spectra are equal.

We are interested in the following inverse spectral questions:
What information about the singular set of an orbit spaceM/G
is encoded in its G-invariant spectrum? In particular, can one
hear the existence of non-orbifold singularities, i.e. whether or
not an orbit space is an orbifold? We note that the negative
inverse spectral results from the manifold and orbifold settings
hold in the more general setting of orbit spaces. It is there-
fore known that isotropy type [7] and the order of the maximal
isotropy groups [6] are inaudible.

Sunada Technique

Negative inverse spectral results are realized by studying pairs of
isospectral non-isometric spaces. The celebrated Sunada tech-
nique [8] provides a systematic method for producing such pairs.
We generalize this technique to the G-invariant setting:

Definition: Two representations ρ1 : G → GL(V1) and
ρ2 : G→ GL(V2) of a Lie group G are said to be equivalent if
there exists a vector space isomorphism T : V1 → V2 such that
ρ2(g) ◦ T = T ◦ ρ1(g) for every g ∈ G.

Definition: Closed subgroups H1, H2 of a compact Lie group
G are said to be representation equivalent if the quasi-regular
representations IndGH1

(1H1) and IndGH2
(1H2) are equivalent.

Theorem: (G-invariant Sunada-Pesce-Sutton technique) Let
M be a compact Riemannian manifold and G ≤ Isom(M) a
compact Lie group. Suppose H1, H2 ≤ G are closed, represen-
tation equivalent subgroups. Then the orbit spaces M/H1 and
M/H2 are isospectral in the sense that the Hi-invariant spectra
of the Laplacian on M are equal.

Proof of Theorem B

We first apply principal isotropy reduction which yields the fol-
lowing smooth SRF isometries (note that these isometries do
not preserve the spectra):

O1 = S11/U(3) = S7/U(2)
O2 = S11/(Sp(1)× SO(4)) = S7/(Sp(1)×O(2)).

It is shown in [4, Thm 1] that S7/U(2) is isometric to S3/Z2,
the 3-hemisphere of constant sectional curvature 4.

We show that the slice representation of the action is non-polar
at points v = (v1, 0, 0) ∈ S7 from row D of Table 2, allowing us
to conclude by [5, Theorem 1.1] that the image of this stratum is
a non-orbifold point. The slice representation of the action at v
is polar if and only if its restriction to the connected component
of the identity is polar, cf. [4, Section 2.4]. We therefore consider
the action of Sp(1) × SO(2) on S7 which acts with isotropy
Id × SO(2) at v = (v1, 0, 0) ∈ S7. The orbit through such a
point is S3 and its normal space is C2.

Main Results

Theorem A: Let the subgroups H1 = U(3) and H2 = Sp(1) × SO(4) of U(6) ≤ Isom(S11) act on S11 via the embeddings
given below. We have that the orbit spaces S11/H1 and S11/H2 are isospectral yet non-isometric.

Theorem B: The orbit space S11/H1 is smoothly SRF isometric to S3/Z2, a hemisphere of constant sectional curvature, whereas
S11/H2 admits a non-orbifold point and therefore has unbounded sectional curvature. We conclude that constant sectional
curvature and the presence of non-orbifold singularities are inaudible properties of the G-invariant spectrum.

Proof of Theorem A

Fix embeddings where A ∈ U(3) acts on C6 = C3 ⊕ C3 as
(A, Ā) and (B,C) ∈ Sp(1)× SO(4) acts on C6 = C2 ⊕ C4

as (B,C). Then [3, Theorem 1.5] shows that H1 and H2 are
representation equivalent as subgroups of SU(6) ≤ Isom(S11).
Isospectrality then follows immediately from the generalized
Sunada technique.

The induced circle action is z · (z1, z2) = (zz1, zz2), which has
trivial fixed point set and is therefore not polar [2, Prop 6.8].
Note that the slice representation at points from row B of the
S7/U(2) table is a polar action. The orbit of such a point is
again S3 and the normal space is again a copy of C2. However
now the slice representation is given by z · (z1, z2) = (z1, zz2)
which has fixed point set C× {0} and is a polar action.

Table 1: O1 = S7/U(2)
Row Isotropy qcodim Points
A Id 0 v1 6= z · v̄2
B U(1) 1 v1 = z · v̄2

v = (v1, v2) ∈ S7 ⊂ C2 ⊕ C2 and z ∈ C

Table 2: O2 = S7/(Sp(1)×O(2))
Row Isotropy qcodim Points
A Id× Id 0 v1 6= 0, v2 6= λ · v3
B Id×O(1) 1 v1 6= 0, v2 = λ · v3
C Sp(1)× Id 1 v1 = 0, v2 6= λ · v3
D Id×O(2) 3 v1 6= 0, v2 = v3 = 0
E Sp(1)×O(1) 2 v1 = 0, v2 = λ · v3
v = (v1, v2, v3) ∈ S7 ⊂ C2 ⊕ C⊕ C and λ ∈ R

Discussion

Although S11/U(3) and S3/Z2 are smoothly SRF isometric, we
can not conclude that these spaces are isospectral. Indeed, di-
rect computation demonstrates that the Neumann spectrum on
S3/Z2 is distinct from the U(3)-invariant spectrum on S11.

From the tables we can also conclude that isotropy type, maxi-
mal isotropy dimension, and the set of quotient codimensions of
the strata are inaudible properties of the G-invariant spectrum.

The fact that constant sectional curvature is not determined by
the G-invariant spectrum should be viewed in light of the pos-
itive spectral results in the manifold setting, where analysis of
the asymptotic expansion of the heat trace has shown that con-
stant sectional curvature is an audible property of the Laplace
spectrum for manifolds of dimension less than six.
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Abstract

Present research paper focuses on the study of the grav-
itational field of Reisnerr-Nordström distorted metric. The
technique of six dimensional formalism making an eigen
equation gives rise to some decisive conclusions for the
Gaussian curvature of Reisnerr-Nordström soliton. Further,
we comparatively analyse the results for two and three di-
mensional hyper-surfaces.

1. Introduction

We have studied the concept of Ricci Soliton for the space-
time of general relativity due to all important role of Ricci
soliton in differential geometry and relativity. Hamilton de-
fines a family gλ = g(λ;x) of Riemann metrics on a n-
dimensional (n ≥ 3) smooth manifold M with parameter
λ ranging in a time interval J ⊂ R including zero is called
a Ricci flow if the Hamilton equations ∂g0

∂λ = −2Ric0 of the
Ricci flow (cf. [6], [7]) for g0 = g(0) and the Ricci tensor Ric0
of the g0 are satisfied. Corresponding to self similar solu-
tion of above equation, the notion of the Ricci soliton pre-
vails, which is defined as a metric g0 satisfying the equation
−2Ric0 = £ξg0 + 2kg0 for vector field ξ on Vn and a constant
k. The Ricci soliton is said to be steady (static) if k = 0,
shrinking if k < 0 and expanding if k > 0. The metric g0
is called a gradient Ricci soliton if ξ = ∇φ i.e., gradient of
some function φ.
For n-dimensional Riemannian manifold we can write gen-
eral equation showing Ricci Soliton as

Rij −
1

2
£ξgij = kgij (1)

Many applications of Ricci solitons are found in the lit-
erature, as one can see that Baleanu et. al. [4] ob-
tain soliton equation for nonlinear Schrodinger equation
(NNLSE). In fact they report the optical soliton solutions
of NNLSE with parabolic law nonlinearity and time de-
pendent coefficients which are the terms of velocity diper-
sion, linear and nonlinear terms and also non-local one.
M.M. Akbar and E. Woolger [2] developed some exam-
ples for Ricci soliton. Corresponding to charged black
hole metric (Reisnerr-Nordström black hole) Ali and Ah-
san [3] developed a function equipped with metric ten-
sor gij which solves the Einstein-free scalar field system
satisfying equation (1). The Reisnerr-Nordström metric
ds2 = gijdx

idxj ≡ dr2 + h2(r)dΩ2
k using the integrability

conditions and taking f ′(r) = B
[h(r)]n−1

for B = constant.

The soliton so developed for charged black hole is

ds∗2 = dr2 + (Ar2)(dθ2 + sin2θdφ2)− A
√

2dt2 (2),

while the original metric of a charged black hole (Reisnerr-
Nordström metric) is given by ds∗2 = −Adt2 + A−1dr2 +
r2dθ2 + r2sin2θdφ2 where A = ((r2 + e2 − 2mr)/r2).

In this paper we have worked on the geometry of charged
metric and then elaborated the notions for its solitons in de-
tail. By using the 6-dimensional formalism, the characteris-
tic values of λ-tensor (i.e. RAB − λgAB) has been given in
this paper and an example of canonical form of the system
is shown, also characterization of spacetime due to sym-
metric tensor RAB is done . Further, the cases of 2 and
3-dimension for Reisnerr-Nordström soliton are discussed,
in which Gaussian curvature is calculated and shown its
dependence on characteristic value of λ-tensor. (For more
see [8], [10] )

2. Components of Christoffel symbol and Riemann
Tensor

The non-zero components of the metric tensor, the
Christoffel symbol and Riemann Curvature tensor for the
metric (2) in spherical coordinates xα ≡ (r, θ, φ, t) are
given by (for formulas see [1] )

g11 = 1, g44 = −((r2 + e2 − 2mr)/r2)
√

2,

g22 = r2 − 2mr + e2, g33 = (r2 − 2mr + e2) sin2 θ

(3)

Γ1
22 = (m− r), Γ1

33 = (m− r) sin2 θ

Γ1
44 =

√
2

(mr − e2)

r3
A
√

2−1, Γ2
12 = Γ2

21 =
r −m
Ar2

Γ2
33 = − sin θ cos θ, Γ3

13 = Γ3
31 =

r −m
Ar2

Γ3
23 = Γ3

32 = cot θ, Γ4
14 = Γ4

41 =

√
2m

r2 − 2mr

(4)

R1212 = (m2 − e2)/Ar2, R2323 = (e2 −m2) sin2 θ,

R1414 = (A
√

2(1−
√

2)r6)[2(mr − e2)2+√
2(−2mr3 + (6m2 + 3e2)r2)− 4mre2 + e4]

R3131 = ((m2 − e2) sin2 θ)/Ar2

R2424 = (−
√

2(mr − e2)(m− r)A
√

2−1)/r2

R3434 = (−
√

2(mr − e2)(m− r)sin2θA
√

2−1)r2

(5)

3. Construction of Eigen Equation

We use the 6-dimensional formalism in the pseudo-
Euclidean space R6 by making the identification [5]

ij : 23 31 12 14 24 34
A : 1 2 3 4 5 6

(6)

We also make use of the identification as

gikgjl − gilgjk = gijkl → gAB (7)

where A,B= 1, 2, 3, 4, 5, 6 and gij are the components of
the metric tensor at an arbitrary point (xα) of the Reisnerr-
Nordström soliton, whose metric is given by equation (2).
The new metric tensor gAB (A,B=1,2,3,4,5,6) is symmetric
and non-singular. The non-zero components of the metric
tensor gAB for equation (2) in 6-dimensional formalism, by
using formulation (7) are

g11(xα) = (Ar2)2 sin2 θ, g22(xα) = (Ar2) sin2 θ,

g33(xα) = (Ar2), g44(xα) = −A
√

2, g55(xα) =

−r2A
√

2+1, g66(xα) = −(r2 − 2mr) sin2 θA
√

2

(8)

Similarly, we can transform the components of the Riemann
tensor as Rijkl → RAB. Thus, for example R1212 can be
written as R33 [using identification (6)]. So now all the non-
zero components of the tensor RAB under the identification
(6) (associated components in equation (5)) are as

R11(xα) = R2323, R22(xα) = R3131, R33(xα) = R1212,
R44(xα) = R1414, R55(xα) = R2424, R66(xα) = R3434

(9)

Next by using these components calculated above in 6-
dimensional formalism we find a canonical form of the λ-
tensor RAB−λgAB, also then eigen values for the Reisnerr-
Nordström soliton (2) will be calculated by solving the so
constructed characteristic equation | RAB − λgAB |= 0.
Here, using Equations (8) and (9), the eigen values are as

λ1(r) = (e2 −m2)/A2r4 = −λ2(r) = −λ3(r)

λ4(r) =
−1

A2r6
[2(mr − e2)2+

√
2(−2mr3 + (6m2 + 3e2)r2)− 4mre2 + e4]

λ5(r) = (
√

2(mr − e2)(m− r))/Ar5 = λ6(r)

(10)

Eigenvalues λi, i = 1, 2, 3, 4, 5, 6 obtained in equa-
tion (10) depend on parameters m and r. In other words,
we can say that for these λi, the determinant of λ-tensor
RAB − λgAB vanishes. Further, we can transform the sys-
tem in canonical form for values of λi as

gA′B′ = Diag
(
1, 1, 1, − 1 − 1 − 1

)
and

RA′B′ = Diag
(
λ1(r), λ2(r), λ3(r), − λ4(r), − λ5(r), − λ6(r)

)
(11)

3.1. Result : The dimension of Jordan blocks in the canon-
ical form of Ricci tensor in Equation(11), shows that for the
Reisnerr-Nordström soliton the λ- tensor give rise to segre
type [(11)(11)] (cf., [9]) i.e. there are six lineally independent
vectors two are corresponding to Jordan block of dimension
two and next two are corresponding to next Jordan block of
dimension two and respectively these are related to λ2 = λ3
and λ5 = λ6.

3.1. Example : Two Dimensional Hypersurface
If we take θ = 0 or θ = π that is dθ = 0, the Reisnerr-

Nordström soliton, given by equation (2), reduces to the
form

∗ds2 = dr2 − ((r2 − 2mr + e2)/r2)
√

2dt2 (12)

equation (12) is a 2-dimensional surface now. The metric
tensor ∗g in coordinates xβ ≡ (r, t) is given by

∗gij(x
β) =

[
1 0

0 − ((r2 − 2mr + e2)/r2)
√

2

]
(13)

here i, j = 1, 4. Thus, the hypersurface for θ = 0 or θ = π
(i.e., ∗H0 or ∗Hπ) degenerates to two dimensional surface.
The non-zero component of Riemann curvature tensor for
equation (12) is unique and given by

∗R1414(xβ =
1

(r3 − 2mr2 + re2)2

(
r2 − 2mr + e2

r2

)√2

[2(mr − e2)2

+
√

2(−2mr3 + (6m2 + 3e2)r2)− 4mre2 + e4]

so the Gaussian curvature ∗K for surface ∗H0 or ∗Hπ is

∗K(xβ) =
1

(r3 − 2mr2 + re2)2
[2(mr − e2)2+

√
2(−2mr3 + (6m2 + 3e2)r2)− 4mre2 + e4]

(14)

3.2. Result : Equations (10) and (14) show that curva-
ture of the 2-dimensional surface of the Reisnerr-Nordström
soliton is related to the eigen value λ4(r).
3.1. Note: Similar result we have obtained for the case
2m < r < ∞, 0 < θ < π and φ = 0 in three dimension sub-
space.
3.3. Result : the curvature of the 3-dimensional space of
Reisnerr-Nordström soliton can be expressed in terms of a
λ-tensor which happens to be the solutions (eigen-values)
of the characteristic equation |RAB − λgAB| = 0.

4. Conclusion

In this paper we have worked out on gravitational field
of Reisnerr-Nordström soliton by using characteristic of λ-
tensor RAB − λgAB, we have also discussed 2 and 3-
dimensional cases. It is seen that Reisnerr-Nordström soli-
ton, given by Ali and Ahsan [3] has different geometry as
that of Reisnerr-Nordström metric. We see that the gravita-
tional field for Reisnerr-Nordström soliton is of type [(11)(11)]
[equation (11)] in Segre symbols. For Reisnerr-Nordström
soliton, not only the Gaussian curvature differ with that of
Reisnerr-Nordström metric but also the dependence of cur-
vature on eigen values of λ-tensor RAB − λgAB is not sim-
ilar. Thus, the deformation in metric (along a λ-dependent
diffeomorphism) of a spacetime is responsible for change
in geometry or gravitational field.
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Boundary value problems for general first-order
elliptic operators
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Setup

• M smooth manifold with smooth compact boundary Σ = ∂M ;
• τ interior co-vectorfield along ∂M ;
• µ smooth volume measure on M and ν induced smooth volume measure on Σ;
• (E, hE), (F, hF )→M Hermitian vector bundles over M ;
• D first-order elliptic differential operator from E to F ;
• D and D∗ complete - i.e., C∞c (E;F ) and C∞c (F ;E) dense in dom(Dmax) and

dom(D∗max) respectively.

Adapted boundary operator

Principal symbol for D and D∗: σD(x, ξ) and σD∗(x, ξ), define σ0(x) := σD(x, τ (x)).

A and Ã are adapted boundary operators (to D or D∗ respectively) on EΣ := E|Σ and
FΣ := F |Σ respectively if their principal symbols are given by:

σA(x, ξ) = σD(x, τ (x))−1 ◦ σD(x, ξ) and σÃ(x, ξ) = σD∗(x, τ (x))−1 ◦ σD∗(x, ξ).

• Exists and are elliptic differential operators of order 1.
• Unique up to an operator of order zero.
• Discrete spectrum, generally non-orthogonal eigenspaces.
• No additional assumptions on A (i.e., self-adjointness) apart from
ellipticity of D:

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Admissible cut r ∈ R: the line
lr := {ζ ∈ C : Re ζ = r} is not in
the spectrum of A (yields Ar := A−r
invertible bi-sectorial).

An admissible cut always exists.

χ±(Ar) : L2(EΣ) → L2(EΣ) spectral
projectors to the left and right of lr -
pseudos of order zero.

• Space: Ȟ(A) := χ−(Ar)H
1
2(EΣ)⊕ χ+(Ar)H−

1
2(EΣ).

• Norm: ‖u‖2
Ȟ(A) := ‖χ−(Ar)u‖2

H
1
2

+ ‖χ+(Ar)u‖2
H−

1
2
.

• Norms corresponding to two different spectral cuts are comparable.

Theorem 1: Maximal domains and Ȟ(A), Ȟ(Ã) spaces

• C∞c (E) is dense in dom(Dmax) and dom((D∗)max) with respect to corresponding
graph norms.
• The trace maps C∞c (E)→ C∞c (EΣ) and C∞c (F )→ C∞c (FΣ) given by u 7→ u|Σ
extend uniquely to surjective bounded linear maps dom(Dmax)→ Ȟ(A) and
dom((D∗)max)→ Ȟ(Ã).
• The spaces

dom(Dmax) ∩ H1
loc(EΣ) =

{
u ∈ dom(Dmax) : u|Σ ∈ H

1
2(EΣ)

}
dom((D∗)max) ∩ H1

loc(FΣ) =
{
u ∈ dom((D∗)max) : u|Σ ∈ H

1
2(FΣ)

}
.

• For all u ∈ dom(Dmax) and v ∈ dom((D∗)max),
〈Dmaxu, v〉L2(F ) − 〈u, (D

∗)maxv〉L2(E) = −
〈
σ0u|Σ, v|Σ

〉
L2(FΣ)

.

Theorem 2: Higher regularity

dom(Dmax) ∩ Hk+1
loc (E)

=
{
u ∈ dom(Dmax) : Du ∈ Hk

loc(F ) and χ+(Ar)(u|Σ) ∈ Hk+1
2(EΣ)

}
.

Proof ingredients of Theorems 1 and 2:
• Identification of dom(Ar) = dom(A∗r) by elliptic pseudo-differential operator theory.
• H∞ functional calculus for the invertible sectorial operator |Ar| := Ar sgn(Ar).
• Semigroup theory and Kato square root problem methods: ellipticity via equivalent
norm for which |Ar| is maximal-accretive.
• Maximal regularity (via H∞ functional calculus) for higher regularity.

Boundary conditions and the associated operator

A closed linear subspace B ⊂ Ȟ(A) is called a boundary condition for D. Associated
operator domains:

dom(DB,max) =
{
u ∈ dom(Dmax) : u|Σ ∈ B

}
dom(DB) =

{
u ∈ dom(Dmax) ∩ H1

loc(EΣ) : u|Σ ∈ B
}
,

and similarly for the formal adjoint D∗ with A replaced by Ã.

• For boundary condition B, the operator DB closed and between Dcc (on C∞cc (E))
and Dmax.
• Dc closed extension of Dcc, then B :=

{
u|Σ : u ∈ dom(Dc)

}
is a boundary condition

and Dc = DB,max.
• Boundary condition B ⊂ H1

2(EΣ) if and only if DB = DB,max.
• Adjoint boundary condition Bad so that Dad

B = D∗Bad:
Bad :=

{
v ∈ Ȟ(−Ã) : 〈σ0u, v〉L2(FΣ) = 0 ∀u ∈ B

}

Elliptic boundary conditions

B ⊂ H1
2(EΣ) boundary condition is called elliptic if there exists an admissible cut r ∈ R

and:
• W±, V± are mutually complementary subspaces such that

V± ⊕W± = χ±(Ar)L2(EΣ),

• W± are finite dimensional with W±,W ∗
± ⊂ H1

2(EΣ), and
• g : V−→ V+ bounded linear map with g(V

1
2
−) ⊂ V

1
2

+ and g∗((V ∗+)1
2) ⊂ (V ∗−)1

2 such
that

B = W+ ⊕
{
v + gv : v ∈ V

1
2
−

}
.

B ⊂ H1
2(EΣ) be a subspace, then the following are equivalent:

• B a boundary condition and Bad ⊂ H1
2(FΣ),

• the definition is satisfied for any admissible spectral cut r ∈ R,
• B an elliptic boundary condition.

For elliptic boundary condition B, have Bad elliptic boundary condition for D∗ and
σ∗0(Bad) = W ∗

− ⊕
{
u− g∗u : u ∈ (V ∗+)

1
2
}
.

Pseudo-local and local boundary conditions

• For classical pseudo-differential projector P of order zero (not necessarily
orthogonal), the space

B = P (H
1
2(EΣ))

is called a pseudo-local boundary condition.
• Boundary condition B ⊂ H1

2(EΣ) a local boundary condition if there exists a
sub-bundle E ′ ⊂ EΣ such that

B = H
1
2(E ′).

Theorem 3: Characterisation of pseudo-local boundary
conditions

Given a pseudo-local boundary condition B = P (H1
2(EΣ)), the following are equivalent:

• B an elliptic boundary condition,
• for admissible cut r ∈ R, the operator

P − χ+(Ar) : L2(EΣ)→ L2(EΣ)
is Fredholm,
• for admissible cut r ∈ R, the operator

P − χ+(Ar) : L2(EΣ)→ L2(EΣ)
is elliptic classical pseudo of order zero.

If B is a pseudo-local boundary condition and DBu is smooth, then u is
smooth up to the boundary.
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Abstract

It is shown that a gradient Ricci almost soliton on a
warped product, (Bn ×h Fm, g, f, λ) whose potential func-
tion f depends on the fiber, is either a Ricci soliton or λ is
not constant and the warped product, the base and the fiber
are Einstein manifolds, which admit conformal vector fields.
Assuming completeness, a classification is provided for the
Ricci almost solitons on warped products, whose potential
functions depend on the fiber. An important decomposition
property of the potential function in terms of functions which
depend either on the base or on the fiber is proven. In the
case of a complete Ricci soliton, the potential function de-
pends only on the base.

1. Basic Concepts and Notation

A (gradient) Ricci almost soliton (M, g, f, λ) is a semi-
Riemannian manifold (M, g) with smooth functions f, λ :
M → R satisfying the following fundamental equation

Ric +∇∇f = λg, (1)

The function f : M → R is called potential function. This
concept was introduced in [5], generalizing the notion of
Ricci solitons.

Consider two semi-Riemannian manifolds (Bn, gB) and
(Fm, gF ). Given a smooth function h : B → (0,+∞), we
define the warped product B ×h F with warping function
h, as the product manifold B × F endowed with the metric
g = gB + h2gF , defined by

g = π∗gB + (h ◦ π)2σ∗gF , (2)

where π : B × F → B and σ : B × F → F are the canonical
projections. So B ×h F = (B × F, g) is a semi-Riemannian
manifold of dimension n + m.

In what follows we will denote the connection, the Ricci
curvature and other tensors defined using the metric gB
with a subscript B, as ∇B, RicB. Similar notation will be
considered for the metric gF .

2. Characterization and Consequences

The theorem bellow says that when the potential function
depends on the fiber then the fundamental equation (1) on
a warped product reduces to a system of equations on the
base and on the fiber, in the following way:

Theorem 1 Let Bn ×h Fm be a non trivial warped product
where the base (Bn, gB) or the fiber (Fm, gF ) can be ei-
ther a Riemannian or a semi-Riemannian manifold. Then
(Bn×h Fm, g, f, λ) is a Ricci almost soliton, with f non con-
stant on F if, and only if,

f = β + hϕ, (3)

where ϕ : F → R is not constant and β : B → R are differ-
entiable functions such that
∇B∇Bh + ahgB = 0,

RicB +∇B∇Bβ = [h−1(∇Bh)β − bh−1 + (n− 1)a]gB,

∇F∇Fϕ + (cϕ + b)gF = 0,

RicF = (m− 1)cgF ,

(4)
for some constants a, b, c ∈ R, the function λ is given by

λ = h−1(∇Bh)β − bh−1 + (m + n− 1)a− ahϕ, (5)

and the constants a and c are related to h by the equation

|∇Bh|2 + ah2 = c. (6)

As an application of Theorem 1 we can prove that for a
complete warped product Ricci solitons (that is, when λ is
a constant) the potential function does not depend on the
fiber.

Corollary 1 Let (B×hF, g, f, λ) be a Ricci soliton on a com-
plete non trivial semi-Riemannian warped product. Then f
does not depend on the fiber.

Corollary 1 was considered also in [3] with a different ap-
proach. It shows that examples of Ricci solitons on com-
plete semi-Riemannian warped products occur when the
potential function depends only on the base.
Our next result characterizes Ricci almost solitons i.e.,
equation (1), on warped products, when the potential func-
tion depends only on the base.

Theorem 2 Let Bn ×h Fm be a non trivial warped product
where the base (Bn, gB) or the fiber (Fm, gF ) can be ei-
ther a Riemannian or a semi-Riemannian manifold. Then
(Bn×h Fm, g, f, λ) is a Ricci almost soliton, with f constant
on F if, and only if,

RicB +∇B∇Bf −mh−1∇B∇Bh = λgB,

λh2 = h(∇Bh)f − (m− 1)|∇Bh|2 − h∆Bh + c(m− 1),

RicF = c(m− 1)gF ,
(7)

for some constant c ∈ R.

Remark 1 The first and third equations in Theorem 1 say
that the corresponding gradient fields are conformal vector
fields.

Remark 2 The fourth equation of Theorem 1 and the third
equation of Theorem 2 show that the fiber is an Eisntein
manifold in both cases.

3. Rigidity when f Depends on the Fiber

We say that a semi-Riemannian manifold (M, g) is a
Brinkmann space if it admits a parallel light like vector field
X, called a Brinkmann field.
We say that a vector field X is improper if there is an open
set where X is light like. If there is no such an open set the
field is said a proper vector field.

Theorem 3 Let Bn ×h Fm, n ≥ 2, be a non trivial warped
product where the base (Bn, gB) is a semi-Riemannian
manifold and the fiber (Fm, gF ) can be either a Riemannian
or a semi-Riemannian manifold. Then (Bn×h Fm, g, f, λ) is
a Ricci almost soliton, with f non constant on F and∇Bh an
improper vector field on B if, and only if, λ is constant and
f = β + hϕ, where ϕ : F → R non constant and β : B → R
are smooth functions satisfying

g(∇Bh,∇Bβ) = λh + b,

RicB +∇B∇Bβ = λgB,

∇F∇Fϕ + bgF = 0

for a constant b ∈ R, B is a Brinkmann space with ∇Bh
as a Brinkmann field and F is Ricci flat. If in addition F is
complete, then it is isometric to
1.±R× F̄m−1, where F̄ is Ricci flat, if b = 0;
2. Rmε , if b 6= 0.

The vector field ∇Bh is non homothetic if its local flow does
not act by translations. The next result shows the rigidity
of a Ricci almost soliton on a warped product when the
potential function depends on the fiber and ∇Bh is a non
homothetic vector field.

Theorem 4 Let Bn ×h Fm be a non trivial warped product
where the base (Bn, gB) or the fiber (Fm, gF ) can be either
a Riemannian or a semi-Riemannian manifold and suppose
that (Bn ×h Fm, g, f, λ) is a Ricci almost soliton with f non
constant on F and ∇Bh a proper vector field. Then
1. If ∇Bh is homothetic, then λ is constant, i.e., it is a Ricci

soliton;
2. If ∇Bh is non-homothetic, then λ is not constant, B, F

and Bn ×h Fm are Einstein manifolds such that

RicB×hF = (n + m− 1)ag,

RicB = (n− 1)agB,

RicF = (m− 1)cgF ,

where the constants a 6= 0 and c are related to h by
|∇Bh|2 + ah2 = c. Moreover, ∇f and ∇Bh are confor-
mal gradient fields on Bn×h Fm and on Bn, respectively,
satisfying

∇∇f + (af + a0)g = 0,

∇B∇Bh + ahgB = 0,

λ = −af + a(m + n− 1)− a0,

for some constant a0 ∈ R.

A direct corollary of both Theorem 3 and Theorem 4 is the
following rigidity result. Other rigidity results can be found
in [1], [2] or [5].

Corollary 2 If (Bn ×h Fm, g) is a warped product Ricci al-
most soliton, with f non constant on F, then one of the fol-
lowing holds
1. λ is constant, i.e., it is a Ricci soliton;
2. λ is not constant, (Bn ×h Fm, g) is an Einstein manifold,
∇Bh is a proper and non-homothetic vector field and ∇f
is conformal.

4. Classification when f Depends on the Fiber

Einstein manifolds carrying conformal vector fields are clas-
sified and, using this classification, we will give a classifica-
tion of complete Ricci almost solitons.
In order to state our classification result for Ricci almost soli-
tons on complete semi-Riemannian warped products, we
consider the following classes of n-dimensional complete
semi-Riemannian Einstein manifolds:
Class I

1. R×Nn−1 where (N, gN ) is a complete semi-Riemannian
Einstein manifold.

2. A Brinkman space of dimension n ≥ 3, i.e. a semi-
Riemannian manifold (Mn, g) admitting a parallel light like
vector field.

Class II

1. Snε (1/
√
c), when 0 ≤ ε ≤ n−2; the covering of Snn−1(1/

√
c)

when ε = n−1 and the upper part of Snn(1/
√
c) when ε = n

with c > 0.

2. Hnε (1/
√
|c|), when 2 ≤ ε ≤ n − 1; the covering of

Hn1 (1/
√
|c|) when ε = 1 and the upper part of Hn0 (1/

√
|c|)

when ε = 0 , with c < 0.

3. (R × Nn−1,±dt2 + cosh2(
√
|c| t)gN ), where (Nn−1, gN ) is

a semi-Riemannian Einstein manifold.

4. (R×Nn−1,±dt2± e2
√
|c| tgN ), where (Nn−1, gN ) is a Rie-

mannian Einstein manifold,

The following result classifies the complete Ricci almost
solitons on warped products, whose potential functions de-
pend on the fiber.

Theorem 5 Let Mn+m = Bn ×h Fm be a non trivial warped
product where (Bn, gB) or (Fm, gF ) can be either a Rie-
mannian or a semi-Riemannian manifold. Then (Bn ×h
Fm, g, f, λ) is a complete Ricci almost soliton with f non
constant on F if, and only if, there exist constants a 6=
0, a0, c ∈ R such that f = a−1(−λ + a(m + n − 1) − a0)
and

1. if n = 1 then B1 is isometric to (R, sgn a dt2)

h =

{
Ae
√
|a|t if c = 0,√

|ca|[cosh(
√
|a|t + B)] if c 6= 0,

(8)

where A 6= 0 and B ∈ R. Moreover, M is an Einstein
manifold satisfying RicM = (m + n− 1)ag and if m ≥ 2, F
is an Einstein manifold satisfying RicF = (m− 1)cgF .

2. If n ≥ 2 and m ≥ 2 then

•Mn+m is an Eisntein manifold isometric either to a man-
ifold of Class II.1 (resp. II.2) when a > 0 (resp. a < 0)
and f has some critical point or it is isometric to a man-
ifold of Class II.3 or II.4 if f has no critical points.
•B is a complete Einstein manifold isometric either to

a manifold of Class II.1 (resp. Class II.2) and index
εB = n (resp. εB = 1) if a > 0 (resp. a < 0) and h has
critical points or to a manifold of Class II.3 or II.4 if h
has no critical points.
• F is a complete Einstein manifold isometric to either
Rnε , or to a manifolds of Class I when c = 0 and it is
isometric to a manifold of Class II when c 6= 0.

3. Moreover, Fm, m ≥ 1 is positive definite (resp. negative
definite) if Bn, n ≥ 1 is positive definite (resp. negative
definite).
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The study of real hypersurfaces of Kählerian mani-
folds has been an important subject in geometry of
submanifolds, especially when the ambient space is
a complex space form. However, for arbitrary codi-
mension, there are only a few recent results (see [2]
for more details).

If a complex hypersurface Mn of a Kähler mani-
fold Mn+2 satisfies the condition (∗), then Mn is
a totally geodesic submanifold.

Let M be a complete m–dimensional CR subman-
ifold of maximal CR dimension of a complex space

form M
m+k

2 . If the condition (∗) is satisfied, then
one of the following three statements holds:
–M is a completem–dimensional CR submanifold
of CR dimension m−1

2
of a complex Euclidean

space, and then M is isometric to Em, Sm or
S2p+1 × Em−2p−1;
–M is a completem–dimensional CR submanifold
of CR dimension m−1

2
of a complex projective

space and then M is isometric to MC
p,q , for some

p, q satisfying 2p+ 2q = m− 1;
–M is a completem–dimensional CR submanifold
of CR dimension m−1

2
of a complex hyperbolic

space and thenM is isometric toM∗m orMH
p,q(r),

for some p, q satisfying 2p+ 2q = m− 1.

Let M be a connected submanifold of real codi-
mension two of a complex Euclidean space If M
satisfies the condition (∗), thenM is one of the fol-
lowing:
(1) n-dimensional sphere Sn,
(2) n-dimensional Euclidean space En,
(3) product manifold of an r-dimensional sphere
and an (n− r)-dimensional Euclidean space Sr ×
En−r , where r is an even number.
(4) CR submanifold of CR dimension n−2

2
with

λ = 0.

Let Mn be a submanifold of real codimension two
of a complex Euclidean space with λ = 0 which
satisfies the condition (∗).
(I) If there exists a totally geodesic hypersurface
M ′ of C

n+2

2 such that M ⊂ M ′, then M is one
of the following:
(1) n-dimensional hyperplane En,
(2) product manifold of an odd-dimensional sphere
and a Euclidean space: S2p+1 ×En−2p−1.

(II) If there exists a totally umbilical hypersurface
M ′ of C

n+2

2 , such that M ⊂ M ′, then M is a
product of two odd-dimensional spheres.

If for a real submanifold M of a complex manifold (M,J), the holomorphic tangent space Hx(M) =
JTx(M) ∩ Tx(M) has constant dimension with respect to x ∈ M , the submanifold M is called a CR
submanifold and the constant complex dimension is called the CR dimension of M . In [2] we collected the
elementary facts about complex manifolds and their submanifolds and introduced the reader to the study of
CR submanifolds of complex manifolds, especially complex projective space.

We assume that M satisfies the condition

h(FX, Y ) + h(X,FY ) = 0, for allX,Y ∈ T (M) (∗).

h is the second fundamental form of a submanifold and F is the structure tensor induced from the natural
almost complex structure of a complex manifold.

In a complex projective space there exists neither
totally geodesic nor totally umbilical real hypersur-
faces. The surfaceMC

p,q , called ”generalized equa-
tor”, is a quotient manifold (S2p+1×S2q+1)/S1.
It is real hypersurface of a complex projective
space, introduced by Lawson [5].

CR submanifolds Mm of maximal CR di-
mension of complex space forms M

m+k

2 ,i.e.
dimHx(M) = m− 1:

JıX = ı FX + u(X)ξ ,

Jξ = −ıU ,
Jξa = Pξa, a = 1, . . . , k − 1,

F 2X = −X + u(X)U.

Submanifolds of real codimension two of csf

JıX = ıFX + u1(X)ξ1 + u2(X)ξ2,

Jξ1 = −ıU1 + λξ2,

Jξ2 = −ıU2 − λξ1,
F 2X = −X + u1(X)U1 + u2(X)U2.

Let Mn be a submanifold of real codimension two
of a complex projective space, which is not its to-
tally geodesic complex hypersurface and letM sat-
isfy the condition (∗). If there exists a real hyper-
surface MC

p,q such that M ⊂ MC
p,q , then M is

congruent to π(S2p+1×S2r+1×S2s+1), where
p+ q + s = n+1

2
.
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1 Introduction

In 1976, K. Uhlenbeck showed that for a class
of second order elliptic operators Lb defined
on a compact Riemannian manifoldM , the fol-
lowing generic property holds: all eigenvalues
are simple, that is, multiplicity 1.
As an application, all eigenvalues of ∆g are
simple, for a generic metric g on M .
In this poster, we want to show that this same
generic property holds for the operator drifting
Laplacian

∆+ < ∇η,∇ > (1)

for a generic drifting function η ∈ B = {η :

M → R, η > 0} ⊂ C∞(M), that is, there ex-
ists a residual set Γ ⊂ B such that for η ∈ Γ

the operator

Lη = ∆+ < ∇η,∇ > (2)

has all eigenvalues simple, that is, multiplicity
equal to 1 also.

2 Preliminaries

Definition 1 A Fredholm operator F : M → N

is a linear map between Banach spaces with
closed image and finite dimensional kernel
and cokernel.

Definition 2 The index of a Fredholm operator
is the dimension of the kernel minus the cok-
ernel

Definition 3 A Fredholm map is a differen-
tiable map between Banach manifolds which
has a Fredholm operator as derivative at ev-
ery point.

Definition 4 By a residual set we mean a set
of second category.

Theorem 1 (Sard-Smale) Let F : M → N be
a Fredholm map between separable Banach
manifolds. If F is Cr for r > indexF , then the
regular values of F form a residual set in N .

Definition 5 (Transversality) A map f : M →
N is transversal to a submanifold Z ⊂ N , if for
all x ∈M with f (x) ∈ Z

(df )x(TxM) + Tf (x)Z = Tf (x)N .

Theorem 2 (Transversality Theorem 1) Let
ϕ : H × B → E be a Ck map, H,B and
E Banach manifolds with H e E separable.
If 0 is a regular value of ϕ and ϕb = ϕ(, b) is
a Fredholm map of index < k, then the set
{b ∈ B : 0 is a regular value of ϕb} is residual
in B.

3 Basic theory of elliptic operators

It is a result of basic theory of elliptic operators
that if the coefficients of an elliptic operator L
are Ck then:
1. The maps (L + λI) : Hp

k(M) ∩ Hp
1,0(M) →

Hp
k−2(M), k ≥ 1, are Fredholm of index zero;

2. The eigenfunctions of L are solutions u ∈
H1,0(M) of (L + λI)u = 0, and by regularity
theory they also will be in Hp

k(M);
3. The eigenspaces are finite dimensional;
4. If L is self-adjoint then the eigenfunctions

span L2(M).

4 The drifting Laplacian

Let (M, g) be a connected compact Rieman-
nian manifold, provided with a weighted mea-
sure dm = ε−ηdM , where dM is the original
volume form of M , that is, dM is the volume
form associated to metric g.
The function η belongs to the open set B =

{η : M → R, η > 0} ⊂ C∞(M).
We consider the following second order ellpitic
operators:

η → Lη = ∆+ < ∇η,∇ > (3)

where ∆ = ∆g, ∇ = ∇g e < ., . >=< ., . >g.
Lη is called η − Laplacian or drifting Lapla-
cian, and η is called drifting function.
We also highlight the following properties of
the drifting Laplacian that are of extreme im-
portance for the remainder of this work:

(i)η − Laplacian is formally self-adjoint on
Hilbert space L2(M,dm);

(ii)η − Laplacian is elliptic.

5 Auxiliary Lemmas

We consider the unitary sphere:

Spk = {u ∈ Hp
k(M) ∩H1,0(M) :

∫
M

u2dm = 1}

and the following map ϕ : Spk × R × B →
Hp
k−2(M) given by

ϕ(u, λ, η) = (Lη + λI)u

from where we can consider the following map
ϕη = ϕ(., ., η) where η is fixed.

Lemma 1ϕη is a Fredholm map of index zero.

Lemma 2 (u, λ, η) ∈ ϕ−1(0) if and only if u is
an eigenfunction of Lη with eigenvalue λ. The
u lies in a one dimensional eigenspace if and
only if u is a regular point of ϕη.

Lemma 3Lη has one-dimensional eigenspaces
if and only if 0 is a regular value of ϕη.

Lemma 4 0 is a regular value of ϕ.

6 Main Result

Theorem 3 The set {η ∈ B : Lη has one-
dimensional eigenspaces } is residual in B. In
other words, the eigenvalues of Lη are generi-
cally simple.

Proof: By Lemma 1, ϕη is Fredholm of index
zero and by Lemma 4 0 is regular value of ϕ.
Then, by Transversality Theorem 1

{η ∈ B : 0 é valor regular de ϕη}
is residual in B. Since, by Lemma 3, 0 is
regular value of ϕη if and only if Lη has one-
dimensional eigenspaces, then the set

{η ∈ B : Lη has one-dimensional
eigenspaces }

is residual in B.
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Abstract
This work is a study of Laplace operator and its eigenstructure over

the equilateral triangle under Dirichlet boundary condition. The strategy is
to solve the corresponding partial differential equation making a specific
change of coordinate system in order to apply the method of separation of
variables. It also is made a link between the equilateral triangle and the
hexagonal flat torus. We follow closely the Mcartin work [8].

1 Introduction

The study of Laplace operator on manifolds has several
applications on physics, engineering and other fields.
For example, the heat equation, variation rates, infor-
mations about the topology of surfaces and others geo-
metric aspects.
Even in 2-dimensional manifolds such as the equilat-

eral triangle, the analysis of the Laplacian spectrum is
not simple and it is necessary to developed specific
methods to study it.
We consider the following partial differential equation

with Dirichlet boundary condition:

(a) ∆T + k2T = 0, (b) T �∂D= 0 (1)

where ∆ denotes the usual Laplacian of euclidean
spaces, the numbers k2 are called eigenvalues and the
real functions T defined over the equilateral triangle D
are called eigenfunctions. D has side h and inner ra-
dius r as identified bellow:

2 Discussion and Results

We can relate the Cartesian coordinates (x, y) ∈ D
to triples (u, v, w) given by the relations u = r − y,
v =

√
3

2

(
x− h

2

)
+1

2 (y − r) andw =
√

3
2

(
h
2 − x

)
+1

2 (y − r)
in order to obtain a new coordinate system (ξ, η) which
has origin at the center of D. We define ξ = u and
η = v − w.
Once we have new coordinates, we can rewrite equa-

tion (1)(a) as:

∂2

∂ξ2
T + 3

∂2

∂η2
T + k2T = 0 (2)

We will denote T (ξ, η) as the eigenfunction T ex-
pressed on the system (ξ, η). Then we claim that
T (ξ, η) is eigenfunction if and only if Ts(ξ, η) =
T (ξ,η)+T (ξ,−η)

2 and Ta(ξ, η) = T (ξ,η)−T (ξ,−η)
2 are eigenfunc-

tions (note that T = Ts + Ta, Ts(ξ, η) = Ts(ξ,−η) and
Ta(ξ, η) = −Ta(ξ,−η) ). They are symmetric and anti-
symmetric functions considered over the u axis, respec-
tively. Therefore it is possible to study Ts and Ta individ-
ually. The next step is to apply the separable variables
method on T i.e. T (ξ, η) = f (ξ)g(η). It’s the same that

suppose Ts(ξ, η) = f (ξ)gs(η) and Ta(ξ, η) = f (ξ)ga(η),
where gs and ga are symmetric and antisymmetric parts
of g, respectively. Applying it to the equation (2), we ob-
tain two ODE’s. So taking account the Dirichlet bound-
ary condition we get the following solutions Ts and Ta:

Tm,ns (u, v, w) = sin
(
πl
3r(u + 2r)

)
cos

(
π(m−n)

9r (v − w)
)

+ sin
(
πm
3r (u + 2r)

)
cos

(
π(n−l)

9r (v − w)
)

+ sin
(
πn
3r (u + 2r)

)
cos

(
π(l−m)

9r (v − w)
)

Tm,na (u, v, w) = sin
(
πl
3r(u + 2r)

)
sin

(
π(m−n)

9r (v − w)
)

+ sin
(
πm
3r (u + 2r)

)
sin

(
π(n−l)

9r (v − w)
)

+ sin
(
πn
3r (u + 2r)

)
sin

(
π(l−m)

9r (v − w)
)

k2
m,n = 2

27

[
π
r

]2
(l2 + m2 + n2) = 4

27

[
π
r

]2
(m2 + mn + n2)

for m,n ∈ Z, satisfying l + m + n = 0; |l| 6= |m| 6=
|n| 6= |l| and in a such way that any eigenfunction is
linear combination of those.
Another important result is that if we consider D̃ an

equilateral triangle obtained by reflection over one of
the sides of D, its eigenfunctions are almost the same.
They differ each other only in a change of signal. Then,
we can construct rectangles and parallelograms formed
by equilateral triangles identifying the changed signals
on Ts and Ta, as in the following pictures:

In the solid lines at the pictures we have the annul-
ment of the eigenfunction while in the dashed lines we
have the annulment of its normal derivative (this fact oc-
curs specially on Ts eigenfunctions because its normal
derivative has a similar behaviour to the Ta eigenfunc-
tions).
This is a way to relate the solutions of the triangle

to the solutions of a rectangle containing specific inner
lines and boundary conditions.
By using the results showed above we can imply that

we get a completeness of eigenfunctions at the triangle
problem.
If we repeat this reflection process throughout the

whole plan, it forms a lattice by parallelograms which
are congruent to H (see next picture). So we can
extend the eigenfunctions of the triangle to the whole
plane as eigenfunctions of the hexagonal torus as we
will see in the next.

Let Γ := Ze1 + Ze2 an additive group and R the equiv-
alence relation over R2: xRy whenever exists g ∈ Γ
such that x = y + g. Therefore, the eigenfunctions
are constant in each equivalence class and the rela-
tion R identifies all the parallelograms congruent to H
as a unique parallelogram. In other words, each par-
allelogram congruent to H contains one representative
element of each equivalence class.
The quotient R2/Γ formed by this equivalence relation

is known as hexagonal flat torus which has structure
of a Riemann manifold and is locally isometric to R2.
Hence it is possible to understand the notion of Lapla-
cian, eigenfunctions and eigenvalues on the flat torus in
a similar way comparing to euclidean domains.
The link between R2/Γ and D is that every eigenfunc-

tion on D can be reflected throughout the parallelogram
H with the same inner line conditions. Therefore they
are related to eigenfunctions on R2/Γ. On the other
hand, if we impose on R2/Γ these inner lines to its
corresponding conditions then we obtain eigenfunctions
related to eigenfunctions on D. In this sense, we can
see that the triangle spectrum is a subset of the spec-
trum of the torus.

3 Concluding remarks

The main goal of this work was to show a relation
between the different settings exploring the symme-
tries between them. We exhibited a usual construc-
tive process that obtain eigenvalues and eigenfunctions
on equilateral triangle, establishing a link to a particular
flat torus. We hope to apply similar procedure in non-
euclidean manifolds.
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Abstract

It is shown that a hypersurface of a space form is the ini-
tial data for a solution to the mean curvature flow by parallel
hypersurfaces if, and only if, it is isoparametric. By solving
an ordinary differential equation, explicit solutions are given
for all isoparametric hypersurfaces of space forms. In par-
ticular, for such hypersurfaces of the sphere, the exact col-
lapsing time into a focal submanifold is given in terms of its
dimension, the principal curvatures and their multiplicities.

1. Basic Concepts and Notation

In what follows, Mn+1(κ) will be a space form of con-
stant sectional curvature κ ∈ {−1, 0, 1}, i. e., Rn+1 if κ = 0,
Sn+1 ⊂ Rn+2 if κ = 1 and Hn+1 ⊂ Ln+2 if κ = −1,
where Ln+2 is the Lorentzian space. We consider F :
Mn→Mn+1(κ) a hypersurface immersed in the space form
Mn+1(κ), with the induced metric g(v, w) = 〈dF (v), dF (w)〉,
for all vector fields v, w tangent to M . If F (M) is oriented
and N is a unit normal vector field, the second fundamental
form of F (M) is given by h (v, w) = −〈dN(v), dF (w)〉. Let
e1, ..., en be orthonormal vector fields which are principal
directions and let κ1, ..., κn, be the principal curvatures of
F (M) i.e., g(eı, e) = δı and h(eı, e) = κıδı, for 1 ≤ ı,  ≤ n.
We will denote the mean curvature by H =

∑n
ı=1 κı. When

the principal curvatures κı of F (M) do not depend on x,
for all ı = 1, ..., n, we say that F (M) is an isoparametric
hypersurface. From now on, we consider connected hyper-
surfaces.

Let F : Mn → Mn+1(κ) be an oriented hypersurface with
a unit normal vector field N . A one parameter family of hy-
persurfaces F̂ : Mn × I → Mn+1(κ), I ⊂ R, is a solution to
the mean curvature flow (MCF) with initial condition F , if

∂

∂t
F̂ (x, t) = Ĥ(x, t)N̂(x, t),

F̂ (x, 0) = F (x),
(1)

where Ĥt(.) = Ĥ(., t) =
∑n
i=1 k̂

t
i is the mean curvature and

N̂ t(.) = N̂(., t) is a unit normal vector field of F̂ t(M). When
F is a minimal hypersurface i.e. H = 0, then the family
F̂ (t, x) = F (x) gives a trivial solution to the MCF.

In this paper, we consider a special type of solution to the
MCF by imposing that the hypersurfaces F̂ t to be parallel.
We first introduce the following notation

c(ξ) =

 1, if κ = 0,
cos(ξ), if κ = 1,
cosh(ξ), if κ = −1,

and s(ξ) =

 ξ, if κ = 0
sin(ξ), if κ = 1,
sinh(ξ), if κ = −1,

(2)
Definition 1 Let F̂ : Mn × I → Mn+1(κ) be a solution to the
mean curvature flow in Mn+1(κ) with initial condition F :Mn→
Mn+1(κ). We say F̂ is a solution to the mean curvature flow by
parallel hypersurfaces if there is a function ξ : I → R, such that
ξ(0) = 0 and

F̂ t(x) = c
(
ξ(t)
)
F (x) + s

(
ξ(t)
)
N(x), (3)

for all t ∈ I , where c : R → R and s : R → R are the functions
defined in (2).

2. Main result

Theorem 1 Let F : Mn → Mn+1(κ) be a hypersurface in
a space form Mn+1(κ). Then F (M) is the initial data of a
solution to the MCF by parallel hypersurfaces if, and only if,
F (M) is an isoparametric hypersurface.

As a consequence of the proof of this theorem, given in
Section 3, one obtains the MCF of the isoparametric hyper-
surfaces of space forms by solving an ordinary differential
equation. Namely, we prove the following
Corollary 1 Let F : Mn → Mn+1(κ) be an isoparametric
hypersurface, with unit normal vector field N and principal
curvatures κı. Then the solution to the MCF with initial data
F is given by (3) where s and c are the functions defined in
(2) and ξ(t) is the solution of

ξ′(t) =
n∑
ı=1

κs (ξ (t)) + κıc (ξ (t))

c (ξ (t))− κıs (ξ (t))
, ξ(0) = 0.

As an application, of Corollary 1, we obtain explicitly the
MCF by parallel hypersurfaces of the isoparametric hyper-
surfaces of Rn+1 and of Hn+1 in Propositions 1-3. The
MCFs for non minimal hypersurface of Sn+1 with g distinct
curvatures are given in Propositions 4-8.

We without the result for isoparametric hypersurfaces of
the Euclidean space since it is well known.

3. MCF of Isoparametric Hypersurfaces of the
Hyperbolic Space

Proposition 1 Let F : Rn → Hn+1 ⊂ Ln+2 be the im-
mersion of a horosphere in the hyperbolic space, with unit
normal vector field N and all principal curvatures κ = ±1.
Then, the solution to the MCF with initial data F is

F̂ t(x) = cosh(nt)F (x) + κ sinh(nt)N(x), (4)

for all t ∈ R. Moreover, F̂ t(Rn) is a horosphere for all t ∈ R.
Proposition 2 Let F : Mn → Hn+1 ⊂ Ln+2 be the im-
mersion of a totally umbilic hypersurface in the hyperbolic
space, with unit normal vector field N and all principal cur-
vatures equal to κ where κ 6∈ {0,±1}. Then, the solution to
the MCF with initial condition F (M) is given by (3) where

cosh(ξ(t)) =
κ2e−nt −

√
1− κ2 + κ2e−2nt

κ2 − 1

and

sinh ξ(t) =
κe−nt − κ

√
1− κ2 + κ2e−2nt

κ2 − 1
.

1. If 0 < |κ| < 1, then F̂ t is defined for t ∈ R and it con-
verges to a totally geodesic n-dimensional manifold when
t→ +∞.

2. If |κ| > 1 then F̂ t is defined for t ∈ (−∞, t∗), where
t∗ = 1

2n ln
(

κ2

κ2−1

)
and it collapses to a point at t∗.

Proposition 3 Let F : Sm1 × Hm2 → Hn+1 ⊂ Ln+2 be the
immersion of a cylinder in the hyperbolic space, with m1
principal curvatures equal to κ1 > 1 and m2 principal curva-
tures equal to κ2, such that κ1κ2 = 1. Then the solution to
the MCF with initial condition F , is given by (3) where

cosh(2ξ(t)) =
a`(t)− 2

√
q(t)

a2 − 4
, sinh(2ξ(t)) =

2`(t)− a
√
q(t)

a2 − 4
.

q(t) = `2(t)− a2 + 4; `(t) = (a− b)e−2nt + b,

a = κ1 + κ2 and b = −m1 −m2

n
(κ1 − κ2).

F̂ t is defined for all t ∈ (−∞, t∗) where t∗ = 1
2n ln

m1κ
2
1+m2

m1(κ21−1)
.

and it collapses into an m2-dimensional focal submanifold
at t∗.

...

Figure 1: MCF of Hyperbolic Cylinder

4. MCF of Isoparametric Hypersurfaces of the
Sphere

We will now consider the isoparametric hypersurfaces of
the sphere. Munzner [4] showed that the number g of dis-
tinct principal curvatures, for an isoparametric hypersurface
Mn ⊂ Sn+1, is restricted to be 1, 2, 3, 4 or 6.
Proposition 4 Let F : Mn → Sn+1 ⊂ Rn+2 be the immer-
sion of a totally umbilic hypersurface in Sn+1, with unit nor-
mal vector field N and all principal curvatures are equal to
κ 6= 0. Then the solution to the MCF with F as initial data,
is given by (3) where

cos(ξ(t)) =
κ2ent +

√
q(t)

κ2 + 1
, sin(ξ(t)) =

κent − κ
√
q(t)

κ2 + 1
,

and
q(t) = κ2 + 1− κ2e2nt.

F̂ t is defined for all t ∈ (−∞, t∗) where t∗ = 1
2n ln

(
κ2+1
κ2

)
and

it collapses to a point at t∗.
Proposition 5 Let F : Slr1 × Sn−lr2 → Sn+1 ⊂ Rn+2 be an
isoparametric hypersurface in Sn+1, with two distinct princi-
pal curvatures κ1 and κ2 with multiplicities l and n − l re-
spectively. Then κ1κ2 = −1 and assuming the immersion
is not minimal, we may consider κ1 >

√
(n− l)/l > 1. The

solution to the MCF with initial data F , is F̂ t given by (3)
where

cos(2ξ(t)) =
a q(t) + 2

√
a2 + 4− q2(t)

a2 + 4
,

sin(2ξ(t)) =
2q(t)− a

√
a2 + 4− q2(t)

a2 + 4
and

a = κ1 + κ2, b = −
n− 2l

n
(κ1 − κ2), q(t) = (a + b)e2nt − b.

F̂ t is defined for all t ∈ [0, t∗), where t∗ = 1
2n ln

(
l(κ21+1)

l(κ21+1)−n

)
and it collapses into an (n − l)-dimensional focal submani-
fold of F at t∗.

...

Figure 2: MCF of Hopf Torus

Proposition 6 Let F : Mn → Sn+1 ⊂ Rn+2 be a non
minimal isoparametric hypersurface in Sn+1, with unit nor-
mal vector field N and three distinct principal curvatures.
κ1, κ2, κ3. Then all the principal curvatures have the same
multiplicity m, where m = 1, 2, 4 or 8, i.e. n = 3m. The
solution to the MCF with initial data F , is F̂ t given by (3)
where

cos(3ξ(t)) =
a2e9mt + 3

√
q(t)

a2 + 9
, sin(3ξ(t)) =

a(3e9mt −
√
q(t))

a2 + 9
,

a = κ1 + κ2 + κ3 =
3κ1(κ

2
1 − 3)

3κ21 − 1
, q(t) = a2 + 9− a2e18mt.

F̂ t is defined for all t ∈ [0, t∗), where t∗ =
1

18m
ln

(
1 +

9

a2

)
and it collapses into a 2m-dimensional focal submanifold of
F (M) at t∗.
Proposition 7 Let F : Mn → Sn+1 ⊂ Rn+2 be a non min-
imal isoparametric hypersurface of Sn+1, with unit normal
vector field N and four distinct principal curvatures κj, with
multiplicities mj, j = 1, 2, 3, 4. Then we may consider

κ1 > 1, κ2 =
κ1 − 1

κ1 + 1
, κ3 =

−1
κ1
, κ4 =

−(κ1 + 1)

κ1 − 1
,

where the multiplicities mj satisfy m1 = m3 and m2 = m4,
n = 2(m1+m2). The solution to the MCF with initial data F ,
is F̂ t given by (3) where

cos(4ξ(t)) =
aq(t) + 4

√
a2 + 16− q2(t)

a2 + 16
,

sin(4ξ(t)) =
4q(t)− a

√
a2 + 16− q2(t)

a2 + 16
,

a =

4∑
j=1

κj =
κ41 − 6κ21 + 1

κ1(κ2 − 1)
, b =

2(m1 −m2)(κ
2
1 + 1)2

nκ1(κ
2
1 − 1)

and q(t) = (a + b)e4nt − b.
Moreover, F̂ t is defined for all t ∈ [0, t∗), where t∗ =

1

4n
ln

(
b +
√
a2 + 16

a + b

)
and it collapses into (m1 + 2m2)-

dimensional focal submanifold of F (M).
Proposition 8 Let F : Mn → Sn+1 ⊂ Rn+2 be a non
minimal isoparametric hypersurface in Sn+1, with unit nor-
mal vector field N and six distinct principal curvatures κj,
j = 1, ..., 6. Then n = 6m, where m = 1, 2, and we may
consider κ1 >

√
3. The solution to the MCF with initial data

F , is F̂ t given by (3) where

cos(6ξ(t)) =
a2e36mt + 6

√
q(t)

a2 + 36
, sin(6ξ(t)) =

a
(
6e36mt −

√
q(t)
)

a2 + 36
,

where

a =

6∑
j=1

κj and q(t) = a2 + 36− a2e72mt.

which is defined for all t ∈ [0, t∗), where t∗ =
1

72m
ln

(
1 +

36

a2

)
. Moreover, the solution collapses into a

5m-dimensional focal submanifold of F (M) at t∗.

References

[1] Abresch, U., Isoparametric hypersurfaces with four and
six distinct principal curvatures . Math. Ann. 264 (1983),
283-302.

[2] Colding, T. H.; Minicozzi II, W. P.; Pedersen, E. K., Mean
curvature flow. Bull. Amer. Math. Soc. (N.S.) 52 (2015),
no. 2, 297-333. MR 3312634

[3] Liu, X.; Terng, C. -L., The mean curvature flow for
isoparametric submanifolds, Duke Math. J., 147 (2009),
no. 1, 157-179.

[4] Münzner, H. F. Isoparametricsche Hyperflächen in
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0. ABSTRACT

In this work we study a parabolic equation involving the infinity-Laplacian

from the point of view of Lie symmetries. We consider its radial form and, by

using the method of separation of variables, we derive another one involving

the Aronsson’s nonlinear operator. All Lie point symmetries of these equa-

tions are found and by using the invariance group we are able to find exact

solutions for the considered equations, some of them expressed in terms of the

hypergeometric function.

1. INTRODUCTION/MOTIVATION

Let D ⊆ R2 be a convex region and u ∈ C1(D)∩C0(D). For any n ∈ N, let

In(u) :=

(∫
D

|∇u|2n
) 1

2n

, (1)

where ∇u := (ux, uy). By supposing that u is a solution of the problem

minIn(u) then u satisfies the equation

|∇u|2(n−2)
[

1

2(n− 1)
|∇u|2(uxx + uyy) + u2xuxx + 2uxuyuxy + u2yuyy

]
= 0.

(2)

If ∇u 6= 0 and n tends to infinity, equation (2) becomes

u2xuxx + 2uxuyuxy + u2yuyy = 0, (3)

which was first derived by Aronsson [2]. Since then, such equation has been

subject of intense research, see [3], [4], [11], [12], [15], [16] and references

therein.

Some important results of [3]: A(Φ) = Φ2
xΦxx + 2ΦxΦyΦxy + Φ2

yΦyy =
1
2grad{(grad Φ)2} ·grad Φ. The condition A(Φ) = 0 means that |grad Φ| is

constant along every trajectory of the vector field grad Φ (called stream-

lines). If u is a solution of A(u) = 0 the curvature of a streamline is
±|grad(|grad u|)|
|grad u|

.

(Lemma 1.) Let u(x, y) satisfy A(u) = 0 in a domain D and let

grad u 6= 0 in D. If C is a streamline of u in D, then or the curvature

of C is 6= 0 at all points of C or C is a straight line. Consequently, the

streamlines of u are convex curves and straight lines.

(Theorem 3.) Let Φ(x, y) satisfy A(Φ) = 0, and grad Φ 6= 0. Consider

the surface S : z = Φ(x, y) and the projections on this surface of the

streamlines of Φ(x, y). These image curves are both asymptotic curves

on S and helices with a common axis. namely the z-axis.

Equation (3) is known as infinity Laplacian equation, Aronsson’s Euler equa-

tion and Aronsson equation. Its left side is commonly written as 4∞u =

u2xuxx + 2uxuyuxy + u2yuyy and the operator 4∞ is called infinity-Laplacian.

Some authors have been considering a parabolic equation associated with the

infinity-Laplacian. Namely, they have been studying n-dimensional versions

of the equation

ut = u2xuxx + 2uxuyuxy + u2yuyy (4)

see [14] and [20]. In the paper [12] the Lie point symmetries of (3) were stud-

ied. In addition, some group invariant solutions to (3) were also obtained.

Thus, inspired by the previous work on symmetry analysis of the Eq. (3), in

this work we apply the same approach to (4) in order to

• find the Lie point symmetries of (4);

• construct the symmetry Lie algebra associated to the vector fields which

generate the Lie point symmetries of (4);

• construct the adjoint representation of the Lie algebra associated to Eq.

(4);

• construct exact solutions of the considered equation.

2. THEORY

Let x ∈M ⊆ Rn, M open, u : M → R. A Lie point symmetry generator of

a PDE F = F (x, u, ∂u, · · · , ∂mu) = 0 of order m is a vector field

X = ξi(x, u)
∂

∂xi
+ η(x, u)

∂

∂u

on M × R such that X(m)F = 0 when F = 0 and

X(m) := X + η
(1)
i (x, u, ∂u)

∂

∂ui
+ · · · + η

(m)
i1···im(x, u, ∂u, · · · , ∂mu)

∂

∂ui1···im

η
(1)
i := Diη − (Diξ

j)uj,

η
(j)
i1···ij := Dijη

(j−1)
i1···ij−1 − (Dijξ

l)ui1···ij−1l, 2 ≤ j ≤ m,

If X ∈ g (symmetry Lie algebra associated to the vector fields which gen-

erate the Lie point symmetries of the equations we are interested) then it

generates a one-parameter subgroup {expεX}, whose corresponding vector

field on g is adX = d
dε

∣∣∣
ε=0
Ad(exp(εX))Y, Y ∈ g, where

Ad(expεX))Y = Y − ε[X, Y ] + ε2[X, [X, Y ]] + . . . .

3. RESULTS

In this sense, we shall proceed in the following way: Firstly we obtain the Lie

point symmetries of (4), which are given by the following

Theorem 1: The Lie point symmetries of Eq. (4) are generated by the

vector fields

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂t
, X4 =

∂

∂u
, X5 = y

∂

∂x
− x ∂

∂y
,

X6 = x
∂

∂x
+ y

∂

∂y
+ 2u

∂

∂u
, X7 = 2t

∂

∂t
− u ∂

∂u
.

Proof.

X = ξ1(x, y, t, u)
∂

∂x
+ ξ2(x, y, t, u)

∂

∂y
+ ξ3(x, y, t, u)

∂

∂t
+ η(x, y, t, u)

∂

∂u

ξ3xx = 0, ηxx = 0, ξ3xy = 0, ηxy = 0, ξ3xu = 0, ξ3x = 0, ηx = 0,

ξ3yy = 0, ηyy = 0, ξ3yu = 0, ξ3y = 0, ηy = 0, ξ2t = 0, ξ1t = 0, ηt = 0,

ξ3uu = 0, ξ2uu = 0, ξ1uu = 0, ξ3u = 0, ξ2u = 0, ξ1u = 0, ξ1yu+ξ2xu = 0,

ξ1y + ξ2x = 0, −2ηxu + ξ1xx = 0, −2ηyu + ξ2yy = 0,

−ηuu + 2ξ1xu = 0, −ηuu + 2ξ2yu = 0, −ηuu + ξ2yu + ξ1xu = 0,

−2ηyu + 2ξ1xy + ξ2xx = 0, ξ1yy − 2ηxu + 2ξ2xy = 0, −2ηu− ξ3t + 4ξ1x = 0,

−2ηu − ξ3t + 4ξ2y = 0, −4ηu − 2ξ3t + 4
(
ξ2y + ξ1x

)
= 0

So we have the following one parameter groups gi generated by the vector

fields Xi:

g1 : (x, y, t, u) 7→ (x + ε, y, t, u), g2 : (x, y, t, u) 7→ (x, y + ε, t, u),

g3 : (x, y, t, u) 7→ (x, y, t + ε, u), g4 : (x, y, t, u) 7→ (x, y, t, u + ε),

g5 : (x, y, t, u) 7→ (x cos ε + y sin ε,−x sin ε + y cos ε, t, u),

g6 : (x, y, t, u) 7→ (eεx, eεy, t, e2εu), g7 : (x, y, t, u) 7→ (x, y, e2εt, e−εu).

Below we determine the symmetry Lie algebra of Eq. (4):

X1 X2 X3 X4 X5 X6 X7

X1 0 0 0 0 −X2 X1 0

X2 0 0 0 0 X1 X2 0

X3 0 0 0 0 0 0 2X3

X4 0 0 0 0 0 2X4 −X4

X5 X2 −X1 0 0 0 0 0

X6 −X1 −X2 0 −2X4 0 0 0

X7 0 0 −2X3 X4 0 0 0

Invariant Solutions: if u = f (x, y, t) is a solution of eq. (4) so are the

functions
u(1) = f (x + ε, y, t), u(2) = f (x, y + ε, t),

u(3) = f (x, y, t + ε), u(4) = f (x, y, t)− ε,

u(5) = f (x cos ε + y sin ε,−x sin ε + y cos ε, t),

u(6) = e−2εf (eεx, eεy, t), u(7) = eεf (x, y, e2εt).

From the generator X5 we conclude that the Eq. (4) is invariant under

rotations, which allows us to find the radial form of the Eq. (4), that is

ut = u2rurr (5)

This means that if u = φ(r, t) is a solution of (5) then

u(x, y, t) = φ(
√
x2 + y2, t) (6)

is a solution of (4). A natural question is to consider the symmetries of (5).

Having this point in mind, our second result can now be announced:

Theorem 2: The Lie point symmetries of equation (5) is generated by the

vector fields

R1 =
∂

∂t
, R2 =

∂

∂r
, R3 =

∂

∂u
, R4 = r

∂

∂r
+ 2u

∂

∂u
, R5 = 2t

∂

∂t
− u ∂

∂u
. (7)

Our next step is to apply the method of separation of variables to Eq. (4).

Then, assume that u(x, y, t) = T (t)v(x, y). By substituting this function into

(4), a straightforward calculation shows that the functions v and T satisfy the

equations

v2xvxx + 2vxvyvxy + v2yvyy = kv(x, y); (8)

T ′(t) = kT (t)3,

where k 6= 0 is a constant. The solution of the last equation is

T (t) = ± 1√
a− 2kt

, (9)

while our next result is:

Theorem 3: The Lie point symmetries of equation (8) is generated by the

vector fields

V1 =
∂

∂x
, V2 =

∂

∂y
, V3 = −y ∂

∂x
+ x

∂

∂y
, V4 = x

∂

∂x
+ y

∂

∂y
+ 2v

∂

∂v
. (10)

4. ACTUAL STATUS OF THE WORK

From the analysis of the symmetry Lie algebra of equations (4), (5) and (9),

and the adjoint representation of their Lie algebra, we find a list of simplified

generators. For eq. (4) we have

X = a4X4 + a5X5 +
1

2
X6 + X7,

X = a5X5 + a6X6 + X7,

X = a3X3 + a5X5 + X6,

X = a3X3 + a4X4 + X5,

X = a1X1 + a2X2 + a3X3 + X4,

X = a1X1 + a2X2 + X3,

X = a1X1 + X2,

X = X1.

For eq.(5) we have

R = a3R3 +
1

2
R4 + R5, R = a4R4 + R5,

R = a1R1 + R4, R = a1R1 + a2R2 + R3,

R = a1R1 + R2, R = R1.

For eq.(9) we have

V = a2V2 + a3V3 + V4, V = V3,

V = a1V1 + a2V2 + V3, V = a1V1 + V2,

V = V1.

From some of these symmetry generators, we find the following exact solution

of equation (4):

u(x, y, t) =
c1
4

arctan
( √

x2 + y2
√
c1
√
t− (x2 + y2)

)
+

√
x2 + y2

4 4
√
t

√
c1 −

x2 + y2√
t

+ c2,

which is a real valued solution on the region {(x, y, t);x2+y2 ≤ c1
√
t, t > 0},

where it is assumed that c1 > 0.
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Abstract
The purpose of this poster is to present relations between intrinsic geometric properties of hypersurfaces in

Sn × R and Hn × R and their extrinsic geometric structures. Geometric characterizations of conformally flat and
radially flat hypersurfaces in Sn × R and Hn × R are given by means of their extrinsic geometry. Under suitable
conditions on the shape operator, we classify conformally flat hypersurfaces in terms of rotation hypersurfaces. In
addition, a close relation between radially flat hypersurfaces and semi-parallel hypersurfaces is established. These
results lead to geometric descriptions of hypersurfaces with special intrinsic structures, such as Einstein metrics
and Ricci solitons. We consider the geometry of Einstein hypersurfaces in Sn × R and Hn × R in order to obtain a
complete classification for these hypersurfaces. We classify Ricci solitons Mn ⊂ Sn × R and Mn ⊂ Hn × R when
the potential vector field is the projection on the tangent space of Mn of the unit vector field tangent to the second
factor R.

1 Introduction
A Riemannian manifold is conformally flat if each point has a neighborhood where the metric is con-
formal to a flat metric, i.e., a metric with zero sectional curvature. The investigation of conformally
flat hypersurfaces in Riemannian manifolds, equipped with the induced metric, has been of interest
for some time and the relationship between the intrinsic and extrinsic geometry has been considered
by taking into account the geometry of the ambient space. When the ambient manifold is also confor-
mally flat, Nishikawa and Maeda [7] have proved that n-dimensional conformally flat hypersurfaces
must be quasi-umbilical, i.e., one of the the principal curvatures has multiplicity at least (n − 1). In
our case, we will see that rotation hypersurfaces are conformally flat. Conversely, conformally flat
hypersurfaces, with additional conditions on the shape operator, are given by rotation hypersurfaces
(Theorem 1).

On the other hand, radially flat Riemannian manifolds are the manifolds endowed with a smooth
vector field X where the sectional curvatures vanish along planes that contain the vector field X .
Radially flat Riemannian manifolds constitute an important class of metrics and were considered, for
example, in the context of Ricci solitons [10, 9]. In this case, the vector field considered is the poten-
tial vector field of the soliton. It turns out that the radially flat condition can be seen, in some sense,
as a weakening of the flatness condition and, consequently, more information about such metrics can
be obtained. This situation will be seen in our context as a generalization of a result given in [2] for
intrinsically flat rotation hypersurfaces in Sn×R and Hn×R. Our main result regarding radially flat
hypersurfaces is a close relation between the geometry of radially flat hypersurfaces and the geometry
of semi-parallel hypersurfaces in such spaces (Theorem 2).

A Riemannian manifold is said to be Einstein if its Ricci tensor is a multiple of the metric. We
classify the hypersurfaces in Sn × R and Hn × R with an Einstein structure. They are given by
either a hypersurface with constant sectional curvature or a Riemannian product Mn−1 × R, where
Mn−1 ⊂ Hn is a totally umbilical, not totally geodesic, hypersurface (Theorem 3).

A natural generalization of Einstein manifolds are the Ricci solitons. A Riemannian manifold (M, g)
endowed with a smooth vector field V is a Ricci soliton if

Ric +
1

2
LV g = cg, (1.1)

where c is a real constant and LV g is the Lie derivative of g with respect to V . The vector field V is
called potential vector field. The Ricci soliton is called shrinking when c > 0, steady when c = 0, and
expanding when c < 0.

As a consequence of Theorem 2, we will see a relation between semi-parallel hypersurfaces and
Ricci solitons. We also classify the Ricci solitons as hypersurfaces in Sn×R and Hn×R with poten-
tial vector field T . In this case, the hypersurface is either an Einstein manifold (in this case, the Ricci
soliton will be called trivial) or an open part of a rotation hypersurface (Theorem 4).

2 Statement of the main results
In order to state our results, let us first establish some notation. Let Qn(ε) be the unit sphere Sn, if
ε = 1, or the hyperbolic space and Hn if ε = −1 and consider the manifold Qn(ε)× R given by:

Sn × R =
{

(x1, . . . , xn+2) ∈ En+2| x2
1 + x2

2 + . . . + x2
n+1 = 1

}
,

Hn × R =
{

(x1, . . . , xn+2) ∈ Ln+2| − x2
1 + x2

2 + . . . + x2
n+1 = −1, x1 > 0

}
,

with the metric induced by the ambient space, where En+2 is the (n + 2)−dimensional Euclidean
space and Ln+2 is the (n + 2)−dimensional Lorentzian space with the canonical metric ds2 =
−dx2

1 + dx2
2 + . . . + dx2

n+2.
Let Mn be a hypersurface in Qn(ε) × R with unit normal N and let ∂xn+2 be the coordinate vector

field of the second factor R. The orthogonal projection of ∂xn+2 onto the tangent space of Mn will be
denoted by T . Also, let θ be the angle function between N and ∂xn+2. Then we have the following
decomposition

∂xn+2 = T + cos θN.

Definition 1 ([2]). Consider a three-dimensional subspace P 3 of En+2 resp. Ln+2, containing the
xn+2−axis. Then (Q(ε)n × R) ∩ P 3 = Q1(ε) × R. Let P 2 be a two-dimensional subspace of P 3,
also through the xn+2−axis. Denote by I the group of isometries of En+2, resp. Ln+2, which leave
Q(ε)n×R globally invariant and which leave P 2 pointwise fixed. Finally, let α be a curve inQ(ε)1×R
which does not intersect P 2. The rotation hypersurface Mn in Q(ε)n × R with profile curve α and
axis P 2 is defined as the I−orbit of α.

2.1 Conformally flat hypersurfaces
Theorem 1. Let Mn, n > 3, be a hypersurface in Qn(ε)× R. If Mn is a rotation hypersurface, then
Mn is conformally flat. Conversely, if Mn is a conformally flat hypersurface, then either Mn is a
totally umbilical hypersurface or its shape operator has two distinct eigenvalues of multiplicity n− 1
and 1. In this case, Mn is locally congruent to a rotation hypersurface when one of following cases
occurs:

i)Mn is a totally umbilical hypersurface, which is not totally geodesic;

ii) the shape operator of Mn has two distinct eigenvalues λ and µ, of multiplicity 1 and n − 1,
respectively, and the vector field T is a principal direction.

Remark 1. The totally geodesic hypersurfaces in Qn(ε)×R are completely classified. They are given
as an open part of Nn−1(ε)× R. with Nn−1(ε) a totally geodesic hypersurface of Qn(ε), or an open
part of Qn(ε) × {t0}, for t0 ∈ R (see these results in [12] and [1]). In this case, the totally geodesic
hypersurface will be a rotation hypersurface only when Mn = Qn−1(ε)× R.

2.2 Radially flat hypersurfaces
A hypersurface Mn in Qn(ε) × R will be called radially flat if the sectional curvatures along planes
containing the vector field T vanish, i.e., KM (T,X) = 0, for any vector field X . In addition, a hyper-
surface is said to be semi-parallel if the second fundamental form h and the curvature tensor R satisfy
h(R(X, Y )Z,W ) + h(R(X, Y )W,Z) = 0, for every X, Y, Z, W arbitrary vector fields tangent to
Mn. Our result will provide an important intrinsic characterization for such hypersurfaces that were
classified in [12] and [1]:

Theorem 2. Let Mn, n > 3, be a hypersurface in Qn(ε) × R. If Mn is radially flat and T is a prin-
cipal direction, for a principal curvature λ 6= 0, then Mn is a semi-parallel, rotation hypersurface.
Conversely, if Mn is a semi-parallel, not totally umbilical hypersurface, then Mn is radially flat.

Remark 2. When Mn is radially flat and T is a principal direction, with principal curvature λ = 0, it
follows by Gauss equation that cos θ = 0 and therefore Mn = M

n−1 × R, where Mn−1 is a hyper-
surface of Qn(ε). It is no longer true, in general, that Mn in this case is semi-parallel. In fact, when
Mn takes this form, it will be semi-parallel if, and only if, Mn−1 ⊂ Qn(ε) is semi-parallel (see [12,
Theorem 5] and [1, Theorem 4.2]).

On the other hand, when Mn is a semi-parallel, totally umbilical hypersurface in Qn(ε)×R, it does
not follow directly that Mn is radially flat. In fact, Mn will be radially flat when:

a)Mn is an open part of the the totally geodesic Sn−1 × R. In fact, we must have the shape operator
S ≡ 0 and cos θ ≡ 0.

b)Mn is a hypersurface in Hn × R with λ2 = cos2 θ. Particularly, if λ ≡ 0, then Mn is is an open
part of a totally geodesic Mn−1 × R, where Mn−1 ⊂ Hn is a totally geodesic hypersurface.

Let (M, g) a Ricci soltion with potential vector field V . If V is the gradient of a smooth function f ,
(M, g) is called gradient Ricci soliton and the function f is called potential function. Let us observe
that the vector field T is actually a gradient vector field. In fact, if we express a point p ∈ Mn as
p = (ϕ, h) ∈ Qn(ε) × R, then T is the gradient of the height function h. A gradient Ricci soliton
is rigid if it is isometric to a quotient N ×Γ Rk where N is an Einstein manifold, f = c

2|x|
2 on the

Euclidean factor and Γ acts freely on N and by orthogonal transformations on Rk ([9, 10]). In [10,
Theorem 1.2], Petersen and Wylie proved that a gradient Ricci soliton Ric + Hessf = cg is rigid
if, and only if, it has constant scalar curvature and the sectional curvatures K(X,∇f ) = 0, for any
vector field. As a consequence of Theorem 2, we obtain when a hypersurface in Qn(ε)× R is a rigid
gradient Ricci soliton:

Corollary 1. LetMn, n > 3, be a Ricci soliton inQn(ε)×R with potential vector field T and constant
scalar curvature. If Mn is a rigid gradient Ricci soliton, and T is a principal direction for a principal
curvature λ 6= 0, then Mn is a semi-parallel hypersurface. Conversely, If Mn is a semi-parallel, not
totally umbilical hypersurface, then Mn is a rigid gradient Ricci soliton.

2.3 Einstein hypersurfaces and Ricci solitons
Theorem 3. Let Mn, n > 3, be an Einstein hypersurface in Qn(ε)× R. Then Mn is either

a) a manifold with constant sectional curvature;

b) a product Mn−1× I , where Mn−1 ⊂ Hn is a totally umbilical, not totally geodesic, hypersurface.

In [6], hypersurfaces in Qn(ε)× R, n ≥ 3, with constant sectional curvature were completely clas-
sified. Therefore, the classification given by Theorem 3 is complete.

In what follows, a Ricci soliton will be called trivial if it is reduced to an Einstein manifold.

Theorem 4. Let Mn, n > 3, be a Ricci soliton in Qn(ε)× R, with potential vector field T . Then Mn

is either

a) a trivial Ricci soliton.

b) an open part of a rotation hypersurface.

Theorem 3 supplies a classification for the first case. In the second case, it follows by Theorem 1
that the hypersurface is conformally flat. Since T is the gradient of the height function h, we have a
conformally flat gradient Ricci soliton and the classification of such solitons can be found in [3].
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Abstract
In this work we give a characterization of pseudo-parallel surfaces in Snc×R and Hn

c×R,
extending an analogous result by Asperti-Lobos-Mercuri for the pseudo-parallel case
in space forms. Moreover, when n = 3, we prove that any pseudo-parallel surface
has flat normal bundle. We also give examples of pseudo-parallel surfaces which are
neither semi-parallel nor pseudo-parallel surfaces in a slice. Finally, when n ≥ 4 we
give examples of pseudo-parallel surfaces with non vanishing normal curvature.

Preliminaries
We use Qn

c with c 6= 0 to refer the sphere n-space Snc or the hyperbolic n-space Hn
c.

An isometric immersion f : Mm → Qn
c × R is said to be:

(i) totally geodesic if α = 0;

(ii) parallel if (∇Xα) = 0;

(iii) semi-parallel if R̃(X ,Y ) · α = 0;

(iv) pseudo-parallel if R̃(X ,Y ) · α = ΦX ∧ Y · α,

for some smooth function Φ in Mm and any vector fields X ,Y in Mm. Here, α
denotes the second fundamental form of f and R̃ = R ⊕ R⊥ denotes the curvature
tensor of Qn

c × R. The concept of pseudo-parallel immersions was first introduced by

Asperti-Lobos-Mercuri in [1] as a generalization of semi-parallel immersions. Also in
[1], authors investigated pseudo-parallel surfaces in space forms. They obtained the
following result:

Theorem (Asperti-Lobos-Mercuri [1])

Let f : M2 → Q4
c be a surface with R⊥ 6= 0. Then f is pseudo-parallel if and only if

f is superminimal, that is, f is a minimal immersion and is λ-isotropic.

Also, they classified such surfaces of codimension 3 and codimension 4 with constant
pseudo-parallelism function.
We recall that an isometric immersion f : Mn → M̃m is said to be λ-isotropic if
‖αf (X ,X )‖ = λ(p), ∀X ∈ TpM , ∀p ∈ Mn with ‖X‖ = 1.

On the other hand, M. Sakaki studied surfaces in S3×R and H3×R, showing in [4]
the following theorem:

Theorem (Sakaki [4])

Let f : M2 → Q3
c × R a minimal surface with c 6= 0. If f is λ-isotropic at any point,

then f is a totally geodesic immersion.

By the Fundamental Equations and pseudo-parallelism condition we get the relations:

R⊥(e1, e2)α11 = 2(Φ− K )α12, (1)

R⊥(e1, e2)α12 = (K − Φ)(α11 − α22), (2)

R⊥(e1, e2)α22 = 2(K − Φ)α12, (3)

K = c(1− ‖T‖2) + 〈α11, α22〉 − ‖α12‖2, (4)

where {e1, e2} is an orthonormal frame of M2, αij = α(ei , ej), K is the Gaussian
curvature of M2 and is the tangent part of ∂

∂t , the canonical unit vector field tangent
to the second factor of Qn

c × R.

Proposition 1

Let f : M2 → Qn
c ×R be a surface with flat normal bundle. Then f is pseudo-parallel

immersion.

Proof

Since f has flat normal bundle, by equations (1) to (3) we conclude that f is φ-pseudo-
parallel by taking φ = K , where K is the Gaussian curvature of M2.

We have two propositions that is useful to construct examples of pseudo-parallel sur-
faces.

Proposition 2

Let f : Mm → Qn
c be an isometric immersion and let j : Qn

c → Qn
c × R be a totally

geodesic immersion. If f is φ-pseudo-parallel, then j ◦ f is φ-pseudo-parallel.

Proposition 3

Let f : Mm → Qn
c ×R be an isometric immersion and let j : Qn

c ×R→ Qn+l
c ×R be

a totally geodesic immersion. If f is φ-pseudo-parallel, then j ◦ f is φ-pseudo-parallel.

The Result
Theorem A

Let f : M2 → Qn
c × R be a pseudo-parallel surface which does not have flat normal

bundle on any open subset of M2. Then n ≥ 4, f is λ-isotropic and

K > φ, (5 )

λ2 = 4K − 3φ + c(‖T‖2 − 1) > 0, (6 )

‖H‖2 = 3K − 2φ + c(‖T‖2 − 1) ≥ 0, (7 )

where K is the Gaussian curvature, λ is a smooth real-valued function on M2, H is
the mean curvature vector field of f and T is the tangent part ∂

∂t , the canonic unit
vector field tangent to the second factor of Qn

c × R.
Conversely, if f is λ-isotropic then f is pseudo-parallel.

Remark

Theorem A extends for Qn
c × R a similar result of pseudo-paralell surfaces into space

forms given by Asperti-Lobos-Mercuri in [1].

Some examples
For the parametrizations fi : R2 → Q3

c×R below, we consider 0 < d < 1, k > 0, a 6= 0
and b ∈ R. The first example is a semi-parallel surface in S3

c×R which is not parallel.
The second and third are pseudo-parallel surfaces in S3

c ×R and H3
c ×R, respectively,

and both are not semi-parallel. In all the cases 0 < ‖T‖ < 1, that is, f is not just an
inclusion of a pseudo-parallel surface in Q3

c into Q3
c × R.

f1(u, v) =
1√
c

(
√

1− d 2 cos θ(u),
√

1− d 2 sin θ(u), d cos v , d sin v , kv),

f2(u, v) =
1√
c

(d cos u, d sin u cos v , d sin u sin v ,
√

1− d 2, au + b),

f3(u, v) =
1√
−c

(d cosh u, d sinh u cos v , d sinh u sin v ,
√
d 2 − 1, au + b).

Let f : R2 → S5
c be the surface given by (see [2])

f (x , y) =
2√
6c

(cos u cos v , cos u sin v ,

√
2

2
cos(2u), sin u cos v , sin u sin v ,

√
2

2
sin(2u)),

where u =
√

c
2x , v =

√
6c
2 y . f is a pseudo-parallel immersion in S5

c with φ = −c
2 .

Thus, if i : S5
c → S5

c × R is the totally geodesic inclusion given by i(x) = (x , 0), by
Proposition 2 we have that i ◦ f is a pseudo-parallel immersion in S5

c × R with non
vanishing normal curvature.

Question

Are there other examples, up to isometries, of pseudo parallel surfaces in Q3
c × R

(c 6= 0), which T is not a principal direction?
Is there an isometric immersion of a topological 2-sphere into S4 × R that is not
included in a slice?
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