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Abstract

We propose a variant of the parking permit problem, called multi parking permit
problem, in which an arbitrary demand is given at each instant and one may buy
multiple permits to serve it. We show how to reduce this problem to the parking
permit problem, while losing a constant cost factor. We obtain a 4-approximation
algorithm and, for the online setting, a deterministic O(K)-competitive algorithm
and a randomized O(lgK)-competitive algorithm, where K is the number of permit
types. For a leasing variant of the Steiner network problem, these results imply
O(lg n)-approximation and online O(lgK lg |V |)-competitive algorithms, where n is
the number of requests and |V | is the size of the input metric. Also, our technique
turns into polynomial-time the pseudo-polynomial algorithms by Hu, Ludwig, Richa
and Schmid for the 2D parking permit problem. For a leasing variant of the buy-at-
bulk network design problem, these results imply: (i) an algorithm which improves
the best previous approximation, and (ii) the first competitive online algorithm.

Keywords: leasing optimization, Steiner network, buy-at-bulk network design,
approximation algorithms, competitive online algorithms.

1 mslima@ic.unicamp.br Grants FAPESP/CAPES 2014/18781-1, CNPq 142161/2014-4.
2 felice@ic.unicamp.br CAPES PNPD scholarship 1522390.
3 lee@ic.unicamp.br Grants CNPq 311373/2015-1, FAPESP 2015/11937-9.



1 Introduction

In the parking permit problem (PP), proposed by Meyerson [10], we haveK
types of permits with lengths δ1, . . . , δK and costs γ1, . . . , γK , and we are given
a sequence r0, . . . , rT−1 ∈ {0, 1}. The goal is to find a minimum-cost set
S ⊆ [K] × {0, . . . , T − 1} of permits such that, for each t with rt = 1, we
have some permit (k, t̂) ∈ S satisfying t ∈ [t̂, t̂ + δk). PP has a polynomial
exact dynamic programming algorithm. In the online version, T is unknown
and r0, . . . , rT−1 are revealed one at a time, and the problem has deterministic
O(K)-competitive algorithm and Ω(K) lower bound, as well as randomized
O(lgK)-competitive algorithm and Ω(lgK) lower bound [10]. We assume

1 = δ1 < δ2 < . . . < δK and γk/δk < γℓ/δℓ for k > ℓ. (1)

PP is the seminal problem of the leasing optimization model, in which
each resource may be leased for different periods of time, and it is more cost-
effective to lease resources for longer periods. This contrasts with traditional
optimization models, in which acquired resources last for unlimited duration.
Leasing optimization may be applied to both offline and online problems.
Some literature has been devoted to leasing variants of optimization prob-
lems [2,11,1]. Also, variants of PP and related problems were studied [9,8,6].
A traditional problem whose leasing variant was studied by Meyerson [10] is
the Steiner forest problem. In the Steiner leasing problem (SLe), each
edge can be leased for finite periods of time. Meyerson presented a relation-
ship between SLe and PP: if the input metric is a tree, SLe reduces to solve PP

for each edge. Using the technique of approximating a metric by a tree met-
ric [4,5], a solution for a generic input can be obtained, losing some guarantee
of quality. This idea can be formalized as follows.

Theorem 1.1 ([4,5]) Given a minimization problem on a finite metric (V, d)
whose objective function is a non-negative linear combination of distances in d,
if there is an α-competitive algorithm for the special case of tree metrics, then

there is a randomized O(α lg |V |)-competitive algorithm for the general case.

In this paper, we extend this approach to solve leasing variants of two net-
work design problems. In the Steiner network problem (SN) [7,12], we are
given pairs of vertices and a demand r(u, v) for each pair (u, v), and we wish
to buy a minimum-cost multiset of edges that contains r(u, v) edge-disjoints
(u, v)-paths, for each pair (u, v). In the buy-at-bulk network design prob-
lem (BaBND) [3], we also have pairs of vertices with demands, but we can
install cables on each edge with different capacities per length, and we wish



to install a minimum-cost multiset of cables that meet the total demand.

We propose the multi parking permit problem (MPP) and we show
how to reduce it to PP, while losing a constant cost factor. Thus, we obtain
an 8-approximation algorithm, as well as deterministic O(K)-competitive and
randomized O(lgK)-competitive online algorithms for MPP. We also have a 4-
approximation algorithm based on dynamic programming with binary search.
The online results are asymptotically optimal, since the lower bounds for PP

also apply to MPP. The leasing variant of SN, the Steiner network leasing
problem (SNLe), reduces to MPP if the input metric is a tree; thus, by The-
orem 1.1, we obtain a O(lgn)-approximation algorithm and a O(lgK lg |V |)-
competitive online algorithm, where n is the number of request pairs and |V |
is the input metric size. We do not know previous results for the online case;
for the offline scenario, there is a O(K)-approximation algorithm by Anthony
and Gupta for a generalization of the single-source case of SNLe [2].

Hu et al. [6] proposed the 2D parking permit problem (2DPP) and
gave constant-approximation and deterministic online O(K)-competitive al-
gorithms, but those are pseudo-polynomial. The technique we developed can
be used to turn them into polynomial-time algorithms. The non-orthogonal
leasing variant of BaBND reduces to 2DPP if the input metric is a tree, so
our results imply O(lg n)-approximation and online O(K lg |V |)-competitive
randomized algorithms for non-orthogonal leasing BaBND. We do not know
previous results for the online case, and our result improves the O(K lg n)-
approximation by Anthony and Gupta [2] for the non-orthogonal multi-source
case. Due to space constraints, we omit the presentation of these results.

2 The Multi Parking Permit Problem

MPP is a variant of PP in which a demand greater than one can be given for
each instant, i.e., we receive a sequence r0, . . . , rT−1 ∈ Z+. Moreover, multiple
copies of the same permit can be bought. We wish to find a minimum-cost
multiset of permits S ⊆ [K] × {0, . . . , T − 1} such that |{(k, t̂) ∈ S : t ∈
[t̂, t̂+ δk)}| ≥ rt for each t. We assume that permits satisfy Equation (1).

It is useful to adopt the following hypothesis, similar to [10,2], which only
implies a constant factor increase to the cost of any solution for MPP.

Hypothesis 2.1 (Interval Model (IM)) For k = 2, . . . , K, δk divides δk−1,

and permits of type k can only begin at instants c δk, for c ∈ Z+.

Lemma 2.2 If there is an α-competitive algorithm for instances that satisfy

IM, then there is a 4α-competitive algorithm for generic instances.



We prove that, under IM, there is an optimum solution with the follow-
ing property. As in the Hanoi tower problem, permits that overlap in time
are stacked in non-increasing order of length, with lower permits serving the
maximum demand possible. More precisely, we have the following.

Lemma 2.3 (Hanoi tower property (HTP)) Let I = (T,K, γ, δ, r) be an

instance of MPP that satisfies IM. Let R := maxt=0,...,T−1 rt and, for j =
1, . . . , R, let Ij := (T,K, γ, δ, rj) be an instance of PP such that, for t =
0, . . . , T − 1, rjt = 1 if and only if rt ≥ j. Then there exists an optimum

solution for I which is the union of the respective optimum solutions of PP for

instances I1, I2, . . . , IR.

Proof sketch. Let S∗ be an optimum solution of I, and let Sj∗ be an opti-
mum solution of Ij , for j ∈ [R]. Suppose by contradiction that cost(S∗) 6=∑R

j=1 cost(S
j∗). Since

⋃R

j=1 S
j∗ is a feasible solution for I, then cost(S∗) <

∑R

j=1 cost(S
j∗). Sort the permits in S∗ in non-increasing order of permit type,

breaking ties arbitrarily, and assign demands to permits such that no demand
can be moved to a previous permit in the sorting. (See Figure 1.) Due to IM,
S∗ can be partitioned into feasible solutions of I1, . . . , IR, a contradiction. ✷

(a) (b) (c)

Fig. 1. HTP applied to an instance with T = 6, K = 3, γ = (1, 5/2, 4), δ = (1, 3, 6)
and r = (3, 1, 2, 0, 1, 2). (a) Optimum solution {(2, 0), (1, 0), (3, 0), (1, 5)}. (b) Op-
timum solution after reordering permits. (c) Optimum solution after reassigning
demands; permits correspond to optimum solutions for PP instances.

So under IM, by HTP, MPP reduces to solve R instances of PP. Thus, given
an α-approximation for PP, we obtain an α-approximation for MPP. Similarly,
given an α-competitive online algorithm for PP, we obtain an α-competitive
online algorithm for MPP. 4 By Lemma 2.2, we have a 4-approximation al-
gorithm, as well as deterministic O(K)-competitive and randomized O(lgK)-
competitive online algorithms forMPP. 5 This reduction is pseudo-polynomial,

4 Since an online algorithm does not know the value of R in advance, we must run new
instances of the online algorithm for PP as the maximum demand increases.
5 Lemma 2.3 is not valid if IM is not assumed, and we conjecture that MPP is NP-hard.



since the input size is proportional to O(lgR); we overcome this as follows.
Let L := ⌊lgR⌋; we run L+1 instances Î0, Î1, . . . , ÎL of PP. For each instant t,
let ℓ := ⌊lg rt⌋. For j = 0, . . . , ℓ, let r̂jt := 1 for Îj . We buy 2j copies of the
permits bought by PP on Îj. This is feasible since

∑ℓ

j=0 2
j = 2ℓ+1 − 1 and

rt < 2ℓ+1. We call this online algorithm MppReduction. This idea is inspired
on the online algorithm for SN [12]. We omit the proof of the following results.

Lemma 2.4 Given an α-competitive algorithm for PP, algorithm MppReduc-

tion leads to a strictly polynomial-time 2α-competitive algorithm for MPP.

Theorem 2.5 There is an 8-approximation algorithm, as well as determin-

istic O(K)-competitive and randomized O(lgK)-competitive online algorithms

for MPP, all of which run in polynomial time.

The offline result can be improved to a 4-approximation using a dynamic
programming algorithm that performs a binary search on the demand levels,
which finds an optimum solution under IM. We omit the description of the
algorithm, but it relies on HTP. This algorithm can be combined with the
deterministic online algorithm for 2DPP [6] to obtain a deterministic O(K)-
competitive online algorithm for MPP with smaller hidden constant factor.

Theorem 2.6 There is a polynomial 4-approximation algorithm for MPP.

Steiner Network Leasing

The input for SNLe consists of a graph G = (V,E), a distance function
d : V × V 7→ R+ satisfying symmetry and triangle inequality, K leasing types
with scaling costs γ1, . . . , γK and lengths in time δ1, . . . , δK , and a sequence
(u0, v0, r0), . . . , (uT−1, vT−1, rT−1) in which ut, vt ∈ V and rt ∈ Z+ for every t.
The goal is to find a multiset of edge leases S ⊆ E× [K]×{0, . . . , T −1} such
that, for t = 0, . . . , T −1, the multiset {e ∈ E : (e, k, t̂) ∈ S and t ∈ [t̂, t̂+ δk)}
contains rt edge-disjoint (ut, vt)-paths, and minimizes

∑
(e,k,t̂)∈S de γk.

If G is a tree, then there is a unique path between each pair of vertices, so
SNLe reduces to solve MPP in each edge, in order to decide how many copies
and which leasing types to use. Thus, we obtain a solution to a generic graph
by approximating (V, d) by a tree metric. In the offline setting, we can build
a tree metric on the metric restricted to the n requested pairs. In the online
setting, requested pairs are given in an online manner, edges must be leased
to connect pairs as they arrive, and no edge leases may be removed. Thus, we
cannot build a tree metric only on the requested pairs. Instead, we have to
approximate the entire metric (V, d). Since we have a constant-approximation



algorithm and an online O(lgK)-competitive algorithm for MPP, we obtain
the following result.

Theorem 2.7 There are a O(lgn)-approximation algorithm and an online

O(lgK lg |V |)-competitive algorithm for SNLe.

References

[1] Abshoff, S., P. Kling, C. Markarian, F. M. auf der Heide and P. Pietrzyk,
Towards the price of leasing online, J. Comb. Optim. (2015), pp. 1–20.

[2] Anthony, B. M. and A. Gupta, Infrastructure leasing problems, in: Integer
Programming and Combinatorial Optimization, LNCS 4513, 2007, pp. 424–438.

[3] Awerbuch, B. and Y. Azar, Buy-at-bulk network design, in: Proc. 38th Annu.
Symp. Found. Comput. Sci., 1997, pp. 542–547.

[4] Bartal, Y., Probabilistic approximations of metric spaces and its algorithmic
applications, in: Proc. 37th Conf. Found. Comput. Sci., 1996, pp. 184–193.

[5] Fakcharoenphol, J., S. Rao and K. Talwar, A tight bound on approximating
arbitrary metrics by tree metrics, J. Comput. Syst. Sci. 69 (2004), pp. 485–497.

[6] Hu, X., A. Ludwig, A. Richa and S. Schmid, Competitive strategies for online
cloud resource allocation with discounts: The 2-dimensional parking permit prob-
lem, in: 2015 IEEE 35th Int. Conf. Distrib. Comput. Syst., 2015, pp. 93–102.

[7] Jain, K., A factor 2 approximation algorithm for the generalized Steiner network
problem, Combinatorica 21 (2001), pp. 39–60.
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