
Query Minimization under
Stochastic Uncertainty?

Steven Chaplick1, Magnús M. Halldórsson2,
Murilo S. de Lima3, and Tigran Tonoyan4

1 Lehrstuhl für Informatik I, Universität Würzburg, Germany and Department of
Data Science and Knowledge Engineering, Maastricht University, the Netherlands

2 ICE-TCS, Department of Computer Science, Reykjavik University, Iceland
3 School of Informatics, University of Leicester, UK

4 Computer Science Department, Technion Institute of Technology, Israel
s.chaplick@maastrichtuniversity.nl, mmh@ru.is,

mslima@ic.unicamp.br, ttonoyan@gmail.com

Abstract. We study problems with stochastic uncertainty data on in-
tervals for which the precise value can be queried by paying a cost. The
goal is to devise an adaptive decision tree to find a correct solution to the
problem in consideration while minimizing the expected total query cost.
We show that sorting in this scenario can be performed in polynomial
time, while finding the data item with minimum value seems to be hard.
This contradicts intuition, since the minimum problem is easier both in
the online setting with adversarial inputs and in the offline verification
setting. However, the stochastic assumption can be leveraged to beat
both deterministic and randomized approximation lower bounds for the
online setting. Although some literature has been devoted to minimizing
query/probing costs when solving uncertainty problems with stochas-
tic input, none of them have considered the setting we describe. Our
approach is closer to the study of query-competitive algorithms, and it
gives a better perspective on the impact of the stochastic assumption.

Keywords: stochastic optimization · query minimization · sorting · se-
lection · online algorithms

1 Introduction

Consider the problem of sorting n data items that are updated concurrently by
different processes in a distributed system. Traditionally, one ensures that the
data is strictly consistent, e.g., by assigning a master database that is queried by
the other processes, or by running a distributed consensus algorithm. However,
those operations are expensive, and we wonder if we could somehow avoid them.
One different approach has been proposed for the TRAPP distributed database

? Partially supported by Icelandic Research Fund grant 174484-051 and by EPSRC
grant EP/S033483/1. This work started while M.S.L. and T.T. were at Reykjavik
University, during a research visit by S.C.

2 S. Chaplick, M. M. Halldórsson, M. S. de Lima, and T. Tonoyan

by Olston and Widom [15], and is outlined as follows. Every update is sent to the
other processes, and each process maintains an interval on which each data item
may lie. Whenever the precise value is necessary, a query on the master database
can be performed. Some computations (e.g., sorting) can be performed without
knowing the precise value of all data items, so one question that arises is how to
perform these while minimizing the total query cost. Another scenario in which
this type of problem arises is when market research is required to estimate the
data input: a coarser estimation can be performed for a low cost, and more precise
information can be obtained by spending more effort in research. The problem of
sorting under such conditions, called the uncertainty sorting problem with
query minimization, was recently studied by Halldórsson and de Lima [12].

The study of uncertainty problems with query minimization dates back to
the seminal work of Kahan [13] and the TRAPP distributed database system by
Olston and Widom [15], which dealt with simple problems such as computing
the minimum and the sum of numerical data with uncertainty intervals. More
recently, more sophisticated problems have been studied in this framework, such
as geometric problems [1], shortest paths [6], minimum spanning tree and min-
imum matroid base [5, 14], linear programming [16, 19], and NP-hard problems
such as the knapsack [8] and scheduling problems [3]. See [4] for a survey.

The literature describes two kinds of algorithms for this setting. Though
the nomenclature varies, we adopt the following one. An adaptive algorithm
may decide which queries to perform based on results from previous queries. An
oblivious algorithm, however, must choose the whole set of queries to perform
in advance; i.e., it must choose a set of queries that certainly allow the problem
to be solved without any knowledge of the actual values.

Two main approaches have been proposed to analyze both types of algo-
rithms. In the first, an oblivious (adaptive) algorithm is compared to a hypo-
thetical optimal oblivious (adaptive) strategy; this is the approach in [6, 13, 15].
However, for more complex problems, and in particular for adaptive algorithms,
it usually becomes more difficult to understand the optimal adaptive strategy. A
second (more robust) approach is competitive analysis, which is a standardized
metric for online optimization. In this setting, both oblivious and adaptive algo-
rithms are compared to an optimum query set, a minimum-cost set of queries
that a clairvoyant adversary, who knows the actual values but cannot disclose
them without performing a query, can use to prove the obtained solution to be
correct. An algorithm (either adaptive or oblivious) is α-query-competitive if
it performs a total query cost of at most α times the cost of an offline optimum
query set. This type of analysis is performed in [1, 5, 11–14]. For NP-hard prob-
lems, since we do not expect to find the “correct” solution in polynomial time,
there are two approaches in the literature: either we have an objective function
which combines query and solution costs (this is how the scheduling problem is
addressed in [3]), or we have a fixed query budget and the objective function is
based only on the solution cost (as for the knapsack problem in [8]).

Competitive analysis is, however, rather pessimistic. In particular, many
problems such as minimum, sorting and spanning tree have a deterministic lower

Query Minimization under Stochastic Uncertainty 3

bound of 2 and a randomized lower bound of 1.5 for adaptive algorithms, and
a simple 2-competitive deterministic adaptive algorithm, even if queries are al-
lowed to return intervals [5, 11, 12, 14]. For the sorting problem, e.g., Halldórsson
and de Lima [12] showed that there is essentially one structure preventing a de-
terministic adaptive algorithm from performing better than 2.

One natural alternative to competitive analysis is to assume stochastic in-
puts, i.e., that the precise value in each interval follows a known probability
distribution, and we want to build a decision tree specifying a priority ordering
for querying the intervals until the correct solution is found, so that the expected
total query cost is minimized.5 In this paper, we show that the adaptive sorting
problem in this setting can be solved exactly in polynomial time. Very surpris-
ingly, however, we have evidence that the problem of finding the data item with
minimum value is hard, though it can be approximated very well.

Some literature is devoted to a similar goal of this paper, but we argue that
there are some essential differences. One first line of work consists of the stochas-
tic probing problem [7, 9, 10, 17], which is a general stochastic optimization
problem with queries. Even though those works presented results for wide classes
of constraints (such as matroid and submodular), they differ in two ways from
our work. First, they assume that a solution can only contain elements that are
queried, or that the objective function is based on the expectation of the non-
queried elements. Second, the objective function is either a combination of the
solution and query costs, or there is a fixed budget for performing queries. Since
most of these variants are NP-hard [7], some papers [9, 17] focused on devising
approximation algorithms, while others [7, 10] on bounding the ratio between
an oblivious algorithm and an optimal adaptive algorithm (the adaptive gap).
Another very close work is that of Welz [18, Section 5.3] and Yamaguchi and
Maehara [19], which, like us, assume that a solution may contain non-queried
items. Welz presented some results for the minimum spanning tree and traveling
salesman problems, but they make strong assumptions on the probability dis-
tributions, while Yamaguchi and Maehara devised algorithms for a wide class of
problems, which also yield improved approximation algorithms for some classi-
cal stochastic optimization problems. However, both works focus on obtaining
approximate solutions, while we wish to obtain an exact one, and they only give
asymptotic bounds on the number of queries performed, but do not compare this
to the expected cost of an optimum query set. To sum up, our work gives a bet-
ter understanding on how the stochastic assumption differs from the competitive
analysis, since other assumptions are preserved and we use the same metric to
analyze the algorithms: minimizing query cost while finding the correct solution.

Our results. We prove that, for the sorting problem with stochastic uncertainty,
we can construct an adaptive decision tree with minimum expected query cost
in polynomial time. We devise a dynamic programming algorithm which runs
in time O(n3d3) = O(n6), where d is the clique number of the interval graph

5 Note that, unless some sort of nondeterminism is allowed, the stochastic assumption
cannot be used to improve the oblivious results, so we focus on adaptive algorithms.

4 S. Chaplick, M. M. Halldórsson, M. S. de Lima, and T. Tonoyan

induced by the uncertainty intervals. We then discuss why simpler strategies fail,
such as greedy algorithms using only local information, or relying on witness
sets, which is a standard technique for solving query-minimization problems
with adversarial inputs [1, 5]. We also discuss why we believe that the dynamic
programming algorithm cannot be improved to something better than O(n3).

Surprisingly, on the other hand, we present evidence that finding an adaptive
decision tree with minimum expected query cost for the problem of finding the
data item with minimum value is hard, although the online version (with ad-
versarial inputs) and the offline (verification) version of the problem are rather
simple. If the leftmost interval is the first one to be queried, we know how to
compute the decision tree with minimum expected query cost easily. This also
implies that, for any other decision tree, one branch can be calculated easily.
However, if the leftmost interval is not the first to be queried, we prove that
it should be the last one to be considered in the decision tree. The hard part,
then, is to find the order in which the other intervals are considered in the “hard
branch” of the decision tree. We discuss why various heuristics fail to this case.
A simple approximation result with factor 1 + 1/d1 for uniform query costs,
where d1 is the degree of the leftmost interval in the interval graph, follows from
the online version with adversarial inputs [13]. For arbitrary query costs, we
show that the stochastic assumption can be used to beat both deterministic and
randomized lower bounds for the online version with adversarial inputs.

Organization of the paper. Section 2 is devoted to the sorting problem with
stochastic uncertainty, and Section 3 to the problem of finding the minimum
data item. We conclude the paper with future research questions in Section 4.

2 Sorting

The problem is to sort n numbers v1, . . . , vn ∈ R whose actual values are un-
known. We are given n intervals I1, . . . , In such that vi ∈ Ii = [`i, ri]. We can
query interval Ii by paying a cost wi, and after that we know the value of vi.
We want to find a permutation π : [n] → [n] such that vi ≤ vj if π(i) < π(j)
by performing a minimum-cost set of queries. We focus on adaptive algorithms,
i.e., we can make decisions based on previous queries. We are interested in a
stochastic variant of this problem in which vi follows some known probability
distribution on Ii. The only constraints are that (1) values in different intervals
have independent probabilities, and (2) for any subinterval (a, b) ⊆ Ii, we can
calculate Pr[vi ∈ (a, b)] in constant time. The goal is to devise a strategy (i.e., a
decision tree) to query the intervals so that the expected query cost is minimized.
More precisely, this decision tree must tell us which interval to query first and,
depending on where its value falls, which interval to query second, and so on.

Definition 1. Two intervals Ii and Ij such that ri > `j and rj > `i are de-
pendent. Two intervals that are not dependent are independent.

The following lemma and proposition are proved in [12]. The lemma tells us
that we have to remove all dependencies in order to be able to sort the numbers.

Query Minimization under Stochastic Uncertainty 5

Lemma 1 ([12]). The relative order between two intervals can be decided with-
out querying either of them if and only if they are independent.

Proposition 1 ([12]). Let Ii and Ij be intervals with actual values vi and vj.
If vi ∈ Ij (and, in particular, when Ii ⊆ Ij), then Ij is queried by every solution.

Note that the dependency relation defines an interval graph. Prop. 1 implies
that we can immediately query any interval containing another interval, hence we
may assume a proper interval graph. We may also assume the graph is connected,
since the problem is independent for each component, and that there are no
single-point intervals, as they would give a non-proper or disconnected graph.

An Optimal Algorithm. We describe a dynamic programming algorithm to solve
the sorting problem with stochastic uncertainty. Since we have a proper interval
graph, we assume intervals are in the natural total order, with `1 ≤ · · · ≤ `n
and r1 ≤ · · · ≤ rn. We also pre-compute the regions S1, . . . , St defined by the
intervals, where t ≤ 2n − 1. A region is the interval between two consecutive
points in the set

⋃n
i=1{`i, ri}; we assume that the regions are ordered. We write

Sx = (ax, bx) with ax < bx, and we denote by Ix(y, z) := {i : Sx ⊆ Ii ⊆ (ay, bz)}
the indices of the intervals contained in (ay, bz) that contain Sx. For simplicity
we assume that, for any interval Ii and any region Sx, Pr[vi = ax] = Pr[vi =
bx] = 0; this is natural for continuous probability distributions, and for discrete
distributions we may slightly perturb the distribution support so that this is
enforced. Since the dependency graph is a connected proper interval graph, we
can also assume that each interval contains at least two regions.

Before explaining the recurrence, we first examine how Prop. 1 limits our
choices with an example. In Fig. 1(a), suppose we first decide to query I3 and its
value falls in region S5. Due to Prop. 1, all intervals that contain S5, namely I2
and I4, have to be queried as well. In Fig. 1(b), we assume that v2 falls in S3

and v4 falls in S6. This forces us to query I1 but also results in a solution without
querying I5. Therefore, each time we approach a subproblem by first querying
an interval Ii whose value falls in region Sx, we are forced to query all other
intervals that contain Sx, and so on in a cascading fashion, until we end up with
subproblems that are independent of current queried values. To find the best
solution, we must pick a first interval to query, and then recursively calculate the
cost of the best solution, depending on the region in which its value falls. Here,
the proper interval graph can be leveraged by having the cascading procedure
follow the natural order of the intervals.

We solve the problem by computing three tables. The first table, M , is in-
dexed by two regions y, z ∈ {1, . . . , t}, and M [y, z] is the minimum expected
query cost for the subinstance defined by the intervals contained in (ay, bz).
Thus, the value of the optimum solution for the whole problem is M [1, t]. To
compute M [y, z], we suppose the first interval in (ay, bz) that is queried by the
optimum solution is Ii. Then, for each region Sx ⊆ Ii, when vi ∈ Sx, we are
forced to query every interval Ij with j ∈ Ix(y, z) and this cascades, forcing
other intervals to be queried depending on where vj falls. So we assume that,

6 S. Chaplick, M. M. Halldórsson, M. S. de Lima, and T. Tonoyan

I1
I2

I3
I4

I5

S1 S2 S3 S4

Sx

S5 S6 S7 S8 S9

cascading area

(a)

I1
I2

I3
I4

I5

Sy

S1 S2

Sz′

S3 S4

Sx

S5

Sy′

S6 S7 S8

Sz

S9

cascading area

(b)

Fig. 1. A simulation of the querying process for a fixed realization of the values.
(a) Querying I3 first and assuming v3 ∈ S5. (b) Assuming v2 ∈ S3 and v4 ∈ S6.

for all j ∈ Ix(y, z), vj falls in the area defined by regions z′, z′+ 1, . . . , y′− 1, y′,
with z′ ≤ x ≤ y′, and that this area is minimal (i.e., some point is in Sz′ , and
some point is in Sy′). We call this interval (az′ , by′) the cascading area of Ii
in Ix(y, z). In Fig. 1(b), we have i = 3, x = 5, z′ = 3 and y′ = 6. As the
dependency graph is a proper interval graph, the remaining intervals (which do
not contain Sx) are split in two independent parts, whose value is computed by
two tables, L and R, which we describe next. So the recurrence for M [y, z] is

0, if (ay, bz) contains less than 2 intervals; otherwise,

min
Ii⊆(ay,bz)︸ ︷︷ ︸

first interval

to query

∑
Sx⊆Ii

Pr[vi ∈ Sx]︸ ︷︷ ︸
where point vi falls

·



cost of cascading︷ ︸︸ ︷∑
j∈Ix(y,z)

wj +
∑
z′≤x
y′≥x

cascading area︷ ︸︸ ︷
p(y, z, i, x, z′, y′) ·

·
(L[y, z′,min Ix(y, z)]+

+R[y′, z,max Ix(y, z)]

)
︸ ︷︷ ︸
cost of left/right subproblems


,

where p(y, z, i, x, z′, y′) is the probability that (az′ , by′) is the cascading area of Ii
in Ix(y, z). We omit the description of how to calculate this probability.

The definitions of L and R are symmetric, so we focus on L. For region
indices y, z, z′ with z ≥ z′, let Ij′ be the leftmost interval contained in (ay, bz).
Now, L[y, z′, j] is the minimum expected query cost of solving the subproblem
consisting of intervals Ij′ , Ij′+1, . . . , Ij−1, assuming that a previously queried
point lies in the region Sz′ . We ensure that z′ is the leftmost region in (ay, bz)
that contains a queried point so that we query all intervals that contain some
point. For example, in Fig. 1(b), after querying I2, I3 and I4, the left subproblem
has z′ = 3 and j = 2. It holds that L can be calculated in the following way.
If no interval before Ij contains Sz′ , then the cascading is finished and we can
refer to table M for regions y, y+1, . . . , z′−1. Otherwise Ij−1 must contain Sz′ ,
we query it, and either vj−1 falls to the right of `z′ and we proceed to the next

Query Minimization under Stochastic Uncertainty 7

Ij

Sy Sz′

(a)

Ij

Sy Sz′Sk

(b)

Ij

Sy Sk Sz′

(c)

Fig. 2. An illustration of the definition of table L. (a) L[y, z′, j]. (b) If k ≥ z′, we
recurse on L[y, z′, j − 1]. (c) If k < z′, we recurse on L[y, k, j − 1].

interval, or vj−1 falls in a region Sk with k < z′, and we proceed to the next
interval with the leftmost queried point now being in Sk. Thus, we have

L[y, z′, j] =


M [y, z′ − 1], if j ≤ 1 or `j−1 < ay or Ij−1 6⊇ Sz′

wj−1 +
∑

Sk⊆Ij−1

Pr[vj−1 ∈ Sk] · L[y,min(k, z′), j − 1], otherwise.

We illustrate this in Fig. 2. In Fig. 2(a), the subproblem contains Ij−1, Ij−2, . . .,
and the leftmost queried point is in Sz′ . Since Sz′ ⊆ Ij−1, we query Ij−1 and
assume vj−1 falls in a region Sk. In Fig. 2(b), we have that k ≥ z′, so we recurse
on L[y, z′, j− 1]; this will recurse on M [y, z′− 1] in its turn, since Sz′ 6⊆ Ij−2. In
Fig. 2(c), we have that k < z′, so we recurse on L[y, k, j − 1], which in its turn
will have to query Ij−2.

At this point it is not hard to see that the next theorem follows by a standard
optimal substructure argument; we omit the proof.

Theorem 1. M [1, t] is the value of the minimum expected query cost to solve
the stochastic sorting problem with uncertainty.

The recurrences can be implemented in a bottom-up fashion that consumes
time O(n6): if we precompute p(y, z, i, x, z′, y′), then each entry ofM is computed
in O(n4), and each entry of L and R can be computed in linear time. It is possible
to precompute p(y, z, i, x, z′, y′) in time O(n4) (we omit how). A more careful
analysis shows that the time consumption is O(n3d3), where d is the clique
number of the interval graph. Note that, in a proper interval graph, an interval
contains at most 2d− 1 regions. Another simple fact is that Ix(y, z) contains at
most d intervals, since every such interval contains Sx.

It seems difficult to improve this dynamic programming algorithm to some-
thing better than O(n3 ·poly(d)). Note that the main information that the deci-
sion tree encodes is which interval should be queried first in a given independent
subproblem (and there are Ω(n2) such subproblems). We could hope to find an
optimal substructure that would not need to test every interval as a first query,
and that this information could somehow be inferred from smaller subproblems.
However, consider I1 = (0, 100), I2 = (6, 105), and I3 = (95, 198), with uniform

8 S. Chaplick, M. M. Halldórsson, M. S. de Lima, and T. Tonoyan

query costs and uniform probability distributions. The optimum solution for the
first two intervals is to query first I1, but the optimum solution for the whole
instance is to start with I2. Thus, even though I2 is a suboptimal first query
for the smaller subproblem, it is the optimal first query for the whole instance.
This example could be adapted to a larger instance with more than d intervals,
so that we need at least a linear pass in n to identify the best first query.

Simpler strategies that fail. It may seem that our dynamic programming strategy
above is overly complex, and that a simpler algorithm may suffice to solve the
problem. Below, we show sub-optimality of two such strategies.

We begin by showing that any greedy strategy that only takes into consid-
eration local information (such as degree in the dependency graph or overlap
area) fails. Consider a 5-path abcde, in which each interval has query cost 1 and
an overlap of 1/3 with each of its neighbors, and the exact value is uniformly
distributed in each interval. It can be shown by direct calculation that if we
query Ib (or, equivalently, Id) first, then we get an expected query cost of at
most 29/9 = 3.22̄, while querying Ic first yields an expected query cost of at
least 11/3 = 3.66̄. However, a greedy strategy that only takes into consideration
local information cannot distinguish between Ib and Ic.

One technique that has been frequently applied in the literature of uncer-
tainty problems with query minimization is the use of witness sets. A set of in-
tervals W is a witness if a correct solution cannot be computed unless at least one
interval in W is queried, even if all other intervals not in W are queried. Witness
sets are broadly adopted because they simplify the design of query-competitive
adaptive algorithms. If, at every step, an algorithm queries disjoint witness sets
of size at most α, then this algorithm is α-query-competitive. This concept was
proposed in [1]. For the sorting problem, by Lemma 1, any pair of dependant
intervals constitute a witness set. However, we cannot take advantage of witness
sets for the stochastic version of the problem, even for uniform query costs and
uniform probability distributions, and even if we take advantage of the proper
interval order. Consider the following intervals: (0, 100), (95, 105), (98, 198). The
witness set consisting of the first two intervals may lead us to think that either
of them is a good choice as the first query. However, the unique optimum solu-
tion first queries the third interval. (The costs are 843/400 = 2.1075 if we query
first the first interval, 277/125 = 2.216 if we query first the second interval, and
4182/2000 = 2.0915 if we query first the third interval.)

3 Finding the Minimum

We also consider the problem of finding the minimum (or, equivalently, the
maximum) of n unknown values v1, . . . , vn. Assume that the intervals are sorted
by the left corner, i.e., `1 ≤ `2 ≤ · · · ≤ `n. We may assume without loss of
generality that `1 < `2 < · · · < `n. Let I = {I1, . . . , In}. We begin by discussing
some assumptions we can make. First, we can assume that the interval graph is
a clique: with two independent intervals, we can remove the one on the right.

Query Minimization under Stochastic Uncertainty 9

(However, we cannot assume a proper interval graph, as we did for sorting.) The
second assumption is based on the following remark, whose proof we omit.

Remark 1. If I1 contains some Ij , then I1 is queried in every solution.

Thus we can assume that I1 does not contain another interval; this implies
that r1 = mini ri. It is also useful to understand how to find an optimum query
set, i.e., to solve the problem assuming we know v1, . . . , vn.

Lemma 2 ([13]). The offline optimum solution either

(a) queries interval Ii with minimum vi and each interval Ij with `j < vi; or
(b) queries all intervals except for I1, if v1 is the minimum, vj > r1 for all

j > 1, and this is better than option (a).

Option (b) can be better not only due to a particular non-uniform query cost
configuration, but also with uniform query costs, when v1 ∈ I2, . . . , In. Note also
that I1 is always queried in option (a). We omit the proof of this lemma.

We first discuss what happens if the first interval we query is I1. In Fig. 3(a),
we suppose that v1 ∈ S3. This makes I2 become the leftmost interval, so it must
be queried, since it contains v1 and I3. At this point we also know that we do not
need to query I4, since v1 < `4. After querying I2, we have two possibilities. In
Fig. 3(b), we suppose that v2 ∈ S2, so we already know that v2 is the minimum
and no other queries are necessary. In Fig. 3(c), we suppose that v2 ∈ S6, so we
still need to query I3 to decide if v1 or v3 is the minimum. Note that, once I1
has been queried, we do not have to guess which interval to query next, since
any interval that becomes the leftmost interval will either contain v1 or will be
to the right of v1. Since this is an easy case of the problem, we formalize how to
solve it. The following claim is clear: if we have already queried I1, . . . , Ii−1 and
v1, . . . , vi−1 ∈ Ii, then we have to query Ii. (This relies on Ii having minimum `i
among Ii, . . . , In.) If we decide to first query I1, then we are discarding option (b)
in the offline solution, so all intervals containing the minimum value must be
queried. The expected query cost is then

∑n
i=1 wi ·Pr[Ii must be queried]. Given

an interval Ii, it will not need to be queried if there is some Ij with vj < `i, thus
the former probability is the probability that no value lies to the left of Ii. Since
the probability distribution is independent for each interval, the expected query
cost will be

∑n
i=1 wi ·

∏
j<i Pr[vj > `i]. This can be computed in O(n2) time.

Now let us consider what happens if the optimum solution does not start
by querying I1, but by querying some Ik with k > 1. When we query Ik, we
have two cases: (1) if vk falls in I1, then we have to query I1 and proceed as
discussed above, querying I2 if v1 > `2, then querying I3 if v1, v2 > `3 and so
on; (2) if vk /∈ I1, then vk falls to the right of `i, for all i 6= k, so essentially the
problem consists of finding the optimum solution for the remaining intervals, and
this value will be independent of vk. Therefore, the cost of querying first Ik is
wk +Pr[vk /∈ I1] ·opt(I \{Ik})+Pr[vk ∈ I1] ·

∑
i6=k wi ·

∏
j<i Pr[vj > `i|vk ∈ I1].

Thus, we can see that a decision tree can be specified simply by a permutation of
the intervals, since the last term in the last equation is fixed. More precisely, let

10 S. Chaplick, M. M. Halldórsson, M. S. de Lima, and T. Tonoyan

I1
I2

I3
I4

S1 S2 S3 S4 S5 S6 S7

(a)

I1
I2

I3
I4

S1 S2 S3 S4 S5 S6 S7

(b)

I1
I2

I3
I4

S1 S2 S3 S4 S5 S6 S7

(c)

Fig. 3. A simulation of the querying process when we decide to query first I1. (a) If
v1 ∈ S3, I2 must be queried, but not I4. (b) If v2 ∈ S2, then v2 is the minimum. (c) If
v2 ∈ S6, then we still have to query I3.

a(1), . . . , a(n) be a permutation of the intervals, where a(k) = i means that Ii
is the k-th interval in the permutation. We have two types of subtrees. Given a
subset Xk = {a(k), . . . , a(n)} that contains 1, let T̂k be the tree obtained by first
querying I1, then querying the next leftmost interval in Xk if it contains v1 and
so on. The second type of subtree Tk is defined by a suffix a(k), . . . , a(n) of the
permutation. If a(k) 6= 1, then Tk is a decision tree with a root querying Ia(k)

and two branches. One branch, with probability Pr[va(k) ∈ I1], consists of T̂k+1;
the other branch, with probability Pr[va(k) /∈ I1], consists of Tk+1. If a(k) = 1,

then Tk = T̂k, unless k = n, in which case Tn will be empty: I1 does not need
to be queried, because all other intervals have already been queried and their
values fall to the right of I1. We have that cost(Tk) =

0, if a(k) = a(n) = 1

cost(T̂k), if a(k) = 1 but k 6= n; otherwise,

Pr[va(k) ∈ I1] · cost(T̂k|va(k) ∈ I1) + Pr[va(k) /∈ I1] · (wa(k) + cost(Tk+1)).

Note that in the last case we need to condition cost(T̂k) to the fact that va(k) ∈ I1.

The cost of T̂k conditioned to E is
∑n

i=k wi ·
∏

j≥k
a(j)<a(i)

Pr[va(j) > `a(i)|E].

It holds that, if I1 is not the last interval in a decision tree permutation,
then it is always better to move I1 one step to the beginning of the permutation.
(We omit the proof due to space limitations.) Thus, by induction, the optimum
solution either first queries I1, or has I1 at the end of the permutation. If I1 is
the last interval to be queried, then it does not have to be queried if all other
values fall to its right. Thus it may be that, in expectation, having I1 as the last
interval is optimal.

We do not know, however, how to efficiently find the best permutation ending
in I1. Simply considering which interval begins or ends first, or ordering by
Pr[vi ∈ I1] is not enough. To see this, consider the following two instances with
uniform costs and uniform probabilities. In the first, I1 = (0, 100), I2 = (5, 305)
and I3 = (6, 220); the best permutation is I2, I3, I1 and has cost 2.594689. If we
just extend I2 a bit to the right, making I2 = (5, 405), then the best permutation
is I3, I2, I1, whose cost is 2.550467.

Query Minimization under Stochastic Uncertainty 11

If there was a way to determine the relative order in the best permutation
between two intervals Ij , Ik 6= I1, simply by comparing some value not depending
on the order of the remaining intervals (for example, by comparing the cost
of IjIkI1 · · · and IkIjI1 · · ·), then we could find the best permutation easily.
Unfortunately, the ordering of the permutations is not always consistent, i.e.,
given a permutation, consider what happens if we swap Ij and Ik: it is not
always best to have Ij before Ik, or Ik before Ij . Consider intervals I1 = (0, 1000),
I2 = (3, 94439), I3 = (8, 6924), and I4 = (9, 2493), with uniform query cost and
uniform probability distributions. The best permutation is I4, I3, I2, I1, and the
cost of the permutations ending in I1 are as follows. Note that it is sometimes
better that I2 comes before I3, and sometimes the opposite.

cost(4, 2, 3, 1) = 3.48611 cost(2, 4, 3, 1) = 3.48715 cost(2, 3, 4, 1) = 3.48889

cost(4, 3, 2, 1) = 3.48593 cost(3, 4, 2, 1) = 3.48770 cost(3, 2, 4, 1) = 3.48859

This issue also seems to preclude greedy and dynamic programming algorithms
from succeeding. It seems that it is not possible to find an optimal substructure,
since the ordering is not always consistent among subproblems and the whole
problem. We have implemented various heuristics and performed experiments
on random instances, and could always find instances in which the optimum was
missed, even for uniform query costs and uniform probabilities.

Another reason to expect hardness is that the following similar problem is
NP-hard [7]. Given stochastic uncertainty intervals I1, . . . , In, costs w1, . . . , wn,
and a query budget C, find a set S ⊆ {1, . . . , n} with w(S) ≤ C that mini-
mizes E[mini∈S vi].

To conclude, we note that there are good approximation algorithms, which
have been proposed for the online version [13]. If query costs are uniform, then
first querying I1 costs at most opt+1, which yields a factor 1+1/d1, where d1 is
the degree of I1 in the interval graph. For arbitrary costs, there is a randomized
1.5-approximation algorithm using weighted probabilities in the two solutions
stated in Lemma 2. Those results apply to the stochastic version of the problem
simply by linearity of expectation.

Theorem 2. The minimum problem admits a (1+1/d1)-approximation for uni-
form query costs, and a randomized 1.5-approximation for arbitrary costs.

Those results have matching lower bounds for the online setting, and for
arbitrary query costs there is a deterministic lower bound of 2. We show that
the stochastic assumption can be used to beat those lower bounds for arbitrary
costs. First, the randomized 1.5-approximation algorithm can be derandomized,
simply by choosing which solution has smaller expected query cost: either first
querying I1, or first querying all other intervals and if necessary querying I1.
We know how to calculate both expected query costs; the latter is

∑
i>1 wi +

w1 ·
(
1−

∏
i>1 Pr[vi > r1]

)
. We omit the proof of the following theorem and the

description of the randomized algorithm.

Theorem 3. There is a deterministic 1.5-approximation algorithm and a ran-
domized 1.45-approximation algorithm for arbitrary query costs.

12 S. Chaplick, M. M. Halldórsson, M. S. de Lima, and T. Tonoyan

4 Further Questions

Can we extend our approach for sorting as to handle a dynamic setting, as in [2]?
E.g., where some intervals can be inserted/deleted from the initial set. Updating
the dynamic program should be faster than building it again from scratch.

Is the minimum problem NP-hard or can it be solved in polynomial time? If
it is NP-hard, then so are the median and the minimum spanning tree problems.
Can we devise polynomial time algorithms with better approximation guarantees
than the best respective competitive online results?

References

1. Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies
for geometric computing with uncertainty. Theory Comput. Syst. 38(4), 411–423
(2005)

2. Busto, D., Evans, W., Kirkpatrick, D.: Minimizing interference potential among
moving entities. In: SODA. pp. 2400–2418 (2019)

3. Dürr, C., Erlebach, T., Megow, N., Meißner, J.: Scheduling with explorable uncer-
tainty. In: ITCS, LIPIcs, vol. 94, pp. 30:1–30:14 (2018)

4. Erlebach, T., Hoffmann, M.: Query-competitive algorithms for computing with
uncertainty. Bull. EATCS 116, 22–39 (2015)

5. Erlebach, T., Hoffmann, M., Krizanc, D., Mihal’ák, M., Raman, R.: Computing
minimum spanning trees with uncertainty. In: STACS. pp. 277–288 (2008)

6. Feder, T., Motwani, R., O’Callaghan, L., Olston, C., Panigrahy, R.: Computing
shortest paths with uncertainty. J. Algorithms 62(1), 1–18 (2007)

7. Goel, A., Guha, S., Munagala, K.: Asking the right questions: model-driven opti-
mization using probes. In: PODS. pp. 203–212 (2006)

8. Goerigk, M., Gupta, M., Ide, J., Schöbel, A., Sen, S.: The robust knapsack problem
with queries. Comput. Oper. Res. 55, 12–22 (2015)

9. Gupta, A., Nagarajan, V.: A stochastic probing problem with applications. In:
IPCO, LNCS, vol. 7801, pp. 205–216 (2013)

10. Gupta, A., Nagarajan, V., Singla, S.: Algorithms and adaptivity gaps for stochastic
probing. In: SODA. pp. 1731–1747 (2016)

11. Gupta, M., Sabharwal, Y., Sen, S.: The update complexity of selection and related
problems. Theory Comput. Syst. 59(1), 112–132 (2016)

12. Halldórsson, M.M., de Lima, M.S.: Query-competitive sorting with uncertainty. In:
MFCS, LIPIcs, vol. 138, pp. 7:1–7:15 (2019)

13. Kahan, S.: A model for data in motion. In: STOC. pp. 265–277 (1991)
14. Megow, N., Meißner, J., Skutella, M.: Randomization helps computing a minimum

spanning tree under uncertainty. SIAM J. Comput. 46(4), 1217–1240 (2017)
15. Olston, C., Widom, J.: Offering a precision-performance tradeoff for aggregation

queries over replicated data. In: VLBD. pp. 144–155 (2000)
16. Ryzhov, I.O., Powell, W.B.: Information collection for linear programs with uncer-

tain objective coefficients. SIAM J. Optim. 22(4), 1344–1368 (2012)
17. Singla, S.: The price of information in combinatorial optimization. In: SODA. pp.

2523–2532 (2018)
18. Welz, W.A.: Robot Tour Planning with High Determination Costs. Ph.D. thesis,

Technischen Universität Berlin (2014)
19. Yamaguchi, Y., Maehara, T.: Stochastic packing integer programs with few queries.

In: SODA. pp. 293–310 (2018)

Query Minimization under Stochastic Uncertainty 13

A Calculating the Probability of a Cascading Area

Let us discuss how to calculate p(y, z, i, x, z′, y′), which is the probability that,
given that vi ∈ Sx, each k ∈ Ix(y, z) has vk ∈ (az′ , by′), some j ∈ Ix(y, z) has
vj ∈ Sz′ , and some j′ ∈ Ix(y, z) has vj′ ∈ Sy′ . We will assume that z′, y′ 6= x,
and the other cases can be computed similarly.

Let us fix the values y, z, x, and denote I = Ix(y, z), Ii = Ix(y, z) \ {i}, and
p(z′, y′, i) = p(y, z, i, x, z′, y′). Let us further denote by q(z′, y′) the probability
that each k ∈ I has vk ∈ (az′ , by′). Note that

q(z′, y′) =
∏
j∈I

Pr[vj ∈ (az′ , by′)],

and q(z′, y′) can be computed in linear time. Let

q(z′, y′, i) =
q(z′, y′)

Pr[vi ∈ (az′ , by′)]

denote the similar probability defined for the set of intervals Ii, instead of I.
Let P (z′, y′, i) the event corresponding to p(z′, y′, i), and Q(z′, y′, i) be the

event corresponding to q(z′, y′, i). Then,

P (z′, y′, i) = Q(z′, y′, i) \ (Q(z′ + 1, y′, i) ∪Q(z′, y′ − 1, i)).

Since Q(z′ + 1, y′, i) ∪Q(z′, y′ − 1, i) ⊆ Q(z′, y′, i),

Pr[P (z′, y′, i)] = Pr[Q(z′, y′, i)]−Pr[Q(z′ + 1, y′, i) ∪Q(z′, y′ − 1, i)].

Furthermore,

Pr[Q(z′ + 1, y′, i) ∪Q(z′, y′ − 1, i)] = Pr[Q(z′ + 1, y′, i)] + Pr[Q(z′, y′ − 1, i)]

−Pr[Q(z′ + 1, y′, i) ∩Q(z′, y′ − 1, i)];

the last term is clearly Pr[Q(z′ + 1, y′ − 1, i)]. Thus, we have that

p(z′, y′, i) = q(z′, y′, i)− q(z′ + 1, y′, i)− q(z′, y′ − 1, i) + q(z′ + 1, y′ − 1, i)

=
q(z′, y′)

Pr[vi ∈ (az′ , by′)]
− q(z′ + 1, y′)

Pr[vi ∈ (az′+1, by′)]

− q(z′, y′ − 1)

Pr[vi ∈ (az′ , by′−1)]
+

q(z′ + 1, y′ − 1)

Pr[vi ∈ (az′+1, by′−1)]
.

Since q(z′, y′) does not depend on i, for each fixed x, y, z, it can be computed in
linear time, so all q(z′, y′) can be computed for all x, y, z in time O(n6). Given this
precomputation, all values p(z′, y′, i) for all y, z, i, x, z′, y′ can be pre-computed
in O(n6) time.

We can further improve the runtime to O(n5) as follows. Here, we fix z′, y′

and y, z, and compute q(z′, y′) for various values of x. Therefore let us now

14 S. Chaplick, M. M. Halldórsson, M. S. de Lima, and T. Tonoyan

denote q(x) = q(z′, y′). Recall that q(x) =
∏

j∈Ix(y,z) Pr[vj ∈ (az′ , by′)]. We

compute q(x) sequentially from x = y to x = z. Given q(x) for some x, q(x+ 1)
is computed by removing from the product intervals in Ix(y, z) \ Ix+1(y, z) and
including intervals in Ix+1(y, z)\Ix(y, z). The remainder of the product is reused.
Observe that during this computation, each interval between y, z is included
in (and removed from) the product exactly once. Therefore, the computation
corresponding to fixed values of y, z, a, b can be done in time proportional to the
number of positions x between y and z plus the number of intervals between y
and z, that is, in O(n) time. Thus, the computation of the whole table takes
O(n5) time.

Finally, the preprocessing time can be further reduced (still having constant
time computation of p(. . .) after preprocessing), by decomposing the table for q
into two parts, based on the following observation. The first table is indexed by
y, x, z′, y′, while the second one by z, x, z′, y′. Consider the value q(y, z, x, z′, y′).
This is a product of probabilities ranging over intervals Ix(y, z). The observation
is that Ix(y, z) = Ix(y, t) \ Jx(z, t), where Jx(z, t) is the set of intervals that
intersect both x and z and do not end at z. Thus,

q(y, z, x, z′, y′) =
q(y, t, x, z′, y′)

q′(z, t, x, z′, y′)

if the denominator is non-zero, and otherwise q(y, z, x, z′, y′) = q(y, t, x, z′, y′),
where q′ is defined similarly as q, except it ranges over Jx(z, t). The sub-tables q
and q′ can be computed in O(n4) time using the observations in the previous
paragraph.

B Proof of Theorem 1

We prove that, for any 1 ≤ y ≤ z ≤ t, the value M [y, z] is the expected query
cost of a best decision tree for the subproblem defined by the intervals totally
contained in (ay, bz). The proof is by induction on the number of intervals con-
tained in (ay, bz). If it contains less than two intervals, then no query has to be
done to solve this subproblem and the claim follows, so let us assume it contains
at least two intervals.

Let us define more precisely how the decision tree for a subproblem is struc-
tured. Let I be a collection of intervals and queried points, with at least two
dependent elements, and let T (I) be a best decision tree for solving the sub-
problem defined by I. The root of the tree indicates which interval Ii to query
first. Then, for each region Sx contained in Ii, the tree has a branch which is the
decision tree for the remaining intervals, conditioned to the fact that vi ∈ Sx; we
can write this subtree as T ((I \ Ii)∪{vx}), for some vx ∈ Sx. Note that, for any
vx ∈ Sx, the cost of T ((I \ Ii)∪ {vx}) is the same, since vx will be dependent to
the same intervals, and the dependencies between other intervals do not change.
The expected cost of the solution encoded by T (I) is then

cost(T (I)) = wi +
∑

Sx⊆Ii

Pr[vi ∈ Sx] · cost(T ((I \ Ii) ∪ {vx})).

Query Minimization under Stochastic Uncertainty 15

The leaves of the tree will correspond to collections of independent intervals,
which will have cost zero.

If a subtree T (I) contains a queried value vx and a non-queried interval Ij
with vx ∈ Ij , then Prop. 1 says that any solution for I must query Ij . This
implies that Ij is queried in the path between the root and any leaf of the
tree. Thus, it is easy to see that there is a solution with same the cost for this
subproblem in which the first query is Ij . If more than one interval contains
a queried value vx, then we can query them before other intervals, and in any
order, so we can actually query all of them at the same time, and have a root
with branches for each combination of regions in which the values fall.

The algorithm starts by querying an interval Ii and, depending on the re-
gion Sx in which vi falls, queries all intervals that contain Sx. Since we have a
proper interval graph, the remaining intervals are divided into two independent
suproblems. Also, if the minimal area containing the regions in which the values
fall is the same, then the cost of the subtree is the same, since the same intervals
will contain a point queried at this time; this implies that each cascading area
is a single disjoint event. Given a cascading area (az′ , by′), the remaining prob-
lem consists of finding the best solution for two subproblems: one considering
that the intervals to the left of Sx have not been queried and that the leftmost
queried point is in Sz′ , and another that the intervals to the right of Sx have not
been queried and that the rightmost queried point is in Sy′ . This is precisely the
definition of tables L and R; thus, if the definition of tables L and R is correct,
then the theorem follows by an optimal substructure argument.

So let us prove that the definition of table L[y, z′, j] is correct; the proof
for table R is analogous. Let us recall the definition: L[y, z′, j] is the minimum
expected cost of the subinstance of (ay, bz) (for some z ≥ z′) consisting of in-
tervals Ij′ , Ij′+1, . . . , Ij , where Ij′ is the leftmost interval contained in (ay, bz),
assuming that the leftmost queried point is contained in Sz′ . If j ≤ 1, then
(ay, bz′−1) contains no interval and therefore M [y, z′ − 1] is zero. If `j−1 < ay,
then no interval to the left of Ij is contained in (ay,∞), so (ay, bz′−1) contains
no interval and M [y, z′ − 1] is zero. If j > 1 and `j−1 ≥ ay, but Ij−1 6⊇ Sz′ ,
then all intervals in Ij , Ij+1, . . . have a value to the right of az′ , and thus any
solution to the intervals totally in contained (ay, bz′−1) is feasible to comple-
ment the current decision tree. Thus, by an optimal substructure argument,
L[y, z′, j] = M [y, z′−1]. If j > 1, `j−1 ≥ ay, and Ij−1 contains Sz′ , then there is
some queried point in Sz′ , so Prop. 1 implies that Ij−1 must be queried in any
solution of the subproblem, and thus can be the first interval queried in this sub-
problem. When querying Ij−1, we ensure that the leftmost region with a queried
point is updated correctly, so the last equation in the definition of L[y, z′, j] is
correct by an optimal substructure argument. ut

C Proof of Lemma 2

First let us consider the case when v1 is the minimum. If vj < r1 for some j > 1,
then I1 has to be queried even if all other intervals have already been queried,

16 S. Chaplick, M. M. Halldórsson, M. S. de Lima, and T. Tonoyan

due to Remark 1. Thus, the only situation in which I1 may not be queried is
when vj > r1 for all j > 1, and in this case clearly we have to query all other
intervals, since otherwise we cannot decide who is the minimum.

Now we prove that, if vi is the minimum with i 6= 1, then Ii must be queried.
Since vi is the minimum, all other values fall to the right of `i. In particular,
v1 ∈ Ii, since I1 has minimum r1. Thus, even if all other intervals have already
been queried, Ii must be queried due to Remark 1.

It remains to prove that, for any i ≥ 1, if vi is minimum and Ii is queried,
then all intervals with `j < vi must also be queried; we actually prove that
I1, . . . , Ij must be queried, by induction on j. The base case is j = 1, and if
i 6= 1 the claim follows from Remark 1, since vi < r1 and `1 ≤ `i. So assume
j > 1; note that `j−1 < `j < vi thus, by induction hypothesis, I1, . . . , Ij−1 must
be queried. Since vi is the minimum, vk ≥ vi > `j , for k = 1, . . . , j−1. Therefore,
after I1, . . . , Ij−1 are queried, Ij is the leftmost interval, and must be queried
due to Remark 1, since it contains vi. ut

D “I1 Should Be First or Last” Lemma

Lemma 3. Given a decision tree permutation IkI1Ik′ · · · of a subset S, with
|S| ≥ 3 and I1 ∈ S, it costs at least as much as the cost of I1IkIk′ · · · .
Proof. Let 1[A] be the indicator variable of the event A, i.e., 1[A] = 1 if A is
true, and zero otherwise. The cost of IkI1Ik′ · · · is

wk + Pr[vk /∈ I1] ·
∑

i∈S\Ik

wi ·
∏

j<i,j 6=k

Pr[vj > `i]

+Pr[vk ∈ I1] ·
∑

i∈S\Ik

wi ·
∏
j<i

Pr[vj > `i|vk ∈ I1]

= wk + Pr[vk /∈ I1] ·
∑

i∈S\Ik

wi ·
∏

j<i,j 6=k

Pr[vj > `i]

+Pr[vk ∈ I1] ·
∑

i∈S\Ik

wi ·max(1− 1[k < i],Pr[vk > `i|vk ∈ I1]) ·
∏

j<i,j 6=k

Pr[vj > `i]

= wk + Pr[vk /∈ I1] ·
∑

i∈S\Ik

wi ·max(1− 1[k < i],Pr[vk > `i|vk /∈ I1]) ·
∏

j<i,j 6=k

Pr[vj > `i]

+Pr[vk ∈ I1] ·
∑

i∈S\Ik

wi ·max(1− 1[k < i],Pr[vk > `i|vk ∈ I1]) ·
∏

j<i,j 6=k

Pr[vj > `i]

= wk + (Pr[vk /∈ I1] ·max(1− 1[k < i],Pr[vk > `i|vk /∈ I1])

+Pr[vk ∈ I1] ·max(1− 1[k < i],Pr[vk > `i|vk ∈ I1])) ·
∑

i∈S\Ik

wi ·
∏

j<i,j 6=k

Pr[vj > `i]

= wk + max(1− 1[k < i],Pr[vk > `i]) ·
∑

i∈S\Ik

wi ·
∏

j<i,j 6=k

Pr[vj > `i]

= wk +
∑

i∈S\Ik

wi ·
∏
j<i

Pr[vj > `i],

Query Minimization under Stochastic Uncertainty 17

where the first equality holds since the probability distribution is independent
for each interval, so Pr[vj > `i|vk ∈ I1] = Pr[vj > `i] unless j = k. The second
equality holds since `i < r1 for all i, so Pr[vk > `1|vk /∈ I1] = 1.

On the other hand, if we swap Ik and I1, then the cost is∑
i∈S

wi ·
∏
j<i

Pr[vj > `i] = wk ·
∏
j<k

Pr[vj > `k] +
∑

i∈S\Ik

wi ·
∏
j<i

Pr[vj > `i]

≤ wk +
∑

i∈S\Ik

wi ·
∏
j<i

Pr[vj > `i],

since
∏

j<k Pr[vj > `k] ≤ 1, and the last value is precisely the cost of the former
permutation. ut

E Better Approximations for the Minimum Problem

E.1 Proof of Theorem 3

Let V be the set of realizations of the values, and assume V is finite. (Otherwise
finiteness can be attained by grouping realizations into equivalence classes based
on the partition into regions.) For each V ∈ V, let C1(V) be the cost of first
querying I1, then querying I2 if v1 ∈ I2, and so on, and let CR =

∑
i>1 wi. We

partition V in sets V1 and VR, where V ∈ V1 if opt(V) = C1(V), and V ∈ VR if
opt(V) = CR; note that Lemma 2 guarantees that this is indeed a partition.

Let ρ = Pr[V ∈ VR] and C1 =
∑

V ′∈V1 C1(V ′) · Pr[V = V ′]. If opt∗ is the
expected query cost of the best permutation for the stochastic problem, then

opt∗ ≥
∑
V ′∈V

opt(V ′) ·Pr[V = V ′]

=
∑

V ′∈V1

C1(V ′) ·Pr[V = V ′] +
∑

V ′∈VR

CR ·Pr[V = V ′] = C1 + ρ · CR,

where the inequality holds by bounding opt∗ via a fractional solution.

Now consider the solution for the stochastic problem obtained by the algo-
rithm. Let ALG1 be the cost of first querying I1, and let ALGR be the cost of
first querying all other intervals. Then

ALG1 ≤ C1 + ρ · (w1 + CR) ≤ C1 + ρ · CR + ρ · C1
1− ρ

≤ opt∗ +
ρ

1− ρ
· C1,

where the second inequality holds because Pr[V ∈ V1] = 1− ρ and C1(V ′) ≥ w1

for any V ′. On the other hand,

ALGR ≤ (1− ρ) · (CR + w1) + ρ · CR ≤ CR + C1 ≤ opt∗ + (1− ρ) · CR.

18 S. Chaplick, M. M. Halldórsson, M. S. de Lima, and T. Tonoyan

The solution returned by the algorithm costs

min(ALG1,ALGR) ≤ opt∗ + min

(
ρ

1− ρ
· C1, (1− ρ) · CR

)
≤ opt∗ +

√
ρ

1− ρ
· C1 · (1− ρ) · CR = opt∗ +

√
C1 · ρ · CR

≤ opt∗ +
C1 + ρ · CR

2
≤ 3

2
· opt∗,

where the second and third inequalities hold by the properties of the geometric
mean. ut

E.2 Randomized Algorithm

Let a denote the cost of I1 and b denote the total cost of R, where R is the set
of intervals other than I1.

Let p denote the probability that R hits I1, that is, some interval in R has its
value v in I1. We have different algorithms, depending on the costs of intervals.

Case 1. Each element of R has cost less than 3b/4. We choose a subset G ⊆ R
such that G has cost at least α · b and has probability at least α · p of hitting I1,
and α ∈ (1/4, 3/4).

To that end, let G′ be a subset of cost between b/2 and 3b/4 (which exists
by our assumption). Let βb be the total cost of G′. If G′ hits I1 w.p. at least
βp then we let G = G′ and α = β. Otherwise, the complement R \ G′ has cost
(1− β)b and probability at least (1− β)p, so we let G = R \G′ and α = 1− β.
Note that β ∈ (1/2, 3/4) and 1− β ∈ (1/4, 1/2), so α ∈ (1/4, 3/4).

The algorithm is as follows. Let x ∈ (0, 1) be a probability parameter. Below,
“query X”, for a subset X of intervals, means querying all intervals in X.

1. with probability x, query I1 and cascade
2. with the remaining probability 1− x, do:

(a) query G
(b) if it hits I1 then query I1 and cascade
(c) otherwise, query R and if it hits I1 then query I1 too.

Analysis. If R hits I1 then the optimal strategy is to query I1 and cascade,
as discussed in Sec. 3. Conditioned on this event, the expected approximation
we get is

x · 1 + (1− x) ·
[
α · a+ αb

a
+ (1− α) · a+ b

a

]
= 1 + (1− x) · (α2 + 1− α)b/a

≤ 1 + (1− x) · 13b/(16a),

where the first occurrence of α corresponds to the probability that G hits I1,
conditioned on the event that R hits I1, and the last inequality follows from the
fact that α ∈ (1/4, 3/4).

Query Minimization under Stochastic Uncertainty 19

On the other hand, if R does not hit I1 then the optimum is to query R only.
The expected approximation is then

x · a+ b

b
+ (1− x) · 1 = 1 + x · a/b,

Thus, it remains to choose x so as to minimize the maximum of 1 + xa/b
and 1 + (1 − x) · 13b/(16a). We do this by equating the two expressions: we
obtain x = 13b2/(13b2 + 16a2), giving us the expression 1 + z

1+16z2/13 with

z = a/b. The latter is maximized at z =
√

13/16 ≈ 0.9 and the maximum is

1 +
√

13/64 < 1.4507.
Case 2. R contains an element J of cost at least 3b/4. Let G′ = R \ J . Then

we postpone querying G′, optimally solve the two-interval instance {I1, J}, and
query/cascade G′ only when necessary. First, observe that the cost of solving
the reduced instance is at most the cost of the original instance. Next, note that
we query G′ either when I1 is queried and it hits G′, in which case we perform
optimally, or if we query J and it does not hit I1, in which case querying G′

increases the cost we paid by only 1/3 fraction. Thus, in this case we have an
expected 4/3 approximation.

The approach above can be used with fine-tuned parameters to obtain 1.444
approximation, but it cannot give better than 1.433 approximation, which is the
best one can obtain in Case 1, even if not restricted by Case 2.

