
THE
PUBLIC CSOUND

REFERENCE MANUAL

SUPPLEMENT – TUTORIALS

by Barry Vercoe, Media Lab MIT
and contributors

Edited by John ffitch, Richard Boulanger,
Jean Piché, and David Boothe

Copyright 1986, 1992 by the Massachusetts Institute of Technology. All rights reserved.

The Public Csound Reference Manual Supplement Page ii

Copyright Notice

Copyright 1986, 1992 by the Massachusetts Institute of Technology. All rights reserved.

Developed by Barry L. Vercoe at the Experimental Music Studio, Media Laboratory, MIT,
Cambridge, Massachusetts, with partial support from the System Development Foundation and
from National Science Foundation Grant # IRI-8704665.

Permission to use, copy, or modify these programs and their documentation for educational and
research purposes only and without fee is hereby granted, provided that this copyright and
permission notice appear on all copies and supporting documentation. For any other uses of this
software, in original or modified form, including but not limited to distribution in whole or in
part, specific prior permission from MIT must be obtained. MIT makes no representations about
the suitability of this software for any purpose. It is provided “as is” without express or implied
warranty

The original Hypertext Edition of the MIT Csound Manual was prepared for the World Wide
Web by Peter J. Nix of the Department of Music at the University of Leeds and Jean Piché of
the Faculté de musique de l'Université de Montréal. This Print Edition, in Adobe Acrobat format,
is maintained by David M. Boothe. The editors fully acknowledge the rights of the authors of
the original documentation and programs, as set out above, and further request that this notice
appear wherever this material is held.

The Public Csound Reference Manual Supplement Page iii

Contributors

In addition to the core code developed by Barry Vercoe at MIT, a large part of the Csound code
was modified, developed and extended by an independent group of programmers, composers and
scientists. Copyright to this code is held by the respective authors:

Mike Berry Matt Ingalls
Eli Breder Richard Karpen

Michael Casey Victor Lazzarini
Michael Clark Allan Lee

Perry Cook David Macintyre
Sean Costello Peter Neubäcker

Richard Dobson Marc Resibois
Mark Dolson Gabriel Maldonado

Rasmus Ekman Hans Mikelson
Dan Ellis Paris Smaragdis
Tom Erbe Greg Sullivan
John ffitch Robin Whittle

Bill Gardner

This manual was compiled from the canonical Csound Manual sources maintained by John
ffitch, Richard Boulanger, Jean Piche and David Boothe.

The Public Csound Reference Manual Supplement Page iv

Editor’s Preface

Learning Csound can be a daunting experience. The tutorials contained in this book are intended
to give you a head start in this process, and were written by people involved in writing,
expanding, and maintaining the Csound code itself.

This volume is intended as a companion to The Public Csound Reference Manual, which is
indispensable to the Csound user. Refer to the appropriate sections in the Reference Manual as
you work through these tutorials. Try the examples yourself. These exercises will give you a
solid, fundamental knowledge of the most powerful software synthesis program that is freely and
widely available.

The Reference Manual and the example orchestra and scores are available where you obtained
this volume.

The definitive source of information on Csound will be The Csound Book: Perspectives in
Software Synthesis, Sound Design, Signal Processing, and Programming, edited by Richard
Boulanger, and to be published by MIT Press in January, 2000.

Another useful source of information is the “MIT Csound FrontPage” at
http://mitpress.mit.edu/e-books/csound/frontpage.html.

Finally, all Csound users are invited to subscribe to the Csound email list. Here is where there
are ongoing discussions of any issues concerning Csound users, bug reports, announcements of
new Csound versions, etc. If you are having a problem with Csound you cannot resolve, there is
usually someone on the Csound mailing list who can help. For instructions on how to subscribe,
send an email to
csound-request@maths.ex.ac.uk

In the first line of the message, put
subscribe name@host

After your message has been processed (about 5 minutes), you will receive a message with
further instructions. Follow these last few instructions, and your email address will be added to
the Csound Mailing list.

Enjoy your Csound experience.

David M. Boothe
Dallas, Texas USA
April, 1999

The Public Csound Reference Manual Supplement Page v

Table of Contents

Copyright Notice .. ii

Contributors... iii

Editor’s Preface... iv

Table of Contents ... v

1 A BEGINNING TUTORIAL: BARRY VERCOE ...1-1

1.1 The Orchestra File ...1-1

1.2 The Score File..1-4

1.3 The Csound Command ..1-6

1.4 More about the Orchestra ..1-7

2 AN INSTRUMENT DESIGN TOOTORIAL: RICHARD BOULANGER ...2-1

2.1 Toot Introduction...2-2

2.2 Toot 1: Play One Note ...2-4

2.3 Toot 2: "P-Fields" ..2-5

2.4 Toot 3: Envelopes ..2-6

2.5 Toot 4: Chorusing ..2-7

2.6 Toot 5: Vibrato ..2-9

2.7 Toot 6: Gens ..2-11

2.8 Toot 7: Crossfade...2-13

2.9 Toot 8: Soundin ...2-15

2.10 Toot 9: Global Stereo Reverb ...2-17

2.11 Toot 10: Filtered Noise ...2-19

2.12 Toot 11: Carry, Tempo & Sort..2-21

2.13 Toot 12: Tables and Labels...2-25

2.14 Toot 13: Spectral Fusion ...2-28

2.15 When Things Sound Wrong..2-31

2.16 Suggestions for Further Study...2-32

3 A FOF SYNTHESIS TUTORIAL: J. M. CLARKE ...3-1

The Public Csound Reference Manual Supplement Page vi

T h i s p a g e l e f t b l a n k .

The Public Csound Reference Manual Supplement A Beginning Tutorial Page 1-1

1 A BEGINNING TUTORIAL
by Barry Vercoe, Massachusetts Institute of Technology

1.1 The Orchestra File
Csound runs from two basic files: an orchestra file and a score file. The orchestra file is a set of
instruments that tell the computer how to synthesize sound; the score file tells the computer
when. An instrument is a collection of modular statements which either generate or modify a
signal; signals are represented by symbols, which can be "patched" from one module to another.
For example, the following two statements will generate a 440 Hz sine tone and send it to an
output channel:

asig oscil 10000, 440, 1
out asig

The first line sets up an oscillator whose controlling inputs are an amplitude of 10000, a
frequency of 440 Hz, and a waveform number, and whose output is the audio signal asig. The
second line takes the signal asig and sends it to an (implicit) output channel. The two may be
encased in another pair of statements that identify the instrument as a whole:

instr 1
asig oscil 10000, 440, 1

out asig
endin

In general, an orchestra statement in Csound consists of an action symbol followed by a set of
input variables and preceded by a result symbol. Its action is to process the inputs and deposit the
result where told. The meaning of the input variables depends on the action requested. The
10000 above is interpreted as an amplitude value because it occupies the first input slot of an
oscil unit; 440 signifies a frequency in Hertz because that is how an oscil unit interprets its
second input argument; the waveform number is taken to point indirectly to a stored function
table, and before we invoke this instrument in a score we must fill function table #1 with some
waveform.

The output of Csound computation is not a real audio signal, but a stream of numbers which
describe such a signal. When written onto a sound file these can later be converted to sound by
an independent program; for now, we will think of variables such as asig as tangible audio
signals.

The Public Csound Reference Manual Supplement A Beginning Tutorial Page 1-2

Let us now add some extra features to this instrument. First, we will allow the pitch of the tone to
be defined as a parameter in the score. Score parameters can be represented by orchestra
variables which take on their different values on successive notes. These variables are named
sequentially: p1, p2, p3, ... The first three have a fixed meaning (see the Score File), while the
remainder are assignable by the user. Those of significance here are:

p3 - duration of the current note (always in seconds).
p5 - pitch of the current note (in units agreed upon by score and orchestra).

Thus in

asig oscil 10000, p5, 1

the oscillator will take its pitch (presumably in cps) from score parameter 5.

If the score had forwarded pitch values in units other than cycles-per-second (Hertz), then these
must first be converted. One convenient score encoding, for instance, combines pitch class
representation (00 for C, 01 for C#, 02 for D, ... 11 for B) with octave representation (8. for
middle C, 9. for the C above, etc.) to give pitch values such as 8.00, 9.03, 7.11. The expression

cpspch(8.09)

will convert the pitch A (above middle C) to its cps equivalent (440 Hz). Likewise, the
expression

cpspch(p5)

will first read a value from p5, then convert it from octave.pitch-class units to cps. This
expression could be imbedded in our orchestra statement as

asig oscil 10000, cpspch(p5), 1

to give the score-controlled frequency we sought.

Next, suppose we want to shape the amplitude of our tone with a linear rise from 0 to 10000.
This can be done with a new orchestra statement

amp line 0, p3, 10000

Here, amp will take on values that move from 0 to 10000 over time p3 (the duration of the note
in seconds). The instrument will then become

instr 1
amp line 0, p3, 10000
asig oscil amp, cpspch(p5), 1

out asig
endin

The Public Csound Reference Manual Supplement A Beginning Tutorial Page 1-3

The signal amp is not something we would expect to listen to directly. It is really a variable
whose purpose is to control the amplitude of the audio oscillator. Although audio output requires
fine resolution in time for good fidelity, a controlling signal often does not need that much
resolution. We could use another kind of signal for this amplitude control

kamp line 0, p3, 10000

in which the result is a new kind of signal kamp. Signal names up to this point have always
begun with the letter a (signifying an audio signal); this one begins with k (for control). Control
signals are identical to audio signals, differing only in their resolution in time. A control signal
changes its value less often than an audio signal, and is thus faster to generate. Using one of
these, our instrument would then become

instr 1
kamp line 0, p3, 10000
asig oscil kamp, cpspch(p5), 1

out asig
endin

This would likely be indistinguishable in sound from the first version, but would run a little
faster. In general, instruments take constants and parameter values, and use calculations and
signal processing to move first towards the generation of control signals, then finally audio
signals. Remembering this flow will help you write efficient instruments with faster execution
times.

We are now ready to create our first orchestra file. Type in the following orchestra using the
system editor, and name it "intro.orc".

sr = 44100 ; audio sampling rate is 44.1 kHz
kr = 4400 ; control rate is 4410 Hz
ksmps = 10 ; number of samples in a

; control period (sr/kr)
nchnls = 1 ; number of channels of

; audio output

instr 1
kctrl line 0, p3, 10000 ; amplitude envelope
asig oscil kctrl, cpspch(p5), 1 ; audio oscillator

out asig ; send signal to channel 1
endin

It is seen that comments may follow a semi-colon, and extend to the end of a line. There can also
be blank lines, or lines with just a comment. Once you have saved your orchestra file on disk, we
can next consider the score file that will drive it.

The Public Csound Reference Manual Supplement A Beginning Tutorial Page 1-4

1.2 The Score File

The purpose of the score is to tell the instruments when to play and with what parameter values.
The score has a different syntax from that of the orchestra, but similarly permits one statement
per line and comments after a semicolon. The first character of a score statement is an opcode,
determining an action request; the remaining data consists of numeric parameter fields (pfields)
to be used by that action.

Suppose we want a sine-tone generator to play a pentatonic scale starting at C-sharp above
middle-C, with notes of 1/2 second duration. We would create the following score:

; a sine wave function table
f1 0 256 10 1

; a pentatonic scale
i1 0 .5 0. 8.01
i1 .5 . . 8.03
i1 1.0 . . 8.06
i1 1.5 . . 8.08
i1 2.0 . . 8.10
e

The first statement creates a stored sine table. The protocol for generating wave tables is simple
but powerful. Lines with opcode f interpret their parameter fields as follows:

p1 - function table number being created
p2 - creation time, or time at which the table becomes readable
p3 - table size (number of points), which must be a power of two or one greater
p4 - generating subroutine, chosen from a prescribed list.

Here the value 10 in p4 indicates a request for subroutine GEN10 to fill the table. GEN10 mixes
harmonic sinusoids in phase, with relative strengths of consecutive partials given by the
succeeding parameter fields. Our score requests just a single sinusoid. An alternative statement:

f1 0 256 10 1 0 3

would produce one cycle of a waveform with a third harmonic three times as strong as the first.

The i statements, or note statements, will invoke the p1 instrument at time p2, then turn it off
after p3 seconds; it will pass all of its p-fields to that instrument. Individual score parameters are
separated by any number of spaces or tabs; neat formatting of parameters in columns is nice but
unnecessary. The dots in p-fields 3 and 4 of the last four notes invoke a carry feature, in which
values are simply copied from the immediately preceding note of the same instrument. A score
normally ends with an e statement.

The Public Csound Reference Manual Supplement A Beginning Tutorial Page 1-5

The unit of time in a Csound score is the beat. In the absence of a tempo statement, one beat
takes one second. To double the speed of the pentatonic scale in the above score, we could either
modify p2 and p3 for all the notes in the score, or simply insert the line

t 0 120

to specify a tempo of 120 beats per minute from beat 0.

Two more points should be noted. First, neither the f statements nor the i statements need be
typed in time order; Csound will sort the score automatically before use. Second, it is
permissable to play more than one note at a time with a single instrument. To play the same
notes as a three-second pentatonic chord we would create the following:

; a sine wave function
f1 0 256 10 1
; five notes at once
i1 0 3 0 8.01
i1 0 . . 8.03
i1 0 . . 8.06
i1 0 . . 8.08
i1 0 . . 8.10
e

Now go into the editor once more and create your own score file. Name it "intro.sco". The next
section will describe how to invoke a Csound orchestra to perform a Csound score.

The Public Csound Reference Manual Supplement A Beginning Tutorial Page 1-6

1.3 The Csound Command

To request your orchestra to perform your score, type the command

csound intro.orc intro.sco

The resulting performance will take place in three phases:

1. sort the score file into chronological order. If score syntax errors are encountered they will be
reported on your console.

2. translate and load your orchestra. The console will signal the start of translating each instr
block, and will report any errors. If the error messages are not immediately meaningful,
translate again with the verbose flag turned on:
csound -v intro.orc intro.sco

3. fill the wave tables and perform the score. Information about this performance will be
displayed throughout in messages resembling
B 4.000 .. 6.000 T 3.000 TT 3.000 M 7929. 7929.

A message of this form will appear for every event in your score. An event is defined as any
change of state (as when a new note begins or an old one ends). The first two numbers refer to
beats in your original score, and they delimit the current segment of sound synthesis between
successive events (e.g. from beat 4 to beat 6). The second beat value is next restated in real
seconds of time, and reflects the tempo of the score. That is followed by the Total Time elapsed
for all sections of the score so far. The last values on the line show the maximum amplitude of
the audio signal, measured over just this segment of time, and reported separately for each
channel.

Console messages are printed to assist you in following the orchestra's handling of your score.
You should aim at becoming an intelligent reader of your console reports. When you begin
working with longer scores and your instruments no longer cause surprises, the above detail may
be excessive. You can elect to receive abbreviated messages using the -m option of the Csound
command.

When your performance goes to completion, it will have created a sound file named test in your
soundfile directory. You can now listen to your sound file by typing
play test

If your machine is fast enough, and your Csound module includes user access to the audio output
device, you can hear your sound as it is being synthesized by using a command like:
csound -o devaudio intro.orc intro.sco

The Public Csound Reference Manual Supplement A Beginning Tutorial Page 1-7

1.4 More about the Orchestra

Suppose we next wished to introduce a small vibrato, whose rate is 1/50 the frequency of the
note (i.e. A440 is to have a vibrato rate of 8.8 Hz.). To do this we will generate a control signal
using a second oscillator, then add this signal to the basic frequency derived from p5. This might
result in the instrument

instr 1
kamp line 0, p3, 10000
kvib oscil 2.75, cpspch(p5)/50, 1
a1 oscil kamp, cpspch(p5)+kvib, 1

out a1
endin

Here there are two control signals, one controlling the amplitude and the other modifying the
basic pitch of the audio oscillator. For small vibratos, this instrument is quite practical; however
it does contain a misconception worth noting. This scheme has added a sine wave deviation to
the cps value of an audio oscillator. The value 2.75 determines the width of vibrato in cps, and
will cause an A440 to be modified about one-tenth of one semitone in each direction (1/160 of
the frequency in cps). In reality, a cps deviation produces a different musical interval above than
it does below. To see this, consider an exaggerated deviation of 220 cps, which would extend a
perfect 5th above A440 but a whole octave below. To be more correct, we should first convert p5
into a true decimal octave (not cps), so that an interval deviation above is equivalent to that
below. In general, pitch modification is best done in true octave units rather than pitch-class or
cps units, and there exists a group of pitch converters to make this task easier. The modified
instrument would be

instr 1
ioct = octpch(p5)
kamp line 0, p3, 10000
kvib oscil 1/120, cpspch(p5)/50, 1
asig oscil kamp, cpsoct(ioct+kvib), 1

out asig
endin

This instrument is seen to use a third type of orchestra variable, an i-rate variable. The variable
ioct receives its value at an initialization pass through the instrument, and does not change during
the lifespan of this note. There may be many such init time calculations in an instrument. As
each note in a score is encountered, the event space is allocated and the instrument is initialized
by a special pre-performance pass. i-rate variables receive their values at this time, and any other
expressions involving just constants and i-rate variables are evaluated. At this time also, modules
such as line will set up their target values (such as beginning and end points of the line), and
units such as oscil will do phase setup and other bookkeeping in preparation for performance. A
full description of init-time and performance-time activities, however, must be deferred to a
general consideration of the orchestra syntax.

The Public Csound Reference Manual Supplement A Beginning Tutorial Page 1-8

T h i s p a g e l e f t b l a n k .

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-1

2 AN INSTRUMENT DESIGN TOOTORIAL
by Richard Boulanger, Berklee College of Music

2.1 Introduction
2.1.1 The Header Section
2.1.2 The Instrument Section
2.1.3 Orchestra Statements
2.1.4 Comments

2.2 Toot 1: Play One Note

2.3 Toot 2: "P-Fields"

2.4 Toot 3: Envelopes

2.5 Toot 4: Chorusing

2.6 Toot 5: Vibrato

2.7 Toot 6: GENs

2.8 Toot 7: Crossfade

2.9 Toot 8: Soundin

2.10 Toot 9: Global Stereo Reverb

2.11 Toot 10: Filtered Noise

2.12 Toot 11: Carry, Tempo, & Sort
2.12.1 Carry
2.12.2 Ramping
2.12.3 Tempo
2.12.4 Score Sections
2.12.5 Adding Extra Time
2.12.6 Sort

2.13 Toot 12: Tables & Labels

2.14 Toot 13: Spectral Fusion

2.15 When Things Sound Wrong

2.16 Suggestions for Further Study

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-2

2.1 Toot Introduction

Csound instruments are created in an orchestra file, and the list of notes to play is written in a
separate score file. Both are created using a standard word processor. When you run Csound on a
specific orchestra and score, the score is sorted and ordered in time, the orchestra is translated
and loaded, the wavetables are computed and filled, and then the score is performed. The score
drives the orchestra by telling the specific instruments when and for how long to play, and what
parameters to use during the course of each note event.

Unlike today's commercial hardware synthesizers, which have a limited set of oscillators,
envelope generators, filters, and a fixed number of ways in which these can be interconnected,
Csound's power is not limited. If you want an instrument with hundreds of oscillators, envelope
generators, and filters you just type them in. More important is the freedom to interconnect the
modules, and to interrelate the parameters which control them. Like acoustic instruments,
Csound instruments can exhibit a sensitivity to the musical context, and display a level of
"musical intelligence" to which hardware synthesizers can only aspire.

Because the intent of this tutorial is to familiarize the novice with the syntax of the language, we
will design several simple instruments. You will find many instruments of the sophistication
described above in various Csound directories, and a study of these will reveal Csound's real
power.

The Csound orchestra file has two main parts:

1. the header section - defining the sample rate, control rate, and number of output channels.

2. the instrument section - in which the instruments are designed.

2.1.1 THE HEADER SECTION

A Csound orchestra generates signals at two rates - an audio sample rate and a control sample
rate. Each can represent signals with frequencies no higher than half that rate, but the distinction
between audio signals and sub-audio control signals is useful since it allows slower moving
signals to require less compute time. In the header below, we have specified a sample rate of
44.1 kHz, a control rate of 4410 Hz, and then calculated the number of samples in each control
period using the formula: ksmps = sr / kr
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

In Csound orchestras and scores, spacing is arbitrary. It is important to be consistent in laying out
your files, and you can use spaces to help this. In the Tutorial Instruments shown below you will
see we have adopted one convention. The reader can choose his or her own.

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-3

2.1.2 THE INSTRUMENT SECTION

All instruments are numbered and are referenced thus in the score. Csound instruments are
similar to patches on a hardware synthesizer. Each instrument consists of a set of "unit
generators," or software "modules," which are "patched" together with "i/o" blocks – i-, k-, or a-
rate variables. Unlike a hardware module, a software module has a number of variable
"arguments" which the user sets to determine its behavior. The four types of variables are:

setup only
i-rate variables, changed at the note rate
k-rate variables, changed at the control signal rate
a-rate variables, changed at the audio signal rate

2.1.3 ORCHESTRA STATEMENTS

Each statement occupies a single line and has the same basic format:
result action arguments

To include an oscillator in our orchestra, you might specify it as follows:

a1 oscil 10000, 440, 1

The three "arguments" for this oscillator set its amplitude (10000), its frequency (440Hz), and its
wave shape (1). The output is put in i/o block a1. This output symbol is significant in prescribing
the rate at which the oscillator should generate output – here the audio rate. We could have
named the result anything (e.g. asig) as long as it began with the letter "a".

2.1.4 COMMENTS

To include text in the orchestra or score which will not be interpreted by the program, precede it
with a semicolon. This allows you to fully comment your code. On each line, any text which
follows a semicolon will be ignored by the orchestra and score translators.

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-4

2.2 Toot 1: Play One Note

For this and all instrument examples, there exist orchestra and score files in the Csound
subdirectory tutorfiles that the user can run to soundtest each feature introduced. The
instrument code shown below is actually preceded by an orchestra header section similar to that
shown above. If you are running on a RISC computer, each example will likely run in realtime.
During playback (realtime or otherwise) the audio rate may automatically be modified to suit the
local d-a converters.

The first orchestra file, called toot1.orc contains a single instrument which uses an oscil unit
to play a 440Hz sine wave (defined by f1 in the score) at an amplitude of 10000.

instr 1
a1 oscil 10000, 440, 1

out a1
endin

Run this with its corresponding score file, toot1.sco :
f1 0 4096 10 1 ; use "GEN01" to compute a sine wave
i1 0 4 ; run "instr 1" from time 0

; for 4 seconds
e ; indicate the "end" of the score

Toot 1: oscil

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-5

2.3 Toot 2: "P-Fields"

The first instrument was not interesting because it could play only one note at one amplitude
level. We can make things more interesting by allowing the pitch and amplitude to be defined by
parameters in the score. Each column in the score constitutes a parameter field, numbered from
the left. The first three parameter fields of the i statement have a reserved function:
p1 = instrument number
p2 = start time
p3 = duration

All other parameter fields are determined by the way the sound designer defines his instrument.
In the instrument below, the oscillator's amplitude argument is replaced by p4 and the frequency
argument by p5. Now we can change these values at i-time, i.e. with each note in the score. The
orchestra and score files now look like:

instr 2
a1 oscil p4, p5, 1 ; p4=amp

out a1 ; p5=freq
endin

f1 0 4096 10 1 ; sine wave
; instrument start duration amp(p4) freq(p5)

i2 0 1 2000 880
i2 1.5 1 4000 440
i2 3 1 8000 220
i2 4.5 1 16000 110
i2 6 1 32000 55

e

Toot 2: oscil with p-fields

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-6

2.4 Toot 3: Envelopes

Although in the second instrument we could control and vary the overall amplitude from note to
note, it would be more musical if we could contour the loudness during the course of each note.
To do this we'll need to employ an additional unit generator linen, which the Csound reference
manual defines as follows:
kr linen kamp, irise, idur, idec
ar linen xamp, irise, idur, idec

linen is a signal modifier, capable of computing its output at either control or audio rates. Since
we plan to use it to modify the amplitude envelope of the oscillator, we'll choose the latter
version. Three of linen's arguments expect i-rate variables. The fourth expects in one instance a
k-rate variable (or anything slower), and in the other an x-variable (meaning a-rate or anything
slower). Our linen we will get its amp from p4.

The output of the linen (k1) is patched into the kamp argument of an oscil. This applies an
envelope to the oscil. The orchestra and score files now appear as:

instr 3
k1 linen p4, p6, p3, p7 ; p4=amp
a1 oscil k1, p5, 1 ; p5=freq

out a1 ; p6=attack time
endin ; p7=release time

f1 0 4096 10 1 ; sine wave
;instr start duration amp(p4) freq(p5) attack(p6) release(p7)
i3 0 1 10000 440 .05 .7
i3 1.5 1 10000 440 .9 .1
i3 3 1 5000 880 .02 .99
i3 4.5 1 5000 880 .7 .01
i3 6 2 20000 220 .5 .5
e

Toot 3: linen applied to oscil

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-7

2.5 Toot 4: Chorusing

Next we'll animate the basic sound by mixing it with two slightly de-tuned copies of itself. We'll
employ Csound's cpspch value converter which will allow us to specify the pitches by octave
and pitch-class rather than by frequency, and we'll use the ampdb converter to specify loudness
in dB rather than linearly.

Since we are adding the outputs of three oscillators, each with the same amplitude envelope,
we'll scale the amplitude before we mix them. Both iscale and inote are arbitrary names to make
the design a bit easier to read. Each is an i-rate variable, evaluated when the instrument is
initialized.

instr 4 ; toot4.orc
iamp = ampdb(p4) ; convert decibels to linear amp
iscale = iamp * .333 ; scale the amp at initialization
inote = cpspch(p5) ; convert "octave.pitch" to cps
k1 linen iscale, p6, p3, p7 ; p4=amp
a3 oscil k1, inote*.996, 1 ; p5=freq
a2 oscil k1, inote*1.004, 1 ; p6=attack time
a1 oscil k1, inote, 1 ; p7=release time

out a1
endin

f1 0 4096 10 1 ; sine wave
;instr start duration amp(p4) freq(p5) attack(p6) release(p7)
i4 0 1 75 8.04 .1 .7
i4 1 1 70 8.02 .07 .6
i4 2 1 75 8.00 .05 .5
i4 3 1 70 8.02 .05 .4
i4 4 1 85 8.04 .1 .5
i4 5 1 80 8.04 .05 .5
i4 6 2 90 8.04 .03 1

e

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-8

Toot 4: multiple oscils with value converters

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-9

2.6 Toot 5: Vibrato

To add some delayed vibrato to our chorusing instrument we use another oscillator for the
vibrato and a line segment generator, linseg, as a means of controlling the delay. linseg is a k-
rate or a-rate signal generator which traces a series of straight line segments between any number
of specified points. The Csound manual describes it as:
kr linseg ia, idur1, ib[, idur2, ic[...]]
ar linseg ia, idur1, ib[, idur2, ic[...]]

Since we intend to use this to slowly scale the amount of signal coming from our vibrato
oscillator, we'll choose the k-rate version. The i-rate variables: ia, ib, ic, etc., are the values for
the points. The i-rate variables: idur1, idur2, idur3, etc., set the duration, in seconds, between
segments.

instr 5 ; toot5.orc
irel = .01 ; set vibrato release

; time
idel1 = p3 - (p10 * p3) ; calculate initial

; delay (% of dur)
isus = p3 - (idel1- irel) ; calculate remaining

; duration
iamp = ampdb(p4) ; p4=amp
iscale = iamp * .333
inote = cpspch(p5) ; p5=freq
k3 linseg 0, idel1, p9, isus, p9, irel, 0 ; p6=attack time
k2 oscil k3, p8, 1 ; p7=release time
k1 linen iscale, p6, p3, p7 ; p8=vib rate
a3 oscil k1, inote*.995+k2, 1 ; p9=vib depth
a2 oscil k1, inote*1.005+k2, 1 ; p10=vib delay (0-1)
a1 oscil k1, inote+k2, 1

out a1+a2+a3
endin

;toot5.sco
f 1 0 4096 10 1

;ins strt dur amp frq atk rel vibrt vibdpth vibdel
i5 0 3 86 10.00 .1 .7 7 6 .4
i5 4 3 86 10.02 1 .2 6 6 .4
i5 8 4 86 10.04 2 1 5 6 .4
e

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-10

Toot 5: Vibrato

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-11

2.7 Toot 6: Gens

The first character in a score statement is an opcode, determining an action request; the
remaining data consists of numeric parameter fields (p-fields) to be used by that action. So far
we have been dealing with two different opcodes in our score: f and i. i statements, or note
statements, invoke the p1 instrument at time p2 and turn it off after p3 seconds; all remaining p-
fields are passed to the instrument.

f statements, or lines with an opcode of f, invoke function-drawing subroutines called GENS. In
Csound there are currently twenty-three GEN routines which fill wavetables in a variety of ways.
For example, GEN01 transfers data from a soundfile; GEN07 allows you to construct functions
from segments of straight lines; and GEN10, which we've been using in our scores so far,
generates composite waveforms made up of a weighted sum of simple sinusoids. We have
named the function "f1," invoked it at time 0, defined it to contain 512 points, and instructed
GEN10 to fill that wavetable with a single sinusoid whose amplitude is 1. GEN10 can in fact be
used to approximate a variety of other waveforms, as illustrated by the following:
f1 0 2048 10 1 ; Sine
f2 0 2048 10 1 .5 .3 .25 .2 .167 .14 .125 .111 ; Sawtooth
f3 0 2048 10 1 0 .3 0 .2 0 .14 0 .111 ; Square
f4 0 2048 10 1 1 1 1 .7 .5 .3 .1 ; Pulse

For the opcode f, the first four p-fields are interpreted as follows:
p1 - table number - In the orchestra, you reference this table by its

number.
p2 - creation time - The time at which the function is generated.
p3 - table size - Number of points in table - must be a power of 2, or

that plus 1.
p4 - generating subroutine - Which of the 17 GENS will you employ.
p5 -> p? - meaning determined by the particular GEN subroutine.

In the instrument and score below, we have added three additional functions to the score, and
modified the orchestra so that the instrument can call them via p11.

instr 6 ; toot6.orc
ifunc = p11 ; select basic

; waveform
irel = .01 ; set vibrato release
idel1 = p3 - (p10 * p3) ; calculate initial

; delay
isus = p3 - (idel1- irel) ; calculate remaining

; dur
iamp = ampdb(p4)
iscale = iamp * .333 ; p4=amp
inote = cpspch(p5) ; p5=freq
k3 linseg 0, idel1, p9, isus, p9, irel, 0 ; p6=attack time
k2 oscil k3, p8, 1 ; p7=release time
k1 linen iscale, p6, p3, p7 ; p8=vib rate
a3 oscil k1, inote*.999+k2, ifunc ; p9=vib depth
a2 oscil k1, inote*1.001+k2, ifunc ; p10=vib delay (0-1)
a1 oscil k1, inote+k2, ifunc

out a1 + a2 + a3
endin

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-12

;toot6.sco
f1 0 2048 10 1 ; Sine
f2 0 2048 10 1 .5 .3 .25 .2 .167 .14 .125 .111 ; Sawtooth
f3 0 2048 10 1 0 .3 0 .2 0 .14 0 .111 ; Square
f4 0 2048 10 1 1 1 1 .7 .5 .3 .1 ; Pulse

;ins strt dur amp frq atk rel vibrt vibdpth vibdel waveform(f)
i6 0 2 86 8.00 .03 .7 6 9 .8 1
i6 3 2 86 8.02 .03 .7 6 9 .8 2
i6 6 2 86 8.04 .03 .7 6 9 .8 3
i6 9 3 86 8.05 .03 .7 6 9 .8 4
e

Toot 6: GENs

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-13

2.8 Toot 7: Crossfade

Now we will add the ability to do a linear crossfade between any two of our four basic
waveforms. We will employ our delayed vibrato scheme to regulate the speed of the crossfade.

instr 7 ; toot7.orc
ifunc1 = p11 ; initial waveform
ifunc2 = p12 ; crossfade waveform
ifad1 = p3 - (p13 * p3) ; calculate initial

; fade
ifad2 = p3 - ifad1 ; calculate remaining

; dur
irel = .01 ; set vibrato release
idel1 = p3 - (p10 * p3) ; calculate initial

; delay
isus = p3 - (idel1- irel) ; calculate remaining

; dur
iamp = ampdb(p4)
iscale = iamp * .166 ; p4=amp
inote = cpspch(p5) ; p5=freq
k3 linseg 0, idel1, p9, isus, p9, irel, 0 ; p6=attack time
k2 oscil k3, p8, 1 ; p7=release time
k1 linen iscale, p6, p3, p7 ; p8=vib rate
a6 oscil k1, inote*.998+k2, ifunc2 ; p9=vib depth
a5 oscil k1, inote*1.002+k2, ifunc2 ; p10=vib delay (0-1)
a4 oscil k1, inote+k2, ifunc2 ; p11=initial wave
a3 oscil k1, inote*.997+k2, ifunc1 ; p12=cross wave
a2 oscil k1, inote*1.003+k2, ifunc1 ; p13=fade time
a1 oscil k1, inote+k2, ifunc1
kfade linseg 1, ifad1, 0, ifad2, 1
afunc1 = kfade * (a1+a2+a3)
afunc2 = (1 - kfade) * (a4+a5+a6)

out afunc1 + afunc2
endin

; toot7.sco
f1 0 2048 10 1 ; Sine
f2 0 2048 10 1 .5 .3 .25 .2 .167 .14 .125 .111 ; Sawtooth
f3 0 2048 10 1 0 .3 0 .2 0 .14 0 .111 ; Square
f4 0 2048 10 1 1 1 1 .7 .5 .3 .1 ; Pulse

;ins strt dur amp frq atk rel vibrt vbdpt vibdel strtwav endwav crosstime
i7 0 5 96 8.07 .03 .1 5 6 .99 1 2 .1
i7 6 5 96 8.09 .03 .1 5 6 .99 1 3 .1
i7 12 8 96 8.07 .03 .1 5 6 .99 1 4 .1

e

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-14

Toot 7: Crossfade

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-15

2.9 Toot 8: Soundin

Now instead of continuing to enhance the same instrument, let us design a totally different one.
We'll read a soundfile into the orchestra, apply an amplitude envelope to it, and add some reverb.
To do this we will employ Csound's soundin and reverb generators. The first is described as:
a1 soundin ifilcod[, iskiptime[, iformat]]

soundin derives its signal from a pre-existing file. ifilcod is either the filename in double quotes,
or an integer suffix (.n) to the name "soundin". Thus the file soundin.5 could be referenced
either by the quoted name or by the integer 5. To read from 500ms into this file we might say:
a1 soundin "soundin.5", .5

The Csound reverb generator is actually composed of four parallel comb filters plus two allpass
filters in series. Although we could design a variant of our own using these same primitives, the
preset reverb is convenient, and simulates a natural room response via internal parameter values.
Only two arguments are required the input (asig) and the reverb time (krvt)
ar reverb asig, krvt

The soundfile instrument with artificial envelope and a reverb (included directly) is as follows:
instr 8 ; toot8.orc

idur = p3
iamp = p4
iskiptime = p5
iattack = p6
irelease = p7
irvbtime = p8
irvbgain = p9
kamp linen iamp, iattack, idur, irelease
asig soundin "soundin.aiff", iskiptime
arampsig = kamp * asig
aeffect reverb asig, irvbtime
arvbreturn = aeffect * irvbgain

out arampsig + arvbreturn
endin

;toot8.sco
;ins strt dur amp skip atk re rvbtime rvbgain
i8 0 1 .3 0 .03 .1 1.5 .2
i8 2 1 .3 0 .1 .1 1.3 .2
i8 3.5 2.25 .3 0 .5 .1 2.1 .2
i8 4.5 2.25 .3 0 .01 .1 1.1 .2
i8 5 2.25 .3 .1 .01 .1 1.1 .1

e

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-16

Toot 8: soundin

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-17

2.10 Toot 9: Global Stereo Reverb

In the previous example you may have noticed the soundin source being “cut off” at ends of
notes, because the reverb was inside the instrument itself. It is better to create a companion
instrument, a global reverb instrument, to which the source signal can be sent. Let's also make
this stereo.

Variables are named cells which store numbers. In Csound, they can be either local or global, are
available continuously, and can be updated at one of four rates - setup, i-rate, k-rate, or a-rate.

Local variables (which begin with the letters p, i, k, or a) are private to a particular instrument.
They cannot be read from, or written to, by any other instrument.

Global Variables are cells which are accessible by all instruments. Three of the same four
variable types are supported (i, k, and a), but these letters are preceded by the letter “g” to
identify them as “global.” Global variables are used for “broadcasting” general values, for
communicating between instruments, and for sending sound from one instrument to another.

The reverb instr99 below receives input from instr9 via the global a-rate variable garvbsig. Since
instr9 adds into this global, several copies of instr9 can do this without losing any data. The
addition requires garvbsig to be cleared before each k-rate pass through any active instruments.
This is accomplished first with an init statement in the orchestra header, giving the reverb
instrument a higher number than any other (instruments are performed in numerical order), and
then clearing garvbsig within instr99 once its data has been placed into the reverb.
sr = 44100 ; toot9.orc
kr = 4410
ksmps = 10
nchnls = 2 ; stereo
garvbsig init 0 ; make zero at orch init time

instr 9
idur = p3
iamp = p4
iskiptime = p5
iattack = p6
irelease = p7
ibalance = p8 ; panning: 1=left, .5=center, 0=right
irvbgain = p9
kamp linen iamp, iattack, idur, irelease
asig soundin "soundin.aiff", iskiptime
arampsig = kamp * asig

outs arampsig * ibalance, arampsig * (1 - ibalance)
garvbsig = garvbsig + arampsig * irvbgain

endin

instr 99 ; global reverb
irvbtime = p4
sig reverb garvbsig, irvbtime ; put global signal into reverb

outs sig, asig
garvbsig = 0 ; then clear it

endin

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-18

In the score we turn the global reverb on at time 0 and keep it on until irvbtime after the last note.
; ins strt dur rvbtime ; toot9.sco
i99 0 9.85 2.6

;ins strt dur amp skip atk rel balance(0-1) rvbsend
i9 0 1 .5 0 .02 .1 1 .2
i9 2 2 .5 0 .03 .1 0 .3
i9 3.5 2.25 .5 0 .9 .1 .5 .1
i9 4.5 2.25 .5 0 1.2 .1 0 .2
i9 5 2.25 .5 0 .2 .1 1 .3
e

Toot 9: Global Stereo Reverb

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-19

2.11 Toot 10: Filtered Noise

The following instrument uses the Csound rand unit to produce noise, and a reson unit to filter
it. The bandwidth of reson will be set at i-time, but its center frequency will be swept via a line
unit through a wide range of frequencies during each note. We add reverb as in Toot 9.
garvbsig init 0

instr 10 ; toot10.orc
iattack = .01
irelease = .2
iwhite = 10000
idur = p3
iamp = p4
isweepstar = p5
isweepend = p6
ibandwidth = p7
ibalance = p8 ; pan: 1 = left, .5 = center,

; 0 = right
irvbgain = p9
kamp linen iamp, iattack, idur, irelease
ksweep line isweepstart, idur, isweepend
asig rand iwhite
afilt reson asig, ksweep, ibandwidth
arampsig = kamp * afilt

outs arampsig * ibalance, arampsig * (1 - ibalance)
garvbsig = garvbsig + arampsig * irvbgain

endin

instr 100
irvbtime = p4
asig reverb garvbsig, irvbtime

outs asig, asig
garvbsig = 0

endin

;toot10.sco
;ins strt dur rvbtime
i100 0 15 1.1
i100 15 10 5

;ins strt dur amp stswp ndswp bndwth balance(0-1) rvbsend
i10 0 2 .05 5000 500 20 .5 .1
i10 3 1 .05 1500 5000 30 .5 .1
i10 5 2 .05 850 1100 40 .5 .1
i10 8 2 .05 1100 8000 50 .5 .1
i10 8 .5 .05 5000 1000 30 .5 .2
i10 9 .5 .05 1000 8000 40 .5 .1
i10 11 .5 .05 500 2100 50 .4 .2
i10 12 .5 .05 2100 1220 75 .6 .1
i10 13 .5 .05 1700 3500 100 .5 .2
i10 15 5 .01 8000 800 60 .5 .15
e

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-20

Toot 10: Filtered Noise

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-21

2.12 Toot 11: Carry, Tempo & Sort

We now use a plucked string instrument to explore some of Csound's score preprocessing
capabilities. Since the focus here is on the score, the instrument is presented without explanation.

instr 11
asig1 pluck ampdb(p4)/2, p5, p5, 0, 1
asig2 pluck ampdb(p4)/2, p5 * 1.003, p5 * 1.003, 0, 1

out asig1+asig2
endin

The score can be divided into time-ordered sections by the s statement. Prior to performance,
each section is processed by three routines: Carry, Tempo, and Sort. The score toot11.sco
has multiple sections containing each of the examples below, in both of the forms listed.

2.12.1 CARRY

The carry feature allows a dot (".") in a p-field to indicate that the value is the same as above,
provided the instrument is the same. Thus the following two examples are identical:
;ins start dur amp freq | ; ins start dur amp freq
i11 0 1 90 200 | i11 0 1 90 200
i11 1 . . 300 | i11 1 1 90 300
i11 2 . . 400 | i11 2 1 90 400

A special form of the carry feature applies to p2 only. A "+" in p2 will be given the value of
p2+p3 from the previous i statement. The "+" can also be carried with a dot:
;ins start dur amp freq | ; ins start dur amp freq
i11 0 1 90 200 | i11 0 1 90 200
i. + . . 300 | i11 1 1 90 300
i. . . . 500 | i11 2 1 90 500

The carrying dot may be omitted when there are no more explicit pfields on that line:
;ins start dur amp freq | ; ins start dur amp freq
i11 0 1 90 200 | i11 0 1 90 200
i11 + 2 | i11 1 2 90 200
i11 | i11 3 2 90 200

2.12.2 RAMPING

A variant of the carry feature is ramping, which substitutes a sequence of linearly interpolated
values for a ramp symbol (<) spanning any two values of a pfield. Ramps work only on
consecutive calls to the same instrument, and they cannot be applied to the first three p-fields.
;ins start dur amp freq | ; ins start dur amp freq
i11 0 1 90 200 | i11 0 1 90 200
i . + . < < | i11 1 1 85 300
i . . . < 400 | i11 2 1 80 400
i . . . < < | i11 3 1 75 300
i . . 4 70 200 | i11 4 4 70 200

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-22

2.12.3 TEMPO

The unit of time in a Csound score is the beat - normally one beat per second. This can be
modified by a tempo statement which enables the score to be arbitrarily time-warped. Beats are
converted to their equivalent in seconds during score pre-processing of each Section. In the
absence of a Tempo statement in any Section, the following tempo statement is inserted:
t 0 60

It means that at beat 0 the tempo of the Csound beat is 60 (1 beat per second). To hear the
Section at twice the speed, we have two options: 1) cut all p2 and p3 in half and adjust the start
times, or 2) insert the statement t 0 120 within the Section.

The tempo statement can also be used to move between different tempi during the score, thus
enabling ritardandi and accelerandi. Changes are linear by beat size. The following statement
will cause the score to begin at tempo 120, slow to tempo 80 by beat 4, then accelerate to 220 by
beat 7:
t 0 120 4 80 7 220

The following will produce identical sound files:
t 0 120 ; Double-time via Tempo
;ins start dur amp freq | ; ins start dur amp freq
i11 0 .5 90 200 | i11 0 1 90 200
i . + . < < | i . + . < <
i . . . < 400 | i . . . < 400
i . . . < < | i . . . < <
i . . 2 70 200 | i . . 4 70 200

The following includes an accelerando and ritard. It should be noted, however, that the ramping
feature is applied after time-warping, and is thus proportional to elapsed chronological time.
While this is perfect for amplitude ramps, frequency ramps will not result in harmonically related
pitches during tempo changes. The frequencies needed here are thus made explicit.

t 0 60 4 400 8 60 ; Time-warping via Tempo
; ins start dur amp freq

i11 0 1 70 200
i . + . < 500
i . . . 90 800
i . . . < 500
i . . . 70 200
i . . . 90 1000
i . . . < 600
i . . . 70 200
i . . 8 90 100

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-23

2.12.4 SCORE SECTIONS

Three additional score features are extremely useful in Csound. The s statement was used above
to divide a score into Sections for individual pre-processing. Since each s statement establishes a
new relative time of 0, and all actions within a section are relative to that, it is convenient to
develop the score one section at a time, then link the sections into a whole later.

Suppose we wish to combine the six above examples (call them toot11a - toot11f) into one
score. One way is to start with toot11a.sco, calculate its total duration and add that value to
every starting time of toot11b.sco, then add the composite duration to the start times of
toot11c.sco, etc. Alternatively, we could insert an s statement between each of the sections
and run the entire score. The file toot11.sco, which contains a sequence of all of the above
score examples, did just that.

2.12.5 ADDING EXTRA TIME

The f0 statement, which creates an "action time" with no associated action, is useful in extending
the duration of a section. Two seconds of silence are added to the first two sections below.
; ins start dur amp freq ; toot11g.sco

i11 0 2 90 100
f 0 4 ; The f0 Statement
s ; The Section Statement
i11 0 1 90 800
i . + . . 400
i 100
f 0 5
s
i11 0 4 90 50
e

2.12.6 SORT

During preprocessing of a score section, all action-time statements are sorted into chronological
order by p2 value. This means that notes can be entered in any order, that you can merge files, or
work on instruments as temporarily separate sections, then have them sorted automatically when
you run Csound on the file.

The file below contains excerpts from this section of the rehearsal chapter and from instr6 of the
tutorial, and combines them as follows:
; ins start dur amp freq ; toot11h.sco

i11 0 1 70 100 ; Score Sorting
i . + . < <
i . . . < <
i . . . 90 800
i . . . < <
i . . . < <
i . . . 70 100
i . . . 90 1000
i . . . < <
i . . . < <
i . . . < <
i . . . 70 <
i . . 8 90 50

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-24

f1 0 2048 10 1 ; Sine
f2 0 2048 10 1 .5 .3 .25 .2 .167 .14 .125 .111 ; Sawtooth
f3 0 2048 10 1 0 .3 0 .2 0 .14 0 .111 ; Square
f4 0 2048 10 1 1 1 1 .7 .5 .3 .1 ; Pulse

; ins strt dur amp frq atk rel vibr vibdpth vibdel waveform
i6 0 2 86 9.00 .03 .1 6 5 .4 1
i6 2 2 86 9.02 .03 .1 6 5 .4 2
i6 4 2 86 9.04 .03 .1 6 5 .4 3
i6 6 4 86 9.05 .05 .1 6 5 .4 4

Toot 11: Carry, Tempo, and Sort

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-25

2.13 Toot 12: Tables and Labels

This is by far our most complex instrument. In it we have designed the ability to store pitches in
a table, and then index them in three different ways: 1) directly, 2) via an lfo, and 3) randomly.
As a means of switching between these three methods, we will use Csound's program control
statements and logical and conditional operations.

instr 12 ;toot12.orc
iseed = p8
iamp = ampdb(p4)
kdirect = p5
imeth = p6
ilforate = p7 ; lfo and random

; index rate
itab = 2
itablesize = 8

if (imeth == 1) igoto direct
if (imeth == 2) kgoto lfo
if (imeth == 3) kgoto random

direct: kpitch table kdirect, itab ; index "f2" via p5
kgoto contin

lfo: kindex phasor ilforate
kpitch table kindex * itablesize, itab

kgoto contin

random: kindex randh int(7), ilforate, iseed
kpitch table abs(kindex), itab

contin: kamp linseg 0, p3 * .1, iamp, p3 * .9, 0 ; amp envelope
asig oscil kamp, cpspch(kpitch), 1 ; audio osc

out asig
endin

;toot12.sco
f1 0 2048 10 1 ; sine
f2 0 8 -2 8.00 8.02 8.04 8.05 8.07 8.09 8.11 9.00 ; cpspch C major scale

; method 1 - direct index of table values
; ins start dur amp index method lforate rndseed

i12 0 .5 86 7 1 0 0
i12 .5 .5 86 6 1 0
i12 1 .5 86 5 1 0
i12 1.5 .5 86 4 1 0
i12 2 .5 86 3 1 0
i12 2.5 .5 86 2 1 0
i12 3 .5 86 1 1 0
i12 3.5 .5 86 0 1 0
i12 4 .5 86 0 1 0
i12 4.5 .5 86 2 1 0
i12 5 .5 86 4 1 0
i12 5.5 2.5 86 7 1 0

s

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-26

; method 2 - lfo index of table values
; ins start dur amp index method lforate rndseed

i12 0 2 86 0 2 1 0
i12 3 2 86 0 2 2
i12 6 2 86 0 2 4
i12 9 2 86 0 2 8
i12 12 2 86 0 2 16

s

; method 3 - random index of table values
; ins start dur amp index method rndrate rndseed

i12 0 2 86 0 3 2 .1
i12 3 2 86 0 3 3 .2
i12 6 2 86 0 3 4 .3
i12 9 2 86 0 3 7 .4
i12 12 2 86 0 3 11 .5
i12 15 2 86 0 3 18 .6
i12 18 2 86 0 3 29 .7
i12 21 2 86 0 3 47 .8
i12 24 2 86 0 3 76 .9
i12 27 2 86 0 3 123 .9
i12 30 5 86 0 3 199 .1

e

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-27

if (imeth == 1) igoto direct
if (imeth == 2) igoto lfo
if (imeth == 3) igoto random

Toot 12: Tables and Labels

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-28

2.14 Toot 13: Spectral Fusion

For our final instrument, we will employ three unique synthesis methods: Physical Modeling,
Formant-Wave Synthesis, and Non-linear Distortion. Three of Csound's most powerful unit
generators - pluck, fof, and foscil, make this complex task a fairly simple one. The Reference
Manual describes these as follows:
ar pluck kamp, kcps, icps, ifn, imeth [, iparm1, iparm2]

pluck simulates the sound of naturally decaying plucked strings by filling a cyclic decay buffer
with noise and then smoothing it over time according to one of several methods. The unit is
based on the Karplus-Strong algorithm.

ar fof xamp, xfund, xform, koct, kband, kris, kdur kdec,\\
iolaps, ifna, ifnb, itotdur[, iphs[, ifmode]]

fof simulates the sound of the male voice by producing a set of harmonically related partials (a
formant region) whose spectral envelope can be controlled over time. It is a special form of
granular synthesis, based on the CHANT program from IRCAM by Xavier Rodet et al.

ar foscil xamp, kcps, kcar, kmod, kndx, ifn [, iphs]

foscil is a composite unit which banks two oscillators in a simple FM configuration, wherein the
audio-rate output of one (the "modulator") is used to modulate the frequency input of another
(the "carrier.")

The plan for our instrument is to have the plucked string attack dissolve into an FM sustain
which transforms into a vocal release. The orchestra and score are as follows:

instr 13 ; toot13.orc
iamp = ampdb(p4) / 2 ; amplitude, scaled for two sources
ipluckamp = p6 ; % of total amp, 1=dB amp as in p4
ipluckdur = p7*p3 ; % of total dur, 1=entire dur of note
ipluckoff = p3 - ipluckdur
ifmamp = p8 ; % of total amp, 1=dB amp as in p4
ifmrise = p9*p3 ; % of total dur, 1=entire dur of note
ifmdec = p10*p3 ; % of total duration
ifmoff = p3 - (ifmrise + ifmdec)
index = p11
ivibdepth = p12
ivibrate = p13
iformantamp = p14 ; % of total amp, 1=dB amp as in p4
iformantrise = p15*p3 ; % of total dur, 1=entire dur of note
iformantdec = p3 - iformantrise

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-29

kpluck linseg ipluckamp, ipluckdur, 0, ipluckoff, 0
apluck1 pluck iamp, p5, p5, 0, 1
apluck2 pluck iamp, p5*1.003, p5*1.003, 0, 1
apluck = kpluck * (apluck1+apluck2)

kfm linseg 0, ifmrise, ifmamp, ifmdec, 0, ifmoff, 0
kndx = kfm * index
afm1 foscil iamp, p5, 1, 2, kndx, 1
afm2 foscil iamp, p5*1.003, 1.003, 2.003, kndx, 1
afm = kfm * (afm1+afm2)

kfrmnt linseg 0, iformantrise, iformantamp, iformantdec, 0
kvib oscil ivibdepth, ivibrate, 1
afrmnt1 fof iamp, p5+kvib, 650, 0, 40, .003, .017, .007, 4, 1,\\ 2,

p3
afrmnt2 fof iamp, (p5*1.001)+kvib*.009, 650, 0, 40, .003, .017,\\

.007, 10, 1, 2, p3
aformnt = kfrmnt * (afrmnt1+afrmnt2)

out apluck + afm + aformnt
endin

; toot13.sco
f1 0 8192 10 1 ; sine wave
f2 0 2048 19 .5 1 270 1 ; sigmoid rise

;i st dr mp frq plkmp plkdr fmp fmris fmdec indx vbdp vbrt frmp fris
i13 0 5 80 200 .8 .3 .7 .2 .35 8 1 5 3 .5
i13 + 8 80 100 . .4 .7 .35 .35 7 1 6 3 .7
i13 . 13 80 50 . .3 .7 .2 .4 6 1 4 3 .6

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-30

Toot 13: Spectral Fusion

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-31

2.15 When Things Sound Wrong

When you design your own Csound instruments you may occasionally be surprised by the
results. There will be times when you've computed a file for hours and your playback is just
silence, while at other times you may get error messages which prevent the score from running,
or you may hang the computer and nothing happens at all.

In general, Csound has a comprehensive error-checking facility that reports to your console at
various stages of your run: at score sorting, orchestra translation, initializing each call of every
instrument, and during performance. However, if your error was syntactically permissable, or it
generated only a warning message, Csound could faithfully give you results you don't expect.
Here is a list of the things you might check in your score and orchestra files:

1. You typed the letter ‘l’ instead of the number ‘1.’

2. You forgot to precede your comment with a semi-colon.

3. You forgot an opcode or a required parameter.

4. Your amplitudes are not loud enough, or they are too loud.

5. Your frequencies are not in the audio range - 20Hz to 20kHz.

6. You placed the value of one parameter in the p-field of another.

7. You left out some crucial information like a function definition.

8. You didn't meet the GEN specifications.

The Public Csound Reference Manual Supplement An Instrument Design TOOTorial Page 2-32

2.16 Suggestions for Further Study

Csound is such a powerful tool that we have touched on only a few of its many features and uses.
You are encouraged to take apart the instruments in the tutorials, rebuild them, modify them, and
integrate the features of one into the design of another. To understand their capabilities you
should compose short etudes with each. You may be surprised to find yourself merging these
little studies into the fabric of your first Csound compositions.

There are many sources of information on Csound and software synthesis. The ultimate
sourcebook for Csound is The Csound Book: Perspectives in Software Synthesis, Sound Design,
Signal Processing, and Programming, edited by Richard Boulanger, and published by MIT
Press.

Nothing will increase your understanding more than actually making music with Csound. The
best way to discover the full capability of these tools is to create your own music with them. As
you negotiate the new and uncharted terrain you will make many discoveries. It is my hope that
through Csound you discover as much about music as I have, and that this experience brings you
great personal satisfaction and joy.

Richard Boulanger
Boston, Massachusetts USA
March, 1991

The Public Csound Reference Manual Supplement A FOF Synthesis Tutorial Page 3-1

3 A FOF SYNTHESIS TUTORIAL
by J. M. Clarke, University of Huddersfield

The fof synthesis generator in Csound has more parameter fields than other modules. To help the
user become familiar with these parameters this tutorial will take a simple orchestra file using
just one fof unit-generator and demonstrate the effect of each parameter in turn. To produce a
good vocal imitation, or a sound of similar sophistication, an orchestra containing five or more
fof generators is required and other refinements (use of random variation of pitch etc.) must be
made. The sounds produced in these initial explorations will be much simpler and consequently
less interesting but they will help to show clearly the basic elements of fof synthesis. This
tutorial assumes a basic working knowledge of Csound itself. The specification of the fof unit-
generator (as found in the reference section of this manual) is:
ar fof xamp, xfund, xform, koct, kband, kris, kdur,\\ kdec,

iolaps, ifna, ifnb, itotdur, [iphs,\\ [ifmode]]

where:

xamp, xfund, xform – can receive any rate (constant, control or audio)

koct, kband, kdris, kdur, kdec – can receive only constants or control rates

iolaps, ifna, ifnb, itotdur – must be given a fixed value at initialization

iphs, ifmode – are optional, defaulting to 0.

The following orchestra contains a simple instrument we will use for exploring each parameter in
turn. On the faster machines (DECstation, SparcStation, SGI Indigo) it will run in real time.
sr = 44100
kr = 4410
ksmps = 10

instr 1
a1 fof 15000, 200, 650, 0, 0, .003, .02, .007, 5, 1, 2, p3

out a1
endin

It should be run with the following score:
f1 0 4096 10 1
f2 0 1024 19 .5 .5 270 .5
i1 0 3
e

The result is very basic. This is not surprising since we have created only one formant region (a
vocal imitation would need at least five) and have no vibrato or random variation of the
parameters. By varying one parameter at a time we will help the reader learn how the unit-
generator works. Each of the following “variations” starts from the model. Parameters not
specified remain as given.

The Public Csound Reference Manual Supplement A FOF Synthesis Tutorial Page 3-2

xamp – amplitude

The first input parameter controls the amplitude of the generator. At present our model uses a
constant amplitude, this can be changed so that the amplitude varies according to a line function:
a2 linseg 0, p3*.3, 20000, p3*.4, 15000, p3*.3, 0
a1 fof a2,(as before)...

The amplitude of a fof generator needs care. xamp does not necessarily indicate the maximum
output, which can also depend on the rise pattern, bandwidth, and the presence of any
“overlaps.”

xfund – fundamental frequency

This parameter controls the pitch of the fundamental of the unit generator. Starting again from
the original model this example demonstrates an exaggerated vibrato:
a2 oscil 20, 5, 1
a1 fof 15000, 200+a2, etc........

fof synthesis produces a rapid succession of (normally) overlapping excitations or granules. The
fundamental is in fact the speed at which new excitations are formed and if the fundamental is
very low, these excitations are heard as separate granules. In this case the fundamental is not so
much a pitch as a pulse speed. The possibility of moving between pitch and pulse, between
timbre and granular texture is one of the most interesting aspects of fof. For a simple
demonstration try the following variation. It will be especially clear if the score note is
lengthened to about 10 seconds.
a2 expseg 5, p3*.8, 200, p3*.2, 150
a1 fof 15000, a2 etc........

koct – octaviation coefficient

Skipping a parameter, we come to an unusual means of controlling the fundamental: octaviation.
This parameter is normally set to 0. For each unit increase in koct the fundamental pitch will
drop by one octave. The change of pitch is not by the normal means of glissando, but by
gradually fading out alternate excitations (leaving half the original number). Try the following
(again with the longer note duration):
k1 linseg 0, p3*.1, 0, p3*.8, 6, p3*.1, 6
a1 fof 15000, 200, 650, k1, etc........

This produces a drop of six octaves; if the note is sufficiently long you should be able to hear the
fading out of alternate excitations towards the end.

The Public Csound Reference Manual Supplement A FOF Synthesis Tutorial Page 3-3

xform – formant frequency

ifmode – formant mode (0 = striated, non-0 = smooth)

The spectral output of a fof unit-generator resembles that of an impulse generator filtered by a
band pass filter. It is a set of partials above a fundamental xfund with a spectral peak at the
formant frequency xform. Motion of the formant can be implemented in two ways. If ifmode = 0,
data sent to xform has effect only at the start of a new excitation. That is, each excitation gets the
current value of this parameter at the time of creation and holds it until the excitation ends.
Successive overlapping excitations can have different formant frequencies, creating a richly
varied sound. This is the mode of the original CHANT program. If ifmode is non-zero, the
frequency of each excitation varies continuously with xform. This allows glissandi of the formant
frequency. To demonstrate these differences we take a very low fundamental, so that the
granules can be heard separately and the formant frequency is audible not as the center frequency
of a “band” but as a pitch in its own right. Compare the following in which only ifmode is
changed:
a2 line 400, p3, 800
a1 fof 15000, 5, a2, 0, 1, .003, .5, .1, 3, 1, 2, p3, 0, 0

a2 line 400, p3, 800
a1 fof 15000, 5, a2, 0, 1, .003, .5, .1, 3, 1, 2, p3, 0, 1

In the first case, the formant frequency moves by step at the start of each excitation, whereas in
the second it changes smoothly. A more subtle difference is perceived with higher fundamental
frequencies. (Note that the later fof parameters were changed in this example to lengthen the
excitations so that their pitch could be heard easily.)

xform also permits frequency modulation of the formant frequency. Applying FM to an already
complex sound can lead to strange results, but here is a simple example:
acarr line 400, p3, 800
index = 2.0
imodfr = 400
idev = index * imodfr
amodsig oscil idev, imodfr, 1
a1 fof 15000, 5, acarr+amodsig, 0, 1, .003, .5, .1, 3, 1, 2,

p3, 0, 1

The Public Csound Reference Manual Supplement A FOF Synthesis Tutorial Page 3-4

kband – formant bandwidth

kris, kdur, kdec – rise time, duration and decay time (in seconds) of the excitation envelope

These parameters control the shape and length of the fof granules. They are shaped in three
segments: a rise, a middle decay, and a terminating decay. For very low fundamentals, these are
perceived as an amplitude envelope, but with higher fundamentals (above 30 Hz), the granules
merge together and these parameters effect the timbre of the sound. Note that these four
parameters influence a new granule only at the time of its initialization and are fixed for its
duration; later changes will affect only subsequent granules. We begin our examination with low
frequencies.
k1 line .003, p3, .1 ; kris
a1 fof 15000, 2, 300, 0, 0, k1, .5, .1, 2, 1, 2, p3

Run this with a note length of 10 seconds. Notice how the attack of the envelope of the granules
lengthens. The shape of this attack is determined by the forward shape of ifnb (here a sigmoid).

Now try changing kband:
k1 linseg 0, p3, 10 ; kband
a1 fof 15000, 2, 300, 0, k1, .003, .5, .1, 2, 1, 2, p3

Following its rise, an excitation has a built-in exponential decay and kband determines its rate.
The bigger kband the steeper the decay; zero means no decay. In the above example, the
successive granules had increasingly fast decays.
k1 linseg 3, p3, .003
a1 fof 15000, 2, 300, 0, 0, .003, .4, k1, 2, 1, 2, p3

This demonstrates the operation of kdec. Because an exponential decay never reaches zero, it
must be terminated gracefully. kdur is the overall duration (in seconds from the start of the
excitation), and kdec is the length of the terminating decay. In the above example, the
terminating decay starts very early in the first granules and then becomes progressively later.
Note that kband is set to zero so that only the terminating decay is evident.

In the next example, the start time of the termination remains constant, but its length gets shorter:
k1 expon .3, p3, .003
a1 fof 15000, 2, 300, 0, 0, .003, .01 + k1, k1, 2, 1, , p3

It may be surprising to find that, for higher fundamentals, the local envelope determines the
spectral shape of the sound. Electronic and computer music has often shown how features of
music we normally consider independent, such as pitch, timbre, rhythm, are, in fact, different
aspects of the same thing. In general, the longer the local envelope segment, the narrower the
band of partials around that frequency. kband determines the bandwidth of the formant region at
-6dB, and kris controls the skirt width at -40dB. Increasing kband increases the local envelope's
exponential decay rate, thus shortening it and increasing the –6 dB spectral region. Increasing
kris (the envelope attack time)inversely makes the –40 dB spectral region smaller.

The Public Csound Reference Manual Supplement A FOF Synthesis Tutorial Page 3-5

The next example changes first the bandwidth, then the skirt width. You should be able to hear
the difference.
k1 linseg 100, p3/4, 0, p3/4, 100, p3/2, 100 ; kband
k2 linseg .003, p3/2, .003, p3/4, .01, p3/4, .003 ; kris
a1 fof 15000, 100, 440, 0, k1, k2, .02, .007, 3, 1, 2, p3

In the first half of the note, kris remains constant while kband broadens, then narrows again. In
the second half, kband is fixed while kris lengthens (narrowing the spectrum), then returns again.

Note that kdur and kdec don't really shape the spectrum, they simply tidy up the decay so as to
prevent unwanted discontinuities which would distort the sound. For vocal imitations these
parameters are typically set at .017 and .007 and left unchanged. With high ("soprano")
fundamentals it is possible to shorten these values and save computation time (reduce overlaps).

iolaps – number of overlap spaces

Granules are created at the rate of the fundamental frequency, and new granules are often created
before earlier ones have finished, resulting in overlaps. The number of overlaps at any one time
is given by xfund * kdur. For a typical bass note the calculation might be 200 * .018 = 3.6, and
for a soprano note 660 * .015 = 9.9. fof needs at least this number (rounded up) of spaces in
which to operate. The number can be over-estimated at no computation cost, and at only a small
space cost. If there are insufficient overlap spaces during operation, the note will terminate.

ifna, ifnb – stored function tables

Identification numbers of two function tables (see the fof entry).

itotdur – total duration within which all granules in a note must be completed

So that incomplete granules are not cut off at the end of a note fof will not create new granules if
they will not be completed by the time specified. Normally, given the value p3 (the note length),
this parameter can be changed for special effect; fof will output zero after time itotdur.

iphs – initial phase (optional, defaulting to 0).

Specifies the initial phase of the fundamental. Normally zero, but giving different fof generators
different initial phases can be helpful in avoiding “zeros” in the spectrum.

