14
15
16
17
18
19

INTERVAL UNIONS*

HERMANN SCHICHL , FERENC DOMES , TIAGO MONTANHER , AND KEVIN
KOFLER

Abstract. This paper introduces the interval union arithmetic, a new concept which extends
the traditional interval arithmetic. Interval unions allow to manipulate sets of disjoint intervals and
provide a natural way to represent the extended interval division. Considering interval unions lead
to simplifications of the interval Newton method as well as of other algorithms for solving interval
linear systems. This paper does not aim at describing the complete theory of interval union analysis,
but rather at giving basic definitions and some fundamental properties, as well as showing theoretical
and practical usefulness of interval unions in a few selected areas.

Key words. interval union arithmetic, union of intervals, interval union Newton method,
interval union linear systems.

AMS subject classifications. 65G30, 65G20, 65G40, 49M15

1. Introduction. Interval analysis is a branch of numerical analysis that was
born in the 1960’s. It consists of computing with intervals of reals instead of reals,
providing a framework for handling uncertainties and verified computations (see e.g.
[2, 20, 22] and [14] for a survey). Interval analysis is a key ingredient for numerical
constraint satisfaction (see e.g. [12]) and global optimization (see e.g. [7, 16]). Global
optimization solvers like Gloptlab [4Jand COCONUT [26, 27] rely heavily on interval
analysis to guarantee rigorous solutions, even non-rigorous solvers like BARON [25]
and a-Branch and bound [1] use rigorous computations in some steps of the search.
Applications of interval analysis comprise packing problems [28], robotics [6, 19],
localization and map building [10, 11], and the protein folding problem [18].

In practice, interval arithmetic must be implemented using outward rounding in order
to assure that the result of an interval calculation always contains the result of the
corresponding real valued operation evaluated for each value(s) of the used interval(s).
Interval arithmetic has been implemented in almost every programming language
which is relevant for scientific computing, see for example Intlab [24] for Matlab,
Filib++ [21] for C/C++, Interval [13] for Fortran and MathInterval [5] for Java.
Extended interval arithmetic [7, 14, 23] allows operations on intervals where the
bounds can be +oo. It gives the possibility of performing interval division even when
the denominator interval contains zero. For example, assume that we are interested
Ei
[—00, —2] and [2, 00]. The operation above must be interpreted as follows: The result-
ing quotient of § where a € [2,3] and b € [~1, 1]\0 belongs to the set [—oco, —2]U[2, oo].
This example shows the problem of interval arithmetic both from a theoretical and a
computational point of view. For the theory of intervals it is an issue since the result
of an elementary operation involving two intervals does not belong necessarily to the
set of intervals ' while for computations it is a problem since the interval division
operator requires special treatment.

This paper extends the concept of interval arithmetic to interval unions. An interval
union is a set of closed and disjoint intervals where the bounds of the extreme intervals
can be +00. During the paper we demonstrate that interval unions generalize intervals

in rigorous bounds for x = Applying the division rule presented in [23] gives

*This research was partially supported through the research grants P25648-N25 and P27376-N25

of the Austrian Science Fund (FWF) and CNPQ-205557/2014-7 of the Brazilian council of research.
Lunless the interval hull is taken, which often leads to serious overestimation of the true result

1

This manuscript is for review purposes only.

w N

S S U gt Ot gt Ot Ot gt Ot
= O © 00 1 O Ot &

63
64
65
66
67
68
69

T W N = O

[«

-

SRS N BEEN P JREN IR RS BN

=
©

z

81
82
83
84

85
86
87
88
89
90

2 H. SCHICHL, F. DOMES, T. MONTANHER, K. KOFLER

and allow among others to represent the result of interval division in a natural way.
Some of the theoretical results of interval analysis remain valid when we are dealing
with interval unions. That is the case, e.g., for the fundamental theorem of interval
arithmetic, and therefore the natural extension of real functions to interval unions is
similar to the interval case. On the other hand, some inclusion results like the interval
mean value theorem do not hold for interval unions, not even for the univariate case.
During the paper it is shown that a large part of the interval union arithmetic can be
easily implemented if we have an interval arithmetic library at our disposal.

The paper is organized as follows. In Section 2 we present the basics of interval arith-
metic. The section is mainly a revision of the traditional case in the extended context.
Section 3 describes the generalization from intervals to interval unions, where the ba-
sic interval union operations are defined, isotonicity property shown, the fundamental
theorem of interval union arithmetic is proven. In addition, in this section, hull and
component-wise operations are also defined.

In Section 4 the interval union Newton method for univariate functions is presented.
Similar as for the interval Newton method the aim is to enclose all roots of f(z) € R
subject to x € X where both, R and X are interval unions. We show that the
definition of Newton methods can be made through component-wise operations and
compare our new approach with the traditional interval Newton algorithm in a set
of 32 problems. Our experiment shows that interval union arithmetic can improve
Newton methods significantly in the univariate case.

Finally in Section 5, interval union linear systems are studied and shown that the
interval Gaussian elimination and Gauss-Seidel algorithms can be extended from in-
tervals to interval unions. The advantages of replacing interval operations by interval
unions in linear systems are demonstrated by performing tests on examples in low
dimension.

1.1. Notation. We mostly follow [17] for the notation of interval arithmetic.

Throughout this paper R"™*" denotes the vector space of all m x n matrices A with
real entries A, (i =1,...,m, k=1,...,n), and R® = R"*! denotes the vector space
of all column vectors v of length n and entries v; (i = 1,...,n). For vectors and
matrices, the relations =, #, <, >, <, > and the absolute value |A| of the matrix A
are interpreted component-wise.
We write AT to represent the transpose of a matrix A and A~7 is short for (AT)~1.
The ith row vector of a matrix A is denoted by A;. and the jth column vector by A.;.
For the nxn matrix A, diag(A) denotes the n-dimensional vector with diag(A4); = A;;.
The number of elements of the index set N is given by |N|. Let I C {1,...,m} and
J C{1,...,n} beindex sets and let ny := |I|, ny := |J|. For the n-dimensional vector
x, xy denotes the n j-dimensional vector built from the components of x selected by
the index set J. For the m x m matrix A, the expression Aj. denotes the ny x n
matrix built from the rows of A selected by the index sets I. Similarly, A.; denotes
the m x ny matrix built from the columns of A selected by the index sets J.

2. Interval Arithmetic. This section presents the basics of interval arithmetic.
A comprehensive approach to this topic is given by [22]. We are mainly interested in
extended interval arithmetic. i.e, when division by intervals containing 0 is allowed.
Good references to extended interval arithmetic are [7] and [15].
Let g,a € R with a < @ then a = [a,a] denotes a real interval with inf(a) =
min(a) = @ and sup(a) = max(a) = a@. The set of nonempty compact real

This manuscript is for review purposes only.

110

112
113
114
115
116
117

118

119
120

INTERVAL UNIONS 3

intervals is denoted by
IR :={[a,a] | a <@, a,a € R}.

We extend the definition of real intervals by permitting the bounds of intervals to be
one of the ideal points —oo and co and define IR as the set of closed real intervals.
We write

IR := IR U {[~o0,d] | 7 € B} U{la, oc] | a € B} U {00, 0], 0},

defining, [~00,a@] ;== {z € R |z <@}, [a,00] :={z € R |z > a}, and [~00,00] ;== R.
The width of the interval a € IR\ {0} is given by wid(a) := @ — g, its mignitude by

<a>:::{ min(al, [al) if 0 ¢ [a, @],

0 otherwise.

and its magnitude by | a| := max(|a|,|a]). The midpoint of a € IR is a :=
mid(a) := (a + @)/2 and the radius of a € IR is & := rad(a) := (a — @)/2. For
a € IR there is no natural definition of a midpoint. Moreover, if & is well defined then
a € a< |a—al <aand we say that midrad(a,4) is the midrad representation of
interval a. For a set S the smallest box containing S is called the interval hull of S
and denoted by []S. An interval is called thin or degenerate if wid(a) = 0.

The inclusion relations are given as
aCb<«<=b<ana<b aCb<=b<ara<b.

An interval vector x = [z,TZ] or box is the Cartesian product of the closed real
r— =N
intervals x; = [z;,7;] € IR. We write IR~ to denote the set of all n-dimensional

boxes. We also define the interval matrix A = [4, 4] in a similar way and IR
denotes the set of all m x n interval matrices. Operations defined for intervals (like
width, midpoint, radius, mignitude and magnitude) are defined component-wise when
applied to boxes or matrices.

Let a,b € IR. The elementary real operations o € {+, —, /,*,” } are extended to the
interval arguments a, b by defining the result of an elementary interval operation to
be the set of real numbers which results from combining any two numbers contained
in a and in b. Formally,

aosb:={aob|aca, bebandaobis defined}.

This leads to operations on IR defined by aob := [J(acsb). The elementary operations
are inclusion isotonic. That means:

aca,bcb’ = aobeca’ob foralloe {+,—, /% }
For a,b € IR we get that

a-[1/5,1/Y if0 ¢ b,
00, +00] ifoeanoeb,
a/b, +00] ifa<O0Ab<b=0,

—00,a/bl U [a/b,+oo] ifa<0OAb<0<b,x
—00,a/b

[
[
[
(1) a/eb = {
[
[

|
] ifa<0A0=b<b,
00, a/b] if0<aAb<b=0,
00,a/bl U la/b,+00] if0<aAb<0<b,x
a/b, +00] if0<an0=b<b,

0 if0¢anb=>b=0.

This manuscript is for review purposes only.

124
125
126
127
128
129

130

134
135
136

138
139
140
141
142
143
144
145
146
147
148
149

—_
—

—

(2 NG B e

~

w N

[
t

4 H. SCHICHL, F. DOMES, T. MONTANHER, K. KOFLER

As one can see in the cases marked with *, the result is not a single interval but the
union of two disjoint ones. As shown in [23] the division defined by (1) is inclusion
isotonic (also see, [15]).

In some applications the interval definition of subtraction may over-estimate the range
of the real computation. For example, since —a := 0 — a = [—sup(a), —inf(a)] for
b :=a — a, we only have 0 € b and

b=a+ (—a) #[0,0] =0 if inf(a) # sup(a),

does not hold. In order to cope with this situation we also define inner subtraction
for intervals. If a,b € IR then

@) ach — { [inf(a) — inf(b),sup(a) — sup(b)] if wid(a) > wid(b)

[sup(a) — sup(b),inf(a) — inf(b)] otherwise

Inner operations lead to significant improvements on the interval Gauss-Seidel algo-
rithm discussed later in this paper.
Let x € IR" and f: D C R" — R. We define rge(f(x)) to be the set

rge(f(x)) :={f(z) [z €xN D},

and call it the range of f over the box x. We extend the range to a function on IR
by rg(f(x)) := [Jrge(f(x)), also called the range of f.

We say that a function f : IR" — IR is inclusion isotonic if x C y = f(x) C f(y).
We already established that elementary interval operations are inclusion isotonic and
it is also possible to construct interval functions with the isotonicity property for
standard functions like exponential, logarithmic and trigonometric, see for example
[24] or [5]. Moreover, it is easy to prove that the composition of inclusion isotonic
functions is also inclusion isotonic. Formally we have

ProposiTION 1. Ifg:IR" — IR and £ : TR" — IR are inclusion isotonic functions
then g(f(x)) is inclusion isotonic.

The interval function f : IR" — IR is an interval extension of a function f:DC
R™ — R if

f(z) = f(x) forxz € D,and f(z) e f(x) foralzexCD.

If f admits a closed form and can be expressed in terms of elementary operations and
standard functions we call the interval function f given by replacing every real opera-
tion with its interval counterpart the natural extension. Using these definitions we
can formulate the fundamental theorem of interval analysis and prove it as in [20]:

PROPOSITION 2 (Fundamental theorem of interval analysis). If £ is inclusion isoto-
nic and is an interval extension of f : R™ — R then rg(f(x)) C f(x).

Interval arithmetic also allows to prove a general version of the mean value theorem
for multivariate functions, see [22]:

PROPOSITION 3 (Interval mean value theorem). Let F': R™ — R™ be a differentiable
function defined on a box x C R™. IfF is an interval extension of F and J an interval
extension of the Jacobian of F both of them satisfying the isotonicity property then
forxz,y ex

F(y) e F(z) +I(x)(y — =).

This manuscript is for review purposes only.

164
165
166

167

168

169

170

176
177
178
179
180
181
182
183
184
185
186

187

188

189
190
191
192

193

194

196
197
198

199

INTERVAL UNIONS 5

Proposition 3 leads to the following Taylor extension, see [22].

COROLLARY 4 (Taylor expansion). Let f : R® — R be a differentiable function de-
fined in a box x C R™. Iff is an interval extension of f and g the interval extension
of the gradient of f both of them satisfying the isotonicity property then

£(x) C £(a) + ()" (x — 2), @€ x.
We define the set
f,;l(x,y) ={zr € Xk | 321, 2h—1, 2ka1s -+, 2n 2 E DNXA f(2) €y}
and call it the kth partial inverse image of f on y and for its interval hull we write
Ft e y) =00 (xy).

3. Interval Unions.

3.1. Motivation. The well known interval Newton iteration

(3) x*+D = N(xF)nxF, N(x) =% — f(%) k=0,1,2,....

is the interval variant of Newton’s method for finding the roots of a function f in a
box x. If (3) is applied to an arbitrary univariate function f : R — R and the starting
interval xg, the interval Newton method splits and contracts xq into several intervals
enclosing the zeros of f over xg.

By (1) the division operator applied to two intervals a,b € IR in the cases marked by
a * do not map into IR. To solve this issue one can either define / : IR x IR\ {0} — IR
or for the marked cases one could take the interval hull of the two resulting intervals.
However, keeping the two disjoint intervals in the marked cases is the reason why (3)
works properly if 0 € f/(x). Therefore, it is obvious to define a structure where the
division operator and therefore the interval Newton method is defined in a consistent
and natural way. It serves as a motivation to introduce interval unions and define
operations similar to the interval versions.

3.2. Definition.

DEFINITION 5. Throughout this paper, interval unions are denoted by bold calligraphic
letters. An interval union u of length l(w) := k is a finite set of k disjoint intervals.
Since for all disjoint intervals the natural ordering exists we denote the elements of
u by u; and write

uiem Vi=1,...,k,

) w=(u,..) with W<u,, Vi=l.. k-1

The set of all interval unions of length < k is denoted by U and U := UkZO Uy, is
the set of all interval unions. In addition to this Uy = () and we identify U, with IR.

Obviously U C U, C U If k< m.

DEFINITION 6. Let w := (uy,...,u;) € U be an interval union. We will identify u
with the subset Ule u; of R that u represents, so for a real number x we say

T €u & there exists a 1 <i <k such that x € u,.

This manuscript is for review purposes only.

214
215
216
217
218
219

ND
o]

N
N
—_

NN N
DN N NN
T = W N

[\
)
N O U

228
229

230

233
234

6 H. SCHICHL, F. DOMES, T. MONTANHER, K. KOFLER
Similarly, for the interval x
X Cu & there exists a 1 <1 <k such that x C u;.
Finally, for another interval union v
v Cu< forallv €v there exists a 1 < i < k such that v C u,.

DEFINITION 7. Let S be a finite set of intervals, the union creator U(S) is defined
as the smallest interval union w that satisfies a C u for alla € S.

LEMMA 8. Let S be a set of intervals, the union creator is inclusion isotonic:

SCS = US)CU).

Proof. Follows directly from the definition. 0

LEMMA 9. The interval hull of a union u € U is given by
Uu = [uy, W)

Proof. Follows directly from Definition 5. O

DEFINITION 10. We define U} and U™, respectively, as the set of all interval union
vectors of dimension n. Similarly, we introduce Uy ™ and U™™ as the sets of
interval union matrices of size n X m with the usual definition of the operations. We
denote interval union matrices by capital bold calligraphic letters like A or B and
denote interval union vectors by lower case bold calligraphic letters like x or y.

The interval union vector w € U regarded as a subset of R™ is always a finite set
of boxes. More specifically, if u; has length k; we get the H;'l:1 k; disjoint boxes
H?:1 ;g 1 <tl; <kj. Wewrite for u € IR" thatu € u iff u is one of these bozes.
Note that storing this set as an interval union vector requires just Z;L:1 k; intervals
which is a clear advantage over storing all the individual boxes, especially in higher
dimensions.

If € U \ {0} we define the magnitude and mignitude of the interval union
respectively by

] 1= maxc(fw], ..., [we]) = max (|, |, [])

and
(w) == min({uy),..., (ug)).

We also define for w € Uy, \ {0} the maximum, minimum and maximum width
of interval unions by

max(u) := Uy, min(«) := u,

and

max wid(z) := max(wid(uy), ..., wid(ug))

This manuscript is for review purposes only.

237

238
239
240
241
242
243
244
245
246

INTERVAL UNIONS 7

Given the interval union u € Uy and a point € R we define the projection of = as
follows

r if z€u
w if ze]m,u[andr - <uy, -,
proj(z,u) =q wy if ze]m,u[ande—w>u,, —u,
u, if x>y,
u, if z<u.

Some functions defined for intervals do not extend naturally to interval unions. For
such functions we present different definitions that can be useful in several con-
texts. Let u € Uy \ {0} be an interval union, we denote the component-wise mid-

point and radius respectively by @. := (ai,...,0%) and 4. := (Qy,...,0) whenever
—00 < u; < U < 0o. We denote the component-wise width and magnitude of u by
wid(a). := (wid(uy), ..., wid(ug)) and |a|. := (Jui],...,|ug|) respectively. In some

applications we also need to define operations above over the hull of w. In such cases
we add a subscript h to identify the hull operation. For example the hull mid-point
operator and hull width of u are given by @, := [Ju and wid(u) := wid([Ju).

3.3. Maximum length and filling gaps. The motivation from Section 3.1
hints a problem which can arise when considering interval unions, since during itera-
tive evaluations the number of intervals inside a union can grow uncontrollably. This
can be easily anticipated if considering the task of finding zeros of a function hav-
ing an infinite number of zeros in the starting box via the interval Newton method.
Actually, this problem arises in several other interval methods where intervals unions
could prove quite useful. We propose to solve the problem by restricting the maximum
length of unions and by defining gap filling strategies.

DEFINITION 11. Let uw € U be an interval union and let u;, u;+1 € u. The open
interval g; between the intervals w; and w;11 is called the ith gap of u and is defined
as

(5) gi = (m, u;,,).

DEFINITION 12. A gap collection ¢ of length k is a set of k disjoint open real inter-
vals. We will write

v, =, Vi=1,...,k v, <7; €R,

X2

Ti<uv, VYi=1,... k-1

~

We denote by flk the set of all gap collections of size < k and by U= U;en Wi the
set of all gap collections.
We will again identify 6 € U with the set Jge, ©® € R and write x € 6, x C 6, and

@ C 6 forx e R, x € IR, and w € .

i€N

LEMMA 13. Let w be an interval union of length k, and let & = (g1, ...,8k—1) be the
sequence of all gaps of u. Then 4 € Up_q, i.c., wid(g;) > 0 holds for all g; € 4.
Therefore, u — @ defines a map Uy — Up_1.

Proof. Because of (5), the strict inequality in (4), and since the bounds %; and w,;

are real numbers. 0

LEMMA 14. Let u € Uy, and x € IR.
1. aUa =[la.

This manuscript is for review purposes only.

282

283
284
285
286
287
288
289
290
291

292

293

294

312

8 H. SCHICHL, F. DOMES, T. MONTANHER, K. KOFLER

2. The mapping " is bijective Uj,x == {u € Uy | Ju = x} = Wp_15 := {U €
?:lk,1 ‘ U - X}.

DEFINITION 15. Let u € U \ Uy and g C 4@ a set of gaps of w. We define the
gap filling F(u,g) € Uy_|y as the unique interval union with ﬁ(u,g) =a\g and
Dﬁ(u,g) = [lu, i.e., we fill all the gaps from g in w.
We write F(u,g) for g = {g} and F(u,g1,...,8¢) for g ={g1,..., e}
If g; is the ith gap of u we get F(u,g;) by setting w; := ;31 and removing the
interval u; 1 from u.

LEMMA 16. Foru € U and g C 4 we have
(6) uC F(u,g).

Proof. If g = {gi}, by (4), W < w; ., therfore u; Uu;yy C [u;,Uiq1], proving (6).
Since F(u,g) = F(u,g \ {g}) the general case follows by induction on the size of g.0
Now we will introduce the concept of gap ordering to determine which gap to fill first.
Usually, the width of the gap plays a part in that ordering (sometimes also a relative
width with respect to the position of the interval along the real axis), and also the
position of the gap might be interesting. Since we do not want to fix this ordering
for developing the theory we will just assume that we are given a linear order < on
the set of all open intervals of R with the property that for arbitrary x € IR every
collection of open intervals contained in x has a maximal element w.r.t. <.

DEFINITION 17. The index set of the n smallest gaps of w (w.r.t. <) is defined by
Go(u) C{1,...,k—1}, |G%| = n, such that ifi € G then g; g, for all j ¢ G°.
Similarly, the index set of the n largest gaps of u (w.r.t. <) is defined by

Ch) C{1,...,k—1}, |G*| = n, such that if i € G* then g; >g; for all j ¢ G*.

For r € {L,S} we denote by g}, (u) := {g; € a4 | i € G- (u)} the set of smallest
respectively largest gaps of w. For convenience we define gh(u) = @ if n > l(w) and
g (u)=0if n<O0.

DEFINITION 18. We define the length restriction mapping T'y : U — U, by
Ti(n) := F(u, Qﬁu)fk(u)), i.e., we fill the l(u) — k smallest gaps of u, and we do not
change w if l(u) < k.

Defining the interval union hull of a set M of real numbers is not straightforward.
Unfortunately, there is nothing like the smallest interval union of length & containing
M. For bounded sets M we can get something like uniqueness by filling all but the
largest gaps in M. If the set is unbounded, e.g., M =]—o0,0] U U;‘;iw[22j,22j+l],
there may be gaps of arbitrary size. In the following definition, we will resolve that
problem by fixing a bounded region x and filling all gaps that are not contained in x.
If M is bounded we can always choose x = []M.

DEFINITION 19. Fiz x € IR and N> k > 1, and let M C R and M its topological
closure. Then M€ := x\ M is a countable (possibly finite) union of open intervals.
Let M€ be the set of these intervals, and @ € ﬂk_l the subset of the k — 1 largest
elements of Me. We define the interval union hull Uy x(M) of length k of M with

respect to x as the unique interval union in U, Y with U/k\x(M) =4a.

This manuscript is for review purposes only.

314
315
316
317
318
319
320
321
322
323

327
328

329

330

331

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

348

INTERVAL UNIONS 9

3.4. Arithmetic for Interval Unions. In this section, similarly to interval
arithmetic, basic set and elementary operations as well as properties like inclusion
isotonicity are defined and explained for interval unions. Most of the theory translates
nicely from intervals to interval unions, but some properties do not: e.g., due to the
lack of convexity it is not possible to prove a mean value theorem for interval unions.

DEFINITION 20. Let x € IR be an interval, u := (uy,...,u) and 8 := (S1,...S;)
interval unions. Define the index set J as J := {i € {1,...,k} | u; Nx # 0} and for
J # 0 also define J := min(J) and J := max(J).

(i) The union operation for u and x is defined as u Ux := U(u U {x}). Obviously,
we have

(1) aUx = (U1, ., W, X, Wipq,...up) whereW; <z and T <w; , if J=10
(1, ..., uy-1, [min(uy, x), max(uy, 7)], uz 4, .. . uk) otherwise.

(i’) The union operation for w and 8 is defined by

(8) uUg:=uUsy U---Usy.
(ii) The intersection operation for u and x is defined as unx := U({u1Nx, ..., uxN
x}). We have
0 if J=10
9 wnx={ (max(s;,z)min7,7) i 7= {3}
([max(uy,), 0], uys1, .-, ug7_y, [ug, min(us, 7)) otherwise.

(ii’) The intersection operation for u and S is defined by
(10) uNas:=(unNsy)U---U(uns).

Note that there is a slight ambiguity in the notation, as w U 4 can also denote the
union of the two sets of intervals w and 4. However, there will be no confusion between
these two concepts, as the same real set is represented.

LEMMA 21. Let x € IR be an interval, w := (uy,...,ug), 8 := (s1,...8¢) interval
unions.

(i) For the union operation defined by (7) we have x € u UX iff x € u or x € x.

(i’) For the union operation defined by (8) we have v € uUs iff x € u or x € o.

(ii) For the intersection operation defined by (9) we have x € u Nx iff v € u and
T € X.

(ii’) For the intersection operation defined by (10) we have x € u N4 iff x € u and
x € 4.

DEFINITION 22. Let x € IR be an interval, u := (uy,...,u) and 8 := (S1,...S;)
interval unions and let o € {4+, —, /,*,”} be an elementary interval operation defined
in Section 2.
(i) The elementary interval union operation corresponding to o applied to w and
X s given by

uox:=U({u; oeX,...,u; 04 X})

(i’) The elementary interval union operation corresponding to o applied to u and s is
given by

uwos:=U{uosy,...,uos})

This manuscript is for review purposes only.

w W W W

SNBSS IR

Tt = W N

(=3}

w W w
~N 3

O |

10 H. SCHICHL, F. DOMES, T. MONTANHER, K. KOFLER

Note that for the interval division operator (1) the above definition gives a natural
embedding of the problematic cases into the set of interval unions: for arbitrary
a,b € IR we have

(U({a})/b) cU.

LEMMA 23. Let w := (uy,...,u) and 8 := (sy,...s;) be interval unions then the
elementary interval union operations o € {+,—,/,*,” } defined by (22) are inclusion
isotonic:

wuCu ands C o = uosCu'od forall {+,—,/,% "}

Proof. The union creator U is inclusion isotonic by Lemma 8. Interval operations are
inclusion isotonic by Section 2, therefore the composition of them is also inclusion
isotonic. o

In addition to the usual definition of elementary operations we also introduce compo-
nent-wise operations that will be useful in the context of interval union linear systems.

DEFINITION 24. Let u := (uy,...,ux) and 8 := (s1,...8) be interval unions of the
same length and let o € {+,—, /,*} then the component-wise interval union operation
corresponding to o applied to w and o is given by

Uuo,s:=uypo0s1U...Uugosyg.

In the following we will fix a "cutoff” x € R for filling the gaps as described before in
Definition 19. If the function f in the following definition is well-behaved (e.g. piece-
wise continuous and the pre-image of every interval is bounded), then the result will
not depend on x as long as x is big enough.

DEFINITION 25. Letu € U™ be an interval union vector and 8 € U an interval union,
and let f: D CR™ — R. For fized { > 1 we define the range of length { of f over u
(w.r.t. x) as

(11) rg,(f(a)) := Ur x({rge(f(n)) |u € u})
and the kth partial inverse image of length (of f on u and 4 as
(12) frp(@,8) := U x({fre(v,8) | v € V}s € 8}).

As in the interval case, we call a function f : U™ — U inclusion isotone if ' C
u = f(a') C f(u). Moreover, we say f : U™ — U is the interval union extension of a
function f: D CR" = R in u € U™ if

f(z) = f(x) forxze DNu,and f(z)ef(u) forallze DNuau.

We also refer to interval union extensions only as extensions when there is no pos-
sibility of misunderstandings. As in the interval case we can define a natural inter-
val union extension for functions composed by elementary operations and standard
function only by replacing real operations by their interval union counterparts. The
following proposition states that the fundamental theorem of interval analysis can be
naturally extended to interval unions.

ProrosITION 26. If f is inclusion isotonic and the interval union extension of f :
R™ — R then frqg(u) C f(u).

This manuscript is for review purposes only.

410

411
412

413

414

116
417

118

419

123
424
425
426
427
428
129

INTERVAL UNIONS 11
Proof. immediately from the application of the fundamental theorem of interval anal-
ysis to every component u; of u = (uy,...,ux). d

On the other hand, due to the lack of convexity when working with interval unions we
are not able to prove the interval union mean value theorem. For example, consider
f(x) = 22 and the interval union « = ([-3,—1],[1,3]). If we take z = —2 € [-3, —1]
and y = 2 € [1, 3] then there is no £ € u such that 4 = 4 — 8¢, and hene the statement
fails even for univariate functions.

4. Interval union Newton method. In this section we consider the problem
of rigorously enclosing all solutions of

(13) f(m) cr, rex

where f : R — R is a differentiable function. In Section 4.1 we review the interval
Newton method for the case where z is set to be zero and x is a closed and bounded
interval. In Section 4.2 we formulate the interval union Newton operator. Numerical
experiments comparing both approaches are presented in Section 4.3.

4.1. Interval Newton method. Let x be a bounded interval and f: R — R a
differentiable function. We are interested in enclosing all solutions of

(14) f(z)=0, zex

Interval newton methods to solve this problem are based on the interval mean value
theorem applied to (14). Formally, if y € x such that f(y) = 0 then

0=f(y) ef(z) +f'x)(y — 2)
for any fixed x € x. Therefore, the solution set of the problem can be given as
(15) Sy ={yex|3If* €f(z)and g* € f'(x) such that f* + ¢g*(y — x) =0}

regardless of the choice of . The usual interval Newton method fixes = as the midpoint
of x and generates a sequence of nested intervals such that

X0 2X1 2 ... 28y,
where
x* D = N(xF)nxF, k=0,1,2,...
The operator N(x) is called interval Newton function and is given by

£(%)
f/(x)”

(16) Nx)=%x—

Algorithms based on the interval Newton method can be divided in two groups de-
pending on whether or not they rely on extended division, i.e. splitting intervals after
the division into the two unconnected result intervals. Some authors like Moore [20]
and Alefeld [2] only apply the interval Newton operator to boxes where 0 ¢ f'(x).
More sophisticated algorithms like those proposed by Kearfott [15] and Hansen [7]
allow division by intervals containing zero and process each box resulting from the
division separately.

This manuscript is for review purposes only.

130
131
432
433
434

135
436
437

138

139

440
141
442

Y

445

446

4477
148

12 H. SCHICHL, F. DOMES, T. MONTANHER, K. KOFLER

The simplest interval Newton method with extended division for enclosing all solutions
of (14) is given in Algorithm 1. The algorithm takes the interval x and applies the
interval Newton operator to it. If the resulting intervals are not empty or too thin
then they are split, an interval to be processed is chosen and the iteration continues.
The proof of finiteness and rigorousness of the interval Newton algorithm is given in
[15]. For multivariate versions of this algorithm see [7-9].

Algorithm 1 Interval Newton algorithm

Input: The interval xg, the interval extensions f and f’ of f and f’ respectively and
the narrow component tolerance € > 0.

Output: A list of intervals C with x € C = wid(x) < € and the guarantee that for
all y € xo with f(y) = 0 there exists at least one interval x € C such that y € x.

1: W+ xg;

2: while W # @ do

3: x < get_ first(W);

4: T+ X;

5: [x1,%2] (:1: - ff,((f{))> N x; > Newton operator
6: fori+1:2do

7 if x; # @ then > Elimination test
8: if 0 ¢ f(x;) then continue

9: else if wid(x;) < € then > Solution test
10: C <+ x;;

11: else

12: W [§17i1], W« [)V(Z,izL

13: end if

14: end if

15: end for

16: end while

17: return C;

The list of intervals C returned by the algorithm need not to be disjoint. Moreover,
it is possible that the algorithm saves an interval x in C even when it contains no
root of f. The only guarantee we have is that when y € x satisfies f(y) = 0 then
Yy € x; C C for some 1.

4.2. Interval union Newton method. Let x and ¢ be interval unions with p
and ¢ elements respectively. Applying the interval mean value theorem to each pair
of intervals in « and = gives the solution set of (13)

CS) = U (‘S’I(Xi7rj)
1<i<p
1<j<q
where

Sy(x,r):={yex|Irer, f*€f(x)and g* € f'(x) such that f*+ ¢g*(y —x) =7}

for any fixed x € x. Therefore, we can solve (13) by applying Algorithm 1 p x ¢ times.
However, the interval union arithmetic provides a more natural approach, without the
need of running multiple instances of the same algorithm. Let u* = (u},... u*) be

This manuscript is for review purposes only.

149
150

152
153
454
455
456

157

458
159
160
161

INTERVAL UNIONS 13

an interval union, f a differentiable function and f and f’ interval union extensions of
f and of its derivative f’. The interval union Newton iteration is given by

(17) abtl = (N nuab,. .., NuF)nub)

where N(x) is the interval Newton function. Note that the interval union Newton
iteration is rigorous since it is a component-wise application of the interval mean
value theorem. Algorithm 2 uses (17) to enclose all solutions of (13). It also needs
the auxiliary function checkAndRemove which is given in Algorithm 3. In the next
section we perform numerical experiments to compare the performance of Algorithm
1 with Algorithm 2.

Algorithm 2 Interval union Newton algorithm

Input: The interval union ug, the interval union extensions f and f’ of f and f/ and
the narrow component tolerance € > 0.

Output: The interval union 4 = (x;) with wid(x;) < € and the guarantee that for all
y € ug with f(y) = 0 there exist an x; such that y € x;.

1: u <+ ug;

2: while u # @ do

3: u < (N(up)Nuy,...,N(u,) Nuy,); > Newton operator
4: X < J;

5: for x; € u do

6: if f(x;) Nr # @ then > Elimination test
7: if wid(x;) < € then > Solution test
8: S x;;

9: else

10: x + checkAndRemove(x;, €, f);

11: end if

12: end if

13: end for

14: u ¢+ x;

15: end while

16: return S;

Algorithm 3 Check and Remove

Input: The interval x and the narrow component tolerance e
Output: An interval union & with two elements
LTy« [z—5,2+5]

2: if f(y) Nr # @ then Save y as solution of (13)
3: end if
4
5

A {[§=X]> [yvi]};
: return w;

4.3. Numerical experiments. We compare interval and interval union New-
ton methods for univariate functions using a Java implementation that is part of
JGloptlab [5]. We used 32 test functions listed in Table 1 most of them taken from
[3]. For each function we consider the natural extensions for both f and f’. In our

This manuscript is for review purposes only.

162
463
464
465
466
467
168
469
470
471

472
473
474
A75
476
477
478
479
480
481

14 H. SCHICHL, F. DOMES, T. MONTANHER, K. KOFLER

implementation, we have followed the pseudo-codes of Algorithms 1 and 2 precisely,
without any additional acceleration or optimization.

For each function f; we seek the enclosure of all solutions f;(x) = 0 where z € x and x
is a bounded interval. The narrow component tolerance e is set to 10~7 and the max-
imum number of function evaluations is set to 100000. If we are unable to reduce the
width of every component of the solution set below € before the maximum number of
function evaluations is reached we relax the tolerance parameter by a factor of 10 and
restart the process. Table 1 shows the test functions and the Table 2 present the results
of the experiment. A supplementary table comparing other aspects of both algorithms
can be found in http://www.mat.univie.ac.at/~dferi/research /UnionsTests.pdf.

fr=- ZZ:l ksin((k + 1)z + k), [-100,100], fo=1+z+22 423 +2* —2® [-2,2]

fa = sin(z) — 2 cos(x? — 1), [—100, 100],

fs = (x + sin(z)) exp(—z?), [~100,100],

fr =a* —102® + 3522 — 502 + 24, [—100,100],

fo = sin(z) + sin(132) + In(z) — 0.84x, [1,100],

fi1 = 24x* — 14223 4 30322 — 276z + 93, [—100, 100],
f13 = 22° — 135 exp(—200(z — 0.0675)%), [1,100],

fis =sin(1 + z + 22+ 25+ w4), [—20, 20],

fir = (x — 1)?(1 + 10sin?(z + 1)) + 1, [-100, 100],
fio = a* — 122% + 4722 — 602 — 20 exp(—z), [—10,10],
for = sin? (14 271) 4 (%)2 (=100, 100],

faz = exp(sin(z)) 4 cos(z?), [—100,100],

fas = sin(cos(exp())), [0,10],

far = cos(z? — 2®), [-10,10],

fao = cos(m(8z> — 1)) + sin(n (822 — 1)), [—20,20],

fa1 = tan(xz), [—10,10],

fa=1—cos(z) + 125, [~100,100]

fe =x(1—=), [-6,6]

fs = exp(—3zx) — sin®(z), [0, 100]

f10 = sin(z), [—100,100]

fi2 = sin(2), [0.02,100]

fia = 2 — cos() + 2, [—100,100]

fi6 = 2% — cos(18z), [—100,100]

f1s = exp(z?), [—10, 10]

fa0 = a® — 152* 4+ 2722 4 250, [—10,10]
fo2 = (z — %)% + (z — 1)?, [~100, 100]
f2a = cos(sin(z® — 1) — 1), [—20,20]

f26 = 0, 100]

U S
(x—2)2+3"
f2s = sin(exp(z)), [0,10]

f30 = %, [-10,10]

fa2 = cot(x), [~10,10]

Table 1: The test functions f; — f32 and the corresponding initial bounds for the
variable x.

The test results are given for both the interval Newton (Algorithm 1 in column
INewton) and for the interval union Newton (Algorithm 2 in column IUNewton).
In particular, Table 2 shows for each test function (func) the number of boxes pos-
sibly containing solutions found (Sol), the number of function evaluations needed to
enclose all solutions (FunEv) and the narrow component tolerance € (Wid) used.

It is clear from that the interval union arithmetic significantly increases the efficiency
of the Newton method. Table 2 shows that both the number of function evaluations
and the number of boxes possibly containing solutions is smaller when using the
interval union Newton method. Moreover, the tolerance achieved with the interval
union method is, in every case, at least as small as the tolerance achieved with interval

This manuscript is for review purposes only.

http://www.mat.univie.ac.at/~dferi/research/UnionsTests.pdf

482
183
484
485
486
487
188
489
490
191

192

INTERVAL UNIONS 15

fun INewton IUNewton fun INewton IUNewton

Sol FunEv Wid Sol FunEv Wid Sol FunEv Wid Sol FunEv Wid
f1 3212 6424 10.0 410 6883 1E-7 || fa 3 164 1E-7 1 39 1E-7
f3 3454 6916 10.0 | 6367 82782 1E-7 || fa 2 97 1E-7 1 37 1E-7
fs | 23832 95393 1E-2 3 59629 1E-2 || f¢ 2 38 1E-7 2 39 1E-7
f7 | 14673 38638 0.1 7 367 1E-7 || fs | 11521 96463 1 32 1931 1E-7
fo 2 67 1E-7 2 50 1E-7 || fio0 778 1569 10.0 63 893 1E-7
fi1 | 8082 22861 0.1 0 227 1E-7 || fi2 | 5397 63841 1E-7 15 213 1E-7
fi3 0 1 1E-7 0 2 1E-7 || f14 0 1 1E-7| 0 3 1E-7
fis | 15306 31865 1 15712 57924 1E-3 || fie 786 10218 1E-7 10 175 1E-7
fi7 0 1 1E-7 0 3 1E-7 || fis 0 1 1E-7| 0 3 1E-7
fio | 1150 3319 1 8 339 1E-7 || f20 | 15772 73030 0.1 0 105 1E-7
f21 0 28 1E-7 0 13 1E-7 || f22 1 123 1E-7 1 101 1E-7
f23 | 3071 6340 10.0 | 3187 43862 1E-7 || fosa | 13362 30544 1 254 3757 1E-7
fas 379 T 1 7011 77237 1E-7 || f26 0 1 1E-7 0 3 1E-7
far | 3656 7312 10.0 | 20093 70984 1E-2 || fas 373 776 1 7011 72631 1E-7
f20 | 15966 32320 1 17992 65801 1E-3 || fso 0 2 1E-7 0 1 1E-7
f31 8 131 1E-7 7 117 1E-7 || fa2 6 91 1E-7 6 109 1E-7

Table 2: Comparison between the interval and the interval union Newton method.
The number of solutions obtained with each method is given in Sol, the number of
function evaluations in FunEv and the final tolerance is given in Wid.

Newton method.

5. Systems of Interval Union Equations. This section extends the concept of
interval linear systems to interval unions. The algorithms used to solve interval linear
systems can be naturally adapted to the interval union case with a few modifications.
The basic definitions of interval union linear systems are given in 5.1, the Gaussian
elimination and the Gauss-Seidel algorithm are discussed in 5.2, finally in 5.3 some
examples are given to demonstrate the usefulness of the interval union approach.

5.1. Basics. Let A € U™*™ be an interval union matrix and 6 € U™ an interval
union vector. An interval union linear system of equations is the family of linear
systems given by

(18) Az =0 forall Ac A andbec 6.

The solution set of interval union linear systems is the union of solution sets from
every combination of interval matrices and vectors contained in A and 68, formally we
have

DEFINITION 27. The set 8 := {x € R* | Az =b for all A € A and b € 8} is the
solution set of (18).

If A € U™ and 6 € U} then problem (18) reduces to a typical interval linear
system. Finding the interval hull of the solution set is N P—Hard for general interval
linear systems and therefore it is also NP—Hard to find the interval hull of §.

We say that a square interval matrix A is regular if every matrix A € A is non-
singular. In the same way, the interval union matrix A is regular if every real
matrix A € A with A € A is non-singular. The interval matrix A € UT™*" is
diagonally dominant if

(19) (az) > Z laj;|, foralli=1,...,n.
1<i<p
1<j<gq

The interval union matrix A is diagonally dominant if relation (19) remains valid
when we replace interval operations with interval union operations.

This manuscript is for review purposes only.

(G2 BTSN JV)

NN N NN
(=]

N N
S © 0w

ot Ot Ot Ot Ot Ot Ot Ot Ot C

w W

16 H. SCHICHL, F. DOMES, T. MONTANHER, K. KOFLER

In general, algorithms for solving interval linear systems of equations benefit greatly
from preconditioning. We say that the interval linear system A’x = b’ is precondi-
tioned if
A'=MA, b =Mb

where M is a real matrix. Typically M = A~ is chosen, but some authors suggests
better strategies for choosing M, see for example [15]. Similarly, algorithms for solving
interval union linear systems may also take advantage of preconditioning, however,
the choice of the preconditioning matrix is harder than in the interval case. The study
of this topic will be addressed in a future work.

5.2. Algorithms. Let A be an interval union matrix and and 6 an interval union
vector. We present two methods to enclose the solution set & given by Definition 27.
The algorithms discussed here can be easily generalized to the case where A is not
square.

Interval Gaussian elimination, as described in [8, 15], is obtained by just replacing
real operations with interval ones in the Gaussian elimination algorithm. The interval
version of the algorithm also allows to perform partial or full pivoting using the
mignitude for element comparison. As proved in [15], the fundamental theorem of
interval arithmetic guarantees that if x is the interval vector obtained with interval
Gaussian elimination then & C x. Since the fundamental theorem of interval union
arithmetic is already proved, the same conclusion holds if we replace all real operations
with interval union counterparts in the Gaussian elimination. Moreover, the definition
of the mignitude for interval unions allows the same pivoting strategies as in the
interval case.

Consider A and 6 of the form

6
(20) A= 4 42) ande=(').
az; azg 6>
The interval union Gaussian elimination with backward substitution and without
pivoting gives

—as byt 6b1q o 61 —ajpxs

) 2 3 1
ai azg + aizq ai

It is trivial to generalize the Gaussian elimination to higher dimensions, but the two
dimensional case is good enough to show some interesting properties of the Gaussian
elimination applied to interval union systems.

Let us first assume that every entry of (20) is an interval instead of an interval union.
In this case, if 0 € a;; then the interval Gaussian elimination will fail even with
extended division. However, as demonstrated on Example 28 below, using interval
union arithmetic we may obtain useful bounds for x; and x5 even if 0 € aq;.

Even for systems with 0 ¢ a1 the union Gaussian elimination may give us sharper
bounds for 1 and x5 than the interval Gauss-Seidel algorithm. This is demonstrated
on Example 29 below, where by using interval union Gaussian elimination we obtain
bounds almost as sharp as solving several interval linear sub-systems separately.
During the interval Newton method, in each iteration, we have to solve an interval
linear system of form A(x — z) = b where x is the box currently processed, A is
the interval matrix given by evaluating the Jacobian of the function f over x and b
is usually set to —f(z). The usual approach this system is the interval Gauss-Seidel
algorithm that is based on the so called Gauss-Seidel operator

(21) X;H_l:Xfﬂyi, i=1...n,

This manuscript is for review purposes only.

[

ot ot Ot Ot
at
~

ot

oo

S 3 O
= 3 ©

0 1 O Ot k= W N

S

e

v Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot

I e B N B |

=W NN =

INTERVAL UNIONS 17

where

n
yi=b; + 1%7 r; =b; — Zaij(xj o x;),
23]:1
J#i
and © is the interval inner subtraction as defined by (2). The interval Gauss-Seidel
algorithm applies equation (21) as long the bounds of the processed box are improved.
In practice, we iterate as long as the difference between the largest widths of x*+1

and x* is bigger than a given tolerance €, see Algorithm 4.

Algorithm 4 Interval Gauss-Seidel
Input: The interval matrix A, the interval vectors b and x and the tolerance ¢ > 0
Output: The interval vector y such that & Cy C x or a proof that x N&§ = @.

1: y+ x and x + X;

2: while true do

3: fori=1,...,ndo

4: if 0 §é a;; then

5: ri < b; =Y =1 a5(y; © 7;));
J#i

6: y; —x; + ;”,

7: y; < yiNyi

8: if y; == @ then

9: return J;

10: end if

11: end if

12: end for

13: if max wid(y) — max wid(y) < € then

14: break;

15: end if

16: y<—y, and = + y;

17: end while
18: return y;

Note that Algorithm 4 does not update the variables x; when 0 € a;;. When this
happens several authors (see [7], [15]) suggest a second step of the Gauss-Seidel algo-
rithm which is based on the extended interval division (1). The second step consists
of applying equation (21) to all indices 4 for which 0 € a;; and then save the largest
gap produced by the interval division. Then two boxes that are identical in every
entry except for the one with the largest gap are returned.

Based on Algorithm 4 the interval union version of the Gauss-Seidel elimination can
be formulated, where the interval union version of the Gauss-Seidel operator (21) is
applied to every equation. The interval union Gauss-Seidel procedure differs from
Algorithm 4 in steps 1 and 16. They be modified to use the component-wise interval
union midpoint instead of the interval midpoint, since this is necessary in order to
guarantee that the interval union fundamental theorem holds for r;.

As a natural consequence, Algorithm 4 with interval unions returns an interval union
vector which stores not only the boxes with the largest gap but all gaps. This simple
modifications can lead to significant improvements over the interval Newton proce-
dures for multivariate functions.

This manuscript is for review purposes only.

o
—_

590
591
592
593
594
595
596

597

598

608

609
610
611

18 H. SCHICHL, F. DOMES, T. MONTANHER, K. KOFLER

5.3. Examples. We conclude the section by showing some advantages of using
interval union arithmetic to solve interval or interval union linear systems.

ExaMPLE 28. Let A and b be an interval matriz and an interval vector given by

A= (Bosa D02 anan= (020,

The interval Gaussian elimination will fail to enclose the solution set of Az = b
even with preconditioning. The function werifylss of Intlab [24] also fails and return
[—00,00]? as solution. If intervals are replaced by interval unions in the standard
Gaussian elimination, even without preconditioning we obtain the solution

(22) = € u = ({[—00,0.204082], [0.270531, 00]}, {[—o0, —0.217391], [1.28571,00]})”.

Now as (22) suggests (and shown in Figure 1-left) & may be split into four disjoint
sets, and we see that the Gaussian elimination with interval unions provided useful
information about & even though A is not regular.

EXAMPLE 29. Now let A be an interval union matriz and b an interval vector given

by
~({]-5,-3],[4,5]} (0.5, 1.0] ~/ [1.0,2.0]
A= ([0.5,1.0] {1-3,-2],[2,3]}) and b = < [1.5,2.0])

The solution set of Ax = b is the union of each interval linear system A;z = b for
i=1,...,4. Figure 1-right shows the result of applying the interval union Gaussian
elimination and the Gauss-Seidel algorithm to Az = b as well as the interval hull of
each interval linear system. Note again that the Gauss-Seidel procedure overestimates
the bounds of the interval hull while Gaussian elimination give us a sharp enclosure of
the four sets. The reason for this is that every interval matrix A € A is regular and
diagonally dominant. Our final example shows how the multivariate interval Newton
method can benefit from interval union analysis.

ExXAMPLE 30. Assume that we want to enclose the solution set of
P4al—1=0, 22 —2,=0, x:=(a1 2) €([0,0.9482], [~1.2502,0])"

We use the Gauss-Seidel algorithm applied to the interval Newton operator and pre-
condition the Jacobian matrix by the inverse of its midpoint as described by [8]. It
gives

x € x' = ([0,0.9482], [—1.2502, —0.8486])7

and
x e x” = ([0,0.9482], [—0.2896,0.0000])T.

Despite the significant improvement in the resulting box, the result is still not optimal.
Applying the interval union Gauss-Seidel algorithm we have

x € u = ({[0,0.1933], [0.825,0.9482]}, {[—1.2502, —0.8486], [—0.2896, O]})T
Using the interval Gauss-Seidel algorithm we have achieved a 45% contraction of the

search domain. On the other hand, applying the interval union procedure we reduced
the bounds of both variables, and achieved a 81% contraction of the search domain.

This manuscript is for review purposes only.

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

INTERVAL UNIONS 19

10p

-2t

3+

-10}

“10 s 0 5 10 T s 2 a0 1 2 s
Fig. 1: Left - Solution set of Example 28 in the box [—10, 10]?. The solution obtained
by the interval Gauss-Seidel is given in the solid box. The solution obtained by the
Gaussian elimination is given by dashed boxes. Right - Solution set of Example 29
in the box [—10,10]?. Gauss-Seidel solution is given in the outer solid box, Gaussian
elimination is represented by dashed boxes. The solution set of each interval system
and its interval hull is given by the inner solid boxes.

References.

[1] C. S. ApJyiMAN, I. P. ANDROULAKIS, C. D. MARANAS, AND C. A. FLOUDAS,
A global optimization method a BB for process design, Computers and Chemical
Engineering, 20 (1996), pp. 419-424.

[2] G. ALEFELD AND J. HERZBERGER, Introduction to Interval Computations, Aca-
demic Press, 1984.

[3] A. BALDWIN, Parallel Global Optimization Using Interval Analysis, PhD thesis,
University of South Dakota, Vermillion, SD, USA, 2011.

[4] F. DoMES, GloptLab — a configurable framework for the rigorous global solution of
quadratic constraint satisfaction problems, Optimization Methods and Software,
24 (2009), pp. 727-747, http://www.mat.univie.ac.at/~dferi/research/Gloptlab.
pdf.

[5] F. DoMES, JGloptLab — a rigorous global optimization software. in preparation,
2016, http://www.mat.univie.ac.at /~dferi/publications.html.

[6] C. GRANDON, D. DANEY, AND Y. PAPEGAY, Combining CP and interval meth-
ods for solving the direct kinematic of a parallel robot under uncertainties. IntCP
06 Workshop, 2006, ftp://ftp-sop.inria.fr /coprin/daney/articles/intcp06.pdf.

[7] E. R. HANSEN, Global Optimization Using Interval Analysis, Marcel Dekker Inc.,
New York, 1992.

[8] E. R. HANSEN, A multidimensional interval newton method, Reliable Comput-
ing, 12 (2006), pp. 253-272.

[9] E. R. HANSEN AND R. I. GREENBERG, An interval newton method, Applied
Mathematics And Computation, 12 (1983), pp. 89-98.

[10] L. JAULIN, Interval constraints propagation techniques for the simultaneous local-
ization and map building of an underwater robot, 2006, http://www.mat.univie.
ac.at/~neum/glopt/gicolag/talks/jaulin.pdf.

This manuscript is for review purposes only.

http://www.mat.univie.ac.at/~dferi/research/Gloptlab.pdf
http://www.mat.univie.ac.at/~dferi/research/Gloptlab.pdf
http://www.mat.univie.ac.at/~dferi/research/Gloptlab.pdf
http://www.mat.univie.ac.at/~dferi/publications.html
ftp://ftp-sop.inria.fr/coprin/daney/articles/intcp06.pdf
http://www.mat.univie.ac.at/~neum/glopt/gicolag/talks/jaulin.pdf
http://www.mat.univie.ac.at/~neum/glopt/gicolag/talks/jaulin.pdf
http://www.mat.univie.ac.at/~neum/glopt/gicolag/talks/jaulin.pdf

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

20

[11]

[12]

[13]
[14]
[15]

[16]

[17]

H. SCHICHL, F. DOMES, T. MONTANHER, K. KOFLER

L. JAuLIN, M. KIEFFER, I. BRAEMS, AND E. WALTER, Guaranteed nonlinear
estimation using constraint propagation on sets, International Journal of Control,
74 (1999), pp. 1772-1782, https://www.ensieta.fr/e3i2/Jaulin/observer.pdf.

L. JAuLIN, M. KIEFFER, O. DIDRIT, AND E. WALTER, Applied Interval Analysis
with Examples in Parameter and State Estimation, Robust Control and Robotics,
Springer-Verlag, 2001.

R. B. KEARFOTT, Interval arithmetic: A fortran 90 module for an interval data
type, ACM Trans. Math. Software, 22 (1996), pp. 385-392.

R. B. KEARFOTT, Interval Computations: Introduction, Uses, and Resources,
Euromath, Bulletin 2 (1996), pp. 95-112.

R. B. KEARFOTT, Rigorous Global Search: Continuous Problems, Kluwer Aca-
demic Publishers, 1996.

R. B. KEARFOTT, Interval computations, rigour and non-rigour in determinis-
tic continuous global optimization, Optimization Methods Software, 26 (2011),
pp. 259279, http://dx.doi.org/10.1080/10556781003636851.

R. B. KEARFOTT, M. T. NAKAO, A. NEUMAIER, S. M. RumP, S. P. SHARY,
AND P. VAN HENTENRYCK, Standardized notation in interval analysis, in Proc.
XIII Baikal International School-seminar "Optimization methods and their appli-
cations', vol. 4, Irkutsk: Institute of Energy Systems, Baikal, 2005, pp. 106-113.
L. KrIPPAHL AND P. BARAHONA, PSICO: Solving protein structures with
constraint programming and optimization, Constraints, 7 (2002), pp. 317-331,
http://ssdi.di.fet.unl.pt/~pb/papers/ludi_ constraints.pdf.

J.-P. MERLET, Solving the forward kinematics of a Gough-type parallel ma-
nipulator with interval analysis, International Journal of Robotics Research,
23 (2004), pp. 221-235, http://www-sop.inria.fr/coprin/equipe/merlet /Papers/
TJRR2004.pdf.

R. E. MOORE, Interval analysis, Prentice-Hall, 1966.

M. NEHMEIER, filib++, expression templates and the coming interval standard,
Reliable Computing, 15 (2011), pp. 312-320.

A. NEUMAIER, Interval methods for systems of equations, vol. 37 of Encyclopedia
of Mathematics and its Applications, Cambridge Univ. Press, Cambridge, 1990.
D. RaATz, Inclusion isotone extended interval arithmetic, tech. report, Institut
fiir Angewandte Mathematik, Karlsruhe, 1996, http://digbib.ubka.uni-karlsruhe.
de/volltexte/67997.

S. M. Rump, INTLAB - INTerval LABoratory, 1998 - 2008, http://www.ti3.
tu-harburg.de/~rump/intlab//.

N. V. SAHINIDIS, BARON 12.1.0: Global Optimization of Mixed-Integer Non-
linear Programs, User’s Manual, 2013, http://www.gams.com/dd/docs/solvers/
baron.pdf.

H. ScHIcHL, Global optimization in the coconut project, in Numerical Software
with Result Verification, R. Alt, A. Frommer, R. Kearfott, and W. Luther,
eds., vol. 2991 of Lecture Notes in Computer Science, Springer Berlin Heidel-
berg, 2004, pp. 243-249, doi:10.1007/978-3-540-24738-8 14, http://dx.doi.org/
10.1007/978-3-540-24738-8__14.

H. ScuicHL, M. C. MARKOT, A. NEUMAIER, X.-H. VU, AND
C. KEIL, The COCONUT Environment, 2000-2010, http://www.mat.univie.ac.
at/coconut-environment. Software.

P. G. SzaB6, M. C. MARKOT, AND T. CSENDES, New Approaches to Circle
Packing in a Square: With Program Codes, Optimization and Its Applications,
Springer, Dordrecht, 2007.

This manuscript is for review purposes only.

https://www.ensieta.fr/e3i2/Jaulin/observer.pdf
http://dx.doi.org/10.1080/10556781003636851
http://ssdi.di.fct.unl.pt/~pb/papers/ludi_constraints.pdf
http://www-sop.inria.fr/coprin/equipe/merlet/Papers/IJRR2004.pdf
http://www-sop.inria.fr/coprin/equipe/merlet/Papers/IJRR2004.pdf
http://www-sop.inria.fr/coprin/equipe/merlet/Papers/IJRR2004.pdf
http://digbib.ubka.uni-karlsruhe.de/volltexte/67997
http://digbib.ubka.uni-karlsruhe.de/volltexte/67997
http://digbib.ubka.uni-karlsruhe.de/volltexte/67997
http://www.ti3.tu-harburg.de/~rump/intlab/
http://www.ti3.tu-harburg.de/~rump/intlab/
http://www.ti3.tu-harburg.de/~rump/intlab/
http://www.gams.com/dd/docs/solvers/baron.pdf
http://www.gams.com/dd/docs/solvers/baron.pdf
http://www.gams.com/dd/docs/solvers/baron.pdf
http://dx.doi.org/10.1007/978-3-540-24738-8_14
http://dx.doi.org/10.1007/978-3-540-24738-8_14
http://dx.doi.org/10.1007/978-3-540-24738-8_14
http://dx.doi.org/10.1007/978-3-540-24738-8_14
http://www.mat.univie.ac.at/coconut-environment
http://www.mat.univie.ac.at/coconut-environment
http://www.mat.univie.ac.at/coconut-environment

	Introduction
	Notation

	Interval Arithmetic
	Interval Unions
	Motivation
	Definition
	Maximum length and filling gaps
	Arithmetic for Interval Unions

	Interval union Newton method
	Interval Newton method
	Interval union Newton method
	Numerical experiments

	Systems of Interval Union Equations
	Basics
	Algorithms
	Examples

