
INTERVAL UNIONS∗1

HERMANN SCHICHL , FERENC DOMES , TIAGO MONTANHER , AND KEVIN2
KOFLER3

Abstract. This paper introduces the interval union arithmetic, a new concept which extends4
the traditional interval arithmetic. Interval unions allow to manipulate sets of disjoint intervals and5
provide a natural way to represent the extended interval division. Considering interval unions lead6
to simplifications of the interval Newton method as well as of other algorithms for solving interval7
linear systems. This paper does not aim at describing the complete theory of interval union analysis,8
but rather at giving basic definitions and some fundamental properties, as well as showing theoretical9
and practical usefulness of interval unions in a few selected areas.10
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1. Introduction. Interval analysis is a branch of numerical analysis that was14
born in the 1960’s. It consists of computing with intervals of reals instead of reals,15
providing a framework for handling uncertainties and verified computations (see e.g.16
[2, 20, 22] and [14] for a survey). Interval analysis is a key ingredient for numerical17
constraint satisfaction (see e.g. [12]) and global optimization (see e.g. [7, 16]). Global18
optimization solvers like Gloptlab [4]and COCONUT [26, 27] rely heavily on interval19
analysis to guarantee rigorous solutions, even non-rigorous solvers like BARON [25]20
and α-Branch and bound [1] use rigorous computations in some steps of the search.21
Applications of interval analysis comprise packing problems [28], robotics [6, 19],22
localization and map building [10, 11], and the protein folding problem [18].23
In practice, interval arithmetic must be implemented using outward rounding in order24
to assure that the result of an interval calculation always contains the result of the25
corresponding real valued operation evaluated for each value(s) of the used interval(s).26
Interval arithmetic has been implemented in almost every programming language27
which is relevant for scientific computing, see for example Intlab [24] for Matlab,28
Filib++ [21] for C/C++, Interval [13] for Fortran and MathInterval [5] for Java.29
Extended interval arithmetic [7, 14, 23] allows operations on intervals where the30
bounds can be ±∞. It gives the possibility of performing interval division even when31
the denominator interval contains zero. For example, assume that we are interested32
in rigorous bounds for x = [2,3]

[−1,1] . Applying the division rule presented in [23] gives33
[−∞,−2] and [2,∞]. The operation above must be interpreted as follows: The result-34
ing quotient of ab where a ∈ [2, 3] and b ∈ [−1, 1]\0 belongs to the set [−∞,−2]∪[2,∞].35
This example shows the problem of interval arithmetic both from a theoretical and a36
computational point of view. For the theory of intervals it is an issue since the result37
of an elementary operation involving two intervals does not belong necessarily to the38
set of intervals 1 while for computations it is a problem since the interval division39
operator requires special treatment.40
This paper extends the concept of interval arithmetic to interval unions. An interval41
union is a set of closed and disjoint intervals where the bounds of the extreme intervals42
can be ±∞. During the paper we demonstrate that interval unions generalize intervals43
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1unless the interval hull is taken, which often leads to serious overestimation of the true result
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and allow among others to represent the result of interval division in a natural way.44
Some of the theoretical results of interval analysis remain valid when we are dealing45
with interval unions. That is the case, e.g., for the fundamental theorem of interval46
arithmetic, and therefore the natural extension of real functions to interval unions is47
similar to the interval case. On the other hand, some inclusion results like the interval48
mean value theorem do not hold for interval unions, not even for the univariate case.49
During the paper it is shown that a large part of the interval union arithmetic can be50
easily implemented if we have an interval arithmetic library at our disposal.51

The paper is organized as follows. In Section 2 we present the basics of interval arith-52
metic. The section is mainly a revision of the traditional case in the extended context.53
Section 3 describes the generalization from intervals to interval unions, where the ba-54
sic interval union operations are defined, isotonicity property shown, the fundamental55
theorem of interval union arithmetic is proven. In addition, in this section, hull and56
component-wise operations are also defined.57
In Section 4 the interval union Newton method for univariate functions is presented.58
Similar as for the interval Newton method the aim is to enclose all roots of f(x) ∈ R59
subject to x ∈ X where both, R and X are interval unions. We show that the60
definition of Newton methods can be made through component-wise operations and61
compare our new approach with the traditional interval Newton algorithm in a set62
of 32 problems. Our experiment shows that interval union arithmetic can improve63
Newton methods significantly in the univariate case.64
Finally in Section 5, interval union linear systems are studied and shown that the65
interval Gaussian elimination and Gauss-Seidel algorithms can be extended from in-66
tervals to interval unions. The advantages of replacing interval operations by interval67
unions in linear systems are demonstrated by performing tests on examples in low68
dimension.69

1.1. Notation. We mostly follow [17] for the notation of interval arithmetic.70
Throughout this paper Rm×n denotes the vector space of all m× n matrices A with71
real entries Aik (i = 1, . . . ,m, k = 1, . . . , n), and Rn = Rn×1 denotes the vector space72
of all column vectors v of length n and entries vi (i = 1, . . . , n). For vectors and73
matrices, the relations =, 6=, <, >, ≤, ≥ and the absolute value |A| of the matrix A74
are interpreted component-wise.75
We write AT to represent the transpose of a matrix A and A−T is short for (AT )−1.76
The ith row vector of a matrix A is denoted by Ai: and the jth column vector by A:j .77
For the n×nmatrix A, diag(A) denotes the n-dimensional vector with diag(A)i = Aii.78
The number of elements of the index set N is given by |N |. Let I ⊆ {1, . . . ,m} and79
J ⊆ {1, . . . , n} be index sets and let nI := |I|, nJ := |J |. For the n-dimensional vector80
x, xJ denotes the nJ -dimensional vector built from the components of x selected by81
the index set J . For the m × n matrix A, the expression AI: denotes the nI × n82
matrix built from the rows of A selected by the index sets I. Similarly, A:J denotes83
the m× nJ matrix built from the columns of A selected by the index sets J .84

2. Interval Arithmetic. This section presents the basics of interval arithmetic.85
A comprehensive approach to this topic is given by [22]. We are mainly interested in86
extended interval arithmetic. i.e, when division by intervals containing 0 is allowed.87
Good references to extended interval arithmetic are [7] and [15].88
Let a, a ∈ R with a ≤ a then a = [a, a] denotes a real interval with inf(a) =89
min(a) = a and sup(a) = max(a) = a. The set of nonempty compact real90
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intervals is denoted by91

IR := {[a, a] | a ≤ a, a, a ∈ R}.92

We extend the definition of real intervals by permitting the bounds of intervals to be93
one of the ideal points −∞ and∞ and define IR as the set of closed real intervals.94
We write95

IR := IR ∪ {[−∞, a] | a ∈ R} ∪ {[a,∞] | a ∈ R} ∪ {[−∞,∞], ∅},96

defining, [−∞, a] := {x ∈ R | x ≤ a}, [a,∞] := {x ∈ R | x ≥ a}, and [−∞,∞] := R.97
The width of the interval a ∈ IR \ {∅} is given by wid(a) := a−a, its mignitude by98

〈a〉 :=
{

min(|a|, |a|) if 0 /∈ [a, a],
0 otherwise.99

and its magnitude by | a| := max(|a|, |a|). The midpoint of a ∈ IR is ǎ :=100
mid(a) := (a + a)/2 and the radius of a ∈ IR is â := rad(a) := (a − a)/2. For101
a ∈ IR there is no natural definition of a midpoint. Moreover, if ǎ is well defined then102
a ∈ a ⇔ |a − ǎ| ≤ â and we say that midrad(ǎ, â) is the midrad representation of103
interval a. For a set S the smallest box containing S is called the interval hull of S104
and denoted by utS. An interval is called thin or degenerate if wid(a) = 0.105
The inclusion relations are given as106

a ⊂ b⇐⇒ b < a ∧ a < b, a ⊆ b⇐⇒ b ≤ a ∧ a ≤ b.107

An interval vector x = [x, x] or box is the Cartesian product of the closed real108
intervals xi := [xi, xi] ∈ IR. We write IRn to denote the set of all n-dimensional109

boxes. We also define the interval matrix A = [A,A] in a similar way and IRm×n110
denotes the set of all m × n interval matrices. Operations defined for intervals (like111
width, midpoint, radius, mignitude and magnitude) are defined component-wise when112
applied to boxes or matrices.113
Let a,b ∈ IR. The elementary real operations ◦ ∈ {+,−, /, ∗,̂} are extended to the114
interval arguments a, b by defining the result of an elementary interval operation to115
be the set of real numbers which results from combining any two numbers contained116
in a and in b. Formally,117

a ◦• b := {a ◦ b | a ∈ a, b ∈ b and a ◦ b is defined}.118

This leads to operations on IR defined by a◦b := ut(a◦•b). The elementary operations119
are inclusion isotonic. That means:120

a ⊂ a′,b ⊂ b′ ⇒ a ◦ b ∈ a′ ◦ b′ for all ◦ ∈ {+,−, /, ∗,̂}.121

For a,b ∈ IR we get that122

(1) a/•b :=



a · [1/b, 1/b] if 0 /∈ b,
[−∞,+∞] if 0 ∈ a ∧ 0 ∈ b,
[a/b,+∞] if a < 0 ∧ b < b = 0,
[−∞, a/b] ∪ [a/b,+∞] if a < 0 ∧ b < 0 < b, ∗
[−∞, a/b] if a < 0 ∧ 0 = b < b,

[−∞, a/b] if 0 < a ∧ b < b = 0,
[−∞, a/b] ∪ [a/b,+∞] if 0 < a ∧ b < 0 < b, ∗
[a/b,+∞] if 0 < a ∧ 0 = b < b,

∅ if 0 /∈ a ∧ b = b = 0.

123
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As one can see in the cases marked with ∗, the result is not a single interval but the124
union of two disjoint ones. As shown in [23] the division defined by (1) is inclusion125
isotonic (also see, [15]).126
In some applications the interval definition of subtraction may over-estimate the range127
of the real computation. For example, since −a := 0 − a = [− sup(a),− inf(a)] for128
b := a − a, we only have 0 ∈ b and129

b = a + (−a) 6= [0, 0] = 0 if inf(a) 6= sup(a),130

does not hold. In order to cope with this situation we also define inner subtraction131
for intervals. If a,b ∈ IR then132

(2) a 	 b :=
{

[ inf(a)− inf(b), sup(a)− sup(b)] if wid(a) ≥ wid(b)
[ sup(a)− sup(b), inf(a)− inf(b)] otherwise133

Inner operations lead to significant improvements on the interval Gauss-Seidel algo-134
rithm discussed later in this paper.135
Let x ∈ IRn and f : D ⊆ Rn → R. We define rg•(f(x)) to be the set136

rg•(f(x)) := {f(x) | x ∈ x ∩D},137

and call it the range of f over the box x. We extend the range to a function on IR138
by rg(f(x)) := ut rg•(f(x)), also called the range of f .139
We say that a function f : IRn → IR is inclusion isotonic if x ⊆ y ⇒ f(x) ⊆ f(y).140
We already established that elementary interval operations are inclusion isotonic and141
it is also possible to construct interval functions with the isotonicity property for142
standard functions like exponential, logarithmic and trigonometric, see for example143
[24] or [5]. Moreover, it is easy to prove that the composition of inclusion isotonic144
functions is also inclusion isotonic. Formally we have145

Proposition 1. If g : IRm → IR and f : IRn → IRm are inclusion isotonic functions146
then g(f(x)) is inclusion isotonic.147

The interval function f : IRn → IR is an interval extension of a function f : D ⊆148
Rn → R if149

f(x) = f(x) for x ∈ D, and f(x) ∈ f(x) for all x ∈ x ⊆ D.150

If f admits a closed form and can be expressed in terms of elementary operations and151
standard functions we call the interval function f given by replacing every real opera-152
tion with its interval counterpart the natural extension. Using these definitions we153
can formulate the fundamental theorem of interval analysis and prove it as in [20]:154

Proposition 2 (Fundamental theorem of interval analysis). If f is inclusion isoto-155
nic and is an interval extension of f : Rn → R then rg(f(x)) ⊆ f(x).156

Interval arithmetic also allows to prove a general version of the mean value theorem157
for multivariate functions, see [22]:158

Proposition 3 (Interval mean value theorem). Let F : Rn → Rn be a differentiable159
function defined on a box x ⊂ Rn. If F is an interval extension of F and J an interval160
extension of the Jacobian of F both of them satisfying the isotonicity property then161
for x, y ∈ x162

F (y) ∈ F(x) + J(x)(y − x).163
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Proposition 3 leads to the following Taylor extension, see [22].164

Corollary 4 (Taylor expansion). Let f : Rn → R be a differentiable function de-165
fined in a box x ⊂ Rn. If f is an interval extension of f and g the interval extension166
of the gradient of f both of them satisfying the isotonicity property then167

f(x) ⊆ f(x) + g(x)T (x− x), x ∈ x.168

We define the set169

f−1
k• (x,y) := {zk ∈ xk | ∃z1, . . . , zk−1, zk+1, . . . , zn : z ∈ D ∩ x ∧ f(z) ∈ y}170

and call it the kth partial inverse image of f on y and for its interval hull we write171

f−1
k (x,y) := utf−1

k• (x,y).172

3. Interval Unions.173

3.1. Motivation. The well known interval Newton iteration174

(3) x(k+1) := N(xk) ∩ xk, N(x) = x̌− f(x̌)
f ′(x) , k = 0, 1, 2, . . . .175

is the interval variant of Newton’s method for finding the roots of a function f in a176
box x. If (3) is applied to an arbitrary univariate function f : R→ R and the starting177
interval x0, the interval Newton method splits and contracts x0 into several intervals178
enclosing the zeros of f over x0.179
By (1) the division operator applied to two intervals a,b ∈ IR in the cases marked by180
a ∗ do not map into IR. To solve this issue one can either define / : IR×IR\{0} → IR181
or for the marked cases one could take the interval hull of the two resulting intervals.182
However, keeping the two disjoint intervals in the marked cases is the reason why (3)183
works properly if 0 ∈ f ′(x). Therefore, it is obvious to define a structure where the184
division operator and therefore the interval Newton method is defined in a consistent185
and natural way. It serves as a motivation to introduce interval unions and define186
operations similar to the interval versions.187

3.2. Definition.188

Definition 5. Throughout this paper, interval unions are denoted by bold calligraphic189
letters. An interval union u of length l(u) := k is a finite set of k disjoint intervals.190
Since for all disjoint intervals the natural ordering exists we denote the elements of191
u by ui and write192

(4) u = (u1, . . . ,uk) with ui ∈ IR ∀ i = 1, . . . , k,
ui < ui+1 ∀ i = 1, . . . , k − 1.193

The set of all interval unions of length ≤ k is denoted by Uk and U :=
⋃
k≥0 Uk is194

the set of all interval unions. In addition to this U0 = ∅ and we identify U1 with IR.195

Obviously Uk ⊆ Um ⊆ U if k ≤ m.196

Definition 6. Let u := (u1, . . . ,uk) ∈ U be an interval union. We will identify u197
with the subset

⋃k
i=1 ui of R that u represents, so for a real number x we say198

x ∈ u ⇔ there exists a 1 ≤ i ≤ k such that x ∈ ui.199
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Similarly, for the interval x200

x ⊆ u ⇔ there exists a 1 ≤ i ≤ k such that x ⊆ ui.201

Finally, for another interval union v202

v ⊆ u ⇔ for all v ∈ v there exists a 1 ≤ i ≤ k such that v ⊆ ui.203

Definition 7. Let S be a finite set of intervals, the union creator U(S) is defined204
as the smallest interval union u that satisfies a ⊆ u for all a ∈ S.205

Lemma 8. Let S be a set of intervals, the union creator is inclusion isotonic:206

S ⊆ S′ =⇒ U(S) ⊆ U(S′).207

208

Proof. Follows directly from the definition.209

Lemma 9. The interval hull of a union u ∈ U is given by210

utu = [u1, ul(u)].211

212

Proof. Follows directly from Definition 5.213

Definition 10. We define Un
k and Un, respectively, as the set of all interval union214

vectors of dimension n. Similarly, we introduce Un×m
k and Un×m as the sets of215

interval union matrices of size n×m with the usual definition of the operations. We216
denote interval union matrices by capital bold calligraphic letters like A or B and217
denote interval union vectors by lower case bold calligraphic letters like x or y.218
The interval union vector u ∈ U regarded as a subset of Rn is always a finite set219
of boxes. More specifically, if uj has length kj we get the

∏n
j=1 kj disjoint boxes220 ∏n

j=1 uj,`j , 1 ≤ `j ≤ kj. We write for u ∈ IRn that u ∈ u iff u is one of these boxes.221

Note that storing this set as an interval union vector requires just
∑n
j=1 kj intervals222

which is a clear advantage over storing all the individual boxes, especially in higher223
dimensions.224
If u ∈ Uk \ {∅} we define the magnitude and mignitude of the interval union225
respectively by226

|u| := max(|u1|, . . . , |uk|) = max(|u1|, |uk|)227

and228

〈u〉 := min(〈u1〉 , . . . , 〈uk〉).229

We also define for u ∈ Uk \ {∅} the maximum, minimum and maximum width230
of interval unions by231

max(u) := uk, min(u) := u1232

and233

max wid(u) := max(wid(u1), . . . ,wid(uk))234
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Given the interval union u ∈ Uk and a point x ∈ R we define the projection of x as235
follows236

proj(x,u) =


x if x ∈ u

ui if x ∈ ]ui,ui+1[ and x− ui < ui+1 − x,
ui+1 if x ∈ ]ui,ui+1[ and x− ui ≥ ui+1 − x,

uk if x > uk,
u1 if x < u1.

237

Some functions defined for intervals do not extend naturally to interval unions. For238
such functions we present different definitions that can be useful in several con-239
texts. Let u ∈ Uk \ {∅} be an interval union, we denote the component-wise mid-240
point and radius respectively by ǔc := (ǔ1, . . . , ǔk) and ûc := (û1, . . . , ûk) whenever241
−∞ < u1 ≤ uk < ∞. We denote the component-wise width and magnitude of u by242
wid(u)c := (wid(u1), . . . ,wid(uk)) and |u|c := (|u1|, . . . , |uk|) respectively. In some243
applications we also need to define operations above over the hull of u. In such cases244
we add a subscript h to identify the hull operation. For example the hull mid-point245
operator and hull width of u are given by ǔh := utu and wid(u) := wid(utu).246

3.3. Maximum length and filling gaps. The motivation from Section 3.1247
hints a problem which can arise when considering interval unions, since during itera-248
tive evaluations the number of intervals inside a union can grow uncontrollably. This249
can be easily anticipated if considering the task of finding zeros of a function hav-250
ing an infinite number of zeros in the starting box via the interval Newton method.251
Actually, this problem arises in several other interval methods where intervals unions252
could prove quite useful. We propose to solve the problem by restricting the maximum253
length of unions and by defining gap filling strategies.254

Definition 11. Let u ∈ U be an interval union and let ui, ui+1 ∈ u. The open255
interval gi between the intervals ui and ui+1 is called the ith gap of u and is defined256
as257

(5) gi = (ui, ui+1).258

Definition 12. A gap collection v̂ of length k is a set of k disjoint open real inter-259
vals. We will write260

v̂ = 〈v̂1, . . . , v̂k〉 with vi = ]vi, vi[ ∀ i = 1, . . . , k, vi < vi ∈ R,
vi ≤ vi+1 ∀ i = 1, . . . , k − 1.261

We denote by Ûk the set of all gap collections of size ≤ k and by Û :=
⋃
i∈N Ûi the262

set of all gap collections.263
We will again identify v̂ ∈ Û with the set

⋃
v̂∈v̂ v̂ ⊆ R and write x ∈ v̂, x ⊆ v̂, and264

ŵ ⊆ v̂ for x ∈ Rn, x ∈ IR, and w ∈ Û.265

Lemma 13. Let u be an interval union of length k, and let û = 〈g1, . . . ,gk−1〉 be the266
sequence of all gaps of u. Then û ∈ Ûk−1, i.e., wid(gi) > 0 holds for all gi ∈ û.267
Therefore, u 7→ û defines a map Uk → Ûk−1.268

Proof. Because of (5), the strict inequality in (4), and since the bounds ui and ui+1269
are real numbers.270

Lemma 14. Let u ∈ Uk and x ∈ IR.271
1. u ∪ û = utu.272
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2. The mapping ˆ is bijective Uk,x := {u ∈ Uk | utu = x} → Ûk−1,x := {Û ∈273
Ûk−1 | Û ⊆ x}.274

Definition 15. Let u ∈ Uk \ U1 and g ⊆ û a set of gaps of u. We define the275
gap filling F(u,g) ∈ Uk−|g| as the unique interval union with F̂(u,g) = û \ g and276
utF̂(u,g) = utu, i.e., we fill all the gaps from g in u.277
We write F(u,g) for g = {g} and F(u,g1, . . . ,g`) for g = {g1, . . . ,g`}.278

If gi is the ith gap of u we get F(u,gi) by setting ui := ui+1 and removing the279
interval ui+1 from u.280

Lemma 16. For u ∈ U and g ⊆ û we have281

(6) u ⊂ F(u,g).282

Proof. If g = {gi}, by (4), ui < ui+1 therfore ui ∪ ui+1 ⊂ [ui, ui+1], proving (6).283
Since F(u,g) = F(u,g \ {g}) the general case follows by induction on the size of g.284

Now we will introduce the concept of gap ordering to determine which gap to fill first.285
Usually, the width of the gap plays a part in that ordering (sometimes also a relative286
width with respect to the position of the interval along the real axis), and also the287
position of the gap might be interesting. Since we do not want to fix this ordering288
for developing the theory we will just assume that we are given a linear order E on289
the set of all open intervals of R with the property that for arbitrary x ∈ IR every290
collection of open intervals contained in x has a maximal element w.r.t. E.291

Definition 17. The index set of the n smallest gaps of u (w.r.t. E) is defined by292

GSn (u) ⊆ {1, . . . , k − 1}, |GS | = n, such that if i ∈ GS then gi C gj for all j /∈ GS .293

Similarly, the index set of the n largest gaps of u (w.r.t. E) is defined by294

GLn (u) ⊆ {1, . . . , k − 1}, |GL| = n, such that if i ∈ GL then gi B gj for all j /∈ GL.295

For r ∈ {L, S} we denote by grn(u) := {gi ∈ û | i ∈ Grn(u)} the set of smallest296
respectively largest gaps of u. For convenience we define grn(u) = û if n ≥ l(u) and297
grn(u) = ∅ if n ≤ 0.298

Definition 18. We define the length restriction mapping Γk : U → Uk by299
Γk(u) := F(u,GSl(u)−k(u)), i.e., we fill the l(u)− k smallest gaps of u, and we do not300
change u if l(u) ≤ k.301

Defining the interval union hull of a set M of real numbers is not straightforward.302
Unfortunately, there is nothing like the smallest interval union of length k containing303
M . For bounded sets M we can get something like uniqueness by filling all but the304
largest gaps in M . If the set is unbounded, e.g., M = ]−∞, 0] ∪

⋃∞
j=−∞[22j , 22j+1],305

there may be gaps of arbitrary size. In the following definition, we will resolve that306
problem by fixing a bounded region x and filling all gaps that are not contained in x.307
If M is bounded we can always choose x = utM .308

Definition 19. Fix x ∈ IR and N 3 k > 1, and let M ⊆ R and M its topological309
closure. Then M c := x \M is a countable (possibly finite) union of open intervals.310
Let M̂ c be the set of these intervals, and û ∈ Ûk−1 the subset of the k − 1 largest311
elements of M̂ c. We define the interval union hull Uk,x(M) of length k of M with312

respect to x as the unique interval union in U
k,utM with Ûk,x(M) = û.313
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3.4. Arithmetic for Interval Unions. In this section, similarly to interval314
arithmetic, basic set and elementary operations as well as properties like inclusion315
isotonicity are defined and explained for interval unions. Most of the theory translates316
nicely from intervals to interval unions, but some properties do not: e.g., due to the317
lack of convexity it is not possible to prove a mean value theorem for interval unions.318

Definition 20. Let x ∈ IR be an interval, u := (u1, . . . ,uk) and s := (s1, . . . st)319
interval unions. Define the index set J as J := {i ∈ {1, . . . , k} | ui ∩ x 6= ∅} and for320
J 6= ∅ also define J := min(J) and J := max(J).321
(i) The union operation for u and x is defined as u ∪ x := U(u ∪ {x}). Obviously,322
we have323

(7) u ∪ x =
{

(u1, . . . ,ui,x,ui+1, . . .uk) where ui < x and x < ui+1 if J = ∅
(u1, . . . ,uJ−1, [min(uJ , x),max(uJ , x)],uJ+1, . . .uk) otherwise.324

(i’) The union operation for u and s is defined by325

(8) u ∪ s := u ∪ s1 ∪ · · · ∪ st.326

(ii) The intersection operation for u and x is defined as u∩x := U({u1∩x, . . . ,uk∩327
x}). We have328

(9) u ∩ x =


∅ if J = ∅
([max(uj , x),min(uj , x)]) if J = {j}
([max(uJ , x), uJ ],uJ+1, . . . ,uJ−1, [uJ ,min(uJ , x)]) otherwise.

329

(ii’) The intersection operation for u and S is defined by330

(10) u ∩ s := (u ∩ s1) ∪ · · · ∪ (u ∩ st).331

Note that there is a slight ambiguity in the notation, as u ∪ s can also denote the332
union of the two sets of intervals u and s. However, there will be no confusion between333
these two concepts, as the same real set is represented.334

Lemma 21. Let x ∈ IR be an interval, u := (u1, . . . ,uk), s := (s1, . . . st) interval335
unions.336
(i) For the union operation defined by (7) we have x ∈ u ∪ x iff x ∈ u or x ∈ x.337
(i’) For the union operation defined by (8) we have x ∈ u ∪ s iff x ∈ u or x ∈ s.338
(ii) For the intersection operation defined by (9) we have x ∈ u ∩ x iff x ∈ u and339
x ∈ x.340
(ii’) For the intersection operation defined by (10) we have x ∈ u ∩ s iff x ∈ u and341
x ∈ s.342

343

Definition 22. Let x ∈ IR be an interval, u := (u1, . . . ,uk) and s := (s1, . . . st)344
interval unions and let ◦ ∈ {+,−, /, ∗,̂} be an elementary interval operation defined345
in Section 2.346
(i) The elementary interval union operation corresponding to ◦ applied to u and347
x is given by348

u ◦ x := U({u1 ◦• x, . . . ,uk ◦• x})349

(i’) The elementary interval union operation corresponding to ◦ applied to u and s is350
given by351

u ◦ s := U({u ◦ s1, . . . ,u ◦ st})352
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Note that for the interval division operator (1) the above definition gives a natural353
embedding of the problematic cases into the set of interval unions: for arbitrary354
a,b ∈ IR we have355 (

U({a})/b
)
∈ U.356

Lemma 23. Let u := (u1, . . . ,uk) and s := (s1, . . . st) be interval unions then the357
elementary interval union operations ◦ ∈ {+,−, /, ∗,̂} defined by (22) are inclusion358
isotonic:359

u ⊆ u′ and s ⊆ s′ =⇒ u ◦ s ⊆ u′ ◦ s′ for all {+,−, /, ∗,̂}.360

361

Proof. The union creator U is inclusion isotonic by Lemma 8. Interval operations are362
inclusion isotonic by Section 2, therefore the composition of them is also inclusion363
isotonic.364

In addition to the usual definition of elementary operations we also introduce compo-365
nent-wise operations that will be useful in the context of interval union linear systems.366

367

Definition 24. Let u := (u1, . . . ,uk) and s := (s1, . . . sk) be interval unions of the368
same length and let ◦ ∈ {+,−, /, ∗} then the component-wise interval union operation369
corresponding to ◦ applied to u and s is given by370

u ◦c s := u1 ◦ s1 ∪ . . . ∪ uk ◦ sk.371

In the following we will fix a ”cutoff” x ∈ R for filling the gaps as described before in372
Definition 19. If the function f in the following definition is well-behaved (e.g. piece-373
wise continuous and the pre-image of every interval is bounded), then the result will374
not depend on x as long as x is big enough.375

Definition 25. Let u ∈ Un be an interval union vector and s ∈ U an interval union,376
and let f : D ⊆ Rn → R. For fixed l > 1 we define the range of length l of f over u377
(w.r.t. x) as378

(11) rgl(f(u)) := Ul,x({rg•(f(u)) | u ∈ u})379

and the kth partial inverse image of length l of f on u and s as380

(12) f−1
l,k (u, s) := Ul,x({fk•(v, s) | v ∈ V, s ∈ s}).381

As in the interval case, we call a function f : Un → U inclusion isotone if u′ ⊆382
u ⇒ f(u′) ⊆ f(u). Moreover, we say f : Un → U is the interval union extension of a383
function f : D ⊆ Rn ⇒ R in u ∈ Un if384

f(x) = f(x) for x ∈ D ∩ u, and f(x) ∈ f(u) for all x ∈ D ∩ u.385

We also refer to interval union extensions only as extensions when there is no pos-386
sibility of misunderstandings. As in the interval case we can define a natural inter-387
val union extension for functions composed by elementary operations and standard388
function only by replacing real operations by their interval union counterparts. The389
following proposition states that the fundamental theorem of interval analysis can be390
naturally extended to interval unions.391

Proposition 26. If f is inclusion isotonic and the interval union extension of f :392
Rn → R then frg(u) ⊆ f(u).393
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Proof. immediately from the application of the fundamental theorem of interval anal-394
ysis to every component ui of u = (u1, . . . ,uk).395

On the other hand, due to the lack of convexity when working with interval unions we396
are not able to prove the interval union mean value theorem. For example, consider397
f(x) = x2 and the interval union u = ([−3,−1], [1, 3]). If we take x = −2 ∈ [−3,−1]398
and y = 2 ∈ [1, 3] then there is no ξ ∈ u such that 4 = 4−8ξ, and hene the statement399
fails even for univariate functions.400

4. Interval union Newton method. In this section we consider the problem401
of rigorously enclosing all solutions of402

(13) f(x) ∈ r, x ∈ x403

where f : R → R is a differentiable function. In Section 4.1 we review the interval404
Newton method for the case where r is set to be zero and x is a closed and bounded405
interval. In Section 4.2 we formulate the interval union Newton operator. Numerical406
experiments comparing both approaches are presented in Section 4.3.407

4.1. Interval Newton method. Let x be a bounded interval and f : R→ R a408
differentiable function. We are interested in enclosing all solutions of409

(14) f(x) = 0, x ∈ x.410

Interval newton methods to solve this problem are based on the interval mean value411
theorem applied to (14). Formally, if y ∈ x such that f(y) = 0 then412

0 = f(y) ∈ f(x) + f ′(x)(y − x)413

for any fixed x ∈ x. Therefore, the solution set of the problem can be given as414

(15) Sx := {y ∈ x | ∃f∗ ∈ f(x) and g∗ ∈ f ′(x) such that f∗ + g∗(y − x) = 0}415

regardless of the choice of x. The usual interval Newton method fixes x as the midpoint416
of x and generates a sequence of nested intervals such that417

x0 ⊇ x1 ⊇ . . . ⊇ Sx,418

where419

x(k+1) = N(xk) ∩ xk, k = 0, 1, 2, . . .420

The operator N(x) is called interval Newton function and is given by421

(16) N(x) = x̌− f(x̌)
f ′(x) .422

Algorithms based on the interval Newton method can be divided in two groups de-423
pending on whether or not they rely on extended division, i.e. splitting intervals after424
the division into the two unconnected result intervals. Some authors like Moore [20]425
and Alefeld [2] only apply the interval Newton operator to boxes where 0 /∈ f ′(x).426
More sophisticated algorithms like those proposed by Kearfott [15] and Hansen [7]427
allow division by intervals containing zero and process each box resulting from the428
division separately.429
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The simplest interval Newton method with extended division for enclosing all solutions430
of (14) is given in Algorithm 1. The algorithm takes the interval x and applies the431
interval Newton operator to it. If the resulting intervals are not empty or too thin432
then they are split, an interval to be processed is chosen and the iteration continues.433
The proof of finiteness and rigorousness of the interval Newton algorithm is given in434
[15]. For multivariate versions of this algorithm see [7–9].

Algorithm 1 Interval Newton algorithm
Input: The interval x0, the interval extensions f and f ′ of f and f ′ respectively and

the narrow component tolerance ε > 0.
Output: A list of intervals C with x ∈ C ⇒ wid(x) < ε and the guarantee that for

all y ∈ x0 with f(y) = 0 there exists at least one interval x ∈ C such that y ∈ x.
1: W ← x0;
2: while W 6= ∅ do
3: x← get_first(W);
4: x← x̌;
5: [x1,x2]←

(
x− f(x)

f ′(x)

)
∩ x; . Newton operator

6: for i← 1 : 2 do
7: if xi 6= ∅ then . Elimination test
8: if 0 /∈ f(xi) then continue
9: else if wid(xi) < ε then . Solution test
10: C ← xi;
11: else
12: W ← [xi, x̌i]; W ← [x̌i,xi];
13: end if
14: end if
15: end for
16: end while
17: return C;

435
The list of intervals C returned by the algorithm need not to be disjoint. Moreover,436
it is possible that the algorithm saves an interval x in C even when it contains no437
root of f . The only guarantee we have is that when y ∈ x satisfies f(y) = 0 then438
y ∈ xi ⊆ C for some i.439

4.2. Interval union Newton method. Let x and r be interval unions with p440
and q elements respectively. Applying the interval mean value theorem to each pair441
of intervals in x and r gives the solution set of (13)442

S :=
⋃

1<i<p
1<j<q

Sx(xi, rj)443

where444

Sx(x, r) := {y ∈ x | ∃r ∈ r, f∗ ∈ f(x) and g∗ ∈ f ′(x) such that f∗ + g∗(y − x) = r}445

for any fixed x ∈ x. Therefore, we can solve (13) by applying Algorithm 1 p×q times.446
However, the interval union arithmetic provides a more natural approach, without the447
need of running multiple instances of the same algorithm. Let uk = (uk1 , . . . ,ukn) be448
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an interval union, f a differentiable function and f and f ′ interval union extensions of449
f and of its derivative f ′. The interval union Newton iteration is given by450

(17) uk+1 := (N(uk1) ∩ uk1 , . . . , N(ukn) ∩ ukn)451

where N(x) is the interval Newton function. Note that the interval union Newton452
iteration is rigorous since it is a component-wise application of the interval mean453
value theorem. Algorithm 2 uses (17) to enclose all solutions of (13). It also needs454
the auxiliary function checkAndRemove which is given in Algorithm 3. In the next455
section we perform numerical experiments to compare the performance of Algorithm456
1 with Algorithm 2.

Algorithm 2 Interval union Newton algorithm
Input: The interval union u0, the interval union extensions f and f ′ of f and f ′ and

the narrow component tolerance ε > 0.
Output: The interval union s = (xi) with wid(xi) < ε and the guarantee that for all

y ∈ u0 with f(y) = 0 there exist an xi such that y ∈ xi.
1: u ← u0;
2: while u 6= ∅ do
3: u ← (N(u1) ∩ u1, . . . , N(un) ∩ un); . Newton operator
4: x ← ∅;
5: for xi ∈ u do
6: if f(xi) ∩ r 6= ∅ then . Elimination test
7: if wid(xi) < ε then . Solution test
8: S ← xi;
9: else
10: x ← checkAndRemove(xi, ε, f);
11: end if
12: end if
13: end for
14: u ← x;
15: end while
16: return S;

Algorithm 3 Check and Remove
Input: The interval x and the narrow component tolerance ε
Output: An interval union u with two elements
1: x← x̌; y← [x− ε

2 , x+ ε
2 ];

2: if f(y) ∩ r 6= ∅ then Save y as solution of (13)
3: end if
4: u ← {[x,y], [y,x]};
5: return u;

457

4.3. Numerical experiments. We compare interval and interval union New-458
ton methods for univariate functions using a Java implementation that is part of459
JGloptlab [5]. We used 32 test functions listed in Table 1 most of them taken from460
[3]. For each function we consider the natural extensions for both f and f ′. In our461
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implementation, we have followed the pseudo-codes of Algorithms 1 and 2 precisely,462
without any additional acceleration or optimization.463
For each function fi we seek the enclosure of all solutions fi(x) = 0 where x ∈ x and x464
is a bounded interval. The narrow component tolerance ε is set to 10−7 and the max-465
imum number of function evaluations is set to 100000. If we are unable to reduce the466
width of every component of the solution set below ε before the maximum number of467
function evaluations is reached we relax the tolerance parameter by a factor of 10 and468
restart the process. Table 1 shows the test functions and the Table 2 present the results469
of the experiment. A supplementary table comparing other aspects of both algorithms470
can be found in http://www.mat.univie.ac.at/~dferi/research/UnionsTests.pdf.471

f1 = −
∑5

k=1
k sin((k + 1)x + k), [−100, 100], f2 = 1 + x + x2 + x3 + x4 − x5, [−2, 2]

f3 = sin(x)− 2 cos(x2 − 1), [−100, 100], f4 = 1− cos(x) + x2
4000 , [−100, 100]

f5 = (x + sin(x)) exp(−x2), [−100, 100], f6 = x(1− x), [−6, 6]

f7 = x4 − 10x3 + 35x2 − 50x + 24, [−100, 100], f8 = exp(−3x)− sin3(x), [0, 100]

f9 = sin(x) + sin( 10x
3 ) + ln(x)− 0.84x, [1, 100], f10 = sin(x), [−100, 100]

f11 = 24x4 − 142x3 + 303x2 − 276x + 93, [−100, 100], f12 = sin( 1
x ), [0.02, 100]

f13 = 2x2 − 3
100 exp(−200(x− 0.0675)2), [1, 100], f14 = x2

20 − cos(x) + 2, [−100, 100]

f15 = sin(1 + x + x2 + x3 + x4), [−20, 20], f16 = x2 − cos(18x), [−100, 100]

f17 = (x− 1)2(1 + 10 sin2(x + 1)) + 1, [−100, 100], f18 = exp(x2), [−10, 10]

f19 = x4 − 12x3 + 47x2 − 60x− 20 exp(−x), [−10, 10], f20 = x6 − 15x4 + 27x2 + 250, [−10, 10]

f21 = sin2
(

1 + x−1
4

)
+
(

x−1
4

)2
, [−100, 100], f22 = (x− x2)2 + (x− 1)2, [−100, 100]

f23 = exp(sin(x)) + cos(x2), [−100, 100], f24 = cos(sin(x2 − 1)− 1), [−20, 20]

f25 = sin(cos(exp(x))), [0, 10], f26 = − 1
(x−2)2+3

, [0, 100]

f27 = cos(x2 − x3), [−10, 10], f28 = sin(exp(x)), [0, 10]

f29 = cos(π(8x3 − 1)) + sin(π(8x2 − 1)), [−20, 20], f30 = 1
x , [−10, 10]

f31 = tan(x), [−10, 10], f32 = cot(x), [−10, 10]

Table 1: The test functions f1 – f32 and the corresponding initial bounds for the
variable x.

The test results are given for both the interval Newton (Algorithm 1 in column472
INewton) and for the interval union Newton (Algorithm 2 in column IUNewton).473
In particular, Table 2 shows for each test function (func) the number of boxes pos-474
sibly containing solutions found (Sol), the number of function evaluations needed to475
enclose all solutions (FunEv) and the narrow component tolerance ε (Wid) used.476
It is clear from that the interval union arithmetic significantly increases the efficiency477
of the Newton method. Table 2 shows that both the number of function evaluations478
and the number of boxes possibly containing solutions is smaller when using the479
interval union Newton method. Moreover, the tolerance achieved with the interval480
union method is, in every case, at least as small as the tolerance achieved with interval481
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fun INewton IUNewton fun INewton IUNewton
Sol FunEv Wid Sol FunEv Wid Sol FunEv Wid Sol FunEv Wid

f1 3212 6424 10.0 410 6883 1E-7 f2 3 164 1E-7 1 39 1E-7
f3 3454 6916 10.0 6367 82782 1E-7 f4 2 97 1E-7 1 37 1E-7
f5 23832 95393 1E-2 3 59629 1E-2 f6 2 38 1E-7 2 39 1E-7
f7 14673 38638 0.1 7 367 1E-7 f8 11521 96463 1 32 1931 1E-7
f9 2 67 1E-7 2 50 1E-7 f10 778 1569 10.0 63 893 1E-7
f11 8082 22861 0.1 0 227 1E-7 f12 5397 63841 1E-7 15 213 1E-7
f13 0 1 1E-7 0 2 1E-7 f14 0 1 1E-7 0 3 1E-7
f15 15306 31865 1 15712 57924 1E-3 f16 786 10218 1E-7 10 175 1E-7
f17 0 1 1E-7 0 3 1E-7 f18 0 1 1E-7 0 3 1E-7
f19 1150 3319 1 8 339 1E-7 f20 15772 73030 0.1 0 105 1E-7
f21 0 28 1E-7 0 13 1E-7 f22 1 123 1E-7 1 101 1E-7
f23 3071 6340 10.0 3187 43862 1E-7 f24 13362 30544 1 254 3757 1E-7
f25 379 777 1 7011 77237 1E-7 f26 0 1 1E-7 0 3 1E-7
f27 3656 7312 10.0 20093 70984 1E-2 f28 373 776 1 7011 72631 1E-7
f29 15966 32320 1 17992 65801 1E-3 f30 0 2 1E-7 0 1 1E-7
f31 8 131 1E-7 7 117 1E-7 f32 6 91 1E-7 6 109 1E-7

Table 2: Comparison between the interval and the interval union Newton method.
The number of solutions obtained with each method is given in Sol, the number of
function evaluations in FunEv and the final tolerance is given in Wid.

Newton method.482

5. Systems of Interval Union Equations. This section extends the concept of483
interval linear systems to interval unions. The algorithms used to solve interval linear484
systems can be naturally adapted to the interval union case with a few modifications.485
The basic definitions of interval union linear systems are given in 5.1, the Gaussian486
elimination and the Gauss-Seidel algorithm are discussed in 5.2, finally in 5.3 some487
examples are given to demonstrate the usefulness of the interval union approach.488

5.1. Basics. Let A ∈ Un×n be an interval union matrix and b ∈ Un an interval489
union vector. An interval union linear system of equations is the family of linear490
systems given by491

(18) Ãx = b̃ for all Ã ∈A and b̃ ∈ b.492

The solution set of interval union linear systems is the union of solution sets from493
every combination of interval matrices and vectors contained in A and b, formally we494
have495

Definition 27. The set S := {x ∈ Rn | Ãx = b̃ for all Ã ∈ A and b̃ ∈ b} is the496
solution set of (18).497

If A ∈ Un×n
1 and b ∈ Un

1 then problem (18) reduces to a typical interval linear498
system. Finding the interval hull of the solution set is NP−Hard for general interval499
linear systems and therefore it is also NP−Hard to find the interval hull of S.500
We say that a square interval matrix A is regular if every matrix A ∈ A is non-501
singular. In the same way, the interval union matrix A is regular if every real502
matrix A ∈ A with A ∈ A is non-singular. The interval matrix A ∈ Un×n

1 is503
diagonally dominant if504

(19) 〈aii〉 ≥
∑

1<i<p
1<j<q

|aij |, for all i = 1, . . . , n.505

The interval union matrix A is diagonally dominant if relation (19) remains valid506
when we replace interval operations with interval union operations.507
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In general, algorithms for solving interval linear systems of equations benefit greatly508
from preconditioning. We say that the interval linear system A′x = b′ is precondi-509
tioned if510

A′ = MA, b′ = Mb511

where M is a real matrix. Typically M = Ǎ−1 is chosen, but some authors suggests512
better strategies for choosingM , see for example [15]. Similarly, algorithms for solving513
interval union linear systems may also take advantage of preconditioning, however,514
the choice of the preconditioning matrix is harder than in the interval case. The study515
of this topic will be addressed in a future work.516

5.2. Algorithms. LetA be an interval union matrix and and b an interval union517
vector. We present two methods to enclose the solution set S given by Definition 27.518
The algorithms discussed here can be easily generalized to the case where A is not519
square.520
Interval Gaussian elimination, as described in [8, 15], is obtained by just replacing521
real operations with interval ones in the Gaussian elimination algorithm. The interval522
version of the algorithm also allows to perform partial or full pivoting using the523
mignitude for element comparison. As proved in [15], the fundamental theorem of524
interval arithmetic guarantees that if x is the interval vector obtained with interval525
Gaussian elimination then S ⊆ x. Since the fundamental theorem of interval union526
arithmetic is already proved, the same conclusion holds if we replace all real operations527
with interval union counterparts in the Gaussian elimination. Moreover, the definition528
of the mignitude for interval unions allows the same pivoting strategies as in the529
interval case.530
Consider A and b of the form531

(20) A =
(

a11 a12
a21 a22

)
and b =

(
b1
b2

)
.532

The interval union Gaussian elimination with backward substitution and without533
pivoting gives534

q = −a21

a11
, x2 = b2 + b1q

a22 + a12q
, x1 = b1 − a12x2

a11
.535

It is trivial to generalize the Gaussian elimination to higher dimensions, but the two536
dimensional case is good enough to show some interesting properties of the Gaussian537
elimination applied to interval union systems.538
Let us first assume that every entry of (20) is an interval instead of an interval union.539
In this case, if 0 ∈ a11 then the interval Gaussian elimination will fail even with540
extended division. However, as demonstrated on Example 28 below, using interval541
union arithmetic we may obtain useful bounds for x1 and x2 even if 0 ∈ a11.542
Even for systems with 0 /∈ a11 the union Gaussian elimination may give us sharper543
bounds for x1 and x2 than the interval Gauss-Seidel algorithm. This is demonstrated544
on Example 29 below, where by using interval union Gaussian elimination we obtain545
bounds almost as sharp as solving several interval linear sub-systems separately.546
During the interval Newton method, in each iteration, we have to solve an interval547
linear system of form A(x − x) = b where x is the box currently processed, A is548
the interval matrix given by evaluating the Jacobian of the function f over x and b549
is usually set to −f(x). The usual approach this system is the interval Gauss-Seidel550
algorithm that is based on the so called Gauss-Seidel operator551

(21) xk+1
i = xki ∩ yi, i = 1 . . . n,552
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where553

yi = bi + ri
aii
, ri = bi −

n∑
j=1
j 6=i

aij(xj 	 xj),554

and 	 is the interval inner subtraction as defined by (2). The interval Gauss-Seidel555
algorithm applies equation (21) as long the bounds of the processed box are improved.556
In practice, we iterate as long as the difference between the largest widths of xk+1557
and xk is bigger than a given tolerance ε, see Algorithm 4.558

Algorithm 4 Interval Gauss-Seidel
Input: The interval matrix A, the interval vectors b and x and the tolerance ε ≥ 0
Output: The interval vector y such that S ⊆ y ⊆ x or a proof that x ∩ S = ∅.
1: y← x and x← x̌;
2: while true do
3: for i = 1, . . . , n do
4: if 0 /∈ aii then
5: ri ← bi −

∑n
j=1
j 6=i

aij(yj 	 xj));

6: y′i ← xi + ri

aii
;

7: y′i ← yi ∩ yi;
8: if y′i == ∅ then
9: return ∅;

10: end if
11: end if
12: end for
13: if max wid(y)−max wid(y′) < ε then
14: break;
15: end if
16: y← y′ and x← y̌;
17: end while
18: return y;

Note that Algorithm 4 does not update the variables xi when 0 ∈ aii. When this559
happens several authors (see [7], [15]) suggest a second step of the Gauss-Seidel algo-560
rithm which is based on the extended interval division (1). The second step consists561
of applying equation (21) to all indices i for which 0 ∈ aii and then save the largest562
gap produced by the interval division. Then two boxes that are identical in every563
entry except for the one with the largest gap are returned.564
Based on Algorithm 4 the interval union version of the Gauss-Seidel elimination can565
be formulated, where the interval union version of the Gauss-Seidel operator (21) is566
applied to every equation. The interval union Gauss-Seidel procedure differs from567
Algorithm 4 in steps 1 and 16. They be modified to use the component-wise interval568
union midpoint instead of the interval midpoint, since this is necessary in order to569
guarantee that the interval union fundamental theorem holds for ri.570
As a natural consequence, Algorithm 4 with interval unions returns an interval union571
vector which stores not only the boxes with the largest gap but all gaps. This simple572
modifications can lead to significant improvements over the interval Newton proce-573
dures for multivariate functions.574
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5.3. Examples. We conclude the section by showing some advantages of using575
interval union arithmetic to solve interval or interval union linear systems.576

Example 28. Let A and b be an interval matrix and an interval vector given by577

A =
(

[3.5, 4.5] [1.0, 2.0]
[1.0, 2.0] [−0.5, 0.5]

)
and b =

(
[1.0, 2.0]
[1.5, 2.0]

)
.578

The interval Gaussian elimination will fail to enclose the solution set of Ax = b579
even with preconditioning. The function verifylss of Intlab [24] also fails and return580
[−∞,∞]2 as solution. If intervals are replaced by interval unions in the standard581
Gaussian elimination, even without preconditioning we obtain the solution582

(22) x ∈ u = ({[−∞, 0.204082], [0.270531,∞]}, {[−∞,−0.217391], [1.28571,∞]})T .583

Now as (22) suggests (and shown in Figure 1-left) S may be split into four disjoint584
sets, and we see that the Gaussian elimination with interval unions provided useful585
information about S even though A is not regular.586

Example 29. Now let A be an interval union matrix and b an interval vector given587
by588

A =
(
{[−5,−3], [4, 5]} [0.5, 1.0]

[0.5, 1.0] {[−3,−2], [2, 3]}

)
and b =

(
[1.0, 2.0]
[1.5, 2.0]

)
.589

The solution set of Ax = b is the union of each interval linear system Aix = b for590
i = 1, . . . , 4. Figure 1-right shows the result of applying the interval union Gaussian591
elimination and the Gauss-Seidel algorithm to Ax = b as well as the interval hull of592
each interval linear system. Note again that the Gauss-Seidel procedure overestimates593
the bounds of the interval hull while Gaussian elimination give us a sharp enclosure of594
the four sets. The reason for this is that every interval matrix A ∈A is regular and595
diagonally dominant. Our final example shows how the multivariate interval Newton596
method can benefit from interval union analysis.597

Example 30. Assume that we want to enclose the solution set of598

x2
1 + x2

2 − 1 = 0, x2
1 − x2 = 0, x :=

(
x1 x2

)T ∈ ([0, 0.9482], [−1.2502, 0])T .599

We use the Gauss-Seidel algorithm applied to the interval Newton operator and pre-600
condition the Jacobian matrix by the inverse of its midpoint as described by [8]. It601
gives602

x ∈ x′ = ([0, 0.9482], [−1.2502,−0.8486])T603

and604
x ∈ x′′ = ([0, 0.9482], [−0.2896, 0.0000])T .605

Despite the significant improvement in the resulting box, the result is still not optimal.606
Applying the interval union Gauss-Seidel algorithm we have607

x ∈ u = ({[0, 0.1933], [0.825, 0.9482]}, {[−1.2502,−0.8486], [−0.2896, 0]})T608

Using the interval Gauss-Seidel algorithm we have achieved a 45% contraction of the609
search domain. On the other hand, applying the interval union procedure we reduced610
the bounds of both variables, and achieved a 81% contraction of the search domain.611

This manuscript is for review purposes only.
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Fig. 1: Left - Solution set of Example 28 in the box [−10, 10]2. The solution obtained
by the interval Gauss-Seidel is given in the solid box. The solution obtained by the
Gaussian elimination is given by dashed boxes. Right - Solution set of Example 29
in the box [−10, 10]2. Gauss-Seidel solution is given in the outer solid box, Gaussian
elimination is represented by dashed boxes. The solution set of each interval system
and its interval hull is given by the inner solid boxes.
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