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Preface

First Draft. March 2011. Updated October 2014, 2016, 2018

The present extended monograph contains most of the results obtained in joint research
work carried out by the authors, along the period 2000 - 2014 in Paris, France, and Buenos
Aires, Argentina. Parts of this work have appeared in print, [DP1] - [DP3] (proofs are omitted
in [DP2]).

Both the theory of real semigroups, presented here, and its ancestor, that of abstract real
spectra originating with Bröcker and Marshall (see [M], Chs. 6 - 8) (Cite Bröcker here.), arose
from the idea of setting up an axiomatic framework to investigate order and quadratic form
theory in (commutative, unitary) rings, both in their own right and in view of applications to
real algebraic geometry. It was Bröcker [Br] who took the first steps, motivated by questions of
minimal representations of constructible sets in real geometry. His ideas were further developed
and exposed in [ABR], Ch. III, under the name ”spaces of signs”. At about the same time
(1994-96) Marshall gave a new, drastically simplified, axiom system for abstract real spectra.

By their construction, both these abstract theories apply, in the context of rings, under the
following constraints:

(1) To (structures constructed from) rings satisfying a mild orderability requirement: namely,
those having a non-empty real spectrum. This condition is equivalent to −1 not being a sum
of squares; rings with this property are called semi-real 1.

(2) To diagonal quadratic forms. Note that quadratic forms over rings seldom are diagonalizable
(ADD REF).

However,

(3) No restriction is imposed on the coefficients of the quadratic forms under consideration 2.

The orderability requirement (1) seems indispensable to get an organized pattern common
to the gigantic variety of rings occurring in mathematical practice. In fact, it is surprising that
a theory –even a quite rich one– could at all emerge at that level of generality and, further,
that this is achieved on the basis of a rather simple axiom system.

In the sequel to this Preface we describe the plan of the present work in conceptual terms,
following a genetic (rather than a lexicographic) order of presentation.

The notion of a real semigroup. Origins.

1 Unless explicit mention to the contrary, the word ”ring” stands in this text for commutative, unitary and
semi-real ring.

2 Quadratic forms over preordered rings with invertible coefficients are investigated in [DM6], employing
techniques from the theory special groups.
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The axioms for abstract real spectra mix topology and algebra. In its original form the
theory cannot be recast as a set of first-order statements in a suitable language, a very con-
venient format for many purposes. However, based on the previously known duality between
reduced special groups and abstract order spaces ([DM1], Ch. 3), we aimed at devising an
axiom system in a natural first-order language, functorially dual to the theory of abstract real
spectra.

After some work at the early stages of our joint research we succeeded in obtaining a natural
axiom system fulfilling these requirements, whose models we baptized “real semigroups” (ab-
breviated RS); these axioms appear in § I.2. They are formulated in a language L

RS
comprising

a binary product operation “·”, constants 1, 0,−1 and a ternary relation “D” (representation
by, also called the value set of, binary forms). The duality real semigroups/abstract real spectra
was proved in [DP1], Thm. 4.1; cf. § I.5 below.

As stated in § I.2, the axioms for real semigroups involve another ternary relation –called
transversal representation, denoted by Dt–, definable in terms of D without involving quanti-
fiers. Transversal representation is conceptually important: in the example of rings it reflects
what is left from the latter’s addition, an operation not compatible with ordinary representa-
tion D in passing from a ring to its associated real semigroup (product, however, is compatible).
For a discussion of this point, see [M], p. 96.

Post algebras; the Post hull of a real semigroup.

Motivated by the existence of the Boolean hull of reduced special groups ([DM1], Ch. 4)
our next goal was to search for a “hull” of a RS having “reasonable” functorial properties
and capable of yielding some information about the given RS. Our search was guided by the
following considerations:

• Every Boolean algebra has a natural structure of reduced special group ([DM1], Ch. 4,
§ 1).

• Every reduced special group has a (canonical) “hull” which is a Boolean algebra, i.e., an
algebraic model of the classical (two-valued) propositional calculus ([DM1], Ch. 4, § 2).

• Real semigroups (and semi-real rings) can be conceived as essentially 3-valued objects.
For example, an element a of a (semi-real) ring A can be thought of as a function a :
Sper (A)−→3 = {1, 0,−1}, where, for α ∈ Sper (A),

a(α) := sign of a/supp(α) in the total order of the ring A/supp(α) determined by α.

(supp(α) is the prime ideal α ∩ α.)

For a more detailed discussion of this approach, see [DP2], pp. 50-51.

It was natural, then, to search for a ”hull” amongst the algebraic counterparts of three-
valued propositional logic. Of the various versions that had been studied since the early 1920’s
(and, in algebraic form, since the 1940’s), the fact that RSs have an absorbent element 0 lead us
to the choice of the formulation proposed by Post, namely Lukasiewicz’s 3-valued propositional
logic with a “center” having properties resembling the zero of the RSs.

We proved that any Post algebra carries a natural structure of real semigroup (§ IV.2),
and that the Post algebra C(X

G
,3) of continuous functions of the character space 3 X

G
of G

(with the (Boolean) topology induced from 3G) into 3 = {1, 0,−1} with the discrete topology,
is a “hull” (in the usual categorical sense) in which G embeds naturally by evaluation. From a

3 A character of a RS is a L
RS

-homomorphism G−→3 = {1, 0,−1}; 3 has a unique RS structure; cf. I.2.5.
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heuristic viewpoint this “Post hull” of a RS has a role parallel to that of the “Boolean hull” of
a reduced special group 4.

Concerning the RS structure of Post algebras, we mention the following:

(A) A quite useful characterization of transversal representation involving the “modal” opera-
tions present in Post algebras, exhibiting a remarkable symmetry (Theorem IV.2.7 (i)).

(B) RS-morphisms between Post algebras coincide with Post-algebra morphisms (IV.2.11).

(C) The outstanding functorial properties of the Post hull construction (§ IV.4).

(D) Quotients of RSs commute with the formation of the Post hull (Theorem IV.4.10).

In § IV.6 we prove some model-theoretic results concerning Post algebras (viewed as RSs),
and in § IV.7 we characterize the rings whose associated real semigroup is a Post algebra. We
also prove that Post algebras are “realized” by rings, i.e., any Post algebra (viewed as a RS) is
isomorphic to the RS associated to some ring.

In § IV.5 we characterize representation and transversal representation of forms of arbitrary
dimension over Post algebras in terms of their order and their lattice and “modal” operations.
Applied in the case of the Post hull of a RS, these characterizations make it possible to “read
off” certain properties of the value sets and transversal value sets of Pfister forms over the given
RS akin to those well known in the field case (cf. IV.5.6, IV.5.9).

The representation partial order.

An important by-product of the Post hull construction is that the (distributive lattice)
partial order of the hull restricts to a partial order on the given RS. This order is not compatible
with product in any standard algebraic sense; in fact, the relations between it and product are
rather subtle (see Propositions I.6.4 and I.6.5). At any rate, this order is definable from the
representation relation of the given RS (I.6.2).

This, hitherto unnoticed, partial order —that we call the representation partial order—
has a structural role in the theory of RSs in many senses similar to that of the homonymous
partial order in the theory of reduced special groups ([DMM], § 1.1, pp. 29-31). This is why
we present it at an early stage of development of the theory (§ I.6). The following results
substantiate the importance of this concept:

(E) The representation partial order of any RS, G, induces a natural bounded distributive
lattice structure on the set Id(G) = {x2|x ∈ G} of idempotent elements of G (Proposition
I.6.8).

(F) For spectral RSs (see below and Chapter V) the representation partial order endows G
itself with a bounded distributive lattice structure, and conversely (Theorem V.6.6).

Spectral real semigroups; the spectral hull of a real semigroup.

In Chapter V we study in detail a class of RSs that we call spectral. The definition of the
members of this class is done in terms of the spectral topology of the character space X

G
of a

RS, G; their role in relation to this topology is parallel to that of the Post algebras in relation
to the constructible topology of X

G
(see above).

Given a spectral space, X, the set Sp(X) consists of all spectral maps X−→3, with 3

4This analogy should be taken only as a guideline: Boolean algebras are never Post algebras.
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endowed with the spectral topology whose specialization order is

•
0

•
1

•
−1

Product, the constants 1, 0,−1, and representation in Sp(()X) are pointwise defined.

Equipped with this structure, Sp(X) verifies all axioms for RSs with the possible exception
of axiom [RS3b], asserting that Dt(·, ·) 6= ∅ (Theorem V.1.4), and this axiom holds if and only

if the space X is hereditarily normal, i.e., for every x ∈ X, the set {x} = {y ∈ X|x y} is
linearly ordered under  (Theorem V.1.5).

Among our most significant results about spectral RSs, we mention:

(G) Existence of a functorial duality (anti-equivalence) between the category of hereditarily nor-
mal spectral spaces with spectral morphisms and that of spectral RSs with RS-homomorphisms
(Theorem V.5.4).

(H) Spectral RSs are exactly those RSs for which the representation partial order is a distribu-
tive lattice (Theorem V.6.6).

(I) Every RS, G, has a “spectral hull” with the required functorial properties; namely, Sp(X
G

),
where the character space X

G
is now endowed with its spectral topology. The spectral hull of

a RS is included in its Post hull, but it is much smaller; in fact, the spectral hull of a RS is
generated by the given RS as a lattice (Theorem V.6.2). Formation of the spectral hull is an
idempotent operation (Theorem V.4.5).

(J) The class of spectral RSs is first-order axiomatizable in the language L
RS

(Theorems V.2.1
and V.7.4), and the specific form of the axioms guarantees closure of the class under a number of
algebraic and model-theoretic constructions, amongst others the formation of quotients modulo
arbitrary RS-congruences (see below).

(K) The character space of the spectral hull of a RS, G, is canonically homeomorphic to X
G

,
and the quotients of G are determined by the proconstructible subsets of X

G
(V.8.2 and V.8.4).

In § V.7 we look at spectral RSs from the perspective of the so-called Kleene algebras,
namely distributive lattices with a non-classical “negation” (corresponding, in RSs, to mul-
tiplication by -1). We characterize spectral RSs as Kleene algebras verifying some natural
additional conditions (Theorem V.7.2).

Spectral RSs occur in profusion among rings; in § V.10 we prove that the RS associated to
any lattice-ordered ring is a spectral RS. Further, the spectral hull of the RS associated to any
semi-real ring is canonically isomorphic to the RS associated to its real closure in the sense of
Prestel-Schwartz [PS].

Description of the next important class of RSs, the RS-fans, that we introduce and study in
Chapter VI, requires a prior detour through the “pointed” semigroup structures (no represen-
tation relation) underlying the real semigroups, structures that we call ternary semigroups
and examine in § I.1.

Ternary semigroups.

Ternary semigroups (abbreviated TS) are commutative, unitary semigroups with two extra
constants −1, 0, such that −1 · −1 = 1, and for all x, x3 = x, x · 0 = 0 and x = −1 · x⇒x = 0.
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These structures play, in the theory of RSs, a role comparable to that played by the groups
of exponent 2 with a distinguished element −1 in the theory of reduced special groups. But
while the latter have a rather trivial structure (vector spaces over the two-element field with
a distinguished non-zero element), ternary semigroups have, in general, a far more complex
structure.

In § I.1 we pay due attention to the construction of TS-characters (i.e., homomorphisms
into 3 preserving the TS-structure); the techniques at work here foreshadow those, taken up
in § I.4, employed to construct real semigroup characters, and used throughout the text. We
also examine the quotients of TSs, and show how TS-congruences can be constructed from
those of simpler structures (essentially, bounded join semilattices); we exhibit some examples
of TS-congruences that will occur time and again.

Section § I.3 is devoted to examine a fairly general method of construction of RSs from TSs.
Given a ternary semigroup and a set of its (TS-)characters, a ternary relation is defined that
satisfies most of the axioms for real semigroups –indeed, all of them with the possible exception
of the strong associativity axiom (axiom [RS3] in I.2.1). 5 By means of this construction, many
proofs that some structures are RS’s, are reduced to verifying the validity of the sole strong
associativity axiom. We give examples showing that this axiom may, in general, fail, but also
that it is satisfied by some finite sets of characters of small cardinality. Further, by showing
that the closure of any set of TS-characters in the constructible topology defines the same
ternary relation, we obtain an additional topological instrument facilitating many proofs.

RS-fans.

A class of field preorders called fans, was introduced by Bröcker in the 1970’s and exten-
sively studied thereafter (see [L2], Ch. 5). Fans turned out to be veritable “building blocks”
in the algebraic theory of quadratic forms over fields. A no less important role have their
generalizations to the settings of abstract order spaces ([M], Ch. 3) and reduced special groups
([DM1], pp. 8-9 and 89-90).

However, a suitable notion of a fan does not hitherto exist in the categories of real semi-
groups and abstract real spectra. In Chapter VI we introduce and study a natural notion
of a fan in these categories, here dubbed RS-fans and ARS-fans, respectively. The results
described below underline, in our opinion, the naturality and the relevance of these notions.

Among their many characterizations, fans in the category of reduced special groups (and
its dual of abstract order spaces 6) are those objects, F , such that every group character
F−→{±1} sending −1 to −1 preserves the representation relation D

F
. Alternatively, this

amounts to saying that D
F

is the “smallest possible” relation compatible with the axioms; in
fact,

D
F

(a, b) =

{
{a, b} if a 6= −b
F if a = −b

We proceed by analogy in the case of RSs. Having observed that ternary semigroups are the
structures underlying the RSs, we define a RS, G, to be a (RS-)fan if and only if its character
space X

G
consists of all TS-characters G−→3. It turns out that this is equivalent to require

that G is a RS and the product of any three characters is again a character.

A necessary condition for any of these requirements to hold is that the zero-sets Z(a) =

5 Particular cases of this general construction were used by Marshall ([M], § 6.6); these and other cases of
importance in real algebraic geometry are treated in § II.3 below.

6 Fans correspond to each other under this duality.
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h ∈ X
G
|h(a) = 0 of elements of G be totally ordered under inclusion.

For TSs, T , satisfying this necessary condition, we characterize in Theorem VI.2.1 the
representation and transversal representation relations that, added to T , will result in a RS-
fan. The actual result is far more involved than the above characterization of D

F
for reduced

special groups, but the intuitive guideline follows a similar path: the requirement that all
TS-characters become RS-characters gives, of course, the biggest possible (RS-)character set
and, dually, the “smallest possible” representation and transversal representation relations.
Theorem VI.2.1 gives a precise formulation to this intuition and shows that it is consistent
with the axioms. The proof is long and delicate.

Once this is accomplished, many consequences follow; to give a taste:

(L) Any TS-homomorphism of a RS-fan into any RS is a RS-homomorphism.

(M) The various definitions of “RS-fan” are equivalent.

(N) Every TS-ideal of a RS-fan is a saturated prime ideal.

(O) A TS-subsemigroup S of a RS-fan is saturated iff it contains all idempotents and S ∩ −S
is an ideal.

In § VI.3 we describe in detail some examples of RS-fans among TSs with ≤ 3 genera-
tors. In each case we determine the representation partial order and the specialization order
of the character space. We also show that RS-fans are (non-distributive) lattices under the
representation partial order.

Section § VI.4 is essentially devoted to prove a characterization of RS-fans in terms of
product, the specialization relation and quotients at saturated prime ideals (Theorem VI.4.2).
As corollaries we obtain abstract analogs of the notion of a trivial fan, a basic concept in the
theory of preorders on fields.

This abstract characterization of RS-fans is interpreted, in § VI.5, in the context of the
real semigroups associated to preordered rings, yielding an algebraic characterization of the
preordered rings whose associated real semigroup is a RS-fan (Corollary VI.5.13); this char-
acterization constitutes a non-trivial generalization of classical results from the theory of pre-
ordered fields to the far vaster realm of preordered rings. It follows that the real semigroups
associated to several outstanding classes of preordered rings are RS-fans (Corollary VI.5.14,
Theorem VI.5.25).

The study of the fine structure of the character spaces of RS-fans —equivalently, ARS-
fans— begins in § VI.7. A central notion here is that of a level set in a ARS-fan X

F
, i.e.,

the set of h ∈ X
F

whose zero-set Z(h) is a fixed ideal of F (necessarily prime and saturated);
certain subsets of level sets are also important in this connexion. Any level set is, itself, an
abstract space of orders.

We show that ARS-fans have a rich supply of involutions of their level sets which, in
addition, are automorphisms of abstract order spaces; specifically, given an ideal I of F , any
pair of elements g1, g2 ∈ XF

such that I ⊇ Z(gi)(i = 1, 2) determine an involution of the level
set corresponding to I, having many good properties. We also prove that these involutions
move certain subsets of X

F
(having a rather technical definition) in specific ways, resulting in

strong constraints to the possible configurations of the specialization order of X
F

(VI.7.11 -
VI.7.18).

In § VI.8 we study the specialization root-system of finite ARS-fans. Our main result, the
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isomorphism theorem VI.8.9, shows that the order of specialization determines the isomorphism
type of finite ARS-fans (isomorphism in the sense of [M], Def. p. 103). The proof relies on a
notion of standard generating system.

A comparison with the case of abstract order spaces may help putting in focus the difficulties
in the present situation. Abstract order spaces possess a natural structure of a combinatorial
geometry (matroid) which, moreover, is isomorphic to that of linear dependence of a set of
vectors inside some vector space over the 2-element field; this was proved in [D1] for the field
case and generalized to abstract order spaces in [Li]. By use of this tool, the analog of the
foregoing isomorphism theorem in the context of abstract order spaces is straightforward (cf.
[D1], § 5). For ARSs the situation gets significantly more involved, owing to:
• The absence of a combinatorial geometric structure.

• The presence of the specialization order, that ought to be brought into the picture.
The notion of a standard generating system is an ersatz for that of a matroid basis, sufficient,

however, to yield the stated isomorphism theorem.

As a by-product we get that the isomorphism type of finite ARSs is determined by a finite
system of numerical invariants. This is done in § VI.9, while in § VI.10 we prove that these
invariants form a complete system; the proof requires, of course, constructing finite ARSs
having a prescribed system of invariants of the appropriate type.

Section VI.11 is devoted to determine the quotients of RS-fans. We prove in VI.11.2 that
any such quotient is again a RS-fan, and that any RS-congruence of a RS-fan is determined by
a proconstructible subset satisfying a certain closure condition (already considered in § II.2).

Quotients of real semigroups.

Chapter II is devoted to the rather delicate question of congruences of real semigroups and
their quotients, and their application to the real semigroups arising from rings.

Observe at the outset that, since the class of RSs is not algebraic (the representation relation
is not a function), there is not a ready-made notion of congruence to be used; however, there
is such a notion for the algebraic class of ternary semigroups.

We have chosen a notion of congruence that seems natural in the present context: an
equivalence relation ≡ on a RS, G, which is a congruence for the TS structure underlying
G, such that the quotient TS, G/≡, is equipped with a ternary relation D

G/≡ under which

(G/≡, D
G/≡) becomes a RS; further, we require the quotient map π : G−→G/≡ to be a RS-

morphism verifying the following universal property: every RS-morphism f : G−→H into a
RS H such that a ≡ b⇒ f(a) = f(b) holds for all a, b ∈ G, induces a RS-morphism (necessarily
unique) f̂ : G/≡ −→H such that f̂ ◦ π = f .

Every such (RS-)congruence gives rise to a set of characters H≡⊆XG
which is procon-

structible and, equipped with the spectral topology induced from X
G

, is homeomorphic to
X
G/≡ as spectral spaces (Proposition II.2.8).

Any subset H⊆X
G

defines in an obvious way a TS-congruence ≡H on G and a ternary
relation DH on the quotient ternary semigroup G/≡H (:= G/H) (I.3.2). We prove, without
additional assumptions on the set H, that the quotient structure (G/H, DH, ·, 1, 0,−1) verifies
all axioms for RSs except, possibly, associativity of the ternary relation DH. This quotient
structure is the same as that defined by the closure of H in the constructible topology of X

G
.

However, there are examples showing that the associativity axiom may fail without additional
requirements on the set H. In Theorem II.2.9 we give a necessary closure condition on H for
(G/ ≡, D

G/≡) to be a RS, but a manageable sufficient condition is still lacking.
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In § II.3 we deal with quotients of RSs determined by specific sets of characters frequently
occurring in quadratic form theory and real algebraic geometry: localizations, quotients by
saturated sets, by saturated subsemigroups, by transversally saturated subsemigroups, and
residue spaces at saturated prime ideals. All these families of characters produce quotients in
our sense; some of them have been previously considered by Marshall ([M], §§ 6.5, 6.6), who
proved, in the dual terminology of ARSs, that, indeed, they are RSs. Our work in this section
considerably extends Marshall’s: for each of these families of characters we characterize the
equivalence relation, as well as both representation relations in the quotient, in terms of the
constants, operation and relations of the initial RS.

All the examples mentioned in the preceding paragraph are determined by sets of characters
convex for the specialization partial order. However, among RS-fans and spectral RSs one finds
examples where convexity fails, whence not determined by any set of characters of the above
mentioned types.

In section § II.4 we examine the quotients considered in § II.3 in the important case of the
RSs G

A
(resp., G

A,T
) associated to a ring A (resp., with a preorder T ). We show that in each

case the corresponding RS-quotient is the RS associated to a ring obtained from the given ring
A by suitably combining the standard operations of forming rings of fractions and quotients
modulo ideals (resp., using also preorders constructed from T ).

A classical theme in commutative algebra and algebraic geometry is the representation of
algebraic structures, e.g., rings, by means of algebraic structures consisting of continuous global
sections of sheaves of other algebraic structures —usually with better properties— over topolog-
ical spaces. Archetypal of results of this kind (and the most famous of them) is Grothendieck’s
representation of any ring (commutative, unitary) by continuous sections of a sheaf of local
rings over its Zariski spectrum. The list is long: Hofmann [Ho] contains a survey of results of
this type (up to the early 1970’s).

In § III.1 we prove a representation result of this type: any RS is isomorphic to one consisting
of continuous global sections of (quasi) reduced special groups over the (spectral) space of its
saturated prime ideals.

An interesting application of the foregoing sheaf representation theorem is given in § III.2;
we prove that, whenever the (spectral) space of saturated prime ideals of a RS, G, is normal, the
stalks of the sheaf of (quasi) reduced special groups form a projective system —not necessarily
along a right-directed index set— whose projective limit is a RS in which G embeds completely.
Note that the category of RS’s is not, in general, closed under the formation of projective limits.
In fact, this result is a particular case of a far more general (and new) model-theoretic result
about the preservation of Horn-geometric sentences by projective (not necessarily directed)
limits of structures over index sets having an order property akin to normality.

In § III.3 we introduce a class of maps between L
RS

-structures that we call transversally
2-regular, having rather strong properties. For example, when the quotient map G−→G/ ≡
modulo an equivalence relation ≡ in a RS, G, is transversally 2-regular, the congruence is au-
tomatically a RS-congruence of G, i.e., satisfies the requirements laid dawn above (Proposition
III.3.2). Among our current examples, localizations and residue spaces at saturated prime ide-
als have this property, as well as arbitrary quotients of Post algebras (IV.4.12) and of RS-fans
(VI.11.3). However, in III.3.5 we give an example showing that quotients modulo saturated
subsemigroups may not be transversally 2-regular.

Paris, Buenos Aires, April 2011.
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Chapter I

Real Semigroups

Important note. Most of the material in Sections 1 – 4 of this chapter has been published
in [DP1], including full proofs of results. Since this material is constantly used in the present
text, omitting it completely would have definitely impaired readability. In order to avoid
unduly increasing the length of this paper, we have decided to include all the material from
[DP1] necessary to the understanding of the mathematical content —motivations, definitions,
notations and the statement of results—, but omit the proofs already given there. Proofs of
those results not appearing in [DP1] are, of course, included here.

I.1 Ternary semigroups

In this section we introduce the notion of ternary semigroup. This class of (commutative,
unitary) semigroups with additional individual constants, underlies the notion of real semigroup
—to be introduced in §2 below— in a sense parallel to which the groups of exponent 2 with a
distinguished element −1 underlie the notion of special group.

In spite of the similarity of their roles, these classes of structures differ in very significant
ways. Firstly, while the groups of exponent 2 have a rather trivial algebraic structure —
they are just vector spaces over the two-element field—, that of the ternary semigroups is far
more complex. Secondly, while the set of characters of groups of exponent 2 carry only one
natural topology —that of a Boolean space—, the set of characters of a ternary semigroup
(into {1, 0,−1}) is naturally endowed with a spectral topology with a non-trivial specialization
order, carrying also an associated constructible (Boolean) topology.

Definition I.1.1 A ternary semigroup (abbreviated TS) is a structure 〈S, · , 1, 0,−1〉 with
individual constants 1, 0,−1, and a binary operation “ · ” such that:

[TS1] 〈S, · , 1〉 is a commutative semigroup with unit.

[TS2] x3 = x for all x ∈ S.

[TS3] −1 6= 1 and (−1)(−1) = 1.

[TS4] x · 0 = 0 for all x ∈ S.

[TS5] For all x ∈ S, x = −1 · x ⇒ x = 0.

1



We shall write −x for −1·x. The semigroups verifying conditions [TS1] and [TS2] (no constants
other than 1) will be called 3-semigroups. 2

Remark. Note that the invertible elements of a 3-semigroup —in particular, those of a ternary
semigroup— are exactly the elements a such that a2 = 1 [Proof: if ab = 1 for some b, scaling
by a2 gives a2 = a2(ab) = a3b = ab = 1.]] 2

Examples I.1.2 (a) The three-element structure 3 = {1, 0,−1} has an obvious ternary semi-
group structure.

(b) For any set X, the set 3X under pointwise operation and constant functions with values
1, 0,−1, is a TS. More generally:

(c) The class of ternary semigroups is closed under direct product and substructures (but not
under homomorphic images). In particular, if ∆ is a subsemigroup of a TS containing 0 and
1, then ∆ ∪ −∆ is a TS. Further, since the axioms [TS1]–[TS5] are Horn sentences of the
(natural) language L

TS
= {· , 0, 1,−1} for ternary semigroups, the class is also closed under

reduced products (cf. [CK], § 6.2).

(d) Any group of exponent 2 obviously is a 3-semigroup; the pointed group of exponent 2 with
a distinguished element −1 6= 1 underlying a reduced special group (henceforth abbreviated
RSG 1) also verifies [TS3]. Any such group, G, becomes a ternary semigroup by adding a new
absorbent element 0, i.e., extending the operation by x · 0 = 0, for x ∈ G ∪ {0}. Note that the
set of invertible elements of a 3-semigroup is a group of exponent 2 (see Remark above).

I.1.3 Reminder. (The real spectrum of a ring)

We shall assume familiarity with the construction and basic properties of the real spectrum
of (commutative, unitary) rings A, denoted Sper (A). The basic theory of the real spectrum is
expounded in [BCR], § 7.1, [DST], § 23, or [M], Ch. 5, pp. 83 ff.

For the reader’s benefit we briefly summarize the basics of this construction, leaving it to
him finding in the given references the (geometric) motivation that led to the choice of objects
described hereafter.

Objects of Sper (A). These are the prime cones of A (also called orderings in [M]), i.e., the

preorders T of A [T +· T ⊆T and A2⊆T ] such that, in addition, T ∪ −T = A and T ∩ −T is a
(proper) prime ideal, called the support of T and denoted by supp(T ). For further details and
information, see [BCR], §§ 4.2, 4.3 or [DST], § 23.1. We shall denote the elements of Sper (A)
by Greek letters. Note that, for α ∈ Sper (A), the set {a/supp(α) | a ∈ α} is a (total) ring
order of the quotient domain A/supp(α), denoted ≤

α
. The canonical quotient map from A

to A/supp(α) is denoted by π
α
. A ring is called semi-real if Sper (A) 6= ∅; this condition is

equivalent to −1 6∈
∑
A2.

Topology of Sper (A). A subbasis for the (spectral, also called Harrison) topology of Sper (A)
is given by the family of sets H(a) = {α ∈ Sper (A) |π

α
(a) > 0}, for a ∈ A. Thus, a basis

consists of the family of sets H(a
1
, . . . , a

n
) = {α ∈ Sper (A) |π

α
(a

1
) > 0∧ . . .∧π

α
(a
n
) > 0}

for all finite sequences a
1
, . . . , a

n
of elements of A. 2

(e) For any semi-real ring A, let the set G
A

consist of all functions a : Sper (A)→ 3, for a ∈ A,
where

a (α) =


1 if a ∈ α \ (−α)
0 if a ∈ α ∩ −α
−1 if a ∈ (−α) \ α.

1 For the notion of special group the reader is referred to [DM1]; see especially Chapter 1, for basic definitions.
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with the operation induced by product in A, is a TS. More generally, given a (proper) preorder
T of a ring A one can relativize the definition above to T , by considering functions a defined
on Sper (A, T ) = {α ∈ Sper (A) |α ⊇ T}, instead of Sper (A); the corresponding ternary
semigroup will be denoted G

A,T
. The case above is obtained for T =

∑
A2. 2

Notation I.1.4 (a) By a subsemigroup of a unitary semigroup we mean a subset closed
under the operation · and containing 1. Thus, a subsemigroup of a TS may not contain 0
or −1 and hence may not be a substructure for the language L

TS
for ternary semigroups (cf.

I.1.2 (c)).

(b) The definition of ternary semigroup (TS-) homomorphism is standard: preservation
of product and the constants 1, 0,−1 is required. A TS-character is a TS-homomorphism
into 3. If h : T −→3 is a TS-character we write P (h) (set of “positive” elements) for the set
h−1[0, 1] and Z(h) (set of “zeros”) for h−1[0]. The set of TS-characters of T will be denoted
by Hom

TS
(T , 3) or, alternatively, by X

T
.

(c) The product of two TS-homomorphisms f, g : T
1
−→T

2
between ternary semigroups T

1
, T

2
is pointwise defined: for t ∈ T

1
, (f · g)(t) := f(t)g(t). Obviously, f · g is a homomorphism

of unitary semigroups sending 0 to 0, but it is not a TS-homomorphism, since −1 is sent to
1. However, the product of any three (or any odd number of) TS-homomorphisms is a TS-
homomorphism. This closure property, will play a crucial role throughout the present text,
especially in Chapter VI.

(d) An ideal of a semigroup S is a non-empty subset I ⊆ S such that I · S ⊆ I. An ideal is
prime if it is proper and ab ∈ I ⇒ a ∈ I or b ∈ I, for all a, b ∈ S. 2

We shall frequently use the following Fact, whose proof is standard and left to the reader:

Fact I.1.5 Let I be an ideal in a TS, T , and let ∆ be a subsemigroup of T such that I ∩∆ = ∅.
Let J be an ideal of G containing I and maximal with respect to being disjoint from ∆. Then,
J is prime. In particular, if a 6∈ I (by setting ∆ = {1, a2}) it follows that an ideal maximal for
not containing a is prime. 2

If T is a ternary semigroup, then Id(T ) will denote the set of idempotents of T , i.e., Id(T )
= {x ∈ T | x = x2}. Clearly, Id(T ) is a subsemigroup of T containing 0.

Remark I.1.6 If h : T → 3 is a TS-character, the set S = h−1[{0, 1}] verifies:

(i) S is a subsemigroup of T containing Id(T ).

(ii) S ∩ −S (= h−1[0]) is a prime ideal.

(iii) S ∪ −S = T .

A subset verifying these properties will be called a prime subsemigroup of T . A prime
subsemigroup contains 0. 2

The prime subsemigroups S of T are in one-one correspondence with the TS-characters of
T ; indeed, S defines a TS-character upon setting, for x ∈ T :

h
S

(x) =


1 if x ∈ S \ (−S)
0 if x ∈ S ∩ −S
−1 if x ∈ (−S) \ S.

The following Lemma and Proposition give the tools used in practice to construct TS-
characters:
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Lemma I.1.7 Let T be a TS and let I be a prime ideal of T . Let S be a subsemigroup of
T such that:

(1) Id(T ) ∪ I ⊆ S.

(2) S is maximal such that S ∩ −S = I.

Then, S is a prime subsemigroup, i.e., S ∪ −S = T . The TS-character h
S

defined by S (as

above) verifies I = h−1
S

[0] and S = h−1
S

[{0, 1}].

Proof. See [DP1], Lemma 1.5, p. 102. 2

Notation I.1.8 Given a subsemigroup ∆ of a TS, T , containing Id(T ), the set I[∆] =
{x ∈ T | − x2 ∈ ∆} is a (possibly improper) ideal of T containing ∆ ∩ −∆. In this situ-
ation, Γ = ∆ ∪ I[∆] is a subsemigroup of T , and I[Γ]⊆Γ. The easy proof of this assertion is
left as an exercise. 2

Theorem I.1.9 (Separation theorem for subsemigroups.) Let T be a TS and let ∆⊆T be a
subsemigroup such that Id(T ) ∪ I[∆]⊆∆. Then, for every a ∈ T \ ∆ there is a character
h ∈ X

T
such that ∆⊆P (h) and h(a) = −1.

Proof. By Zorn’s lemma there is a subsemigroup S of T such that ∆ ∪ I[S]⊆S and S is
maximal for a 6∈ S. We prove that, for such an S the following hold:

(a) The ideal I[S] is prime.

Proof of (a). Otherwise, there are p, q ∈ T so that p, q 6∈ I[S] but pq ∈ I[S], that is, −p2,−q2 6∈
S but −p2q2 ∈ S. Let S

p
= S ∪ −p2S ∪ I[S ∪ −p2S]. The remark in I.1.8 implies that S

p
is

a subsemigroup of T and I[S
p
]⊆S

p
; obviously S

p
⊃ S. By maximality of S, a ∈ S

p
. Since

a 6∈ S, we have a ∈ −p2S or a ∈ I[S ∪ −p2S], i.e., −a2 ∈ S ∪ −p2S. But −a2 ∈ S entails
a ∈ I[S]⊆S, contradiction; hence, either a ∈ −p2S or −a2 ∈ −p2S. A similar argument gives
a ∈ −q2S or −a2 ∈ −q2S. Thus, we have the following cases:

(1) a ∈ −p2S ∩ −q2S. Then, a = −p2s
1

= −q2s
2

with s
1
, s

2
∈ S, whence −a2 = −p2q2s

1
s

2
;

but −p2q2 ∈ S yields, then, −a2 ∈ S, i.e., a ∈ I[S]⊆S, contradiction.

(2) a ∈ −p2S and −a2 ∈ −q2S. Then, a = −p2s
1

and −a2 = −q2s
2
, with s

1
, s

2
∈ S. Since

−p2q2 ∈ S, we get a = (−a)(−a2) = −p2q2s
1
s

2
∈ S, contradiction. The case a ∈ −q2S,

−a2 ∈ −p2S is similar.

(3) −a2 ∈ −p2S ∩ −q2S. Then, −a2 = −(−a2)(−a2) = −(−p2s
1
)(−q2s

2
) = −p2q2s

1
s

2
∈ S,

whence a ∈ I[S]⊆S, absurd.

These contradictions prove item (a).

(b) S ∪ −S = T .

Proof of (b). Otherwise, let p ∈ T be so that p,−p 6∈ S, and set S′
p

= S ∪ pS ∪ I[S ∪ pS].

Then S′
p

is a subsemigroup of T containing Id(T ) and I[S′
p
]⊆S′

p
(I.1.8); clearly S′

p
⊃ S.

Obviously, the same assertions hold for S′
−p

= S ∪ −pS ∪ I[S ∪ −pS]. By maximality of S,

a ∈ S′
p
∩ S′
−p

, and since a 6∈ S, either a ∈ pS or −a2 ∈ pS, and a ∈ −pS or −a2 ∈ −pS. This

gives four cases to consider:

(1) a ∈ pS ∩ −pS. Thus, a = ps
1

= −ps
2
, s

1
, s

2
∈ S, whence −a2 = p2s

1
s

2
∈ S, i.e.,

a ∈ I[S]⊆S, contradiction.
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(2) a ∈ pS and a2 ∈ pS. In this case, a = a · a2 ∈ p2S⊆S, contradiction. The case
−a2 ∈ pS, a ∈ −pS is similar.

(3) −a2 ∈ pS ∩ −pS. Then, −a2 = ps
1

= −ps
2
, s

1
, s

2
∈ S, whence −a2 = (−a2)(a2) =

p2s
1
s

2
∈ S, contradiction.

All cases being contradictory proves item (b). Items (a) and (b) together with Id(T )⊆S
show that S is a prime subsemigroup of T . The character h

S
induced by S verifies ∆⊆S =

P (h
S

) and, since a 6∈ S, h
S

(a) = −1, as required. 2

The following separation theorem —proved in [DP1], Thm. 1.6, p. 103— is also a corollary
of the foregoing result; we sketch the proof using I.1.9.

Theorem I.1.10 (Separation theorem for ideals.) Let T be a TS, I be an ideal of T , and
a ∈ T \ I. Then:

(a) There is a TS-character h of T such that hd I = 0 and h(a) 6= 0.

(b) If, in addition, −a · Id(T ) ∩ Id(T ) ⊆ I, then there is a character h so that hd I = 0 and
h(a) = 1.

If I is prime, in both (a) and (b) the character h can be chosen so that h−1[0] = I.

Sketch of proof. (a) Apply Theorem I.1.9 to the subsemigroup ∆ = I ∪ Id(T ). Note that if
x ∈ I[∆], i.e., −x2 ∈ ∆, then either −x2 ∈ Id(T ), i.e., −x2 = x2, and then x = 0 ∈ I ⊆∆, or
−x2 ∈ I, which implies x = (−x)(−x2) ∈ I ⊆∆. This also shows that I[∆]⊆ I. Conversely,
I ⊆ I[∆], for x ∈ I ⇒ − x2 = x(−x) ∈ I ⊆∆ ⇒ x ∈ I[∆]. So, I[∆] = I. Since a 6∈ I, we get
−a2 6∈ ∆. By I.1.9 there is h ∈ X

T
such that ∆⊆P (h) and h(−a2) = −1, whence h(a) 6= 0;

we also have I = I[∆] = ∆ ∩ −∆⊆Z(h).

(b) Here we apply I.1.9 to the subsemigroup ∆ = Id(T ) ∪ a · Id (T ) ∪ I. To check I[∆]⊆∆,
suppose that −x2 ∈ ∆. If −x2 ∈ Id(T ), then −x2 = x2, and hence x = 0 ∈ I ⊆∆. If
−x2 ∈ a · Id(T ), then x2 ∈ −a · Id (T )∩ Id(T ), and x2 ∈ I by assumption, whence x ∈ I ⊆∆.
Finally, if −x2 ∈ I, then x ∈ I ⊆∆.

Note also that −a 6∈ ∆. Otherwise, since a 6∈ I, we either have:

(i) −a ∈ Id(T ), whence −a ∈ −a · Id(T )∩ Id(T )⊆ I, and a ∈ I, absurd, or

(ii) −a ∈ a · Id(T ), i.e., −a = az2, whence −a2 = a2z2 = (−a)2 = a2, and then a = 0 ∈ I,
absurd again.

By I.1.9 there is a character h ∈ X
T

so that ∆⊆P (h) —which yields I ⊆Z(h)—, and
h(−a) = −1, i.e., h(a) = 1. The last assertion is left to the reader. 2

Definition I.1.11 For c ∈ T , let I
c

= {x ∈ T | c2x = x}. 2

It is easily checked that Ic is the ideal of T generated by c (possibly improper).

Theorem I.1.12 (Separation theorem for ternary semigroups.) Let T be a TS and let a, b ∈
T, a 6= b. Then, there is a TS-character h of T so that h(a) 6= h(b). In other words, the set
X
T

of TS-characters separates points (in T ). Equivalently, the evaluation map from T to 3XT

is an injective TS-homomorphism.

Proof. See [DP1], Theorem 1.9, pp. 103–104. 2

Together with Proposition I.1.14 below, Theorem I.1.12 implies a similar separation result
for 3-semigroups; namely:

5



Theorem I.1.13 (Separation theorem for 3-semigroups.) Let ∆ be a 3-semigroup and let
a 6= b be in ∆. Then, there is a 3-semigroup character h : ∆ −→ 3 so that h(a) 6= h(b).
In particular, the set χ(∆) of 3-semigroup characters of ∆ with values in 3 separates points

(in ∆). Equivalently, the evaluation map from ∆ to 3
χ(∆)

is an injective homomorphism of
3-semigroups. 2

Proposition I.1.14 Every 3-semigroup ∆ can be embedded (as a unitary semigroup ) into a
ternary semigroup ∆̂. Hence, the restriction to ∆ of any TS-character of ∆̂ to ∆ is a unitary
semigroup character.

Proof. Adding, if necessary, an absorbent element 0 to ∆, we can assume, without loss of
generality, that ∆ possesses such an element 0 6= 1. Let ∆′ be a set disjoint from ∆, of the
same cardinality as ∆ \ {0}, and let µ be a bijection from ∆ \ {0} onto ∆′. With · denoting
the product in ∆, we endow the set ∆̂ := ∆ ∪∆′ with a product operation ∗ defined by: for

x, y ∈ ∆̂,

(i) x ∗ 0 = 0 ∗ x = 0.

(ii) If x, y ∈ ∆ \ {0}, then x ∗ y = x · y.

(iii) If x ∈ ∆ \ {0} and y ∈ ∆′ with, say, y = µ(δ), δ ∈ ∆ \ {0}, then x ∗ y = µ(x · δ).

(iv) If x, y ∈ ∆′ with, say, x = µ(δ), y = µ(δ′), δ, δ′ ∈ ∆ \ {0}, then x ∗ y = δ · δ′.

Claim. With −1 := µ(1), 〈∆̂, ∗, 0, 1,−1〉 is a ternary semigroup.

Proof of Claim. Verification that ∆̂ is a commutative semigroup with 0 as an absorbent element
is straightforward and left to the reader.

— x ∗ 1 = x for all x ∈ ∆̂.

By (i) and (ii) this is clear if x ∈ ∆. If x ∈ ∆′ and x = µ(δ) with δ ∈ ∆ \ {0}, by (iii) we have
x ∗ 1 = µ(δ · 1) = µ(δ) = x.

— ∆̂ satisfies axiom [TS3] in I.1.1.

1 6= −1 since 1 ∈ ∆\{0},−1 = µ(1) ∈ ∆′ and ∆∩∆′ = ∅. By (iv) we have (−1)∗(−1) = 1·1 = 1.

— x3 = x for all x ∈ ∆̂ (axiom [TS2]).

This is clear if x ∈ ∆. If x ∈ ∆′ with, say, x = µ(δ), δ ∈ ∆, by (iv) we have x2 = x ∗ x = δ2

and, by (iii), x3 = x2 ∗ x = µ(δ2 · δ) = µ(δ3) = µ(δ) = x.

— ∆̂ satisfies axiom [TS5].

We prove the contrapositive. Let x ∈ ∆̂ \ {0}. If x ∈ ∆ \ {0}, since −1 = µ(1), from (iii) we
get −1 ∗ x = µ(1 · x) = µ(x) ∈ ∆′; hence, −1 ∗ x 6= x, as ∆ and ∆′ are disjoint. If x ∈ ∆′ with,
say, x = µ(δ), δ ∈ ∆, from (iv) we get −1 ∗ x = 1 · δ = δ ∈ ∆ and we conclude −1 ∗ x 6= x.

Clearly, ∆̂ extends ∆ as a unitary semigroup. Note that the Claim and Theorem I.1.12
imply Theorem I.1.13. Note also that (iii) implies −1 ∗ δ = µ(δ) for δ ∈ ∆. 2

Remark. The unitary semigroup character 11 sending all of ∆ to 1 cannot be extended to a

TS-character of ∆̂. 2

Omit next Theorem.

Another offshoot of this technique is the following duality-type result (not used in the
sequel).
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Theorem I.1.15 Let T be a TS. Let χ(T ) denote the set of 3-semigroup homomorphisms from
T to 3 (no preservation of 0 or −1 required ). Under pointwise product, χ(T ) is a 3-semigroup.
With the topology induced by the product topology on 3T (discrete topology on 3), χ(T ) is a
compact, Hausdorff topological semigroup. The set C(χ(T )) of continuous semigroup homomor-
phisms from χ(T ) to 3 (no preservation of 1 required ) admits a structure of ternary semigroup,
with the distinguished elements −1, 0, 1 represented by the respective constant functions on χ(T ).
Then, the evaluation map from T into C(χ(T )) is a TS-isomorphism. 2

I.1.16 Reminder. (Spectral spaces)

(a) A spectral space is a T
0
, quasi-compact topological space 2 having a basis of quasi-

compact open sets closed under finite intersections, and such that every closed irreducible set
is the closure of a (necessarily unique) point.

(b) In any spectral space, the binary relation between points defined by:

x y if and only if y ∈ {x} (= closure of {x}),

is a partial order, called the specialization partial order (we say, y specializes x).

(c) If B is a basis of quasi-compact open sets of a spectral space, X, the family {U \V | U, V ∈
B} forms the basis of another topology on X called the constructible topology and denoted
by Xcon. With this topology, X becomes a Boolean space (compact, Hausdorff, totally
disconnected). The closed subsets of Xcon are called proconstructible.

(d) A spectral space X is called hereditarily normal 3 iff for every x ∈ X the set
{y ∈ X | x y} is totally ordered under specialization.

A thorough development of the theory of spectral spaces will appear in [DST]; we adopt here
the notation and terminology used in this monograph. Further references containing basic
information on spectral spaces are [KS], Chapter 3, and [M], §6.3, pp. 111-114.

It is well-known that the real spectrum of a ring is a hereditarily normal spectral space; cf.
[BCR], Prop. 7.1.22, p. 117; this is also the case of abstract real spectra, [M], Prop. 6.4.1, p.
114. 2

I.1.17 Topologies on X
T

= Hom(T,3), T a ternary semigroup.

(a) Let X
T

denote the set of TS-characters of T , a subset of 3T . The set X
T

carries a spectral
topology given by the sets

H(t
1
, . . . , t

n
) =

⋂n

i=1
[[ t
i

= 1 ]] (t
i
∈ T ),

as a basis of quasi-compact opens, where, for t ∈ T and i ∈ {−1, 0, 1}, [[ t = i ]] = {f ∈ X
T
|

f(t) = i}.

Shall we include a proof that this topology is spectral; or leave it as exercise?.

Lemma I.1.18 below gives several algebraic characterizations of the specialization partial
order. Note that the specialization order in an arbitrary ternary semigroup may not be hered-
itarily normal, as shown in Example I.1.20 below.

(b) The associated constructible topology on the set X
T

has as basis of clopens the sets

2 That is, compact in the usual sense but not necessarily Hausdorff.
3 Also called completely normal.
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n⋂
i=1

[[ t
i

= 1 ]] ∩
m⋂
j=1

[[ t′
j

= 0 ]] (t
i
, t′
j
∈ T )

The set X
T

is a closed subset of 3T , endowed with the product topology (discrete topology on
3); further, the latter induces precisely the constructible topology on X

T
(see also [M], §6.3,

pp. 110-112), denoted in the remainder of this text by (X
T

)
con

.

(c) Sets of type [[ t = 1 ]] and [[ t = 0 ]] are sometimes denoted by U(t) and Z(t), respectively;
see, for example, [M], pp. 102-103. We shall use either of these notations. 2

Added Nov. 2011 Warning. Throughout this monograph the default topology on all character
spaces is the spectral topology. Whenever the associated constructible topology is used, the
modifier (.)con will be attached to the name of the space. 2

The next Lemma gives several characterizations of the specialization order in ternary semi-
groups that will be repeatedly used throughout this text.

Lemma I.1.18 Let T be a TS, and let g, h ∈ X
T

. The following are equivalent:

(1) g h (i.e., h is an specialization of g).

(2) h−1[1]⊆ g−1[1] (equivalently, h−1[−1]⊆ g−1[−1]).

(3) g−1[{0, 1}]⊆h−1[{0, 1}].

(4) Z(g)⊆Z(h) and ∀ a ∈ G (a 6∈ Z(h) ⇒ g(a) = h(a)).

(5) h = h2g (equivalently, h2 = hg).

Proof. By definition, in any spectral space we have:

g h iff h ∈ {g} iff for every subbasic open U , h ∈ U ⇒ g ∈ U .

(cf. I.1.16). Since the subbasic opens of X
T

, are the sets {h ∈ X
T
|h(a) = 1} for a ∈ G

(I.1.17), we get at once the equivalence of (1) and (2). By taking complements and replacing
a by −a, (3) is equivalent to (2).

(1)/(3) ⇒ (4). For the first assertion, if g(a) = 0, (3) gives h(a) ∈ {0, 1}, but (2) precludes
h(a) = 1. For the second, (2) gives h(a) = 1⇒ g(a) = 1; if h(a) = −1, just replace a by −a.

(4) ⇒ (5). The identity h = h2g obviously holds if h(a) = 0; if h(a) 6= 0, it follows from the
second assertion in (4) and h2(a) = 1.

(5) ⇒ (2). h = h2g and h(a) = 1 clearly imply g(a) = 1. 2

We also register the following algebraic characterizations of inclusion and equality between
the zero-sets of elements of X

T
.

Lemma I.1.19 Let T be a TS, and let u, g, h ∈ X
T

. Then:

(1) Z(g) = Z(h)⇔ g2 = h2.

(2) Z(g)⊆Z(h)⇔ h2 = h2g2.

(3) If u g, h, then Z(g)⊆Z(h) if and only if g h.

Proof. (1) follows at once from (2).
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(2) The implication (⇐) is trivial, and the reverse implication (⇒) is easily verified: if g(x) 6= 0,
then g2(x) = 1 and the equality holds; if g(x) = 0, then h(x) = 0, and both sides of the equality
are 0.

(3) Obviously u g, h implies Z(u)⊆Z(g), Z(h). The implication (⇐) is clear.

(⇒) Assuming Z(g)⊆Z(h), it suffices to verify the second clause of I.1.18(4). Let a 6∈ Z(h).
Then, a 6∈ Z(g), and the equivalence of items (1) and (4) in I.1.18, together with u g and
u h yields u(a) = g(a) and u(a) = h(a), respectively. Thus, g(a) = h(a), as required. 2

Example I.1.20 Let T = {−1, 0, 1, x
1
, x

2
, x

1
x

2
,−x

1
,−x

2
, −x

1
x

2
} be the ternary semigroup

on two generators x
1
, x

2
, with relations x2

i
= x

i
(i = 1, 2), The specialization order of X

T
is

not hereditarily normal.

Proof. Let g, h
1
, h

2
∈ X

T
be defined on generators by:

g : x
i
7→ 1 (i = 1, 2) ; h

1
:

{
x

1
7→ 0

x
2
7→ 1,

h
2

:

{
x

1
7→ 1

x
2
7→ 0 .

Using the equivalence of (1) and (5) in I.1.18 one easily verifies that g h1 and g h
2
, but

h
1
6 h

2
, h

2
6 h

1
. 2

However, below we show that the character space of a ternary semigroups is normal in the
standard topological meaning of this notion: a topological space is normal if disjoint closed
sets have disjoint open neighborhoods. (Warning. The space is not assumed to be Hausdorff
nor T1.) In the context of spectral spaces, normality admits the following characterization in
terms of the specialization order:

Fact I.1.21 ([DST], Thm. 7.4.5) A spectral space X is normal if and only every element has
a unique specialization maximal in the poset (X,  ); i.e., for all x ∈ X there is a unique
y ∈ Xmax such that x y. 2

Proposition I.1.22 The spectral space XT , T a ternary semigroup (with topology as in
I.1.17 (a)), is normal.

Proof. Using the characterization in I.1.21, assume, towards a contradiction, that there are
g ∈ XT and h1 6= h2 in (XT )max such that g h1, h2.

Check whether refs. to [DP1] in this proof can be replaced by internal refs.

Claim 1. There is t ∈ T such that h1(t) 6= 0 and h2(t) = 0.

Proof of Claim 1. Otherwise, for all t ∈ T, h2(t) = 0⇒h1(t) = 0, i.e., Z(h2)⊆Z(h1). Re-
call (Lemma I.1.18 (4)) that g h2 implies Z(g)⊆Z(h2). Let x 6∈ Z(h1). From g h1 and
I.1.18 (4) we get g(x) = h1(x); likewise, g h2 entails g(x) = h2(x); hence, h1(x) = h2(x). By
I.1.18 (4) again, h2 h1 and, from h2 ∈ (XT )max we get h1 = h2, contradiction. 2

Reversing the roles of h1 and h2 we get an element t′ ∈ T such that h2(t′) 6= 0 and h1(t′) = 0.

Let It = {x ∈ T | t2x = x} be the ideal of T generated by t (cf. [DP1], Def. 1.8, p. 103).
We have t′ 6∈ It; else, t2t′ = t′, whence h2(t′) = h2(t)2h2(t′) = 0, contradiction.

Let I be an ideal of T containing It and maximal for not containing t′; any such ideal is
prime, cf. [DP1], Fact 1.3, p. 101. Let h ∈ 3T be defined by:

hdI = 0 and hd(T \ I) = h1d(T \ I).

Claim 2. h ∈ XT .
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Proof of Claim 2. Clearly, h(i) = i for i ∈ 3. It remains to prove that h(t1t2) = h(t1)h(t2) for
t1, t2 ∈ T . There are two cases:

— t1t2 ∈ I.

Since I is prime, either t1 or t2 is in I. Hence, both terms of the required equality are 0.

— t1t2 6∈ I.

Then, t1, t2 6∈ I, and we have:

h(t1t2) = h1(t1t2) =h1∈XT h1(t1)h1(t2) =ti 6∈I h(t1)h(t2). 2

Further, we have

Claim 3. h1 h.

Proof of Claim 3. We check by cases the equality h = h2h1 in I.1.18 (4). If x ∈ I, the value
of both sides at x is 0. If x 6∈ I, then h(x) = h1(x) and either both these terms are 0, or else
h2(x) = 1; in either case the equality holds. 2

Since h1 ∈ (XT )max, we get h1 = h. But t ∈ I; so, h(t) = 0, while h1(t) 6= 0, contradiction. 2

Remark. Given a TS-homomorphism f : T1−→T2, the dual map f∗ : XT2−→XT1 defined by
f∗(h) := h ◦ f for h ∈ XT2 , is spectral: routine verification shows that, for t1, . . . , tn ∈ T
(n ≥ 1) :

(f∗)−1(H(t1, . . . , tn) = H(f(t1), . . . , f(tn)). 2

The Proposition that follows —a generalization of Lemma I.1.18— gives a structural rela-
tionship between non-negativity, product and specialization of finitely many ternary semigroup
characters at a time.

Proposition I.1.23 Let T be a TS, and let h, h
1
, . . . , h

n
∈ X

T
be TS-characters. The following

are equivalent:

(i)
⋂n
i=1 P (h

i
)⊆P (h);

(ii) There is R⊆{1, . . . , n} of odd cardinality such that h = h2 ·
∏
i∈R hi ;

(iii) There is R⊆{1, . . . , n} of odd cardinality such that (
∏
i∈R hi) h .

Proof. (ii)⇔ (iii) is the equivalence (1)⇔ (5) in Lemma I.1.18 (since card(R) is odd,
∏
i∈R hi ∈

X
T

), and (iii) ⇒ (i) follows from (1) ⇒ (3) in that Lemma.

(i) ⇒ (ii). Induction on n . The case n = 1 is (3) ⇒ (5) in I.1.18. We assume, then, that n ≥ 2
and the implication holds for all k < n. If there is j ∈ {1, . . . n} such that

⋂n
i=1, i 6=j P (h

i
)⊆P (h),

the induction hypothesis applies and the conclusion follows. So, we also assume

(I) For all j ∈ {1, . . . n},
⋂n
i=1, i 6=j P (h

i
) 6⊆ P (h) .

For each j ∈ {1, . . . n} choose an element xj ∈ T such that

(II) h
i
(xj) ≥ 0 for all i ∈ {1, . . . n}, i 6= j, and h(xj) = −1 .

From
⋂n
i=1 P (h

i
)⊆P (h) follows

(III) h
j
(xj) = −1 (j = 1, . . . , n).

Since Z(g) = P (g) ∩ P (−g) (g ∈ X
T

), our assumption implies

(IV)
⋂n
i=1 Z(h

i
)⊆Z(h) .

Since Z(h) is a prime ideal, (IV) entails the existence of m ∈ {1, . . . n} such that Z(h
m

)⊆Z(h)
[otherwise, for each m ∈ {1, . . . n} there is ym ∈ T such that h

m
(ym) = 0 and h(ym) 6= 0;
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setting y :=
∏
m ym we have h(y) 6= 0 (Z(h) prime) but h

m
(y) = 0 for all m, contrary to (IV)].

We set,
R := {j ∈ {1, . . . , n} |Z(h

j
)⊆Z(h)} ( 6= ∅).

If j ∈ {1, . . . , n} \R, then Z(h
j
) 6⊆ Z(h), and there is aj ∈ T such that

(V) h
j
(aj) = 0 and h(aj) 6= 0 (j ∈ {1, . . . , n} \R).

Let a :=
∏
j 6∈R aj and x :=

∏
j∈R xj . Clearly, h(a) 6= 0, whence h(a2) = 1.

Assuming card(R) even, by (II) we have h(x) = 1, whence

(VI) h(a2x) = 1 .

On the other hand we have

(VII) h
j
(a2x) ∈ {0,−1} for j = 1, . . . , n .

In fact, if j 6∈ R, (V) entails h
j
(a) = 0, and hence h

j
(a2x) = 0. If j ∈ R, we have h

j
(x) =∏

k∈R hj(xk) = h
j
(xj) ·

∏
k∈R,k 6=j hj(xk). From (IV) and h(x) = 1 comes h

j
(x) 6= 0, and

then h
j
(xk) 6= 0 which, by (II), yields h

j
(xk) = 1 for k ∈ R \ {j}. Altogether this gives

h
j
(x) = −1 · 1 = −1 for j ∈ R, implying h

j
(a2x) = −h

j
(a2) ∈ {0,−1} for j ∈ R, as asserted.

From (VII) we get −a2x ∈
⋂n
i=1 P (h

i
)⊆P (h), i.e., h(a2x) ≤ 0, contradicting (VI).

Conclusion: card(R) is odd.

Claim. h = h2 ·
∏
j∈R hj .

Proof of Claim. Fix y ∈ T . The equality is clear if h(y) = 0. Assume h(y) = 1 and the
right-hand side 6= 1. From y 6∈ Z(h) we get y 6∈ Z(h

j
) for j ∈ R, and hence

∏
j∈R hj(x) = −1.

Let S := {j ∈ R |h
j
(y) = −1}; then card(S) is odd. Let z := a2y

∏
j∈S xj . Since h(y) =

1, h(a2) = 1, h(xj) = −1 (j ∈ S) (by (II)), and card(S) is odd, we get h(z) = −1.

Let j ∈ {1, . . . , n}. We consider three cases.

(i) j 6∈ R. By (V) we have h
j
(aj) = 0, whence h

j
(a) = 0, and h

j
(z) = 0.

(ii) j ∈ S. Then (invoking (III) for the last equality) we have:

(†) h
j
(
∏
k∈S xk) =

∏
k∈S hj(xk) = h

j
(x
j
) ·
∏
k∈S\{j} hj(xk) = −

∏
k∈S\{j} hj(xk) .

By (II), h
j
(x
k
) ≥ 0 for k ∈ S \ {j}. Since j ∈ R, if h

j
(x
k
) = 0 we would have h(x

k
) = 0,

contradicting (II). So, h
j
(x
k
) = 1 for all k ∈ S \ {j}, whence (from (†)), h

j
(
∏
k∈S xk) = −1.

Since h
j
(y) = −1, we get h

j
(y ·

∏
k∈S xk) = 1, and then h

j
(z) = h

j
(a2) ≥ 0.

(iii) j ∈ R \ S. In this case h
j
(y) = 1 and, since j 6= k for k ∈ S, from (II) we get h

j
(x
k
) = 1

for all k ∈ S, whence h
j
(
∏
k∈S xk) =

∏
k∈S hj(xk) = 1. It follows that h

j
(z) = h

j
(a2) ≥ 0.

In all three cases we have z ∈ P (h
j
), whence z ∈

⋂n
i=1 P (h

i
)⊆P (h), contradicting h(z) =

−1. This proves that the product in the right-hand side of the statement is 1, i.e., the Claim,
whenever h(y) = 1.

If h(y) = −1, replacing y by −y the same argument proves the required equality, showing
that the Claim holds, and completing the proof of the Proposition. 2
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Corollary I.1.24 Let T be a TS, and let h, h
1
, . . . , h

n
∈ X

T
be TS-characters. If

⋂n
i=1 P (h

i
)

⊆P (h), there is a set R⊆{1, . . . , n} of odd cardinality such that
⋂
i∈R Z(h

i
)⊆Z(h). In par-

ticular, Z(h
i
)⊆Z(h) for some i ∈ {1, . . . , n}.

Proof. By the preceding Proposition, h = h2 ·
∏
i∈R hi, which clearly implies the conclusion.

2

Quotients of ternary semigroups. In the remainder of this section we develop a general
theory of quotients in the category of ternary semigroups. Since the class of ternary semigroups
is not an equational class, we define explicitly the notions of congruence and of quotient in this
category.

Definition I.1.25 A congruence of ternary semigroups (abbreviated TS-congruence) is an
equivalence relation ≡ on a TS, G, compatible with the semigroup operation and such that
the induced quotient structure G/≡ is a ternary semigroup. [This is equivalent to require ≡
to be proper, i.e. ≡ ⊂ G×G, and for x ∈ G, x ≡ −x ⇒ x ≡ 0.]

Con(G) denotes the set of all TS-congruences of G. 2

Remarks I.1.26 (a) The condition that ≡ is proper ensures that 1 6≡ 0, and hence, by the
last requirement, 1 6≡ −1.

(b) Since the axioms for TSs are universal, the quotient map π≡ : G −→ G/≡ is automatically
a TS-homomorphism.

(c) For each non-empty set H ⊆ X
G

, the relation

a ≡H b ⇔ For all h ∈ H, h(a) = h(b),

(a, b ∈ G) defines a TS-congruence of G (straightforward checking). We shall write G/H for
the quotient TS G/≡H. 2

Our main theorem I.1.27 below shows that every TS-congruence of a ternary semigroup G
is of the form ≡H for a suitable set H of TS-characters. More precisely, with X

G
endowed

with the constructible topology (cf. I.1.17), let C(G) denote the family of all closed (i.e.,
proconstructible) subsets of X

G
which are also closed under products of any three of its

elements. We have:

Theorem I.1.27 Let G be a ternary semigroup. Then the map µ : C(G) −→ Con(G) defined
by µ(H) := ≡H is an order-isomorphism of the poset C(G) (under inclusion) onto the dual

poset of Con(G). Moreover, the map θ : X
G/H −→ H given by θ(g) = g ◦ π (g ∈ X

G/H)

is well-defined and establishes a homeomorphism between the (spectral ) spaces X
G/H and H

(hence also a homeomorphism between the Boolean spaces (X
G/≡)

con
and Hcon, endowed with

their constructible topologies ).

Proof. (1) µ is injective. Let H
1
,H

2
∈ C(G) be such that µ(H

1
) = µ(H

2
), i.e., ≡H1

= ≡H2
,

and assume, towards a contradiction, that H
1
6= H

2
. Suppose without loss of generality

that H
1
6⊆ H

2
and take h

1
∈ H

1
\H

2
. Since H

2
is closed, recalling the shape of the sets

forming a basis for the constructible topology of X
G

(see I.1.17 above), there are elements
a

1
, . . . , a

n
, b

1
, . . . , b

k
in G such that h

1
∈ U(a

1
) ∩ . . . ∩ U(a

n
) ∩ Z(b

1
) ∩ . . . ∩ Z(b

k
) and

U(a
1
) ∩ . . . ∩ U(a

n
) ∩ Z(b

1
) ∩ . . . ∩ Z(b

k
) ∩H

2
= ∅. Let c =

∏n
i=1 a

2
i
. It is plain that

(*) h
1
∈ U(c a

1
) ∩ . . . ∩ U(c a

n
) ∩ Z(b

1
) ∩ . . . ∩ Z(b

k
) and

U(c a
1
) ∩ . . . ∩ U(c a

n
) ∩ Z(b

1
) ∩ . . . ∩ Z(b

k
) ∩H

2
= ∅.
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First we claim that n 6= 0. Assuming otherwise, we consider the following cases:

Case 1) n = 0 and k = 1. Hence Z(b
1
) ∩ H

2
= ∅, which means b2

1
≡H2

1. From our assumptions

we get b2
1
≡H1

1, contradicting that h
1
(b

1
) = 0.

Case 2) n = 0 and k ≥ 2. Let k be the smallest natural number such that there are elements
b
1
, . . . , b

k
so that h

1
∈ Z(b

1
) ∩ . . . ∩ Z(b

k
) and Z(b

1
) ∩ . . . ∩ Z(b

k
) ∩ H

2
= ∅. Then, Z(b

1
) ∩

. . . ∩ Z(b
k−1

) ∩ H
2
6= ∅ and Z(b

2
) ∩ . . . ∩ Z(b

k
) ∩ H

2
6= ∅, i.e., there are h

2
, h

3
∈ H

2
such

that h
2
(b

1
) = . . . = h

2
(b
k−1

) = 0 and h
3
(b

2
) = . . . = h

3
(b
k
) = 0. Since H

2
is closed under

products of any three elements, h2
2
h

3
∈ H

2
, and since h2

2
h

3
(b
i
) = 0 for 1 ≤ i ≤ k, we get

h2
2
h

3
∈ H

2
∩ Z(b

1
) ∩ . . . ∩ Z(b

k
), contradiction. Hence, n 6= 0.

Suppose that n = 1. We have the following cases:

Case 3) n = 1 and k = 0. Then U(a
1
)∩H

2
= ∅, which implies a

1
≡H2
−a2

1
and hence a

1
≡H1
−a2

1
,

contradicting h
1
(a

1
) = 1.

Case 4) n = 1 and k = 1. Hence U(a
1
) ∩ Z(b

1
) ∩ H

2
= ∅. Since h

1
(a

1
) = 1, h

1
(b

1
) = 0 and

h
1
∈ H

1
, it follows that a2

1
6≡H1

a2
1
b2
1
, and then a2

1
6≡H2

a2
1
b2
1
. Therefore, there is h

2
∈ H

2
such

that h
2
(b

1
) = 0 and h

2
(a

1
) 6= 0. From U(a

1
) ∩ Z(b

1
) ∩ H

2
= ∅ comes h

2
(a

1
) = −1. On the

other hand, by case 3) there is h
3
∈ H

2
such that h

3
(a

1
) = 1. Then, h

3
h2

2
∈ H

2
, h

3
h2

2
(a

1
) = 1

and h
3
h2

2
(b

1
) = 0, absurd, since U(a

1
) ∩ Z(b

1
) ∩H

2
= ∅.

Case 5) n = 1 and k ≥ 2. Let k be the least integer such that there are a
1
, b

1
, . . . , b

k
∈ G

with U(a
1
) ∩ Z(b

1
) ∩ . . . ∩ Z(b

k
) ∩ H

2
= ∅. Then, there are h

2
, h

3
∈ H

2
satisfying h

2
(a

1
) =

h
3
(a

1
) = 1, h

2
(b

1
) = . . . = h

2
(b
k−1

) = 0 and h
3
(b

2
) = . . . = h

3
(b
k
) = 0. It follows that

h2
2
h

3
∈ H

2
∩ U(a

1
) ∩ Z(b

1
) ∩ . . . ∩ Z(b

k
), contradiction.

Thus, we have shown that n > 1. Let n be the smallest natural number such that (*) holds
for some a

1
, . . . , a

n
, b

1
, . . . , b

k
∈ G, k ≥ 0. By minimality of n, for each index i ∈ {1, . . . , n}

there is g
i
∈ H

2
such that g

i
∈ U(c a

1
) ∩ . . . ∩ U(c a

i−1
) ∩ U(c a

i+1
) ∩ . . . ∩ U(c a

n
) ∩ Z(b

1
) ∩

. . . ∩ Z(b
k
). Since g

i
(c) = 1, we get g

i
(a
i
) 6= 0, and since U(c a

1
) ∩ . . . ∩ U(c a

n
) ∩ Z(b

1
) ∩

. . . ∩ Z(b
k
) ∩ H

2
= ∅ we get g

i
(a
i
) = −1. Note also that g

i
(a
j
) = 1 for i 6= j. On the

other hand, since h
1
∈ U(a

1
· a

2
· . . . · a

n
) ∩ Z(b

1
) ∩ . . . ∩ Z(b

k
), from cases 4), 5) we get

U(a
1
· a

2
· . . . · a

n
) ∩Z(b

1
) ∩ . . . ∩ Z(b

k
) ∩ H

2
6= ∅. Let g

n+1
belong to this intersection. In

particular, g
n+1

(a
1
· . . .· a

n
) = 1. Since U(c a

1
) ∩ . . .∩ U(c a

n
) ∩ Z(b

1
) ∩ . . .∩ Z(b

k
) ∩ H

2
= ∅,

we must have g
n+1

(a
i
) = −1 for some index i. It is immediate to see that the set {i ∈

{1, . . . , n} | g
n+1

(a
i
) = −1} has even cardinality; let {i

1
, . . . , i

2k
} be an enumeration of it. Let

g = g
n+1
·
∏2k
j=1 gij

. Since g is the product of an odd number of elements of H
2
, we get

g ∈ H
2
. Clearly g ∈ Z(b

1
) ∩ . . . ∩ Z(b

k
). Let i ∈ {1, . . . , n}. If i 6∈ {i

1
, . . . , i

2k
}, then

g
ij

(a
i
) = 1 for every index j and g

n+1
(a
i
) = 1, implying g(a

i
) = 1. If i = i

j
for some index

j ∈ {1, . . . , 2k}, then g
ij

(a
ij

) = −1, g
i`

(a
ij

) = 1 for ` 6= j, and g
n+1

(a
ij

) = −1. So we conclude

again that g(a
i
) = 1. Therefore g ∈ U(a

1
) ∩ . . . ∩ U(a

n
) ∩ Z(b

1
) ∩ . . . ∩ Z(b

k
) ∩ H

2
and then

g ∈ U(c a
1
) ∩ . . . ∩ U(c a

n
) ∩ Z(b

1
) ∩ . . . ∩ Z(b

k
) ∩ H

2
, a contradiction. These contradictions

show that H
1
⊆ H

2
. A similar argument proves the other inclusion, so H

1
= H

2
, and then µ

is injective.

Remark. The proof above (cf. cases (1), (3) and (4)) also shows that ≡H2
⊆ ≡H1

⇒ H
1
⊆ H

2

(a fact that we will use later).

(2) µ is surjective. Let ≡ be a congruence of G. We define the following subset of X
G

:
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H = {h ∈ X
G
| a ≡ b implies h(a) = h(b) for all a, b ∈ G}.

It is easily checked that H ∈ C(G). We claim that ≡H is identical to ≡. To prove this, let
a, b ∈ G be such that a≡H b and suppose a 6≡ b; then π(a) 6= π(b), where π : G−→G/≡ is the
canonical projection. By the separation theorem for ternary semigroups (I.1.12), there exists
h ∈ X

G/≡ such that h(π(a)) 6= h(π(b)). But h ◦ π ∈ H, contradicting a≡H b. Hence ≡H ⊆≡.

The inclusion ≡ ⊆ ≡H follows at once from the definition of H. Therefore µ is surjective.

It is clear that H ⊆ H′ implies µ(H) ⊇ µ(H′) for H,H′ ∈ C(G). To complete the proof we
must show:

(3) The map θ : X
G/H−→ X

G
given by θ(g) = g◦π is a well-defined homeomorphism between

the spectral spaces X
G/H and H.

(3.i) We first show that g ◦ π ∈ H for every g ∈ X
G/H , and H = Im(θ).

To ease notation we set Ĥ := Im(θ)). Routine argument shows that, for h ∈ H the map
g : X

G/H−→ 3 given by g ◦ π = h is a well-defined TS-character. Hence, H ⊆ Ĥ. It is also

clear that Ĥ is closed under the product of any three of its elements. We claim:

(*) Ĥ is a proconstructible subset of X
G

.

Proof of (*). Let q ∈ C`(Ĥ) (= closure of Ĥ in the constructible topology of X
G

) . Let

g : G/H−→3 be the map g(π(a)) = q(a). To show that g is well-defined assume, towards a
contradiction, that π(a) = π(b), i.e., a≡Hb, but q(a) 6= q(b), for some a, b ∈ G. Then the set

U = {p ∈ X
G
| p(a) 6= p(b)} is a neighborhood of q, and since q ∈ C`(Ĥ) there is r ∈ Ĥ such

that r(a) 6= r(b). Then, there is k ∈ X
G/H such that k ◦ π = r. Since π(a) = π(b), we get

r(a) = r(b), contradiction.

Clearly g is a TS-character, i.e., g ∈ X
G/H. It follows that q ∈ Ĥ, proving C`(Ĥ) = Ĥ, as

asserted. In particular, we have Ĥ ∈ C(G).

Next we observe:

(**) ≡H = ≡Ĥ.

The inclusion ⊇ is clear from H⊆Ĥ. Conversely, if a≡H b, then π(a) = π(b), and g(π(a)) =

g(π(b)) for all g ∈ X
G/H. By the definition of Ĥ this proves a≡Ĥ b, as required.

In other words, (**) proves µ(H) = µ(Ĥ). Since µ is injective, we conclude H = Ĥ, i.e.,
H = Im(θ), proving (3.i). By its own definition it is quite clear that θ is injective.

(3.ii) θ is a homeomorphism between X
G/H and H (spectral topologies).

Taking into account the shape of the basic opens for the spectral topologies of X
G/H and H (cf.

I.1.17), this is an immediate consequence of the following identities which are checked without
difficulty: for a ∈ G,

(***) θ−1[U(a) ∩ H] = U(π(a)), θ[U(π(a))] = U(a) ∩ H .

Thus, θ and θ−1 are injective spectral maps, i.e., θ is a spectral isomorphism. Since the
equalities (***) hold as well with U replaced by Z, the map θ is also a homeomorphism for the
corresponding constructible topologies. 2

Next we shall give a different characterization of congruences of ternary semigroups. We
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will show that every such congruence in G, say, arises from a congruence in the subsemigroup
Id(G) of idempotents of G —an equational class—, together with another subsemigroup of G,
satifying some mild compatibility conditions (and conversely). We shall first deal briefly with
congruences in the algebraic structures corresponding to the set Id(G).

Definition I.1.28 A 2-semigroup is a structure (G, · , 1, 0) with individual constants 0, 1,
and a binary operation “ ·” such that:

[2S.1] (G, · , 1) is a commutative semigroup with unit 1.

[2S.2] x2 = x for all x ∈ G.

[2S.3] x · 0 = 0 for all x ∈ G.

Remarks I.1.29 (i) Scaling the identity [2S.2] by x yields that a 2-semigroup is automatically
a 3-semigroup. If G is a ternary semigroup, the set Id(G) of idempotents of G is a 2-semigroup
with the induced multiplication. The set −Id(G) is also a 2-semigroup under the operation
x� y = −(x · y), with constants −1 and 0.

(ii) The class of 2-semigroups is clearly an equational class. Moreover, 2-semigroups are in
essence the same thing as bounded join-semilattices. Indeed, if G is a 2-semigroup, it is
obvious that the binary relation:

a ≤ b if and only if b = ab, (a, b ∈ G)

is a partial order which makes G into a bounded join-semilattice, where join is product, 1 is
the first element, and 0 is the last element. Conversely, if L is a bounded join-semilattice with
first element ⊥ and last element >, then L is a 2-semigroup where the product of two elements
a, b is the join a ∨ b, the unit is ⊥, and the absorbent element 0 is >. 2

We denote by 2 = {0, 1} the 2-semigroup with two elements and by Hom(G,2) the set of
all 2-semigroup homomorphisms of G into 2 (also called characters). Note that an ideal of
a 2-semigroup contains 0 (cf. I.1.4). A standard argument shows that the prime ideals of a
2-semigroup are exactly the kernels of its characters. Further, the characters of a 2-semigroup
separate points:

Proposition I.1.30 Let G be a 2-semigroup and let a, b ∈ G. If a 6= b, there exists h ∈
Hom (G,2) such that h(a) 6= h(b).

Proof. If a 6= b, then either a 6= ab or b 6= ab. Suppose, without loss of generality, that
a 6= ab. Then a 6∈ I

b
, where I

b
= {bx |x ∈ G} is the ideal generated by b: for if a = bx for

some x ∈ G, then ab = b2x = bx = a, contradiction. By Zorn’s lemma pick an ideal I of G
containing I

b
, maximal for a 6∈ I. I is prime, for if xy ∈ I but x 6∈ I, then a ∈ I[x], where

I[x] = I ∪ {xz | z ∈ G} is the ideal generated by I ∪ {x}. Hence a = xz for some z ∈ G.
Likewise, if y 6∈ I, then a = yw for some w ∈ G. It follows that a = a2 = xywz, and the
assumption xy ∈ I yields a ∈ I, contradiction. The map into 2 with kernel I is the desired
character. 2

The congruences of 2-semigroups admit a characterization similar to that of Theorem I.1.27.
The arguments are about the same, replacing “3” by “2” everywhere. Let G be a 2-semigroup.
With notation as in I.1.27, Hom(G,2) is a closed subset of 2G (product of discrete topology
in 2). Note also that, under pointwise defined product, Hom(G,2) is a subsemigroup of 2G.
For H⊆ Hom(G,2) define an equivalence relation ≡H on G exactly as in I.1.26 (c). Con(G)
denotes the set of congruences of G. Then we have:
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Theorem I.1.31 Let G be a 2-semigroup. Then,

(i) For each subset H of Hom (G,2), the relation ≡H is a congruence of G.

(ii) If C(G) denotes the poset (under inclusion) of all closed subsets of Hom (G,2) that are
closed under product, then the map µ : C(G)−→Con(G) given by µ(H) = ≡H is an order
isomorphism between C(G) and the dual poset of Con(G).

Remarks and notation. Notation will be as in I.1.17 and Theorem I.1.27. Since 2-semigroup
characters are 2-valued, we have U(a)c = Z(a) for a ∈ G. Note also that U(a)∩U(b) = U(ab);
hence the sets U(a) ∩ Z(b

1
) ∩ . . . ∩ Z(b

k
), a, b

1
, . . . , b

k
∈ G (k ≥ 0), form a basis for the

constructible topology of Hom(G,2).

Sketch of proof. (i) is immediate. To prove (ii), let H
1
,H

2
be sets in C(G) such that

µ(H
1
) = µ(H

2
). Assuming, as in I.1.27, that H

1
6= H

2
and letting h

1
∈ H

1
\H

2
, since H

2
is

closed, there are a, b
1
, . . . , b

k
∈ G such that

(*) h
1
∈ U(a) ∩ Z(b

1
) ∩ . . . ∩ Z(b

k
) and U(a) ∩ Z(b

1
) ∩ . . . ∩ Z(b

k
) ∩H

2
= ∅.

If U(a) ∩ H
2

= ∅, we get a≡H2
0, whence a≡H1

0, contrary to h
1
∈ U(a). So U(a) ∩ H

2
6= ∅,

implying k ≥ 1. Taking k minimal so that (*) holds, we observe that k > 1.

Indeed, if k = 1, i.e., U(a) ∩ Z(b
1
) ∩ H

2
= ∅, we claim that a≡H2

ab
1
. In fact, h(a) = 1

and h(b
1
) = 0 for some h ∈ H

2
, would imply h ∈ U(a) ∩ Z(b

1
) ∩ H

2
, contradiction; hence,

h(a) = h(ab
1
) for all h ∈ H

2
, yielding the asserted congruence. From the assumption ≡H1

=

≡H2
follows, then, a≡H1

ab
1
, and hence h

1
(a) = h

1
(ab

1
), contradicting that h

1
(a) = 1 and

h
1
(b

1
) = 0 (cf. (*)).

By minimality of k there are g
1
, . . . , g

k
∈ H

2
so that for 1 ≤ i, j ≤ k, g

i
(a) = g

i
(b
i
) = 1

and g
i
(b
j
) = 0 whenever i 6= j. Since H

2
is closed under product, g := g

1
g

2
. . . g

k
∈ H

2
. On

the other hand it is obvious that g ∈ U(a)∩Z(b
1
)∩ . . .∩Z(b

k
), contradicting (*). This shows

that H
1
⊆ H

2
, and by symmetry we also get H

2
⊆ H

1
, proving that µ is injective.

Note that we have shown ≡H1
⊆ ≡H2

⇒ H
1
⊆ H

2
.

To show that µ is surjective, let ≡ ∈ Con(G) and let π : G−→G/≡ be the quotient map.
Setting H = {h ∈ Hom(G,2) | a ≡ b implies h(a) = h(b) for all a, b ∈ G}, we get H ∈ C(G)
and ≡ ⊆≡H. If a 6≡ b, then π(a) 6= π(b), and by Proposition I.1.30 there is ĥ ∈Hom(G/≡,2)

so that ĥ(π(a)) 6= ĥ(π(b)). Since ĥ ◦ π ∈ H, it follows that a 6≡
H
b and then ≡= ≡

H
, as

required. The remaining assertions are left as an easy exercise. 2

Let G be a ternary semigroup and let ≡ be a congruence of G. It is clear that the restriction
≡
Id(G)

of ≡ to Id(G) is a congruence of 2-semigroups. Further, it is easy to check that the

set ∆≡ = {x ∈ G |x ≡ x2} is a subsemigroup of G verifying:

(i) Id(G) ⊆ ∆≡ .

(ii) If a2b ∈ ∆≡ and a2≡
Id(G)

b2, then b ∈ ∆≡ .

(iii) For all x ∈ G, −x2 ∈ ∆≡ if and only if x2≡
Id(G)

0 .

Using that in every ternary semigroup H, a = b⇔ a2 = b2 and ab ∈ Id(H), it follows that
the correspondence assigning to every congruence ≡ of G the pair (≡

Id(G)
,∆≡) is one–one.

Conversely, if ∼ is a congruence of 2-semigroups on Id(G) and ∆ is a subsemigroup of G
satisfying conditions (i)–(iii) above (with ≡

Id(G)
replaced by ∼, and ∆≡ by ∆), the binary
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relation ≡ in G defined by

a ≡ b if and only if a2 ∼ b2 and ab ∈ ∆,

is a TS-congruence of G. Indeed, condition (i) implies that ≡ is reflexive, and this relation is
obviously symmetric. Suppose that a ≡ b and b ≡ c, with a, b, c ∈ G. Since ∼ is transitive,
it follows that a2 ∼ c2. On the other hand, ab ∈ ∆ and bc ∈ ∆ imply that b2ac ∈ ∆. From
b2 ∼ a2 and b2 ∼ c2 we obtain b2 ∼ a2c2 and, by condition (ii), we conclude that ac ∈ ∆;
this shows that ≡ is transitive and hence an equivalence relation. A straightforward argument
shows that ≡ is compatible with the semigroup operation. Finally, suppose that a ≡ −a.
Then, −a2 ∈ ∆, and from condition (iii) we have a2 ∼ 0, and hence a2 ≡ 0. Scaling by a we
obtain a ≡ 0. Thus, we have shown that ≡ is a TS-congruence. Further, Id(G) ⊆ ∆, implies
that the restriction of ≡ to Id(G) is ∼. We also have ∆≡ = ∆. To see this, let x ∈ ∆≡. Hence

x ≡ x2, and by the definition of ≡ we get x = xx2 ∈ ∆. So ∆≡ ⊆ ∆. The reverse inclusion is
obvious. We have shown:

Proposition I.1.32 There is a bijective correspondence between the set of TS-congruences of
a ternary semigroup G and the set of pairs (∼,∆) consisting of a congruence ∼ of 2-semigroups
on Id(G) and a subsemigroup ∆ of G satisfying conditions (i)− (iii) above. 2

We will call compatible the members of a pair (∼,∆) satisfying conditions (i)–(iii) above.

Remark I.1.33 Given a ternary semigroup G and a congruence ∼ of 2-semigroups in Id(G),
there is always a subsemigroup ∆ of G compatible with ∼ . Let ∆ = Id(G) ∪ {−a2 | a2 ∼ 0}.
Obviously ∆ verifies condition (i) and it is easily checked that ∆ is a subsemigroup of G; ∆
also verifies (iii). Indeed, if −x2 ∈ ∆, either −x2 ∈ Id(G), whence −x2 = x2 and then x2 = 0,
or −x2 = −a2 with a2 ∼ 0, and then x2 ∼ 0; in both cases we have x2 ∼ 0. Conversely, by
the definition of ∆, x2 ∼ 0⇒ − x2 ∈ ∆. Let

∆ = {x ∈ G | There is y ∈ G such that y2x ∈ ∆ and x2 ∼ y2}.

Clearly ∆ is a subsemigroup of G containing ∆. We claim that ∆ is compatible with ∼ . Since
Id(G)⊆∆⊆∆, ∆ satisfies condition (i). To check condition (ii), let x, y ∈ G be such that
x2y ∈ ∆ and x2 ∼ y2. Then, there is z ∈ G such that z2x2y ∈ ∆ and z2 ∼ (x2y)2 = x2y2.
Since x2 ∼ y2, it follows that z2x2 ∼ x2y2 ∼ y2, whence y ∈ ∆. Finally, to verify condition
(iii), let −x2 ∈ ∆. Then, there exists y ∈ G such that y2 ∼ (−x2)2 = x2 and −x2y2 ∈ ∆. Since
∆ satisfies condition (iii) we obtain x2y2 ∼ 0; from x2 ∼ y2 we conclude x2 ∼ 0. Conversely,
x2 ∼ 0, implies −x2 ∈ ∆⊆∆.

This argument shows, in fact, that for any subsemigroup ∆ of a ternary semigroup G
satisfying conditions (i) and (iii), the subsemigroup ∆ defined above is compatible with every
congruence of 2-semigroups on Id(G). 2

The examples of quotients of ternary semigroups that follow will appear time and again in
the rest of this monograph.

Examples I.1.34 (1) Let G be a ternary semigroup and let I ⊆ G be a prime ideal of G. We
associate to I the set of characters:

X
I

= {h ∈ X
G
|Z(h) = I}.

Straightforward verification shows that X
I

is a proconstructible subset of X
G

and is closed
under the product of any three of its members. We write ≡

I
for ≡

XI
, and denote by G/I the

quotient of G by the congruence ≡
I
.

17



Claim. For a, b ∈ G, a≡
I
b if and only if either (i) a, b ∈ I, or (ii) a, b 6∈ I and there is

x ∈ G\I such that ax = bx.

Proof of Claim. (⇐) If a, b ∈ I, then h(a) = h(b) = 0 for all h ∈ X
I
, whence a≡

I
b. If ax = bx

with a, b, x ∈ G\I, then h(a)h(x) = h(b)h(x) for all h ∈ X
I

and, since h(x) 6= 0, we get
h(a) = h(b); again we have a≡

I
b.

(⇒) Assume a≡
I
b. Clearly, a ∈ I ⇔ b ∈ I. Suppose, by contradiction, that a, b 6∈ I but

{x ∈ G | ax = bx} ⊆ I. Let ∆ = Id(G) ∪ I ∪ (−ab)·Id(G). It is easy to check that ∆ is a
subsemigroup of G. Let x ∈ ∆ ∩ −∆. Then −x2 ∈ ∆. Clearly, −x2 ∈ Id(G) ∪ I implies x ∈ I.
If −x2 = −abz2 for some z ∈ G, then x2 = abz2. Scaling by x2z2 we obtain

(∗) x2z2 = a b x2z2.

Hence a2x2z2 = a2(abx2z2) = abx2z2 = x2z2. Scaling (∗) by a we have ax2z2 = ba2x2z2 =
bx2z2. Therefore, a(x2z2) = b(x2z2) and, by our assumption, x2z2 ∈ I. Since I is prime, either
x2 ∈ I or z2 ∈ I and, since x2 = abz2, in both cases we come to x2 ∈ I, and hence x ∈ I. Thus,
∆ ∩ −∆ ⊆ I, and hence ∆ ∩ −∆ = I. By Lemma I.1.7 any subsemigroup S of G containing
∆ and maximal for S ∩ −S = I determines a character h ∈ X

G
such that ∆ ⊆ P (h) and

Z(h) = I. In particular, h(−ab) = 1 because ab 6∈ I, and then h(a) 6= h(b), contradicting a≡
I
b

and proving the claim. 2

An important remark is that (G/I)\{π
I
(0)} is a group of exponent 2, where π

I
: G−→G/I

is the canonical projection. In fact, since x≡
I

0 ⇔ x ∈ I, for x 6∈ I and h ∈ X
I

we have

h(x) 6= 0, and then h(x2) = 1. Therefore x2≡
I

1. As a corollary we obtain that every ternary
semigroup is embeddable in a direct product (in fact, a subdirect product) of ternary semigroups
of the form G ∪ {0}, where G is a group of exponent 2.

Corollary I.1.35 Let G be a ternary semigroup and let P(G) be the set of all prime ideals of
G. Then the map µ : G →

∏
I∈P(G)G/I defined by µ(a) = 〈π

I
(a) | I ∈ P(G) 〉, for a ∈ G, is

an injective homomorphism of ternary semigroups.

Proof. It is clear that µ is a TS-homomorphism. To show µ injective, let a, b ∈ G be such
that a 6= b. If a2 6= b2, there exists h ∈ X

G
such that h(a2) 6= h(b2) (I.1.12). Assume, without

loss of generality, h(a2) = 0 and h(b2) = 1, and let I = Z(h). Clearly I ∈ P(G), a ∈ I and
b 6∈ I; hence µ(a)

I
= 0 and µ(b)

I
6= 0. If a2 = b2, then a 6= b implies ab 6∈ Id(G). Then, there

exists f ∈ X
G

such that f(ab) = −1 (Theorem I.1.9), and hence f(a) 6= f(b). With J = Z(f),
we thus have π

J
(a) 6= π

J
(b), showing that µ(a)

J
6= µ(b)

J
, as required. 2

(2) Let G be a ternary semigroup and let I be an ideal of G (not necessarily prime). We
associate to I the set of characters:

X(I) = {h ∈ X
G
| I ⊆ Z(h)}.

Again, X(I) is a closed subset of X
G

, and h
1
h

2
h

3
∈ X(I) whenever one of h

1
, h

2
or h

3
is in

X(I); in particular, X(I) is closed under the product of three elements.

Claim. a≡
X(I)

b if and only either (i) a, b ∈ I or (ii) a, b 6∈ I and a = b.

Proof of Claim. The implication (⇐) is obvious.

(⇒) Suppose that a ≡
X(I)

b, and let ∆ = I ∪ Id(G). It is plain that ∆ is a subsemigroup

of G satisfying I = ∆ ∩ −∆; further, I[∆]⊆∆, as it is easily verified (cf. I.1.8). Assume
ab 6∈ ∆. By the separation theorem I.1.9 there is a character h ∈ X

G
such that h(ab) = −1 and

∆ ⊆ P (h). Since I = ∆∩−∆, we have I ⊆ Z(h), and hence h ∈ X(I). Therefore h(a) = h(b),
contradicting h(ab) = −1. So ab ∈ I ∪ Id(G).
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Direct application of Theorem I.1.10 (a) shows that a belongs to the ideal I ∪ b·G generated
by I and b, and that b belongs to the ideal I ∪ a · G. Together, these conditions imply that
a ∈ I ⇔ b ∈ I, and show that if one of a, b is not in I, then a2 = b2 [in fact, a = bx and b = ay
imply ba2 = b b2x2 = bx2 and ab2 = ay2; squaring these equalities gives a2b2 = b2x2 = a2 and
a2b2 = a2y2 = b2].

If a, b 6∈ I, then a ∈ bG and b ∈ aG, whence a2, b2 ∈ abG, which implies ab 6∈ I. Hence ab ∈
Id(G). But in any TS, a2 = b2 and ab ∈ Id(G) are equivalent to a = b, proving (ii). 2

(3) Let G be a ternary semigroup and let ∆ be a subsemigroup of G. Let us consider the
following set of characters:

H
∆

= {h ∈ X
G
|∆ ⊆ P (h)}.

It is easy to verify that H
∆

is a closed subset of X
G

and is closed under the product of any
three of its members. We write ≡

∆
for ≡H∆

, and denote by G/∆ the corresponding quotient
set.

Claim. For a, b ∈ G, a≡
∆
b if and only if either (i) − a2,−b2 ∈ ∆, or (ii) − a2,−b2 6∈ ∆,

a2 = b2, and ab ∈ ∆.

Proof of Claim. The implication (⇐) is easy.

(⇒) Assume a≡
∆
b. Let us first see that −a2 ∈ ∆⇔− b2 ∈ ∆. Otherwise, say, −a2 ∈ ∆ and

−b2 6∈ ∆. Observing that −b2 6∈ ∆ implies −b2 6∈ ∆ ∪ I[∆] (= Γ, say), we have I[Γ]⊆Γ, and
the separation theorem I.1.9 can be applied, yielding a character h ∈ X

G
such that ∆⊆Γ ⊆

P (h) and h(−b2) = −1, which means h(b) 6= 0. Since −a2 ∈ ∆, we have h(−a2) ≥ 0, and then
h(a) = 0. Since h ∈ H

∆
, it follows that a 6≡

∆
b, contradiction.

Suppose now that −a2,−b2 6∈ ∆. If a2 6= b2, there exists g ∈ X
G

such that, say, g(a) 6= 0
and g(b) = 0 (see I.1.12; the case g(a) = 0 and g(b) 6= 0 is similar). As in the preceding
paragraph, −a2 6∈ ∆ implies the existence of a character h ∈ X

G
such that ∆ ⊆ P (h) and

h(a) 6= 0 (I.1.9). Then h ∈ H
∆

, and it is clear that g2h also lies in H
∆

. Since a≡
∆
b,

then g2h(a) = g2h(b), contradicting g2h(a) 6= 0 and g2h(b) = 0; hence, a2 = b2. Finally,
assume ab 6∈ ∆; if ab ∈ I[∆], i.e., −a2b2 ∈ ∆, from a2 = b2 we get −b2 ∈ ∆, contrary to
assumption. Thus, ab 6∈ ∆ ∪ I[∆] (= Γ, say); since I[Γ]⊆Γ (cf. I.1.8), theorem I.1.9 yields a
character h ∈ X

G
such that ∆⊆ Γ ⊆ P (h) and h(ab) = −1, whence h ∈ H∆ and h(a) 6= h(b),

contradicting a≡
∆
b. This proves ab ∈ ∆, and hence item (ii) of the Claim. 2

I.2 Real semigroups

In this section we introduce the notion of real semigroup, the central notion in this monograph.
To this end we enrich the language {· , 1, 0,−1} of ternary semigroups with a ternary relation
D. The resulting language, {· , D, 0, 1,−1}, will be denoted L

RS
.

In agreement with standard notation (cf. [M], p. 99 ff.), we shall write a ∈ D(b, c) instead
of D(a, b, c). We also set:

[t-rep] a ∈ Dt(b, c)⇔ a ∈ D(b, c) ∧ −b ∈ D(−a, c) ∧ −c ∈ D(b,−a).

The relations D and Dt are called representation and transversal representation, respec-
tively.

Definition I.2.1 A real semigroup (abbreviated RS) is a ternary semigroup together with
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a ternary relation D satisfying the following axioms:

[RS0] c ∈ D(a, b) if and only if c ∈ D(b, a).

[RS1] a ∈ D(a, b).

[RS2] a ∈ D(b, c) implies ad ∈ D(bd, cd).

[RS3] (Strong associativity ) If a ∈ Dt(b, c) and c ∈ Dt(d, e), then there exists x ∈ Dt(b, d) such
that a ∈ Dt(x, e).

[RS4] e ∈ D(c2a, d2b) implies e ∈ D(a, b).

[RS5] If ad = bd, ae = be, and c ∈ D(d, e), then ac = bc.

[RS6] c ∈ D(a, b) implies c ∈ Dt(c2a, c2b).

[RS7] (Reduction ) Dt(a,−b) ∩Dt(b,−a) 6= ∅ implies a = b.

[RS8] a ∈ D(b, c) implies a2 ∈ D(b2, c2). 2

I.2.2 Remarks and examples. (1) The axioms for RSs will insure the validity of the Duality
Theorem I.5.1 below.

(2) The ternary semigroup G
A

of I.1.2(e) endowed with the representation and transversal
representation relations given by:

[R] c ∈ D
A

(a, b)⇔ ∀α ∈ Sper (A) [c(α) = 0 ∨ a(α)c(α) = 1 ∨ b(α)c(α) = 1],

[TR] c ∈ Dt
A

(a, b)⇔ ∀α ∈ Sper(A)[(c(α) = 0 ∧ a(α) = −b(α)) ∨ a(α)c(α) = 1 ∨ b(α)c(α) = 1].

for a, b, c ∈ A, is a real semigroup. A similar definition with SpecR(A) replaced by SpecR(A, T )
—T a proper preorder of A— also endows the ternary semigroup G

A,T
, defined in I.1.2 (e),

with a structure of real semigroup; see also [M], p. 92.

(3) The notion of a RS generalizes that of a reduced special group, [DM1]. We have already
remarked that, adding an absorbent element 0 to a RSG, G, gives raise to a ternary semigroup
G∗ = G ∪ {0} (see I.1.2 (d)). Extending the representation relation of G to G∗ by

D
G∗

(a, b) =

{
{a, b} if a = 0 or b = 0
D
G

(a, b) ∪ {0} if a, b ∈ G,

gives a representation relation verifying the axioms for RSs, as shown by straightforward check-
ing. Since in an RSG we have:

a ∈ D(b, c) ⇒ −b ∈ D(−a, c),

(see [DM1], pp. 2, 3) it follows from (†) above that the value sets D and Dt coincide on
binary forms with entries in G. If one of the entries is 0 we have D

G∗
(0, b) = {0, b} and, from

I.2.3(11),(14) below, Dt
G∗

(0, b) = {b}. Real semigroups obtained by adding a zero to a reduced
special group will repeatedly occur in this text; we will call them quasi reduced special
groups (abbreviated quasi-RSG or QRSG). 2

The next Proposition summarizes some consequences of the axioms [RS0]–[RS8] concerning
binary representation and transversal representation frequently used in the sequel:

Proposition I.2.3 The properties below hold in any RS, G, for arbitrary a, b, c, d, e, x, y ∈ G:

(0) a ∈ Dt(b, c)⇒ −b ∈ Dt(−a, c). (1) 0 ∈ D(a, b).
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(2) a ∈ Dt(b, c)⇒ ad ∈ Dt(bd, cd). (3) a ∈ D(0, 1) ∪D(1, 1)⇒ a = a2.

(4) d ∈ D(ca, cb)⇒ d = c2d.

(5) a2 ∈ D(1, b). Hence (by (3)), Id(G) = D(1, 1).

(6) a ∈ Dt(b, b)⇔ a = b. (7) a ∈ D(0, 0)⇔ a = 0. (8) 1 ∈ Dt(1, a).

(9) Dt(1,−1) = G. (10) ab ∈ D(1,−a2). (11) 0 ∈ Dt(a, b)⇔ a = −b.

(12) a ∈ D(b, c) ∧ b, c ∈ D(x, y)⇒ a ∈ D(x, y).

(13) a ∈ D(b, c)⇔ ab ∈ D(1, bc) ∧ ac ∈ D(1, bc) ∧ a2 ∈ D(b2, c2).

(14) Dt(a, b) 6= ∅.

(15) (Weak associativity) a ∈ D(b, c) ∧ c ∈ D(d, e)⇒ ∃x[x ∈ D(b, d) ∧ a ∈ D(x, e)].

NOTE. Add (numbering?)

D(a,−a) = a2 ·G.

a ∈ Dt(b, c)⇔ a2 ∈ D(b2, c2)∧ ab ∈ Dt(b2, bc)∧ ac ∈ Dt(c2, bc) .

Proof. See [DP1], Proposition 2.3, pp. 107–109. 2

Remarks and Notation I.2.4 In [M], Prop. 6.1.1, p. 100, and Thm. 6.2.4, pp. 107-108,
Marshall proves, in the context of abstract real spectra, that items (14) and (15) of the preceding
Proposition together are equivalent to the strong associativity axiom [RS3]. His proof remains
valid in the present context of real semigroups. These statements will be used separately in
several parts of this text. Paraphrasing the terminology used in [M], Ch. 6, pp. 99-100 we will
use the name [RS3a] for weak associativity (item (15)), and [RS3b] for item (14). 2

Corollary I.2.5 The ternary semigroup 3 = {1, 0,−1} has a unique structure of real semi-
group, with representation given by:

D
3
(0, 0) = {0}; D

3
(0, 1) = D

3
(1, 0) = D

3
(1, 1) = {0, 1};

D
3
(0,−1) = D

3
(−1, 0) = D

3
(−1,−1) = {0,−1}; D

3
(1,−1) = D

3
(−1, 1) = 3;

and transversal representation given by:

Dt
3
(0, 0) = {0}; Dt

3
(0, 1) = Dt

3
(1, 0) = Dt

3
(1, 1) = {1};

Dt
3
(0,−1) = Dt

3
(−1, 0) = Dt

3
(−1,−1) = {−1}; Dt

3
(1,−1) = Dt

3
(−1, 1) = 3. 2

Proof. See [DP1], Corollary 2.4, p. 109. 2

Another consequence of Proposition I.2.3 is the following converse to Remark I.2.2(3), which
amounts to a characterization of the reduced special groups amongst the real semigroups.

Corollary I.2.6 Let G be a RS in which the representation and transversal representation
relations coincide, up to 0, on non-zero entries, i.e., for all a, b ∈ G \ {0}, D

G
(a, b) = Dt

G
(a, b)

if a = −b, and Dt
G

(a, b) = D
G

(a, b) \ {0} if a 6= −b . Then,

∀x ∈ G (x 6= 0 ⇒ x2 = 1).

Hence, G = G \ {0} with representation induced by that of G is a reduced special group (and,
of course, G

∗
= G).

Proof. See [DP1], Corollary 2.5, pp. 109–110. 2
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I.2.7 Notation. We shall use, among others, the basic concepts and notation from quadratic
form theory as introduced in [M], Ch. 6 (cf. p. 105); these apply verbatim in our context. We
explicitly mention the following:

(a) Representation by forms of dimension n ≥ 3 is inductively defined by:

D(〈a
1
, . . . , an〉) =

⋃
{D(a

1
, b) | b ∈ D(〈a

2
, . . . , a

n
〉)},

and similarly for transversal representation (for n = 1, D(〈a〉) = {b2a | b ∈ G}, Dt(〈a〉) = {a}).

(b) A Pfister form (of degree n) over an RS, G, is a form of the shape
⊗n

i=1〈 1, ai 〉, with
the a

i
’s elements of G; Pfister forms as above will, as usual, be denoted 〈〈 a

1
, . . . , a

n
〉〉.

(c) We shall use a suitable version of Witt-equivalence: if ϕ = 〈 a
1
, . . . , a

n
〉, ψ = 〈 b

1
, . . . , b

m
〉,

are forms over a Rs, G (possibly of different dimensions), we set:

ϕ∼=
G
ψ ⇔ For all h ∈ X

G
,

n∑
i=1

h(a
i
) =

m∑
j=1

h(b
j
) (sum in Z).

(d) For forms ϕ,ψ over a RS, G, we set:

ϕ ∼ ψ ⇔ D
G

(ϕ) = D
G

(ψ) and ϕ ∼tψ ⇔ Dt
G

(ϕ) = Dt
G

(ψ).

(with a subscript G, if necessary). 2

The following result states some of the basic properties of representation and transversal
representation by forms of arbitrary dimension needed in the sequel. Most (if not all) of these
results appear in Chapter 6 of [M], where they are derived from the axioms for ARSs. The
point of the proof given in [DP1] is to make sure that these properties follow from the axioms
[RS0]–[RS8] for RSs, as they will frequently be used throughout this monograph.

Proposition I.2.8 Let G be a RS and let ϕ,ψ be forms with entries in G. Then:

(1) D(ϕ) and Dt(ϕ) do not depend on the order of the entries of ϕ, i.e., for any permutation
σ of those entries, ϕ ∼ ϕσ and ϕ ∼tϕσ.

(2) For a, c ∈ G,

a ∈ D(ϕ) ⇒ ac ∈ D(cϕ) and a ∈ Dt(ϕ) ⇒ ac ∈ Dt(cϕ).

(3) a ∈ D(cϕ) ⇒ a = c2a and a ∈ D(ϕ) ⇒ a ∈ Dt(a2ϕ).

(4) If ϕ = 〈a
1
, . . . , an〉 and c1, . . . , cn ∈ G, then D(〈c 2

1 a1, . . . , c
2
nan〉) ⊆ D(ϕ).

(5) a ∈ D(ϕ⊕ ψ) ⇔ There are b ∈ D(ϕ), c ∈ D(ψ) such that a ∈ D(b, c).

A similar statement holds replacing D by Dt.

(6) If a is a coefficient of ϕ, then a ∈ D(ϕ).

(7) The relations ∼ and ∼t are compatible with the sum of forms:

ϕ
1
∼ ψ

1
and ϕ

2
∼ ψ

2
⇒ ϕ

1
⊕ ϕ

2
∼ ψ

1
⊕ ψ

2
,

and similarly for ∼t.

(8) ϕ⊕ ϕ ∼ ϕ and ϕ⊕ ϕ ∼t ϕ.

(9) a ∈ D(ϕ) ∧ b ∈ D(ψ) ⇒ ab ∈ D(ϕ⊗ ψ).

A similar statement holds replacing D by Dt.
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(10) a ∈ Dt(〈a
1
, . . . , an〉) ⇔

a ∈ D(〈a
1
, . . . , an〉) and − ai ∈ D(〈a

1
, . . . , a

i−1
,−a, a

i+1
, . . . , an〉) for i = 1, . . . , n ⇔

−ai ∈ Dt(〈a
1
, . . . , a

i−1
,−a, a

i+1
, . . . , an〉) for i = 1, . . . , n.

(11) For b ∈ G and n ≥ 1, n〈b〉 = 〈b, . . . , b〉 ∼t〈b〉.

Proof. See [DP1], Proposition 2.7, pp. 110–112. 2

Remark. Many basic results concerning the behaviour of quadratic forms over real semigroups
follow from Proposition I.2.8. Here is an example:

Corollary I.2.9 Let G be a RS and let ϕ = 〈a1, . . . , an〉 be a form with entries in G. Suppose
the non-empty sets I

1
, . . . , I

k
partition the index set {1, . . . , n}. For each j ∈ {1, . . . , n} let ϕ

j

denote the form having as entries the elements a
`

with ` ∈ I
j

(in any order ). Then,

D(ϕ) = D(
⊕k

j=1
ϕ
j
) , i.e., ϕ ∼

⊕k
j=1

ϕ
j
.

A similar statement holds for Dt. 2

The proof, which we leave as an exercise, is by induction on k, using items (1) and (5) of I.2.8.

A number of other elementary results known to hold for isometry and/or Witt-equivalence
of quadratic forms over fields and over special groups are also valid for quadratic forms over
RSs, upon replacing these relations by either ∼=, ∼ or ∼t. Whenever needed, these results will
be used, implicitly or explicitly. 2

We now give a reformulation of the strong associativity axiom [RS3] that will be relevant
in the study of quotients of RSs.

Proposition I.2.10 In the presence of axiom [RS2], the following is equivalent to axiom [RS3]:

[RS3′] ∀ a, b, c, d (Dt(a, b) ∩Dt(c, d) 6= ∅ ⇒ Dt(a,−c) ∩Dt(−b, d) 6= ∅).

Proof. [RS3] ⇒ [RS3′]. Let x ∈ Dt(a, b)∩Dt(c, d); the definition of Dt yields −b ∈ Dt(a,−x)
(see I.2.3 (0)), and scaling by−1 ([RS2]) gives−x ∈ Dt(−c,−d). By [RS3] there is y ∈ Dt(a,−c)
so that −b ∈ Dt(y,−d). Again, the definition of Dt and [RS2] yield −y ∈ Dt(b,−d), and
y ∈ Dt(−b, d). Hence, Dt(a,−c) ∩Dt(−b, d) 6= ∅).

[RS3′] ⇒ [RS3]. Assume [RS3′] and let x ∈ Dt(a, b) with b ∈ Dt(c, d). By the definition of Dt,
−b ∈ Dt(a,−x), and by [RS2], b ∈ Dt(−a, x), i.e., Dt(−a, x) ∩Dt(c, d) 6= ∅. By [RS3′] there
is y ∈ Dt(−a,−c) ∩Dt(−x, d). By the same manipulation as above, we get −y ∈ Dt(a, c) and
x ∈ Dt(−y, d). So, [RS3] is verified with witness −y. 2

Remark. Note that, while the weak associativity axiom [RS3a] (I.2.4) obtained by replacing
transversal representation by ordinary representation in [RS3] is a non-trivial property (in the
sense that it does not follow from the remaining axioms), the corresponding weak version of
[RS3′] does follow from the remaining axioms for RSs: 0 ∈ D(a, b) for all a, b, and hence
D(a, b) ∩ D(c, d) always contains 0; cf. I.2.3 (1); the proof of this only uses [RS1] and [RS4]
(see [DP1], Proposition 2.3, p. 107). 2

I.2.11 The group of invertible elements of a real semigroup.

A natural and important question is to know the structure of the set G× of invertible elements
of a real semigroup, G, with induced product and representation. In particular, it is important
to elucidate in which cases G× is a reduced special group.
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Using the axiomatization of RSGs in terms of the binary relation

a � b :⇔ a ∈ D
G

(1, b) (a, b ∈ G×),

given in [DMM], Prop. 1.2, p. 30, it is a routine exercise to check that the following axioms
hold under no restriction on G :

[R0] (G× , · , 1) is a group of exponent 2.

[R1] � is a partial order on G× with first element 1 and last element −1 .

[R2] For all a, b ∈ G× , a � b ⇔ − b � −a.

[R3] For all b ∈ G× , {x ∈ G× |x � b} is a subgroup of G×.

However, the validity of the weak compatibility axiom

[R4] ∀ a, b, c, d ∈ G× (a � b∧ bd � cd⇒ ∃ e ∈ G× (e � d∧ ae � ce)),

is a far more delicate question. Note that [R4] is a slightly simplified version of the weak
associativity axiom [RS3a] (see I.2.4). With notation as in [RS3a] (cf. I.2.3 (15)), the difficulty
lies in obtaining an invertible witness x whenever the entries a, b, c, d, e ∈ G are invertible.

Later in these notes we prove that G× is a RSG in the following cases :

(1) G is a Post algebra (Fact IV.2.4).

(2) G is a spectral real semigroup (Corollary V.6.7).

In both these cases, G× with the induced structure is a Boolean algebra.

(3) G is a RS-fan (Corollary VI.2.7).

In this case, G× with the induced structure is a RSG-fan (i.e., a fan in the category of reduced
special groups, cf. [DM1], Ex. 1.7, pp. 8–9).

In [M], Thm. 8.1.7, p. 154, using the dual terminology of abstract real spectra, Marshall
adds to this list the case:

(4) G has many units (cf. [M], 8.1.1, p. 152) 4. This includes the case where G is semi-local,
i.e., has finitely many maximal ideals ([M], Prop. 8.1.2, p. 152).

In case G = G
A,T

is the real semigroup arising from a preordered ring (A, T ), see I.2.2 (2)

and I.1.2 (e), results from [DM6] show that G× is a RSG in the following circumstances (for
undefined notions, see [DM6]; for item (4), see also [M], p. 153) :

(5) A is a ring with many units such that every residue field has at least 7 elements ([DM6],
Thm. 5.5).

(6) (A, T ) is a preordered, faithfully quadratic ring with T -bounded inversion (i.e., 1+T ⊆A×);
[DM6], Cor. 8.19. Examples are reduced f -rings whose natural order is sums of squares, e.g.,
rings of real-valued continuous functions on a topological space, and real closed rings (in the
sense of Prestel-Schwartz [PS]).

In cases (5) and (6), not only is G× a RSG but, moreover, representation in G× by forms of
arbitrary dimension faithfully reflects representation by corresponding forms with invertible
coefficients in the ring (A, T ). 2

4Indeed, in case n = 3, [M], Lemma 8.1.6, p. 154, proves that axiom [R4] holds in G×.
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I.3 From ternary semigroups to real semigroups

New section; added Jan. 2014. Generalizes results previously included in section I.2: II.2.6 –
II.2.8 and II.2.11.

The purpose of this section is to explore and develop a natural, and fairly general method
to construct, from a given ternary semigroup and some TS-character sets, ternary relations
verifying as many as possible of the axioms for real semigroups.

Definition I.3.1 Given a ternary semigroup, G, and a set H⊆X
G

= Hom
TS

(G, 3), we define
a ternary relation D

G,H on G —abridged DH if G is clear from context— as follows: for

a, b, c ∈ G,

[D]H a ∈ D
G,H(b, c) ⇔ For all h ∈ H, h(a) ∈ D

3
(h(b), h(c)).

To avoid triviality we assumeH 6= ∅; to get best results we also make the rather mild assumption
that the set H separates points in G: given a 6= b in G, there is h ∈ H such that h(a) 6= h(b).

2

Remark I.3.2 Given a TS, G, and a set X ⊆ 3G, Marshall [M], p. 99, defines representation
relations on G, as follows: for a, b, c ∈ G,

[R] a ∈ D
X

(b, c) iff ∀h ∈ X [h(a) = 0 ∨ (h(a) 6= 0 ∧ (h(a) = h(b)∨h(a) = h(c)))].

[TR] a ∈ Dt
X

(b, c) iff ∀h ∈ X [(h(a) = 0 ∧ h(b) = −h(c)) ∨ (h(a) 6= 0 ∧
∧ (h(a) = h(b)∨h(a) = h(c)))].

When G is the real semigroup G
A

associated to a semi-real ring A, we have already encountered
these relations, cf. I.2.2 (2).

It turns out that the representation relation DH defined by clause [R] is identical with
the relation defined by clause [D]H in I.3.1. This is obvious by the fact that the conditions
h(a) ∈ D

3
(h(b), h(c)) and h(a) = 0 ∨ (h(a) 6= 0 ∧ (h(a) = h(b)∨h(a) = h(c))) are equivalent

for any h ∈ X
G

and all a, b, c ∈ G; this is straightforward checking using Corollary I.2.5.

Likewise, the transversal representation relation Dt
H

defined by [TR] is identical to the

transversal representation relation defined in terms of D
G,H by clause [t-rep], Section I.2, since

the conditions h(a) ∈ Dt
3
(h(b), h(c)) and (h(a) = 0 ∧ h(b) = −h(c)) ∨ (h(a) 6= 0 ∧ (h(a) =

h(b)∨h(a) = h(c)))) are equivalent, again by I.2.5. 2

Next, we show that, under the only assumptions on H set down in Definition I.3.1, the
structure (G,DH, . . .) satisfies all axioms for real semigroups, except, possibly, axiom [RS3].

Theorem I.3.3 Let G be a ternary semigroup and let H be a non-empty subset of X
G

separating points in G. The representation relation DH defined in I.3.1 satisfies all axioms
for real semigroups except, possibly, the axiom [RS3] of strong associativity.

Proof. The verification of axioms [RS0], [RS1], [RS2], [RS4] and [RS8] being straightforward,
we deal only with the remaining axioms.

[RS5] Let a, b, c, d, e ∈ G be such that ad = bd, ae = be and c ∈ DH(d, e). Let us prove
that ac = bc. Since H separates points in G, this boils down to proving h(ac) = h(bc) for all
h ∈ H. This is clear if h(c) = 0. Let h(c) 6= 0. Since c ∈ DH(d, e), either h(c) = h(d) or
h(c) = h(e). Since ad = bd and ae = be, invoking Definition I.3.1, in both cases we get the
equality h(ac) = h(bc). By [D]H once again, we conclude that ac = bc, as required.

[RS6] Let a, b, c ∈ G be such that c ∈ DH(a, b), and take h ∈ H. Then, h(c) ∈ D
3
(h(a), h(b)).

The real semigroup 3 verifies [RS6], and then h(c) ∈ Dt
3(h(c)2h(a), h(c)2h(b)). From the

definition of Dt (cf. I.2, [t-rep]), we have the following relations:
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(i) h(c) ∈ D
3
(h(c2a), h(c2b)), (ii) −h(c2a) ∈ D

3
(−h(c), h(c2b)), and

(iii)−h(c2b) ∈ D
3
(−h(c), h(c2a)).

Since h is arbitrary, from (i), (ii), (iii) and I.3.1 [D]H we get:

(i′) c ∈ DH(c2a, c2b), (ii′) −c2a ∈ DH(−c, c2b),

(iii′) −c2b ∈ DH(−c, c2a),

which, together, amount to c ∈ Dt
G/H

(c2a), c2b).

[RS7] Let a, b ∈ G be such that Dt
H

(a,−b) ∩ Dt
H

(b,−a) 6= ∅. Take an element c ∈ G in

this intersection. We must prove that a = b. By I.3.1 [D]H this boils down to showing that
h(a) = h(b) for all h ∈ H. We consider the following cases:

(i) h(c) = 0. If either h(a) 6= 0 or h(b) 6= 0, from the relations −a ∈ DH(−c,−b) and
−b ∈ DH(−c,−a) we obtain h(−a) = h(−b), and then h(a) = h(b). Ifh(a) = h(b) = 0, there
is nothing to prove.

(ii) h(c) 6= 0. Since c ∈ DH(a,−b) ∩ DH(b,−a), we have h(c) = h(a) or h(c) = −h(b), and
h(c) = h(b) or h(c) = −h(a). If h(a) 6= h(b), these conditions yield either h(c) = h(a) =
−h(a) or h(c) = h(b) = −h(b); in both cases we have h(c) = 0, a contradiction. Hence,
h(a) = h(b). 2

The next two Propositions gives some simple examples —used later on— of finite sets H of
low cardinality for which the structure (G,DH, . . .) verifies also axiom [RS3], and hence (if H
separates points) is a real semigroup.

Proposition I.3.4 Let G be a ternary semigroup and let h
1
, h

2
∈ X

G
. With H = {h

1
, h

2
},

(G,DH, . . .) verifies axiom [RS3].

Proof. Let a, b, c, d, e ∈ G be such that

(∗) a ∈ DH(b, c) and c ∈ DH(d, e).

We must find an x ∈ G so that a ∈ DH(x, e) and x ∈ DH(b, d).

The argument is by cases:

(i) a ∈ DH(b, d). In this case it suffices to take x = a.

(ii) a ∈ DH(b, e). In this case it suffices to take x = b.

(iii) a 6∈ DH(b, d) ∪DH(b, e). In this case there are indices i, j ∈ {1, 2} such that

(∗∗) h
i
(a) 6∈ D

3
(h
i
(b), h

i
(d)) and h

j
(a) 6∈ D

3
(h
j
(b), h

j
(e)).

Then, we have h
i
(a) 6= 0 , h

i
(a) 6= h

i
(b) and h

i
(a) 6= h

i
(d). It follows from (∗) and the

definition of DH that h
i
(a) = h

i
(b) or h

i
(a) = h

i
(c) —whence the latter—, and h

i
(c) = h

i
(d)

or h
i
(c) = h

i
(e); therefore, h

i
(a) = h

i
(e). Likewise, we get h

j
(a) = h

j
(d). If j = i we would

have h
j
(a) = h

i
(e) ∈ D

3
(h
i
(b), h

i
(e)) = D

3
(h
j
(b), h

j
(e)), contradicting (∗∗). Hence, i 6= j,

which means H = {h
i
, h

j
}.

We claim that a ∈ DH(d, e). Otherwise, we could find an index k ∈ {1, 2} such that

h
k
(a) 6∈ D

3
(h
k
(d), h

k
(e)). In particular, h

k
(a) 6= 0. From (∗) we infer that h

k
(a) = h

k
(b). On

the other hand, either k = i or k = j. In the first case we get h
i
(a) ∈ D

3
(h
i
(b), h

i
(d)), and in

the second case h
j
(a) ∈ D

3
(h
j
(b), h

i
(e)), contradicting (∗∗). So, a ∈ DH(d, e), and it is clear

that x = d is as needed. 2
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Proposition I.3.5 Let G be a ternary semigroup and let h
1
, h

2
, h

3
be three distinct elements

of X
G

such that h
i
 h

j
for some i 6= j ∈ {1, 2, 3} . With H = {h

1
, h

2
, h

3
}, (G,DH, . . .)

verifies axiom [RS3].

Proof. It follows the same line of argument as the proof of the preceding Proposition I.3.4.
With notation therein, we assume (∗); cases (i) and (ii) are as in I.3.4; we deal with the
remaining case (iii). As above, there are indices i, j ∈ {1, 2, 3} such that (∗∗) holds. From this,
we have:

(a) hi(a) 6= 0 , hi(a) 6= hi(b) , hi(a) 6= hi(d) and (b) hj(a) 6= 0 , hj(a) 6= hj(b) , hj(a) 6= hj(e).

As in the proof of I.3.4 we get

(†) hi(a) = hi(e) and hj(a) = hj(d).

We also have i 6= j, for i = j entails hj(a) = hi(e) ∈ D
3
(hi(b), hi(e)) = D

3
(hj(b), hj(e)),

contrary to (∗∗).

Claim. a ∈ DH(d, e). (Note that this yields the desired conclusion upon taking x = d.)

Proof of Claim. Assuming otherwise, there is k ∈ {1, 2, 3} such that h
k
(a) 6∈ D

3
(h
k
(d), h

k
(e));

this entails:

(c) hk(a) 6= 0 , hk(a) 6= hk(d) , hk(a) 6= hk(e).

Note, again, that (∗) implies

(††) hk(a) = hk(b).

Indeed, the first representation in (∗) yields hk(a) ∈ D
3
(hk(b), hk(c)). Since hk(a) 6= 0, we

get hk(a) = hk(b) or hk(a) = hk(c). The latter, and the second representation in (∗) yield
hk(a) = hk(c) ∈ D3

(hk(d), hk(e)), contrary to the choice of hk; hence, hk(a) = hk(b).

Next, we observe that k 6∈ {i, j}, and hence {i, j, k} = {1, 2, 3}. If, e.g., k = i, (††) yields
hi(a) = hk(a) ∈ D

3
(hk(b), hk(d)) = D

3
(hi(b), hi(d)), contradicting (∗∗). Likewise, k 6= j.

Now, we use items (a) – (c) and (†), (††) together with the characterization of  in Lemma
I.1.18 to show that h` 6 hm for every pair of distinct indices `,m ∈ {1, 2, 3}, contrary to our
assumption. The argument being similar for every pair of indices, we illustrate it in a couple
of cases, leaving further details to the reader.

(1) hi 6 hj .

Otherwise, since hj(a) 6= 0 ((b)), we have hi(a) = hj(a). Since hj(a) = hj(d) (see (†)), using
hi hj again, we get hi(d) = hj(d) = hj(a) = hi(a), contradicting (a).

(2) hk 6 hi.

Otherwise, since hi(a) 6= 0 ((a)), Lemma I.1.18 (4) gives hk(a) = hi(a). But hi(a) = hi(e) (see
(†)) and hk hi yields hi(e) = hk(e); thus, hk(a) = hk(e), contrary to (c). 2

Here is an example of a RS, G, and a subset H of X
G

separating points in G, such that
axiom [RS3] does not hold in the structure (G,DH).

Example I.3.6 Let G be a finite group of exponent 2 and let b, c, d, e be elements of G such
that {−1, b, c, d, e} is a basis of G over the two-element field; here −1 is any element of G not
in the linear span of {b, c, d, e}. We endow G with the reduced special group structure of a fan
(cf. [DM1], Ex. 1.7, pp. 8-9). Let H = {σ

1
, σ

2
, σ

3
, σ

4
, σ

5
, σ

6
} be the set of group characters

of G into ±1, where σ6 =
∏5
i=1 σi and for i ∈ {1, 2, 3, 4, 5} the values of σi on generators are

given by the following table (all five characters send −1 to −1):
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σ1 σ2 σ3 σ4 σ5

b -1 1 1 1 1
c 1 -1 1 -1 1
d 1 -1 1 1 1
e -1 -1 1 -1 -1

Straightforward checking using this table shows that, with G∗ = G ∪ {0} and σ
i
(0) = 0 for

i = 1, . . . , 6 :

(*) 1 ∈ D
G∗

(b, c) and c ∈ D
G∗

(d, e).

Recall that in the present case we have D
G∗

= Dt
G∗
∪ {0} (cf. I.2.2 (3)). If [RS3] holds in G∗,

there is x ∈ G such that

(**) 1 ∈ D
G∗

(x, e) and x ∈ D
G∗

(b, d).

From the last line in the table we have e 6= 1, whence x 6= 0, i.e., x ∈ G.

Checking with the table above (and using I.2.5) the first representation in (**) shows that
x must verify:

σ
1
(x) = σ

2
(x) = σ

4
(x) = σ

5
(x) = 1,

while the second clause in (**) yields σ
3
(x) = 1. Therefore σ

i
(x) = 1 for all i ∈ {1, 2, 3, 4, 5},

and hence σ
6
(x) = 1. On the other hand, checking with the table we have σ

6
(b) = σ

6
(d) = −1,

and using again the second representation in (**) we get σ
6
(x) = −1, contradiction. Hence

[RS3] (and [RS3a]) fails in G∗.

In order to check that H separates points in G —so that (G,DH) verifies the remaining
axioms for RS, I.3.3— it suffices to compute, using the table above, the value of the characters
σi (i = 1, . . . , 5) at each of the fifteen products of the generators b, c, d, e, to see that none of
these five values is either 1 or −1. This straightforward checking is left to the reader. 2

Remark. The fact that axiom [RS3] fails in (G,DH) follows, alternatively, from [M], Cor.
3.3.7, p. 46. Note also that the necessary condition for G∗ to be a RS in Theorem II.2.9 below
fails in this example: σ

i
∈ H for i = 1, 2, 3, and σ

1
σ

2
σ

3
∈ X

G
, but this product is not in H. 2

The next Proposition gives additional information concerning the L
RS

-structure (G,DH),
where G is a ternary semigroup endowed with the ternary relation DH defined by clause [D]H
in I.3.1, and H⊆X

G
is a non-empty set of TS-characters separating points in G. Note that

(G,DH) is not required to be a real semigroup.

Proposition I.3.7 Let G be a ternary semigroup and let H be a subset of X
G

. Then,

(1) The closure H of H in (X
G

)
con

defines on G the same representation relation as H.

(2) Let H̃ be the set of all p ∈ X
G

such that for all a, b, c ∈ G,

(∗) a ∈ D
G

(b, c) ⇒ p(a) ∈ D
3
(p(b), p(c)).

Then,

(i) H ⊆ H̃.

(ii) H and H̃ define the same ternary relation on G.

(iii) H̃ is maximal satisfying conditions (i) and (ii): if H ⊆ G ⊆ X
G

and DG is identical to

DH, then G ⊆ H̃.

In particular,

(iv) H̃ is a proconstructible subset of X
G

.

Proof. Note first that, for fixed a, b, c ∈ G, the sets {g ∈ X
G
| g(a) = g(b)} , {g ∈ X

G
| g(a) ∈

D
3
(g(b), g(c))} (and their complements) are open in (X

G
)
con

.
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(1) The inclusion DH ⊆DH follows from H⊆H. Conversely, let a ∈ DH(b, c) and assume

h′(a) 6∈ D
3
(h′(b), h′(c)) for some h′ ∈ H . Then, the (clopen) set {g ∈ X

G
| g(a) 6∈ D

3
(g(b), g(c))}

is a neighborhood of h′ in the constructible topology, which implies H ∩ {g ∈ X
G
| g(a) 6∈

D
3
(g(b), g(c))} 6= ∅, i.e., h(a) 6∈ D

3
(h(b), h(c)) for some h ∈ H, contradicting the assumption

a ∈ DH(b, c).

(2). (i) is clear.

(ii) Inclusion DH̃ ⊆DH follows from H ⊆ H̃ . The reverse inclusion follows from (∗) in the

definition of H̃ by use of clause [D]H̃ in Definition I.3.1.

(iii) Straightforward checking, using the assumptions in (iii) and I.3.1, [D]G , shows that any

g ∈ G verifies clause (∗) in the definition of H̃, whence, g ∈ H̃.

(iv) is an immediate consequence of (1) (applied with H̃), and (2.iii). 2

The next example shows that the inclusion H⊆H̃ in Proposition I.3.7 (2;i) may be strict.

Example I.3.8 Let G be a group of exponent 2 with a distinguished element −1 6= 1. Pick
five group characters σ

1
, . . . , σ

5
: G−→{±1} sending −1 to −1, which separate points (see

Example I.3.6). Let H consist of σ
1
, . . . , σ

5
plus all products of three of them, except σ

1
σ

2
σ

3
.

With DH denoting the ternary relation defined by H (I.3.1), we prove:

Claim. For x, y ∈ G, x ∈ DH(1, y) implies x = 1, x = y or y = −1. In other words, DH is the
fan representation relation on G (cf. [DM1], Ex. 1.7, pp. 8-9).

Proof of Claim. Assume, towards a contradiction, that x 6= 1, y, and y 6= −1. Since {σ
1
, . . . , σ

5
}

separates points, there are indices 1 ≤ i, j, k ≤ 5 so that

(†) σ
i
(y) = 1, σ

j
(x) = 1, σ

k
(x) 6= σ

k
(y).

From x ∈ DH(1, y) follows σ
i
(x) = 1, σ

j
(y) = −1. These values show that the indices i, j, k are

distinct.

Suppose next that {i, j, k} 6= {1, 2, 3}. Then, σ := σ
i
σ
j
σ
k
∈ H, and

(††) σ(x) ∈ DZ2
(1, σ(y)).

From the values in (†) we get σ(x) = −σ
k
(x) and σ(y) = −σ

k
(y). From σ

k
(x) 6= σ

k
(y) follows

σ
k
(x) = −σ

k
(y), and hence σ(x) = −σ(y). Thus, (††) forces σ(x) = 1 and σ(y) = −1, whence

σ
k
(x) = −1 and σ

k
(y) = 1, contradicting σ

k
(x) ∈ DZ2

(1, σ
k
(y)). Hence {i, j, k} = {1, 2, 3}.

From (†) and what was just proven comes σ
4
(y) = σ

5
(y) = −1 and σ

4
(x) = σ

5
(x) = 1.

Since σ
i
σ
j
σ

4
(x) = −1 and σ

i
σ
j
σ

5
(x) = 1, these characters do not preserve the representation

x ∈ DH(1, y), contradicting that they belong to H, and proving the Claim.

Since DH defines the fan structure on G, every group character G−→{±1} sending −1 to

−1 preserves it, i.e., is in H̃. Thus, σ
1
σ

2
σ

3
∈ H̃ \ H, as asserted. 2

Note. Of course, this example can be thought of as a counterexample of real semigroups, by
adding a zero to G and to Z

2
(note that Z

2
∪{0} = 3), and stipulating that all characters send

0 to 0. 2

I.4 Saturation. Constructing RS-characters

Next we shall proceed to the construction of RS-characters with specific properties; these
constructions, needed, e.g., in the proof of the Separation Theorems I.5.2 – I.5.4, and of the
Duality Theorem I.5.1, will also play a crucial role throughout this monograph. As usual,
a real semigroup (RS-) homomorphism is a homomorphism for the language L

RS
=
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{·, 1, 0,−1, D} for real semigroups, and a RS-character is a RS-homomorphism onto 3,
endowed with the unique RS-structure given by I.2.5. The set of all RS-characters of a RS, G, is
denoted by X

G
. Thus, RS-homomorphisms are TS-homomorphisms preserving representation

(equivalently, transversal representation), and hence the remarks and constructions from § I.1
apply to the present case as well; the additional property needed to extend these constructions
to real semigroups, is given in the next definition.

A. Saturated sets.

Definition I.4.1 Let G be a RS. A subset S ⊆ G is saturated (resp., transversally satu-
rated) iff for all a, b ∈ S,D

G
(a, b) ⊆ S (resp., Dt

G
(a, b) ⊆ S). 2

Remarks I.4.2 (a) An easy induction on dimension proves: If I (resp., S) is a saturated ideal
(resp., subsemigroup) of G and a1, . . . , an ∈ I (resp., S), then D

G
(〈a1, . . . , an〉) ⊆ I (resp., S).

(b) For any saturated subsemigroup S of G, Id(G) = D
G

(1, 1) ⊆ S. Thus,

(c) Our “saturated subsemigroups” are the same thing as Marshall’s “preorderings”; cf. [M],
§6.6, p. 121.

(d) Note that S saturated and 1 ∈ S ⇒ Id(G) · S⊆S.

In fact, given x ∈ G and s ∈ S, we have x2 ∈ D(1, 1) (I.2.3 (5)). By axiom [RS2], x2s ∈
D(s, s)⊆S, as asserted.

(e) S saturated ⇒ S transversally saturated, since Dt(·, ·)⊆D(·, ·) (cf. [t-rep] in § I.2).

(f) The converse implication fails frequently. For example, S = {1} is transversally saturated
by I.2.3 (8), but doesn’t contain 0, hence is not saturated (cf. I.2.3 (1)). However, we have:

(*) S transversally saturated and Id(G) · S⊆S imply S saturated.

[Proof. Let a, b ∈ S and c ∈ D(a, b). By the second assumption, c2a, c2b ∈ S, and by transversal
saturatedness, Dt(c2a, c2b)⊆S. Axiom [RS6] guarantees c ∈ Dt(c2a, c2b), whence c ∈ S,
showing that D(a, b)⊆S.]

In particular, both saturatedness notions are equivalent for subsemigroups of G containing
Id(G). 2

Examples I.4.3 (Saturated sets.) Proposition I.2.3 (12) shows that the value sets of binary
forms are saturated. We will now show that this property holds for the value sets of arbitrary
forms as well.

Proposition I.4.4 Let G be a RS and let ϕ be a form with entries in G. Then,

(1) D(ϕ) is saturated.

(2) Dt(ϕ) is transversally saturated.

Proof. (1) We prove first:

(1.i) Let ϕ
1
, . . . , ϕ

n
be forms over G such that D(ϕ

i
) is saturated for all i ∈ {1, . . . , n}. Then

D(
⊕n

i=1
ϕ
i
) is saturated.

We do the proof for n = 2. A straightforward induction proves it for all n ≥ 3; for n = 1 there
is nothing to prove.

Let y, z ∈ D(ϕ
1
⊕ ϕ

2
) and x ∈ D(y, z). By I.2.8 (5) there are y

i
, z
i

(i = 1, 2) such that
y
i
, z
i
∈ D(ϕ

i
) and y ∈ D(y

1
, y

2
) , z ∈ D(z

1
, z

2
). Then (by I.2.8 (5),(1)),
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x ∈ D(y, z)⊆D(y
1
, y

2
, z

1
, z

2
) = D(〈y

1
, z

1
〉 ⊕ 〈y

2
, z

2
〉) .

By I.2.8 (5) there are a
i
∈ D(y

i
, z
i
) such that x ∈ D(a

1
, a

2
). Since, by assumption, D(ϕ

i
) is

saturated, a
i
∈ D(ϕ

i
). By I.2.8 (5) again, x ∈ D(ϕ

1
⊕ ϕ

2
).

Next, we have:

(1.ii) For all a ∈ G, D(〈a〉) is saturated.

We know (I.2.7 (a)) that D(〈a〉) = {b2a | b ∈ G}. Let y, z ∈ D(〈a〉) and x ∈ D(y, z). Then,
y = b21a , z = b22a for some b

1
, b

2
∈ G; thus, x ∈ D(b21a, b

2
2a). By I.2.3 (4), x = a2x = a(ax).

Now, by axiom [RS6], x ∈ Dt(b21x
2a, b22x

2a), whence ax ∈ Dt((b1xa)2, (b2xa)2). By [M], Prop.
6.1.5 (see also Corollary IV.5.3 (i)) ax is the unique element in this transversal value set, and
ax = (ax)2. It follows that x = a(ax)2 ∈ D(〈a〉), as required.

Let ϕ = 〈a
1
, . . . , a

k
〉. From (i) and (ii) we get that D(〈a

1
〉 ⊕ . . . ⊕ 〈a

k
〉) is saturated. But

D(ϕ) = D(〈a
1
〉 ⊕ . . .⊕ 〈a

k
〉), by I.2.9.

(2) The analog of item (1.i) above for transversal representation is proved by an entirely similar
argument, replacing I.2.8 (5),(1) by the corresponding statements for transversal representation.
It only remains to show:

(2.ii) For a ∈ G, Dt(〈a〉) = {a} is transversally saturated.

Let y, z ∈ Dt(〈a〉) and x ∈ Dt(y, z). Then, y = z = a, whence x ∈ Dt(a, a); I.2.3 (6) gives
x = a, as required. 2

Further examples of saturated sets are obtained by taking (directed) unions :

Fact I.4.5 Let S be a family of saturated subsets of a RS, directed under inclusion (i.e., for
all S

1
, S

2
∈ S there is S

3
∈ S such that S

1
, S

2
⊆S

3
). Then

⋃
S is saturated.

Proof. Straightforward. 2

Remarks. (a) Value sets of quadratic forms are not stable under product in general. A
simple counterexample is the one-generator ternary semigroup F

1
= {1, 0,−1, x,−x, x2,−x2}

of VI.3.2 (A), endowed with the (fan) representation relation given by Theorem VI.2.1. In this
example we have x ∈ D

F1
(x, x) = x ·D

F1
(1, 1) = {0, x}, but x2 6∈ D

F1
(x, x).

In Corollary IV.5.8 we will show that D(ϕ) is a subsemigroup of G, whenever ϕ is a Pfister
form. For illustration, here is a proof in the simplest case, when ϕ = 〈1, b〉. Let x, y ∈ D(1, b).
By I.2.8(9), xy ∈ D(1, b, b, b2). Hence there are elements p ∈ D(1, b), q ∈ D(b, b2) such that
xy ∈ D(p, q) (I.2.8(5)). From [RS4] we get q ∈ D(b, b2) = D(12 · b, b2 · 1) ⊆ D(1, b). Then,
saturatedness entails xy ∈ D(1, b).

For a related result, see Proposition I.5.8.

(b) An obvious counterexample to the saturatedness of Dt
G

(ϕ) is obtained by taking G = 3

and ϕ = 〈 1, 1 〉, since 0 6∈ Dt
3
(ϕ) = {1} but 0 ∈ D

3
(1, 1). 2

Important remark. The bijective correspondence between TS-characters and prime sub-
semigroups of TSs pointed out in Remark I.1.6 ff. extends to RSs upon using the adjective
“saturated subsemigroup” instead of “prime subsemigroup”.

Indeed, if h : G−→3 is a RS-character, I.2.5 shows that h−1[0, 1] is a saturated subsemi-
group of G. Conversely, given a saturated subsemigroup S of G, the map h

S
: G−→3 defined

in I.1.6 preserves representation: a ∈ D
G

(b, c)⇒ h
S

(a) ∈ Dt
3
(h
S

(b), h
S

(c)). In fact, straightfor-

ward checking using Corollary I.2.5 shows that condition h
S

(a) ∈ D
3
(h
S

(b), h
S

(c)) is equivalent
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to h
S

(b), h
S

(c) ∈ {0, 1} ⇒ h
S

(a) ∈ {0, 1}. Since S = h−1
S

[0, 1], from b, c ∈ S , a ∈ D
G

(b, c) and

saturatedness of S comes a ∈ S, i.e., h
S

(a) ∈ {0, 1}, as required. 2

The following Proposition gives an explicit description of the saturated ideal (resp., sub-
semigroup) generated by an ideal (resp., subsemigroup, or subset) of a RS:

Proposition I.4.6 Let G be a RS.

(1) If I ⊆ G is an ideal, then [I] =
⋃
{D

G
(ϕ) |ϕ a form with entries in I} is the smallest

saturated ideal of G containing I.

(2) If S ⊆ G is a subsemigroup, then [S] =
⋃
{D

G
(ϕ) |ϕ a form with entries in S} is the

smallest saturated subsemigroup of G containing S.

(3) Let A be a non-empty subset of G and let
∏
A be the set of all finite products of elements

of A; then [A] =
⋃
{D

G
(n〈1〉 ⊕ ψ) |n ∈ N and ψ a form with entries in

∏
A} is the smallest

saturated subsemigroup of G containing A.

In particular,

(1′) Let I be a saturated ideal and x ∈ G. Then, [I ∪x ·G] =
⋃
{D

G
(〈i, x g〉) | i ∈ I and g ∈ G}.

(2′) Let S be a saturated subsemigroup and x ∈ G. Then, [S ∪ x · S] =
⋃
{D

G
(s, xt) | s, t ∈ S}.

Remarks. We shall write I(x) for I ∪ x ·G, and S(x) for S ∪ x ·S. For A ⊆ G, the expression
“form over A” means a form with entries in A. Item (2′) is Prop. 6.6.1(1) of [M].

Proof. Items (1), (2), (1′) and (2′) have been proved in [DP1], Proposition 3.3, pp. 113–114.
For (3), just apply (2) with S = {1} ∪

∏
A = the semigroup generated by A, and write any

form ϕ occurring in the right-hand side of the equality in (2) as ϕ = n〈1〉 ⊕ψ, with n ∈ N and
ψ a form with entries in

∏
A . 2

Corollary I.4.7 Let M be a multiplicative subset of a RS, G, and let I be a saturated ideal
disjoint from M . Let J be a saturated ideal containing I and maximal for being disjoint from
M . Then, J is prime. In particular, a saturated ideal maximal for not containing a given
element is prime.

Proof. See [DP1], Corollary 3.4, p. 114. 2

B. Constructing RS-characters. The following lemma is an analog of Lemma I.1.7 for
RSs. This result, together with Lemmas I.4.10 and I.4.12, and Corollary I.4.11 below, are the
main tools in constructing RS-characters.

Lemma I.4.8 Let G be a RS. Let I ⊆ G be a saturated prime ideal. Let S ⊆ G be a saturated
subsemigroup maximal for the condition S ∩−S = I. Then, S ∪−S = G. Such an S determines
a RS-character h : G→ 3 such that h−1[0] = I and h−1[0, 1] = S.

Proof. See [DP1], Lemma 3.5, p. 114. 2

As an example of application of this Lemma, we have:

Corollary I.4.9 Every saturated prime ideal of a RS is the zero-set of some character (and
conversely ).

Proof. Let G be a RS. Clearly, the zero-set of a character of G is a (proper) saturated prime
ideal (exercise).
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For the interesting direction, let I be a (proper) saturated prime ideal of G, and let S
I

denote the saturated subsemigroup generated by I.

Claim. S
I
∩ −S

I
= I .

Proof of Claim. The inclusion ⊇ is obvious. Conversely, let x ∈ S
I
∩ −S

I
, whence −x2 ∈ S

I
.

By Proposition I.4.6 (3), there are n ∈ N and a form ψ with entries in
∏
I = I such that

−x2 ∈ D
G

(n〈1〉⊕ψ) . If n = 0, then −x2 ∈ D
G

(ψ)⊆ I (I saturated), and hence x ∈ I. Assume

n ≥ 1. Invoking I.2.8 (5) we get an element i ∈ D
G

(ψ)⊆ I such that −x2 ∈ D
G

(1, i) and, by

[RS6], −x2 ∈ Dt
G

(x2, j), with j = ix2 ∈ I. Hence, j ∈ Dt
G

(x2, x2) which, by I.2.3 (6), yields

x2 = j ∈ I, and x ∈ I, as claimed.

By the Claim and Zorn’s lemma, there is a saturated subsemigroup S of G maximal for
S ∩ −S = I. Lemma I.4.8 gives a character h ∈ X

G
such that Z(h) = I, as asserted. 2

Lemma I.4.10 Let G be a real semigroup, and let I be a saturated ideal, ∆ a saturated sub-
semigroup, and T a multiplicative subset of G, respectively. Define:

I[∆] = {x ∈ G | − x2 ∈ D(i, d) for some i ∈ I and some d ∈ ∆}.
Then:

(a) I[∆] is a saturated ideal of G containing I ∪ (∆ ∩ −∆).

(b) If I[∆] ∩ T = ∅, there exists a saturated prime ideal J of G containing I, such that
J = J [∆] and J ∩ T = ∅. Moreover, J, ∆ and T induce a character h ∈ X

G
such that

Z(h) = J, ∆ ⊆ P (h) and h(t2) = 1 for all t ∈ T .

Proof. (a) I ⊆ I[∆] is clear since −x2 ∈ D(−x2, 1), with 1 ∈ ∆ and −x2 ∈ I, whenever x ∈ I.
Likewise, using −x2 ∈ D(0,−x2) with x ∈ ∆ ∩ −∆, we get −x2 ∈ ∆, and then x ∈ I[∆],
whence ∆ ∩ −∆ ⊆ I[∆].

To check that I[∆] is an ideal, let x ∈ I[∆] and g ∈ G; then −x2 ∈ D(i, d), with i ∈ I, d ∈ ∆.
Scaling by g2 ([RS2]) gives −g2x2 ∈ D(ig2, dg2), with ig2 ∈ I and dg2 ∈ ∆, whence gx ∈ I[∆].

To prove that I[∆] is saturated, let x, y ∈ I[∆] and z ∈ D(x, y). Then, there are elements
i, j ∈ I, d, e ∈ ∆ such that −x2 ∈ D(i, d) and −y2 ∈ D(j, e). From z ∈ D(x, y) we get
z2 ∈ D(x2, y2) ([RS8]), and then −z2 ∈ D(−x2,−y2) ⊆ D(i, d, j, e) = D(i, j, d, e) ([RS2],
I.2.8 (5)). By I.2.8 (5) again, −z2 ∈ D(k, f) for some k ∈ D(i, j) and some f ∈ D(d, e). Since
I and ∆ are saturated sets, we get k ∈ I and f ∈ ∆, and hence z ∈ I[∆].

(b) By Zorn’s lemma, the family

F = {Î ⊂ G | Î is a saturated ideal containing I and Î[∆] ∩ T = ∅}

has a maximal element, J . We claim:

(i) J is a prime ideal. Assume, towards a contradiction, that there are p, q ∈ G such that
pq ∈ J but p, q 6∈ J . Let Jp be the saturated ideal generated by J ∪ {p}. By the maximality of
J we have Jp[∆]∩T 6= ∅; hence, there are elements t ∈ T, j ∈ J, d ∈ ∆, g ∈ G such that −t2 ∈
D(j, gp, d) (I.4.6 (1′)). Then −t2 ∈ Dt(jt2, gpt2, dt2) = Dt(j′, t2gp, d′) with j′ = jt2 ∈ J and
d′ = t2d ∈ ∆ (I.2.8 (3)). Hence −t2gp ∈ Dt(j′, t2, d′) (I.2.3 (0)). Similarly, there are elements
s ∈ T, h ∈ G, j′′ ∈ J, e′ ∈ ∆ so that −s2hq ∈ Dt(j′′, s2, e′). Then, z := (−t2gp)(−s2hq) =
t2s2ghpq is in J , and z ∈ Dt(j′j′′, j′s2, j′e′, j′′t2, j′′d′, t2s2, t2e′, s2d′, d′e′) (I.2.8 (9)). Hence,
z ∈ Dt(k, t2s2, t2e′, s2d′, d′e′) for some k ∈ Dt(j′j′′, j′s2, j′e′, j′′t2, j′′d′) (I.2.8 (5)). Since the
entries of this form are in J , and J is saturated, k ∈ J . Similarly, since ∆ is saturated and
t2e′, s2d′, d′e′ ∈ ∆, we obtain z ∈ Dt(k, t2s2, f) with f ∈ Dt(t2e′, s2d′, d′e′) ⊆ ∆. It follows
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that −t2s2 ∈ Dt(k,−z, f) (I.2.3 (0)). But x = st ∈ T and k,−z ∈ J imply −x2 ∈ Dt(l, f) ⊆
D(l, f) with l ∈ Dt(k,−z) ⊆ J , whence x ∈ J [∆] ∩ T , contradiction. This proves (i).

(ii) J [∆] = J . Assume J ⊂ J [∆]. By (a) we know that J [∆][∆] is an ideal, and by the
maximality of J we have J [∆][∆] ∩ T 6= ∅. Then, there are elements t ∈ T, x ∈ J [∆], d ∈ ∆
such that −t2 ∈ D(x, d), and elements j ∈ J, e ∈ ∆ such that −x2 ∈ D(j, e). From −t2 ∈
D(x, d) we have −t2 ∈ Dt(t2x, t2d) ([RS6]), which implies −t2x ∈ Dt(t2, t2d) (I.2.3 (0)). From
−x2 ∈ D(j, e) we obtain −x2 ∈ Dt(x2j, x2e) ([RS6]). Let d′ = t2d, e′ = x2e and j′ = x2j.
Clearly d′, e′ ∈ ∆, j′ ∈ J, −t2x ∈ Dt(t2, d′) and −x2 ∈ Dt(j′, e′). Scaling by t2 we obtain
−x2t2 ∈ Dt(t2j′, t2e′) = Dt(j′′, e′′) with j′′ = t2j′ ∈ J and e′′ = t2e′ ∈ ∆. On the other hand,
using [RS1] and [RS6] gives −x2t2 ∈ Dt(−xt2,−x2t2), and by (I.2.8 (5)) and the above we have
−x2t2 ∈ Dt(t2, d′, j′′, e′′). Since ∆ is saturated and d′, e′′ ∈ ∆, we have −x2t2 ∈ Dt(j′′, t2, f)
with f ∈ ∆. Therefore −t2 ∈ Dt(j′′, x2t2, f) (I.2.3 (0)), and using again that ∆ is saturated, we
arrive to −t2 ∈ Dt(j′′, g) with g ∈ Dt(x2t2, f) ⊆ ∆. Hence t ∈ T ∩ J [∆], which is impossible,
proving (ii).

Let ∆̂ be the saturated subsemigroup generated by ∆ ∪ J and let x ∈ ∆̂ ∩ −∆̂. Then
−x2 ∈ ∆̂, i.e., −x2 ∈ D(j, d) for some j ∈ J and some d ∈ ∆. Then x ∈ J [∆] = J , proving
∆̂ ∩ −∆̂ = J . Lemma I.4.8 gives a character h ∈ X

G
such that Z(h) = J, ∆ ⊆ ∆̂ ⊆ P (h).

Since J ∩ T = ∅, we have h(t2) = 1 for all t ∈ T . 2

Remark. Lemma I.4.10 is about the strongest result on the construction of RS-characters
under those general assumptions. Indeed, given a RS-character h ∈ X

G
, it is immediately

verified that the conclusions of the Lemma hold for I = J = Z(h), ∆ = P (h) and T =
h−1[{1,−1}] 2

Corollary I.4.11 Let G be a real semigroup and let a ∈ G. Let ∆ be a saturated subsemigroup
of G and T be a non-empty multiplicative subset of G such that aT ∩ ∆ = ∅, where aT =
{at | t ∈ T}. Then there exists h ∈ X

G
such that ∆ ⊆ P (h) and h(at2) = −1 for all t ∈ T .

Proof. Let ∆[−a] be the saturated subsemigroup of G generated by ∆ ∪ {−a}. Let T̂ = a2T
and let I = {0}. Clearly, T̂ is multiplicative and I is a saturated ideal of G. We claim
that I[∆[−a]] ∩ T̂ = ∅. Otherwise, we would have elements t ∈ T, d

1
, d

2
∈ ∆ such that

−a2t2 ∈ D(d
1
,−d

2
a). In particular we have −a2t2 ∈ D(1, d

1
,−a,−d

2
a), and then −a2t2 ∈

Dt(a2t2, d
1
a2t2,−at2,−d

2
at2). Hence (by I.2.3 (0)),

at2 ∈ Dt(a2t2, d
1
a2t2, a2t2,−d

2
at2) = Dt(a2t2, d

1
a2t2,−d

2
at2).

It follows that at2 ∈ Dt(q,−d
2
at2) for some q ∈ Dt(a2t2, d

1
a2t2). From the first condition we

obtain q ∈ Dt(at2, d
2
at2) (I.2.3 (0) and [RS2]). By I.2.8 (9),

q2 ∈ Dt(〈 at2, d
2
at2 〉⊗〈 a2t2, d

1
a2t2 〉) = Dt(at2, d

1
at2, d

2
at2, d

1
d

2
at2).

Hence q2 ∈ Dt(at2, p) for some p ∈ Dt(d
1
at2, d

2
at2, d

1
d

2
at2). From this condition we get p =

a2t2p and ap ∈ Dt(d
1
a2t2, d

2
a2t2, d

1
d

2
a2t2) (I.2.8 (3)). Since the entries of this form are in ∆, we

get ap ∈ ∆, i.e., p = at2d with d = ap ∈ ∆. It follows that q2 ∈ Dt(at2, at2d), and then −at2 ∈
Dt(−q2, at2d) ⊆ D(−1, at2d). Then at2 ∈ D(1,−at2d), which implies at2 ∈ Dt(a2t2,−at2d),
and we obtain −a2t2 ∈ Dt(−at2,−at2d). Scaling by −a gives at2 ∈ Dt(a2t2, a2t2d) and, since
this entries are in ∆, we have at2 ∈ ∆, contradicting aT ∩∆ = ∅ and proving our claim.

Lemma I.4.10 gives a character h ∈ X
G

such that ∆[−a] ⊆ P (h) and h(a2t2) = 1 for all

t ∈ T . Since h(−a) ≥ 0, it follows that h(a) = −1, and hence h(at2) = −1 for all t ∈ T . 2

As a particular case of the preceding Corollary for T = {1}, we obtain:
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Corollary I.4.12 ([M], Lemma 6.6.3, pp. 122-124) Let G be a RS and let a ∈ G. If S
is a saturated subsemigroup of G maximal for the condition a 6∈ S, then S is a prime sub-
semigroup. Such an S determines a RS-character h : G−→3 such that h−1[0, 1] = S and
h(a) = −1. 2

Corollary I.4.13 If G is a RS, then X
G
6= ∅.

Proof. Apply Corollary I.4.12 with a = −1. Since −1 6∈ Id(G), by Zorn’s lemma there is a
saturated subsemigroup of G maximal for −1 6∈ S. [If −1 = x2, then (−1)x2 = −x2 = x2 which
(by [TS5]) implies x2 = 0, and then −1 = 0, absurd.] 2

I.5 Separation theorems and duality

Now we come to one of our principal results; namely:

Theorem I.5.1 (The Duality Theorem) There is a functorial duality between the category RS
of real semigroups (with RS-homomorphisms), and the category ARS of abstract real spectra
(with ARS-morphisms). Moreover, this duality establishes an isomorphism between the cate-
gories RS and ARSop, the opposite category of ARS. 5

As usual in these matters, the proof of a duality result of this kind rests on a separation
theorem. The result presently needed follows from Lemmas I.4.8 and I.4.12:

Theorem I.5.2 Let G be a RS and let a ∈ G. Then

(a) If I is a saturated ideal of G not containing the element a, then there exists a RS-character
h such that h(a) 6= 0 and h(x) = 0 for all x ∈ I.

(b) If S is a saturated subsemigroup of G not containing the element a, then there exists a
RS-character h such that h(a) = −1 and h(x) ∈ {0, 1} for all x ∈ S.

Proof. See [DP1], Theorem 4.2, p. 115. 2

Theorem I.5.2 implies in turn:

Theorem I.5.3 Let G be a RS, and let a, b ∈ G. Then:

(1) If a /∈ D
G

(1, b), then there is a RS-character h ∈ X
G

such that h(b) ∈ {0, 1} and h(a) = −1.

(2) If a2 /∈ D
G

(b2, c2), then there is a RS-character h ∈ X
G

such that h(b2) = h(c2) = 0 and

h(a2) = 1.

Proof. See [DP1], Theorem 4.3, p. 116. 2

Finally, the separation result actually used in the proof of Theorem I.5.1 is a consequence
of the foregoing theorem, and takes the following form:

Theorem I.5.4 (Separation Theorem) Let G be a RS, and let a, b, c ∈ G. Then:

(1) a ∈ D
G

(b, c) if and only if for all h ∈ X
G

, h(a) ∈ D
3
(h(b), h(c)).

(2) a ∈ Dt
G

(b, c) if and only if for all h ∈ X
G

, h(a) ∈ Dt
3
(h(b), h(c)).

(3) If a 6= b, there is h ∈ X
G

such that h(a) 6= h(b).

5 The Duality Theorem was proved in [DP1], Thm. 4.1. Below we present a sketch of the proof.
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Proof. See [DP1], Theorem 4.4, pp. 116–117. 2

Now we give a hint of the

Proof of the Duality Theorem I.5.1. For later reference we register the definition of the
contravariant functors, Φ, from the category RS into the category ARS, and Ψ, in the opposite
direction that, together, establish the isomorphism of categories asserted in the statement of the
theorem. For the remaining details of the proof, the reader is referred to [DP1], pp. 117–118.

(I) To a given RS, G, the functor Φ assigns the pair (X
G
, G), where:

— X
G

is the set of RS-characters of G, and

— G is the image of G in 3XG under the evaluation map: G = { a | a ∈ G}, where a ∈ 3XG

denotes the evaluation at a, i.e., for σ ∈ X
G

, a (σ) = σ(a).

The facts that:

(a) The map a 7→ a (a ∈ G) is injective,

(b) The pair (X
G
, G) = Φ(G) is an ARS,

follow, respectively, from items (3) and (1) of Theorem I.5.4, via establishing that the (axiomat-
ically given) relation D

G
coincides with the representation relation D

XG
defined by condition

[R] in I.2.2(2), with Sper (A) replaced by X
G

(see also [M], § 6.1, p. 99).

The functor Φ is defined on morphisms as follows. Given a RS-homomorphism f : G−→H,
its dual Φ(f) = f∗ is defined by composition: given σ ∈ X

H
, we set,

f∗(σ) = σ ◦ f .

(II) The functor Ψ assigns to each ARS, (X,G), the semigroup (G, · , 1, 0,−1) endowed with
the representation relation D

X
defined by the analog of the stipulation [R] in I.2.2(2) (with

Spec
R

(A) replaced by X), namely,

c ∈ D
A

(a, b)⇔ ∀x ∈ X [c(x) = 0 ∨ a(x)c(x) = 1 ∨ b(x)c(x) = 1].

Routine checking shows that this structure verifies axioms [RS0]–[RS8] (see also [M], §6.2, pp.
105–110).

In order to define the functor Ψ on morphisms recall ([M], Def., p. 103) that a morphism
of ARSs, g : (Y,H) −→ (X,G), is a map g : Y −→X such that,

[ARS-mor] For each a ∈ G the composite mapping a ◦ g : Y −→3 belongs to Y .

It follows that every ARS-morphism induces a RS-homomorphism g∗ : (G,D
X

)−→ (H,D
Y

)
by setting, for a ∈ G,

g∗(a) = the unique b ∈ H such that a ◦ g = b.

Then, Ψ is defined on ARS-morphisms g : (Y,H) −→ (X,G) by : Ψ(g) = g∗. 2

Remark I.5.5 In the important case where G is G
A

, the real semigroup associated to a semi-
real ring A, see Examples I.1.2 (e) and I.2.2 (2), the Duality Theorem proves that the character
space X

GA
is isomorphic (in the category ARS) to Sper (A), the real spectrum of A.

Explicitly, the isomorphism is:

— To each α ∈ Sper (A) there corresponds a character h
α
∈ X

GA
defined, for a ∈ A, by:
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hα(a) = sgnα(πα(a)),

i.e., the sign (1, 0 or −1) of πα(a) in the total order ≤
α

of A/supp(α) determined by α
(πα : A−→A/supp(α) canonical); see I.1.3. It is clear that hα : G

A
−→3 is a well defined

homomorphism of ternary semigroups. That hα preserves representation follows, e.g., from the
characterization of representation in G

A
given in [M], Prop. 5.5.1 (5), pp. 95–96, 6 and the fact

that πα is a ring homomorphism.

— Conversely, to each RS-character h ∈ X
GA

there corresponds a set

α
h

= {a ∈ A |h(a) ∈ {0, 1}}.

As an exercise the reader can check without difficulty that α
h

is, indeed, a prime cone of A (cf.
[BCR], 4.2.1, p. 86 and 4.3.1, p. 88), i.e., α

h
∈ Sper (A).

A similar argument applies in the case G = G
A,T

, where T is a preorder of A, showing that

X
GA,T

is isomorphic, as an ARS, to Sper (A, T ) = {α ∈ Sper (A) |T ⊆A}. 2

The following result is just one application, among many, of the Duality Theorem I.5.1.
Further examples will occur later in this monograph.

Proposition I.5.6 (1) The category of abstract real spectra is closed under (filtering) projective
limits over right-directed index sets.

(2) Every ARS is a (filtering) projective limit of ARSs whose dual RSs are countable (even
finitely generated ).

Proof. See [DP1], Proposition 4.5, p. 119. 2

It follows from Corollary I.4.12 and results to be proved in Chapter IV (§ IV.5) that the
separation property of Theorem I.5.4 (1) extends to Pfister forms.

Corollary I.5.7 Let ϕ be a Pfister form over an RS, G, and let a ∈ G. Then,

a ∈ D
G

(ϕ) if and only if ∀h ∈ X
G

(h(a) ∈ D
3
(h ∗ ϕ)).

Proof. The implication (⇒) is obvious since every h ∈ X
G

is a RS-morphism.

(⇐) Corollary IV.5.8 (1),(2) proves that D
G

(ϕ) is a saturated subsemigroup of G. Assuming
a 6∈ D

G
(ϕ), pick a saturated subsemigroup S of G containing D

G
(ϕ) and maximal for a 6∈ S.

Then, Corollary I.4.12 gives a character h ∈ X
G

such that h(a) = −1 and hdS ⊆{0, 1}. In
particular, all entries of h ∗ ϕ are 0 or 1, hence D

3
(h ∗ ϕ)⊆{0, 1}, and h(a) 6∈ D

3
(h ∗ ϕ). 2

The separation theorem I.5.4 implies the following tri-semigroup property of representation
and transversal representation by binary forms :

Proposition I.5.8 Let G be a real semigroup and let a, b ∈ G. Then, D
G

(a, b) and Dt
G

(a, b)

are closed under the product (in G) of any three of its elements: for c
1
, c

2
, c

3
∈ G,

If c
i
∈ D

G
(a, b) for i = 1, 2, 3, then c

1
c

2
c

3
∈ D

G
(a, b),

and similarly for Dt.

6 Namely, for a, b, c ∈ A,
a ∈ D

GA
(b, c)⇔ ∃ t

0
, t

1
, t

2
∈
∑

A2 (t
0
a = t

1
b + t

2
c and t

0
a = a).
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Proof. We do the proof for Dt; that of D is even simpler. We omit the index G. By Theorem

I.5.4 (2) it suffices to prove that, for every h ∈ X
G

, h(c
1
c

2
c

3
) ∈ Dt

3
(h(a), h(b)). By assumption

(and I.5.4 (2)) we have

(*) h(c
i
) ∈ Dt

3
(h(a), h(b)) for i = 1, 2, 3.

Case 1. h(c
1
c

2
c

3
) = 0.

Then, h(c
i
) = 0 for some i. By Corollary I.2.5, (*) entails that either h(a) = h(b) = 0 or

h(a) = −h(b) 6= 0; by I.2.5 again, this implies h(c
1
c

2
c

3
) = 0 ∈ Dt

3
(h(a), h(b)).

Case 2. h(c
1
c

2
c

3
) 6= 0.

Then, h(c
i
) 6= 0 for all indices i = 1, 2, 3. Hence, at least two of the h(c

i
) are equal, say

h(c
1
) = h(c

2
). Then, h(c

1
c

2
) = 1, and h(c

1
c

2
c

3
) = h(c

3
). Then, the representation (*) with

i = 3 yields h(c
1
c

2
c

3
) = h(c

3
) ∈ Dt

3
(h(a), h(b)). 2

Remark. V. I. Arnold observed (in [A], Thm. 1) that the set of integers represented by a
binary quadratic form over Z, whether diagonal or not, is closed under the product of any three
of its elements. He called this the “tri-group” property (though it would be more appropriate
to call it “tri-semigroup” property). The preceding Proposition shows, in particular, that this
property holds for diagonal forms over any semi-real ring (Example I.2.2 (2)). 2

I.6 The representation partial order

In this section we address the question whether real semigroups carry a partial order induced
in a natural way by its representation relations. This question is motivated by the fact that,
for reduced special groups representation itself is a partial order for which the operation “–” is
an involution.

However, in the context of RS’s, none of the binary relations a ∈ D(1, b) or a ∈ Dt(1, b)
defines a partial order for which the operation “–” is an involution:

— a ∈ D(1, b) is reflexive (axioms [RS0], [RS1]) and transitive (Proposition I.2.3(12)), but
neither antisymmetric nor involutive in general.

— a ∈ Dt(1, b) is transitive and antisymmetric (these follow, respectively, from axioms [RS3]
and [RS7], using items (0) and (6) in Proposition I.2.3), and involutive (Proposition I.2.3(0)),
but not reflexive in general.

A closer examination of the case of RSG’s reveals, however, another approach to our ques-
tion based on the connection between representation in an RSG, G, and the natural order of
its Boolean hull B

G
. The facts known in this case are as follows.

Proposition I.6.1 Let G be a RSG. Then,

(a) The binary relation a ≤ b : ⇔ a ∈ DG(1, b) defines a partial order on G such that a ≤ b
⇔− b ≤ −a.

(b) 1 and −1 are, respectively, the least and greatest elements for ≤.

(c) The relation ≤ is not compatible with the group operation (i.e., a ≤ b does not imply ac ≤ bc;
take a < b and c = −1). Only the following “weak compatibility” relation holds:

a ≤ b ∧ bd ≤ cd ⇒ ∃e ≤ d (ae ≤ ce).

[This law is the equivalent for RSGs of the associativity of the representation relation, expressed
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by axiom [RS3] above; see also Proposition I.2.3(15).]

(d) The natural order of the Boolean hull BG of G induces the order ≤ on G.

(e) a ∈ DG(1, b)⇔ ∀σ ∈ XG (σ(b) = ⊥ ⇒ σ(a) = ⊥)⇔ ∀σ ∈ XG (σ(a) ≤ σ(b)). 2

For details and proofs, see [DM1], Cor. 4.4 and Prop. A, p. 53; for item (c), cf. [DMM], §1.1,
pp. 29-32.

As mentioned in the Preface, every RS has a canonical “hull” which is a Post algebra.
Every such algebra carries an order that makes it into a distributive lattice and, as we shall
prove in the next chapter, a representation relation that makes it into a RS; the relationship
between these structures is given in the next definition (cf. Proposition IV.2.10 (i)). In analogy
to I.6.1(d), one should expect the “natural” partial order in a RS to be induced by the order
of its Post hull, rather than by representation alone. This leads to:

Definition I.6.2 Let G be a RS, and let a, b ∈ G. We set:

a≤
G
b iff a ∈ D

G
(1, b) and − b ∈ D

G
(1,−a).

[Unless necessary we omit the subscript in ≤
G

.] 2

Remark I.6.3 Note that when G = 3 this definition gives 1<
3

0<
3
− 1, the opposite of the

order of these elements as integers. 2

With the notion of order just defined we get an analog of Proposition I.6.1 for RSs:

Proposition I.6.4 Let G be a RS. Then:

(a) The relation ≤ is a partial order on G such that a ≤ b⇔− b ≤ −a.

(b) For all a ∈ G, 1 ≤ a ≤ −1.

(c) a ≤ 0 ⇔ a = a2 ∈ Id(G),

0 ≤ a ⇔ a = −a2 ∈ −Id(G).

(d) Let X
G

be the character space of G. For a, b ∈ G,

a≤
G
b ⇔ ∀h ∈ X

G
(h(a)≤

3
h(b)) ⇔

⇔ ∀h ∈ X
G

[(h(b) = 1⇒ h(a) = 1) ∧ (h(b) = 0⇒ h(a) ∈ {0, 1})].

Proof. First we prove item (d) and then derive the other assertions by means of the Separation
Theorem I.5.4.

(d) In view of Remark I.6.3 the last condition is just a restatement of the second. As for
the first equivalence, Definition I.6.2 implies that ∀h ∈ X

G
(h(a) ≤

3
h(b)) is equivalent to

∀h ∈ X
G

(h(a) ∈ D
3
(1, h(b)) ∧ −h(b) ∈ D

3
(1,−h(a)), which, by Theorem I.5.4 (1), is in turn

equivalent to a ∈ D
G

(1, b) ∧ −b ∈ D
G

(1,−a), i.e., to a≤
G
b.

(a) ≤ is obviously reflexive.

Antisymmetry. Assume a≤
G
b and b≤

G
a. From (d) we get ∀h ∈ X

G
(h(a)≤

3
h(b) ∧

h(b)≤
3
h(a)). Since ≤

3
is a total order —hence antisymmetric— we have ∀h ∈ X

G
(h(a) =

h(b)) which, by I.5.4 (3), entails a = b.
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A similar argument, using item (d), proves transitivity. The last assertion of (a) is obvious.

(b) Clear, by direct inspection in Definition I.6.2.

(c) With b = 0, condition (d) reduces to

a ≤ 0 ⇔ ∀h ∈ X
G

(h(a) ∈ {0, 1}).

By I.5.4(3) the right-hand side is equivalent to a = a2.

The second assertion follows from the first and item (a). 2

The order defined in I.6.2 will be called the representation partial order of G.

The following Proposition summarizes the main properties of the representation partial
order.

Proposition I.6.5 (Properties of the representation partial order.) Let G be a RS. For
a, b, x, y ∈ G we have:

(1) The following are equivalent:

(i) a2 ≤ b ≤ −a2; (ii) Z(a) ⊆ Z(b); (iii) b = a2b.

In particular,

(2) a2 ≤ ab ≤ −a2 and b2 ≤ ab ≤ −b2 (hence a2 ≤ ± a ≤ −a2).

(3) If a2 ≤ b ≤ −a2 and b is invertible, then a is invertible.

(4) a ≤ x, y ⇒ a ≤ −xy. Hence, x, y ≤ a⇒ xy ≤ a.

(5) For a ∈ G, the set a↓ = {x ∈ G |x ≤ a} is a transversally saturated subsemigroup of G.

More generally,

(6) Let D be a non-empty subset of G (right ) directed under the order ≤ (i.e., for all x, y ∈ D
there is z ∈ D such that x, y ≤ z ). Then, the set D↓ = {x ∈ G |There is y ∈ D such that
x ≤ y} is a transversally saturated subsemigroup of G.

(7) For all a ∈ G, the infimum and the supremum of a and −a for the representation partial
order ≤ exist, and a∧ − a = a2, a ∨ − a = −a2. In particular,

(8) a∧ − a ≤ 0 ≤ b ∨ − b for all a, b ∈ G. 7

(9) With notation as in I.1.11, I
a

= {x ∈ G | a2 ≤ x ≤ −a2}.

Note. Here Z(a) = {h ∈ X
G
| h(a) = 0}, and I

a
= {x ∈ G | a2x = x} is the principal ideal of

G generated by a (a ∈ G).

Proof. The characterization of ≤ given by Proposition I.6.4 (d) is repeatedly used in this proof.

(1) (i) ⇔ (ii). By I.6.4 (d), condition (i) is equivalent to

(i′) ∀h ∈ X
G

[h(a)2≤
3
h(b) ≤

3
− h(a)2].

Clearly, this condition implies (ii). Conversely, (ii) implies (i′); this is evident if h(a) = 0; if
h(a) 6= 0, then h(a)2 = 1, and (i′) holds by I.6.4(b).

Obviously, (iii) ⇒ (ii). For (ii) ⇒ (iii), by the separation theorem for RSs (Theorem

7 Called the Kleene inequality; cf. IV.1.2 (b).
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I.5.4 (3)), it suffices to prove that h(a2b) = h(b) for all h ∈ X
G

. This is clear if h(b) = 0; if

h(b) 6= 0, by (ii), h(a) 6= 0, whence h(a)2 = 1, and we get h(a2b) = h(a)2h(b) = h(b).

(2) follows from (1.ii), as Z(a), Z(b) ⊆ Z(a) ∪ Z(b) = Z(ab).

(3) follows from (1.ii) or (1.iii) (note that b is invertible iff Z(b) = ∅).

(4) For the first assertion, assume a ≤ x, y and h(−xy) = 1, with h ∈ X
G

; then, one of h(x)
or h(y) is 1, and the assumption, together with I.6.4 (d), entails h(a) = 1. If h(−xy) = 0, one
of h(x) or h(y) is 0, and we get h(a) ∈ {0, 1}. For the second assertion, use the first together
with I.6.4 (a).

(5) By (4), a↓ is closed under product, and by I.6.4 (a) it contains 1.

To show it is closed under transversal representation, let x, y ∈ a↓ and z ∈ Dt
G

(x, y). Again,

we invoke I.6.4 (d) to prove z ≤ a. Let h ∈ X
G

be such that h(a) = 1; since x, y ≤ a,
we get h(x) = h(y) = 1, and hence h(z) ∈ Dt

3
(h(x), h(y)) = Dt

3
(1, 1) = {1}. Suppose next

h(a) = 0; the assumption and I.6.4 (d) give h(x), h(y) ∈ {0, 1}, whence, by Corollary I.2.5,
h(z) ∈ Dt

3
(h(x), h(y))⊆{0, 1}, as required.

(6) This follows easily form (5). In detail: let y ∈ D (6= ∅); since 1 ≤ y (I.6.4 (a)), we have
1 ∈ D↓.

— D↓ is multiplicative.

For i = 1, 2, let xi ∈ D↓, and let yi ∈ D be such that xi ≤ yi. Since D is directed, there is
y

3
∈ D such that y

1
, y

2
≤ y

3
. Hence, x

1
, x

2
≤ y

3
and (5) yields x

1
x

2
≤ y

3
, i.e., x

1
x

2
∈ D↓.

— D↓ is closed under tranversal representation.

For i = 1, 2, let xi ∈ D↓, z ∈ Dt
G

(x
1
, x

2
), and yi ∈ D be such that xi ≤ yi. Since D is directed,

there is y
3
∈ D so that xi ≤ yi ≤ y3

(i = 1, 2). By (5), z ≤ y
3
, whence z ∈ D↓.

(7) By (2) it only remains to prove:

For all x ∈ G, x ≤ a and x ≤ −a imply x ≤ a2,

and the dual condition for the supremum; these follow at once from (4).

(8) follows from (7) and a2 ≤ 0 ≤ −b2 (I.6.4 (c)).

(9) is clear from the definition of I
a

and (1.iii). 2

Remark. A set of the form a↓ may not be saturated; if, e.g., 0 6≤ a, we have 0 ∈ D
G

(a, a)

(I.2.3 (1)), but 0 6∈ a↓. 2

Added December 2011.

The next Proposition gives an internal characterization of the representation partial order
of the real semigroup associated to a preordered ring.

I.6.6 Reminder. (i) Given a ring A and a preorder T of A, in the proof below we shall use
the identification of the character space of the real semigroup G

A,T
with Sper (A, T ) established

by the bijection defined in I.5.5:

α ∈ Sper (A, T ) ←→ h
α
∈ X

GA,T
,
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where h
α
(a) = sgnα(π

α
(a)), with π

α
: A−→A/supp(α) canonical.

The characterization of the representation partial order in terms of characters given in
Proposition I.6.4 (d) will also be used.

(ii) For a ∈ A we denote by a the map Sper (A, T )−→3 defined in I.1.2 (e). 2

Proposition I.6.7 Let A be a ring, T a preorder of A and G
A,T

be the RS associated to

(A, T ); ≤ will denote the representation partial order of G
A,T

. For a, b ∈ A, the following are

equivalent:

(1) a ≤ b .

(2) There are s
0
, s

1
, s

2
∈ T such that

(i) s
0
a = s

1
+ s

2
b ;

(ii) For all α ∈ Sper (A, T ), π
α
(b) >

α
0 ⇒ π

α
(s

2
) >

α
0 and π

α
(a) <

α
0 ⇒ π

α
(s

0
) >

α
0 .

(3) There are s
0
, s

1
, s

2
∈ T such that

(i) s
0
a = s

1
+ s

2
b ;

(ii) a ≤ s
0
a and s

0
b ≤ b .

Notes. (a) Since s
i
∈ T , the conditions π

α
(s
i
) >

α
0 in 2.(ii) are equivalent to π

α
(s
i
) 6= 0.

(b) For an analog of item (3) for binary representation (instead of the order ≤), see Proposition
5.5.1 (5), p. 95, of [M].

Proof. To abridge, we write D for D
GA,T

.

(1) ⇒ (2). By Definition I.6.2, (1) means a ∈ D(1, b) and −b ∈ D(1,−a). Using [M], Prop.
5.5.1 (5) on each of these representations, there are t

i
, t′
i
∈ T (i = 1, 2) such that

(†) t
0
a = t

1
+ t

2
b , −t′

0
b = t′

1
− t′

2
a and t

0
a = a , t′

0
b = b .

From this comes: (t
0
+t′

2
) a = (t

1
+t′

1
)+(t′

0
+t

2
) b . Setting s

0
= t

0
+t′

2
, s

1
= t

1
+t′

1
, s

2
= t′

0
+t

2

(all in T ), gives at once (2.i).

Now we use the last two equalities in (†) to get (2.ii). Let α ∈ Sper (A, T ).

— Let π
α
(b) >

α
0. The identification in I.6.6 (i) yields h

α
(b) = 1 and (from t′

0
b = b), h

α
(t′

0
b) = 1;

it follows that π
α
(t′

0
b) >

α
0. This implies π

α
(t′

0
) 6= 0, and (since t′

0
∈ T ⊆α) π

α
(t′

0
) >

α
0. We

conclude: π
α
(s

2
) = π

α
(t′

0
) + π

α
(t

2
) >

α
0 .

— Likewise, if π
α
(b) <

α
0 we get h

α
(a) = −1 and, from t

0
a = a follows h

α
(t

0
a) = −1, i.e.,

π
α
(t

0
a) <

α
0. This entails π

α
(t

0
) 6= 0, whence π

α
(t

0
) >

α
0 and, finally, π

α
(s

0
) = π

α
(t

0
) +

π
α
(t′

2
) >

α
0 .

(2) ⇒ (3). Now we reinterpret conditions (2.ii) in terms of the representation partial order to
get (3.ii), and conversely.

(2.ii) ⇒ (3.ii). Using Proposition I.6.4 (d) with the characters h
α
, we must show, for α ∈

Sper (A, T ),

h
α
(s

0
a) = 1 ⇒ h

α
(a) = 1 and h

α
(a) = −1 ⇒ h

α
(s

0
a) = −1 ,

or, in terms of the maps π
α
,
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(*) π
α
(s

0
a) >

α
0 ⇒ π

α
(a) >

α
0 and π

α
(a) <

α
0 ⇒ π

α
(s

0
a) <

α
0.

Likewise,

(**) π
α
(b) >

α
0 ⇒ π

α
(s

2
b) >

α
0 and π

α
(s

2
b) <

α
0 ⇒ π

α
(b) <

α
0.

Proof of (*). Since π
α
(s

0
) ≥

α
0 (s

0
∈ T ), we have π

α
(s

0
a) >

α
0 ⇒ π

α
(s

0
) 6= 0 ⇒ π

α
(s

0
) >

α
0.

Also, π
α
(a) 6= 0, and π

α
(s

0
a) >

α
0 together with π

α
(s

0
) >

α
0 give π

α
(a) >

α
0. [Note this does

not use (2.ii).]

By (2.ii), π
α
(a) <

α
0 implies π

α
(s

0
) >

α
0; these clearly yield π

α
(s

0
a) <

α
0.

Proof of (**). Similar to that of (*). From (2.ii) follows:

π
α
(b) >

α
0 ⇒ π

α
(s

2
b) >

α
0 ⇒ π

α
(s

2
b) >

α
0.

Also,

π
α
(s

2
b) <

α
0 ⇒ π

α
(b) 6= 0 ∧ π

α
(s

2
) 6= 0 ⇒ π

α
(b) 6= 0 ∧ π

α
(s

2
) >

α
0 ⇒ π

α
(b) <

α
0 .

(3.ii) ⇒ (2.ii). This is clear, reversing the preceding reasoning; in detail:

— Let π
α
(b) >

α
0. From the second inequality in (3.ii), using I.6.4 (d), π

α
(s

2
b) >

α
0, which

entails π
α
(s

2
) 6= 0 (equivalent to π

α
(s

2
) >

α
0).

— Let π
α
(a) <

α
0. The first inequality in (3.ii) and I.6.4 (d) yield π

α
(s

0
a) <

α
0 which, in turn,

entails π
α
(s

0
) 6= 0 .

(2) ⇒ (1). By I.6.4 (d) applied with the characters h
α
, and I.6.6 (i), we must show, for α ∈

Sper (A, T ):

π
α
(b) >

α
0 ⇒ π

α
(a) >

α
0 and π

α
(a) <

α
0 ⇒ π

α
(b) <

α
0 .

For the first implication: from π
α
(b) >

α
0, by (2.ii), π

α
(s

2
) >

α
0, and hence π

α
(s

2
b) >

α
0. Since

π
α
(s

1
) ≥

α
0 from (2.i) comes π

α
(s

0
a) = π

α
(s

1
) + π

α
(s

2
b) >

α
0. This implies π

α
(s

0
), π

α
(a) 6= 0,

whence π
α
(s

0
) >

α
0, and then π

α
(a) >

α
0, as required.

For the second implication: by (2.ii), π
α
(a) <

α
0 ⇒ π

α
(s

0
) >

α
0 ⇒ π

α
(s

0
a) <

α
0 . From (2.i)

we have s
2
b = s

0
a − s

1
; since π

α
(−s

1
) ≤

α
0, we get π

α
(s

2
b) = π

α
(s

0
a) − π

α
(s

1
) <

α
0. Then,

π
α
(s

2
) 6= 0, whence π

α
(s

2
) >

α
0; altogether, this gives π

α
(b) <

α
0 , as needed. 2

We shall consider the restriction of the representation partial order to the set of idempotents
of a RS, G. Our next result proves, firstly, that this order coincides with the order given by
the 2-semigroup structure of Id(G), cf. I.1.29 (i),(ii). More remarkably, it proves that under
this order the set Id(G), is a bounded distributive lattice where the join and meet operations
have a natural meaning.

Proposition I.6.8 Let G be a RS.

(1) The restriction of the representation partial order of G to Id(G) coincides with the order
of the 2-semigroup structure of Id(G), cf. I.1.29.

(2) With join and meet defined by

a ∨ b = a · b ,
a ∧ b = the unique element c ∈ Dt(a, b) .

for a, b ∈ Id(G), 〈 Id(G),∧ ,∨, 1, 0 〉 is a distributive lattice with first element 1 and last element
0, where the (lattice) order is the (restriction of the) representation partial order.

Remark. [M], Prop. 6.1.5(1), p. 103, proves that Dt(a, b) is a singleton whenever a, b are
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idempotents; see Corollary IV.5.3 (i) below.

Proof. (1) By I.1.29 (ii) and Proposition I.6.4, this amounts to showing:

b = b · a ⇔ ∀h ∈ X
G

(h(a)≤
3
h(b)).

By Theorem I.5.4 (3) the left-hand side is equivalent to ∀h ∈ X
G

(h(b) = h(b)h(a)). Hence it
suffices to check that

x = x · y ⇔ y≤
3
x,

holds for idempotents x, y of 3, i.e., whenever x, y ∈ {0, 1}, a routine verification.

Note that for elements a ∈ Id(G) the characterization of ≤ in I.6.4 (d) boils down to:

(∗)

{
a2 ≤ b ⇔ ∀h ∈ X

G
[h(b) = 1⇒ h(a2) = 1],

b ≤ −a2 ⇔ ∀h ∈ X
G

[(h(a) = 0⇒ h(b) ∈ {0, 1})] .

(2) a) For a, b ∈ Id(G), a ∧ b is the glb of a and b for the representation partial order.

Let c = a ∧ b. We prove:

— c ≤ a, b.

As noted in (*) it suffices to prove ∀h ∈ X
G

(h(a) = 1⇒h(c) = 1). Since any h ∈X
G

preserves
transversal representation, from c ∈ Dt

G(a, b) we get h(c) ∈ Dt
3(h(a), h(b)) = Dt

3(1, h(b)).
Since h(b) ∈ {0, 1}, inspection of the explicit definition of Dt

3 (I.2.5) shows that in either case
h(c) = 1. Similar proof for c ≤ b.

— ∀d ∈ Id(G) (d ≤ a ∧ d ≤ b⇒ d ≤ c).

Suppose d ≤ a, b, and let h(c) = 1. Since c ∈ Dt
G(a, b) = Dt

XG
(a, b), we have h(c)h(a) = 1 or

h(c)h(b) = 1 (see [TR] in §1), whence h(a) = 1 or h(b) = 1. From d ≤ a, b we obtain h(d) = 1,
as required.

b) (Id(G),∧,∨) is a distributive lattice.

We only check the distributive law, c ∨ (a ∧ b) = (c ∨ a) ∧ (c ∨ b), leaving further details to
the reader.

Since c ∨ a = c · a, c ∨ b = c · b, setting e = (c ∨ a)∧ (c ∨ b) = ca∧ cb, we have e ∈ Dt(ca, cb).
Let d = a ∧ b, so that d ∈ Dt(a, b). Scaling by c we have cd ∈ Dt(ca, cb) (I.2.3 (2)). Since this
set is a singleton, we conclude that cd = e, as desired. 2

Added December 2011.

The Proposition that follows characterizes binary representation in terms of the represen-
tation partial order and (implicitly) the lattice structure of the idempotents of a RS.

Proposition I.6.9 Let G be a real semigroup and let ≤ denote its representation partial order.
For a, b, c ∈ G the following are equivalent:

(1) a ∈ D
G

(b, c) .

(2) ab ≤ a2bc, ac ≤ a2bc and z2 ≤ a2, where z = z2 is the unique element in Dt
G

(b2, c2).

Proof. (1)⇒ (2). We use I.6.4 (d) to check the inequalities in (2). Let h ∈ X
G

.

— If h(a2bc) = 1, then h(a) 6= 0, whence h(a2) = 1, and h(b) = h(c) 6= 0. From (1), it follows
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h(a) = h(b) , or h(a) = h(c); in either case, h(a) = h(b), i.e., h(ab) = 1.

— Assume h(a2bc) = 0. Then, either h(a) = 0 or h(b) = 0, whence h(ab) = 0, or both these
values are 6= 0, and h(c) = 0. In this case, (1) implies h(a) ∈ D

3
(h(b), h(c)) = D

3
(h(b), 0) =

{h(b), 0}, and hence h(a) = h(b), i.e., h(ab) = 1.

The second inequality in (2) follows from the first by interchanging b and c.

Since h(z2) only takes on the values 0, 1, to prove z2 ≤ a2, assume h(a2) = 1, i.e., h(a) 6= 0.
By (1), one of h(b) or h(c) is 6= 0, i.e., either h(b2) = 1 or h(c2) = 1. Then, z2 ∈ Dt

G
(b2, c2) and

I.2.5 yield h(z2) = 1, as required.

(2)⇒ (1). We must show:

∀h ∈ X
G

(h(a) 6= 0⇒ h(a) = h(b)∨h(a) = h(c)) .

Note that any RS-character of G is, by I.6.2, monotone with respect to ≤ .

— If h(a) = 1, the first two inequalities in (2) give h(b) ≤3 h(b)h(c) and h(c) ≤3 h(b)h(c).
The inequality z2 ≤ a2 gives h(z2) = 1 and, by z2 ∈ Dt

G
(b2, c2), either h(b2) = 1 or h(c2) = 1,

i.e., h(b) 6= 0 or h(c) 6= 0. If h(c) = 0, then h(b) ≤3 0 and, since h(b) 6= 0, we get h(b) = 1.
If h(c) = −1, then −1 = h(c) ≤3 −h(b), whence h(b) ≤3 1, i.e., h(b) = 1. In either case,
h(b) = 1 = h(a).

— If h(a) = −1, by I.2.5 one of h(b) or h(c) is 6= 0. The first two inequalities in (2) give
−h(b),−h(c) ≤3 h(b)h(c). If h(b) = 1 then, h(c) = −1, and h(a) = h(c). If h(b) = 0, then
h(c) 6= 0 and −h(c) ≤3 0, whence 0 ≤3 h(c) and h(c) = −1(= h(a)). The remaining case is
h(b) = −1 = h(a), as required. 2

A first, interesting, corollary of Proposition I.6.9 is:

Corollary I.6.10 In the presence of product and the constants 1, 0,−1, the binary representa-
tion relation of a RS is first-order mutually interdefinable with its representation partial order.

Proof. The representation partial order is, by Definition I.6.2, quantifier-free definable from
binary representation. Conversely, Propositions I.6.9 and I.6.8 show that the ternary relation
D(·, ·) is first-order (but not quantifier-free) definable in the language {1, 0,−1, · ,≤}. Indeed,
since the unique element z such that z2 ∈ Dt

G
(b2, c2) is the infimum of b2 and c2 for the

representation partial order retricted to idempotents (I.6.8), it suffices to substitute the last
requirement in I.6.9 (2) by the usual definition of the infimum, namely:

∀z [ z2 ≤ b2 ∧ z2 ≤ c2 ∧ ∀x (x2 ≤ b2 ∧ x2 ≤ c2 → x2 ≤ z2)→ z2 ≤ a2 ] . 2

Corollary I.6.11 Let G be a RS and let h : G−→3 be a character of ternary semigroups.
The following are equivalent:

(1) h ∈ X
G

.

(2) i) h is monotone for the representation partial order.

ii) hd Id(G) : Id(G)−→{1, 0} is a homomorphism of bounded lattices (1 < 0).

Remark I.6.12 Condition (2.ii) is equivalent to either:

(2.iii) h preserves infima of the distributive lattice Id(G).

(2.iv) For a, b, c ∈ G, a2 ∈ Dt
G

(b2, c2) and h(b) = h(c) = 0 imply h(a) = 0.
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The proof of these equivalences is straightforward upon observing that, since h is assumed to
preserve product, it automatically preserves suprema of Id(G); cf. I.6.8 (2). 2

Proof. (1) ⇒ (2). This implication is clear, as both the representation partial order and
the lattice operations in Id(G) are quantifier-free definable in terms of constants, product and
binary representation (I.6.2, I.6.8 (2)).

The implication (2) ⇒ (1) follows from (2) ⇒ (1) in Proposition I.6.9. 2

Corollary I.6.11 entails a criterion for a product of three RS-characters to be a RS-character:

Corollary I.6.13 Let G be a RS and let h
i
∈ X

G
(i = 1, 2, 3) be RS-characters of G.

(1) Assume that the zero set of one of the h
i
’s contains the zero sets of the others. Then,

(h
1
h

2
h

3
)d Id(G) is a homomorphism of bounded lattices onto {1, 0}.

In particular,

(2) h
1
h

2
h

3
∈ X

G
if and only if

(i) The zero set of one of the h
i
’s contains the zero sets of the others.

(ii) h
1
h

2
h

3
is monotone for the representation partial order of G.

Proof. (1) Without loss of generality we suppose Z(h
2
), Z(h

3
)⊆Z(h

1
). By I.6.12 (2.iv) it

suffices to show

a2 ∈ Dt
G

(b2, c2) and h
1
h

2
h

3
(b) = h

1
h

2
h

3
(c) = 0 imply h

1
h

2
h

3
(a) = 0 .

By the assumption on the zero sets of the h
i
’s, h

1
h

2
h

3
(b) = 0 implies h

1
(b) = 0; likewise,

h
1
(c) = 0. Since h

1
∈ X

G
, from a2 ∈ Dt

G
(b2, c2) comes h

1
(a) = 0, and hence h

1
h

2
h

3
(a) = 0.

(2) For the implication (⇒), assertion (2.i) comes from Lemma II.2.11 (1), and (2.ii) comes
from (1) ⇒ (2.i) in Corollary I.6.11.

Conversely, assumptions (2.i), (2.ii) and item (1) show that the two conditions in I.6.11 (2)
are verified with h = h

1
h

2
h

3
, implying h

1
h

2
h

3
∈ X

G
. 2

For products of the form h2g, we can give a more precise and manageable necessary and
sufficient condition for h2g to be a RS-character.

Proposition I.6.14 Let G be a RS and let h, g ∈ X
G

be such that Z(g)⊆Z(h). The following
are equivalent:

(1) h2g ∈ X
G

.

(2) The set Z(h) ∪ g−1[1] is decreasing under the representation partial order of G.

Proof. (1) ⇒ (2). Let b ∈ Z(h) ∪ g−1[1] and a ≤ b. If g(b) = 1, then a ≤ b and g ∈ X
G

entail

g(a) = 1 (I.6.4 (d)). So, assume g(b) 6= 1 and, hence, h(b) = 0; then, h2g(b) = 0. Together with
(1) and a ≤ b this implies h2g(a) ∈ {0, 1} (I.6.4 (d)).

— If h2g(a) = 1, then g(a) = 1, and a ∈ Z(h) ∪ g−1[1].

— If h2g(a) = 0, then a ∈ Z(g) ∪ Z(h) = Z(h)⊆Z(h) ∪ g−1[1], as required.

(2) ⇒ (1). Assume (2). By Corollary I.6.13 (2) it suffices to show that h2g is monotone for ≤.

Let a, b ∈ G , a ≤ b. We must show
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(*) h2g(a) = 0⇒ h2g(b) ∈ {0,−1} and (**) h2g(a) = −1⇒ h2g(b) = −1 .

Proof of (*). Assume h2g(a) = 0. Then (by Z(g)⊆Z(h)), h(a) = 0. From a ≤ b and h ∈ X
G

follows h(b) ∈ {0,−1}. If h(b) = −1, then (from Z(g)⊆Z(h)), g(b) 6= 0. If g(b) = −1, we get
h2g(b) = −1.

So, suppose g(b) = 1. Then (by a ≤ b), g(a) = 1. From h(a) = 0 we get −a ∈ Z(h).
Since −b ≤ −a (cf. I.6.4 (a)), by assumption (2) we get −b ∈ Z(h)∪ g−1[1], in contradiction to
g(b) = 1 , h(b) = −1.

Proof of (**). From h2g(a) = −1 comes h(a) 6= 0 and g(a) = −1 and hence (by g ∈ X
G

and

a ≤ b), g(b) = −1. Since a 6∈ Z(h) ∪ g−1[1], assumption (2) yields b 6∈ Z(h) ∪ g−1[1], whence
h(b) 6= 0, and h2g(b) = −1, as required. 2

Remark. By Lemma II.2.11 (1), if h2g ∈ X
G

, the zero sets Z(g) and Z(h) are comparable

under inclusion. The alternative Z(h)⊆Z(g) implies g2 = h2g2 (Lemma I.1.19 (2)), which in
turn gives g = h2g. Note also that Lemma I.1.18 (4) yields, in any case, g h2g. 2

The foregoing results, especially Corollary I.6.11, raise the natural question whether, for TS-
characters, monotonicity with respect to the representation partial order implies preservation
of binary representation (i.e., is equivalent to being a RS-character). In the sequel we exhibit a
counterexample showing that the answer is negative. The counterexample will be constructed
in two steps; the first is:

Lemma I.6.15 Let G be a real semigroup whose only invertible elements are 1 and −1. The
map h : G−→3 defined by

h(x) =


1 if x = 1
0 if x 6= 1 and x 6= −1
−1 if x = −1,

is a character of ternary semigroups, monotone for the representation partial order.

Proof. (1) h is a TS-character.

Obviously h preserves constants: h(i) = i for i ∈ {1, 0,−1}.

h is multiplicative. This is also straightforward arguing according the values of h(xy), for
x, y ∈ G. In detail:

— If h(xy) = 1, then xy = 1, i.e., both x and y are invertible; by assumption, x, y ∈ {±1}, and
hence x = y = 1 or x = y = −1, which clearly yields h(x)h(y) = 1 = h(xy).

— If h(xy) = 0, then x, y 6∈ {±1}, which implies x 6∈ {±1} or y 6∈ {±1}. By the definition of
h, h(x) = 0 or h(y) = 0, whence h(x)h(y) = 0 = h(xy).

— If h(xy) = −1, then xy = −1, and both x and y are invertible; by assumption, x, y ∈ {±1}
and, since xy = −1, we have either x = 1 and y = −1, or x = −1 and y = 1, implying
h(x)h(y) = −1 = h(xy).

(2) h is monotone for the representation partial order ≤.

Let a, b ∈ G, a ≤ b. If h(b) = 1, then b = 1, which entails a = 1 (I.6.4 (b)), and hence
h(a) = 1 ≤ h(b). If h(b) = 0, then b 6∈ {±1}. From a ≤ b comes a 6= −1, hence h(a) ∈ {0, 1},
and h(a) ≤ h(b). 2

The bulk of the construction is summarized in:
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Proposition I.6.16 There exists a real semigroup G having ±1 as only invertible elements and
such that the map h : G−→3 defined in Lemma I.6.15 does not preserve binary representation.

Warning. The proof uses the contruction, in IV.1.10, of the centered Kleene algebra K(L)
associated to a bounded distributive lattice L, as well as the proof, in V.7.2, that, under a certain
requirement (therein called [cn]) the Kleene algebra K(L) is a (spectral) real semigroup. For
unexplained notation and details, see these references. 2

I.6.17 Reminder. We recall a number of known notions and facts from general topology.

Definition. (Cf. [Mun], Ch. 4, p. 234.) A topological space is called completely normal if
every subspace is normal. 2

Theorem. (Cf. [Mun], Ch. 4, p. 234.) A space X is completely normal if and only if
for every pair of subsets A,B⊆X such that A ∩ B = A ∩ B = ∅ there are disjoint open sets
U, V ⊆X such that A⊆U and B⊆V . 2

A somewhat less known restatement of the latter condition (coming from [Mon]) is:

Proposition A. A space X is completely normal if and only if for every pair of open sets
U, V ⊆X there are open sets W

1
,W

2
such that U ∪W

1
⊇ V, V ∪W

2
⊇ U and W

1
∩ W

2
= ∅.

Proof. (⇒) Let X be completely normal and let U, V ⊆X be open. With A = U ∩(X \V ) and
B = V ∩ (X \ U) it is easily checked that A ∩B = A ∩B = ∅. The preceding characterization
gives disjoint open sets W

1
,W

2
such that A⊆W

1
and B⊆W

2
which, in turn, imply U∪W

1
⊇ V

and V ∪W
2
⊇ U .

(⇐) Let A,B⊆X be such that A ∩ B = A ∩ B = ∅. Applying the stated condition with
U = X \A , V = X \B, we get disjoint open sets W

1
,W

2
such that U ∪W

1
⊇ V, V ∪W

2
⊇ U ;

this, in turn, gives W
1
⊇ (X \ B) ∩ A and W

2
⊇ (X \ A) ∩ B. But A ∩ B = ∅ implies

(X \B) ∩A ⊇ (X \B) ∩A = A, and so W
1
⊇ A. A similar argument proves W

2
⊇ B. 2

Finally, we recall:

Proposition B. (Cf. [Mun], Ch. 4, pp. 234, 243.) Any metric space is completely normal. 2

Proof of Proposition I.6.16. We choose X to be a connected metric space having at least
two points, and take L = Ω(X) to be the bounded distributive lattice of all opens of X ordered
under inclusion. Let K(L) = {(U, V ) ∈ L × Linv |U ∩ V = ∅} denote the centered Kleene
algebra constructed in IV.1.10 from the lattice L. Note that the order ≤ of K(L) is inclusion
(⊆) in the “L-coordinate” and reverse inclusion in the “Linv-coordinate”; the center c is (∅, ∅),
and the opposite (“negation”) of (U, V ) is (V,U).

In order to show that K(L) (under product given by symmetric difference) is a real semi-
group it suffices to verify property [cn] in Theorem V.7.2 (2):

[cn] For all a, b ∈ K(L) such that a, b ≤ c, there are x, y ∈ K(L) such that a∧x ≤ b, b∧ y ≤ a
and x∨ y = c.

From a, b ≤ c = (∅, ∅) we infer that a, b are of the form a = (∅, U), b = (∅, V ). Since X is
completely normal, from Proposition A in I.6.17 we get disjoint open sets W

1
,W

2
such that

U ∪W
1
⊇ V and V ∪W

2
⊇ U . Letting x := (∅,W

1
) , y := (∅,W

2
), from the first of these

inclusions we get

a∧x = (∅, U)∧ (∅,W
1
) = (∅, U ∪W

1
) ≤ (∅, V ) = b,

and, from the second inclusion, b∧ y ≤ a. Also,
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x∨ y = (∅,W
1
)∨ (∅,W

2
) = (∅,W

1
∩W

2
) = (∅, ∅) = c.

Thus, K(L) is a real semigroup which, in addition, is spectral, that we call G. Connectivity
of X implies that the only invertible elements of G are 1 = (∅, X) and −1 = (X, ∅). In
fact, recalling that product in K(L) is symmetric difference, an element (U, V ) ∈ K(L) is
invertible if and only if (U, V )∧¬(U, V ) = (U, V )∧ (V,U) = 1 = (∅, X), and this is equivalent
to U ∩ V = ∅ and U ∪ V = X, i.e., the sets U, V form a clopen partition of X. From the
connectivity assumption follows, then, that one of U or V is empty and the other is X, proving
that G× = {1,−1}.

Consider now the monotone TS-character h of G constructed in I.6.15.

Claim. h does not preserve the binary representation relation of G.

Proof of Claim. Consider the pairs a = (∅, X \ {x}), b = (∅, X \ {y}), where x, y are distinct
points of X; clearly (since points of X are closed) X \ {x}, X \ {y} ∈ Ω(X) = L.

We assert that 1 ∈ D
G

(a, b). Since a, b ≤ c we have a = a2 and b = b2 (cf. I.6.4 (c)) and
the stated representation boils down to

(*) a2 ∧ b2 ∧ c = a2 ∧ b2 ≤ 1 ≤ a2 ∨ b2 ∨ c = c,

or, equivalently, a2 ∧ b2 = 1 = (∅, X). Since a2 ∧ b2 = a∧ b = (∅, (X \ {x}) ∪ (X \ {y})) =
(∅, X) = 1, (*) is proved.

On the other hand, since a, b 6∈ {±1}, we have h(a) = h(b) = 0 and then obtain h(1) = 1 6∈
D

3
(h(a), h(b) = D

3
(0, 0) = {0}, proving the Claim, and also Proposition I.6.16. 2

Next we prove that the filters of the distributive lattice (Id(G),∧,∨, 1, 0) are in one-one
correspondence with the saturated ideals of G.

Proposition I.6.18 Let G be a RS. The assignment I 7−→ I ∩ Id(G) establishes a bijective
correspondence between the saturated ideals of G and the filters of the distributive lattice Id(G).
Under this correspondence,

(i) Prime saturated ideals of G correspond bijectively to prime filters of Id(G).

(ii) Principal ideals of G correspond bijectively to principal filters of Id(G).

The correspondence preserves inclusion and proper inclusion.

Proof. a) If I is a saturated ideal of G, I ∩ Id(G) is a filter of Id(G).

(a.i) a ∈ I ∩ Id(G) ∧ b ∈ Id(G) ∧ a ≤ b ⇒ b ∈ I.

From a ≤ b we have b = a ∨ b = a · b ∈ I (I.6.8 (2)).

(a.ii) a, b ∈ I ∩ Id(G) ⇒ a ∧ b ∈ I ∩ Id(G).

Let c = a ∧ b. Since I is saturated and a, b ∈ I, we get {c} = Dt
G(a, b) ⊆ I.

b) I is a prime ideal iff I ∩ Id(G) is a prime filter.

Immediate from a ∨ b = a · b (a, b ∈ Id(G)).

c) For every filter F of Id(G), the set I(F ) = {a ∈ G | a2 ∈ F} is a saturated ideal of G, and
I(F ) ∩ Id(G) = F . Further, I(F ) is the saturated ideal generated by F .
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(c.i) I(F ) is an ideal.

Let a ∈ I(F ) and b ∈ G. Since a2b2 = a2∨ b2 ≥ a2 and a2 ∈ F , we get a2b2 ∈ F , and ab ∈ I(F ).

(c.ii) I(F ) ∩ Id(G) = F .

Let a ∈ I(F )∩ Id(G); then a2 ∈ F ; since a = a2, we get a ∈ F . The other inclusion is obvious.

(c.iii) I(F ) is the ideal generated by F .

Let J be an ideal of G containing F , and let a ∈ I(F ). Then, a2 ∈ F ⊆ J . Since J is radical,
a ∈ J . Hence J ⊇ I(F ).

(c.iv) I(F ) is saturated.

Let a, b ∈ I(F ) and c ∈ DG(a, b); we must prove that c ∈ I(F ). Axiom [RS8] gives c2 ∈
DG(a2, b2), and, by [RS6], c2 ∈ Dt

G(a2c2, b2c2). Using the distributive law in Id(G) we have
c2 = (a2c2) ∧ (b2c2) = (a2 ∨ c2) ∧ (b2 ∨ c2) = (a2 ∧ b2) ∨ c2, whence a2∧ b2 ≤ c2. Since F is a
filter and a2, b2 ∈ F , we get c2 ∈ F , and hence c ∈ I(F ).

For a ∈ Id(G), F
a

= {b ∈ Id(G) | a ≤ b} denotes the principal filter generated by a.

d) For a ∈ G, I
a
∩ Id(G) = F

a2 . Conversely, if b ∈ Id(G), then I(F
b
) = I

b
.

(d.i) For the first assertion, let x ∈ I
a
∩ Id(G). From Proposition I.6.5 (9), a2 ≤ x = x2 ≤ −a2,

which shows that x ∈ F
a2 . For the other inclusion use Proposition I.6.4(c).

(d.ii) For the second assertion, Proposition I.6.5 (9) gives, for x ∈ G:

x ∈ I
b
⇔ x2 ∈ I

b
⇔ b2 ≤ x2 ≤ −b2 ⇔ b = b2 ≤ x2 ⇔ x2 ∈ F

b
⇔ x ∈ I(F

b
).

Proposition I.6.18 follows from (a) – (d). (For the last assertion, recall that a bijective,
inclusion-preserving map also preserves proper inclusion.) 2

Corollary I.6.19 Let G be a RS. The correspondence P 7−→ P ∩ Id(G) is a homeomorphism
of the set Specsat(G) of saturated prime ideals of G with the topology having as a basis of opens
the sets D(a) = {P ∈ Specsat(G) | a 6∈ P} (a ∈ G), onto the spectrum Spec (Id(G)) of the
distributive lattice Id(G), i.e., the set of its prime filters with its canonical spectral topology
generated by the sets D

Id(G)
(x) = {p ∈ Spec (Id(G)) |x 6∈ p} as a basis of quasi-compact opens

(cf. [DST], 1.4.3 ). Hence, Specsat(G) with the described topology is a spectral space.

Proof. By I.6.18 (i) (and its proof), the given correspondence, say f(P ) = P ∩ Id(G) (P ∈
Specsat(G)), is a bijection whose inverse is p 7−→ I(p) = {a ∈ G | a2 ∈ p} (p ∈ Spec (Id(G)). It
is clear that, for x ∈ Id(G), we have f−1[D

Id(G)
(x)] = D(x), i.e., f−1 maps bijectively the basis

of Specsat(G)) onto the basis of Spec (Id(G)); hence, f is a homeomorphism. In particular, the
basic sets of Specsat(G)) are quasi-compact open and, therefore, Specsat(G)) is a spectral space.

2

Corollary I.6.20 With notation as above, we have:

(1) Any ideal I of a RS, G, is the union of a family of saturated principal ideals which, in
particular, are intervals for the representation partial order: I =

⋃
a∈I Ia.

(2) Any saturated ideal in a finite RS is principal.

(3) The saturated ideals of a RS ordered under inclusion form a distributive lattice.

Proof. (1) Clear, from a ∈ I ⇒ I
a

= a ·G ⊆ I.
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(2) Id(G) is a finite distributive lattice. Every filter in a finite lattice is principal. Conclude by
Proposition I.6.18(ii).

(3) Follows from [B], Ch. IX, Thm. 7, p. 141, and Proposition I.6.18. 2

I.7 Semilattice structure of abstract real spectra

New section: Jan. 2015

Definition I.7.1 Let (X,�) be a root-system, and let g
1
, g

2
∈ X. Define:

g
1
≡
C
g

2
iff g

1
, g

2
have a common �-upper bound.

≡
C

is an equivalence relation; its classes are called connected components of (X,�). 2

In [DST], Prop. 7.5.4 (iii) Check ref. it is proved that any spectral space whose order of
specialization is a root-system is a conditionally complete join-semilattice: every non-
empty set having an upper bound has a unique least upper bound (lub), i.e., a supremum. In
particular, this applies to the character space of any RS under the specialization order. In this
case we can give an explicit description of the lub.

Theorem I.7.2 Let G be a RS, and let X
G

be its character space. Let {hi | i ∈ I}⊆XG
be a

non-empty family of characters belonging to a single connected component of X
G

(i.e., having
a common upper bound under  ). Then, the lub

∨
i∈I hi is the RS-character f defined by:

• Z(f) =
⋂
{Z(g) | g ∈ X

G
is a  - upper bound of

∨
i∈I hi}.

• If a 6∈ Z(f), then f(a) = g(a), where g ∈ X
G

is any  - upper bound of
∨
i∈I hi.

Proof. We shall repeatedly use the obvious fact that the set of  - upper bounds of any non-
empty set in a spectral root-system is totally ordered under specialization. To abridge, call Ub
the set of upper bounds of {hi | i ∈ I} under  ; by assumption, Ub 6= ∅.
(i) f is well defined.

Given a 6∈ Z(f) and g, g′ ∈ Ub such that a 6∈ Z(g) ∪ Z(g′), by Lemma I.1.18 (4) we have
g(a) = g′(a) if either g g′ or g′ g; thus, the value f(a) is independent of the choice of the
upper bound g in the second clause of the definition of f .

(ii) f is a TS-character of G.

Inspection of the definition of f shows that f(i = i for i ∈ {0,±1}, and that f(ab) = f(a)f(b)
when either one of f(a) or f(b) is 0. If a, b 6∈ Z(f), then ab 6∈ Z(f): taking g ∈ Ub such that
f(x) = g(x) for x ∈ {a, b, ab}, since g ∈ X

G
, we get f(ab) = g(ab) = g(a)g(b) = f(a)f(b), as

required.

(iii) f is a  - upper bound of
∨
i∈I hi..

For any g ∈ Ub and any i ∈ I, h
i
 g implies Z(h

i
)⊆Z(g), whence Z(h

i
)⊆Z(f). Further,

if a 6∈ Z(f) and g is such that a 6∈ Z(g), we have both f(a) = g(a) (by the definition of f)
and h

i
(a) = g(a) (by h

i
 g, I.1.18 (4)). Then, h

i
(a) = f(a), proving h

i
 f for all i ∈ I, as

asserted.

(iv) f is the lub of {hi | i ∈ I} under  .

This clearly follows from Lemma I.1.18 (4) and the definition of f .

Finally, we show:

(v) f preserves representation, i.e., f ∈ X
G

.

Suppose a ∈ D
G

(b, c) (a, b, c ∈ G). We can assume a 6∈ Z(f). If, e.g., f(b) = 0, then
g(b) = 0 for all g ∈ Ub. If, in addition, a 6∈ Z(g), then g(a) = f(a); from g ∈ X

G
we
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get g(a) ∈ D
3
(g(b), g(c)) = D

3
(0, g(c)) = {g(c)}, whence g(c) 6= 0 and f(c) = g(c). Hence,

f(a) ∈ D
3
(f(b), f(c)). Same argument if f(c) = 0.

In case that a, b, c 6∈ Z(f), let g
1
, g

2
, g

3
∈ Ub be such that a 6∈ Z(g

1
), b 6∈ Z(g

2
), c 6∈ Z(g

3
).

Since Ub is totally ordered by  , we may assume g
1
 g

2
 g

3
; then, Z(g

1
)⊆Z(g

2
)⊆Z(g

3
),

whence a, b, c 6∈ Z(g
1
) and f(x) = g

1
(x) for x ∈ {a, b, c}. From g

1
∈ X

G
follows g

1
(a) ∈

D
3
(g

1
(b), g

1
(c)), i.e., f(a) ∈ D

3
(f(b), f(c)), as required. 2

Remark. Under the hypotheses of Theorem I.7.2, if x ∈ G is such that (
∨
i∈I hi)(x) 6= 0, then

h
j
(x) = (

∨
i∈I hi)(x) for all j ∈ I: since h

j G
 
∨
i∈I hi and (

∨
i∈I hi)(x) 6= 0, Lemma I.1.18 (4)

entails the asserted equality.

Proposition I.7.3 Let f : G−→H be a morphism of RSs and let f∗ : X
H
−→X

G
be the ARS

morphism dual to f . If {hi | i ∈ I}⊆XH
is a non-empty family of characters belonging to a

single connected component of X
H

, then f∗(
∨
i∈I hi) =

∨
i∈I f

∗(hi); i.e., f∗ preserves arbitrary
suprema (inside a connected component).

Proof. Since f∗(σ) = σ ◦ f for σ ∈ X
H

, the statement to be proved translates as:

(
∨
i∈I hi) ◦ f =

∨
i∈I(hi ◦ f).

Claim.
∨
i∈I(hi ◦ f) exists.

Proof of Claim. It suffices to observe that {hi◦f | i ∈ I} has a
G
 -upper bound in X

G
. Indeed, if

g ∈ X
H

is a
H
 -upper bound of {hi | i ∈ I}, then g◦f is a

G
 -upper bound of {hi◦f | i ∈ I}: by

Lemma I.1.18 (5), hi
H
 g is equivalent to g = g2hi; composing with f gives g◦f = (g◦f)2(hi◦f),

whence hi ◦ f
G
 g ◦ f , for i ∈ I.

Let σ :=
∨
i∈I hi and γ :=

∨
i∈I(hi ◦ f). In order to prove γ = σ ◦ f , it suffices to show that

Z(σ ◦ f)⊆Z(γ) (I.1.18 (4)). Let a ∈ G \ Z(γ); then, γ(a) 6= 0, i.e., (
∨
i∈I hi)(f(a)) 6= 0, i.e.,

σ(f(a)) 6= 0, as required. 2
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Chapter II

RS-congruences

II.1 Convex ideals in rings and saturated ideals in real semi-
groups

Setup. Throughout this section A stands for a commutative ring with unit, and T for a proper
preorder of A (that is, T +. T, A2⊆T,−1 6∈ T ). Note that:

(i) The existence of a (proper) preorder entails that A is semi-real, i.e., −1 6∈
∑
A2. Recall

that A is semi-real iff Sper (A) 6= ∅.

(ii) The condition −1 6∈ T is equivalent to T 6= A only if 2 is invertible in A, or if T − T = A.

(iii) G
A,T

stands for the real semigroup associated to T and A (see I.1.2 (e)). 2

A. The basic correspondences. (1) There is a correspondence associating to each ideal I
of A a saturated ideal I of G

A,T
, namely, I = {a | a ∈ I}. We show:

i) I is an ideal of G
A,T

(= G).

Let g ∈ G and a ∈ I. Then, g = b for some b ∈ A. Since ab ∈ I, we have g · a = ab ∈ I.

ii) I is saturated.

Let a, b ∈ I and c ∈ A be so that c ∈ D
G

(a, b). By [M], Prop. 5.5.1 (5), p. 95, there are
t
0
, t

1
, t

2
∈ T so that t

0
c = t

1
a + t

2
b and t

0
c = c. From a, b ∈ I follows t

0
c ∈ I, so that

c = t
0
c ∈ I. 2

Note. We do not claim that I is proper if I is, nor that the correspondence I 7−→ I is
injective (both contentions are false). Below we give necessary and sufficient conditions for this
to happen.

(2) Conversely, given a saturated ideal J of G (= G
A,T

), the set Ĵ = {a ∈ A | a ∈ J} is an ideal

of A. Further, (i) Ĵ = J and (ii) J proper ⇒ Ĵ proper.

Proof. — a, b ∈ Ĵ ⇒ a+ b ∈ Ĵ .

Easy consequence of the facts that J is saturated and a+ b ∈ D
G

(a, b) (cf. [M], Prop. 5.5.1 (5)).

— a ∈ Ĵ and b ∈ A⇒ ab ∈ Ĵ .

Clear, since a ∈ J, b ∈ G, and J is an ideal of G.
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(i) Since a ∈ Ĵ ⇒ a ∈ J , we have Ĵ ⊆ J . Conversely, if a ∈ J , then a ∈ Ĵ , and from the

definition of I follows a ∈ Ĵ ; thus, J ⊆ Ĵ .

(ii) If 1 ∈ Ĵ , then 1 = 1 ∈ J , and J is improper. 2

We also note:

(iii) I ideal of A ⇒ I ⊆ Î .

Further, we have:

Fact II.1.1 For J, J
1
, J

2
ideals of G,

(iv) J prime ⇔ Ĵ prime.

(v) J
1
⊆ J

2
⇔ Ĵ

1
⊆ Ĵ

2
.

(vi) The map J 7−→ Ĵ is injective.

Proof. (vi) follows at once from (v).

(iv) (⇒) ab ∈ Ĵ ⇒ ab = ab ∈ J ⇒ a ∈ J or b ∈ J ⇒ a ∈ Ĵ or b ∈ Ĵ .

(⇐) ab ∈ J ⇒ ab ∈ Ĵ ⇒ a ∈ Ĵ or b ∈ Ĵ ⇒ a ∈ J or b ∈ J .

(v) (⇒) For a ∈ A: a ∈ Ĵ
1
⇒ a ∈ J

1
⇒ a ∈ J

2
⇒ a ∈ Ĵ

2
.

(⇐) Let a ∈ A be such that a ∈ J
1
; then a ∈ Ĵ

1
, whence a ∈ Ĵ

2
, implying a ∈ J

2
. 2

B. Compatibility and convexity. For ready reference we include in this paragraph a sum-
mary of known notions and results —used below— concerning the relationship between ideals
and preorders in a ring; for proofs and further details the reader is referred to [BCR], §4.2.

Definition II.1.2 Let I be an ideal and T be a (proper) preorder of a ring A.

(1) I is T -compatible iff for all t ∈ T, 1 + t 6∈ I.

(2) I is T -radical iff for all a ∈ A and t ∈ T ,

a2 + t ∈ I ⇒ a ∈ I (and hence t ∈ I).

(3) I is T -convex iff for t
1
, t

2
∈ T , t

1
+ t

2
∈ I ⇒ t

1
, t

2
∈ I. 2

Remarks II.1.3 (a) I is T -convex and radical ⇒ I is T -radical ⇒ I is radical and T -
compatible. (Take, respectively, t

1
= a2, t

2
= t; t = 0 and a = 1 in (1) and (2) of the definition

above.).

(b) I is T -convex iff −(T/I) ∩ T/I = {0} iff the quotient preorder T/I is a partial order.

(c) I is T -radical iff −(A/I)2 ∩ T/I = {0}.

(d) I is T -compatible iff quotient preorder T/I is proper; in particular, I is proper. 2

The relationship between these notions is given in the following:

Proposition II.1.4 ([BCR], Prop. 4.2.5, p. 87) For an ideal I and a (proper) preorder T in
a ring A, the following are equivalent:

(1) I is T -convex and radical.
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(2) I is T -radical.

(3) I is radical and, setting a≤
T
b iff b− a ∈ T , we have:

0≤
T
a≤

T
b and b ∈ I ⇒ a ∈ I. 2

Remark. Condition (3) gives our notion the look of convexity familiar when T is a total or a
partial order. Note, however, that ≤

T
is not a partial order (antisymmetry fails, though it is

reflexive and transitive). 2

In case the preorder T is
∑
A2, we get:

Fact II.1.5 An ideal I of A is
∑
A2-convex if and only if it is real (i.e.,

∑n
i=1 a

2
i
∈ I ⇒

a
1
, . . . , a

n
∈ I, for all a

1
, . . . , a

n
∈ A (n ≥ 1)). 2

Proposition II.1.6 ([BCR], Prop. 4.2.6, p. 87) Let I be an ideal and T be a (proper) preorder
in a ring A. Then:

T
√
I = {a ∈ A | ∃ k ≥ 0 ∃ t ∈ T such that a2k + t ∈ I}

is the smallest T -convex ideal of A containing I (possibly improper). It is the intersection of
all T -convex prime ideals containing I. I is T -convex iff I = T

√
I. 2

T
√
I is called the T -convex hull or the T -radical of I.

C. The correspondence I 7−→ I under convexity assumptions. We begin by noting:

Proposition II.1.7 An ideal I of A is T -compatible iff I is a proper ideal of G = G
A,T

.

Proof. (⇒) Assume 1
G
∈ I . Then, there is a ∈ I such that a = 1

G
= 1 (cf. A.1 above). By

[M], Prop. 5.4.2 (2), p. 93, there are s, t ∈ T such that (1 + s) a = 1 + t . Then 1 + t ∈ I, and
I is not T -compatible.

(⇐) Assume I is a proper ideal of G, i.e., 1
G

= 1 6∈ I. Let t ∈ T ; we must show that 1+ t 6∈ I.

Otherwise, 1 + t ∈ I . But we prove next that 1 = 1 + t, contradiction.

Indeed, we show that (1 + t) (α) = 1, i.e., 1 + t ∈ α \ (−α) for every α ∈ Sper (A, T ), that
is, for every α ∈ Sper (A) such that α ⊇ T . Since 1, t ∈ T , we have 1 + t ∈ T ⊆α. Suppose
1 + t ∈ −α; since t ∈ α, we get −(1 + t) + t = −1 ∈ α, contradiction. 2

Lemma II.1.8 (a) For any ideal I of A, I ⊆ Î ⊆ T
√
I. In particular,

(b) If I is a T -convex ideal of A, then all three ideals in (a) are equal.

Proof. (b) is immediate from (a) and Proposition II.1.6.

(a) By item A.2 (iii), only the second inclusion needs proof. Let a ∈ Î ; then a ∈ I , i.e., there
is b ∈ I so that a = b. By [M], Cor. 5.4.3, p. 94, there are s, t ∈ T and k ≥ 0 so that
sab = (a2 + b2)k + t; then, (a2 + b2)k + t ∈ I. If k = 0, then 1+ t ∈ I, contradicting T -

compatibility. If k ≥ 1, then (a2+ b2)k + t = a2k + t+ b2 ·r, where r =
∑k−1

j=0

(
k
j

)
a2j b2(k−j−1).

Since b ∈ I and (a2+ b2)k + t ∈ I, it follows a2k+ t ∈ I. Hence, a ∈ T
√
I. 2

Lemma II.1.9 Let I
0
, I

1
be ideals of A. Then,

(i) I
0
⊆ I

1
⇒ I

0
⊆ I

1
.

(ii) If I
1

is T -convex, then I
0
⊆ I

1
⇒ I

0
⊆ I

1
.
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Proof. (i) Let a ∈ I
0
; then, there is b ∈ I

0
so that a = b; by assumption b ∈ I

1
, hence

a = b ∈ I
1
.

(ii) Let a ∈ I
0
; then, a ∈ I

0
⊆ I

1
. By definition of the correspondence ̂ (cf. A.2), a ∈ Î

1
, and

by Lemma II.1.8, a ∈ I
1
. 2

Corollary II.1.10 The correspondence I 7−→ I is a bijection between T -convex ideals of the
ring A and saturated ideals of the real semigroup G

A,T
. It maps prime ideals onto prime ideals.

Proof. Injectivity. Let I
0
, I

1
be T -convex ideals of A such that I

0
= I

1
. Lemma II.1.9 (ii)

applied to the inclusions ⊆ and ⊇ gives I
0

= I
1
.

Surjectivity. Given a saturated ideal J of G
A,T

, item A.2 (i) shows that Ĵ = J . The fact that

Ĵ is T -convex follows from Theorem II.1.12 below.

As for the assertion about prime ideals, it suffices to prove:

Fact II.1.11 Let I be a T -convex ideal of A. Then, I is prime if and only if I is prime.

Proof. (⇐) Assume ab ∈ I; then, ab = ab ∈ I . Since I is prime, either a ∈ I or b ∈ I ,

whence either a ∈ Î or b ∈ Î . But, by Lemma II.1.8 (b) we have Î = I.

(⇒) Assume ab ∈ I ; then ab ∈ Î , which equals I by Lemma II.1.8 (b). Since I is assumed
prime, a ∈ I or b ∈ I, whence a ∈ I or b ∈ I . 2

Now we prove our main result in this section:

Theorem II.1.12 Let J be a saturated ideal of G = G
A,T

. Then Ĵ is a T -radical ideal of A

(hence, by II.1.4, T -convex and radical ).

Proof. Assume a2+ t ∈ Ĵ , where a ∈ A, t ∈ T ; we must show that a ∈ Ĵ . Write j = a2+ t; then
j ∈ J (definition of ̂ ), and also j ∈ Dt

G
(a 2, t) (cf. [M], p. 96). Recall that X

G
= Sper (A, T ).

Let α ∈ Sper (A, T ) be such that j(α) = 0; then, a 2(α) = −t(α). Since t ∈ T ⊆α, we have
−t(α) ∈ {0,−1}. On the other hand, a 2(α) ∈ {0, 1}, since a 2 is a square. Thus, the equality
above forces a(α) = t(α) = 0. This proves that Z(j)⊆Z(a) ∩ Z(t)⊆Z(a). This inclusion is

equivalent to a 2 = a 2 · j2
(see I.1.19 (2)). Then, a 2 ∈ J , whence a ∈ J , which proves a ∈ Ĵ . 2

A number of corollaries follow from this result.

Corollary II.1.13 Let I be an ideal of A. Then:

(i) The ideal Î is T -convex.

(ii) (Converse to Lemma II.1.8.) Î = I ⇒ I is T -convex.

Proof. (ii) is immediate from (i). Since I is saturated (A.1 (ii)), II.1.12 proves (i). 2

Corollary II.1.14 Let I be an ideal of A. Then the ideal Î has the following properties:

(i) It is the smallest T -convex ideal containing I; hence Î = T
√
I.

(ii) T
√
I = Î = I .

56



Proof. (i) Î is T -convex by (i) of the previous Corollary, and I ⊆ Î is clear. Let I ′ be a

T -convex ideal of A containing I. By Lemma II.1.9 (i), I ⊆ I ′ , and by Fact II.1.1 (v), Î ⊆ Î ′ .
Since I ′ is T -convex, Lemma II.1.8 (b) gives Î ′ = I ′; so, I ′ ⊇ Î .

(ii) By (i) it suffices to prove the second equality. Since I ⊆ Î , from II.1.9 (i) follows I ⊆ Î .

Conversely, let a ∈ Î ; then, there is b ∈ Î such that a = b. By the definition of ̂ we have

a = b ∈ I , showing Î ⊆ I . 2

Remark. Corollary II.1.14 (ii) shows that the map I 7−→ I may not be injective on arbitrary
ideals of A (it is on T -convex ideals, Corollary II.1.10). 2

Corollary II.1.15 (cf. [BCR], Prop. 4.2.7, p. 87) Let T be a preorder of a ring A. Then T
is proper if and only if there is a proper T -convex ideal in A.

Proof. The implication (⇐) is Proposition 4.2.7 of [BCR]: if −1 ∈ T , then 1 + (−1) = 0 ∈ I,
and hence 1 ∈ I by T -convexity.

(⇒) The required ideal is T
√
{0}. If it is not proper, by Proposition II.1.6 1 + t = 0 for some

t ∈ T , whence −1 = t ∈ T , absurd. 2

Remark II.1.16 Note that if I is a T -convex ideal, then T ∩−T ⊆ I, since t ∈ T ∩−T implies
t − t = 0 ∈ I, and hence t ∈ I by Proposition II.1.4 (3). It follows that T ∩ −T ⊆ T

√
{0}, and

that T ∩−T is an ideal iff T ∩−T = T
√
{0} (if T ∩−T is an ideal, both T ∩−T and T

√
{0} are

the smallest T -convex ideal of A). 2

Concluding this section we register, without proof, the following result which shows that
the construction of the real semigroup associated to a ring produces a fair amount of collapsing:

Theorem. ([DM7]) Given a ring A and a proper preorder T of A, there are a ring B and a
proper preorder S of B —canonically and functorially constructed from A and T— such that

(i) G
A,T
' G

B,S
.

(ii) B is reduced (no non-zero nilpotent element ).

(iii) B has S-bounded inversion: every element of the form 1 + s (s ∈ S) is invertible in B. 2

II.2 Congruences in real semigroups

Changes to be made in this section: restate II.2.6 – II.2.11 for quotients, as corollaries of results
now in section I.3; proofs to be shortened or eliminated.

In this section we introduce the notion of quotient in the theory of real semigroups. Since
the language for real semigroups contains a ternary relation, the category RS is not algebraic
and hence there is not a ready-made notion of quotient to be used. On the other hand, any
quotient defined in a real semigroup G must induce a congruence of ternary semigroups in the
sense of Definition I.1.25. To mention a simplest example, when G is a reduced special group
with a 0 added (as in Example I.2.2 (3)), quotients exist and are induced by the saturated
subgroups of G (see [DM1], Prop. 2.28, p. 45), and all quotients are obtained in this way (see
Example II.2.3 below).

However, as we shall see, the theory of quotients in real semigroups is far more complicated.
We begin by introducing (Definition II.2.1) what seems to us the most natural choice for that
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notion. The congruences thus defined give raise to proconstructible subsets of the associated
ARS (i.e., closed subsets of its constructible topology; Proposition ?? (ii)). The converse,
however, is not quite true: in Theorem II.2.16 we prove that if G is a real semigroup, then
any subset H of its character space XG naturally determines an equivalence relation on G
and a representation relation such that the quotient structure G/H verifies all axioms for real
semigroups with the possible exception of [RS3] (even only the weak associativity axiom [RS3a],
cf. I.2.4). To avoid misunderstandings, note that the quotient L

RS
-structure G/H induced by

a set H⊆XG is the same as that induced by its closure in the constructible topology of XG

(Proposition I.3.7 (1)). A further necessary condition for a set of characters to define a RS-
quotient is given in Theorem II.2.9.

For the most natural choices of sets H ⊆ XG —notably those occurring in real algebra
and geometry— the quotient structure G/H is, indeed, a real semigroup. These include,
among others, the “saturated sets” and the “localizations” first studied by Marshall in [M]
(ADD REF.). Investigation of these and other related examples is pursued, beyond Marshall’s
initial results, in § II.3. Further, in later chapters we will show that when G is a Post algebra, a
spectral real semigroup or a RS-fan, then G/H is a RS for any proconstructible subset H ⊆ XG

(in the case of fans the necessary condition of II.2.9 is also required to hold). However, there
are examples where [RS3] fails, as shown in I.3.6 below.

A. Definition of RS-congruences. Examples.

Definition II.2.1 A (RS-)congruence of a real semigroup G is an equivalence relation ≡
satisfying the following requirements:

(i) ≡ is a congruence of ternary semigroups (I.1.25).

(ii) There is a ternary relation D
G/≡ in the quotient ternary semigroup (G/≡, ·,−1, 0, 1) so

that (G/≡, ·, D
G/≡,−1, 0, 1) is a real semigroup, and the canonical projection π : G−→G/≡

is a RS-morphism.

(iii) (Factoring through π.) For every RS-morphism f : G−→H into a real semigroup H
such that a ≡ b implies f(a) = f(b) for all a, b ∈ G, there exists a RS-morphism (necessarily
unique), f̂ : G/≡−→ H, such that f̂ ◦ π = f , i.e. the following diagram commutes

-

? �
��

G H

G/≡

f

π

f̂

We shall denote by Con(G) the set of congruences of G. The real semigroup (G/≡, · , D
G/≡,−1,

0, 1) will be called the RS-quotient of G modulo ≡ .

Remark. Condition (iii) amounts to saying that the TS-morphism f̂ (well-)defined by the
functional equation f̂ ◦ π = f preserves the representation relation D

G/≡. 2

The following examples show that already known constructions conform to the general
notion of congruence (or quotient) of real semigroups just defined.

Example II.2.2 Let A be a commutative ring with unit 1, let G
A

be the real semigroup
associated to A (I.2.2 (2)), and let T ⊆ A be a proper preorder of A (the existence of T ensures
A is semi-real and hence that G

A
exists). The real semigroup G

A,T
is a quotient of G

A
in the

sense of the preceding definition. Recall (I.1.2 (e) and I.2.2 (2)) that the elements of G
A

are
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functions a : Sper (A)−→3 (a ∈ A), and those of G
A,T

are their restrictions to Sper (A, T )

which, to keep notation straight, in this example we denote by a
T

= a dSper (A, T ). G
A

and
G
A,T

carry the representation relations defined in I.2.2 (2) [R].

To present G
A,T

as a RS-quotient of G
A

it suffices to define the following equivalence relation

on G
A

; for a, b ∈ A,

a≡
T
b ⇔ a

T
= b

T
⇔ a(α) = b(α) for all α ∈ Sper (A, T ).

It is quite obvious that ≡
T

is a congruence of ternary semigroups, and G
A,T

is isomorphic

to G
A
/≡T (as TSs), via the map a

T
7→ π

T
(a) = a/≡T

(a ∈ A). To turn this map into

an isomorphism of RSs it suffices to transport to G
A
/≡T the representation relation already

existing in G
A,T

; for a, b, c ∈ A (and with π = π
T

),

(†) π(a) ∈ D
T

(π(b), π(c)) ⇔ a
T
∈ D

GA,T
(b
T
, c
T

) ⇔ ∀α ∈ Sper (A, T ) (a(α) ∈ D
3
(b(α), c(α)) .

Obviously, a
T
7→ π

T
(a) (a ∈ A) is now an isomorphism of L

RS
-structures and, since G

A,T
is a

RS, so is G
A
/≡T .

It remains to show that G
A
/≡T also satisfies the factoring condition II.2.1 (iii). For this we

recall that the representation (†) is equivalent to

(††) π(a) ∈ D
T

(π(b), π(c)) ⇔ ∃ t0, t1, t2 ∈ T such that π(t0a) = π(a) and t0a = t1b+ t2c .

[This equivalence follows from items (2) and (5) of [M], Prop. 5.5.1, p. 95.]

Now, assume that H is a RS and f : GA−→H is a morphism of real semigroups such
that a ≡T b implies f(a) = f(b) for all a, b ∈ A. Let f̂ : G

A
/≡T −→ H be defined by

f̂(π(a)) = f(a), for a ∈ A. We must check that f̂ preserves representation. Let a, b, c ∈ A be
such that π(a) ∈ D

T
(π(b), π(c)). By (††) there are t0, t1, t2 ∈ T such that π(t0a) = π(a) and

t0a = t1b+ t2c. Since t0a ∈ DGA(t1b, t2c), it follows that f(t0a) ∈ D
H

(f(t1b), f(t2c)), and from

π(t0a) = π(a), follows f(t0a) = f(a). Likewise, since ti ≡T t2i (i = 1, 2) we get f(t1b) = f(t21b)

and f(t2c) = f(t22c) which implies f(a) ∈ D
H

(f(b), f(c)) by use of axiom [RS4] in H. 2

Example II.2.3 Let G∗ be a reduced special group and let G = G∗ ∪ {0}, i.e. G is the real
semigroup determined by G∗ with a zero added, see I.2.2 (3). Let ∆ ⊆ G∗ be a saturated
subgroup of G. It is easy to check that the equivalence relation ≡∆ on G given by:

a ≡∆ b ⇔ a = b = 0 ∨ (a 6= 0 ∧ b 6= 0 ∧ ab ∈ ∆)

is a congruence of ternary semigroups. Proposition II.2.4 below shows that every congruence
of TS defined in G is of this form. As in the case of reduced special groups, we denote by
G/∆ the quotient induced by ∆. Moreover, by [DM1] [REF] and the definition of DG∗ given
in I.2.2 (3), it is immediate that the representation relation

(*) π∆(a) ∈ DG/∆(π∆(b), π∆(c)) if and only if there are t1, t2 ∈ ∆ such that a ∈ DG(t1b, t2c),

(π∆ : G −→ G/∆ canonical), turns G/∆ into a real semigroup; hence, ≡∆ is a congruence of
real semigroups in the sense of II.2.1. In fact, every congruence of G is of this form:

Proposition II.2.4 Let G∗ be a reduced special group and let G = G∗ ∪ {0}. Then,

(i) An equivalence relation ≡ on G is a congruence of ternary semigroups iff there is a subgroup
∆ of G∗ such that ≡ = ≡∆.

(ii) ∆ = {x ∈ G∗ |x ≡ 1} is a saturated subgroup of G∗, and any representation relation on
G/≡ verifying II.2.1 (ii) is identical to the relation DG/∆ defined by (∗) above.
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Proof. (i) The implication (⇐) has already been noted.

(⇒) Given a TS-congruence on G = G∗ ∪ {0}, set ∆ = {x ∈ G∗ |x ≡ 1}. Let a, b ∈ G.

(a) a ≡ b ⇒ a≡∆ b.

Note that 0 ≡ b⇒ b = 0 (as 0 ≡ b⇒ (−1) · 0 ≡ (−1) · b = −b, whence −b ≡ b, and then b = 0
by the ternary semigroup axiom [TS5]). Hence, if a ≡ b and one of a, b is 0, both are 0, and
a≡∆ b. If a, b 6= 0, i.e., a, b ∈ G∗, since G∗ is a group of exponent 2 and ≡ is compatible with
product, a ≡ b implies ab ≡ b2 = 1, i.e., ab ∈ ∆, whence a≡∆ b.

(b) a≡∆ b ⇒ a ≡ b.
If a = b = 0, then, a ≡ b. Let a, b 6= 0; then, a≡∆ b yields ab ∈ ∆, i.e., ab ≡ 1. Since G∗ is a
group of exponent 2, scaling by a we have b = a2b ≡ 1 · a = a.

(ii) Item (i) proves that, as ternary semigroups, G/≡ = G/∆ where G/∆ = (G∗/∆)∪{0}. For
(ii) we must show that, with π : G−→G/≡ canonical, and a, b, c ∈ G,

π(c) ∈ D
G/≡(π(a), π(b))⇔ There are t1, t2 ∈ ∆ such that c ∈ D

G
(t1a, t2b).

The implication (⇐) is clear, using that π is a RS-morphism (II.2.1 (ii)) and t ≡ 1 for t ∈ ∆.

For the converse, let π∆ : G−→G/∆ be the canonical projection. From (i), a ≡ b
⇒ π∆(a) = π∆(b). By II.2.1 (iii), there is a RS-morphism π̂∆ : G/≡ −→ G/∆ such that
π̂∆ ◦ π = π∆. Since π̂∆ preserves representation, we have

π(c) ∈ D
G/≡(π(a), π(b)) ⇒ π∆(c) ∈ D

G/∆
(π∆(a), π∆(b)),

that, by the definition of D
G/∆

(see (*) above), yields the required conclusion. 2

Example II.2.5 (Retracts) Let G
g−→ H

h−→ G be a retract scheme of RSs, i.e., h ◦ g = id
G

;
G is a retract of H. We claim that H is a quotient of G in the sense of Definition II.2.1, with

ker(h) := {〈 a, b 〉 | a, b ∈ H and h(a) = h(b)}
as RS-congruence. In fact, it is easily checked that ker(h) is a congruence of ternary semigroups
on H. The map h : H/ker(h)−→G given by h(a/ker(h)) = h(a) is a TS-isomorphism: h is
well defined and injective because 〈 a, b 〉 ∈ ker(h)⇔ h(a) = h(b), and it is surjective because h
is. To ease notation we set a := a/ker(h) for a ∈ H.

Representation in H/ker(h) is defined as follows: for a, b, c ∈ H,

a ∈ D
H/ker(h)

(b, c)⇔ There are a′, b′, c′ ∈ H such that a = a′, b = b′, c = c′ and a′ ∈ D
H

(b′, c′).

We have

Fact. For a, b, c ∈ H, a ∈ D
H/ker(h)

(b, c) ⇔ h(a) ∈ D
G

(h(b), h(c)); i.e., representation in

H/ker(h) is obtained by “transporting” representation in G by the map h
−1

.

Proof of Fact. (⇒) Assuming a ∈ D
H/ker(h)

(b, c), the preceding definition yields a′ ∈ D
H

(b′, c′)

for some a′, b′, c′ ∈ H such that a = a′, b = b′, c = c′. Taking images by h (a RS-morphism) in
this representation yields h(a′) ∈ D

G
(h(b′), h(c′)), whence h(a) ∈ D

G
(h(b), h(c)), since h(a′) =

h(a), etc.

(⇐) Taking images under g in the representation h(a) ∈ D
G

(h(b), h(c)) and taking into account

that, for x ∈ H we have h(g(h(x))) = h(x), i.e., 〈 g(h(x)), x 〉 ∈ ker(h), i.e., g(h(x)) = x, setting
a′ = g(h(a)), etc., we get a′ ∈ D

H
(b′, c′) and a′ = a, etc., as required. 2

According to Definition II.2.1, it only remains to check the factoring condition II.2.1 (iii).
So, given a RS-morphism k : H −→K, with K |= RS, such that ker(h)⊆ ker(k), there is a
RS-morphism k̂ : H/ker(h)−→K such that k̂ ◦ π = k, with π : H −→H/ker(h) (π(x) = x)
canonical.

Set k̂ := k ◦ g ◦ h, with h the (RS-)isomorphism defined above. Since h ◦ π = h, for a ∈ H
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we have k̂(π(a)) = k(g(h(a))). From 〈 g(h(a)), a 〉 ∈ ker(h) (see above) and ker(h)⊆ ker(k) we
get k(g(h(a))) = k(a), whence (k̂ ◦ π)(a) = k(a), as required. 2

As concrete instances of retracts in the case of the RSs associated to rings, we consider the
retract schemes of rings

A−→A[[X ]]−→A and A−→A[X1, . . . , Xn]−→A,

where A[[X ]] denotes the ring of formal power series with coefficients in A, and A[X1, . . . , Xn]
the ring of polynomials in n indeterminates over A, and where the inclusions on the left are
canonical, and the surjections on the right are obtained by evaluating at 0. Applying the
functor A −→ G

A
gives retract schemes

G
A
−→G

A[[X ]]
−→G

A
and G

A
−→G

A[X1,...,Xn]
−→G

A
,

showing, by II.2.5, that G
A

is a RS-quotient of both G
A[[X ]]

and G
A[X1,...,Xn]

.

The preceding example admits considerable generalization, namely:

Proposition II.2.6 Let H
h−→ G be a surjective morphism of RSs with the property that, for

every RS, K, and every RS morphism α : H −→K such that ker(h)⊆ ker(α), there is a unique
RS-morphism α̂ : G−→K such that α̂ ◦ h = α. Then, G is a quotient of H given by the
RS-congruence ker(h).

Proof. We begin by forming the quotient ternary semigroup H/ker(h); let π : H −→H/ker(h)
be the canonical quotient TS-morphism. With the same proof as in II.2.5 one shows that the
map h : H/ker(h)−→G given by h(a/ker(h)) = h(a) is an isomorphism of TSs. Now, using

the map h
−1

copy the representation relation of G onto H/ker(h), making it RS-isomorphic to
G.

To show that H/ker(h) is a RS-quotient of H, as in II.2.1 (iii) let α : H −→K be a RS-
morphism so that ker(h)⊆ ker(α). By assumption, there is a unique RS-morphism α̂ : G−→K
such that α̂ ◦ h = α. The map α̂ ◦ h : ker(α)−→K verifies (α̂ ◦ h)(π(a)) = α(a). 2

B. The space of characters of a RS-quotient.

New subsection started in January 2016. Intended to gather all properties of the set of
characters of a quotient by incorporating results previously spread in section II.2.

Fix a quotient G/≡ of a RS, G. Recall that the canonical quotient RS-morphism π≡ := π :
G−→G/≡ induces a dual map π∗ : X

G/≡ defined by π∗(σ) := σ ◦ π, for σ ∈ X
G/≡. The aim

of this paragraph is to study the space X
G/≡ and the map π∗.

Notation II.2.7 (i) We shall indistinctly write H≡ for Im[π∗].

(ii) In the sequel the default topology on the sets X
G/≡ and X

G
will be the spectral topology.

The modifier (·)con will be employed to denote the corresponding constructible topology; cf.
I.1.16 and I.1.17. 2

The next Proposition summarizes the main basic properties of the map π∗ and the set of
characters Im[π∗].

Proposition II.2.8 Let G be a RSand let ≡ be a RS-congruence of G. With notation as in
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II.2.7, we have:

(i) The map π∗ is a spectral embedding of X
G/≡ into X

G
.

In particular,

(ii) H≡ is a proconstructible subset of X
G

.

(iii) π∗ is a homeomorphism between the spectral spaces X
G/≡ and Im[π∗]. In particular, these

spaces are homeomorphic when endowed with the corresponding constructible topologies.

(iv) (H≡,  dH≡) is a sub-root system of (X
G
,  ).

(v) For a, b, c ∈ G,

π(a) ∈ D
G/≡(π(b), π(c))⇔ For all p ∈ H≡, p(a) ∈ D

3
(p(b), p(c)).

In particular, we have

a ≡ b⇔ For all p ∈ H≡, p(a) = p(b).

Remark. A proconstructible subset of a spectral space with the topology induced from X
is a spectral subspace. In fact, all subspaces of a spectral space are obtained in this manner;
cf.[DST], Thm. 2.1.3. check ref.

Proof. (i) a) π∗ is injective.

This follows at once from the fact that π is surjective: every x ∈ G/≡ is of the form x = π(g)
for some g ∈ G; then, if σ

1
, σ

2
∈ X

G/≡ are such that π∗(σ
1
) = π∗(σ

2
), i.e., σ

1
◦ π = σ

2
◦ π, we

have σ
1
(x) = σ

1
(π(g)) = σ

2
(π(g)) = σ

1
(x), whence σ

1
= σ

2
, since x is arbitrary.

b) π∗ is spectral.

Recall (I.1.17) that the basic quasi-compact opens for the spectral topology on X
G

are the sets

H(g
1
, . . . , g

n
) =

n⋂
i=1

[[ g
i

= 1 ]] (g
1
, . . . , g

n
∈ G),

and similarly for X
G/≡, replacing the g

i
’s by π(g

i
). Then, for σ ∈ X

G/≡ we have,

σ ∈ π∗−1[H(g
1
, . . . , g

n
)]⇔ π∗(σ) = σ ◦ π ∈ H(g

1
, . . . , g

n
)⇔

σ ◦ π(g
i
) = 1 for i = 1, . . . , n⇔ σ ∈ H(π(g

1
), . . . , π(g

n
)),

showing that π∗−1[H(g
1
, . . . , g

n
)] = H(π(g

1
), . . . , π(g

n
)), and hence that π∗ is spectral.

(ii) follows from (i) by recalling that the image of a proconstructible set by any spectral map
between spectral spaces is a proconstructible subset of the counterdomain ([DST], Cor. 2.1.4)
Check ref.. However, to dispell any doubt we give a direct proof in the present case.

To ease notation we write H = H≡ for the rest of this proof.

Let q ∈ Hcon
( = closure of H in the constructible topology of X

G
). Let a, b ∈ G be such that

a ≡ b. We claim that q(a) = q(b). Indeed, q(a) 6= q(b) implies that U = {σ ∈ X
G
|σ(a) 6=

σ(b)} is a neighborhood of q (constructible topology). Then, U ∩ H 6= ∅; let p ∈ U ∩ H,
and let σ ∈ X

G
be such that p = σ ◦ π. Since a ≡ b, then π(a) = π(b), and p(a) = p(b)

contradicting that p ∈ U . So q(a) = q(b). Therefore, the map σ : G/≡−→ 3 defined by
σ(π(a)) = q(a) is a well defined character of ternary semigroups. To see that σ ∈ X

G/≡,

we must show that σ preserves the representation relation. Let a, b, c ∈ G be such that
π(a) ∈ D

G/≡(π(b), π(c)), and assume that q(a) 6∈ D
3
(q(b), q(c)). It is easy to check that

U = {σ ∈ X
G
|σ(a) 6∈ D

3
(σ(b), σ(c))} is an open set in the constructible topology, and hence

a neighborhood of q. Letting p ∈ U ∩ H and arguing as above we arrive in a similar way to
a contradiction. Therefore, σ ∈ X

G/≡, and then q ∈ H.
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(iii) In order to prove that H = Im(π∗) and X
G/≡ are spectrally homeomorphic it suffices to

show that the map π∗−1dH : H−→X
G/≡ is spectral. To ease notation, set f := π∗−1dH; then,

for p ∈ H, f(p) is the unique character σ ∈ X
G/≡ such that p = σ ◦ π; thus, p = f(p) ◦ π.

Since U(g) = [[ g = 1 ]], we have:

p ∈ f−1[U(π(g))]⇔ f(p) ∈ U(π(g))⇔ (f(p) ◦ π)(g) = 1⇔ p(g) = 1⇔ p ∈ U(g),

which shows H ∩ f−1[U(π(g))] = H ∩ U(g). Since the sets H ∩ U(g) (g ∈ G) form a subbasis
for the spectral topology of H (and similarly for X

G/≡), it follows that the inverse map π∗−1dH
is spectral, as asserted.

Since in any ARS, (X,G), the sets of the form U(a1) ∩ . . . ∩ U(an) ∩ Z(b) are a basis for
the constructible topology of X, and inverse images commute with set-theoretic operations, f
is also a homeomorphism between Hcon and (X

G/≡)con.

(iv) follows from (i), (iii) and the well known fact that any continuous map between spectral
spaces preserves the specialization relation; if, in addition, the map is open and injective, it
is an embedding of ordered sets, when the domain and counterdomain are endowed with the
respective specialization relations.

(v) Suppose first that π(a) ∈ D
G/≡(π(b), π(c)) and let p ∈ H. Then, p = σ ◦ π for some

σ ∈ X
G/≡. Since σ is a RS-morphism, we have p(a) = σ(π(a)) ∈ D

3
(σ(π(b)), σ(π(c))) =

D
3
(p(b), p(c)). Conversely, assume π(a) 6∈ D

G/≡(π(b), π(c)). By the separation theorem for

RSs (I.5.4), there is a character σ ∈ X
G/≡ such that σ(π(a)) 6∈ D

3
(σ(π(b)), σ(π(c))). Setting

p = σ ◦ π ∈ H≡, we have p ∈ H with p(a)) 6∈ D
3
(p(b), p(c)) as required to prove (*).

The equivalence (*) also implies a ≡ b ⇔ p(a) = p(b) for all p ∈ H≡ (a, b ∈ G). To
see this it suffices to note that a ≡ b if and only if π(a) = π(b) which, in terms of the
representation partial order, is equivalent to the conjunction of π(a) ∈ D

G/≡(π(1), π(b)), π(b) ∈
D
G/≡(π(1), π(a)),−π(b) ∈ D

G/≡(π(1), π(−a)) and π(−a) ∈ D
G/≡(π(1), π(−b)) (see Definition

I.6.2). Applying (*) to these four representations yields corresponding statements in 3, p(a) ∈
D

3
(p(b), p(c)), . . . (p ∈ H), which, altogether, are equivalent to p(a) = p(b). 2

In the remainder of this section we shall uncover an additional constraint that the set H≡
must satisfy for the quotient structure to be a real semigroup. Our result is:

Theorem II.2.9 Let G be a RS and let ≡ be a congruence of G. The set H≡⊆XG
associ-

ated to ≡ (see II.2.7 (i) ) is finitely closed: for any any finite set of characters h
1
, . . . , h

n
∈

X
G

(n ≥ 1),

h
1
, . . . , h

n
∈ H≡ and

n∏
i=1

h
i
∈ X

G
imply

n∏
i=1

h
i
∈ H≡ .

Remarks. (i) Note that the requirement
∏n
i=1 hi ∈ XG

in the conclusion of Theorem II.2.9
entails that the number n of characters is odd , as

∏n
i=1 hi ought to map −1 to −1.

(ii) The proof of Theorem II.2.9 requires a result proved in the next section. However, since
II.2.9 bears on the the structure of the set of characters determining a general congruence in
arbitrary RSs, we include it in this section. Proposition II.2.10 and Lemma II.2.11 are also
need in the proof of II.2.9. 2

Short proof of Theorem II.2.9. Dec. 2011. Since H≡ is a proconstructible subset of X
G

(?? (ii))
and the sets
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(*)
⋂n

i=1
[[ a

i
= 1 ]] ∩ [[ b = 0 ]], with a

1
, . . . , a

n
, b ∈ G,

are a basis of clopens for the constructible topology of X
G

(cf. [M], Note (1), p. 111), it
follows that H≡ is an intersection of sets of the form (*). Since the condition to be proved is
preserved under arbitrary intersections, it suffices to prove II.2.9 for sets of the form (*), which
is immediate by direct inspection. 2

Proposition II.2.10 Let ≡ be a congruence of a RS, G. With notation as in II.2.7, let
∆ = {x ∈ G |x ≡ x2} =

⋂
{P (h) |h ∈ H≡} and I = {Z(h) |h ∈ H≡}. Then, for h ∈ X

G
,

h ∈ H≡ ⇔ ∆⊆P (h) and Z(h) ∈ I.

That is, every RS-congruence is determined by a set of characters of the form H
∆,I =

{h ∈ X
G
|∆⊆P (h) and Z(h) ∈ I}, for a suitable saturated subsemigroup ∆ of G and a

family I of saturated prime ideals.

Proof. The implication (⇒) is obvious.

(⇐) Let f ∈ X
G

be as in the right-hand side of the statement; then, Z(f) = Z(g) for some
g ∈ H≡; call this ideal J . Let H

∆,J
= {h ∈ X

G
|∆⊆P (h) and Z(h) = J}, and let ≡

∆,J

denote the congruence of G determined by H
∆,J

as in (†)H of ??. For a, b ∈ G we have:

(*) a ≡ b ⇒ a ≡
∆,J

b.

In fact, a ≡ b implies ab ≡ a2b2, i.e., ab ∈ ∆; then, h(ab) ≥ 0 for h ∈ H
∆,J

. If h(ab) = 1,

then h(a) = h(b). If h(a) = 0, then a ∈ J = Z(h) = Z(g); since g ∈ H≡ and a ≡ b, it follows
g(b) = 0, i.e., b ∈ J = Z(h). Interchanging a and b we get h(a) = 0 ⇔ h(b) = 0. Hence
h(a) = h(b) for all h ∈ H

∆,J
, i.e., a ≡

∆,J
b.

Theorem II.3.5 (d) proves that G/≡
∆,J

is a RS. Indeed, with notation therein, let Γ be the

subsemigroup of G generated by ∆ ∪ J , and let T = G \ J . First, we observe that Γ ∩−Γ⊆ J :
an element of Γ ∩ −Γ belongs either to (∆ ∩ −∆) ∪ J —hence to J—, or is a product jd with
j ∈ J, d ∈ ∆ and hence belongs to J . Since J is saturated, the saturated subsemigroup Γ′

generated by Γ is also contained in J . By Fact II.3.4 (ii) there is a saturated subsemigroup

Γ̂ ⊇ Γ′ verifying the assumptions of II.3.5. Now, routine checking shows that H
∆,J

= HT
Γ̂

, and

hence that G/≡
∆,J

is a RS.

Let π
∆,J

: G −→ G/≡
∆,J

and π : G −→ G/≡ be the quotient maps. The universal

property II.2.1 (iii) and (*) imply that there exists a RS-morphism π̂ : G/≡ −→ G/≡
∆,J

so

that π̂ ◦ π = π
∆,J

. Since f ∈ H
∆,J

, (*) shows that the identity f̂ ◦ π = f (well-) defines a

map f̂ from G/≡ to 3. Obviously f̂ is a semigroup homomorphism sending 0, 1,−1 onto
the corresponding elements in 3.

We claim that f̂ preserves representation. Assume π(a) ∈ D
G/≡(π(b), π(c)). Since π̂ is

a RS-morphism, we get π
∆,J

(a) ∈ D
G/≡∆,J

(π
∆,J

(b), π
∆,J

(c)). Now we invoke item (b.iii) in

Theorem II.3.5 (with Γ̂, T as above) to get a′ ∈ G and d
1
, d

2
∈ Γ̂ so that a ≡

∆,J
a′ and

a′ ∈ D
G

(d
1
b, d

2
c). Since f ∈ H

∆,J
= HT

Γ̂
, we have f(a) = f(a′) and f(d

i
) ∈ {0, 1}, whence

f(d
i
) = f(d

i
)2, i = 1, 2. From f ∈ X

G
we get f(a) = f(a′) ∈ D

3
(f(d

1
)2f(b), f(d

2
)2f(c)),

and (by axiom [RS4]), f(a) ∈ D
3
(f(b), f(c)). This proves our claim, showing f̂ ∈ X

G/≡ , and

hence f ∈ H≡ , as required. 2
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Lemma II.2.11 Let G be a RS. Let h
1
, . . . h

n
∈ X

G
(n ≥ 2) be characters such that the

product h :=
∏n
i=1 hi also lies in X

G
. Then,

(1) One of the zero-sets {Z(h
i
) | i = 1, . . . , n} includes all the others.

In particular,

(2) There is j ∈ {1, . . . , n} so that Z(h) = Z(h
j
).

As a preliminary step we note :

Fact. Let I, J
1
, . . . , J

n
be saturated ideals of a RS. Then,

(i) I ⊆
⋃n
i=1 Ji ⇒ I ⊆ J

k
for some k ∈ {1, . . . , n}.

In particular,

(ii) If
⋃n
i=1 Ji is a saturated ideal, then some J

k
includes all the J

i
’s (i ∈ {1, . . . , n}).

Proof of Fact. Item (ii) follows at once from (i) upon taking I =
⋃n
i=1 Ji .

(i) Assume the conclusion false, i.e., for each i = 1, . . . , n there is an element ai ∈ I \ Ji . Let

c (= c2) be the unique element of Dt
G

(a2
1
, . . . , a2

n) (cf. Corollary IV.5.3 (i)); by saturatedness,

c ∈ I. Recall that Z(c) =
⋂n
i=1 Z(ai) , which (by (*) in the proof of VI.1.2) implies a2

i c
2 =

a2
i (i = 1, . . . , n). Since c ∈ I, there is i such that c ∈ J

i
; then a2

i ∈ Ji , whence ai ∈ Ji , a
contradiction. 2

Proof of Lemma II.2.11. It suffices to prove (1). We set h :=
∏n
i=1 hi (in X

G
by assumption).

First we show :

(a) There is i ∈ {1, . . . , n} such that Z(h
i
)⊆

⋃
j 6=i Z(h

j
).

Otherwise, for each i ∈ {1, . . . , n} there is an element a
i
∈ G such that

(*) h
i
(a
i
) = 0 and h

j
(a
i
) 6= 0 for all j 6= i .

Let c be the unique element of Dt
G

(a2
1
, . . . , a2

n
) (IV.5.3 (i)). We have

(**) Z(c) =
⋂n
i=1 Z(a

i
).

Since h ∈ X
G

, h(c) ∈ Dt
3
(h(a2

1
), . . . , h(a2

n
)) = Dt

3
(0, . . . , 0), and hence h(c) = 0. Then,

h
k
(c) = 0 for some k ∈ {1, . . . , n}. From (**) it follows that h

k
(a
j
) = 0 for all j ∈ {1, . . . , n}.

Since n ≥ 2, picking j 6= k contradicts (*).

Up to a permutation of indices we can assume Z(h
1
)⊆

⋃n
j=2 Z(h

j
). By item (i) of the Fact

there is k ∈ {2, . . . , n} such that Z(h
1
)⊆Z(h

k
), and hence Z(h) =

⋃n
j=2 Z(h

j
). By item (ii)

of the Fact there is m ∈ {2, . . . , n} such that Z(h
j
)⊆Z(h

m
) for all j ∈ {2, . . . , n}. Hence,

Z(h
1
)⊆Z(h

k
)⊆Z(h

m
), i.e., Z(h

i
)⊆Z(h

m
) for all i ∈ {1, . . . , n}, proving the Lemma. 2

Proof of Theorem II.2.9. Let h
1
, . . . , h

n
be as in the assumption, and let ∆ and I be

as in Proposition II.2.10, so that H≡ = H
∆,I = {h ∈ X

G
|∆⊆P (h) and Z(h) ∈ I }. Hence,

∆⊆P (h
i
) and Z(h

i
) ∈ I for i = 1, . . . , n. By Lemma II.2.11 (2), Z(

∏n
i=1 hi) =

⋃n
i=1 Z(h

i
) =

Z(h
j
) ∈ I, for some j ∈ {1, . . . , n}. Also, ∆⊆

⋂n
i=1 P (h

i
)⊆P (

∏n
i=1 hi). By II.2.10 again, we

have
∏n
i=1 hi ∈ H∆,I = H≡. 2

C. Congruences and proconstructible character sets.

Proposition II.2.8 and Theorem II.2.9 give necessary conditions for a set of characters
H⊆X

G
to determine a RS-congruence of G. Proceeding in the reverse direction we investigate

in this paragraph the extent to which a set of characters of a real semigroup determines a
congruence. Most of the results that follow are direct application of those in section I.3.

II.2.12 Reminder. Let G be a ternary semigroup and let H be a non-empty subset of
X
G

= Hom
TS

(G, 3). In I.1.26 (c) we defined a congruence of TSs by: for a, b ∈ G,
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(†)H a ≡H b ⇔ For all h ∈ H, h(a) = h(b),

and proved in I.1.27 that every congruence of TSs is of this form for a suitable (proconstructible)
set H. If G/H denotes the quotient set under ≡H, and π : G−→G/H is the canonical
projection, in I.3.1 we defined a ternary relation, D

G/H, on G/H as follows: for a, b, c ∈ G,

(††)H π(a) ∈ D
G/H(π(b), π(c)) ⇔ For all h ∈ H, h(a) ∈ D

3
(h(b), h(c)).

Clearly, D
G/H is well-defined and, according to Proposition ??, every RS-congruence is ob-

tained in this way. To be precise:

Fact II.2.13 Given a real semigroup G and a RS-congruence ≡ of G, with H≡ denoting the set
of characters defined in II.2.7 (i), we have (G/≡, D

G/≡) ∼= (G/H≡, DG/H≡) as L
RS

-structures;

hence, (G/H≡, DG/H≡) is a RS.

Proof. To ease notation, set H := H≡. Let π : G−→G/≡ and π′ : G−→G/H be the quotient
maps. The second equivalence in II.2.8 (v), together with II.2.12 (†)H give, for a, b ∈ G,

a ≡ b⇔ ∀p ∈ H (p(a) = p(b))⇔ a≡H b,

showing that the map π(x)
ϕ7−→ π′(x) is bijective. Since π and π′ are TS-homomorphisms, ϕ is

an isomorphism of TSs. The first equivalence in II.2.8 (v) and II.2.12 (††)H show

π(a) ∈ D
G/≡(π(b), π(c))⇔ ∀p ∈ H (p(a) ∈ D

3
(p(b), p(c))⇔ π′(a) ∈ D

G/H(π′(b), π′(c)),

proving that ϕ is an isomorphism of L
RS

-structures. 2

The set H can be identified with a subset Ĥ = {ĥ |h ∈ H} of 3G/H by the map h 7→ ĥ,
where ĥ : G/H −→ 3 is defined by the functional equation ĥ ◦ π = h. By clause (†)H above,

ĥ is well-defined and the map h 7→ ĥ is obviously injective.

Proposition I.3.7 yields:

Proposition II.2.14 Let G be a RS and let H be a subset of X
G

. Then,

(1) The closure H of H in (X
G

)
con

defines the same equivalence relation as H and the same

representation relation on the quotient set G/H = G/H.

(2) Let H̃ be the set of all p ∈ X
G

such that for all a, b, c ∈ G,

(a) a ≡H b ⇒ p(a) = p(b).

(b) π(a) ∈ D
G/H(π(b), π(c)) ⇒ p(a) ∈ D

3
(p(b), p(c)).

Then,

(i) H ⊆ H̃.

(ii) H and H̃ define the same equivalence relation on G, and the same representation relation
on G/H = G/H̃.

(iii) H̃ is maximal satisfying conditions (i) and (ii): if H ⊆ G ⊆ X
G

, the equivalence relation

≡G is identical to ≡H, and D
G/G is identical to D

G/H, then G ⊆ H̃.

In particular,

(iv) H̃ is proconstructible.

Proof. We only need check the assertions about the equivalence relations in (1), (2.ii) and
(2.iii). Once this is done, the rest follows from Proposition I.3.7 applied with the TS G/H and

the set
̂̃H of TS-characters. Note first that, for fixed a, b ∈ G, the set {g ∈ X

G
| g(a) = g(b)} ,

is clopen in (X
G

)
con

.

(1) We must show that ≡H = ≡H. The inclusion ≡H⊆ ≡H follows from H⊆H. Conversely, let

a≡Hb (a, b ∈ G) and assume h′(a) 6= h′(b) for some h′ ∈ H . Then, {g ∈ X
G
| g(a) 6= g(b)} is a
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neighborhood of h′ in the constructible topology, which implies H ∩ {g ∈ X
G
| g(a) 6= g(b)} 6= ∅,

i.e., h(a) 6= h(b) for some h ∈ H, contrary to a≡Hb.

(2.ii) The inclusion ≡H̃ ⊆ ≡H follows from H ⊆ H̃ . The reverse inclusion follows from clause

(a) in the definition of H̃ by use of item (†)H̃ in II.2.12.

(2.iii) Straightforward checking, using the assumptions in (iii) and items (†)G , (††)G in II.2.12.

shows that any q ∈ G verifies clauses (a) and (b) in the definition of H̃, and hence, q ∈ H̃. 2

Corollary II.2.15 With notation as in II.2.12 and II.2.14 and assumptions therein,
̂̃H is

the set of all L
RS

-homomorphisms from the L
RS

-structure (G/H, D
G/H) onto 3. 1 Further, Ĥ

—and, a fortiori
̂̃H— separates points in G/H.

Proof. The elements of
̂̃H are maps of the form p̂ with p ∈ H̃; clauses (2.a) and (2.b) in II.2.14

state precisely that p̂ is a L
RS

-homomorphism from (G/H, D
G/H) into 3.

Conversely, if f : G/H−→3 is a TS-homomorphism preserving the relation D
G/H, then

f ◦ π ∈ H̃ (II.2.14 (2.a.b)), whence f̂ ◦ π ∈ ̂̃H. Since f̂ ◦ π = f , we conclude that f ∈ ̂̃H, as
required.

Separation of points is clear from (†)H in II.2.12 and the definition of Ĥ: for g, g′ ∈ G,

π(g) 6= π(g′) ⇔ There is h ∈ H such that h(g) 6= h(g′)⇔
⇔ There is ĥ ∈ H such that ĥ(g) 6= ĥ(g′). 2

In a partial converse to Proposition II.2.14, our next result —a corollary to Theorem I.3.3—,
shows that if G is a RS, any non-empty subset of X

G
determines, via the notions defined in

II.2.12, a quotient structure verifying all axioms for real semigroups with the possible exception
of the weak associativity axiom [RS3a] (see ??.

Theorem II.2.16 Let G be a real semigroup and let H be a non-empty subset of X
G

. En-
dowed with the ternary relation D

G/H defined in II.2.12 (††)H, the L
RS

-structure (G/H, D
G/H)

satisfies all axioms for real semigroups except, possibly, the weak associativity axiom [RS3a].

Proof. First note that the set Ĥ —and a fortiori
̂̃H— separates points in ternary semigroup

G/H: if a, b ∈ G are such that π(a) 6= π(b), i.e., a 6≡Hb, by II.2.12 (†)H there is h ∈ H such that

h(a) 6= h(b), which implies ĥ(π(a)) 6= ĥ(π(b)).

Then, Theorem I.3.3 can be applied to this situation, implying that the L
RS

-structure
(G/H, D

G/H) satisfies all axioms for real semigroups except, possibly, the strong associativity

axiom [RS3].

On the other hand, the validity of axiom [RS3b] (cf. I.2.4) is inherited from G: according
to our definition of D

G/H, the canonical projection π : ≥−→G/H is a morphism of ternary

semigroups and preserves transversal representation. The validity of Dt
G

(a, b) 6= ∅ implies, then

Dt
G/H

(a, b) 6= ∅, and hence of [RS3b], as π is surjective. 2

Remark. The validity of the weak associativity axiom [RS3a] in G does not entail, in general,
its validity in G/H; a counterexample is obtained by easily adapting Example I.3.6, a task that
we leave as an exercise to the reader. 2

A straightforward adaptation of Propositions I.3.4 and I.3.5, yields:
1I.e., the “L

RS
-characters” of (G/H, D

G/H).
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Proposition II.2.17 Let G be a RS and let h
1
, h

2
∈ X

G
. With H = {h

1
, h

2
}, G/H verifies

[RS3], and then is a real semigroup. 2

Proposition II.2.18 Let G be a RS and let h
1
, h

2
, h

3
be three distinct elements of X

G
such

that h
i
 h

j
for some i 6= j ∈ {1, 2, 3}. With H = {h

1
, h

2
, h

3
}, (G,DH, . . .) verifies axiom

[RS3], and then is a real semigroup. 2

Proofs are omitted.

The next example shows that an equivalence relation ≡ on a real semigroup G may verify
conditions (i) and (ii) of Definition II.2.1 but not necessarily the universal property (iii).

Example II.2.19 Let G be the ternary semigroup: G = {−1, 0, 1, x, y,−x,−y}, subject to
the conditions x2 = x, y2 = 1 and xy = x. It is immediate to see that either a2b2 = a2 or
a2b2 = b2, for all a, b ∈ G. Hence, G admits a unique structure of RS-fan (cf. Chapter VI,
§§ 1, 3). Moreover, straightforward verification shows that X

G
has three characters h

1
, h

2
, h

3
defined by:

h
1
(x) = 0, h

1
(y) = 1; h

2
(x) = 0, h

2
(y) = −1; h

3
(x) = h

3
(y) = 1.

Therefore the specialization partial order is given by h
3
 h

1
(h

2
is not  -related to the other

two characters), and we also have h
1

= h2
2
h

3
. Let H = {h

2
, h

3
}, and let ≡H be the congru-

ence of ternary semigroups induced by H. The preceding Proposition shows that ≡H satisfies

conditions II.2.1 (i),(ii). Moreover, h
1

= h2
2
h

3
implies that the equivalence relation ≡H is just

equality. Hence, G = G/H, and the quotient map π is the identity on G. Assuming that ≡H
verifies condition II.2.1 (iii), the identity map id : G−→G factors through π via a morphism
îd : G/≡H−→G which manifestly is also the identity (since îd ◦ π = id). On the other hand,
checking values at h

2
, h

3
it immediately comes that −1 = π(−1) ∈ D

G/H(π(−x), π(y)), and

hence −1 ∈ D
G

(−x, y). However, h
1
(−1) = −1 6∈ D

3
(h

1
(−x), h

1
(y)) = D

3
(0, 1), contradic-

tion. 2

II.3 Congruences of real semigroups defined by saturated sets

This section is devoted to study the quotients of RSs determined by certain outstanding sets
of characters: localizations, saturated sets, saturated subsemigroups (also called subspaces),
transversally saturated subsemigroups, residue spaces. Quotients of these types occur under
various guises in real algebraic geometry and real algebra; in the dual language of abstract real
spectra some of these quotients have been considered by Marshall in [M], Ch. 6, whose work
we considerably extend here.

Our main aim is to give explicit characterizations of the congruences generated by sets of
these types and of both representation relations in the respective quotients, in terms of the
semigroup operation, the constants and the corresponding relations in the initial RSs. Several
useful remarks appear on the way, such as the convexity of saturated sets in the specialization
order of the character space X

G
(II.3.7).

We begin with the simplest case, that of localizations.

A. Localizations. Let G be a RS; let T ⊆ G be a multiplicative subset of G containing 1
but not 0 . Sets of this form give raise in an obvious way to RS-congruences of G: namely,

Definition II.3.1 With G and T as above we define, for a, b, c ∈ G :

(1) a∼
T
b :⇔ There is t ∈ T such that at = bt.
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(Equivalently, there is t ∈ T such that at2 = bt2.) Clearly, this is a congruence of ternary
semigroups, and t2∼

T
1 for t ∈ T (since t3 = t).

(2) With π = π
T

: G−→G/∼
T

canonical,

π(a) ∈ D
G/∼

T

(π(b), π(c)) :⇔ There is t ∈ T such that at ∈ D
G

(bt, ct).

(Equivalently, there is t ∈ T such that at2 ∈ D
G

(bt2, ct2).) 2

Proposition II.3.2 Let G be a RS; let T ⊆ G be a multiplicative subset of G containing 1 but
not 0 . With ∼

T
and D

G/∼
T

as in the preceding definition:

(1) The canonical map π preserves representation.

(2) For h ∈ X
G

,

h dT 2 = 1 ⇔ There is a L
RS

-character σ : G/∼
T
−→ 3 such that h = σ ◦ π.

(3) The L
RS

-structure (G/∼
T
, ·, D

G/∼
T

,−1, 0, 1) is a real semigroup.

(4) ∼
T

is a RS-congruence, i.e., verifies the factorization condition II.2.1 (iii).

(5) For a, b, c ∈ G,

π(a) ∈ Dt
G/∼

T

(π(b), π(c))⇔ There is t ∈ T such that at2 ∈ Dt
G

(bt2, ct2).

Proof. For (1) use “⇐” in item (2) of II.3.1 with t = 1 ∈ T .

(2) (⇐) Given a L
RS

-character σ : G/∼
T
−→3 such that h = σ ◦π and t ∈ T , π(t2) = 1 implies

h(t2) = σ(π(t2)) = σ(1) = 1.

(⇒) Given h ∈ X
G

such that h dT 2 = 1, define σ : G/∼
T
−→ 3 by σ(π(a)) := h(a) (a ∈ G).

— σ is well defined: for a, b ∈ G,

π(a) = π(b) ⇔ a∼
T
b ⇔ ∃t ∈ T (at2 = bt2),

whence h(a) = h(at2) = h(bt2) = h(b).

We leave as an exercise for the reader the routine checking that σ is a TS-character pre-
serving D

G/∼
T

.

(3) With notation as in I.1.17, U(T 2) = {h ∈ X
G
|h dT 2 = 1} =

⋂
t∈T [[ t2 = 1 ]]. Since [[ t2 = 1 ]]

is, by definition of the spectral topology (cf. I.1.17), quasi-compact open in X
G

, U(T 2) is
proconstructible. By Theorem II.2.16 the L

RS
-structure (G/∼

T
, ·, D

G/∼
T

,−1, 0, 1) verifies all

axioms for real semigroups except, possibly, weak associativity ([RS3a]), which we check now.

Let a, b, c, d, e ∈ G be such that π(a) ∈ D
G/∼

T

(π(b), π(c)) and π(c) ∈ D
G/∼

T

(π(d), π(e)). By

the definition of D
G/∼

T

there are t
1
, t

2
∈ T such that at2

1
∈ D

G
(bt2

1
, ct2

1
) and ct2

2
∈ D

G
(dt2

2
, et2

2
).

Scaling these representations by t2
1
t2
2

and setting t := t
1
t
2
, we have at2 ∈ D

G
(bt2, ct2) and

ct2 ∈ D
G

(dt2, et2). Since D
G

is weakly associative, there is x ∈ G so that x ∈ D
G

(bt2, dt2)

and at2 ∈ D
G

(x, et2). Scaling these representations by t2 and using II.3.1 (2) again, shows that
π(x) ∈ D

G/∼
T

(π(b), π(d)) and π(a) ∈ D
G/∼

T

(π(x), π(e)), as required.

(4) This is straightforward checking: let f : G−→H (H |= RS) be a RS-morphism such
that a ∼

T
b ⇒ f(a) = f(b) (a, b ∈ G). We must check that the map f̂ : G/∼

T
−→H given
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by f̂ ◦ π = f preserves representation: if π(a) ∈ D
G/∼

T

(π(b), π(c)), there is t ∈ T so that

at2 ∈ D
G

(bt2, ct2); taking images under f in this representation and using that f(t2) = 1 for

t ∈ T (recall that t2∼
T

1), yields f(a) ∈ D
H

(f(b), f(c)), as required.

(5) The implication (⇐) is clear, since π is a RS-morphism and π(t2) = 1. Conversely, assuming
π(a) ∈ Dt

G/∼
T

(π(b), π(c)), we have π(a) ∈ D
G/∼

T

(π(b), π(c)) ,−π(b) ∈ D
G/∼

T

(−π(a), π(c)) and

−π(c) ∈ D
G/∼

T

(π(b),−π(a)) (cf. [t-rep] in I.2). By II.3.1 (2) there are t
1
, t

2
, t

3
∈ T such

that at2
1
∈ D

G
(bt2

1
, ct2

1
) ,−bt2

2
∈ D

G
(−at2

2
, ct2

2
) and −ct2

3
∈ D

G
(bt2

3
,−at2

3
). Setting t := t

1
t
2
t
3

and scaling these representations by t2 we get at2 ∈ D
G

(bt2, ct2) ,−bt2 ∈ D
G

(−at2, ct2) and

−ct2 ∈ D
G

(bt2,−at2). By [t-rep] again, we get at2 ∈ Dt
G

(bt2, ct2), as claimed. 2

Remarks and Notation II.3.3 (i) The RS-congruences ∼
T

defined above, given by a sub-
semigroup T of G not containing 0, are called localizations (at T ). Item (2) of II.3.2 shows
that U(T 2) = {h ∈ X

G
|h dT 2 = 1} coincides with the set of characters H∼

T

associated to the

localization at T , defined in Proposition ??.

(ii) Note that the set U(T 2) of characters associated to the localization at T is downwards
closed under specialization: h ∈ U(T 2), g ∈ X

G
and g h imply g ∈ U(T 2). This follows

from Lemma I.1.18: g h is equivalent to h−1[1]⊆ g−1[1] and h ∈ U(T 2) means T 2⊆h−1[1].
Subsets of a spectral space downwards closed under specialization are called generically closed;
cf. [DST], Def. 6.1.4. 2

The examples of congruences of a real semigroup G considered in the sequel will be con-
structed from a family of characters of G; the corresponding equivalence relation, as well as
both representation relations in the quotient set will then be characterized in terms of the
operation and the representation relations of G (note that localizations were defined by giving
directly the equivalence relation and representation).

B. Saturated sets. Let G be a RS; given a saturated subsemigroup ∆ of G and a multi-
plicative subset T ⊆ G containing 1, we define:

HT
∆

= {h ∈ X
G
|∆ ⊆ P (h) and Z(h) ∩ T = ∅}.

Sets of this form are called saturated sets ([M], p. 126). To avoid trivialities we assume
HT

∆
6= ∅. Under this assumption we have:

Fact II.3.4 With notation as above, if HT
∆
6= ∅, then:

(i) ∆ ∩ −∆ ∩ T = ∅.

(ii) There is a saturated subsemigroup of G, ∆̂ ⊇ ∆, so that HT
∆

= HT
∆̂

, verifying in addition:

(C) If a ∈ G, x ∈ T and ax2 ∈ ∆̂, then a ∈ ∆̂.

Proof. (i) Suppose x ∈ ∆∩−∆∩T , and let h ∈ HT
∆

. Since x ∈ ∆∩−∆, then −x2 ∈ ∆, which

implies h(−x2) ≥ 0, and hence h(x) = 0. So, x ∈ Z(h) ∩ T , contrary to our definition of HT
∆

.

(ii) Let ∆̂ =
⋃
x∈T
{a ∈ G | ax2 ∈ ∆}. Clearly ∆ ⊆ ∆̂. Let a, b ∈ ∆̂. Then ax2 ∈ ∆ and

by2 ∈ ∆ for some x, y ∈ T ; hence, abx2y2 ∈ ∆, and since xy ∈ T we get ab ∈ ∆̂. Therefore ∆̂
is a subsemigroup of G.
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To prove that ∆̂ is saturated, take p, q ∈ ∆̂, and let z ∈ D(p, q). Then, there are x, y ∈ T
such that px2 ∈ ∆ and qy2 ∈ ∆. Hence px2y2 ∈ ∆ and qx2y2 ∈ ∆. On the other hand,
z ∈ D(p, q) implies zx2y2 ∈ D(px2y2, qx2y2) and hence zx2y2 ∈ ∆ because ∆ is saturated and
the entries of this form are in ∆. Since xy ∈ T we conclude that z ∈ ∆̂.

Next, let us see that HT
∆

= HT
∆̂

. Clearly, HT
∆̂
⊆ HT

∆
. Conversely, let h ∈ HT

∆
. Since

Z(h)∩T = ∅ it only remains to show that ∆̂ ⊆ P (h). Let a ∈ ∆̂, i.e., ax2 ∈ ∆ for some x ∈ T .
Then h(ax2) ≥ 0; since h(x) 6= 0, we get h(x2) = 1 and h(a) = h(ax2) ≥ 0. Hence h ∈ HT

∆̂
.

Further, ∆̂ and T satisfy condition II.3.4 (C). Indeed, let a ∈ G, x ∈ T be such that ax2 ∈ ∆̂.
Then there exists y ∈ T such that ax2y2 ∈ T . Since xy ∈ T and a(xy)2 = ax2y2 we conclude
that a ∈ ∆̂. 2

To ease notation, the equivalence ≡HT∆ induced by HT
∆

will be denoted by ∼
∆,T

.

Theorem II.3.5 Let G be a RS. Suppose that ∆ is a saturated subsemigroup of G and T is
a multiplicative subset of G satisfying ∆ ∩ −∆ ∩ T = ∅ and condition II.3.4 (C ). Then, for
a, b, c ∈ G:

(a) a∼
∆,T

b if and only if ab ∈ ∆ and there are elements t ∈ T and d
1
, d

2
∈ ∆ such that

a2t2 ∈ Dt
G

(−d
1
, a2b2t2) and b2t2 ∈ Dt

G
(−d

2
, a2b2t2).

(b) The following are equivalent:

(i) π(a) ∈ D
G/HT∆

(π(b), π(c)) .

(ii) There are p, q, r ∈ G, t ∈ T such that p∼
∆,T

q∼
∆,T

r∼
∆,T

a2t2 and ap ∈ D
G

(bq, cr).

(iii) There are d
1
, d

2
∈ ∆ and a′ ∈ G such that a∼

∆,T
a′ and a′ ∈ D

G
(d

1
b, d

2
c).

(c) The following are equivalent:

(i) π(a) ∈ Dt
G/HT∆

(π(b), π(c)) .

(ii) There are x, y, z ∈ G such that x∼
∆,T

a2, y∼
∆,T

b2, z∼
∆,T

c2 and ax ∈ Dt
G

(by, cz).

(d) D
G/HT∆

verifies axiom [RS3] and G/HT∆ satisfies the universal property of Definition

II.2.1 (iii); hence ∼
∆,T

is a RS-congruence of G.

Proof. By Fact II.3.4 (ii) we may assume that ∆ verifies condition II.3.4 (C).

Proof of (a). (⇐) Suppose that a, b ∈ G verify ab ∈ ∆, a2t2 ∈ Dt(−d
1
, a2b2t2) and b2t2 ∈

Dt(−d
2
, a2b2t2) for some elements t ∈ T, d

1
, d

2
∈ ∆. Let h ∈ HT

∆
. Since ∆ ⊆ P (h) we have

h(ab) ≥ 0. If h(a) = 0, from b2t2 ∈ Dt(−d
2
, a2b2t2) comes h(b2t2) = h(b2) ∈ Dt

3
(−h(d

2
), 0) =

{−h(d
2
)}. Note that h(b2t2) = h(b2) because Z(h) ∩ T = ∅. Hence h(b2) = −h(d

2
). Since

d
2
∈ ∆, we get −h(d

2
) ≤ 0, and then h(b2) ≤ 0, whence h(b) = 0. A similar argument using

a2t2 ∈ Dt(−d
1
, a2b2t2), shows that h(b) = 0 implies h(a) = 0. Thus, h(a) = 0 ⇔ h(b) = 0.

Since h(ab) ≥ 0 we conclude h(a) = h(b), and since h ∈ HT
∆

is arbitrary, a∼
∆,T

b.

(⇒) Conversely, assume a∼
∆,T

b. Let us prove first that ab ∈ ∆. Otherwise, condition II.3.4 (C)

yields abT 2 ∩ ∆ = ∅. Since T 2 is multiplicative, by Corollary I.4.11 there exists a character
h ∈ X

G
such that ∆ ⊆ P (h) and h(abt2) = −1 for all t ∈ T . In particular, Z(h) ∩ T = ∅,
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which means that h ∈ HT
∆

. Hence h(a) = h(b), contradicting h(ab) = −1. So ab ∈ ∆.

In order to prove the remaining conditions in (a), let I = ∆ ∩ −∆ and let I
ab

be the

saturated ideal generated by I ∪ {ab}. Let T
a

= T ∪ a2T ; clearly T
a

is a multiplicative
subset of G. Suppose that I

ab
[∆] ∩ T

a
= ∅. Lemma I.4.10 gives a character h ∈ X

G
such

that I
ab
⊆ Z(h), ∆ ⊆ P (h) and Z(h) ∩ T

a
= ∅. Since T ⊆ T

a
, we have h ∈ HT

∆
. Hence

h(a) = h(b), and then h(ab) = 0 yields h(a) = h(b) = 0. On the other hand, if t ∈ T , we
have a2t ∈ T

a
, and then h(a2t) 6= 0, contradiction. Therefore, I

ab
[∆] ∩ T

a
6= ∅. Using the

expression for the saturated ideal generated by I ∪ {ab} given by Proposition I.4.6 (1′), we
get elements x ∈ T

a
, y ∈ G, i ∈ I, d ∈ ∆ such that −x2 ∈ D(i, aby, d). Then (by [RS6]),

−x2 ∈ Dt(ix2, abyx2, dx2) = Dt(j, abyx2, e) with j = ix2 ∈ I and e = dx2 ∈ ∆. Therefore
−abyx2 ∈ Dt(j, e, x2) (I.2.3 (0)), which implies

a2b2y2x2 = (−abyx2)2 ∈ Dt(〈 j, e, x2 〉⊗〈 j, e, x2 〉).

Since I and ∆ are saturated sets, I is an ideal and ∆ is multiplicative, this formula yields
a2b2y2x2 ∈ Dt(k, f, x2) for some k ∈ I and f ∈ ∆. Hence −x2 ∈ Dt(k, f,−a2b2x2y2) ⊆
D(k, f,−a2b2x2y2), which, using [RS4], yields −x2 ∈ D(k, f,−a2b2x2). Scaling by −a2 we
obtain a2x2 ∈ D(−a2k,−a2f, a2b2x2). By the definition of I, a2k ∈ ∆ and since a2f is also
in ∆, saturation of ∆ gives a2x2 ∈ D(−d̂, a2b2x2) for some d̂ ∈ D(a2k, a2f) ⊆ ∆. On the

other hand, x ∈ T
a

implies a2x2 = a2t2 for some t ∈ T . Therefore a2t2 ∈ D(−d̂, a2b2t2) and

then a2t2 ∈ Dt(−d̂a2t2, a2b2t2) = Dt(−d ′, a2b2t2) with d ′ = d̂a2t2 ∈ ∆. By a similar argument
(scaling by −b2) we find elements s ∈ T, e′ ∈ ∆ such that b2s2 ∈ Dt(−e′, a2b2s2). Since st ∈ T
we obtain

a2z2 ∈ Dt(−d ′s2, a2b2z2), b2z2 ∈ Dt(−e′t2, a2b2z2),

with z = st ∈ T . Since d ′s2, e′t2 ∈ ∆, the proof of item (a) is complete.

Proof of (b). Note first that, x ∈ G, t ∈ T imply xt2∼
∆,T

x (since h(t2) = 1 for all h ∈ HT∆).

(ii) ⇒ (iii). With p, q, r as in (ii) we have ap2 ∈ D
G

(bpq, cpr). But p∼
∆,T

q∼
∆,T

a2 implies

p2∼
∆,T

a2 and (by (a)) pq ∈ ∆; likewise, pr ∈ ∆. Setting d
1

:= pq , d
2

:= pr and a′ := ap2,

assertion (iii) follows.

(iii) ⇒ (i). Let a′ ∈ G, d
1
, d

2
∈ ∆ be such that a∼

∆,T
a′ and a′ ∈ D(d

1
b, d

2
c), and let h ∈ HT

∆
.

Then h(a) = h(a′) ∈ D
3
(h(d

1
)h(b), h(d

2
)h(c)). Since ∆ ⊆ P (h) we have h(d

i
) = (h(d

i
))2

(i = 1, 2), which, by [RS4], implies h(a) ∈ D(h(b), h(c)). Since h is arbitrary, we conclude that
π(a) ∈ D

G/HT∆
(π(b), π(c)).

(i) ⇒ (ii). This is the delicate part of the proof. The argument is similar to (and generalizes)
the proof of Lemma 6.6.6 in [M], p. 125. We just sketch it. Assume π(a) ∈ D

G/HT∆
(π(b), π(c)) .

Claim 1. There are finitely many d
1
, . . . , d

n
∈ ∆ and t ∈ T such that, with Y =

{h ∈ X
G
| {d

1
, . . . , d

n
}⊆P (h) and h(t2) = 1} and π

Y
: G−→G/Y canonical, we have π

Y
(a) ∈

D
G/Y

(π
Y

(b), π
Y

(c)) .

Proof of Claim 1. This is a simple argument using compactness of the constructible topology
of X

G
. For Z ⊆X

G
we set W (Z) = {h ∈ X

G
|Z ⊆P (h)}. To abridge, call finitely generated in

{∆, T} any saturated set of the form W (∆′) ∩ U(T ′), where T ′ is a finite subsemigroup of T ,
and ∆′ is a finitely generated subsemigroup of ∆.

Assume we had π
Y ′

(a) 6∈ D
G/Y ′

(π
Y ′

(b), π
Y ′

(c)) for each saturated set Y ′ finitely generated
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in {∆, T}. Then, for each such set Y ′ there is h ∈ Y ′ so that h(b), h(c) ≥ 0 and h(a) = −1; that
is, Y ′ ∩ W (b, c) ∩ U(−a) 6= ∅. Thus, F = {Y ′ ∩ W (b, c) ∩ U(−a) |Y ′ finitely generated in
{∆, T}} is a family of proconstructible subsets of X

G
with the finite intersection property

(the intersection of two saturated sets of this form is again saturated and finitely generated in
{∆, T}). By compactness,

⋂
F 6= ∅. Since

⋂
{Y ′ |Y ′ finitely generated in {∆, T}} = HT

∆
, we

get HT
∆
∩ W (b, c) ∩ U(−a) 6= ∅, contrary to assumption (i).

Hence, there are d
1
, . . . , d

n
∈ ∆ and t

1
, . . . , t

k
∈ T such that, with Y = W (d

1
, . . . , d

n
) ∩

U(t2
1
, . . . , t2

k
) we have π

Y
(a) ∈ D

G/Y
(π
Y

(b), π
Y

(c)). Setting t := t
1
· . . . · t

k
proves Claim 1.

With Y as in Claim 1, since HT
∆
⊆Y , we have x∼

Y
y ⇒ x∼

∆,T
y for x, y ∈ G. Hence, it

suffices to prove item (ii) for Y .

Claim 2. We may assume a2t2 = 1 (and hence a2 = t2 = 1).

Proof of Claim 2. It suffices to replace X
G

by its localization at the multiplicative set {1, a2t2},
which is a RS by Proposition II.3.2 (3) (see also [M], Prop. 6.5.7, pp. 119-120). Note that
Y ′ := Y ∩ U(a2t2) = W (d

1
, . . . , d

n
) ∩ U(a2t2).

Assuming the result valid for {1, a2t2} and Y ′, there are p′, q′, r′ ∈ G such that p′∼
Y ′
q′∼

Y ′

r′∼
Y ′
a2t2 and ap′ ∈ D

G
(bq′, cr′). Setting p := p′a2t2, q := q′a2t2, r := r′a2t2 we get ap ∈

D
G

(bq, cr) and p∼
Y
q∼

Y
r∼

Y
a2t2. To show, e.g., that p∼

Y
a2t2, let h ∈ Y ; if h ∈ U(a2t2),

then h ∈ Y ′, and h(p′) = h(a2t2), which gives h(p) = h(a2t2); if h 6∈ U(a2t2), then h(a2t2) = 0,
and hence also h(p) = 0, proving Claim 2.

Now, assuming a2t2 = 1 we have a2 = t2 = 1 , Y = W (d
1
, . . . , d

n
), and the result follows

exactly as in the proof of [M], Lemma 6.6.6.

Proof of (c). The implication (ii) ⇒ (i) is obvious.

(i)⇒ (ii). From π(a) ∈ Dt
G/HT∆

(π(b), π(c)) we get π(ab) ∈ Dt
G/HT∆

(π(b2), π(bc)), whence π(b2) ∈
Dt
G/HT∆

(π(ab),−π(bc)) and, in particular, π(b2) ∈ D
G/HT∆

(π(ab),−π(bc)). By item (b) there

are p, q, r ∈ G, t ∈ T such that p∼
∆,T

q∼
∆,T

r∼
∆,T

b2t2 (∼
∆,T

b2) and b2p ∈ D
G

(abq,−bcr).
Therefore, b2p ∈ Dt

G
(abp2q,−bcp2r), and abp2q ∈ Dt

G
(b2p, bcp2r). Set v := bp2q and a′ := av.

Clearly, v∼
∆,T

b, whence

(*) a′∼
∆,T

ab, and a′ = av ∈ Dt
G

(b2p, bcp2r).

A similar argument, using π(ac) ∈ Dt
G/HT∆

(π(c2), π(bc)), shows that there are elements

p′, q′, r′, w ∈ G such that p′∼
∆,T

q′∼
∆,T

r′∼
∆,T

c2, w∼
∆,T

c and aw ∈ Dt
G

(c2p′, bcp′2r′). Set-

ting a′′ := aw, we have:

(**) a′′∼
∆,T

ac, and a′′ = aw ∈ Dt
G

(c2p′, bcp′2r′).

Now, let x = x2 be the unique element of Dt
G

(a′ 2, a′′ 2) (cf. IV.5.3 (1)).

Claim 3. x∼
∆,T

a2.

Proof of Claim 3. Let h ∈ HT
∆

. If h(x) = 0 we have h(a′) = h(a′′) = 0, which, by the

congruences in (*) and (**), entail h(ab) = h(ac) = 0. If h(a) 6= 0, this gives h(b) = h(c) = 0
which, by assumption (i), yields h(a) = 0, contradiction. So, h(x) = 0⇒ h(a) = 0. Conversely,
by (*) and (**), h(a) = 0 implies h(a′) = h(a′′) = 0, and hence h(x) = 0.
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We also have:

ax ∈ Dt
G

(aa′2, aa′′2) = Dt
G

(a · (av)2, a · (aw)2 = Dt
G

(av2, aw2).

From the representations in (*) and (**) we get av2 ∈ Dt
G

(b2pv, bcp2rv) and aw2 ∈
Dt
G

(c2p′w, bcp′2r′w), whence ax ∈ Dt
G

(b2pv , bcp2rv , c2p′w , bcp′2r′w). There are elements α
1
, α

2
such that

(***) α
1
∈ Dt

G
(b2pv, bcp′2r′w) , α

2
∈ Dt

G
(c2p′w, cbp2rv) and ax ∈ Dt

G
(α

1
, α

2
).

By I.2.3 (4), the first of these representations gives

(****) α
1

= b2α
1

and bα
1
∈ Dt

G
(bpv, b2cp′2r′w).

Claim 4. bα
1
∼

∆,T
b2.

Proof of Claim 4. Taking images of the representation in (***) under π, and taking into account
that π(p) = π(b2), π(v) = π(b), π(p′) = π(r′) = π(c2), the equality π(w) = π(c), gives:

π(bα
1
) ∈ Dt

G/HT∆
(π(bpv), π(b2cp′2r′w)) = Dt

G/HT∆
(π(b2), π(b2c2) = {π(b2)}.

A similar argument, using the second representation in (****) shows that α
2

= c2α
2

and

cα
2
∼

∆,T
c2.

From the last representation in (***) comes:

ax ∈ Dt
G

(α
1
, α

2
) = Dt

G
(b2α

1
, c2α

2
) = Dt

G
(b(bα

1
), c(cα

2
)).

Setting y := bα
1

and z := cα
2
, we have y∼

∆,T
b2 , z∼

∆,T
c2 , x∼

∆,T
a2 and ax ∈ Dt

G
(by, cz),

concluding the proof of (c).

Proof of (d). Let us first verify axiom [RS3]. We write D for D
G

. By Remark ?? it suf-
fices to prove that D

G/HT∆
is weakly associative. Let a, b, c, d, e ∈ G be such that π(a) ∈

D
G/HT∆

(π(b), π(c)) and π(c) ∈ D
G/HT∆

(π(d), π(e)). By condition (b), there are c′ ∈ G, d
1
, d

2
∈

∆ such that c∼
∆,T

c′ and c′ ∈ D(d
1
d, d

2
e). Since π(c) = π(c′), we have π(a) ∈ D

G/HT∆
(π(b), π(c′)),

and, by (b) again, there are a′ ∼
∆,T

a and d
3
, d

4
∈ ∆ such that a′ ∈ D(d

3
b, d

4
c′). Since D is

weakly associative, we have a′ ∈ D(x, d
4
d

2
e) for some x ∈ D(d

3
b, d

4
d

1
d). Hence π(a) = π(a′) ∈

D
G/HT∆

(π(x), π(d
4
d

2
)π(e)). From π(d

4
d

2
) = π(d2

4
d2

2
) comes D

G/HT∆
(π(x), π(d

4
d

2
)π(e)) ⊆

D
G/HT∆

(π(x), π(e)) ([RS4]), whence π(a) ∈ D
G/HT∆

(π(x), π(e)). A similar argument shows

that x ∈ D(d
3
b, d

4
d

1
d) implies π(x) ∈ D

G/HT∆
(π(b), π(d)), thus proving that D

G/HT∆
is weakly

associative.

To complete the proof, only item (iii) in Definition II.2.1 remains to be proved. Let H
be a RS and f : G−→H be a RS-morphism such that a ∼

∆,T
b implies f(a) = f(b) for

all a, b ∈ G. We must show that the map f̂ : G/HT
∆
−→H defined by f̂ ◦ π = f pre-

serves representation. Let a, b, c ∈ G be so that π(a) ∈ D
G/HT∆

(π(b), π(c)). By item (b)

there are elements a′ ∈ G, d
1
, d

2
∈ ∆ such that a ∼

∆,T
a′ and a′ ∈ D(d

1
b, d

2
c). The con-

gruence a ∼
∆,T

a′ implies f(a) = f(a′) and, since f is a RS-morphism, f(a) = f(a′) ∈
D
H

(f(d
1
)f(b), f(d

2
)f(c)). Also, d

j
∈ ∆ (j = 1, 2) implies d

j
∼

∆,T
d2
j
, and then f(d

j
) = f(d

j
)2.

Hence f(a) ∈ D
H

(f(d
1
)2f(b), f(d

2
)2f(c)) ⊆ D

H
(f(b), f(c)), showing that f̂ is a morphism of

real semigroups. 2

Remarks II.3.6 (i) Saturated sets are also characterized as follows: for a RS, G, and H⊆X
G

,
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are equivalent:

(1) For all g ∈ X
G

,
⋂
h∈H P (h)⊆P (g) and Z(g)⊆

⋃
h∈H Z(h) imply g ∈ H.

(2) H = HT
∆

for some multiplicative set T ⊆G containing 1 and some saturated subsemigroup

∆ of G.

For (1) ⇒ (2) take T = G \
⋃
h∈H Z(h) and ∆ =

⋂
h∈H P (h). The implication (2) ⇒ (1) is

straightforward checking.

(ii) As can be expected, the closed subset H∼∆,T
associated to the congruence ∼

∆,T
, defined

in Proposition ??, is identical with HT
∆

.

Since clearly HT
∆
⊆ H∼∆,T

, only the reverse inclusion needs proof. Let h ∈ H∼∆,T
. Then there

exists σ ∈ X
G/HT∆

such that h = σ ◦ π. Let x ∈ ∆. Then x ∼
∆,T

x2, whence π(x) = π(x2),

implying h(x) ≥ 0. On the other hand, if t ∈ T , then t2∼
∆,T

1, and h(t2) = (σ ◦ π)(t2) = 1,

which means h(t) 6= 0. Therefore ∆ ⊆ P (h) and Z(h) ∩ T = ∅, i.e., h ∈ HT
∆

. 2

Remarks II.3.7 (Convexity) (i) Let G be a real semigroup. Then every saturated set HT
∆
⊆

X
G

is convex under the specialization partial order  . Indeed, let h, g ∈ HT
∆

and let k ∈ X
G

be such that h k g. From ∆ ⊆ P (h) and P (h) ⊆ P (k) follows ∆ ⊆ P (k). On the other
hand, k g implies Z(k) ⊆ Z(g). Since Z(g) ∩ T = ∅, we get Z(k) ∩ T = ∅, proving that
k ∈ HT

∆
.

(ii) Note, however, that the requirement of convexity under specialization on a procontructible
subset H of X

G
(G a RS) alone is not enough to guarantee that the quotient structure G/H,

defined as in ??, is a real semigroup. Example I.3.6 is a counterexample: the (finite) set of
characters of a reduced special group therein defined is proconstructible and convex under
specialization (because specialization is just equality in that case), but the induced quotient
structure does not verify axiom [RS3a].

(iii) Suppose G is a RS-fan (see Chapter VI) having three prime ideals I, J,K, with I ⊂
J ⊂ K and let H = {h ∈ X

G
|Z(h) = I or Z(h) = K}. Let h

0
, h

1
, h ∈ X

G
be such that

Z(h) = J, Z(h
0
) = I, Z(h

1
) = K and h

0
 h

1
(cf. Lemma VI.6.7). It is easy to check that

h
0
 h2h

0
 h

1
. On the other hand, both h

0
, h

1
are in H and, since Z(h2h

0
) = J , we get

h2h
0
6∈ H. Therefore H is not convex under  and, by (i), is not saturated either. However,

since H is proconstructible and 3-closed (i.e., stable under product of any three of its members),
it follows from Proposition VI.11.1 that ≡H is a congruence of RSs. So,

There are congruences of real semigroups other than those induced by saturated sets.

Further instances occur in the case of spectral RSs, studied in Chapter V: in this case
congruences are induced by arbitrary proconstructible subsets of the character space, X

G
, with

the spectral topology (Theorem V.8.2 and Corollary V.8.4). It suffices to consider a suitable
spectral RS, G, such that X

G
contains three points h

1 6=
 h

2 6=
 h

3
, and the proconstructible

subset {h
1
, h

3
}. 2

Next we consider some congruences of RSs induced by particular types of saturated subsets
which frequently occur in practice.

C. Saturated subsemigroups. Let G be a RS and let ∆ ⊆ G be a saturated subsemigroup
of G. Let us consider the following set of characters:

H
∆

= {h ∈ X
G
|∆ ⊆ P (h)}.
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Sets of this form are called subspaces in the terminology of [M]. The equivalence relation
associated to H

∆
will be denoted by ∼

∆
instead of ∼H∆

. Let T
∆

= {x ∈ G |x2∼
∆

1}. Clearly
T

∆
is a multiplicative set containing 1, and 0 6∈ T

∆
. An immediate consequence of Corollary

I.4.11 is that for a ∈ G, a ∈ ∆ ⇔ a∼
∆
a2, and then a ∈ ∆ ∩ −∆ ⇔ a∼

∆
0. From this we get

(∆ ∩ −∆) ∩ T
∆

= ∅. Moreover, suppose that a ∈ G, x ∈ T
∆

and ax2 ∈ ∆. If h ∈ H
∆

then

h(ax2) ≥ 0. Since h(x2) = 1 we obtain h(a) ≥ 0. Since h is arbitrary we conclude that a∼
∆
a2,

and then a ∈ ∆. Therefore ∆ and T
∆

satisfy the hypotheses of Theorem II.3.5.

Straightforward verification proves that H
∆

= HT∆

∆
. Hence H

∆
is a saturated set and the

corresponding equivalence relation ∼
∆

is a congruence of RSs. To ease notation we shall
denote by G/∆ —instead of G/H

∆
— the quotient by ∼

∆
.

The argument of II.3.7 (i) shows that the sets of characters H
∆

defining subspaces are
(upwards) closed under specialization: h ∈ H

∆
, g ∈ X

G
and h g imply g ∈ H

∆
. Since H

∆
is a proconstructible subset of X

G
, this additional property is equivalent to H

∆
being closed

for the spectral topology of X
G

(cf. [DST], Corollary 6.1.6).

Theorem II.3.8 Let G be a RS and let ∆ be a saturated subsemigroup of G. Let a, b, c ∈ G.
Then:

(a) a ∼
∆
b if and only if ab ∈ ∆ and there are d

1
, d

2
, d

3
, d

4
∈ ∆ such that a2 ∈ D

G
(−d

1
, d

2
b2)

and b2 ∈ D
G

(−d
3
, d

4
a2).

(b) The following are equivalent:

(i) π(a) ∈ D
G/∆

(π(b), π(c)).

(ii) There are p, q, r ∈ G such that p∼
∆
q ∼

∆
r ∼

∆
a2 and ap ∈ D

G
(bq, cr).

(iii) There are a′ ∈ G and d
1
, d

2
∈ ∆ such that a ∼

∆
a′ and a′ ∈ D

G
(d

1
b, d

2
c).

(c) The following are equivalent:

(i) π(a) ∈ Dt
G/∆

(π(b), π(c)) .

(ii) There are x, y, z ∈ G such that x∼
∆
a2, y∼

∆
b2, z∼

∆
c2 and ax ∈ Dt

G
(by, cz).

(d) The equivalence relation ∼
∆

determines a RS-congruence.

Proof. First we show:

Claim. If x ∈ G, then x ∈ T
∆

iff there are d
1
, d

2
∈ ∆ such that x2d

1
∈ Dt

G
(1, d

2
).

Proof of Claim. (⇐) Assume the statement on the right-hand side and let h ∈ H
∆

. If h(x) = 0,

then h(x2d
1
) = 0 and hence h(d

2
) = −1 (I.2.5), which is impossible because d

2
∈ ∆. Then

h(x) 6= 0, and hence h(x2) = 1 for all h ∈ H
∆

, which means x ∈ T
∆

.

(⇒) Conversely, suppose x ∈ T
∆

. Let ∆[−x2] be the saturated subsemigroup generated by

∆ ∪ {−x2}. If −1 6∈ ∆[−x2], by Corollary I.4.11 we find a character h ∈ X
G

such that

∆[−x2] ⊆ P (h). In particular h ∈ H
∆

, and since h(−x2) ≥ 0 we get h(x2) = 0, contradicting

x ∈ T
∆

. Therefore −1 ∈ ∆[−x2], and hence −1 ∈ D(d
2
,−d

1
x2) for some d

1
, d

2
∈ ∆, which, by

[RS6], implies −1 ∈ Dt(d
2
,−d

1
x2) . It follows that d

1
x2 ∈ Dt(1, d

2
), proving the claim.

(a) (⇐) Assume a, b ∈ G satisfy the conditions on the right-hand side of (i), and let h ∈ H
∆

.
Since ab ∈ ∆ we have h(ab) ≥ 0. Clearly, h(ab) = 1 implies h(a) = h(b)( 6= 0). Assuming
h(a) = 0, we have h(b2) ∈ D

3
(−h(d

3
), 0). Since −h(d

3
) ≤ 0 and h(b2) ≥ 0, we get h(b2) = 0,
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and h(b) = 0. Thus, h(a) = 0 implies h(b) = 0. Similarly, the relation a2 ∈ D(−d
1
, d

2
b2) gives

h(b) = 0⇒h(a) = 0. Therefore, h(a) = 0 if and only if h(b) = 0, implying h(a) = h(b) for all
h ∈ H

∆
, i.e., a ∼

∆
b.

(⇒) Conversely, assume a ∼
∆
b for a, b ∈ G. If ab 6∈ ∆, Corollary I.4.11 gives an h ∈ H

∆
such

that h(ab) = −1, contradiction. Therefore ab ∈ ∆. By Theorem II.3.5 (a) there are elements
x ∈ T

∆
, d

1
, d

2
∈ ∆ such that

(1) a2x2 ∈ Dt(−d
1
, a2b2x2) and (2) b2x2 ∈ Dt(−d

2
, a2b2x2).

By the Claim, x2d
3
∈ Dt(1, d

4
) for some d

3
, d

4
∈ ∆. From (1) we have d

1
∈ Dt(−a2x2, a2b2x2)

and scaling by d
3

we obtain d
1
d

3
∈ Dt(−a2x2d

3
, a2b2x2d

3
) ⊆ Dt(−a2,−a2d

4
, a2b2, a2b2d

4
).

It follows that a2 ∈ D(−d
1
d

3
,−a2d

4
, a2b2, a2b2d

4
), and this implies a2 ∈ D(x, y) for some

y ∈ D(−d
1
d

3
,−a2d

4
) and some z ∈ D(b2a2, b2a2d

4
). Since d

1
d

3
, a2d

4
∈ ∆ we have −y ∈ ∆.

We also have z ∈ ∆ and z = b2z (I.2.3 (4)). Setting d = −y ∈ ∆ we obtain a2 ∈ D(−d, b2z).
In a similar way it is shown that b2 ∈ D(−e, a2z′) for some e, z′ ∈ ∆.

Items (b), (c) and (d) follow from the corresponding statements in Theorem II.3.5. 2

D. Transversally saturated subsemigroups. An interesting instance of quotients modulo
saturated subsets treated in paragraph B, are the quotients of a RS modulo transversally
saturated subsemigroups.

Notation II.3.9 Let G be a RS. A transversally saturated subsemigroup Γ of G (abbreviated
tss), cf. I.4.1, is called non-trivial if H

Γ
= {h ∈ X

G
|Γ⊆h−1[1]} 6= ∅. 2

Remarks. (i) It can be proved that the following conditions are equivalent for a tss Γ:

(1) 0 6∈ Γ;

(2) Γ ∩ −Id(G) = ∅ ;

(3) Γ is non-trivial (i.e., H
Γ
6= ∅).

The implications (2) ⇒ (1) and (3) ⇒ (1) are obvious.

(1) ⇒ (2). If there is a ∈ G so that −a2 ∈ Γ, since Γ is multiplicative we have (−a2)2 = a2 ∈ Γ.
By Proposition I.2.3 (11), 0 ∈ Dt

G
(a2,−a2)⊆Γ, contradicting (1).

The proof of (2) ⇒ (3) is non-trivial, and will be omitted.

(ii) Recall (I.4.2) that a subsemigroup of a RS is saturated if and only if it is tranversally
saturated and contains all idempotents.

(iii) Natural examples of tss are:

— The set a↓ of predecessors of an element a of a RS, G in the representation partial order
(I.6.5 (5)); more generally,

— The set D↓ of predecessors of elements of a (right) directed set D⊆G under the represen-
tation partial order. By (i), these examples are non-trivial tss’s if and only if 0 6≤ a (resp.,
0 6∈ D↓).

— The set Dt
G

(ϕ) of elements represented by a Pfister form over G (IV.5.8 (1); cf. also I.4.4 (2)

ff.). This example is non-trivial unless the form ϕ is hyperbolic (i.e., −1 ∈ Dt
G

(ϕ)). 2

Next we show:
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Proposition II.3.10 Let G be a RS. The character set H
Γ

of a non-trivial tss Γ of G is a

saturated set; in fact, HΓ

∆
for a suitable saturated subsemigroup ∆.

Proof. Observe that, with the terminology of paragraph B, the subsemigroup T is the given
tss Γ itself. Set ∆ := the saturated subsemigroup of G generated by Γ. By Proposition I.4.6 (2),
∆ =

⋃
{D

G
(ϕ) |ϕ a form over Γ}. We show that H

Γ
= HΓ

∆
.

To prove the inclusion ⊆, let h ∈ H
Γ
, i.e., Γ⊆h−1[1]. If x ∈ D

G
(ϕ) for some form ϕ over Γ,

then h(x) ∈ D
3
(h ∗ ϕ) = D

3
(〈1, . . . , 1〉)⊆{0, 1}, showing ∆⊆P (h). On the other hand, since

Γ⊆h−1[1], we have Z(h) ∩ Γ = ∅. Hence, h ∈ HΓ

∆
.

Conversely, let h ∈ X
G

be such that ∆⊆P (h) and Z(h) ∩ T = ∅. Then, Γ⊆∆⊆P (h) and
Z(h) ∩ Γ = ∅, showing h dΓ = 1, as asserted. 2

The foregoing characterization of the set H
Γ

, Γ a non-trivial tss, together with Theorem
II.3.5, yield:

Theorem II.3.11 Let Γ be a non-trivial tranversally saturated subsemigroup of a RS, G. Let
π = π

Γ
: G−→G/H

Γ
denote the quotient map. For a, b, c ∈ G we have:

(a) a∼
Γ
b if and only if there are elements t ∈ Γ , x, y ∈ G, and forms ϕ,ψ, θ over Γ such that

ab ∈ Dt
G

(a2b2ϕ) , a2b2t2 ∈ Dt
G

(x2ψ⊕〈a2t2〉) and a2b2t2 ∈ Dt
G

(y2θ⊕〈b2t2〉).

(b) π(a) ∈ D
G/HΓ

(π(b), π(c)) if and only if there are a′ ∈ G and forms ϕ
1
, ϕ

2
over Γ such that

a′∼
Γ
a and a′ ∈ D

G
(b ϕ

1
⊕ c ϕ

2
) .

(c) The equivalence relation ∼
Γ

is a RS-congruence of G.

Proof. Let ∆ be as in the preceding Proposition, so that H
Γ

= HΓ

∆
; we apply Theorem II.3.5

to this situation.

(a) (⇐) Assume the right-hand side of (a) holds, and let h ∈ H
Γ
. Suppose first h(a) = 0. Since

h ∗ ρ = dim(ρ) · 〈1〉 for any form ρ over Γ, h(t)2 = 1, and h(y)2 ∈ {0, 1}, taking images under
h in the representation a2b2t2 ∈ Dt

G
(y2θ⊕〈b2t2〉) yields h(a2b2t2) = 0 ∈ D

3
(h(y)2 dim(θ) ·

〈1〉⊕ 〈h(b2)〉). This forces h(b) = 0. In fact, if h(b)2 = 1, the right-hand side of the last repre-
sentation is {1} for both the values 0 and 1 of h(y)2, contradiction. Likewise, the representation

a2b2t2 ∈ Dt
G

(x2ψ⊕〈a2t2〉) yields h(b) = 0⇒h(a) = 0.

If h(a) 6= 0, then h(b) 6= 0, and then h(a2b2) 6= 0. Taking images under h in ab ∈ Dt
G

(a2b2ϕ)

yields h(a)h(b) ∈ D
3
(h(a2b2) dim(ϕ) · 〈1〉) = {1}. Hence, h(a) = h(b).

(⇒) Assume a∼
Γ
b. From II.3.5 (a) we have ab ∈ ∆, i.e., ab ∈ D

G
(ϕ) for some form ϕ over Γ;

hence ab ∈ Dt
G

(a2b2ϕ) (I.2.8 (3)).

Next, the second assertion in II.3.5 (a) gives elements t ∈ Γ and d
1
, d

2
∈ ∆ such that

a2t2 ∈ Dt
G

(−d
1
, a2b2t2) and b2t2 ∈ Dt

G
(−d

2
, a2b2t2). By Proposition II.3.10, d

i
∈ ∆ implies

d
i
∈ D

G
(ϕ

i
) for forms ϕ

i
over Γ, and hence d

i
∈ Dt

G
(d 2
i
ψ
i
) for i = 1, 2. The first of these

representations yields a2b2t2 ∈ Dt
G

(d
1
, a2t2)⊆Dt

G
(d 2

1
ψ

1
⊕〈a2t2〉), as required (set x := d

1
, ψ :=

ψ
1
). The representation a2b2t2 ∈ Dt

G
(y2θ⊕〈b2t2〉) is proved by the same argument from b2t2 ∈

Dt
G

(−d
2
, a2b2t2), setting y := d

2
, θ := ψ

2
.

(b) (⇐) This implication is straightforward: a′∼
Γ
a means π(a′) = π(a). Since π is a RS-

homomorphism such that π(g) = 1 for g ∈ Γ, we have π ∗ ϕ
i

= dim(ϕ
i
) · 〈1〉 (i = 1, 2); hence
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a′ ∈ D
G

(b ϕ
1
⊕ c ϕ

2
) yields

π(a) = π(a′) ∈ D
G/HΓ

(π(b) · (π ∗ ϕ
1
)⊕π(c) · (π ∗ ϕ

2
)) = D

G/HΓ
(π(b), π(c)) .

(⇒) The lifting of representation in the real semigroup G/HΓ

∆
= G/H

Γ
given by II.3.5 (b.iii),

together with Proposition II.3.10 yield:

π(a) ∈ D
G/HΓ

(π(b), π(c)) ⇔ There are a′ ∈ G and d
1
, d

2
∈ ∆ such that a′∼

∆,Γ
a and

a′ ∈ D
G

(d
1
b, d

2
c)

⇒ There are a′ ∈ G and forms ϕ
1
, ϕ

1
over Γ such that d

i
∈ D

G
(ϕ

i
)

(i = 1, 2) and a′ ∈ D
G

(d
1
b, d

2
c)⊆D

G
(b ϕ

1
⊕ c ϕ

2
) .

(c) is a particular instance of Theorem II.3.5 (d). 2

E. Quotients modulo saturated ideals. Before turning to the matter of the title, we prove
a lemma that will be repeatedly used in this and the next paragraph.

Lemma II.3.12 Let G be a RS, let I be a saturated prime ideal of G and let ∆
I

denote the
saturated subsemigroup generated by I. Then,

(i) For x ∈ G, x ∈ ∆
I
⇔ ∃ i ∈ I (x ∈ D

G
(1, i)).

(ii) The ideal I is radical (i.e., x2 ∈ I ⇒ x ∈ I).

(iii) ∆
I
∩ −∆

I
= I.

Proof. (i) The implication (⇐) is clear.

(⇒) Let x ∈ ∆
I
. By I.4.6 (3) there are n ∈ N and a form ϕ over I such that x ∈ D

G
(n〈1〉⊕ϕ).

Then, there is i′ ∈ G such that i′ ∈ D
G

(ϕ) and x ∈ D
G

(n〈1〉⊕ 〈i′〉). Since I is saturated, i′ ∈ I.

By [RS6], x ∈ Dt
G

(n〈x2〉 ⊕ 〈i〉), with i = i′x2 ∈ I. Hence, there is y ∈ Dt
G

(n〈x2〉) such that

x ∈ Dt
G

(y, i). The first of these representations entails y = x2 (cf. Corollary IV.5.3 (ii)). Using

[RS4] we have x ∈ Dt
G

(x2, i)⊆D
G

(x2, i)⊆D
G

(1, i), as asserted.

(ii) Assume there is x ∈ G such that x2 ∈ I but x 6∈ I. We first note:

(*) x 6∈ ∆
I
.

By item (i), if x ∈ ∆
I
, then x ∈ D

G
(1, i)) for some i ∈ I. By [RS6], x ∈ Dt

G
(x2, i′)) with

i′ = ix2 ∈ I. Since x2 ∈ I and I is saturated, x ∈ I, contradiction.

Now we apply Corollary I.4.11 with ∆ = ∆
I

and T = {1}; (*) shows xT ∩∆
I

= ∅, and hence

there is h ∈ X
G

so that ∆
I
⊆P (h) and h(x) = −1. Since x2 ∈ I ⊆∆

I
∩−∆

I
⊆P (h)∩−P (h) =

Z(h) we have h(x2) = 0, contradicting h(x) = −1.

(iii) Let x ∈ ∆
I
∩ −∆

I
. By (i) there are i, j ∈ I such that x ∈ D

G
(1, i),−x ∈ D

G
(1, j). By

I.2.8 (9) and saturatedness of I, there is k ∈ I so that −x2 ∈ D(1, k). Invoking [RS6] we get
−x2 ∈ Dt

G
(x2, k′) with k′ ∈ I, and (by I.2.3 (0),(6)) −k′ ∈ Dt(x2, x2), whence −k′ = x2, which,

by (ii), yields x ∈ I. 2

In this paragraph we consider the following setup: G is a real semigroup, I is a saturated
ideal of G not necessarily prime, and HI = {h ∈ X

G
| I ⊆Z(h)}. The equivalence relation on

G defined by HI as in ?? (†) will be denoted by ≈
I
. As above, ∆

I
stands for the saturated

subsemigroup generated by I. We first note:
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Fact II.3.13 HI = H
∆I

. Hence, ≈
I

is a RS-congruence on G and, endowed with the ternary

relation defined by HI (cf. ?? (††)), G/HI is a real semigroup.

Proof. The stated equality just means, for h ∈ X
G

,

I ⊆Z(h) ⇔ ∆
I
⊆P (h).

The implication (⇐) is clear from I ⊆∆
I
∩ −∆

I
⊆P (h) ∩ −P (h) = Z(h). Conversely, let

x ∈ ∆
I
. By II.3.12 (i) there is i ∈ I such that x ∈ D

G
(1, i). So, h(x) ∈ D

3
(h(1), h(i)) =

D
3
(1, 0) = {1, 0}, i.e., h(x) ≥ 0 . 2

Thus, Theorem II.3.8 can be applied with ∆ = ∆
I

, yielding the following intrinsic charac-

terizations of the congruence ≈
I

and of both representation relations in G/HI :

Theorem II.3.14 Let G be a RS and let I be a saturated ideal of G. Then, for a, b, c ∈ G and
with π : G−→G/HI canonical:

(a) a ≈
I
b ⇔ ∃ i, j, k ∈ I such that a2 ∈ Dt

G
(a2b2, i), b2 ∈ Dt

G
(a2b2, j) and ab ∈ Dt

G
(a2b2, k).

(b) The following are equivalent:

(i) π(a) ∈ D
G/HI (π(b), π(c)).

(ii) There are p, q, r ∈ G such that p ≈
I
q ≈

I
r ≈

I
a2 and ap ∈ D

G
(bq, cr).

(iii) There are a′ ∈ G and k ∈ I such that a ≈
I
a′ and a′ ∈ D

G
(b, c, k).

(c) The following are equivalent:

(i) π(a) ∈ Dt
G/HI

(π(b), π(c)).

(ii) There are x, y, z ∈ G such that x ≈
I
a2, y ≈

I
b2, z ≈

I
c2 and ax ∈ D

G
(by, cz).

(d) The relation ≈
I

defines a RS-congruence of G.

Proof. The equivalence of (i) and (ii) in item (b) and (c) follows at once from the corre-
sponding equivalences in Theorem II.3.8 applied with ∆ = ∆

I
; note that II.3.13 shows that

the equivalence relation ≈
I

is identical with ∼
∆I

.

(a) From II.3.8 (a) we get, for a, b ∈ G:

(*) a ≈
I
b ⇔ ab ∈ ∆

I
and there are d

1
, . . . , d

4
∈ ∆

I
such that a2 ∈ D

G
(−d

1
, d

2
b2) and

b2 ∈ D
G

(−d
3
, d

4
a2) .

By Lemma II.3.12 (i), for ` = 1, . . . , 4 there are elements m
`
∈ I such that d

`
∈ D

G
(1,m

`
).

The first representation in (*) then yields a2 ∈ D
G

(−1,−m
1
, b2,m

2
b2); by saturatedness of I

there is m′ ∈ I such that a2 ∈ D
G

(−1, b2,m′). By [RS6] this implies a2 ∈ Dt
G

(−a2, a2b2,m),

with m = m′a2 ∈ I, and hence m ∈ Dt
G

(a2, a2,−a2b2); using I.2.8 (5) and I.2.3 (6) we get

m ∈ Dt
G

(a2,−a2b2), and hence a2 ∈ Dt
G

(a2b2, i) with i = −m ∈ I.

In the same manner one proves b2 ∈ Dt
G

(a2b2, j) for some j ∈ I.

Finally, invoking Lemma II.3.12 (i) again, ab ∈ ∆
I

implies ab ∈ D
G

(1, i′) for some i′ ∈ I,

whence ab ∈ D
G

(a2b2, k), with k = i′a2b2 ∈ I. This proves the implication (⇒) in (a).

For the converse, we must show h(a) = h(b) for all h ∈ X
G

such that I ⊆Z(h). Suppose first

h(a) = 0; since j ∈ I, h(j) = 0, and from b2 ∈ Dt
G

(a2b2, j) comes h(b2) ∈ Dt
3
(h(a2b2), h(j)) =

80



Dt
3
(0, 0) = {0}, whence h(b) = 0. Conversely, the representation a2 ∈ Dt

G
(a2b2, i) yields

h(b) = 0⇒ h(a) = 0. Hence, h(b) = 0⇔ h(a) = 0.

Suppose h(a), h(b) 6= 0; then, h(a2b2) = 1, and the last transversal representation in (a)
gives h(ab) ∈ Dt

3
(h(a2b2), h(k)) = Dt

3
(1, 0) = {1}, whence h(a) = h(b).

(b) As remarked above it only remains proving the equivalence of (i) and (iii). The correspond-
ing equivalence in II.3.8 (b), with ∆ = ∆

I
shows that (i) is equivalent to

There are a′ ∈ G and d
1
, d

2
∈ ∆

I
such that a≈

I
a′ and a′ ∈ D

G
(d

1
b, d

2
c).

By Lemma II.3.12 (i), d
`
∈ D

G
(1, k

`
) with k

`
∈ I (` = 1, 2), and we get a′ ∈ D

G
(b, k

1
b, c, k

2
c).

Then, there is k ∈ D
G

(k
1
b, k

2
c)⊆ I such that a′ ∈ D

G
(b, c, k), proving (i) ⇒ (iii).

(iii) ⇒ (i). assume (iii) holds; a ≈
I
a′ implies π(a) = π(a′). Since π preserves representation,

π(k) = 0, and G/HI is a RS, from a′ ∈ D
G

(b, c, k) comes

π(a) = π(a′) ∈ D
G/HI (π(b), π(c), π(k)) = D

G/HI (π(b), π(c), 0) = D
G/HI (π(b), π(c)),

which proves (i).

Items (c) and (d) are particular cases of the corresponding statements in Theorem II.3.8. 2

F. Residue spaces at saturated prime ideals. We shall now consider quotients of a RS,
G, modulo saturated prime ideals, I, determined, however, by families of characters different
from those considered in the preceding paragraph. Namely, we shall consider quotients of G
modulo sets of characters of type {h ∈ X

G
|Z(h) = I}, hereafter denoted byH

I
; the congruence

induced by H
I

will be denoted by ∼
I
, and the corresponding quotient set by G/I.2

We note first that the sets of this form are saturated: it is routine to check that with T
I

=
G\I (a multiplicative set of G containing 1 and not 0) and ∆

I
= the saturated subsemigroup

of G generated by I, we have, with notation as in paragraph B, HTI
∆I

= {h ∈ X
G
|Z(h) = I}.

Let Γ
I

= {x ∈ G |x ∼
I

1}. This set is a tss, i.e. is multiplicatively closed, contains 1 but
not 0, and is closed under Dt, as easily verified using Dt

3
(1, 1) = {1}. Our main result in this

paragraph is:

Theorem II.3.15 Let G be a RS and I be a saturated prime ideal of G. For a, b, c ∈ G, we
have:

(a) a∼
I
b if and only if there exist y 6∈ I and i ∈ I such that i ∈ Dt

G
(ay,−by).

Moreover, a∼
I

0 if and only if a ∈ I.

(b) The following are equivalent:

(i) π(a) ∈ D
G/I

(π(b), π(c)) .

(ii) There are x 6∈ I and i ∈ I so that ax2 ∈ D
G

(i, b, c).

(iii) There is a′ ∈ G such that a′∼
I
a and a′ ∈ D

G
(b, c).

(c) The following are equivalent:

(i) π(a) ∈ Dt
G/I

(π(b), π(c)) .

2 Quotients of this type have been considered by Marshall in the dual category of abstract real spectra; cf.
[M], p. 102 and Cor. 6.6.9. Here we employ his terminology.
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(ii) Either a ∈ I and c∼
I
− b, or a 6∈ I and there are x 6∈ I and b′, c′ ∈ G so that b′∼

I
b,

c′∼
I
c and ax2 ∈ Dt

G
(b′, c′).

(iii) There are a′ ∈ G and d ∈ Γ
I

so that a∼
I
a′ and a′ ∈ Dt

G
(db, dc).

(d) The relation ∼
I

is a RS-congruence of G, and the set (G/I)\{π(0)} is a reduced special
group under the representation D

G/I
.

Proof. (a) The implication (⇐) is routine checking.

(⇒) Let a∼
I
b. By Theorem II.3.5 (a) there are x ∈ T

I
and d

1
, d

2
∈ ∆

I
such that a2x2 ∈

Dt(−d
1
, a2b2x2), b2x2 ∈ Dt(−d

2
, a2b2x2) and ab ∈ ∆

I
. From d

`
∈ ∆

I
(` = 1, 2) we get

d
`
∈ D(1, i

`
) for some i

`
∈ I (II.3.12 (i)), and then d

`
∈ Dt(d2

`
, j
`
) with j

`
= i

`
d2
`
∈ I. Therefore,

(1) a2x2 ∈ Dt(−d2
1
,−j

1
, a2b2x2) and (2) b2x2 ∈ Dt(−d2

2
,−j

2
, a2b2x2).

Using [RS4], (1) gives a2x2 ∈ D(−1,−j
1
, a2b2x2), and then a2x2 ∈ Dt(−a2x2, j′

1
, a2b2x2) with

j′
1

= −j
1
a2x2 ∈ I. This representation implies

(3) a2x2 ∈ Dt(j′
1
, a2b2x2).

[If y ∈ Dt(−y, b, c), then there is e ∈ Dt(b, c) such that y ∈ Dt(−y, e) (cf. I.2.7); then,
−e ∈ Dt(−y,−y) which, by I.2.3 (6), implies e = y.]

Likewise, from (2) we obtain b2x2 ∈ Dt(j′
2
, a2b2x2) for some j′

2
∈ I. Hence, a2b2x2 ∈

Dt(−j′
1
, a2x2), and then b2x2 ∈ Dt(j′

2
,−j′

1
, a2x2), which implies

(4) b2x2 ∈ Dt(k, a2x2), with k ∈ Dt(j′
2
,−j′

1
) ⊆ I.

From ab ∈ ∆I , we get ab ∈ D(1, i) for some i ∈ I (II.3.12 (i)), and hence ab ∈ Dt(a2b2, i′) with
i′ = a2b2i ∈ I. Scaling (4) by b gives bx2 ∈ Dt(kb, a2x2b) = Dt(kb, ax2(ab)) ⊆ Dt(kb, ab2x2, i′ax2),
and hence

(5) bx2 ∈ Dt(k′, ab2x2) with k′ ∈ Dt(kb, i′ax2) ⊆ I.

If b ∈ I, item (3) implies a2x2 ∈ I, and (since x 6∈ I), a ∈ I. Taking c ∈ Dt(a,−b) arbitrarily
and y = 1 ∈ T

I
yields c ∈ I and c ∈ Dt(ay,−by), as required. If b 6∈ I, then z = bx 6∈ I, and

(5) yields bz2 = bx2 ∈ Dt(k′, az2), whence −k′ ∈ Dt(az2,−bz2) with −k′ ∈ I and y = z2 6∈ I,
as required.

The second assertion in (a) is clear.

Proof of (b). The implications (ii) ⇒ (i) and (iii) ⇒ (i) are routine checking (for the first use

D(〈0〉 ⊕ ϕ) = D(ϕ)).

(i) ⇒ (ii). Assume π(a) ∈ D
G/I

(π(b), π(c)). By Theorem II.3.5 (b), there are elements a′ ∈ G,

d
1
, d

2
∈ ∆

I
such that a∼

I
a′ and a′ ∈ D(d

1
b, d

2
c). By (a), there are x 6∈ I , i ∈ I so that

ax2 ∈ Dt(i, a′x2) ⊆ D(i, d
1
x2b, d

2
x2c) ⊆ D(i, d

1
b, d

2
c). Since d

1
, d

2
∈ ∆

I
and I is saturated,

from item (*) before the statement we easily get ax2 ∈ D(j, b, c) for some j ∈ I.

(ii)⇒ (iii). By (ii), ax2 ∈ D
G

(i, b, c) for some x 6∈ I , i ∈ I. Passing to transversal representation

([RS6]) we get ax2 ∈ Dt
G

(i′, a2x2b, a2x2c), with i′ = ia2x2 ∈ I. Then, there is a′ ∈ G such that

ax2 ∈ Dt
G

(i′, a′) and a′ ∈ Dt
G

(a2x2b, a2x2c). Using [RS4] yields a′ ∈ D
G

(b, c). Now we prove:

(*) a∼
I
a′.
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Let h ∈ X
G

be such that Z(h) = I. If h(a) = 0, we get

h(a′) ∈ Dt
3
(h(a)2h(x)2h(b), h(a)2h(x)2h(c)) = Dt

3
(0, 0) = {0},

i.e., h(a′) = 0. If h(a) 6= 0, then h(a)2 = 1. Since x 6∈ I , i ∈ I, we have h(x) 6= 0,
whence h(x)2 = 1, and h(i′) = 0. From ax2 ∈ Dt

G
(i′, a′) follows a′ ∈ Dt

G
(−i′, ax2), whence

h(a′) ∈ Dt
3
(h(−i′), h(a)h(x)2) = Dt

3
(0, h(a)) = {h(a)}, i.e., h(a′) = h(a).

Proof of (c). (ii) ⇒ (i). If a ∈ I and c ∼
I
− b, then π(a) = π(0) and π(c) = −π(b). Since in

any RS, 0 ∈ Dt(y,−y) (I.2.3 (11)), we get π(a) ∈ Dt
G/I

(π(b), π(c)).

If a 6∈ I and the condition stated in (ii) holds, then π(x) 6= 0, and π(x2) = 1. It follows
that π(a) = π(ax2). Since π(b′) = π(b) and π(c′) = π(c), the required conclusion follows.

(iii) ⇒ (i). Routine checking using that h(d) = 1 and h(a) = h(a′) for any d ∈ Γ
I

and any
h ∈ X

G
such that Z(h) = I.

(i) ⇒ (ii). Assume π(a) ∈ Dt
G/I

(π(b), π(c)). If a ∈ I, then π(a) = π(0), and I.2.3 (11) yields

π(c) = −π(b), i.e., c∼
I
− b.

Let a 6∈ I. Since, in particular, π(a) ∈ D
G/I

(π(b), π(c)), by (b.(ii)) there are x ∈ G \ I
and i ∈ I so that ax2 ∈ D

G
(i, b, c). By [RS6], ax2 ∈ Dt

G
(j, ba2x2, ca2x2) with j = ia2x2 ∈ I.

Let b′ ∈ Dt
G

(j, ba2x2) be such that ax2 ∈ Dt
G

(b′, ca2x2) (I.2.7). Setting c′ = ca2x2 we have

c′∼
I
c, as h(x), h(a) 6= 0 for all h ∈ H

I
. From b ′ ∈ Dt

G
(j, ba2x2) comes b ′∼

I
b, as h(j) = 0

and h(a2x2) = 1 imply h(b ′) = h(b) for all h ∈ H
I

(cf. I.2.5).

(i) ⇒ (iii). Assume (i); then (ii) holds as well. We consider two cases:

Case 1. a ∈ I.

From (ii) we have c ∼
I
− b. By item (a) there are y 6∈ I and i ∈ I such that i ∈ Dt

G
(by, cy),

whence i′ = yi ∈ Dt
G

(by2, cy2). From y 6∈ I we get y2 ∈ Γ
I
. Set d := y2 and a′ := yi. Since

both a, a′ ∈ I, we have a∼
I
a′.

Case 2. a 6∈ I.

This assumption gives a2 ∈ Γ
I
. From assumption (i) and item (b.iii) there is a′ ∈ G such that

a′∼
I
a and a′ ∈ D

G
(b, c). By [RS6], a′ ∈ Dt

G
(a′2b, a′2c). From a′∼

I
a comes a′2∼

I
a2∼

I
1, i.e.,

a′2 ∈ Γ
I
. Set d := a′2.

(d) The first assertion is a particular instance of Theorem II.3.5 (d), and the second is an
immediate consequence of (a) and the fact that D

G/I
verifies [RS3]. 2

As a corollary to Theorem II.3.15 we obtain the following algebraic version of Bröcker’s
weak local-global principle for forms of dimension 2.

Corollary II.3.16 Let G be a RS and let Specsat(G) be the family of all saturated prime ideals
of G. For each I ∈ Specsat(G), let πI : G → G/I be the canonical projection. Then the map
µ : G →

∏
I∈Specsat(G)

G/I defined by µ(g)
I

= π
I
(g) is a (necessarily injective) morphism of

RSs satisfying the following condition for a, b, c ∈ G:

a ∈ D(b, c) if and only if π
I
(a) ∈ D

G/I
(π
I
(b), π

I
(c)) for all I ∈ Specsat(G) (equivalently,

µ(a) ∈ D∏
I∈Specsat(G)

(µ(b), µ(c))).
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Proof. To ease notation we write Ĝ =
∏
I∈Specsat(G)

G/I. Clearly, µ is a morphism of RSs,

where the semigroup operation, the constants 0,−1, 1, and representation are coordinatewise
defined in Ĝ. Hence a ∈ D(b, c) implies µ(a) ∈ D

Ĝ
(µ(b), µ(c)). Conversely, if this relation

holds and a 6∈ D(b, c), we can find a character h ∈ X
G

such that h(a) 6∈ D
3
(h(b), h(c)). Let

I = Z(h). Hence π
I
(a) 6∈ D

G/I
(π
I
(b), π

I
(c)), contradiction. To see that µ is injective, assume

µ(a) = µ(b). Then, with signs interpreted in the obvious way, we have±µ(a) ∈ D
Ĝ

(µ(1),±µ(b))
and ±µ(b) ∈ D

Ĝ
(µ(1),±µ(a)). Therefore, ±a ∈ D

G
(1,±b) and ±b ∈ D

G
(1,±a). In terms of

the representation partial order ≤
G

(see I.6.2), we have a≤
G
b and b≤

G
a. So a = b (I.6.4 (a)).2

INCLUDE HERE REMARK ON MODEL-THEORETIC QUOTIENTS ?

II.4 RS-congruences and rings

To avoid repetitions we shall begin by proving a lemma providing fairly general sufficient
conditions under which RS-quotients of two real semigroups of the form G

A
, G

B
(A,B semi-

real rings) are isomorphic. Applying systematically this result we will then be able to obtain,
in the case of RSs associated to rings, “concrete” realizations of the various types of quotients
considered in section II.3. We begin by describing the setup for our result.

Preliminaries and Notation II.4.1 (1) Let A,B be semi-real rings and let f : A−→B be
a ring homomorphism. Sper f : Sper (B)−→ Sper (A) denotes the real spectral morphism dual
to f , given by (Sper f)(β) = f−1[β], for β ∈ Sper (B). We remark in passing that Sper f is a
continuous —in fact spectral— map; cf. [DST], § 24.4 for this and other properties (however,
this fact is not used in the sequel).

The following equivalence will be frequently used below:

Fact II.4.2 For α ∈ Sper (A), β ∈ Sper (B) and with f as above, the following are equivalent:

(i) α = (Sper f)(β);

(ii) For all a ∈ A, a(α) = f(a)(β).

Proof. (i)⇒ (ii). Let a ∈ A. Using α = f−1[β] the equality in (ii) is checked by cases according
to the values of a(α). It is clear that supp(α) = f−1[supp(β)] and α \ (−α) = f−1[β \ (−β)].
Then we have, e.g.:

a(α) = 1 ⇔ a ∈ α \ (−α) ⇔ f(a) ∈ β \ (−β) ⇔ f(a)(β) = 1,

and similarly for the values 0,−1 .

(ii) ⇒ (i). For a ∈ A, a ∈ α ⇔ a(α) ≥ 0 ⇔ f(a)(β) ≥ 0 ⇔ f(a) ∈ β , i.e., α = f−1[β] =
(Sper f)(β) . 2

The map f : G
A
−→G

B
induced by f is defined by f(a) := f(a), for a ∈ A.

(2) We assume given sets Y ⊆Sper (A), X⊆Sper (B). We denote by ≡
X

(resp., ≡
Y

) the equiv-
alence relation on G

B
(resp., G

A
) defined by X (resp., Y ) as in clause (†)H of ?? (a), i.e., for

y, z ∈ B,

y ≡
X
z :⇔ ∀β ∈ X (y(β) = z(β)) ⇔ y dX = z dX.

Let D
X

(resp., D
Y

) denote the ternary relation on G
B

(resp., G
A

) defined as in clause (††)H
of ?? (a), i.e., for x, y, z ∈ B, and with π

X
: G

B
−→G

B
/≡

X
canonical,

π
X

(x) ∈ D
X

(π
X

(y), π
X

(z)) :⇔ ∀β ∈ X [x(β) ∈ Dt
3
(y(β), z(β))] ,
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and similarly for D
Y

.

(3) We shall make the following blanket assumptions :

Assumption I. ≡
X

and ≡
Y

define RS-congruences on G
B

and G
A

, respectively.

Assumption II. Y = (Sper f)[X].

Assumption III. For all a ∈ A there is b ∈ B such that f(a) ≡
X
b.

Remarks. (a) Assumption III amounts to saying that the map π
X
◦ f : G

A
−→ G

B
/≡

X

is surjective. It obviously holds if f is surjective —in particular, regardless of X, if f is
surjective—, but below we will find examples where it holds even when X = Sper (B) and f is
not surjective. All in all, Assumption III is a rather mild requirement.

(b) The map Sper f in Assumption II is not required to be injective but, in most examples
below it turns out to be a homeomorphism between X and Y . 2

II.4.3 General Lemma With notation as in II.4.1 and under Assumptions I− III, the RS-
quotients G

A
/≡

Y
and G

B
/≡

X
are isomorphic.

Proof. Assumption I guarantees that the quotient maps π
X
, π
Y

are RS-morphisms. Note they
are surjective.

Claim 1. For a, b ∈ A, a ≡
Y
b ⇒ (π

X
◦ f)(a) = (π

X
◦ f)(b).

Proof of Claim 1. The implication of the statement amounts to a ≡
Y
b ⇒ f(a) ≡

X
f(b). By

Assumption II, β ∈ X implies α = (Sper f)(β) ∈ Y . The hypothesis a ≡
Y
b yields a(α) = b(α),

and II.4.2 (ii) entails f(a)(β) = f(b)(β); since β ∈ X is arbitrary, f(a) ≡
X
f(b).

By the factoring condition II.2.1 (iii), π
X
◦ f induces a RS-homomorphism π̂

X
◦ f :

G
A
/≡

Y
−→G

B
/≡

X
such that ̂(π

X
◦ f) ◦ π

Y
= π

X
◦ f .

Claim 2. The map π̂
X
◦ f is injective.

Proof of Claim 2. We must show, for all a, b ∈ A,

̂(π
X
◦ f)(π

Y
(a)) = ̂(π

X
◦ f)(π

Y
(b)) ⇒ π

Y
(a) = π

Y
(b) ;

this is equivalent to the converse of the implication in Claim 1, namely,

(†) f(a) ≡
X
f(b) ⇒ a ≡

Y
b .

Let α ∈ Y . By Assumption II there is β ∈ X such that α = (Sper f)(β). The antecedent of (†)
gives f(a)(β) = f(b)(β); from II.4.2 (ii) we conclude a(α) = b(α), as required.

Finally we prove:

Claim 3. The map π̂
X
◦ f reflects representation.

Proof of Claim . We must prove, for a, b, c ∈ A,

̂(π
X
◦ f)(π

Y
(a)) ∈ D

X
( ̂(π

X
◦ f)(π

Y
(b)), ̂(π

X
◦ f)(π

Y
(c)) ⇒ π

Y
(a) ∈ D

Y
(π
Y

(b), π
Y

(c)) .

Equivalently,

(††) π
X

(f(a)) ∈ D
X

(π
X

(f(b)), π
X

(f(c)) ⇒ π
Y

(a) ∈ D
Y

(π
Y

(b), π
Y

(c)) .

By definition of the relation D
Y

we have
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π
Y

(a) ∈ D
Y

(π
Y

(b), π
Y

(c)) ⇔ ∀α ∈ Y [ a(α) ∈ Dt
3
(b(α), c(α)) ],

and similarly for D
X

.

To prove (††), let α ∈ Y ; Assumption II guarantees that there is a β ∈ X such that α =
(Sper f)(β). From the antecedent of (††) comes f(a)(β) ∈ Dt

3
(f(b)(β), f(c)(β)); by II.4.2 (ii)

we get a(α) ∈ Dt
3
(b(α), c(α)). Since this holds for all α ∈ Y , the conclusion in (††) follows,

proving Claim 3.

Claims 1− 3 together show that π̂
X
◦ f is the required RS-isomorphism between G

A
/≡

Y
and G

B
/≡

X
. 2

Remark. The role of Assumption I in the General Lemma is to ensure that the quotient
L

RS
- structures (G

A
/≡

Y
, D

Y
) , (G

B
/≡

X
, D

X
) are real semigroups and verify the factoring con-

dition II.2.1 (iii). In its absence, these quotient structures may not be RSs. However, since the
quotient maps π

X
and π

Y
are L

RS
- morphisms (verification of this, left to the reader, uses As-

sumption II), the proof of II.4.3 shows that, even in the absence of Assumption I, (G
A
/≡

Y
, D

Y
)

and (G
B
/≡

X
, D

X
) are isomorphic as L

RS
- structures. 2

The sequel of this section is devoted to obtain explicit representations of the various quotient
constructions considered in § II.3; the preceding General Lemma will be the main tool to get
them.

A. Localizations.

Definition II.4.4 A subsemigroup T of a RS is called proper if 0 6∈ T . Likewise, a multi-
plicative subset S of a ring is called proper if 1 ∈ S and 0 6∈ S. 2

Theorem II.4.5 Let A be a semi-real ring and let H be a RS. The following are equivalent:

(1) H is a localization of G
A

, i.e., H = G
A
/∼

T
for some proper subsemigroup T of G

A
.

(2) There is a proper multiplicative subset S of A such that H ' G
S−1A

.

Remark. S−1A denotes the ring of fractions of A by S. The requirement in (2) that G
S−1A

be a RS forces the ring S−1A to be semi-real (Corollary I.4.13).

Preliminaries and Notation II.4.6 We fix a semi-real ring A and a proper multiplicative
subset S of A.

(1) The following conditions are equivalent:

(i) The ring S−1A is semi-real;

(ii) 0 6∈ {s | s ∈ S} (⊆G
A

);

(iii) −S2 ∩
∑
A2 = ∅ .

Proof. (ii) ⇔ (iii). By Thm. 5.4.2 (1), pp. 93–94 of [M], for s ∈ S, condition s = 0 is
equivalent to −s2k ∈

∑
A2 for some integer k ≥ 0. The case k = 0 is excluded since A is

semi-real. Since S is multiplicative, −s2k ∈
∑
A2 with k ≥ 1 is equivalent to −S2 ∩

∑
A2 6= ∅ .

(i) ⇒ (iii). If (iii) fails, −s2 =
∑
a2
i for some s ∈ S and ai ∈ A. Then, in S−1A we have

−1 =
∑
a2
i

s2
∈
∑

(S−1A)2.

(iii) ⇒ (i). Assume −1 =
∑

(aisi )
2 with ai ∈ A , si ∈ S . Chasing denominators and setting

s :=
∏
i si ∈ S we have −1 =

∑
b2i
s2

with bi ∈ A. Then, there is s′ ∈ S such that s′(s2+
∑
b2i ) = 0.
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Scaling by s′ and setting t := s′s ∈ S, we get −t2 ∈
∑
A2, i.e., −S2 ∩

∑
A2 6= ∅ . 2

(2) Let ι
S

: A−→S−1A denote the canonical homomorphism a 7→ a
1 . Then,

(i) Im(Sper ι
S

) = {α ∈ Sper (A) |S ∩ supp(α) = ∅}.

Further, for α ∈ Sper (A) and β ∈ Sper (S−1A) ,

(ii) α = (Sper ι
S

)(β) (= ι−1
S

[β]) ⇔ β = { a
s2
| a ∈ α and s ∈ S} = S−2α .

In particular,

(iii) Sper ι
S

is injective.

(iv) Sper ι
S

is a homeomorphism of Sper (S−1A) onto Im(Sper ι
S

). 2

For a proof of these results we refer the reader to [DST], Prop. 23.4.19, or [DM6], Appendix
C, § 3.

(3) Recall (I.5.5) that for a semi-real ring R and γ ∈ Sper (R), h
γ

:= sgnγ◦πγ is the RS-character

of G
R

induced by γ, and that Z(h
γ
) = {x |x ∈ supp(γ)} , P (h

γ
) = {x |x ∈ γ} .

(4) For a ∈ A , s ∈ S, in G
S−1A

we have:

(i) ι
S

(s2) = 1 ; (ii)
(
a
s

)
= ι

S
(as) .

In particular,

(iii) ι
S

is surjective.

Proof. (i) For x ∈ a we have x2

1 = (x1 )2 ∈ β; hence ι
S

(x2)(β) =
(
x2

1

)
(β) ≥ 0 for all

β ∈ Sper (S−1A). Since in the ring S−1A for s ∈ S we have ( s
2

1 )(1
s )2 = 1, we obtain ι

S
(s2) ·

ι
S

((
1
s

)2)
= 1, and hence ι

S
(s2) = 1.

(ii) In S−1A : as
1 = a

s · (
s
1)2 . By (i), ι

S
(as) =

(
a
s

)
· ι
S

(s2) =
(
a
s

)
. 2

The crux of the proof of Theorem II.4.5 is contained in the following

Proposition II.4.7 Let A be a semi-real ring, S a proper multiplicative subset of A and T
a proper subsemigroup of G

A
. If T = {s | s ∈ S}, then G

S−1A
is isomorphic to G

A
/∼

T
. In

particular, G
S−1A

is a real semigroup and a RS-quotient of G
A

.

Proof. This will follow from the General Lemma II.4.3 applied with B = S−1A, f = ι
S

(= the
canonical homomorphism a 7→ a

1 ), X = Sper (B) and Y = {α ∈ Sper (A) |S ∩ supp(α) = ∅}.
So, we have to check the validity of Assumptions I− III in II.4.3 for this choice of parameters.

Assumption I. With X = Sper (B) the equivalence relation ≡
X

is just equality in G
B

, and so
it certainly defines a RS-quotient, namely G

B
itself.

As to the equivalence relation ≡
Y

, we prove next that (under the identification α ↔ h
α

of I.5.5), Y = U(T 2) = {h ∈ X
GA
|h dT 2 = 1}; hence ≡

Y
equals ∼

T
, already proved to be a

RS-congruence in II.3.2 (3,4).

Claim. U(T 2) = {h
α
|α ∈ Y }.

Proof of Claim. We must show α ∈ Y ⇔ h
α
dT 2 = 1 for α ∈ Sper (A). By II.4.6 (2.(i)) this is

equivalent to
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(†) S ∩ supp(α) = ∅ ⇔ Z(h
α
) ∩ T = ∅.

Since Z(h
α
) = {a | a ∈ supp(α)} (II.4.6 (3)) and (by assumption) T = {s | s ∈ S}, we have, for

a ∈ A :

a ∈ Z(h
α
) ∩ T ⇔ a ∈ supp(α) and a = s for some s ∈ S,

proving implication (⇒) in (†).

For the converse we invoke Corollary 5.4.3 in [M], p. 94, which shows:

a = s ⇔ ∃ k ≥ 0 ∃x, y ∈
∑
A2 such that xas = (a2 + s2)k + y .

If a ∈ supp(α), then (a2 +s2)k+y ∈ supp(α) and (by the binomial formula), s2k+y ∈ supp(α).
Since supp(α) is a real prime ideal, we conclude s ∈ S ∩ supp(α), which proves (⇐).

Assumption II. As indicated in II.4.6 (2), Sper ι
S

is a bijection of X = Sper (B) onto Y =
Im(Sper ι

S
).

Assumption III. Since ι
S

is surjective, see II.4.6 (4.iii), this assumption holds. 2

Proof of Theorem II.4.5. (1) ⇒ (2). Given a proper subsemigroup T of G
A

, set

S := A \
⋃
{supp(α) |α ∈ Sper (A) and h

α
d T 2 = 1} .

Clearly, S is a proper multiplicative subset of A. Item (2) follows from Proposition II.4.7 upon
proving

— T = {s | s ∈ S}.

For the inclusion ⊆, let t ∈ T . Since t ∈ G
A

, t = x for some x ∈ A. Suppose x 6∈ S; then,

there is α ∈ Sper (A) such that h
α
dT 2 = 1 and x ∈ supp(α). Since Z(h

α
) = {a | a ∈ supp(α)},

we have h
α
(x) = 0. On the other hand, t = x ∈ T implies h

α
(x) 6= 0, contradiction.

The reverse inclusion requires a finer touch, employing Lemma I.4.10. Assume, towards
a contradiction, that there is s

0
∈ S such that s

0
6∈ T . Firstly, we construct the saturated

subsemigroup ∆ of G
A

generated by the subsemigroup {s2 | s ∈ S}, see Proposition I.4.6 (2).

Note that s ∈ S⇒− s ∈ S. Then, s2 ∈ ∆ ∩ −∆ for all s ∈ S. We apply Lemma I.4.10 with
I = {0} and the given subsemigroup T of G

A
; with notation therein, we must check:

Claim. I[∆] ∩ T = ∅ .

Proof of Claim. Suppose t ∈ I[∆] for some t ∈ T . By the definition of I[∆], there is d ∈ ∆ such
that −t2 ∈ D

GA
(0, d); hence, −t2 ∈ Dt

GA
(0, t2d), and 0 ∈ Dt

GA
(t2, t2d). By I.2.3 (11), −t2 = t2d,

which implies −1∼
T
d, i.e., π(−1) = −1 = π(d) (in GA/∼T ).

On the other hand, since d ∈ ∆, there is a form ϕ with coefficients in {s2 | s ∈ S} such that
d ∈ D

GA
(ϕ) (I.4.6 (2)), i.e., d ∈ D

GA
(〈s

1
2, . . . , s

n
2〉) with s

i
∈ S. Since π is a RS-morphism,

−1 = π(d) ∈ D
GA/∼T

(〈π(s
1

2), . . . , π(s
n

2)〉), which yields −1 ∈ Dt
GA/∼T

(〈π(s
1

2), . . . , π(s
n

2)〉) .

Since X
GA/∼T

= U(T 2) (II.3.3 (i)), for every h ∈ U(T 2) we have −1 ∈ Dt
3
(〈h(π(s

1
2)), . . . ,

h(π(s
n

2))〉) . As h(π(x2)) ≥ 0, the right-hand side of this transversal representation is {1}
(I.2.5), contradiction. This proves the Claim.

Lemma I.4.10 gives a character h ∈ X
GA

such that Z(h) ⊇ ∆ ∩ −∆ and h dT 2 = 1. From

s
0
∈ S follows s

0
2 ∈ ∆ ∩ −∆, whence h(s

0
) = 0. Since h = h

α
for some α ∈ Sper (A), we have

s
0
∈ supp(α) and h

α
dT 2 = 1, contradicting s

0
∈ S, and proving (1) ⇒ (2).
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(2) ⇒ (1). Given a proper multiplicative subset S of A such that G
S−1A

|= RS (i.e., the ring

S−1A is semi-real), set T := {s | s ∈ S}. Item (1) in II.4.6 shows that 0 6∈ T , i.e., T is a proper
subsemigroup of G

A
; (1) follows, then, from Proposition II.4.7. 2

Warning. In the category of rings, localizations are not quotients: the canonical map ι
S

:

A−→S−1A is not epimorphic (i.e., surjective). However, the preceding results show that in

the category of real semigroups, G
S−1A

is a (RS)-quotient of G
A

. 2

B. Quotients modulo saturated sets.

Proposition II.4.8 Let A be a semi-real ring and let H⊆X
GA

be a non-empty set of char-
acters of G

A
. The following are equivalent:

(1) H is a saturated set, i.e., there are a saturated subsemigroup ∆⊆G
A

and a proper subsemi-

group P ⊆G
A

such that H = HP
∆

(cf. § II.3 (B)).

(2) There is a preorder T of A and a proper multiplicative set S⊆A such that, with notation
as in I.5.5, H = {h

α
|α ∈ Sper (A), T ⊆α and S ∩ supp(α) = ∅}.

Proof. We first remark:

(a) ∆ is a (proper) saturated subsemigroup of G
A

iff {a | a ∈ ∆} is a (proper) preorder of A;

(b) P is a (proper) subsemigroup of G
A

iff {a | a ∈ P}⊆A is a (proper) multiplicative set.

The proof of (a) and (b) is straightforward. [For (a) note that −1 6∈ {a | a ∈ ∆}; otherwise
−1 ∈ ∆ and, by I.2.3 (9), G

A
= D

GA
(1,−1)⊆∆, i.e., ∆ is improper.]

(1) ⇒ (2). Recall (I.5.5) that every h ∈ X
GA

is of the form h
α

for a unique α ∈ Sper (A). Set

T := {a | a ∈ ∆} and S := {a | a ∈ P}.

Assuming h ∈ HP
∆

, i.e., ∆⊆P (h
α
) and Z(h

α
) ∩ P = ∅, it is easily checked that:

(i) T ⊆α, and (ii) S ∩ supp(α) = ∅.

For (i): Let a ∈ T , i.e., a ∈ ∆; then, h
α
(a) = sgnα(πα(a)) ≥ 0, i.e., a(α) ≥ 0; by the definition

of a this means a ∈ α.

For (ii): If a ∈ S ∩ supp(α), then a ∈ P and h
α
(a) = 0, whence, a ∈ Z(h

α
) ∩ P 6= ∅.

We conclude that HP
∆
⊆{h

α
|α ∈ Sper (A), T ⊆α and S ∩ supp(α) = ∅}.

For the reverse inclusion, let h
α

be in the right-hand side, and prove ∆⊆P (h
α
) and Z(h

α
) ∩

P = ∅:

— The first condition follows from T ⊆α: Let a ∈ ∆; then, a ∈ T ; by assumption, a ∈ α; this
gives h

α
(a) ≥ 0, i.e., a ∈ P (h

α
).

— If there is a ∈ Z(h
α
) ∩ P , then a ∈ supp(α) and a ∈ S, whence S ∩ supp(α) 6= ∅,

contradiction.

(2) ⇒ (1). Given T, S⊆A as in (2), set ∆ := {a | a ∈ T} and P := {a | a ∈ S}. Assuming
{α ∈ Sper (A) |T ⊆α and S ∩ supp(α) = ∅} 6= ∅, we must show:

(i′) ∆ is a (proper) saturated subsemigroup of G
A

;

(ii′) P is a (proper) subsemigroup of G
A

;

(iii′) HP
∆

= {h
α
|α ∈ Sper (A) , T ⊆α and S ∩ supp(α) = ∅}.
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Proof of (i′). Clearly, ∆ is closed under product and contains 0, 1 (as T does).

— To prove saturatedness, let x ∈ D
GA

(a, b), with a, b ∈ T and x ∈ A. By [M], Prop. 5.5.1 (5)

applied with G
A

, there are t
0
, t

1
, t

2
∈
∑
A2 such that t

0
x = t

1
a + t

2
b and t

0
x = x. Since∑

A2⊆T , we get t
0
x ∈ T , whence x = t

0
x ∈ ∆.

— To show that ∆ is proper, suppose −1 ∈ ∆; then, −1 = a for some a ∈ T , and hence
a(α) = −1 for all α ∈ Sper (A). By assumption there is α

0
∈ Sper (A) so that T ⊆α

0
and

S ∩ supp(α
0
) = ∅. This yields a ∈ α

0
, i.e., a(α

0
) ≥ 0, contradiction.

Proof of (ii′). Obviously, P is a subsemigroup of G
A

. Suppose 0 ∈ P , i.e., 0 = a for some a ∈ S,
that is, a ∈ supp(α) for all α ∈ Sper (A). With α = α

0
as above, we get a ∈ S ∩ supp(α

0
),

contradiction.

Proof of (iii′). The equality to be proved amounts to showing, for α ∈ Sper (A),

∆⊆P (h
α
)⇔ T ⊆α and Z(h

α
) ∩ P = ∅ ⇔ S ∩ supp(α) = ∅.

The first of these equivalences is straightforward checking, while the second is proved exactly
as the equivalence (†) in the proof of II.4.7. 2

Preliminaries and Notation II.4.9 Let S be a multiplicative subset and T a preorder, of
A. Then:

(1) S−2T is a preorder of S−1A.

(2) S−2T is proper ⇔ − S2 ∩ T = ∅ ⇔ S ∩ T ∩ −T = ∅.

(3) If S−2T is a proper preorder of S−1A, then (Sper ι
S

) d Sper (S−1A,S−2T ) is a homeomor-

phism of Sper (S−1A,S−2T ) onto {α ∈ Sper (A) |T ⊆α and S ∩ supp(α) = ∅}.

Proof. (1) is straightforward and left to the reader.

(2) −1
1 ∈ S

−2T ⇔ There are t ∈ T and s ∈ S such that −1
1 = t

s2
⇔ There is s′ ∈ S such that

s′(s2 + t) = 0.

Multiplying the last equality by s′, we get −(s′s)2 = s′2t ∈ −S2 ∩ T . Conversely, if −s2 ∈ T
for some s ∈ S, we get −1

1 = −s2
s2
∈ S−2T .

The second equivalence is routine.

(3) We already know (II.4.6 (2.iv)) that Sper ι
S

is a homeomorphism of Sper (S−1A) onto
Im(Sper ι

S
) = {α ∈ Sper (A) |S ∩ supp(α) = ∅}. It suffices to show, for α = Sper ι

S
(β),

S−2T ⊆β ⇔ T ⊆α.

(⇒) Let t ∈ T ; then t
1 ∈ S

−2T , whence t
1 ∈ β, which means t ∈ ι−1

S
[β] = α .

(⇐) Let t
s2
∈ S−2T (t ∈ T, s ∈ S). By assumption t ∈ α, which (by II.4.6 (2.ii)) implies

t
s2
∈ S−2α = β. 2

Our next result shows that quotients modulo saturated sets of the real semigroup associated
to a ring are of the form G

R,Q
for a suitable preorder Q of a ring R. This is obtained, again,

by application of the General Lemma II.4.3.

Theorem II.4.10 Let A be a ring, T ⊆A a proper preorder, S⊆A a proper multiplicative set
such that −S2 ∩ T = ∅, ∆⊆G

A
a saturated subsemigroup, and P ⊆G

A
a proper subsemigroup.

Assume P = {a | a ∈ S} and ∆ = {a | a ∈ T}. Then, G
S−1A ,S−2T

is isomorphic to G
A
/HP∆ .
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Proof. In this case the General Lemma II.4.3 will be applied with B = S−1A, f = ι
S

(the

canonical homomorphism a 7→ a
1 ), X = Sper (B,S−2T ) = {β ∈ Sper (B) |S−2T ⊆β}, and

Y = {α ∈ Sper (A) |T ⊆α and S ∩ supp(α) = ∅}. Again, we will have to check the validity
of Assumptions I− III in II.4.3 for this choice of parameters.

To ease notation we set Q := S−2T .

Assumption I. The equivalence relation ≡
X

is

y ≡
X
z ⇔ y

Q
= z

Q
(y, z ∈ B).

So, G
B
/≡

X
is G

B,Q
; this has been proved to be RS-quotient of G

B
in Example II.2.2.

Proposition II.4.8 shows that, with P = {s | s ∈ S} and ∆ = {t | t ∈ T} we have H = HP
∆

=

{h
α
|α ∈ Y }. It follows that ≡

Y
is identical to ∼

∆,P
and this was proved to be a RS-congruence

in Theorem II.3.5 (d).

Assumption II. We must show that (Sper ι
S

)[X] = Y . Fix α ∈ Sper (A) , β ∈ Sper (B) with

α = (Sper ι
S

)(β). By II.4.6 (2.ii), β = S−2α. This implies:

(a) S−2T ⊆β ⇔ T ⊆α.

Indeed, if t ∈ T , then ι
S

(t) = t
1 ∈ S

−2T ⊆β, whence t ∈ ι−1
S

[β] = α. Conversely, if t ∈ T, s ∈ S,

then t ∈ α, and t
s2
∈ S−2α = β.

Since the elements of S are invertible in B, we also have:

(b) S ∩ supp(α) = ∅.

If s ∈ S, by II.4.6 (4.i), ι
S

(s2) = 1, whence ι
S

(s)(β) = ι
S

(s)(β) 6= 0; by II.4.2, s(α) 6= 0, which
gives s 6∈ supp(α).

Item (a) gives: α ∈ Y ⇒ T ⊆α ⇒ S−2T ⊆β ⇒ β ∈ X. Conversely, if β ∈ X, from (a)
comes T ⊆α, which, together with item (b), yields α ∈ Y , as required to prove Assumption II.

Assumption III. As in the case of localizations, Assumption III holds because ι
S

is surjective

(II.4.6 (4.iii)). 2

C. Quotients modulo saturated subsemigroups (subspaces). Let now be given a
(proper) saturated subsemigroup ∆ of G

A
, A a ring (necessarily semi-real). We already know

(II.3.C) that the set of characters

H
∆

= {h ∈ X
GA
|∆⊆P (h)} = {α ∈ Sper (A) |∆⊆P (h

α
)}

defines a RS-congruence, ∼
∆

, of G
A

, i.e., G
A
/H

∆
(= G

A
/∆) is a RS-quotient of G

A
. (Note that

∆ proper implies H
∆
6= ∅ : use Corollary I.4.11 with T = {1} and a = −1.)

Let T := {a ∈ A | a ∈ ∆}; this is a proper preorder of A. Hence, the real semigroup G
A,T

is another RS-quotient of G
A

, given by the RS-congruence

a ≡
T
b ⇔ a

T
= b

T
(a, b ∈ A),

(cf. Example II.2.2). We get:

Proposition II.4.11 With notation as above, G
A,T
' G

A
/∆.

Proof. This is a particular case of Theorem II.4.10, with S = {1} —hence P = {1}—, and ∆
the given saturated subsemigroup of G

A
. Then, G

S−1A ,S−2T
= G

A,T
is isomorphic to G

A
/HP∆ .
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Since HP∆ = H
∆

, then G
A
/HP∆ = G

A
/H

∆
= G

A
/∆, and the result follows. 2

D. Quotients modulo transversally saturated subsemigroups. From Proposition II.3.10
and Theorem II.4.10 we obtain:

Proposition II.4.12 Let A be a ring, let Γ be a non-trivial tranversally saturated subsemi-
group of G

A
with H

Γ
= {h ∈ X

G
|Γ⊆h−1[1]}, and let ∆ be the saturated subsemigroup of G

A
generated by Γ. Let S := {a ∈ A | a ∈ Γ} and T := {a ∈ A | a ∈ ∆}. Then, S is a proper mul-
tiplicative subset of A, T is a proper preorder of A, and the RS-quotient G

A
/H

Γ
is isomorphic

to G
S−1A,S−2T

.

Proof. The assertions about S, T are straightforward. Further, we have Γ = {a ∈ A | a ∈ S}
and ∆ = {a ∈ A | a ∈ T}.

Note that −S2 ∩ T = ∅ (equivalently, S ∩ T ∩ −T = ∅). Otherwise, let s ∈ S be such
that ± s ∈ T ; then, s ∈ Γ and ± s ∈ ∆. Picking h ∈ H

Γ
, we have h(s) = 1 and h(−s) ≥ 0, i.e.,

h(s) ≤ 0, contradiction.

Since H
Γ

= HΓ

∆
(II.3.10), we conclude from Theorem II.4.10 that G

A
/HΓ

∆
= G

A
/H

Γ
is

isomorphic to G
S−1A,S−2T

. 2

Remark. One may wonder whether the preorder T has an explicit characterization in terms
of S (i.e., of Γ). We have:

Fact. For a ∈ A, a ∈ T ⇔ There is t
0
∈
∑
A2 such that t

0
a = a and t

0
a ∈

∑
A2S.

Proof. Since ∆ is the saturated subsemigroup generated by Γ,

a ∈ ∆⇔ There is a form ϕ over Γ such that a ∈ D
GA

(ϕ).

(Cf. I.4.6 (2).) Say ϕ = 〈g
1
, . . . , g

n
〉, with g

i
∈ Γ. By [M], Prop. 5.5.1(5), a ∈ D

GA
(〈g

1
, . . . , g

n
〉)

holds if and only if there are t
0
, . . . , t

n
∈
∑
A2 such that t

0
a = a and t

0
a =

∑n
i=1 ti gi ∈

∑
A2S.

Conversely, from t
0
a ∈

∑
A2S and t

0
a = a, say t

0
a =

∑n
i=1 a

2
i
g
i

with g
i
∈ S (i.e., g

i
∈ Γ),

we get a = t
0
a ∈ D

GA
(〈g

1
, . . . , g

n
〉)⊆∆. 2

Note that t
0
a = a means ∀α ∈ Sper (A)[ t

0
∈ supp(α)⇒ a ∈ supp(α) ].

E. Quotients modulo saturated ideals. We shall now analyze the type of quotients con-
sidered in II.3.E, in the case of real semigroups associated to a ring.

Let us assume that A is a ring and I is a real ideal of A (see II.1.15); under this assumption
the quotient ring A/I is semi-real, and so is A. Hence, endowed with the representation relation
defined in [M], Prop. 5.5.1 (5), both G

A
and G

A/I
are real semigroups. The set I = {a | a ∈ I}

(see II.1.A) is a saturated ideal of G
A

which, as remarked in II.1.7, is proper. The equivalence

relation ≈
I

introduced in II.3.E is a RS-congruence (II.3.13) and hence G
A
/≈

I
is a RS-quotient

of G
A

. Under the identification α ↔ h
α

, see I.5.5, the family of characters defining ≈
I

is

HI = {h
α
|α ∈ Sper (A) and I ⊆ supp(α)}.

We prove:

Proposition II.4.13 Let A be a ring and let I be a real ideal of A. Then, the real semigroup
G
A
/≈

I
is isomorphic to G

A/I
.

Proof. We will apply the General Lemma II.4.3 with B = A/I, f = π : A−→B the canonical
quotient map, X = Sper (B) and Y = {α ∈ Sper (A) | I ⊆ supp(α)}. Assumptions I− III of the
Lemma are verified, as follows:
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Assumption I. The relation ≡
X

is identity on G
B

; then it certainly gives a RS-congruence.

As remarked before the statement, HI = {h
α
|α ∈ Y }; hence, the equivalence relations ≡

Y
and ≈

I
on G

A
are identical and, after II.3.13, the latter defines a RS-congruence.

Assumption II. Since X = Sper (B), (Sperπ)[X] = Im(Sperπ). We check that Im(Sperπ) =
Y .

Let α = (Sperπ)(β) , β ∈ Sper (B), and let i ∈ I; then, π(i) = 0 ∈ supp(β), i.e.,
i ∈ π−1[supp(β)] = supp(α), which proves the inclusion ⊆ .

Conversely, given α ∈ Y , i.e., I ⊆ supp(α), let β := π[α]. The fact that π is surjective
entails that β ∈ Sper (B) and α = π−1[β] = (Sperπ)(β) as required. The only non-routine
point in proving β ∈ Sper (B) is to show that, for x, y ∈ B, xy ∈ β ⇒ x ∈ β or −y ∈ β. Let
a, b ∈ A and c ∈ α be such that x = π(a), y = π(b) and xy = π(c); then ab− c ∈ I ⊆ supp(α),
whence ab ∈ α. Since α ∈ Sper (A) it follows a ∈ α or −b ∈ α, whence x ∈ β or −y ∈ β.

Assumption III. Since f is surjective, so is f , and this assumption holds automatically. 2

An analog of the preceding Proposition holds, as well, for the real semigroups G
A,T

, T a

preorder of A; namely,

Proposition II.4.14 Let A be a ring, T be a (proper) preorder of A, and I be a T -compatible
ideal of A (cf. Definition II.1.2 (1)). Then the set T/I = {t/I | t ∈ T} is a proper preorder of
A/I, and the equivalence relation on G

A,T
given by

a
T
≡
T,I

b
T

:⇔ (a/I)
T/I

= (b/I)
T/I

(a, b ∈ A),

determines a RS-congruence under which the real semigroups G
A,T

/≡
T,I

and G
A/I , T/I

are

isomorphic. 2

The proof is similar to that of Proposition II.4.13 (though notationally more involved); it is left
as an exercise to the reader. [Remark that the set of characters of G

A,T
defining the equivalence

relation ≡
T,I

is {α ∈ Sper (A) | I ⊆ supp(α) and T/I ⊆α/I}.]

F. Residue spaces at saturated prime ideals. Next we give a representation result for
residue spaces of RSs of type G

A
, A a ring (necessarily semi-real), at a saturated prime ideal

I. Quotients of this form, for arbitrary RSs, were studied in II.3.F.

The residue space at I is defined by an equivalence relation ∼
I

determined, in turn, by the
set of characters H

I
= {h ∈ X

GA
|Z(h) = I}. Under the identification α ↔ h

α
of I.5.5, H

I

corresponds to the set {α ∈ Sper (A) | supp(α) = Î}, where Î = {a ∈ A | a ∈ I}, a prime ideal
of A (see II.1.A (2) and II.1.1 (iv)).

Setting S = A \ Î the set above can be written as

{α ∈ Sper (A) | Î ⊆ supp(α)} ∩ {α ∈ Sper (A) |S ∩ supp(α) = ∅},

which can be thought of as a combination of a localization (at S) with a quotient at the
saturated ideal Î (as in paragraph C). The ring of fractions of A by S is the (ring-theoretic)

localization at the prime ideal Î —usually denoted by A
Î

—, a local ring with maximal ideal

M = Î ·A
Î

. With this notation in hand, our representation result reads as follows:

Theorem II.4.15 Let A be a ring (necessarily semi-real ) and let I be a saturated prime ideal
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of G
A

. With notation as above, the residue space G
A
/I is isomorphic to the real semigroup

G
B

, where B is the field A
Î
/M . Furthermore:

(1) The field B is formally real .

(2) G
B

is G
red

(B) ∪ {0}, the reduced special group of the field B with an added zero.

(3) The character space X
GB

is homeomorphic to the space of orders of B, hence a Boolean

space.

Remarks. For undefined notions concerning reduced special groups (RSG), see [DM1]. For
RSs obtained by adding a zero to a RSG, see Examples I.1.2 (d) and I.2.2 (3). Orders of a field
F are naturally identified with group characters of the associated RSG, G

red
(F ), with values

in {±1}. 2

Proof. The result will be obtained by applying the General Lemma II.4.3 with

— B = A
Î
/M ;

— f = π ◦ ι : A−→B given by composition of the morphisms ι : A−→A
Î

(a 7→ a
1 ) and the

canonical quotient morphism π : A
Î
−→B ;

— X = Sper (B) and Y = {α ∈ Sper (A) | supp(α) = Î} .

Verification of Assumptions I− III in II.4.3 goes as follows:

Assumption I. Since X = Sper (B) the equivalence relation ≡
X

is equality in G
B

, and defines

G
B

as a RS-quotient of itself.

Since H
I

= {h
α
|α ∈ Y }, the equivalence relation ≡

Y
is identical with ∼

I
; the latter was

proved to be a RS-congruence in Theorem II.3.15 (d).

Assumption II. We show: Im(Sper f) = Y .

(⊆). Let β ∈ Sper (B) = X and α ∈ (Sper f)(β). To prove α ∈ Y , i.e., supp(α) = Î, set
γ := (Sperπ)(β) ∈ Sper (A

Î
) ; then, supp(γ) = π−1[supp(β)]. Since B is a field and supp(β) is

a proper ideal, supp(β) = {0}, and hence supp(γ) = π−1[{0}] = M . Since f = π ◦ ι, it follows
that supp(α) = ι−1[supp(γ)] = ι−1[M ]. From M = Î ·A

Î
, we get Î = supp(α), as required.

(⊇). Given α ∈ Y , i.e., supp(α) = Î, we must find β ∈ Sper (B) such that α ∈ (Sper f)(β). By
II.4.6 (2.i),

Im(Sper ι) = {α ∈ Sper (A) | (A \ Î) ∩ supp(α) = ∅} = {α ∈ Sper (A) | supp(α)⊆ Î}.

Then, there is γ ∈ Sper (A
Î
) such that α ∈ (Sper ι)(γ). Since π is surjective, the argument used

in the proof of Assumption II in II.4.13 shows that β := π[γ] ∈ Sper (B) and γ = π−1[β] =
(Sperπ)(β). It follows that α = (Sper ι)((Sperπ)(β)) = (Sper f)(β), as asserted.

Assumption III. The map ι : G
A
−→G

A
Î

was shown to be surjective in II.4.6 (4.iii). The

homomorphism π is surjective, and hence so is π. It follows that f = π ◦ ι is surjective , which
entails the validity of Assumption III.

Concerning the remaining assertions, we prove

(1) Suppose, towards a contradiction, that −1 ∈
∑
B2, i.e., −1 =

∑
i(
ai
si

)2 with ai ∈ Î and

si 6∈ Î. Chasing denominators we can write −1 = 1
s2
∑
a2
i , with s =

∏
i si 6∈ Î (Î prime). Then,

in A we have s2 +
∑
a2
i = 0 ∈ Î. Since I is saturated, the ideal Î is

∑
A2-radical (Theorem
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II.1.12); then, s ∈ Î, contradiction.

Assertions (2) and (3) are standard facts from the theory of reduced special groups, and
hence we omit their proofs. 2

II.5 Extensions of reduced special groups by 3-semigroups

The construction of an extension of a special group by a group of exponent 2 has been ex-
tensively treated in the literature; see, e.g., [DM1], [M] (complete refs). Attempts to extend
this construction to real semigroups —extending them by, e.g., ternary semigroups— has so
far proved to be unsuccessful; a summary of the obstructions to such a construction is given in
sections 7 − 9 of the unpublished notes [?].

The aim of this section is to study a natural notion of extension of reduced special groups
(or quasi-RSG’s) by 3-semigroups satisfying an additional requirement, and prove that this
construction yields a real semigroup.

Definition and Notation II.5.1 (a) Recall from I.1.1 that a 3-semigroup is a commutative
semigroup, ∆, with unit satisfying the identity x3 = x for all elements x ∈ ∆. The only constant
is 1. We shall denote by χ(∆) the set of all semigroup homomorphisms of a 3-semigroup ∆
into 3. Note that ∆ may or may not have an absorbent element 0 and it does not have a
distinguished element −1. Thus, the morphisms of χ(∆) are only required to preserve product
and send 1 to 1. In particular, the constant map 11 sending all of ∆ to 1 is in χ(∆).

(b) All 3-semigroups considered in this section are required to satisfy the additional condition

[Z] For all a, b ∈ ∆, a2b2 = a2 or a2b2 = b2.

Theorem I.1.13 shows that this condition is equivalent to the requirement that the family of
zero-sets of elements x ∈ ∆, Z(x) = {h ∈ χ(∆) |h(x) = 0}, is totally ordered under inclusion;
cf. the proofs of I.6.5 and VI.1.2. Note that condition [Z] implies that ∆ does not have zero-
divisors: for a, b ∈ ∆, ab = 0 ⇒ a = 0 or b = 0. This observation is implicitly used in the
sequel. 2

The next definition gives the notion of extension that we shall work with in this section:

Definition and Notation II.5.2 Let G = G∗ be a reduced special group (RSG) or a quasi-
RSG, i.e., a RSG, G∗, with an added zero, as in I.2.2 (3). Let ∆ be a 3-semigroup; we set
∆o = ∆ if ∆ has an absorbent element, 0, or ∆o = ∆ ∪ {0}, with δ · 0 = 0 · δ = 0 for δ ∈ ∆o,
otherwise. We consider the following equivalence relation in G∗ ×∆o:

(g1, 0) ∼ (g2, 0), for all g1, g2 ∈ G∗,
(g1, δ1) ∼ (g2, δ2) ⇔ g1 = g2 and δ1 = δ2, if δ1 or δ2 6= 0.

Straightforward checking shows that the equivalence ∼ is compatible with the coordinatewise
product in G∗ ×∆o; thus, the quotient set (G∗ ×∆o)/∼, henceforth denoted by G[∆], carries

a natural product operation, denoted by · . We set: 0̂ := (1, 0)/∼ , 1̂ := (1, 1)/∼ , −̂1 :=
(−1, 1)/∼ .

Remark. To ease notation we shall assume that the given 3-semigroup ∆ has an absorbent
element 0. 2

Fact II.5.3 With notation as in II.5.2, if the 3-semigroup ∆ satisfies condition [Z] in II.5.1 (b),
then 〈G[∆], · , 1̂ , −̂1 , 0̂ 〉 is a ternary semigroup. Further, the idempotents of G[∆] are Id(G[∆])
= {(1, δ2)/∼ | δ ∈ ∆}. Hence, G[∆] also satisfies condition [Z] in II.5.1 (b).
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Proof. Verification of axioms [TS1] − [TS4] of ternary semigroups, see I.1.1, is straightforward
and left to the reader; we only check (the contrapositive of) axiom [TS5]. Let x ∈ G[∆], x 6= 0;
then x = (g, δ)/∼ with g ∈ G∗ and δ ∈ ∆, δ 6= 0. If x = −x, we get (g, δ) ∼ (−g, δ), whence
g = −g, impossible since G∗ is a RSG.

The assertion about idempotents is clear: if x = (g, δ)/∼ ∈ G[∆] with x2 = x, then
(g2, δ2) ∼ (g, δ). If δ = 0, then (g, δ) ∼ (1, δ2). If δ 6= 0, then g2 = g, which entails g = 1
as G∗ is a RSG, and δ = δ2. Since ∆ is assumed to satisfy condition [Z] in II.5.1 (b), this
characterization of the idempotents implies that the zero-sets of elements of G[∆] are also
totally ordered under inclusion (note that Z(x) = Z(x2) in any TS). 2

Next, we characterize the ternary semigroup characters of G[∆] in terms of those of the
group G∗ of exponent 2 and of the 3-semigroup ∆. We denote by χ(G∗) the set of all group
homomorphisms (characters) f : G∗−→Z

2
= {1,−1}, and by XG[∆] the set of TS-characters

of G[∆].

Proposition II.5.4 Let G∗ be a RSG and let ∆ be a 3-semigroup satisfying condition [Z] in
II.5.1 (b). The following are equivalent for any map h : G[∆]−→3:

(i) h ∈ XG[∆] (i.e., h is a TS-character of G[∆]).

(ii) There are unique characters h
G
∈ χ(G∗) and h

∆
∈ χ(∆) such that h(g, δ) = h

G
(g) · h

∆
(δ),

for all g ∈ G∗, δ ∈ ∆.

Hence, the action (h, α) 7→ h · α, where h ∈ χ(G∗) , α ∈ χ(∆) and (h, α)((g, δ)/∼) = h(g)α(δ)
for g ∈ G∗ , δ ∈ ∆, identifies the set XG[∆] of TS-characters of G[∆] with χ(G∗)× χ(∆).

In particular, the set XG[∆] of TS-characters of G[∆]) separates points.

Proof. (i) ⇒ (ii). Given h ∈ XG[∆], we define maps h
G

: G∗−→{1,−1} and h
∆

: ∆−→3 as
follows:

— h
G

(g) = h((g, 1)/∼), for g ∈ G∗, and

— h
∆

(δ) = h((1, δ)/∼), for δ ∈ ∆.

Since (g, 1)2 ∼ (1, 1) it follows that h
G

(g) 6= 0 for all g ∈ G∗, which proves that h
G

is well
defined; it is clear that this map is a character of groups of exponent 2. Likewise, it is obvious
that h

∆
∈ χ(∆). For (g, δ) ∈ G∗ × ∆ we have (g, δ) ∼ (g, 1) · (1, δ), whence h((g, δ)/∼) =

h((g, 1)/∼ · (1, δ)/∼) = h((g, 1)/∼) · h((1, δ)/∼) = h
G

(g) · h
∆

(δ) as claimed. It is clear that the
characters h

G
, h

∆
verifying (ii) are unique. The implication (ii) ⇒ (i) is trivial.

Separation of points in G[∆]) is quite clear: given (gi, δi) ∈ G∗ × ∆ (i = 1, 2) so that
(g1, δ1) 6∼ (g2, δ2), either g1 6= g2 and there is h ∈ XG[∆] such that h(g1) 6= h(g2), and therefore
h(g1)11(δ1) 6= h(g2)11(δ2), or g1 = g2 , δ1 6= δ2; by I.1.13 there is α ∈ χ(∆) so that α(δ1) 6= α(δ2),
and therefore h(g1)α(δ1) 6= h(g2)α(δ2) for any h ∈ XG[∆]. 2

Definition and Notation II.5.5 Given a RSG G∗ and a 3-semigroup ∆ satisfying condition
[Z] in II.5.1 (b), we define a ternary relation in G[∆] by the following stipulation: given p =
(g3, δ3)/∼ , q = (g1, δ1)/∼ and r = (g2, δ2)/∼ in G[∆], we set

p ∈ Dt
G[∆]

(q, r) iff For all h ∈ X
G∗

and α ∈ χ(∆), h(g3)α(δ3) ∈ Dt
3
(h(g1)α(δ1), h(g2)α(δ2)). 2

The following theorem gives a closed formula for the relation Dt
G[∆]

just defined.

Theorem II.5.6 Given a RSG G∗ and a 3-semigroup ∆ satisfying condition [Z] in II.5.1 (b),
the following holds for all (gi, δi) ∈ G∗ ×∆, i = 1, 2:
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Dt
G[∆]

((g1, δ1)/∼ , (g2, δ2)/∼) =



{(g1, δ1)/∼} if Z(δ1) ŘZ(δ2)

{(g2, δ2)/∼} if Z(δ2) ŘZ(δ1)

{(g1, δ1)/∼, (g2, δ2)/∼} if Z(δ1) = Z(δ2) and δ1 6= δ2

(G∗ × δ2
i ·∆)/∼ if δ1 = δ2 and g1 = −g2

{(g, δi)/∼ | g ∈ DG∗(g1, g2)} if δ1 = δ2 and g1 6= −g2,

where Z(δ) = {α ∈ χ(∆) |α(δ) = 0}, for δ ∈ ∆.

Remark II.5.7 Invoking the identification of X
G[∆]

with χ(G∗)×χ(∆) in II.5.4, and observing

that for ai = (g1, δ1)/∼ (i = 1, 2) we have Z(ai) = χ(G∗)×Z(δi) and Z(a1)⊆Z(a2)⇔ Z(δ1)⊆Z(δ2),
Theorem II.5.6 can be rephrased as follows:

Dt
G[∆]

(a1, a2) =



{a1} if Z(a1) ŘZ(a2)

{a2} if Z(a2) ŘZ(a1)

{a1, a2} if Z(a1) = Z(a2) and δ1 6= δ2

a2
i G[∆] if a1 = −a2

{(g, δi)/∼ | g ∈ DG∗(g1, g2)} if δ1 = δ2 and g1 6= −g2.

This formulation makes it clear the relationship between Theorem II.5.6 and the characteriza-
tion of transversal representation in RS-fans given in Theorem VI.2.1. See also Corollary II.5.9
below. 2

Proof. Note first that

(†) (g, δ)/∼ ∈ Dt
G[∆]

((g1, δ1)/∼ , (g2, δ2)/∼) ⇒ g ∈ D
G∗

(g1, g2).

By taking an arbitrary RSG-character h ∈ X
G∗

, the assumption and II.5.5 entail h(g) · 11(δ) =

h(g) ∈ Dt
3
(h(g1) · 11(δ1), h(g2) · 11(δ2)) = Dt

3
(h(g1), h(g2)) for all h ∈ X

G∗
, which, by the

separation theorem for RSG’s (add ref) yields g ∈ D
G∗

(g1, g2).

Direct inspection of the definition of Dt
G[∆]

in II.5.5 shows:

(††) Z(δ2)⊆Z(δ1)⇒ (g2, δ2)/∼ ∈ Dt
G[∆]

((g1, δ1)/∼ , (g2, δ2)/∼) (and, symmetrically, exchang-

ing δ1 and δ2).

Next, we prove the various assertions in Theorem II.5.6.

(1) Z(δ1) ŘZ(δ2) ⇒ Dt
G[∆]

((g1, δ1)/∼ , (g2, δ2)/∼) = {(g1, δ1)/∼}.

Proof of (1). Assume Z(δ1) ŘZ(δ2), and fix α ∈ χ(∆) with α(δ2) = 0 and α(δ1) 6= 0. Let

(g, δ)/∼ ∈ Dt
G[∆]

((g1, δ1)/∼ , (g2, δ2)/∼).

First we show that Z(δ) = Z(δ1). Let β ∈ χ(∆) be such that β(δ1) = 0; then, β(δ2) = 0.
Pick h ∈ X

G∗
arbitrarily. Then, h(g)β(δ) ∈ Dt

3
(h(g1)β(δ1), h(g2)β(δ2)) = Dt

3
(0, 0) = {0}.

Since h(g) 6= 0, we get β(δ) = 0, and then Z(δ1)⊆Z(δ). Conversely, let β ∈ χ(∆) be such
that β(δ) = 0, and let γ := α · β. Clearly, γ ∈ χ(∆) and, since α(δ2) = 0 = γ(δ2), we get
h(g)γ(δ) = 0 ∈ Dt

3
(h(g1)γ(δ1), h(g2)γ(δ2)) = Dt

3
(h(g1)γ(δ1), 0), which implies h(g1)γ(δ1) =

h(g1)α(δ1)β(δ1) = 0. Since h(g1)α(δ1) 6= 0, we conclude β(δ1) = 0, and Z(δ) = Z(δ1).

Next we prove g = g1. Otherwise, there is a RSG-character h ∈ X
G∗

such that h(g) 6= h(g1);

let β = α2. Since α(δ1) 6= 0 and Z(δ) = Z(δ1) we get β(δ) = β(δ1) = 1, and h(g)β(δ) = h(g) ∈
Dt
3
(h(g1)β(δ1), h(g2)β(δ2)) = Dt

3
(h(g1), 0), whence h(g) = h(g1), contrary to the choice of h.
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Finally, we get δ = δ1. Otherwise, there is β ∈ χ(∆) such that β(δ) 6= β(δ1). Pick h ∈ X
G∗

arbitrarily, and let γ = β · α2. We obtain:

h(g)γ(δ) = h(g)β(δ) ∈ Dt
3
(h(g1)γ(δ1), h(g2)γ(δ2)) = Dt

3
(h(g1)γ(δ1), 0) = Dt

3
(h(g1)β(δ1), 0)

= {h(g1)β(δ1)},
whence h(g)β(δ) = h(g1)β(δ1) = h(g)β(δ1), which implies β(δ) = β(δ1), contradiction. This
proves (1).

(2)The proof of the second item in the statement (obtained by interchanging δ1 and δ2) is
similar to (1).

(3) Z(δ1) = Z(δ2) and δ1 6= δ2 ⇒ Dt
G[∆]

((g1, δ1)/∼ , (g2, δ2)/∼) = {(g1, δ1)/∼, (g2, δ2)/∼}.

Proof of (3). Suppose Z(δ1) = Z(δ2) and δ1 6= δ2 and let (g, δ)/∼ ∈ Dt
G[∆]

((g1, δ1)/∼ , (g2, δ2)/∼).

First we show that Z(δ) = Z(δ1) = Z(δ2). The argument in the first paragraph of the proof
of (1) proves that Z(δ1) = Z(δ2)⊆Z(δ). Suppose the reverse inclusion fails, i.e., Z(δ) 6⊆
Z(δ1) = Z(δ2), and let β ∈ χ(∆) be such that β(δ) = 0 and β(δi) 6= 0, for i = 1, 2. Fix
α ∈ χ(∆) so that α(δ1) 6= α(δ2). Let γ := α · β ∈ χ(∆), and pick h ∈ X

G∗
arbitrarily.

Then, h(g)γ(δ) = 0 ∈ Dt
3
(h(g1)γ(δ1), h(g2)γ(δ2)); this implies h(g1)γ(δ1) = −h(g2)γ(δ2). Let

ζ := α · β2 ∈ χ(∆); then ζ(δ) = 0. On the other hand, Z(δ1) = Z(δ2) and α(δ1) 6= α(δ2) imply
α(δi) 6= 0, for i = 1, 2. A similar argument using ζ(δ) = 0 and β2(δ1) = β2(δ2) = 1 shows
that h(g1)β(δ1) = −h(g2)β(δ2) 6= 0. Cancelling out these terms in the equality h(g1)γ(δ1) =
h(g1)α(δ1)β(δ1) = −h(g2)γ(δ2) = −h(g2)α(δ2)β(δ2) we get α(δ1) = α(δ2), contrary to the
choice of α, and proving Z(δ) = Z(δ1) = Z(δ2).

Note that α(δ1) 6= 0 , α(δ2) 6= 0 and α(δ1) 6= α(δ2) imply α(δ1) = −α(δ2). From the equality
of zero-sets proved above follows α(δ) 6= 0, which implies α(δ) = α(δ1) or α(δ) = α(δ2). We
analyze these two cases separately:

(3.a) α(δ) = α(δ1).

In this case we show that g = g1 and δ = δ1. Assuming g 6= g1, there is h ∈ X
G∗

so that
h(g) 6= h(g1). Invoking (†), we have g ∈ D

G∗
(g1, g2), and hence h(g) = h(g2). Thus, we have

h(g)α(δ) ∈ Dt
3
(h(g1)α(δ1), h(g2)α(δ2)). Since h(g)α(δ) 6= 0 we get h(g)α(δ) = h(g1)α(δ1) =

h(g1)α(δ) or h(g)α(δ) = h(g2)α(δ2) = h(g)α(δ2). The first alternative is impossible as α(δ) 6= 0
and h(g) 6= h(g1). Then, h(g)α(δ) = h(g)α(δ2), and hence α(δ) = α(δ2) = α(δ1), contrary to
the choice of α. This proves g = g1.

As for the equality δ = δ1, if this fails, there is β ∈ χ(∆) so that β(δ) 6= β(δ1). The equality
of zero-sets proved above implies that β(δ) 6= 0 and β(δ1) 6= 0. Picking h ∈ X

G∗
arbitrarily,

we have h(g)β(δ) 6= h(g)β(δ1) = h(g1)β(δ1). Since (g, δ)/∼ ∈ Dt
G[∆]

((g1, δ1)/∼ , (g2, δ2)/∼) and

h(g)β(δ) 6= 0, we obtain h(g)β(δ) = h(g2)β(δ2). From the equality Z(δ) = Z(δ1) = Z(δ2) we
get β(δ2) 6= 0, and hence β(δ) = β(δ2) or β(δ) = −β(δ2). The first of these equalities entails
h(g) = h(g2) for all h ∈ X

G∗
, whence g = g2. Likewise, the second equality implies g = −g2.

Next we prove that either of these equalities leads to a contradiction, which proves g = g1 and
δ = δ1 in case (3.a).

— Assuming g = g2 (and hence β(δ) = β(δ2)), we have α · β ∈ χ(∆); pick h ∈ X
G∗

arbitrarily.
From g = g1 = g2 , (g, δ)/∼ ∈ Dt

G[∆]
((g1, δ1)/∼ , (g2, δ2)/∼) and h(g)α(δ)β(δ) 6= 0 we get

(∗) h(g)α(δ)β(δ) = h(gi)α(δi)β(δi), for i = 1 or i = 2.

If (∗) holds for i = 1, from h(g) = h(g1) and α(δ) = α(δ1) we get β(δ) = β(δ1), contradiction.
If (∗) holds for i = 2, from h(g) = h(g2) and β(δ) = β(δ2) we get α(δ) = α(δ2), contrary to
α(δ) = α(δ1) 6= α(δ2).
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— If g = −g2 (and β(δ) = −β(δ2)), as in the previous case the equality (*) holds for any
h ∈ X

G∗
. If (∗) holds for i = 1, as above we get β(δ) = β(δ1), contradiction. If (∗) holds for

i = 2, h(g) = −h(g2) and β(δ) = −β(δ2) entail α(δ) = α(δ2), again a contradiction.

(3.b) α(δ) = α(δ2).

The same proof as in case (3.a), interchanging δ1 and δ2, shows that g = g2 and δ = δ2.

(4) δ1 = δ2 and g1 = −g2 ⇒ Dt
G[∆]

((g1, δ1)/∼ , (g2, δ2)/∼) = (G∗ × δ2
i ·∆)/∼.

Proof of (4). Set δ := δ1 = δ2. An easy computation using II.5.5 shows that (g, δ′)/∼ ∈
Dt
G[∆]

((g1, δ)/∼ , (g2, δ)/∼) entails Z(δ)⊆Z(δ′) which, in turn, is equivalent to δ′ = δ2 δ′. Hence

(g, δ′) ∈ G∗×δ2·∆ . The reverse inclusion follows from (g, δ2·d)/∼ ∈ Dt
G[∆]

((g1, δ)/∼ , (−g1, δ)/∼),

for d ∈ ∆ and g ∈ G∗. In fact, for all h ∈ X
G∗

and α ∈ χ(∆) we have

(*) h(g)α(δ2)α(d) ∈ Dt
3
(h(g1)α(δ),−h(g1)α(δ)),

as this representation is equivalent to 0 ∈ Dt
3
(0, 0) = {0} if α(δ) = 0, and to h(g)α(d) ∈

Dt
3
(1,−1) = 3 if α(δ) 6= 0.

(5) δ1 = δ2 and g1 6= −g2 ⇒ Dt
G[∆]

((g1, δ1)/∼ , (g2, δ2)/∼) = {(g, δi)/∼ | g ∈ DG∗(g1, g2)}.
Proof of (5). Set δ := δ1 = δ2. The implication

g ∈ D
G∗

(g1, g2) ⇒ (g, δ)/∼ ∈ Dt
G[∆]

((g1, δ)/∼ , (g2, δ)/∼)

is immediate. Conversely, we already know that (g, δ′)/∼ ∈ Dt
G[∆]

((g1, δ)/∼ , (g2, δ)/∼) implies

g ∈ D
G∗

(g1, g2) (cf. (†)) and δ′ = δ2 δ′ (cf. proof of (4)). Since g1 6= −g2, there is h ∈ X
G∗

so

that h(g1) = h(g2), and this gives h(g) = h(g1) = h(g2). Pick α ∈ χ(∆) arbitrarily. We have

h(g)α(δ′) ∈ Dt
3
(h(g)α(δ), h(g)α(δ)) = {h(g)α(δ)},

whence α(δ′) = α(δ). Since α is arbitrary, from I.1.13 we get δ′ = δ, as claimed. 2

We shall now prove:

Theorem II.5.8 Given a RSG G∗ and a 3-semigroup ∆ satisfying condition [Z] in II.5.1 (b),
the structure 〈G[∆], · , Dt

G[∆]
, 1̂ , −̂1 , 0̂ 〉 is a real semigroup.

Proof. By II.5.4 the set X
G[∆]

of TS-characters of G[∆] separates points. Therefore, by I.3.3,

it suffices to prove that G[∆] satisfies axiom [RS3]. To ease notation in this proof we write Dt

for Dt
G[∆]

.

Let p, a, b, c, d ∈ G[∆] be elements such that p ∈ Dt(a, b) and b ∈ Dt(c, d); we must find an
x so that

(+) x ∈ Dt(a, c) and p ∈ Dt(x, d).

Claim 1. If at least one of the parameters p, a, b, c, d is 0, then there is x so that (+) holds.

Proof of Claim 1. We check it by cases.

— p = 0. In this case, a = −b and x = −d satisfies (+), since 0 ∈ Dt(d,−d) and −a = b ∈
Dt(c, d) entails −d ∈ Dt(a, c).

— a = 0. Then, p = b, and x = c satisfies (+) since c ∈ Dt(0, c) and b ∈ Dt(c, d) by assumption.

— b = 0. Here we have p = a and c = −d. Then, any x ∈ Dt(a, c) (axiom [RS3b]) satisfies

(+), since p = a ∈ Dt(x, d)⇔ − x ∈ Dt(−a, d)⇔ x ∈ Dt(a,−d) = Dt(a, c).

— c = 0. Then, b = d, and x = a satisfies (+), as a ∈ Dt(a, 0) and p ∈ Dt(a, d).

— d = 0. Then, b = c, and x = p satisfies (+), as p ∈ Dt(p, 0) and p ∈ Dt(a, c).
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We shall argue according to the inclusion between the zero-sets of the parameters p, a, b, c, d
(these are totally ordered under inclusion, see II.5.3).

Case 1. Z(a) ŘZ(b). By II.5.6, p = a. Condition (+) is then equivalent to

(++) x ∈ Dt(a, c) ∩Dt(a,−d).

If c = −d, any x ∈ Dt(a, c) satifies (++). Assume c 6= −d; we show that in this case

Z(a)⊆Z(c) ∩ Z(d), and then x = a verifies (++). If Z(d) ŘZ(a), then Z(d) ŘZ(−b), and
from II.5.6 we get Dt(−b, d) = {d}. But b ∈ Dt(c, d) implies −c ∈ Dt(−b, d), whence −c = d,

contradiction. Hence, Z(a)⊆Z(d). Next, if Z(c) ŘZ(a), we get Z(c) ŘZ(d), whence Dt(c, d) =

{c}, and therefore b = c, contradicting Case 1 assumption: Z(c) ŘZ(a) ŘZ(b).

Case 2. Z(b) ŘZ(a). By II.5.6, p = b, whence p ∈ Dt(c, d). If Z(c)⊆Z(a), then c ∈ Dt(a, c),

showing that x = c satisfies (+). If Z(a) ŘZ(c), we have Z(b) ŘZ(a) ŘZ(c). By II.5.6, this
inclusion implies Dt(−b, c) = {−b}. On the other hand, b ∈ Dt(c, d) yields −d ∈ Dt(−b, c),
whence p = b = d, and then x = a satisfies (+), as Z(a) ŘZ(c).

Case 3. Z(b) = Z(a). If Dt(a, b) = {a, b}, then p = a or p = b. In either of these alternatives

an element x satisfying (+) can be proved to exist by arguments similar to those in cases 1
or 2 above; details are left to the reader. Let us suppose Dt(a, b) 6= {a, b}. We consider two
subcases:

(3.a) b = −a. By the clause before last in II.5.6 we have p = b2 p; also −a = b ∈ Dt(c, d), gives

−d ∈ Dt(c, a). If Z(d)⊆Z(b), this and p = b2 p ∈ Dt(−d, d) show that (+) is verified with

x = −d. If Z(b) ŘZ(d), then b ∈ Dt(c, d) entails −c ∈ Dt(−b, d) = {−b}, whence c = b = −a.

Now, if Z(d)⊆Z(p), then p ∈ Dt(−d, d), and hence x = −d satisfies (+). If Z(p) ŘZ(d), then

p ∈ Dt(p, d) = {p}, and p = b2 p = a2 p implies p ∈ Dt(a, c) = Dt(a, b); this proves that x = p

satisfies (+).

(3.b) b 6= −a. We now argue according to the inclusions of the zero-sets of c and d.

(i) Z(c) ŘZ(d). By II.5.6 we have Dt(c, d) = {c}, hence b = c. By hypothesis, p ∈ Dt(a, b) =

Dt(a, c). Since Z(p) = Z(a) = Z(b) = Z(c) ŘZ(d), we have p ∈ Dt(p, d), showing that x = p

satisfies (+).

(ii) Z(d) ŘZ(c). By II.5.6 we have b ∈ Dt(c, d) = {d}. Since Z(a) = Z(b) = Z(d) ŘZ(c) implies

a ∈ Dt(a, c), and p ∈ Dt(a, b) = Dt(a, d), it follows that x = a satisfies (+).

(iii) Z(c) = Z(d). If Dt(c, d) = {c, d}, then b = c or b = d. The same argument used in (i),

resp. (ii), above shows that in the first case x = p satisfies (+), and in the second x = a
satisfies (+). If c = −d, then x = c satisfies (+). In fact, b ∈ Dt(c, d) = Dt(c,−c) implies

Z(c)⊆Z(b) = Z(a); the first, third and fourth items in II.5.6 show that this inclusion implies
c ∈ Dt(a, c). On the other hand, p ∈ Dt(a, b) and Z(b) = Z(a) yield Z(a) = Z(p) and hence

Z(c)⊆Z(p). This, in turn is equivalent to p ∈ Dt(c,−c) (see end of I.2.3), i.e., p ∈ Dt(c, d).

For the remaining case we assume:

(iv) Z(c) = Z(d) , Dt(c, d) 6= {c, d} and c 6= −d. With notation as in the last clause of II.5.6

let g, g1, . . . , g4 ∈ G∗ and δ ∈ ∆ be such that p = (g, δ)/∼ , a = (g1, δ)/∼ , b = (g2, δ)/∼ ,
c = (g3, δ)/∼ , d = (g4, δ)/∼, with g ∈ Dt

G∗
(g1, g2) and g2 ∈ Dt

G∗
(g3, g4). Since G∗, being a

RSG, satisfies axiom [RS3], there is x ∈ Dt
G∗

(g1, g3) so that g ∈ Dt
G∗

(x, g4). Clearly, p ∈
Dt((x, δ)/∼, (g4, δ)/∼) and (x, δ)/∼ ∈ Dt((g1, δ)/∼, (g3δ)/∼), which shows that (x, δ)/∼ satisfies
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(+), ending the proof of Theorem II.5.8. 2

Remark. Ordinary representation in G[∆] is given by:

p ∈ D
G[∆]

(q, r) ⇔ p ∈ Dt
G[∆]

(p2 q, p2 r),

for p, q, r ∈ G[∆]; cf. Theorem ?? (2). 2

An interesting corollary of Theorem II.5.8 is:

Corollary II.5.9 Let G be a reduced special group and let ∆ be a 3-semigroup satisfying con-
dition [Z] in II.5.1 (b). Then G is a RSG-fan (i.e., a fan in the category of reduced special
groups) if and only if G[∆] is a RS-fan (i.e., a fan in the category of real semigroups). 3

Proof. Assume first that G is a (RSG-)fan and let a1, a2 ∈ G[∆] with, say ai = (gi, δi)/∼ ,
gi ∈ G , δi ∈ ∆ (i = 1, 2). Then, we haveD

G
(g1, g2) = {g1, g2} if g1 6= −g2 andD

G
(g1,−g1) = G.

Recalling (II.5.7) that inclusion of the zero-sets of a1 and a2 correspond to that of the zero-sets
of δ1 and δ2, the last item in the description of Dt

G[∆]
therein reduces to Dt

G[∆]
(a1, a2) = {a1, a2}

whenever Z(a1) = Z(a2) and a1 6= −a2; thus, we have:

Dt
G[∆]

(a1, a2) =


{a1} if Z(a1) ŘZ(a2)

{a2} if Z(a2) ŘZ(a1)

{a1, a2} if Z(a1) = Z(a2) and a1 6= −a2

a2
i ·G[∆] if a1 = −a2,

which is exactly the description of transversal representation in RS-fans given by Theorem
VI.2.1 (see also ??).

Conversely, suppose that G[∆] is a RS-fan, and let g1, g2 ∈ G be so that g1 6= g2. Pick δ ∈ ∆
arbitrarily and set ai := (gi, δ)/∼ (i = 1, 2). Since Z(a1) = Z(a2) and a1 6= −a2, the third
and the last items in II.5.7 yield Dt

G[∆]
(a1, a2) = {a1, a2} = {g1, g2} × {δ} = D

G
(g1, g2) × {δ},

whence D
G

(g1, g2) = {g1, g2}, proving that G is a RSG-fan. 2

The following is a simple example of the type of extension of RSG’s presented above.

Example II.5.10 Let A := R[[X ]] be the ring of formal power series in one variable over the
reals (or any other real closed field). The real semigroup G

A
associated to A is the extension of

the RSG, G(R) = Z
2
, by the 3-semigroup ∆ = {1, X,X2} (where X = X3). Clearly, ∆ verifies

condition [Z] of II.5.1 (b). 2

3 For the definition of a RS-fan, see ??, and for the definition of a RSG-fan, see [DM1], Example 1.7, pp. 8-9.
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Chapter III

Sheaf Representation and
Projective Limits

New section added Nov. 2011; results from Dec. 2009.

A classical theme in commutative algebra and algebraic geometry is the representation of
algebraic structures —frequently rings— by means of continuous global sections of sheaves of
other algebraic structures —usually with better properties— over topological spaces.

Archetypal of results of this kind is Grothendieck’s representation of any ring (commutative,
unitary) by continuous sections of a sheaf of local rings over its prime (Zariski) spectrum.
Hofmann [Ho] contains a survey of results of this type (up to the early 1970’s).

III.1 Sheaf representation of real semigroups

In this section we shall prove a result of the above mentioned type for real semigroups; namely:

Theorem III.1.1 Any real semigroup, G, is isomorphic to the RS of (continuous) global sec-
tions of a sheaf over the spectral space Specsat(G) of saturated prime ideals of G, whose stalk
at each P ∈ Specsat(G) has a quasi reduced special group as a quotient.

This result drastically refines Corollary II.3.16 by characterizing the image of the embedding µ
therein in terms continuous sections of the spectral topology on the index set Specsat(G). (A
similar remark applies to many representation results by continuous sections as well.)

The proof will require a number of preliminaries.

III.1.2 Reminder. (a) Recall from I.2.2 (3) that a quasi reduced special group (QRSG) is a
RSG with an added zero (absorbent element), and representation and transversal representation
defined therein. We shall employ the notation G∗ = G ∪ {0}, where G |= RSG.

(b) We have X
G∗

= X
G

. To be precise, each σ ∈ X
G

extends uniquely to a RS-character
σ∗ ∈ X

G∗
by setting σ∗(0) = 0 and σ∗dG = σ. The map σ 7→ σ∗ is a homeomorphism.

(c) (I.6.19) For a real semigroup, H, the set Specsat(H) is endowed with the (Zariski) topology,
having the family

D
H

(a) = D(a) = {P ∈ Specsat(H) | a 6∈ P} (a ∈ G),
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as a subbasis of quasi-compact opens. Since D(a) ∩ D(b) = D(ab) (a, b ∈ G), this family is
a basis for the topology, that we call D(H) (or just D, if H is clear from context). Note that
D(a) = Specsat(H) for any a ∈ H×, and D(0) = ∅. The specialization order in Specsat(H) is
inclusion: for P,Q ∈ Specsat(H), P  Q ⇔ P ⊆Q.

(d) If P ∈ Specsat(H), the real semigroup H/P is a quasi-RSG, see Theorem II.3.15 (d). Note
also that

X
H/P

= {σ ∈ X
H
|σ−1[0] = P},

a proconstructible subset of X
H

; cf. ??. Characterizations of D
H/P

and Dt
H/P

in terms of D
H

and Dt
H

are given in items (b) and (c) of Theorem II.3.15.

(e) Adequate references on presheaves and sheaves are [MacL] and [Mit]. These references
(as well as most others on this subject) deal with (pre-)sheaves of algebraic structures (no
relations in the language other than equality). The theory for general first-order structures is
not significantly different, though care has to be exerted on a number of points; cf. [Mir], Chs.
16, 17. (OJO; check!) 2

A. Construction of a presheaf basis of real semigroups. Given a RS, G, we shall now
define a presheaf basis of L

RS
-structures over the basis D (= D(G)) of the (Zariski) topology

on Specsat(G), introduced above (III.1.2 (c)).

(a) For a ∈ G we denote by G
(a)

the localization of G at the multiplicative set {1, a, a2}, see

II.3.A; the RS-congruence determined by this set (cf. II.3.1) will be denoted by ∼a , and the
canonical quotient map G−→G

(a)
by π

a
. Thus, for x, y, z ∈ G, we have

(†) π
a
(x) = π

a
(y) ⇔ x ∼a y :⇔ xa = ya ⇔ xa2 = ya2,

with representation in G
(a)

given by,

(††) π
a
(x) ∈ D

G(a)
(π
a
(y), π

a
(z)) :⇔ xa ∈ D

G
(ya, za).

[Note that a2∼a 1, since a2 · a = a = 1 · a .] By Proposition II.3.2, G
(a)

is a real semigroup.

The following observations will frequently be used in the sequel:

Fact III.1.3 Let G be a RS and a ∈ G. The map γ 7→ γ ◦ π
a

(γ ∈ X
G(a)

) is a homeomorphism

of X
G(a)

onto {σ ∈ X
G
|σ(a) 6= 0}.

Proof. The composition γ ◦ π
a

: G−→3 (γ ∈ X
G(a)

) is obviously a RS-homomorphism. From

a2∼a 1 follows π
a
(a2) = 1, whence (γ ◦ π

a
)(a2) = 1, and (γ ◦ π

a
)(a) 6= 0.

Conversely, given σ ∈ X
G

such that σ(a) 6= 0, define γ : G
(a)
−→ 3 by the functional

equation γ ◦ π
a

= σ. This map is well defined: for x, y ∈ G, π
a
(x) = π

a
(y) ⇒ σ(x) = σ(y).

Indeed, by (†) above, the assumption gives xa = ya; since σ(a) 6= 0, taking images under σ
yields σ(x) = σ(y). The equivalence (††) and σ ∈ X

G
readily imply γ ∈ X

G(a)
. We leave it to

the reader to check that γ 7→ γ ◦ π
a

is a homeomorphism. 2

Remark. Since σ(a) 6= 0 ⇔ σ−1[0] ∈ D(a), with a slight abuse of notation Fact III.1.3 can
be restated as:

X
G(a)

= X
G
∩ D(a) . 2

Fact III.1.4 Let G be a RS. For a, b ∈ G, we have:
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(i) D(a)⊆D(b) ⇔ a = ab2 ⇔ b2∼
a
1.

(ii) D(a) = D(b) ⇔ a2 = b2.

Proof. (i) Since every P ∈ Specsat(G) is P = σ−1[0] for some σ ∈ X
G

(I.4.9), then D(a) =
X
G
\ Z(a), where Z(a) = {σ ∈ X

G
|σ(a) = 0}. Thus, D(a)⊆D(b) ⇔ Z(b)⊆Z(a), and the

equivalence of (ii) and (iii) in Proposition I.6.5 (1) yields D(a)⊆D(b)⇔ a = ab2; this identity
is clearly equivalent to b2∼

a
1.

(ii) follows at once from (i). 2

(b) Every inclusion D(a)⊆D(b) (a, b ∈ G) induces a map ϕ
ba

: G
(b)
−→G

(a)
given by:

ϕ
ba

(x) = π
a
(x) (x ∈ G).

Fact III.1.5 For a, b ∈ G |= RSG and D(a)⊆D(b), ϕ
ba

is a well defined RS-homomorphism.

Proof. (i) ϕ
ba

is well defined.

According to (†) above, we must prove, for x, y ∈ G : xb = yb ⇒ xa = ya. Scale the
antecedent by ab and use III.1.4 (a) above.

(ii) ϕ
ba

is a RS-homomorphism.

Clearly, ϕ
ba

preserves product and sends the constants 0, 1,−1 of G
(b)

onto the corresponding

constants of G
(a)

. To show that ϕ
ba

preserves representation, in view of (††) above we must

show, for g, g
1
, g

2
∈ G,

bg ∈ D
G

(bg
1
, bg

2
) ⇒ ag ∈ D

G
(ag

1
, ag

2
).

Multiply the antecedent by ab and use III.1.4 (a) above. 2

Thus, we have shown:

Fact III.1.6 Let G |= RS. The assignment G(G) (= G)

D(a) 7→ G
(a)
, D(a)⊆D(b) 7→ ϕ

ba
(a, b ∈ G)

defines a contravariant functor from D into the category RS of real semigroups. 2

In the next two Propositions we show that G is a sheaf.

Proposition III.1.7 Let G be a real semigroup. Then, G verifies the extensionality axiom:
For every atomic L

RS
-formula θ(v

1
, v

2
, v

3
) and elements a, a

i
(i ∈ I), g

1
, g

2
, g

3
∈ G, if D(a) =⋃

i∈I D(a
i
), then

(∗) ∀ i ∈ I G
(ai)
|= θ[ϕ

aai
(π
a
(g

1
)), ϕ

aai
(π
a
(g

2
)), ϕ

aai
(π
a
(g

3
))] ⇒

⇒ G
(a)
|= θ[π

a
(g

1
)), π

a
(g

2
)), π

a
(g

3
))].

Proof. To illustrate the argument we do the proof for θ(v
1
, v

2
, v

3
) : v

1
∈ D(v

2
, v

3
), leaving to

the reader the (even simpler) verification for other atomic L
RS

-formulas.

In this case, the antecedent of (*) is equivalent to

∀ i ∈ I ∀ γ ∈ X
G(ai)

[(γ ◦ π
ai

)(g
1
) ∈ D

3
((γ ◦ π

ai
)(g

2
), (γ ◦ π

ai
)(g

3
))].

In turn, by Fact III.1.3 this is equivalent to:
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(**) ∀ i ∈ I ∀σ ∈ X
G

(σ(ai) 6= 0 ⇒ σ(g
1
) ∈ D

3
(σ(g

2
), σ(g

3
)).

Invoking the same Fact again, the conclusion to be proved amounts to:

∀σ ∈ X
G

(σ(a) 6= 0 ⇒ σ(g
1
) ∈ D

3
(σ(g

2
), σ(g

3
)).

Fix σ ∈ X
G

such that σ(a) 6= 0. With P := σ−1[0] ∈ Specsat(G), we have P ∈ D(a). Since,
by assumption, the D(a

i
)’s cover D(a), there is i

0
∈ I so that P ∈ D(a

i0
), i.e., σ(a

i0
) 6= 0.

Applying (**) with i = i
0

we conclude σ(g
1
) ∈ D

3
(σ(g

2
), σ(g

3
)), as required. 2

Proposition III.1.8 Let G be a real semigroup. Then, G verifies the gluing axiom: Assume
D(a) =

⋃
i∈I D(a

i
), with a, a

i
∈ G (i ∈ I). Let {s

i
| i ∈ I} be a family of sections with

dom(s
i
) = D(a

i
) (i ∈ I), and pairwise compatible, i.e.,

For all i, j ∈ I, s
i
d (D(a

i
) ∩ D(a

j
)) = s

j
d (D(a

i
) ∩ D(a

j
)) .

Then, there is a section s such that dom(s) = D(a) and s dD(a
i
) = s

i
for all i ∈ I.

Proof. Since D(a) is quasi-compact, we may assume I finite, say I = {1, . . . , n}. Each s
i

is
of the form π

ai
(t
i
), with t

i
∈ G, and the restriction maps are (by definition of G) the functions

ϕ
bc

, with D(c)⊆D(b) defined in III.1 (b). Since D(a
i
) ∩ D(a

j
) = D(a

i
a
j
), the compatibility

condition of the statement becomes

(+) For all i, j ∈ {1, . . . , n}, π
aiaj

(t
i
) = π

aiaj
(t
j
) .

By induction it suffices to do the proof for n = 2.

Using axiom [RS3b] (I.2.4), pick an element t such that

(++) t ∈ Dt
G

(t
1
a2

1
, t

2
a2

2
).

We must show that, for i = 1, 2, π
ai

(t) = π
ai

(t
i
), i.e., by III.1 (a.(†)), ta

i
= t

i
a
i
. We prove

this equality using characters in case i = 1, the case i = 2 being similar.

Let σ ∈ X
G

. The equality σ(ta
1
) = σ(t

1
a

1
) being clear whenever σ(a

1
) = 0, we assume

σ(a
1
) 6= 0, i.e., σ(a2

1
) = 1.

— If σ(a
2
) 6= 0, then σ(a

1
a

2
) 6= 0 and, by (+), t

1
a

1
a

2
= t

2
a

1
a

2
. Taking images under σ and

cancelling out σ(a
1
a

2
) yields σ(t

1
) = σ(t

2
). Taking images under σ in (++) gives

σ(t) ∈ Dt
3
(σ(t

1
)σ(a2

1
), σ(t

2
)σ(a2

2
)) = Dt

3
(σ(t

1
), σ(t

1
)) = {σ(t

1
)},

i.e., σ(t) = σ(t
1
).

— If σ(a
2
) = 0, (++) yields

σ(t) ∈ Dt
3
(σ(t

1
)σ(a2

1
), σ(t

2
)σ(a2

2
)) = Dt

3
(σ(t

1
), 0) = {σ(t

1
)},

i.e., σ(t) = σ(t
1
).

Thus, in either case, σ(t) = σ(t
1
), which obviously yields σ(ta

1
) = σ(t

1
a

1
), as claimed. 2

B. The stalks of the sheaf G. Our next order of business is to compute explicitly the stalk
of the sheaf G (= G(G)) at each point P ∈ Specsat(G), that we denote by G(P ).

III.1.9 Reminder. Recall that, by definition, G(P ) is the inductive limit of an (any) inductive
system 〈G

(ai)
, ϕ
aiaj
| i ≤ j in I 〉, where {D(a

i
) | i ∈ I} (a

i
∈ G) is any neighborhood basis of P

in Specsat(G), i.e., a family of neighborhoods of P such that

105



∀x ∈ G (P ∈ D(x) ⇒ ∃i ∈ I (D(a
i
)⊆D(x)).

Explicitly, G(P ) = (
∐
i∈I G(ai)

)/≡ (disjoint union), where ≡ is the equivalence relation on∐
i∈I G(ai)

induced by the family of morphims {ϕ
aiaj
| i ≤ j in I} (that we will call ϕ

ij
to ease

notation): for x ∈ G
(ai)

, y ∈ G
(aj)

(i, j ∈ I),

x ≡ y ⇔ ∃ k ∈ I such that k ≥ i, j and ϕ
ik

(x) = ϕ
jk

(y) .

[Since the index set I, ordered under i ≤ j : ⇔ D(a
j
)⊆D(a

i
), is directed, the reader can

easily check that ≡ is independent of the neighborhood basis of P .]

For completeness we also recall that, setting π
i

:= π
ai

for i ∈ I, the L
RS

-structure of G(P )
is given by:

— The denotation of a constant c ∈ {1, 0,−1} in G(P ) is π
i
(c)/≡ (any i ∈ I).

— Product in G(P ) is: for x ∈ G
(ai)

, y ∈ G
(aj)

,

(x/≡) · (y/≡) := (ϕ
ik

(x) · ϕ
jk

(y))/≡, any k ≥ i, j.

— Representation in G(P ) is defined as follows: for x ∈ G
(ai)

, y
1
∈ G

(aj1 )
, y

2
∈ G

(aj2 )
,

x/≡ ∈ D
G(P )

(y
1
/≡, y

2
/≡) :⇔ ϕ

ik
(x) ∈ D

G(ak)
(ϕ
j1k

(y
1
), ϕ

j2k
(y

2
)),

for any k ∈ I such that k ≥ i, j1, j2.

Checking well-definedness of these notions is routine and, hence, omitted. Since the axioms
for real semigroups are universal-existential (∀∃) sentences in the language L

RS
—and hence

preserved under inductive limits—, G(P ) is a real semigroup. 2

The real semigroup G(P ) can be recast as a quotient of G modulo a certain equivalence
relation ≈

P
that we define below. With notation as above, if x, y ∈

∐
i∈I G(ai)

, then x =

π
i
(g), y = π

j
(h) for some g, h ∈ G, and unique indices i, j ∈ I; we have:

x ≡ y ⇔ ∃ k ≥ i, j such that ϕ
ik

(π
i
(g)) = ϕ

jk
(π
j
(h))

⇔ ∃ k ≥ i, j such that π
k
(g) = π

k
(h) [definition of ϕ

ik
]

⇔ ∃ k ≥ i, j such that g∼
ak
h ⇔ ∃ k ≥ i, j such that gak = hak

⇔ ∃ k ∈ I such that gak = hak.

[The last equivalence comes from III.1.4 (ii) and the fact that I is right-directed under ≤.]

So, we can see ≡ as the equivalence relation ≈
P

on G defined by:

g ≈
P
h :⇔ ∃ k ∈ I such that gak = hak,

that is,
≈
P

=
⋃
i∈I
∼
ai

.

It is easily checked that ≈
P

is an equivalence relation compatible with the product of G, and
that the quotient G/≈

P
is a ternary semigroup with constants c/≈

P
, where c ∈ {1, 0,−1}⊆G.

Proposition III.1.10 For G |= RS and P ∈ Specsat(G), we have

G(P ) ∼= 〈G/≈
P
, · , 1/≈

P
, 0/≈

P
,−1/≈

P
, D

G/≈
P
〉,

where, for g, g
1
, g

2
∈ G,
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g/≈
P
∈ D

G/≈
P

(g
1
/≈

P
, g

2
/≈

P
) :⇔ ∃ i ∈ I (gai ∈ DG(g

1
ai , g2

ai)).

Proof. The definition of the inductive limit structure gives RS-morphisms ψ
i

: G
(ai)
−→G(P )

(i ∈ I) such that, for all i ≤ j in I, the diagram

G(ai)

ψ
i ��

ϕ
ij //

G(aj)

ψ
j��

G(P )

commutes; ψ
i

is given by: ψ
i
(x) := x/≡, for x ∈ G

(ai)
.

We define a map θ
P

: G/≈
P
−→G(P ) by

θ
P

(g/≈
P

) = π
i
(g)/≡ (= ψ

i
(π
i
(g))),

where g ∈ G and i ∈ I arbitrary. We show that θ
P

is an isomorphism of L
RS

-structures.

(1) θ
P

is well-defined.

We have to show two things:

(i) θ
P

(g/≈
P

) does not depend on the index i ∈ I chosen in the preceding definition, i.e., for

g ∈ G and i, j ∈ I, π
i
(g) ≡ π

j
(g).

Since I is directed, there is k ≥ i, j; clearly we have:

ϕ
ik

(π
i
(g)) = π

k
(g) = ϕ

jk
(π
j
(g)),

whence π
i
(g) ≡ π

j
(g).

(ii) θ
P

(g/≈
P

) does not depend on the representative modulo ≈
P

, i.e., for g, h ∈ G, i ∈ I,

g≈
P
h ⇒ π

i
(g) ≡ π

i
(h).

By definition, g≈
P
h ⇔ ∃ j ∈ I (gaj = haj). Pick k ≥ i, j; thus, D(ak)⊆D(ai), D(aj) and,

by Fact III.1.4 (i), a
k

= a
k
a2
j
. Scaling ga

j
= ha

j
by a

k
a
j

we get ga
k
a2
j

= ga
k

= ha
k

= ha
k
a2
j
.

Hence, π
k
(g) = π

k
(h), which entails ϕ

ik
(π
k
(g)) = ϕ

ik
(π
k
(h)), i.e., π

i
(g) ≡ π

i
(h).

(2) θ
P

is injective.

We must prove that π
i
(g) ≡ π

i
(h) ⇒ g≈

P
h, for i ∈ I, g, h ∈ G. The assumption means there

is k ≥ i such that ϕ
ik

(π
i
(g)) = ϕ

ik
(π
i
(h)), i.e., π

k
(g) ≡ π

k
(h), i.e., g ∼

ak
h. Since ∼

ak
⊆ ≈

P
, we

conclude that g ≈
P
h.

(3) θ
P

is surjective.

Every x ∈
∐
i∈I G(ai)

is of the form x = π
i
(g) for some g ∈ G and a unique i ∈ I. Then,

θ
P

(g/≈
P

) = π
i
(g)/≡ = x/≡.

Obviously,

(4) θ
P

sends constants onto the corresponding constants.

(5) θ
P

preserves product.

Let g, h ∈ G. Since π
i

: G−→G
(ai)

preserves product and ≡ is compatible with product in

G(P ), altogether we have,
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θ
P

(g/≈
P
· h/≈

P
) = θ

P
((gh)/≈

P
) = π

i
(gh)/≡ = (π

i
(g)π

i
(h))/≡

= π
i
(g)/≡ · π

i
(h)/≡ = θ

P
(g/≈

P
) θ

P
(g/≈

P
) .

(6) θ
P

preserves and reflects representation, i.e., for g, g
1
, g

2
∈ G,

(*) g/≈
P
∈ D

G/≈
P

(g
1
/≈

P
, g

1
/≈

P
) ⇔ θ

P
(g/≈

P
) ∈ D

G(P )
(θ
P

(g
1
/≈

P
), θ

P
(g

2
/≈

P
)) .

By definition, the left-hand side of (*) means ∃i ∈ I (ga
i
∈ D

G
(g

1
a
i
, g

2
a
i
)), which, by (††) in

III.1 (a), is equivalent to

∃i ∈ I (π
i
(g) ∈ D

G(ai)
(π
i
(g

1
), π

i
(g

2
)).

In turn, by the definition of θ
P

, the right-hand side of (*) is:

π
j
(g)/≡ ∈ D

G(P )
(π
j
(g

1
)/≡, π

j
(g

2
)/≡) (any j ∈ I),

i.e.,
ψ
j
(π
j
(g)) ∈ D

G(P )
(ψ

j
(π
j
(g

1
)) , ψ

j
(π
j
(g

2
))) .

So, the proof of (*) boils down to showing the equivalence

(**) ∃i ∈ I [ψ
i
(π
i
(g)) ∈ D

G(P )
(ψ

i
(π
i
(g

1
)) , ψ

i
(π
i
(g

2
)))]⇔ ∃i ∈ I [π

i
(g) ∈ D

G(ai)
(π
i
(g

1
), π

i
(g

2
))].

Proof of (**). The implication (⇐) is clear beacuse ψ
i
G

(ai)
−→G(P ) is a RS-morphism.

(⇒) Since G(P ) is the inductive limit of 〈G
(ai)

, ϕ
aiaj
| i ≤ j in I 〉, representation in G(P ) is

given by: for x, y, z ∈
∐
i∈I G(ai)

and with ix denoting the unique index i ∈ I such that

x ∈ G
(ai)

(similarly for y, z),

ψ
ix

(x) ∈ D
G(P )

(ψ
iy

(y), ψ
iz

(z)) ⇔ ∃ k ≥ ix, iy, iz [ϕ
ixk

(x) ∈ D
G(ai)

(ϕ
iyk

(y), ϕ
izk

(z))].

Applying this equivalence with x = π
i
(g), y = π

i
(g

1
), z = π

i
(g

2
) (and ix = iy = iz = i), we

conclude

∃ k ≥ i [ϕ
ik

(π
i
(g)) ∈ D

G(ai)
(ϕ
ik

(π
i
(g

1
)), ϕ

ik
(π
i
(g

2
))],

whence, ∃k ∈ I (π
k
(g) ∈ D

G(ak)
(π
k
(g

1
), π

k
(g

2
))), as required. 2

Our next result gives the desired description of the stalks of the sheaf G as real semigroups
whose canonical quotients are quasi reduced special groups, i.e., RSG’s with an added zero (cf.
I.2.2 (3)).

Proposition III.1.11 Let G be a RS, and P ∈ Specsat(G). There is a saturated prime ideal
P̂ of the stalk G(P ) of G at P such that the quotient G(P )/P̂ is isomorphic to the residue G/P
of G at P (cf. II.3.15 ). In particular, G(P )/P̂ is a quasi reduced special group.

Remark. To simplify the proof we shall identify the stalk G(P ) with the structure G/≈
P

by
means of the isomorphism θ

P
constructed in the proof of Proposition III.1.10. To avoid risk of

confusion, the elements of G/≈
P

will be denoted, as above, by g/≈
P

, while those of G/P will
be denoted by g/P (g ∈ G). 2

Before starting the proof we make a couple of observations needed therein.

Fact III.1.12 Let G be a RS, and P ∈ Specsat(G). For g, h, a ∈ G we have:

(1) g≈
P
h ⇒ g/P = h/P .
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(2) g2≈
P

1 ⇔ g2/P = 1 (⇔ g 6∈ P ).

(3) a 6∈ P ⇒ g ≈
P
ga2.

Proof. As before, we fix a neighborhood basis {D(a
i
) | i ∈ I} of P in Specsat(G).

(1) By definition, g≈
P
h ⇔ ∃i ∈ I (ga

i
= ha

i
), cf. paragraph following III.1.9. Then, ga

i
=

−(−ha
i
) and, by I.2.3 (11), 0 ∈ Dt

G
(ga

i
,−ha

i
). Since a

i
6∈ P , Theorem II.3.15 (a) yields

g/P = h/P .

(2) By (1), only the implication (⇐) needs proof. Assume g2/P = 1; then, g/P 6= 0, whence
g 6∈ P , and P ∈ D(g) . By assumption there is i ∈ I so that P ∈ D(a

i
)⊆D(g), which, by Fact

III.1.4 (i), yields g2a
i

= a
i

= 1 · a
i
, whence g2≈

P
1. The last assertion is clear.

(3) follows at once from (2) : a 6∈ P ⇒ a2≈
P

1⇒ ga2≈
P
g · 1 = g. 2

Next, we observe that transversal representation in G≈
P

has a characterization in terms
of that of G similar to that of ordinary representation.

Fact III.1.13 With notation as in Proposition III.1.10, for g, g
1
, g

2
∈ G we have,

(†) g/≈
P
∈ Dt

G/≈
P

(g
1
/≈

P
, g

2
/≈

P
) ⇔ ∃ i ∈ I (gai ∈ Dt

G
(g

1
ai , g2

ai)).

Proof. (⇒) Using the definition of Dt in terms of D (cf. [t-rep], § I.2), the left-hand side of
(†) is:

g/≈
P
∈ D

G/≈
P

(g
1
/≈

P
, g

2
/≈

P
) ∧ − g

1
/≈

P
∈ Dt

G/≈
P

(−g/≈
P
, g

2
/≈

P
) ∧

∧ − g
2
/≈

P
∈ Dt

G/≈
P

(g
1
/≈

P
,−g/≈

P
) .

By the definition of D
G/≈

P
(III.1.10) there are i, j, k ∈ I such that

(*) gai ∈ DG(g
1
ai , g2

ai) ∧ − g1
aj ∈ DG(−gaj , g2

aj) ∧ − g2
ak ∈ DG(g

1
ak ,−gak) .

Since I is directed, there is ` ∈ I such that ` ≥ i, j, k, i.e., D(a
`
⊆D(a

i
), D(a

j
), D(a

k
); whence,

by Fact III.1.4 (i),

(**) a
`

= a
`
a2
i

= a
`
a2
j

= a
`
a2
k

.

Suitably scaling (*), using (**) and [t-rep], § I.2, we get ga
`
∈ Dt

G
(g

1
a
`
, g

2
a
`
) .

(⇐) Using [t-rep] on the right-hand side of (†), we get i ∈ I such that

gai ∈ DG(g
1
ai , g2

ai) ∧ − g1
ai ∈ DG(−gai , g2

ai) ∧ − g2
ai ∈ DG(g

1
ai ,−gai) .

The definition of D
G/≈

P
(III.1.10) and [t-rep] again, yield g/≈

P
∈ Dt

G/≈
P

(g
1
/≈

P
, g

2
/≈

P
), as

required. 2

Proof of Proposition III.1.11. We define a map τ
P

: G/≈
P
−→G/P by

τ
P

(g/≈
P

) = g/P (g ∈ G) .

Item (1) in Fact III.1.12 shows

(1) τ
P

is well-defined,

and, by definition,

(2) τ
P

is surjective.
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(3) τ
P

is a RS-homomorphism.

The only non-trivial point to check is that τ
P

preserves representation. Assume g/≈
P
∈

D
G/≈

P
(g

1
/≈

P
, g

2
/≈

P
). Then (III.1.10), gai ∈ DG(g

1
ai , g2

ai) for some i ∈ I, and hence

ga2
i
∈ D

G
(g

1
a2
i
, g

2
a2
i
)⊆D

G
(0, g

1
a2
i
, g

2
a2
i
) .

With π
P

: G−→G/P canonical (i.e., π
P

(g) = g/P ), Theorem II.3.15 (b) and axiom [RS4] give

π
P

(g) ∈ D
G/P

(π
P

(g
1
)π
P

(a2
i
) , π

P
(g

2
)π
P

(a2
i
))⊆D

G/P
(π
P

(g
1
), π

P
(g

2
)),

as required.

Straightforward verification shows:

(4) P̂ = P/≈
P

:= {g/≈
P
| g ∈ P} is a saturated prime ideal of G/≈

P
.

From Theorem II.3.15 (d) we get,

(5) The quotient G/≈
P
/P̂ is a quasi-RSG.

Let us write π̂
P

for the canonical quotient map G/≈
P
−→ (G/≈

P
)/P̂ . We claim:

(6) The quotients G/≈
P
/P̂ and G/P are isomorphic via the map induced by τ

P
:

τ̂
P

(π̂
P

(g/≈
P

)) := τ
P

(g/≈
P

) = g/P (g ∈ G).

(6.i) τ̂
P

is well-defined and injective.

Altogether, these assertions reduce to the equivalence:

(I) π̂
P

(g/≈
P

) = π̂
P

(h/≈
P

) ⇔ g/P = h/P (g, h ∈ G).

By II.3.15 (a) applied with G/≈
P

and P̂ , the left-hand side reads

(II) ∃z 6∈ P̂ ∃i ∈ P̂ such that i ∈ Dt
G/≈

P

(g/≈
P
· z,−h/≈

P
· z).

Since z, i are of the form z = x/≈
P
, i = p/≈

P
with x, p ∈ G (and z 6∈ P̂ ⇔x 6∈ P , (II) is in

turn equivalent to

∃x 6∈ P ∃p ∈ P such that p/≈
P
∈ Dt

G/≈
P

(gx/≈
P
,−hx/≈

P
),

which, by Fact III.1.13 translates as:

(III) ∃i ∈ I ∃x 6∈ P ∃p ∈ P (pai ∈ Dt
G

(gxai ,−hxai)) .

Since xai 6∈ P and pai ∈ P , (III) and II.3.15 (a) entail g/P = h/P , proving the implication
(⇒) in (I).

Conversely, by II.3.15 (a) applied with G and P , the equality g/P = h/P translates as

∃y 6∈ P ∃j ∈ P (j ∈ Dt
G

(gy ,−hy)) .

Scaling this transversal representation by any ai and invoking Fact III.1.13, we get (III), and,
by the equivalence of this with (II), π̂

P
(g/≈

P
) = π̂

P
(h/≈

P
), proving the implication (⇐) in

(I).

Since π̂
P

and τ
P

are surjective RS-homomorphisms, we get

(6.ii) τ̂
P

is a surjective RS-homomorphism.
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Finally, we prove:

(6.iii) τ̂
P

reflects representation.

This amounts to,

(IV) g/P ∈ D
G/P

(g
1
/P, g

2
/P ) ⇒ π̂

P
(g/≈

P
) ∈ D

(G/≈
P

)/P̂
(π̂
P

(g
1
/≈

P
), π̂

P
(g

2
/≈

P
)).

Applying II.3.15 (a) with G and P , the antecedent of (IV) is equivalent to

∃x 6∈ P ∃i ∈ P such that gx2 ∈ D
G

(i, g
1
, g

2
) ;

scaling this representation by a2
k

(any k ∈ I) and setting z = xa
k
/≈

P
6∈ P̂ , j = ia2

k
/≈

P
∈ P̂ ,

Proposition III.1.10 and Fact III.1.12 (3) give g/≈
P
· z2 ∈ D

G/≈
P

(j , g
1
a2
k
/≈

P
, g

2
a2
k
/≈

P
) =

D
G/≈

P
(j , g

1
/≈

P
, g

2
/≈

P
). By II.3.15 (a) applied with G/≈

P
and P̂ , this representation entails

the consequent in (IV), as asserted. 2

Summarizing, the foregoing results amount, altogether, to the

Proof of Theorem III.1.1. Given a real semigroup G, the presheaf G = G(G) over the
basis D of Specsat(G) constructed in paragraph A is a sheaf of real semigroups (Propositions
III.1.7 and III.1.8). The localization G

(a)
is the RS of sections of G over D(a) ∈ D (a ∈ G);

hence G = G
(1)

is the RS of sections over D(1) = Specsat(G), i.e., the RS of global sections

of G. The stalk of G at P ∈ Specsat(G) is the real semigroup G(P ) (III.1.9), canonically
isomorphic to G/≈

P
(Proposition III.1.10). The quotient G(P )/P̂ is a quasi reduced special

group, canonically isomorphic to G/P (Proposition III.1.11). 2

C. Behaviour of the stalks under specialization. In this paragraph we study the be-
haviour of the stalks of the sheaf G under specialization in the base space Specsat(G). We shall
prove:

Proposition III.1.14 Let G |= RS and let P,Q ∈ Specsat(G) be such that P  Q (Q special-
izes P ). Then, the stalk G(P ) is a homomorphic image of G(Q).

Remarks and Notation III.1.15 Recall that P  QmeansQ ∈ {P} (closure in Specsat(G));
in the present case this boils down to P ⊆Q.

In the sequel we fix a neighborhood basis {D(b
j
) | j ∈ J} of Q. Since Q ∈ {P}, we have

P ∈ D(b
j
) for all j ∈ J . However, {D(b

j
) | j ∈ J} is not, in general, a neighborhood basis

of P , i.e., there may be neighborhoods D(x) of P such that for no j ∈ J , D(b
j
)⊆D(x).

Given a neighborhood basis {D(a
i
) | i ∈ I} of P , for all j ∈ J there is i ∈ I such that

D(a
i
)⊆D(b

j
). Hence, there is a function f : J −→ I so that for all j ∈ J and all i ∈ I,

i ≥ f(j)⇒D(a
i
)⊆D(b

j
). Hereafter we fix such a function f .

(1) Note that, if D(a)⊆D(b) (a, b ∈ G), the equivalence relation ∼a (cf. item (a) in paragraph
A) is coarser than ∼b: for g, h ∈ G, using III.1.4 (i), we have

g∼b h ⇔ gb = hb ⇔ gab2 = hab2 ⇔ ga = ha ⇔ g∼a h.

(2) For g, h ∈ G, g≈
Q
h ⇒ g≈

P
h.

In fact, from
≈
P

=
⋃
i∈I
∼ai , ≈Q =

⋃
j∈J
∼
bj

and ∼
bj
⊆∼af(j)

,

we get
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≈
Q

=
⋃
j∈J
∼
bj
⊆
⋃
j∈J
∼af(j)

⊆
⋃
i∈I
∼ai = ≈

P
. 2

Proof of Proposition III.1.14. As before, we work with G/≈
Q

and G/≈
P

instead of

G(Q) and G(P ), respectively. The required surjective RS-homomorphism is the map ι
QP

:

G/≈
Q
−→ G/≈

P
given by ι

QP
(g/≈

Q
) := g/≈

P
; III.1.15 (2) shows that it is well-defined; it

clearly is surjective.

We prove that ι
QP

preserves representation. Assume g/≈
Q
∈ D

G/≈
Q

(g
1
/≈

Q
, g

2
/≈

Q
)

(g, g
1
, g

2
∈ G). By III.1.10 there is j ∈ J such that gb

j
∈ D

G
(g

1
b
j
, g

2
b
j
). Pick i ∈ I so that P ∈

D(a
i
)⊆D(b

j
) (III.1.15). Then, a

i
= a

i
b2
j

(III.1.4 (i)). Scaling the last representation by a
i
b
j

we get ga
i
∈ D

G
(g

1
a
i
, g

2
a
i
), which, again by III.1.10, yields g/≈

P
∈ D

G/≈
P

(g
1
/≈

P
, g

2
/≈

P
). 2

IMPORTANT NOTE (February 2018). Previous section III.2 “Projective limits of real semi-
groups”, from Feb. 2014, omitted. Results there particular cases of products, as noted by
Chico in 2016-17. If needed, original is in file RS-fev-16-rev, pp. 115-118.

III.2 Transversally 2-regular morphisms.

In this paragraph we consider a class of morphisms for structures of signature L
RS

—the
language of real semigroups—, which turns out to be of interest in the study of quotients of
RSs.

Definition III.2.1 (a) Let G, H be structures of language LRS = {1, 0,−1, ·, D}. An L
RS

-
morphism f : G−→H is called transversally 2-regular if and only if for all a, b, c, d ∈ G,

Dt
H

(f(a), f(b)) ∩ Dt
H

(f(c), f(d)) 6= ∅ ⇒ There are a′, b′, c′, d′ ∈ G so that f(a) = f(a′), . . . ,

f(d) = f(d′) and Dt
G

(a′, b′) ∩ Dt
G

(c′, d′) 6= ∅.

(b) If G is a RS and H⊆X
G

, we say that H is transversally 2-regular if the quotient map
π : G−→G/H is transversally 2-regular, with representation in G/H defined as in II.2.12,
(††)H.

As we shall see below, in a number of natural quotients of RSs,

(1) The set of characters determining them is transversally 2-regular, and this is relatively easy
to check; and

(2) Transversal 2-regularity of a set of characters of a RS guarantees that the quotient it
determines is a RS and, further, that the induced equivalence relation —see (†)H in II.2.12—
is a RS-congruence in the sense of Definition II.2.1.

Remark. Quotients of reduced special groups by saturated subgroups with a property re-
sembling transversal 2-regularity have been considered in [DMM], Prop. 2.13, p. 37. For the
notion of a regular map of RSGs, see [DM1], Def. 2.22 , p. 43. 2

Proposition III.2.2 Let G be a RS and let H⊆X
G

be a transversally 2-regular set of char-
acters. Then:

(1) The quotient G/H is a RS.

(2) The equivalence relation on G induced by H is a RS-congruence.
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Proof. (1) By Theorem II.2.16 and Proposition I.2.10 it suffices to check that G/H verifies
axiom [RS3′]. Let a, b, c, d ∈ G be so that Dt

G/H
(π(a), π(b)) ∩ Dt

G/H
(π(c), π(d)) 6= ∅. By

the regularity assumption there are a′, b′, c′, d′ ∈ G such that Dt
G

(a′, b′) ∩ Dt
G

(c′, d′) 6= ∅
and π(a) = π(a′), . . . , π(d) = π(d′) i.e., a ≡H a

′, . . . , d ≡H d
′. Since G verifies [RS3′], we

have Dt
G

(a′,−c′) ∩ Dt
G

(−b′, d′) 6= ∅, and since π preserves Dt and π(a) = π(a′), . . . , we get

Dt
G/H

(π(a),−π(c)) ∩ Dt
G/H

(−π(b), π(d)) 6= ∅, as required.

(2) We must check the factoring condition (iii) of Definition II.2.1. Let H be a RS and let
f : G−→H be a RS-morphism such that

(*) a≡H b ⇒ f(a) = f(b) for all a, b ∈ G.

We must show that the unique (and, by (*), well defined) map f̂ : G/H−→H given by the
functional equation f̂ ◦ π = f is a RS-morphism, i.e., for a, b, c ∈ G,

π(a) ∈ D
G/H(π(b), π(c)) ⇒ f(a) ∈ D

H
(f(b), f(c)).

By (1) we already know that G/H is a RS. From π(a) ∈ D
G/H(π(b), π(c)) we get π(a) ∈

Dt
G/H

(π(b)π(a)2, π(c)π(a)2) (by axiom [RS6], in G/H). By Proposition I.2.3 (6) we have

π(a) ∈ Dt
G/H

(π(a), π(a)). Transversal 2-regularity of π entails the existence of a′, b′, c′, x ∈ G
such that a′≡H a, b

′≡H ba
2, c′≡H ca

2 and x ∈ Dt
G

(b′, c′) ∩ Dt
G

(a′, a′). Invoking I.2.3 (6)

again, x ∈ Dt
G

(a′, a′) implies x = a′, whence x≡H a. Assumption (*) yields, then, f(x) =

f(a); likewise, f(b′) = f(ba2) and f(c′) = f(ca2). Since f is a RS-morphism, x ∈ Dt
G

(b′, c′) im-

plies f(x) = f(a) ∈ Dt
H

(f(b′), f(c′)) = Dt
H

(f(b)f(a)2, f(c)f(a)2), whence f(a) ∈
D
H

(f(b)f(a)2, f(c)f(a)2); by [RS4] (in H), f(a) ∈ D
H

(f(b), f(c)), as required. 2

In some cases where transversal representation in the quotient G/H has an explicit lifting to
G —for example in the cases localizations (Proposition II.3.2 (5)) and of quotients by saturated
prime ideals (Theorem II.3.15 (c.ii))— it is easily proved that the corresponding quotient maps
are transversally 2-regular.

Example III.2.3 Localizations at multiplicative sets are transversally 2-regular.

Proof. Using item (5) of Proposition II.3.2, if π(x) ∈ Dt
G/HT

(π(a), π(b)) ∩ Dt
G/HT

(π(c), π(d)),

there are t, t′ ∈ T so that xt2 ∈ Dt
G

(at2, bt2) and xt′2 ∈ Dt
G

(ct′2, dt′2). Scaling these repre-

sentations by t′2 and t2 respectively, and setting z = tt′ ∈ T , we get xz2 ∈ Dt
G

(az2, bz2) ∩
Dt
G

(cz2, dz2). Observing that y∼
T
yt2, i.e., π(y) = π(yt2), for all y ∈ G and t ∈ T (because

h(t2) = 1 for all h ∈ HT ), proves our contention. 2

Example III.2.4 Residue spaces at saturated prime ideals are transversally 2-regular.

Proof. With the setting of Theorem II.3.15, assume π(x) ∈ Dt
G/I

(π(a), π(b))∩Dt
G/I

(π(c), π(d)).

If x ∈ I, the first case of II.3.15 (c.ii) gives a ∼
I
− b and c ∼

I
− d. Since x ∼

I
0 (II.3.15 (a))

and 0 ∈ Dt
G

(b,−b) ∩ Dt
G

(d,−d) (I.2.3 (11)), the result holds.

If x 6∈ I, the second alternative in II.3.15 (c.ii) shows that there are y, z 6∈ I and a′∼
I
a,

b′∼
I
b, c′∼

I
c, d′∼

I
d so that xy2 ∈ Dt

G
(a′, b′), xz2 ∈ Dt

G
(c′, d′). Scaling these representations

by z2 and y2, respectively, we get xy2z2 ∈ Dt
G

(a′z2, b′z2) ∩ Dt
G

(c′y2, d′y2). Since vw2 ∼
I
v

for all v ∈ G and w ∈ G \ I, the result follows. 2

Remark. In Chapters IV and VI we shall prove transversal 2-regularity for arbitrary quotients
of Post algebras (seen as RSs, Theorem IV.4.11), and for all quotients of fans (Theorem VI.11.3).
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However, the example that follows shows that the property fails, in general, for quotients by
saturated subsemigroups (§ II.3 (C)). 2

Example III.2.5 A quotient that is not transversally 2-regular.

The example is a quotient of the form G
A
−→ G

A,T
, with 〈A, T 〉 a p-ring (cf. II.2.2). Recall

(II.4.C) that G
A,T

is a quotient of G
A

by the saturated subsemigroup ∆ = {a ∈ G
A
| a ∈ T}.

For the choice of the p-ring 〈A, T 〉, recall from [DM6], Lemma 8.29, p. 111, that, given
a topological space X and a closed subset K ⊆X, the set P

K
= {f ∈ C(X) | fdK ≥ 0} is a

proper preorder of the ring C(X) of real-valued continuous functions on X. We take A = C(X)
and T = P

K
, with K ŘX, and show:

Proposition III.2.6 With notation as above, the quotient map G
C(X)

−→G
C(X),PK

is not

transversally 2-regular, for any compact Hausdorff space X and any closed subset K ŘX.

For ready reference we recall:

Remarks and Notation III.2.7 (a) For a ring A, a ∈ A and α ∈ Sper (A), we write a(α) =
sgn
≤α

(π
α
(a)), with π

α
: A−→A/supp(α) canonical, and ≤α the total order in A/supp(α)

determined by α.

(b) If α, β ∈ Sper (A) and α β (i.e., α⊆β), the map π
α,β

: A/supp(α)−→A/supp(β) given

by a/supp(α) 7→ a/supp(β) (a ∈ A) is a homomorphism of ordered rings of (A/supp(α),≤α)
onto (A/supp(β),≤β).

(c) Given a compact Hausdorff space X and α ∈ Sper (C(X))) there is a unique point x ∈ X
such that α αx, where αx = {f ∈ C(X) | f(x) ≥ 0}. [The existence of x requires compactness;
cf. [GJ], 4.6, 4.8, 4.9(a), pp. 56-57]. Further, π

αx
= f(x) for f ∈ C(X). 2

Lemma III.2.8 For any topological space X and f, g ∈ C(X) we have:

f = g ⇒ ∀x ∈ X (sgn(f(x)) = sgn(g(x))).

Proof. By [M], Cor. 5.4.3, p. 94 (with T = C(X)2),

(†) f = g ⇔ There are s, t ∈ C(X) and k ≥ 0 such that s2fg = (f2 + g2)k + t2.

Suppose the conclusion fails, and first assume f(y)g(y) < 0 for some y ∈ X. If s(y) 6= 0, then
s2(y) > 0, and (s2fg)(y) < 0. But, clearly, ((f2 + g2)k + t2)(y) ≥ 0, contradicting (†). Hence,
s(y) = 0, whence ((f2 + g2)k + t2)(y) = 0, which clearly entails f(y) = g(y) = t(y) = 0 if k ≥ 1,
and (1 + t2)(y) = 0 if k = 0, a contradiction in either case.

Next, suppose, e.g., f(y) = 0 and g(y) 6= 0 for some y ∈ X. Then, both sides of the equality
in the right-hand side of (†) vanish at y, whence (g2k + t2)(y) = 0, which entails g(y) = 0 if
k ≥ 1, and (1 + t2)(y) = 0 if k = 0, again a contradiction. 2

Fact III.2.9 Let X be a topological space, f, a, b ∈ C(X) and y ∈ X. Assume:

(i) f ∈ Dt
C(X)

(a, b);

(ii) sgn(a(y)) = sgn(b(y)).

Then, sgn(f(y)) = sgn(a+ b)(y)).

Proof. By [M], § 5.5, p. 96, assumption (i) is equivalent to the existence of a′, b′ ∈ C(X) so
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that a′ = a, b′ = b and f = a′ + b′. From Lemma III.2.8 we get, for all x ∈ X:

— sgn(a(x)) = sgn(a′(x)).

— sgn(b(x)) = sgn(b′(x)).

— sgn(f(x)) = sgn(a′ + b′)(x)).

An easy calculation using assumption (i) and these sign equalities yields sgn((a′ + b′)(y)) =
sgn((a+ b)(y)), and the conclusion follows. 2

Corollary III.2.10 Given a completely regular space X and a proper closed subset K, there
are functions a, c ∈ C(X) such that adK = cdK = 1 and Dt

C(X)
(a, a) = Dt

C(X)
(c, c) = ∅.

Proof. Fix y ∈ X \K. By complete regularity there are functions a, c ∈ C(X) so that adK =
cdK = 1, a(y) < 0 and c(y) > 0. If f ∈ Dt

C(X)
(a, a) ∩ Dt

C(X)
(c, c), Fact III.2.9 (with b = a)

gives sgn(f(y)) = sgn(2a)(y)) = sgn(a(y)) = −1 and sgn(f(y)) = sgn(2c)(y)) = sgn(c(y)) = 1,
contradiction. 2

In order to complete the proof of Proposition III.2.6, we show:

Proposition III.2.11 Given a compact Hausdorff space X, a proper closed subset K, and
functions a, c ∈ C(X) such that adK = cdK > 0, we have:

Dt
C(X),PK

(π(a), π(a)) ∩Dt
C(X),PK

(π(c), π(c)) 6= ∅.

Fact III.2.12 Let X and K be as in III.2.11. Given α ∈ Sper (C(X), P
K

), let x be the unique
point in X such that α  αx (III.2.7 (c)). Then, x ∈ K.

Proof. Otherwise (since X is completely regular) there is g ∈ C(X) so that gdK = 1 and
g(x) = −1. Then, g ∈ P

K
⊆α, whence g/supp(α) ≥α 0; by III.2.7 (b), πα,αx(g/supp(α)) =

g/supp(αx) = g(x) ≥ 0, contradiction. 2

Fact III.2.13 Under the same assumptions as in Fact III.2.12,

f ∈ C(X) and fdK imply f
PK

= (f d Sper (C(X), P
K

) = 1.

Proof. We must show that f(α) = 1, i.e., f/supp(α) >α 0 for all α ∈ Sper (C(X), P
K

). Let x
be the unique point of X such that α  αx. By Fact III.2.12, x ∈ K, and thus f(x) > 0. If
the conclusion fails, i.e., f/supp(α) ≤α 0, then, π

α,αx
(f/supp(α)) = f(x) ≤ 0, contradiction.

2

Proof of Proposition III.2.11. Choosing the functions a, c as in Corollary III.2.10, we have
adK = cdK > 0; by Fact III.2.13, a

PK
= (2a)

PK
= 1 = c

PK
= (2c)

PK
. Since (x+ y)T ∈

Dt
A,T

(xT , yT ) in any p-ring 〈A, T 〉, we get

a
PK

= c
PK
∈ Dt

C(X),PK
(a
PK
, a
PK

) ∩Dt
C(X),PK

(c
PK
, c
PK

),

whence

Dt
C(X),PK

(π(a), π(a)) ∩Dt
C(X),PK

(π(c), π(c)) 6= ∅. 2

To be moved elsewhere. ↓

Definition III.2.14 Let G,H be RSs and let X
G
, X

H
be their character spaces. Let Z ⊆X

G
and let F : Z −→Y be a map. We say that F preserves 3-products (in Z) iff for all
h

1
, h

2
, h

3
∈ Z,

h
1
h

2
h

3
∈ Z ⇒ F (h

1
h

2
h

3
) = F (h

1
)F (h

2
)F (h

3
). 2
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Proposition III.2.15 (Small representation theorem). Let G be a RS. The following condi-
tions are equivalent for a map f : X

G
−→3 :

(1) a) f is continuous in the constructible topology of X
G

.

b) f preserves 3-products in X
G

.

(2) f is represented by an element of G: there is a ∈ G so that f = â.

[Recall that â : X
G
−→ 3 denotes “evaluation at a”: for h ∈ X

G
, â(h) = h(a).]

Proof. (2)⇒ (1) is clear since the evaluation maps have properties (1.a) and (1.b).

(1)⇒ (2). We use the representation theorem [M], Cor. 8.3.6, p. 162. It suffices to check that
the assumptions of this theorem as well as one of the equivalent conditions in its conclusion hold
under our hypothesis (1). With our notation, the conditions to be checked are: for x, y ∈ X

G
,

(†) f(x) = 0 and Z(x)⊆Z(y) implies f(y) = 0.

(††) f(x) 6= 0 and x−1[0, 1] ⊇ y−1[0, 1] implies f(x) = f(y).

(†††) For any saturated prime ideal I of G, either

(i) fd{u ∈ X
G
|Z(u) = I} = 0, or

(ii)
∏4
i=1 f(x

i
) = 1 for any 4-element AOS-fan {x

1
, . . . x

4
} in {u ∈ X

G
|Z(u) = I}.

— Condition (†) follows at once from Lemma I.1.19 (2) (as Z(x)⊆Z(y)⇒ y = yx2).

— Condition (††) follows from Lemma I.1.18 (3),(5): x−1[0, 1] ⊇ y−1[0, 1] ⇒ x = x2y. Since
f(x) 6= 0⇒ f(x2) = 1, assumption (1.b) implies f(x) = f(x2)f(y) = f(y).

— As for (†††), if (i) does not hold, (†) implies f(u) 6= 0 for all u ∈ X
G

such that Z(u) = I.
Let {x

1
, . . . x

4
} be an AOS-fan in {u ∈ X

G
|Z(u) = I}. Thus, x

4
= x

1
x

2
x

3
and f(x

i
) 6= 0 for

i = 1, . . . , 4. Assumption (1.b) gives f(x
4
) = f(x

1
)f(x

2
)f(x

3
) 6= 0, i.e.,

∏4
i=1 f(x

i
) = 1. 2
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Chapter IV

Post Algebras

Introduction

The subject matter of this chapter is a detailed study of the first significant class of real
semigroups: the Post algebras.1

The Preface to this monograph gives a brief account of how these algebraic structures
originating in non-classical propositional calculus emerged in the context of real semigroups.
A more detailed account of this question appears in [DP2] (ADD PAGE NOS.). We shall only
stress here that Post algebras are connected with the constructible topology of the character
space of real semigroups, as suggested by the Representation Theorem IV.1.7.

Section IV.1 contains a brief summary —for use in the present and later chapters— of the
main notions and basic results concerning Post algebras and Kleene algebras.

Next, we introduce (in § IV.2) a natural structure of type L
RS

in Post algebras and check
(in IV.2.7) that it verifies the axioms for real semigroups. The same theorem gives a remarkable
characterization of the resulting transversal representation relation in terms of the order and
the lattice and “modal” operations of the Post algebra. We also show that for this natural RS
structure, RS-morphisms coincide with Post-algebra morphisms (Proposition IV.2.11).

In § IV.3 we give two characterizations of those real semigroups that are Post algebras. The
first, Theorem IV.3.2, is basically in terms of their character spaces, and implies immediately
that the spectral topology of the character space of a Post algebra is Boolean. The second, The-
orem IV.3.5, gives, in particular, explicit (first-order) definitions of the Post algebra operations
in terms of the RS structure.

The aim of § IV.4 is to show that every RS, G, can be functorially embedded into (the real
semigroup associated to) a certain, canonically determined, Post algebra P

G
—the Post hull

of G—, namely the set of all continuous maps from the character space X
G

endowed with its
(Boolean) constructible topology, into 3 with the discrete topology. This construction is an
analog for RSs of the construction of the Boolean hull of a reduced special group, carried out
in [DM1], Ch. 4 (Thm. 4.17). The analogy between these constructions extends to several
other results; an important instance is Theorem IV.4.5 —an analog to Theorem 5.2 in [DM1]—
giving several characterizations of complete embeddings of RSs, among others by the injectivity
of the associated Post algebra morphisms; the proof, however, is far more delicate than that of
[DM1], Thm. 5.2. In Theorem IV.4.8 we show that the Post hull construction commutes with

1 All Post algebras considered in this monograph are of order 3, i.e., algebraic counterparts of the three-valued
propositional calculus, Post version.

117



arbitrary quotients, and in Theorem IV.4.11 that quotients of Post algebras have the powerful
2-regular transversality property, introduced in § III.2.

In Section § IV.6 we prove some model-theoretic results concerning Post algebras in their
guise as real semigroups. The main results are that these structures admit a first-order
universal/positive-primitive axiomatisation in the language L

RS
, a result that yields preser-

vation under several constructions. We also prove some results concerning pure embeddings of
Post algebras.

The following section deals with the question of determining those rings whose associated
real semigroup is a Post algebra. A complete answer is given in Proposition IV.7.1, which
automatically yields natural examples, notably amongst von-Neumann regular rings. We also
prove (Theorem IV.7.4) that every Post algebra is “realized” by a ring, i.e., isomorphic to the
RS associated to some ring.

Finally, in § IV.5 the techniques previously developed are used to characterize representation
and transversal representation by arbitrary quadratic forms in Post algebras in terms of order
and the operations existing therein. Under certain conditions, this information “descends”
from the Post hull of a RS to the given real semigroup yielding, for instance, information about
the value set of Pfister forms (and multiples of them) over arbitrary real semigroups. This way
we obtain (weak) versions of some classical properties of those value sets (see Corollaries IV.5.8
and IV.5.11) and other related results of interest.

IV.1  Lukasiewicz-Post algebras. Kleene algebras

The structures of the title are the algebraic counterparts of the n-valued propositional calculus
developed independently by  Lukasiewicz and Post in the early 1920’s. They were introduced
by Moisil and Rosenbloom in the early 40’s. The monograph [BFGR] contains an exhaustive
study of these algebraic structures; Chapters X and XI of [BD] give an account of the basic
results. Here we shall only consider the case n = 3. We begin by summarizing some basic
notions and results about  Lukasiewicz and Post algebras of order 3.

Definition IV.1.1 A three-valued  Lukasiewicz algebra is a structure (L,∧,∨,¬,∇,>)
fulfilling the following requirements:

[L1] (L,∧,∨,>) is a distributive lattice with last element >.

[L2] The unary operation ¬ (negation) verifies the De Morgan laws:

(i) ¬¬x = x.

(ii) ¬ (x ∧ y) = ¬x ∨ ¬ y.

[L3] The unary operation ∇, called the possibility operator, verifies:

(i) ¬x ∨∇x = >.

(ii) x ∧ ¬x = ¬x ∧∇x.

(iii) ∇(x ∧ y) = ∇x ∧∇y.

A Post algebra of order 3 is a three-valued  Lukasiewicz algebra with a center, that is, a
distinguished element c verifying ¬ c = c. 2

Henceforth we omit the words “three-valued” and “order 3”.
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Remarks IV.1.2 (a) It follows at once from the De Morgan laws that every  Lukasiewicz
algebra L satisfies the dual law ¬ (x ∨ y) = ¬x ∧ ¬ y. Moreover, L is a bounded distributive
lattice with last element > and first element ⊥ = ¬>.

(b) In addition, every  Lukasiewicz algebra satisfies the so-called Kleene inequality:

For all x, y (x ∧ ¬x ≤ y ∨ ¬ y).

This inequality implies that the center in a Post algebra is necessarily unique, and x ∧ ¬x ≤
c ≤ y ∨ ¬ y. 2

A number of other, conceptually important operations are definable in terms of the operator
∇. We mention, for instance:

(i) The necessity operator ∆ defined by ∆x = ¬∇¬x. The operators ∆ and ∇ are also called
modal operators.

(ii) The  Lukasiewicz implication, a binary operation defined by

x→ y = ((∇¬x) ∨ y) ∧ ((∇y) ∨ ¬x).

(iii) The arithmetical (or MV-algebra) operations

x⊕ y = ¬x→ y, x� y = ¬ (¬x⊕ ¬ y).

To be sure, the presentation of  Lukasiewicz algebras given above is one of several equivalent
alternatives. For example, implication or truncated sum (⊕) are frequently used as primitive
notions, instead of ∇.

Examples IV.1.3 (a) Every Boolean algebra B with its usual negation becomes a  Lukasiewicz
algebra upon defining ∇x = x. However, Boolean algebras are never Post algebras. Indeed,
the existence of a center c such that ¬ c = c, and the laws c ∨ ¬ c = > and c ∧ ¬ c = ⊥ lead
to a collapse: c = ⊥ = >.

(b) The simplest Post algebra is the three-element chain 3 = {⊥, c,>} with ⊥ < c < >,
¬⊥ = >, ¬> = ⊥, ¬ c = c and the operator ∇ defined by ∇⊥ = ⊥ and ∇c = ∇> = >.

(c) Further examples of Post algebras —in fact, all possible examples— are given in the Rep-
resentation Theorem IV.1.7 below.

Note. It is customary to denote the elements ⊥, c,> of a Post algebra by the symbols 0, 1
2 , 1,

respectively. We have changed this usual notation in order to prevent confusion with our
previous notation for the distinguished elements of ternary semigroups and real semigroups,
which in due course will also enter into the picture. 2

Proposition IV.1.4 Let L be a three-valued  Lukasiewicz algebra. Then the modal operators
∇ and ∆ satisfy the following conditions: for all x, y ∈ L,

(a) ∆x ≤ x ≤ ∇x.

(b) ∆⊥ = ∇⊥ = ⊥, ∆> = ∇> = >, and if L has a center, c, then ∆c = ⊥ and ∇c = >.

(c) ∆ and ∇ are lattice homomorphisms, i.e., ∆(x ∨ y) = ∆x ∨∆y and ∆(x ∧ y) =
∆x ∧ ∆y; similar equalities hold for ∇.

(d) ∆2x = ∆x and ∇2x = ∇x.

(e) ∇∆x = ∆x and ∆∇x = ∇x.
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(f) ∇x ∧ ¬∇x = ⊥ and ∆x ∨ ¬∆x = ⊥.

(g) ∇x = x if and only if x ∨ ¬x = > and ∆x = x if and only if x∧¬x = ⊥.

(h) If ∆x = ∆y and ∇x = ∇y then x = y.

(i) If L has a center, c, then x = (c ∧∇x) ∨∆x = (c ∨∆x) ∧∇x. 2

Remark IV.1.5 Elements of a  Lukasiewicz algebra verifying x∧¬x = ⊥ (equivalently, x∨¬x
= >) are called complemented or Boolean. Under the induced operations the set of Boolean
elements is a Boolean algebra, denoted B(L). Note that ∇x, ∆x ∈ B(L) for all x ∈ L
(IV.1.4 (f)). The modal operators ∆ and ∇ are, in fact, characterized by: for x ∈ L,

∆x = the largest Boolean element ≤ x,

∇x = the smallest Boolean element ≥ x .

This is straightforward using IV.1.4 (g). Then, these operators are first-order definable in the
language {∧ ,∨ ,− ,⊥} (for the class of three-valued  Lukasiewicz algebras). 2

We shall now outline the theory of characters of  Lukasiewicz and Post algebras, i.e. of
homomorphisms of such structures with values in 3. We employ the notions of a filter and a
prime filter with their standard meaning in distributive lattices. In a  Lukasiewicz algebra the
operation

g(P ) = {a ∈ L | ¬ a 6∈ P}

defines an involution in the family of prime filters under the order of inclusion. Furthermore,
the Kleene inequality (IV.1.2 (b)) implies that P ⊆ g(P ) or g(P ) ⊆ P for every prime filter P ,
and the existence of a center entails that P 6= g(P ) for every such P . We have:

Theorem IV.1.6 Let L be a  Lukasiewicz algebra. Then:

(1) Every prime filter of L is either minimal or maximal (under inclusion).

(2) If L is a Post algebra, no prime filter of L is simultaneously maximal and minimal. Hence,
the order structure of the set of prime filters of L under inclusion is a disjoint sum of 2-element
chains.

(3) A prime filter P of L is minimal if and only if it is implicative (that is, x ∈ P and
x→ y ∈ P imply y ∈ P ).

(4) If L is a Post algebra and h : L−→3 is a homomorphism of Post algebras, then h−1[{>}]
is a minimal prime filter and h−1[{>, c}] is a maximal prime filter. Hence h−1[{>, c}] =
g(h−1[{>}]).

(5) Conversely, every minimal prime filter P in a Post algebra induces a character by setting:

h
P

(x) =


> if x ∈ P
c if x ∈ g(P )\P
⊥ if x 6∈ g(P )

(6) The correspondence P 7−→ h
P

is a bijection. 2

A central result in the theory of Post algebras is an analog of Stone’s representation theorem
for Boolean algebras; we shall repeatedly use this result in the sequel. Let X

L
denote the set of

characters of a Post algebra L. The topology induced on X
L

by 3L (product of the discrete
topology in 3) makes it a Boolean space.

120



Theorem IV.1.7 (Representation Theorem for Post algebras; [BD], Thm. X.4.5, p. 198).

(i) Let X be a Boolean space. Then, the set C(X) = C(X,3) of continuous functions of X into
3 under pointwise operations is a Post algebra .

(ii) If L is a Post algebra, the evaluation map ev : L −→ C(X
L

) defined by ev(a)(h) = h(a)
for a ∈ L, h ∈ X

L
, is a Post-algebra isomorphism. Hence, every Post algebra is isomorphic to

one of the form C(X), where X is a Boolean space. 2

Remark. It can be shown (same reference) that the Boolean space X
L

in (ii) is the Stone
space of the Boolean algebra B(L) of Boolean elements of L. 2

It follows from this theorem that every finite Post algebra is of the form 3n for some positive
natural number n. It also follows that if L is a Post algebra and a, b are elements of L such
that a 6≤ b, then there exists a character h ∈ X

L
such that h(a) 6≤ h(b), i.e., h(a) > h(b). This

last remark is frequently used in the sequel.

It is well known in the theory of Post algebras that there exists a natural correspondence
between the set Con(P ) of congruences —i.e., equivalence relations compatible with the Post-
algebra operations— and the family I(P ) of lattice ideals of P closed under the operator ∇.
More precisely,

Proposition IV.1.8 (ADD REF.!) Given a Post algebra P and I ∈ I(P ), define an equiv-
alence relation ≡

I
in P , as follows: for a, b ∈ P ,

a≡
I
b if and only if ∆a4∆b ∈ I and ∇a4∇b ∈ I,

(where 4 denotes symmetric difference). Then, the correspondence I 7−→ ≡
I

is a bijection
between I(P ) and Con(P ). 2

Closing this section we introduce the notion of a Kleene algebra and a basic construction
of Kleene algebras. This material will be of use later in this text, especially in the study of
spectral real semigroups (§V.7).

Definition IV.1.9 A Kleene algebra with a center is a structure (K,∧,∨,¬ ,⊥ , c) sat-
isfying the following requirements :

[K1] (K,∧,∨) is a distributive lattice with first element ⊥ .

[K2] ¬ (negation) is a unary operation verifying, for all x, y ∈ K :

(a) ¬¬x = x ; (b) ¬ (x∧ y) = ¬x∨¬ y ; (c) (Kleene inequality) x∧¬x ≤ y ∨¬ y .

[K3] c is a distinguished element (called the center) verifying c = ¬ c . 2

Note that > := ¬⊥ is the largest element of K, the center is unique, x∧¬x ≤ c ≤ y ∨¬ y ,
and ¬ (x∨ y) = ¬x∧¬ y —the dual to [K2] (b)— holds.

Since we shall only consider Kleene algebras with a center, we omit the modifier.

IV.1.10 Construction. There is a classical construction of a Kleene algebra from any
bounded distributive lattice (L,∧,∨,⊥ ,>), due to Kalman [Kal]. Let Linv denote the distribu-
tive lattice inverse to L, i.e., the lattice with the same underlying set, where order is reversed
and the operations and constants ∧,∨,⊥ ,> become their duals: ∧inv := ∨ ,⊥inv := >, etc.
Consider the set

K(L) := {(x, y) ∈ L× Linv |x∧ y = ⊥ (in L)} ,

with operations ∧,∨,¬ defined, in terms of those of L, as follows:
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(x, y)∨ (x′, y′) := (x∨ y, x′ ∧ y′) , (x, y)∧ (x′, y′) := (x∧ y, x′ ∨ y′) and ¬ (x, y) := (y, x) .

One checks without difficulty that, with these operations K(L) is a Kleene algebra having
(⊥ ,>) as its first element, (> ,⊥) as a last element, and (⊥ ,⊥) as its center. 2

The Kleene algebras of form K(L) admit a purely algebraic characterization :

Proposition IV.1.11 Let K be a Kleene algebra and let c denote its center. The following
are equivalent:

(1) There is a bounded distributive lattice such that K ' K(L).

(2) K verifies the following condition:

[dec]2 For all a, b ∈ K such that a∧ b = c, there is t ∈ K so that t∨ c = a and ¬ t∨ c = b.

Proof. (1) ⇒ (2). Let L be a bounded distributive lattice; we prove that K(L) verifies
condition [dec]. With notation as in IV.1.10, let a = (x, y) , b = (x′, y′) ∈ K(L) be such
that (x, y)∧ (x′, y′) = (⊥ ,⊥). Then, x∧ y = x′ ∧ y′ = x∧x′ = ⊥ and y ∨ y′ = ⊥ , which
implies y = y′ = ⊥ . Setting t := (x, x′), we have t∨ (⊥ ,⊥) = (x,⊥) = a and ¬ t∨ (⊥ ,⊥) =
(x′, x)∨ (⊥ ,⊥) = (x′,⊥) = b , as required.

(2) ⇒ (1). Let K be a Kleene algebra verifying [dec] and let L = {x ∈ K |x ≥ c}. Clearly,
L is a bounded distributive lattice with smallest element c and largest element >. To show
K ' K(L), let h : K −→K(L) be the map

h(x) = (x∨ c ,¬x∨ c) for x ∈ K .

h takes on values in K(L) because c ≤ x∨ c,¬x∨ c and (x∨ c)∧ (¬x∨ c) = (x∧¬x)∨ c = c .
Routine checking proves that h is a Kleene algebra homomorphism. Further,

— h is injective. Let x, y ∈ K be such that x∨ c = y ∨ c and ¬x ∨ c = ¬ y ∨ c; by the dual to
[K2.b], x∧ c = y ∧ c. But it is well known that, in a distributive lattice, for any z, x∨ z = y∨ z
and x∧ z = y ∧ z imply x = y .

— h is surjective. Let (x, y) ∈ K(L); hence, x∧ y = c. By assumption (2) there is t ∈ K so
that t∨ c = x and ¬ t∨ c = y, whence h(t) = (x, y) . 2

IV.2 The real semigroup structure of a Post algebra

In this section we describe how every Post algebra can be endowed with a ternary relation
which makes it into a RS. We first define its ternary semigroup structure.

As in the case of Boolean algebras, symmetric difference, 4 , is defined in Post algebras
as follows:

x 4 y = (x ∧ ¬ y) ∨ (y ∧ ¬x).

It is easy to check that 4 satisfies the following conditions:

(i) 4 is commutative ; (ii) x 4 ⊥ = x ; (iii) x 4 > = ¬x.

Kleene’s inequality IV.1.2 (b) also yields:

(iv) x 4 c = c ; (v) x = ¬x implies x = c.

Below we prove:

2 [dec] = “decomposition”.
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(vi) 4 is associative; (vii) x 4 x 4 x = x.

These observations amount to:

Proposition IV.2.1 Let P be a Post algebra. Then (P,4,⊥, c,>) is a ternary semigroup
where ⊥ is the unit, c is the absorbent element, and > is the distinguished element −1 (cf.
Definition IV.1.1 ).

Proof. It only remains to prove:

(vi) 4 is associative.

Let x, y, z ∈ P . Then, x4 (y 4 z) = x4 ((y ∧ ¬ z) ∨ (z ∧ ¬ y)). The De Morgan laws and
distributivity give:

x4 (y4 z) = (x∧¬y∧¬z)∨ (x∧y∧z)∨ (x∧¬y∧y)∨ (x∧z∧¬z)∨ (y∧¬x∧¬z)∨ (z∧¬x∧¬y).

In the same way we get:

(x4 y)4 z = (x∧¬y∧¬z)∨ (x∧y∧z)∨ (z∧¬y∧y)∨ (z∧x∧¬x)∨ (y∧¬x∧¬z)∨ (z∧¬x∧¬y).

Note that the terms (x∧¬y ∧¬z), (x∧ y ∧ z), (y ∧¬x∧¬z), (z ∧¬x∧¬y) appear in both
formulas. On the other hand, Kleene’s inequality IV.1.2 (b) implies x∧y ∧¬y ≤ (x∧z)∨(x∧¬z).
Hence, x∧y ∧¬y ≤ (x∧z∧y∧¬y)∨(x∧¬z∧y∧¬y) ≤ (x∧y∧z)∨(x∧¬z∧¬y) ≤ (x4 y)4 z. A
similar reasoning proves x∧ z ∧¬z ≤ (x4 y)4 z. These inequalities, together with the remark
above, show x4 (y4 z) ≤ (x4 y)4 z, and a similar argument proves the reverse inequality,
yielding (x4 y)4 z = x4 (y4 z), as asserted.

(vii) x 4 x 4 x = x.

Since x 4 x = x ∧ ¬x, we have x 4 x 4 x = x 4 (x ∧ ¬x) = (x ∧ (x ∨ ¬x)) ∨ ((x ∧ ¬x) ∧ ¬x) =
x ∨ (x ∧ ¬x) = x. 2

IV.2.2 Remark on notation. In view of this Proposition, for notational consistency we will
identify the chain {⊥, c,>} with the chain 1 < 0 < −1; i.e., ⊥ will be identified with 1, c with
0, and > with −1. The distinguished elements in general Post algebras continue to be denoted
by ⊥, c, and >. 2

Note that in a Post algebra an element x is invertible for symmetric difference if and only
if it is Boolean: x4x = ⊥ ⇔ x ∧ ¬x = ⊥.

Definition IV.2.3 For a Post algebra P , define a ternary relation as follows: for x, y, z ∈ P ,

x ∈ D
P

(y, z) ⇔ y ∧ z ∧ c ≤ x ≤ y ∨ z ∨ c. 2

Remark. In the particular case that x ∈ B(P ) the formula above reduces to:

x ∈ D
P

(y, z) ⇔ y ∧ z ≤ x ≤ y ∨ z.

[Proof. For the non-trivial implication (⇒), assuming x ∈ D
P

(y, z), i.e., y ∧ z ∧ c ≤ x ≤
y ∨ z ∨ c, applying to these inequalities the operators ∆,∇, and using ∆x = ∇x = x,
we get ∇y ∧∇z ≤ x ≤ 1 and 0 ≤ x ≤ ∆y ∨ ∆z; the conclusion follows, then, from
y ∧ z ≤ ∇y ∧∇z and ∆y ∨∆z ≤ y ∨ z.]

Thus, restricting the representation relation D
P

to the Boolean algebra B(P ) we retrieve the
formula obtained in [DM1], Cor. 7.13, p. 149, for binary representation in BA’s. This shows :

Fact IV.2.4 Let P be a Post algebra. The structure (B(P ) ,4 , D
P
,⊥ ,>) is a Boolean algebra.

In particular, it is a reduced special group. 2
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The next Proposition is crucial for the proof of many subsequent results. Note that, by
Theorem I.5.4, items (ii) and (iii) of this result are available as soon as we know that a Post
algebra is a RS (which we don’t yet); the point is that we shall use the Proposition precisely
to establish this fact, in Theorem IV.2.7 below. To prove IV.2.5 we shall then compute using
characters, which in turn rely on the structure of the prime ideals in a Post algebra, set out in
Theorem IV.1.6.

Proposition IV.2.5 Let P be a Post algebra, and let x, y, z ∈ P . Then,

(i) x ≤ y if and only if for for each Post-algebra character h, h(x) ≤ h(y) (in 3).

(ii) x ∈ D
P

(y, z) if and only if for each Post-algebra character h, either h(x) = 0, or h(x) =
h(y), or h(x) = h(z).

(iii) x ∈ Dt
P

(y, z) if and only if for each Post-algebra character h, either h(x) = 0 and

h(y) = ¬h(z), or h(x) = h(y), or h(x) = h(z). 2

Proof. (i) Immediate consequence of the Representation Theorem IV.1.7 (ii).

(ii) (⇒) Suppose x ∈ D
P

(y, z), and take h ∈ X
P

. From y ∧ z ∧ c ≤ x ≤ y ∨ z ∨ c
(IV.2.3), follows h(y) ∧ h(z) ∧ 0 ≤ h(x) ≤ h(y) ∨ h(z) ∨ 0. Let h(x) 6= 0. If h(x) = 1,
the inequality h(y) ∧ h(z) ∧ 0 ≤ h(x) yields h(y) = 1 or h(z) = 1, while h(x) = −1 and
h(x) ≤ h(y)∨ h(z)∨ 0 yield h(y) = −1 or h(z) = −1. In either case we conclude h(x) = h(y)
or h(x) = h(z).

To prove the other implication assume x /∈ D
P

(y, z). Hence either x 6≤ y ∨ z ∨ c or
y ∧ z ∧ c 6≤ x. In the first case, say, item (i) shows there is a character h ∈ X

P
such that

h(x) > h(y)∨ h(z)∨ 0, i.e, h(x) = −1. The hypothesis gives, then, h(y) = −1 or h(z) = −1 ,
a contradiction. A similar argument proves that y∧z∧c 6≤ x leads to a contradiction, proving
x ∈ D

P
(y, z) as required.

(iii) Recall that x ∈ Dt
P

(y, z) if and only if x ∈ D
P

(y, z), ¬ y ∈ D
P

(¬x, z), and ¬ z ∈
D
P

(y,¬x). Suppose first x ∈ Dt
P

(y, z). By (ii) it suffices to prove that h(x) = 0 implies

h(y) = ¬h(z). If h(y) 6= 0, then h(¬ y) 6= 0. Since ¬ y ∈ D
P

(¬x, z), from (ii) and the
assumption h(x) = 0 we infer in this case that ¬h(y) = h(¬ y) = h(z). In case h(y) = 0, the
relation ¬ z ∈ D

P
(y,¬x) yields h(y) = ¬h(z) = 0. The converse is easily proved by repeatedly

using item (ii). 2

IV.2.6 Comment. (On 3-valued “truth-table” checking.) Proposition IV.2.5 makes the old
and well-known method of “truth-table checking” available to prove the validity of certain
“atomic” formulas —such as inequalities, representations, transversal representations and, of
course, equalities— in all Post algebras, and for all values of the variables occuring in them,
by the expedient of checking their validity in 3 (for all assignments of values therein to their
variables). Complex combinations (“terms”) of the primitives ∧, ∨, 4, ¬, ∇, ∆, ⊥, c, >, of
the language for Post algebras may occur in these relations. Concrete examples occur, e.g., in
Theorem IV.2.7 (i), Proposition IV.2.10, Lemma IV.5.10, and other places below. When the
validity of a formula can be routinely established in this way (which not always is the case),
we shall say that the formula is proved by “truth-table checking”, and often omit details. 2

Theorem IV.2.7 Let P be a Post algebra. Then,

(i) Transversal representation takes the following form: for x, y, z ∈ P ,

x ∈ Dt
P

(y, z) ⇔ (y ∧∇z) ∨ (z ∧∇y) ≤ x ≤ (y ∨∆z) ∧ (z ∨∆y).
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(ii) The structure (P,4,⊥, c,>, D
P

) is a real semigroup.

(iii) Its associated abstract real spectrum is the Boolean space X
P

.

Proof. Throughout this proof we omit the subscript P from the notation.

(i) (⇒). Assume x ∈ Dt(y, z) and s := (y ∧ ∇z) ∨ (z ∧ ∇y) 6≤ x. By IV.2.5 (i) there is a
character h ∈ X

P
such that h(s) > h(x). We argue according to the values of h(x).

— h(x) = 1. In this case x ∈ Dt(y, z) entails h(y) = 1 or h(z) = 1. In either case, h(s) = 1,
a contradiction.

— h(x) = 0. It follows that h(s) = −1, and (from x ∈ Dt(y, z)) h(y) = −h(z). But
h(s) = −1 implies that one of h(y ∧ ∇z) or h(z ∧ ∇y) is −1. If the first is −1, we have
h(y) = h(∇z) = −1, whence h(z) = −h(y) = 1, which implies h(∇z) = 1, contradiction.
Same argument if the second term is −1. This contradiction shows that s ≤ x, and a similar
argument proves the inequality x ≤ ( y ∨∆z) ∧ (z ∨∆y).

(⇐). Conversely, the relation x ∈ Dt(y, z) is proved by use of IV.2.5 (iii), arguing by cases
according to the values of characters h at x.

— h(x) = 1. Then, the left-hand side of (y ∧ ∇z) ∨ (z ∧ ∇y) ≤ x also takes value 1 at h,
which implies h(y ∧∇z) = h(z ∧∇y) = 1; in turn, this entails that one of h(y) or h(z) equals
1.

— h(x) = −1. The same argument, using x ≤ (y ∨∆z) ∧ (z ∨∆y) instead, shows that one
of h(y) or h(z) is −1.

— h(x) = 0. We now argue according to the values of h(y), to show h(y) = −h(z).

a) h(y) = 0. If h(z) = 1, then h(y ∨ ∆z) = 0 and h(z ∨ ∆y) = 1, whence h((y ∨ ∆z)∧
(z∨∆y)) = 1; the right-hand side inequality in (i) yields h(x) = 1, a contradiction. In a similar
way, h(z) = −1 contradicts the left-hand side inequality in (i). This shows that h(z) = 0,
whence h(y) = −h(z).

b) h(y) = 1. The right-hand side inequality in (i) implies h(x) = 0 ≤ h(∆z)∧h(z) = ∆h(z),
which in turn yields h(z) = −1, whence h(z) = −h(y).

c) h(y) = −1. The argument in (b), using instead the left-hand side inequality in (i), proves
h(z) = 1 = −h(y).

(ii) The verification of all axioms for RSs, except [RS3], is straightforward truth-table checking,
using the characterizations of representation and transversal representation given in Proposition
IV.2.5, and is left to the reader.

For [RS3], we prove weak associativity and Dt(y, z) 6= ∅ for all y, z ∈ P which, together,
(in presence of the other axioms) are equivalent to strong associativity; cf. I.2.4.

a) For all y, z ∈ P, Dt(y, z) 6= ∅.

By the characterization of Dt(y, z) in item (i), it suffices to prove

(y ∧∇z) ∨ (z ∧∇y) ≤ (y ∨∆z) ∧ (z ∨∆y),

which, in turn, amounts to proving that each term of the disjunction in the left-hand side is ≤
than each term of the conjunction in the right-hand side. By symmetry it is enough to show:

(1) y ∧∇z ≤ y ∨∆z and (2) y ∧∇z ≤ z ∨∆y.

(1) is trivial. (2) is proved by truth-table checking, taking into account that elements of the
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form ∇x, ∆x are Boolean, and hence never take value 0 in 3. To illustrate the argument we
do this proof. Let h ∈ X

P
. If h(y ∧∇z) = 1 or h(z ∨∆y) = −1 there is nothing to prove.

— If h(z ∨∆y) = 1, then h(z) = h(∆y) = 1. Since h(y∧∇z) ∈ {0,−1} and h(∇z) 6= 0, then
h(∇z) = −1, which implies h(z) 6= 1, contradiction.

— If h(z ∨∆y) = 0, since h(∆y) 6= 0, then h(z) = 0. But h(∆y) 6= −1 (else h(z ∨∆y) = −1),
whence h(∆y) = 1, which implies h(y) ∈ {0, 1}. But h(y) = 1 gives h(y∧∇z) = 1, excluded by
assumption. Then, h(y) = 0, and hence h(y ∧∇z) = h(y) ∧∇h(z) = 0∧∇0 = 0 = h(z ∨∆y).

b) Weak associativity. If x ∈ D(y, z) and z ∈ D(s, t), there is u ∈ P so that u ∈ D(y, s) and
x ∈ D(u, t).

The hypotheses amount to (Definition IV.2.3):

(*) y ∧ z ∧ c ≤ x ≤ y ∨ z ∨ c and (**) s∧ t∧ c ≤ z ≤ s∨ t∨ c .

We claim that the element u = (∆x∧¬∆t)∨ (y ∧ s) does the job. Then, we must prove:

(†) y ∧ s∧ c ≤ u ≤ y ∨ s∨ c and (††) u∧ t∧ c ≤ x ≤ u∨ t∨ c .

Proof of (†). The left inequality is clear by the definition of u. For the other it is enough to
show ∆x∧¬∆t ≤ y ∨ s∨ c. Since ∆c = ⊥, applying the operator ∆ to (*) and (**) gives
∆x ≤ ∆y ∨∆s∨∆t ≤ y ∨ s∨∆t. Hence, ∆x∧¬∆t ≤ (y ∧¬∆t)∨ (s∧¬∆t)∨ (∆t∧¬∆t) ≤
y ∨ s ≤ y ∨ s∨ c, as required.

Proof of (††). For the left inequality we have:

(\) u∧ t∧ c = ((∆x∧¬∆t)∨ (y ∧ s))∧ t∧ c = (∆x∧¬∆t∧ t∧ c)∨ (y ∧ s∧ t∧ c)
≤ x ∨ (y ∧ s∧ t∧ c).

On the other hand, the left inequalities in (*) and (**) give x ≥ y ∧ z ∧ c ≥ y ∧ s∧ t∧ c, which
prove that the last term in (\) is ≤ x.

Finally, for the right inequality in (††) we note that

u∨ t∨ c = (∆x∧¬∆t)∨ (y ∧ s)∨ t∨ c = (∆x∨ (y ∧ s)∨ t∨ c)∧ (¬∆t∨ t∨ c∨ (y ∧ s));

since ¬∆t∨ t = > (axiom [L3,(i)], IV.1.1), we get u∨ t∨ c = ∆x∨ c∨ t∨ (y ∧ s). Now, Propo-
sition IV.1.4 (i) yields x = (c∨∆x)∧∇x ≤ ∆x∨ c, and hence x ≤ u∨ t∨ c, completing the
proof of (††), and that Post algebras are real semigroups.

(iii) With notation as in the Duality Theorem I.5.1 the ARS dual to the real semigroup P =
(P,4, D

P
, . . . ) is (X

P
, P ), where P = {a | a ∈ P}, a = ev(a) denotes evaluation at a, X

P
is

the set of RS-characters of P , and representation in P is given by:

a ∈ D
XP

(b, d) ⇔ ∀h ∈ X
P

(a(h) = 0 ∨ a(h) = b(h) ∨ a(h) = d(h)

⇔ ∀h ∈ X
P

(h(a) = 0 ∨ h(a) = h(b) ∨ h(a) = h(d).

Via the obvious identification of P with P , it suffices to prove that D
XP

coincides with the

relation D
P

defined in IV.2.3. But this is exactly the content of item (ii) in Proposition IV.2.5
(modulo the fact, easily verified by truth-table checking, that Post-algebra characters coincide
with RS-characters for (P,4, D

P
, . . . ); cf. Proposition IV.2.11 below). 2

Notation IV.2.8 To keep matters straight, real semigroups of the type (P,4,⊥, c,>, D
P

)
where P is a Post algebra, will be called RS-Post algebras, abbreviated RS-PA.
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Remark IV.2.9 [REVISE!!] The foregoing theorem says, in particular, that the dual spectra
of Post algebras are zero-dimensional ARS’s, see [M], §7.6; indeed, in the terminology of this
monograph, they coincide (CAREFUL!) with the “zero-dimensional real-closed” ARS’s men-
tioned in [M], Ex. (1), p. 181. The ∇ operator occurs, in a somewhat hidden form, in Lemmas
7.6.2 and 7.6.3 of [M], pp. 144–145. The operation ∇ is, in fact, definable (within the class of
RSs which are Post algebras) in terms of the relations D

P
and Dt

P
; see Theorem IV.3.5 below.

2

The next result exhibits some elementary relations between Post-algebra operations and
the representation relation defined in IV.2.3. It follows at once from Proposition IV.2.5.

Proposition IV.2.10 Let P be a Post algebra and let x, y, z ∈ P . Then:

(i) x ≤ y if and only if x ∈ D
P

(⊥, y) and ¬ y ∈ D
P

(⊥,¬x).

(ii) x ∧ y ∈ D
P

(x, y) and x ∨ y ∈ D
P

(x, y).

(iii) x ∈ D
P

(∇x,∇x) and x ∈ D
P

(∆x,∆x).

Proof. (i) The validity of (i) in 3 is proved by routine truth-table checking, using Corollary
I.2.5. Its validity in arbitrary Post algebras follows, then, from items (i) and (ii) of Proposition
IV.2.5.

(ii) is obvious using Definition IV.2.3.

(iii) Proposition IV.1.4 (i) implies ∇x∧ c ≤ x ≤ ∆x∨ c. By use of Definition IV.2.3, this,
together with ∆x ≤ x ≤ ∇x, shows that (iii) holds. 2

Remark. Compare item (i) in IV.2.10 with Definition I.6.2. 2

The following result shows that in the category of Post algebras homomorphisms coincide
with RS-morphisms.

Proposition IV.2.11 Let P
1
, P

2
be Post algebras and let f : P

1
−→ P

2
be a map. The

following are equivalent:

(i) f is a morphism of real semigroups.

(ii) f is a Post-algebra homomorphism.

Proof. It is clear from the definition of the representation relation in IV.2.3 that every Post-
algebra homomorphism is a morphism of real semigroups, so we have (ii) ⇒ (i). The opposite
implication is trickier.

(i) ⇒ (ii). Let f be a morphism of real semigroups. In particular, f is a morphism of ternary
semigroups, and then symmetric difference as well as the constants ⊥, c, > are preserved.
Since ¬x = >4 x, negation is also preserved. Since f preserves representation, Proposition
IV.2.10 (i) implies that f is order-preserving. The observation that the Boolean elements of a
Post algebra are exactly the units for 4 , entails x ∈ B(P

1
)⇒ f(x) ∈ B(P

2
).

It remains to prove that f preserves ∇ and the lattice operations ∧, ∨.

a) For x ∈ P
1

, f(∇x) = ∇f(x).

Since x ≤ ∇x and f is order-preserving, we get f(x) ≤ f(∇x), and then ∇f(x) ≤ ∇f(∇x).
Since ∇x ∈ B(P

1
) (IV.1.4 (f)), we get f(∇x) ∈ B(P

2
), and IV.1.4 (g) gives ∇f(∇x) = f(∇x).

We conclude that ∇f(x) ≤ f(∇x).
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On the other hand, x ∈ D
P1

(∇x,∇x) (IV.2.10 (iii)), implies f(x) ∈ D
P2

(f(∇x), f(∇x)),

which in particular gives f(∇x) ∧ c ≤ f(x) (IV.2.3). It follows that ∇(f(∇x) ∧ c) ≤ ∇f(x);
since

∇(f(∇x) ∧ c) = ∇f(∇x) ∧∇c = ∇f(∇x) = f(∇x),

we get f(∇x) ≤ ∇f(x), and hence the equality asserted in (a).

b) For x, y ∈ P
1

, f(x∨ y) = f(x) ∨ f(y).

The idea is to show

(†) ∆f(x∨ y) = ∆(f(x) ∨ f(y)) and (††) ∇f(x∨ y) = ∇(f(x) ∨ f(y)).

By Proposition IV.1.4 (h), (†) and (††) together imply the equality asserted in (b).

Clearly, x, y ≤ x∨ y and the fact that f is order-preserving imply:

(*) f(x) ∨ f(y) ≤ f(x∨ y).

From x ∨ y ∈ D
P1

(x, y) (IV.2.10 (ii)), we get f(x ∨ y) ∈ D
P2

(f(x), f(y)), which in turn gives

f(x ∨ y) ≤ f(x) ∨ f(y) ∨ c. Applying ∆, we obtain ∆(f(x ∨ y)) ≤ ∆(f(x)) ∨ ∆(f(y)) =
∆(f(x) ∨ f(y)), since ∆c = ⊥ and ∆ is a lattice homomorphism. The reverse inequality
follows by applying ∆ to (*), and proves (†).

In order to prove (††), first recall that ∇x ∨ ∇y ∈ D
P1

(∇x,∇y) (IV.2.10 (iii)). Since f

preserves representation, from (a) we get:

f(∇x ∨∇y) ∈ D
P2

(f(∇x), f(∇y)) = D
P2

(∇f(x),∇f(y)).

By Definition IV.2.3 this condition gives, in particular:

f(∇x ∨∇y) ≤ ∇f(x) ∨∇f(y) ∨ c.

Now, using the easily checked fact that, if r, s are Boolean elements, r ≤ s ∨ c ⇒ r ≤ s, we
obtain,

(**) f(∇x ∨∇y) ≤ ∇f(x) ∨∇f(y).

Using (*) with x, y replaced by ∇x,∇y, and invoking (a), we get:

(***) ∇f(x) ∨∇f(y) ≤ f(∇x ∨∇y).

(**) and (***) show f(∇x ∨ ∇y) = ∇f(x) ∨ ∇f(y) = ∇(f(x) ∨ f(y)), proving (††), and thus
completing the proof of Theorem IV.2.11. 2

Remark. Proposition IV.2.11 shows that the categories PA of Post algebras and RS-PA of
RS-Post algebras (IV.2.8) have the same morphisms, differing only by their languages, i.e., by
the choice of the primitive notions. The language of Post algebras is {4,⊥, c,>,∇} while that
of RS-Post algebras is L

RS
, the language of real semigroups. 2

IV.3 Characterizations of Post algebras as real semigroups

New section; added Nov. 2011. Gathers together former Thms. III.2.12 and III.4.2.

In this section we give two characterizations of those real semigroups which are Post alge-
bras. The first, Theorem IV.3.2, is done in terms of the character space (and also of transversal
representation). The second, Theorem IV.3.5, does it in terms of the (first-order) definability of
the lattice and the modal operations of a Post algebra in the language L

RS
for real semigroups.
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We begin with a preliminary result, needed in the proof of Theorem IV.3.2, giving an
algebraic characterization of those RSs whose saturated prime ideals are pairwise incomparable
for inclusion.

Proposition IV.3.1 Let G be a RS. Then, the following are equivalent:

(a) For all saturated prime ideals I, J , of G, I ⊆ J ⇒ I = J .

(b) For all x ∈ G there exists y ∈ Dt
G

(1,−x2) such that xy = 0.

Proof. (a) ⇒ (b). Let x ∈ G. By axiom [RS5], Ann(x) = {a ∈ G | ax = 0} is a saturated
ideal and, clearly, T

x
= Dt(1,−x2) is a multiplicative set. The set T

x
= T

x
∪ x2T

x
is also

multiplicative. Suppose Ann(x)∩T
x

= ∅, and pick a saturated ideal I containing Ann(x) and

maximal for the property of being disjoint with T
x
; such an I is prime. Since 1 ∈ T

x
, we have

x2 ∈ T
x
, and hence x2 6∈ I. Then, the saturated ideal I[x2] generated by I ∪ {x2} properly

contains I. We claim that I[x2] is proper. Otherwise, 1 ∈ I[x2], which means 1 ∈ D(i, x2p)
for some i ∈ I and p ∈ G, see Proposition I.4.6 (1′). By [RS8], 1 ∈ D(i2, x2p2)⊆D(i2, x2),
and then 1 ∈ Dt(i2, x2). It follows that −i2 ∈ Dt(−1, x2), and therefore i2 ∈ I ∩ Dt(1,−x2),
a contradiction. Any saturated prime ideal J containing I[x2] will contain I properly, con-
tradicting assumption (a). This shows that Ann(x)∩T

x
6= ∅. If Ann(x)∩T

x
6= ∅, there exists

y ∈ Dt
G

(1,−x2) such that xy = 0. If Ann(x)∩ x2T
x
6= ∅, there is z ∈ T

x
= Dt(1,−x2) such

that (x2z)x = xz = 0, as required. In both cases assertion (b) holds.

(b)⇒ (a). Suppose there are saturated prime ideals I, J of G so that I ⊂ J , and let x ∈ J \ I.
Invoking (b), let y ∈ Dt(1,−x2) be such that xy = 0. Since I is prime and x 6∈ I, we have
y ∈ I, and then y ∈ J . We get −1 ∈ Dt(−y,−x2), whence 1 ∈ Dt(y, x2) with y, x2 ∈ J ; since
J is saturated, 1 ∈ J , absurd. 2

Theorem IV.3.2 Let G be a RS. The following are equivalent:

(1) G is a Post algebra.

(2) If h
1
, h

2
, h

3
∈ X

G
and h

1
h

2
h

3
∈ X

G
, then h

1
= h

2
= h

3
.

(3) If Y
1
, Y

2
are (non-empty) disjoint closed subsets of X

G
, there are a, b ∈ G such that

adY
1

= bdY
1

= 1, adY
2

= −1, and bdY
2

= 0.

(4) i) For all x ∈ G there exists y ∈ Dt
G

(1,−x2) such that xy = 0 (i.e., G verifies condition

IV.3.1 (b)).

ii) For each a ∈ G there are elements x ∈ Dt
G

(a2,−a) and y ∈ Dt
G

(a2, a) such that xy = 0.

Proof. To ease notation we write X := X
G

.

(1)⇒ (3). Assume G is a Post algebra, and let Y
1
, Y

2
be sets as in (3). Since X is a Boolean

space, disjoint closed sets can be separated by clopens; let U
1
, U

2
be disjoint clopens of X,

necessarily non-empty, such that Y
i
⊆U

i
, i = 1, 2. Let a, b : X −→3 be defined by:

a(x) =

{
1 if x ∈ U

1
−1 if x 6∈ U

1
,

b(x) =

{
1 if x ∈ U

1
0 if x 6∈ U

1
.

Obviously, these maps are continuous, i.e., a, b ∈ C(X,3) = G, (cf. IV.1.7 (ii)), and have the
required properties.

(3) ⇒ (2). Assume h
1
, h

2
, h

3
∈ X and h

1
h

2
h

3
∈ X. Set h : = h

1
h

2
h

3
, Y

1
= {h

1
}, and

Y
2

= {h
2
, h

3
, h}. If Y

1
∩ Y

2
= ∅, condition (3) gives an element a ∈ G such that h

1
(a) =
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1, h
2
(a) = h

3
(a) = −1 and h(a) = h

2
(a)h

3
(a) = −1, obviously impossible. Hence, Y

1
∩Y

2
6= ∅,

which just means h
1

= h
2
, or h

1
= h

3
, or h

1
= h.

— In case h
1

= h
2

we have h2
2
h

3
∈ X. If h2

2
h

3
6= h

2
, statement (3) applied to the sets {h2

2
h

3
}

and {h
2
} yields an element b ∈ G verifying h2

2
(b)h

3
(b) = 1 and h

2
(b) = 0, a contradiction.

Hence, h2
2
h

3
= h

2
. A similar argument shows that h2

2
h

3
= h

3
, proving that all three characters

are equal. The same reasoning yields the desired conclusion also in case h
1

= h
3
.

— If h
1

= h = h
1
h

2
h

3
and h

1
6= h

2
, by (3) we get a c ∈ G verifying h

2
(c) = 0 and h

1
(c) = 1,

which is impossible. Therefore, h
1

= h
2
, and in a similar way we get h

1
= h

3
, showing, again

that all three characters are equal.

(2) ⇒ (1). It suffices to prove G = C(X,3); only the inclusion ⊇ requires proof. It follows
from (2) that any f ∈ C(X,3) trivially preserves 3-products in X (cf. III.2.14). The small
representation theorem III.2.15 shows, then, that f is represented by an element of G.

(1) ⇒ (4). (4.i). Assume G is a Post algebra, and let x ∈ G. By Theorem IV.2.7 (i),
z ∈ Dt(1,−x2) iff z ≤ ∆(x∨¬x). Let y = ∆(x∨¬x)∧ c ; hence y ∈ Dt(1,−x2). The claim
that follows proves (4.i).

Claim. xy = x4 y = c.

Proof of Claim. By the definition of symmetric difference, using the definition of y, and dis-
tributing, we have:

x4 y = [x∧ (¬∆(x∨¬x)∨ c )] ∨ [∆(x∨¬x)∧ c∧¬x]
= (x∧∇(x∧¬x)) ∨ (x∧ c) ∨ (∆x∧ c∧¬x) ∨ (∆¬x∧ c∧¬x)
= (x∧∇¬x) ∨ (x∧ c) ∨ (∆¬x∧ c),

because ∆x∧ c∧¬x ≤ ∆x∧¬x = 1. On the other hand, it is easy to verify (e.g., by truth-
table checking) that x∧∇¬x ≤ c ≤ x∨∆¬x. Hence,

(x∧∇¬x) ∨ (x∧ c) ∨ (∆¬x∧ c) = (x∧ c) ∨ (∆¬x∧ c) = (x∨∆¬x)∧ c = c,

as required.

(4.ii) Let a ∈ G. By Theorem IV.2.7 (i), z ∈ Dt(a2,−a) iff

(*) (∇(a∧¬ a)∧¬ a) ∨ (a∧¬ a∧∇¬ a) ≤ z ≤ ((a∧¬ a)∨∆¬ a) ∧ (∆(a∧¬ a)∨¬ a).

Now, observe that ∇(a∧¬ a)∧¬ a = ∇a∧¬ a and a∧¬ a∧∇¬ a = a∧¬ a. Substituting
these identities in (*), the left-hand side boils down to ∇a∧¬ a. Likewise, since ∆(a∧¬ a) = ⊥
and (a∧¬ a)∨∆¬ a = ¬ a, the right-hand side of (*) equals ¬ a. Hence, z ∈ Dt(a2,−a) iff
¬ a ∧∇a ≤ z ≤ ¬ a.

A similar computation proves: z ∈ Dt(a2, a) iff a ∧∇¬ a ≤ z ≤ a.

Set x = (a ∧∇¬ a) ∨ (a∧ c) and y = (¬ a ∧∇a) ∨ (¬ a∧ c). The conditions just proved
show that x ∈ Dt(a2, a) and y ∈ Dt(a2,−a). Straightforward truth-table checking shows that
x4 y = c, as required.

(4) ⇒ (2). Let h
1
, h

2
, h

3
∈ X be such that h

1
h

2
h

3
∈ X. By Lemma II.2.11 (2), Z(h

1
h

2
h

3
) =

Z(h
i
) for some i ∈ {1, 2, 3}, whence Z(h

j
)⊆Z(h

i
) for all j ∈ {1, 2, 3}. Since G is assumed to

verify condition (4.i), Proposition IV.3.1 implies that these three zero-sets are equal.

Suppose, towards a contradiction, e.g., h
1
6= h

2
. Since Z(h

1
) = Z(h

2
), there is an a ∈ G

so that h
1
(a) = 1 and h

2
(a) = −1. Using (4.ii) take x ∈ Dt(a2,−a) and y ∈ Dt(a2, a) such

that xy = c. From, h
1
(a) = 1 comes h

1
(y) ∈ Dt

3
(h

1
(a2), h

1
(a)) = Dt

3
(1, 1) = {1}; similarly,
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h
2
(a) = −1 implies h

2
(x) = 1. But xy = c implies h

1
(x) = 0, i.e., x ∈ Z(h

1
) \ Z(h

2
), a

contradiction. This shows h
1

= h
2
, and a similar argument gives h

2
= h

3
, proving condition

(2), and ending the proof of Theorem IV.3.2. 2

Corollary IV.3.3 Let P be a RS-Post algebra. The (spectral ) space X
P

of RS-characters of
P is Boolean.

Proof. It is well-known (cf. [DST], ADD REF.) that a spectral space is Boolean if and only
if its order of specialization is “flat” (i.e., x y ⇒ x = y).

Let g, h ∈ X
P

be such that g h. From Lemma I.1.18 (5) we get h = h2g ∈ X
P

, and
IV.3.2 (2) then gives g = h, as required. 2

Corollary IV.3.4 Let P be a RS-Post algebra. For every saturated prime ideal I of P there
is a unique RS-character g ∈ X

P
such that I = g−1[0].

Proof. Corollary I.4.9 shows that there is at least one such g. Assume g, h ∈ X
P

are such that

Z(g) = Z(h). By Lemma I.1.19, g2 = h2. Hence h = h2h = g2h ∈ X
P

, and IV.3.2 (2) gives
g = h, as required. 2

Theorem IV.3.5 Let G be a RS and let G× denote the set of invertible elements of G. Then,
G is (the RS of ) a Post algebra if and only if G verifies:

(1) For all a ∈ G there is x ∈ G× (necessarily unique) such that a ∈ D
G

(x, x) and D
G

(1,−a)∩
G× = D

G
(1,−x) ∩ G×.

Write ∇a for such x and set ∆a = −∇(−a).

(2) For all a, b ∈ G there exists y ∈ G (necessarily unique) such that:

∇y ∈ D
G

(∇a,∇b), ∆y ∈ D
G

(∆a,∆b),

Dt
G

(1,∇y) = Dt
G

(1,∇a) ∩Dt
G

(1,∇b), and

Dt
G

(1,∆y) = Dt
G

(1,∆a) ∩Dt
G

(1,∆b).

If these conditions hold, then y = a ∧ b (and hence join is given by a ∨ b = −(−a ∧ −b)).

Proof. (⇒). First we prove that if G (= P ) is the RS associated to a Post algebra, as in
Theorem IV.2.7 (ii), then, for a, b ∈ P ,

(a) ∇a is the unique x ∈ P verifying clause (1) of the statement, and

(b) a ∧ b is the unique y ∈ P verifying clause (2) of the statement.

Proof of (a). The definition of representation in P (IV.2.3) gives:

(*) q ∈ D
P

(⊥, p) ⇔ q ≤ p ∨ c.

This, together with ¬∇a ≤ ¬ a ≤ ¬ a ∨ c (cf. IV.1.4 (b)), yields D
P

(⊥,¬∇a)⊆D
P

(⊥,¬ a).
Conversely, let p ∈ D

P
(⊥,¬ a) ∩ B(P ) (note that P× = B(P ), cf. ....). Then, (*) gives

p ≤ ¬ a ∨ c, whence, a∧ c ≤ ¬ p. Since p is a Boolean element and ∇ preserves the lattice
operations, ∇a ≤ ¬ p, whence p ≤ ¬∇a, implying p ∈ D

P
(⊥,¬∇a).

As for uniqueness, if x ∈ B(P ) verifies clause (1) of the statement, since ¬x ∈ D
P

(⊥,¬x),
we have ¬x ∈ D

P
(⊥,¬ a), whence, by (*), ¬x ≤ ¬ a ∨ c; from ¬x ∈ B(P ), we get ¬x =
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∆¬x ≤ ∆¬ a = ¬∇a, and hence ∇a ≤ x. Also a ∈ D
P

(x, x) and the definition of D
P

entail
x∧ c ≤ a, whence ∇x∧∇c = ∇x = x ≤ ∇a. We have proved x = ∇a.

Proof of (b). Let y = a ∧ b. Since ∇,∆ preserve meet, Proposition IV.2.10 (ii) gives ∇y ∈
D
G

(∇a,∇b) and ∆y ∈ D
G

(∆a,∆b). Further, from Theorem IV.2.7 (i) we have:

(**) q ∈ Dt
P

(⊥, p) ⇔ (⊥ ∧∇p) ∨ (p ∧∇⊥) ≤ q ≤ (⊥ ∨∆p) ∧ (p ∨∆⊥) ⇔ q ≤ ∆p.

Using items (c), (e) and (d) of Proposition IV.1.4, this equivalence yields at once:

Dt
P

(1,∇y) = Dt
P

(1,∇a) ∩Dt
P

(1,∇b), and Dt
P

(1,∆y) = Dt
P

(1,∆a) ∩Dt
P

(1,∆b).

As for uniqueness, let z ∈ P be another element satisfying clause (2) in the statement. In
particular, we get Dt

P
(1,∇y) = Dt

P
(1,∇z) and Dt

P
(1,∆y) = Dt

P
(1,∆z). By (**), this implies

∇y = ∇z and ∆y = ∆z, and then Proposition IV.1.4 (h) yields y = z.

(⇐). We omit the subscript G in D
G
, Dt

G
. We begin by proving that the clauses (1), (2) of the

statement imply:

(c) Under the representation partial order (I.6.4), G is a lattice with first element 1, last element
−1 and a ∧ b = the unique element y verifying (2). We shall need:

Fact. For a ∈ G, setting ∇a = x, where x ∈ G× is as in item (1) of the statement,
∆a = ¬∇¬ a, and with ≤ denoting the representation partial order of G, we have:

(i) ∆a ≤ a ≤ ∇a;

(ii) ∇a ≤ ∇b and ∆a ≤ ∆b imply a ≤ b;

(iii) ∇a = ∇b and ∆a = ∆b imply a = b.

Proof of Fact. (i) It suffices to prove a ≤ ∇a (= x) for all a ∈ G. In fact, this inequality
applied to −a and the fact that the operation “−” reverses the order ≤ (I.6.4 (a)) yield
∆a ≤ a.

By the definition of the representation partial order, we must show a ∈ D(1,∇a) and
−∇a ∈ D(1,−a). Since −x ∈ D(1,−x) ([RS1]) and −x is invertible, (1) implies −x =
−∇a ∈ D(1,−a). We also have x2 = 1; passing to transversal representation we get −x =
−∇a ∈ Dt(1,−a), whence a ∈ Dt(1, x) = Dt(1,∇a)⊆D(1,∇a).

(ii) Assume ∇a ≤ ∇b and ∆a ≤ ∆b. Scaling the representation −a ∈ D(∇(−a),∇(−a))
(see (1)) by −1 yields a ∈ D(∆a,∆a). Since ∆a ∈ D(1,∆b) (assumption ∆a ≤ ∆b), we get
a ∈ D(1,∆b, 1,∆b) = D(1,∆b); from ∆b ≤ b, we then conclude that a ∈ D(1, b). On the other
hand, b ∈ D(∇b,∇b) ((1)) and ∇a ≤ ∇b imply −b ∈ D(−∇b,−∇b)⊆D(1,−∇a, 1,−∇a) =
D(1,−∇a)⊆D(1,−a). Thus, a ≤ b, as required.

(iii) follows at once from (ii). 2

Proof of (c). Since ∇y is invertible, ∇y ∈ Dt(1,∇y), and (2) yields ∇y ∈ Dt(1,∇a) ∩
Dt(1,∇b), implying ∇y ≤ ∇a,∇b. Likewise, we get ∆y ≤ ∆a,∆b, and item (ii) of the Fact
shows that y ≤ a, b.

Let z ∈ G be so that z ≤ a, b. Since −∇a ∈ D(1,−∇a), −∇a ≤ −a, −a ∈ D(1,−z) and
−z ∈ D(−∇z,−∇z) (see (1)), by transitivity we get −∇a ∈ D(1,−∇z,−∇z) = D(1,−∇z).
Since −∇a is invertible, it follows that −∇a ∈ Dt(1,−∇z), which yields ∇z ∈ Dt(1,∇a). A
similar argument gives ∇z ∈ Dt(1,∇b). From (2) we conclude ∇z ∈ Dt(1,∇y). We also get
−∇y ∈ Dt(1,−∇z), and these transversal representations together yield ∇z ≤ ∇y. A similar
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argument proves that ∆z ≤ ∆y. By item (ii) of the Fact, z ≤ y, as required to prove y = a∧ b.

Remark. Item (2) of the statement implies that the set G× of invertible elements of G also
is a lattice under the representation partial order. In fact, if a, b ∈ G×, we have ∇a = ∆a = a
and ∇b = ∆b = b. Let y = a∧ b. These identities and the last two equalities in (2) give
Dt(1,∇y) = Dt(1,∆y), hence ∇y ∈ Dt(1,∆y). This implies ∇y ≤ ∆y, and, by (i) of the Fact
above, ∇y = ∆y = y, i.e., y ∈ G×. The join of G× is, of course, a∨ b = −(−a∧ − b).

Before proving that the lattice (G,∧,∨) is distributive, we check that the operator ∇
defined above verifies the axioms [L3] for a three-valued  Lukasiewicz algebra (Definition IV.1.1).
(The axioms [L2] are obvious, since a ∨ b is defined to be −(−a ∧ −b).)

[L3 (i)]. Truth-table checking in 3 shows that Dt(1, a) ∩Dt(1,−a) = {1} for all a. It follows
from (2) that Dt(1,∇(∇a ∧ −∇a)) = {1}. Since ∇(∇a ∧ −∇a) ∈ Dt(1,∇(∇a ∧ −∇a)) we
conclude ∇(∇a∧−∇a) = 1, and then ∇a∧−∇a = 1. Since a ≤ ∇a, we get a∧−∇a = 1 = ⊥,
and hence −a ∨∇a = >.

[L3 (iii)]. Let a, b ∈ G. Condition (1) implies at once that p ∈ G× ⇔ ∇p = p ⇔ ∆p = p.
Set y = a ∧ b and z = ∇(a ∧ b) = ∇y. Then, ∇z = ∆z = ∇y, and by use of IV.1.4 (d), (e),
assumption (2) shows that the element z verifies:

∇z = ∇y ∈ D(∇a,∇b) = D(∇∇a,∇∇b); ∆z = ∇y ∈ D(∇a,∇b) = D(∆∇a,∆∇b);

Dt(1,∇z) = Dt(1,∇y) = Dt(1,∇a) ∩Dt(1,∇b) = Dt(1,∇∇a) ∩Dt(1,∇∇b), and

Dt(1,∆z) = Dt(1,∇y) = Dt(1,∇a) ∩Dt(1,∇b) = Dt(1,∆∇a) ∩Dt(1,∆∇b).

Uniqueness of the element satisfying assumtion (2) implies, then: ∇(a ∧ b) = z = ∇a ∧∇b, as
required.

A similar argument shows that ∆ also preserves meets.

[L3 (ii)]. Let a ∈ G and set x = a ∧ −a and y = −a ∧ ∇a. Then, ∇x = ∇a ∧ ∇(−a) and
∇y = ∇(−a) ∧ ∇∇a = ∇(−a) ∧ ∇a, i.e., ∇x = ∇y. We claim that ∆x = ∆y = 1. Indeed,
since x ≤ y and ∆ is order-preserving, it suffices to prove ∆y = 1. But ∆y = 1 ⇔ ∇(−y) =
−1⇔ ∇(a ∨ −∇a) = −1⇔ ∇a ∨ −∇a = −1. It suffices then to prove:

a ∈ G× ⇒ a ∨ −a = −1 (or, equivalently, a∧ − a = 1).

Since by definition a∧−a is the unique y ∈ G verifiying the conditions in assumption (2) (for
b = −a), it suffices to check that 1 verifies those conditions. Since a = ∇a = ∆a for a ∈ G×,
this reduces to check the validity of

1 ∈ D(a,−a) and Dt(1, a) ∩Dt(1,−a) = {1}.

Both these assertions are obvious (the second was already remarked). Thus, we have proved
∇x = ∇y and ∆x = ∆y ; item (iii) of the Fact yields x = y, as desired.

To complete the proof of the Theorem we show:

(d) The lattice (G,∨,∧) is distributive.

It is a well-known result that a lattice is distributive if and only if for all a, b, z,

(†) a ∨ z = b ∨ z and a∧ z = b∧ z imply a = b.

(see [BD], Remark following Thm. 9, Ch. II, p. 51.) As a first step we show that this holds for
a, b, z ∈ G× i.e., that the sublattice (G×,∨,∧) is distributive. We prove that h(a) = h(b) for
all h ∈ X

G
. Since a, b, z are invertible, any RS-character takes only values ±1 on them. Note

133



also that, by the definition of the lattice operations given by clause (2) of the assumption, any
RS-character preserves meets and joins. So, assuming h(a) = 1, the antecedent of (†) gives
h(a)∨h(z) = h(z) = h(b)∨h(z) whence h(b) ≤ h(z), and h(a)∧h(z) = 1 = h(b)∧h(z) = h(b).
This proves h(a) = 1⇒ h(b) = 1. Exchanging a and b, the same argument gives the reverse
implication; hence h(a) = h(b), as asserted.

In the general case, by item (iii) of the Fact it suffices to prove ∇a = ∇b and ∆a = ∆b.
Since ∇,∆ preserve the lattice operations (by [L3 (iii)]), the assumptions of (†) yield:

(††)
{
∇a ∨∇z = ∇b ∨∇z, ∇a∧∇z = ∇b∧∇z,
∆a ∨∆z = ∆b ∨∆z, ∆a∧∆z = ∆b∧∆z.

Taking meets with −∇z in the first of these equalities, since distributivity holds for invertible
elements of G, we obtain:

∇a∧ −∇z = (∇a ∨∇z)∧ −∇z = (∇b ∨∇z)∧ −∇z = ∇b∧ −∇z.

Taking join of these terms with ∇a∧∇z and ∇b∧∇z, respectively, and using again distribu-
tivity for elements of G×, we conclude that ∇a = ∇b. A similar argument using the second
line of (††) shows, in turn, that ∆a = ∆b, as required.

By duality we infer that the RS structure of this Post algebra coincides with that of G. 2

IV.4 The Post hull of a real semigroup

Our aim in this section is to show that every RS can be functorially embedded into (the real
semigroup associated to) a certain, canonically determined, Post algebra. This is the analog
in the context of real semigroups of the main result of [DM1], Ch. 4 (Thm. 4.17), the latter
for reduced special groups and Boolean algebras, respectively. The structure of the argument
is similar to that case. 2

The Post hull P
G

of a real semigroup G is the RS of the Post algebra C((X
G

)con) of
continuous functions of the Boolean space (X

G
)con into 3, given by Theorem IV.1.7. Recall

(I.1.17 (b)) that (X
G

)con denotes the set X
G

of RS-characters of G endowed with the con-
structible (also called patch) topology, having as a sub-basis the (clopen) sets [[ a = δ ]] :=
{ g ∈ X

G
| g(a) = δ}, for arbitrary a ∈ G and δ ∈ 3 = {1, 0,−1}. A useful observation,

frequently used in the sequel, is that the sets

(*)
⋂n

i=1
[[ a

i
= 1 ]] ∩ [[ b = 0 ]], with a

1
, . . . , a

n
, b ∈ G,

are a basis of clopens for this topology; cf. [M], Note (1), p. 111. The canonical embedding
ε
G

: G −→ P
G

is the evaluation map: for a ∈ G and h ∈ X
G

,

ε
G

(a)(h) = h(a).

We start with the following basic:

Proposition IV.4.1 If G is a RS, then ε
G

: G −→ P
G

has the following properties:

(i) ε
G

is well-defined, i.e., ε
G

(a) ∈ P
G

for all a ∈ G.

(ii) ε
G

(1), ε
G

(0) and ε
G

(−1) are the constant maps with values ⊥, c and >, respectively.

(iii) ε
G

is a RS-morphism satisfying the following condition: for a, b, d ∈ G,

a ∈ D
G

(b, d) if and only if ε
G

(a) ∈ D
PG

(ε
G

(b), ε
G

(d)).
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In particular, ε
G

is injective.

(iv) P
G

is generated by Im(ε
G

) as a Post algebra (i.e., using the operators ∇,∆, in addition

to the lattice operations).

Proof. (i) With notation as above we clearly have ε
G

(a)−1[δ] = [[ a = δ ]] (a ∈ G; δ ∈ 3),
showing that ε

G
(a) is a continuous map.

(ii) is obvious, while (iii) follows from Theorem I.5.4 (1) and the fact that representation is
pointwise defined in the Post algebra C(X,3).

(iv) Let g ∈ P
G

. Using the formula g = (c∧∇g)∨∆g in Proposition IV.1.4(i), since c = ε
G

(0)
∈ Im(ε

G
), the problem reduces to show that the Boolean elements ∆g, ∇g of P

G
are in the

Post subalgebra generated by Im(ε
G

). Thus, it suffices to prove:

Every Boolean element of P
G

is in the Post subalgebra generated by Im(ε
G

) .

Observe that a function g ∈ C(X
G
,3) is a Boolean element of P

G
iff g only takes on values

±1. Thus, the sets U = g−1[1], X \ U = g−1[−1] partition X
G

into two clopens. Since the
sets of form (*) above are a basis for the topology of X

G
, we have,

U =
⋃m

j=1
(
⋂n

i=1
[[ a

ij
= 1 ]] ∩ [[ b

j
= 0 ]]),

with a
ij
, b

j
∈ G. We search a Post-algebraic combination f of the functions ε

G
(a
ij

), ε
G

(b
j
)

(j = 1, . . . ,m; i = 1, . . . , n) with the property that, for all h ∈ X
G

,

(†) h ∈ U ⇒ f(h) = 1 and h ∈ X \ U ⇒ f(h) = −1.

By induction on n, m, it is sufficient to prove:

a) If for ` = 1, 2 we have maps f
`

in the Post subalgebra of P
G

generated by Im(ε
G

) verifying
(†) for U = U

`
, then f = f

1
∧ f

2
(resp., f = f

1
∨ f

2
) verifies (†) for U = U

1
∪ U

2
(resp.,

U = U
1
∩ U

2
), and

b) If U = [[ a = 1 ]] or U = [[ b = 0 ]], there is a map f in the Post subalgebra of P
G

generated
by Im(ε

G
) verifying (†).

Statement (a) is clear, for if h ∈ U
1
∪ U

2
, one of f

i
(h) is 1, whence f(h) = 1, while if

h 6∈ U
1
∪ U

2
, then both f

i
(h) equal −1, hence f(h) = −1; similarly for U

1
∩ U

2
.

b) If U = [[ a = 1 ]], it suffices to take f = ∇ε
G

(a), since

h(a) = 1⇒ (∇ε
G

(a))(h) = ∇(h(a)) = 1, and

h(a) 6= 1⇒ h(a) ∈ {0,−1} ⇒ (∇ε
G

(a))(h) = ∇(h(a)) = −1.

If U = [[ b = 0 ]], then f = −∇ε
G

(b2) works, for

h(b) = 0 ⇒ (−∇ε
G

(b2))(h) = −∇(h(b2)) = −∇0 = 1, and

h(b) 6= 0 ⇒ h(b) ∈ {1,−1} ⇒ h(b)2 = 1 ⇒ (−∇ε
G

(b2))(h) = −∇(h(b)2) = −1. 2

Let PA denote the category of Post algebras and Post-algebra homomorphisms. The corre-
spondence G 7→ P

G
can be extended to morphisms by composition: given a RS-homomorphism

f : G −→ H, Theorem I.5.1 yields a continuous map f∗ : XH −→ X
G

defined by: f∗(σ) = σ ◦f
for σ ∈ XH . Next we define P (f) : P

G
−→ P

H
by P (f)(γ) = γ ◦ f∗ for γ ∈ P

G
. This corre-

spondence is functorial and has the very important property given in item (ii) of the following:
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Theorem IV.4.2 Let G,H be real semigroups. Then

(i) The correspondence G 7→ P
G

and f 7→ P (f) is a covariant functor from the category RS
to the category P.

(ii) If f : G −→ H is a RS-morphism, then ε
H
◦ f = P (f) ◦ ε

G
, i.e., the diagram (D) below

left is commutative:

P
G

G

(D)

?

- H

ε
G

f

P
H

ε
H

P(f)

?
-

L

G

?

- P
G

�
�

�
�

�
�	

f

ε
G

ε−1
L
◦ P (f)

Moreover, P (f) is the unique Post-algebra homomorphism which makes the square above com-
mutative.

(iii) The pair (P
G
, ε
G

) is a hull for G in the category P; that is, given a (RS-)Post algebra L,
any RS-morphism f : G −→ L factors through ε

G
, i.e. the triangle above right is commutative.

(iv) The Post hull of a Post algebra is canonically isomorphic to the given algebra.

In particular,

(v) Up to canonical isomorphism, the Post hull functor is idempotent.

Remark. Item (iii) says that the Post hull functor in (i) is left adjoint to the forgetful functor
from P to RS.

Proof. (i) It is clear from the definition of P (f) that P (id
G

) = id
PG

and P (f ◦ g) =

P (f) ◦ P (g), which proves (i).

(ii) For x ∈ G, P (f)(ε
G

(x)) = ε
G

(x)◦f∗. Let h ∈ X
H

; then, (ε
G

(x)◦f∗)(h) = ε
G

(x)(h ◦f) =
h(f(x)) = ε

H
(f(x))(h); this proves P (f)(ε

G
(x)) = ε

H
(f(x)), as asserted. Uniqueness: assume

F : P
G
−→P

H
is a Post algebra homomorphism that makes the square (D) commute; then,

F ◦ ε
G

= ε
H
◦ f = P (f) ◦ ε

G
. This just means that F and P (f) coincide on Im(ε

G
); since

this set generates P (f) (IV.4.1(iv)), both maps are equal.

(iii) With H = L, the commutative square (D) above gives ε
L
◦ f = P (f) ◦ ε

G
. By definition

ε
L

: L −→ C(X
L

) = P
L

is the evaluation map which, by (ii) of the Representation Theorem
IV.1.7, is a Post algebra isomorphism.

(iv) When f is the embedding ε
G

: G −→ P
G

we obtain a Post-algebra homomorphism
P (ε

G
) : P

G
−→ P

PG
. The Representation Theorem IV.1.7 applied with L = P

G
shows that

P
G
' C(X

PG
) ' P

PG
; further, the uniqueness statement in (ii) implies that the isomorphism

defined in IV.1.7 is identical to P (ε
G

). 2

A conceptually important, and rather powerful by-product of the Post-hull construction
is Theorem IV.4.5, an analog of Theorem 5.2 of [DM1] (p. 75 ff.) for RS’s. The following
notion, used in this theorem, is an adaptation of Definition 5.1 of [DM1] to the context of RSs,
formulated in terms of the notion of Witt-equivalence used in our context (cf. I.2.7 (c)).

Definition IV.4.3 A RS-homomorphism f : G −→ H between RS’s, G, H, is called a com-
plete embedding if for every pair of forms ϕ, ψ, over G (possibly of different dimensions),
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ϕ ∼=
G
ψ ⇔ f ∗ ϕ ∼=

H
f ∗ ψ. 2

Here follow some basic properties of complete embeddings of RSs.

Fact IV.4.4 (a) The implication (⇒) in IV.4.3 holds automatically.

(b) Complete embeddings preserve and reflect binary representation: for a, b, c ∈ G,

a ∈ D
G

(b, c) ⇔ f(a) ∈ D
H

(f(b), f(c)).

A similar result holds for transversal representation.

(c) Complete embeddings are (order) monomorphisms for the representation partial order. In
particular, they are injective.

Proof. (a) Since f is a RS-homomorphism, h ◦ f ∈ X
G

, for h ∈ X
H

; then, ϕ ∼=
G
ψ implies

sgn
h
(f ∗ ϕ) = sgn

h◦f
(ϕ) = sgn

h◦f
(ψ) = sgn

h
(f ∗ ψ) for all h ∈ X

H
, i.e., f ∗ ϕ ∼=

H
f ∗ ψ.

(b) Only the implication (⇐) needs proof. A straightforward computation invoking the sepa-
ration theorem for RSs (I.5.4) shows:

a ∈ D
G

(b, c) ⇔ 〈 a2b, a2c 〉 ∼=
G
〈 a, abc 〉,

(cf. [M], § 6.2, p. 105). The required implication is easily derived from this characterization
of representation and our definition of ∼=. For transversal representation, just use its definition
in terms of (ordinary) binary representation, cf. [t-rep] in Section I.2.

(c) Since a ≤ b ⇔ a ∈ D(1, b)∧ − b ∈ D(1,−a), item (b) obviously implies a ≤
G
b ⇔

f(a) ≤
H
f(b). Injectivity follows from the antisymmetry of the representation partial order

(I.6.4 (a)). 2

Theorem IV.4.5 Let f : G −→ H be a RS-morphism. Let f∗ : X
H
−→ X

G
be the map

dual to f (f∗(σ) = σ ◦ f for σ ∈ X
H

), and let P (f) : P
G
−→ P

H
denote the Post-algebra

homomorphism associated to f . The following are equivalent:

(1) f∗ is surjective.

(2) Im(f∗) is dense in X
G

.

(3) P (f) is injective.

(4) P (f) is a Post-algebra isomorphism from P
G

onto the Post subalgebra of P
H

generated

by Im(ε
H
◦ f).

(5) For every Pfister form ϕ over G and every a ∈ G, f(a) ∈ D
H

(f ∗ ϕ) ⇒ a ∈ D
G

(ϕ).

(6) f is a complete embedding.

Remark. The proof of IV.4.5 follows a pattern similar to that of Theorem 5.2 in [DM1], except
for the implications (5) ⇒ (2) and (6) ⇒ (2), which require a finer argument.

Proof. (1) ⇒ (2) is obvious, while (2) ⇒ (1) comes from the fact that any dense compact set
in a Hausdorff space X must be equal to X. The equivalence of (3) and (4) is also clear.

(1) ⇒ (3). Since “injective = monic” in the category of Post algebras ([BD], Thm. X.3.2,
pp. 193–194), it suffices to show that P (f) is monic (i.e., right-cancellable). Let g, h be
homomorphisms from a Post algebra P into P

G
such that P (f) ◦ g = P (f) ◦ h. For p ∈ P
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write g(p) = γ
1
, h(p) = γ

2
∈ P

G
= C(X

G
,3), so that P (f)(γ

1
) = P (f)(γ

2
). By the definition

of P (f) we have γ
1
◦ f∗ = γ

2
◦ f∗; since f∗ is surjective, γ

1
= γ

2
. Thus, g(p) = h(p) for all

p ∈ P , i.e., g = h.

(3)⇒ (1). Since “surjective = epic” in the category of Boolean spaces (ADD REF.), it suffices to
prove f∗ epic (i.e., left-cancellable). To this end, recall that any continuous map ρ : X

G
−→X

into a Boolean space X induces a dual map ρ : C(X,3)−→C(X
G
,3) by left composition:

ρ(g) = g ◦ ρ for g ∈ C(X,3). We leave to the reader the straightforward checking that ρ is a
Post algebra homomorphism from P = C(X,3) into P

G
= C(X

G
,3). In particular, we get a

Post algebra homomorphism ρ ◦f∗ : P −→P
H

, and, for g ∈ P ,

(P (f) ◦ ρ)(g) = P (f)(g ◦ ρ) = g ◦ ρ ◦f∗ = (ρ ◦f∗)(g),

i.e., P (f) ◦ ρ = ρ ◦f∗.

Assume now that ρ
1
, ρ

2
: X

G
−→X are continuous maps such that ρ

1
◦ f∗ = ρ

2
◦ f∗; then,

ρ
1
◦ f∗ = ρ

2
◦ f∗, and by the above, P (f)◦ρ

1
= P (f)◦ρ

2
. Since P (f) is injective, we conclude

that ρ
1

= ρ
2
. To finish the proof it only remains to prove ρ

1
= ρ

2
. Otherwise, ρ

1
(h) 6= ρ

2
(h)

for some h ∈ X
G

. Taking disjoint clopen neighborhoods U
i

of ρ
i
(h) in X (i = 1, 2), and

setting, say, gdU
1

= 1, gdU
2

= −1, gdX \ (U
1
∪ U

2
) = 0, gives a function g ∈ C(X,3) = P so

that g(ρ
1
(h)) 6= g(ρ

2
(h)), i.e., ρ

1
(g) 6= ρ

2
(g), a contradiction.

(1) ⇒ (5). Let ϕ be a Pfister form with entries in G, a ∈ G, and assume f(a) ∈ D
H

(f ∗ ϕ).
Corollary I.5.7 tells us:

(i) This assumption is equivalent to ∀h ∈ X
H

(h(f(a)) ∈ D
3
((h ◦ f) ∗ ϕ)), and

(ii) The conclusion a ∈ D
G

(ϕ) is equivalent to ∀ g ∈ X
G

(g(a) ∈ D
3
(g ∗ ϕ)).

Since f∗ is surjective, for every g ∈ X
G

there is h ∈ X
H

such that g = f∗(h) = h ◦ f . Then,
(ii) follows at once from (i), proving (5).

(1) ⇒ (6). Let ϕ = 〈 a
1
, . . . , a

n
〉, ψ = 〈 b

1
, . . . , b

m
〉 be arbitrary forms over G, and assume

f ∗ ϕ ∼=
H
f ∗ ψ, i.e.,

(+)
∑n

i=1 h(f(a
i
)) =

∑m
j=1 h(f(b

j
)) for all h ∈ X

H
.

Given g ∈ X
G

pick h ∈ X
H

so that g = f∗(h) = h◦f . Then, (+) yields at once
∑n

i=1 g(a
i
) =∑m

j=1 g(b
j
) for all g ∈ X

G
, i.e., ϕ ∼=

G
ψ.

The proofs of (5) ⇒ (2) and (6) ⇒ (2) rest on:

Fact. Let G be a RS, and a
1
, . . . , a

n
, b ∈ G. Let V =

⋂n

i=1
[[ a

i
= 1 ]] ∩ [[ b = 0 ]]⊆X

G
. Let ϕ

and ψ respectively denote the Pfister forms 〈〈 a
1
, . . . , a

n
,−b2 〉〉 and 2n−1〈〈−1, b2 〉〉, if n ≥ 1,

and ψ = 〈 1,−b2 〉, ϕ = 2 · ψ = ψ⊕ψ, if n = 0. Set d =
∏n
i=1 a

2
i
, if n ≥ 1, and d = 1, if

n = 0. The following hold:

i) If V = ∅, then −d ∈ D
G

(ϕ) and dϕ ∼=
G
ψ.

ii) If V 6= ∅, then −d 6∈ D
G

(ϕ) and dϕ 6∼=
G
ψ.

Note. In case V =
⋂n

i=1
[[ a

i
= 1 ]] (n ≥ 1), just omit the entries −b2 in ϕ and b2 in ψ.

Proof of Fact. By Corollary I.5.7, condition −d ∈ D
G

(ϕ) is equivalent to

(†) ∀ g ∈ X
G
[ g(a

i
) ∈ {0, 1} for i = 1, . . . , n, and g(−b2) = 0 ⇒ g(−d) = 0].
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Any g ∈ V verifies g(a
i
) = 1, g(b) = 0, whence g(d) =

∏n
i=1 g(a

i
)2 = 1, for n ≥ 1 (and,

obviously, also for n = 0). Thus, (†) fails at every g ∈ V . Hence, V 6= ∅ ⇒ − d 6∈ D
G

(ϕ).

As for the second assertion in (ii), first note that if n ≥ 1, then sgn
g
(〈〈−1, x 〉〉) =

sgn
g
(〈 1,−1, x,−x 〉) = 0, whence sgn

g
(ψ) = 0, for all g ∈ X

G
. Next, observe that if g ∈ V ,

then sgn
g
(dϕ) = g(d )·(1−g(b2))·

∏n
i=1 (1+g(a

i
)) = 2n. Hence, sgn

g
(dϕ) 6= sgn

g
(ψ) whenever

n ≥ 1. If n = 0, we have sgn
g
(ψ) = 1 and sgn

g
(ϕ) = 2.

(i) If V = ∅, then for any g ∈ X
G

either g(b) 6= 0 (i.e., g(b2) = 1) or g(a
i
) 6= 1 for some

i ∈ {1, . . . , n}. If g(b) 6= 0 or g(a
i
) = −1 for some i, (†) holds because its antecedent fails. If

g(b) = 0 and g(a
i
) = 0 for some i, then g(−d) = 0, and (†) holds. Hence, (†) holds for every

g ∈ X
G

, which entails −d ∈ D
G

(ϕ).

To prove the last assertion in (i), it suffices to show that sgn
g
(dϕ) = 0 for all g ∈ X

G
.

Since g 6∈ V , if g(b) 6= 0, the factor 1− g(b)2 is 0, and sgn
g
(dϕ) = 0. Likewise, if g(a

i
) = 0

for some i, the factor g(d ) vanishes, and if g(a
i
) = −1 for some i, then 1 + g(a

i
) = 0; in

either case sgn
g
(dϕ) = 0, as required.

(5) ⇒ (2). Assume Im(f∗) is not dense in X
G

. Then, there is a non-empty clopen set U

of the form
⋂n

i=1
[[ a

i
= 1 ]] ∩ [[ b = 0 ]] (a

1
, . . . , a

n
, b ∈ G), such that U ∩ Im(f∗) = ∅, i.e.,

f∗−1[U ] = ∅. Statement (ii) of the Fact with V = U yields −d 6∈ D
G

(ϕ), while item (i) with

V = f∗−1[U ] =
⋂n

i=1
[[ f(a

i
) = 1 ]] ∩ [[ f(b) = 0 ]] ⊆X

H
(and f ∗ ϕ) gives f(−d ) ∈ D

H
(f ∗ ϕ).

This contradicts assumption (5).

(6) ⇒ (2). Similar to the preceding proof: assuming (2) fails, the last assertion in item (ii)
of the Fact with V = U yields dϕ 6∼=

G
ψ, while that of (i) applied to V = f∗−1[U ] gives

f ∗ (dϕ) ∼=
G
f ∗ ψ, contradicting (6). This ends the proof of Theorem IV.4.5. 2

Remark IV.4.6 Let (5′) stand for the generalization of (5) obtained by replacing “multiple
of Pfister form” instead of just “Pfister form”. Then (5′) is still equivalent to the remaining
assertions in Theorem IV.4.5. In fact, (5) ⇒ (5′) upon observing:

(i) A map f verifying (5) must be injective (this is a particular case of (5) ⇒ (3), but may
be checked directly, as in Fact IV.4.4(c));

(ii) For a, b ∈ G and a Pfister form ϕ over G,

a ∈ D
G

(b ϕ) ⇔ a = b2a and ab ∈ D
G

(ϕ).

[Proof. The implication (⇒) follows from Proposition I.2.8(3) and (4), respectively, since
a ∈ D(b ϕ)⇒ ab ∈ D(b2ϕ)⊆D(ϕ). Conversely, ab ∈ D(ϕ) implies a = ab2 ∈ D(b ϕ).] 2

Theorem IV.4.5 together with IV.4.2 (iv), IV.4.6, and IV.4.1 (iv), yields:

Corollary IV.4.7 Let G be a RS, and let ε
G

: G−→P
G

be its Post-hull embedding. Then:

(1) The dual map ε∗
G

: X
PG
−→ (X

G
)con is a homeomorphism. Notation corrected Nov. 2011

(2) Every RS-character h ∈ X
G

extends uniquely to a Post algebra character ĥ : P
G
−→ 3,

i.e., h = ĥ ◦ ε
G

.

(3) ε
G

is a complete embedding. It preserves and reflects representation by arbitrary binary
forms and by (multiples of ) Pfister forms: if ϕ is such a form with entries in G, and a ∈ G,
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a ∈ D
G

(ϕ) ⇔ ε
G

(a) ∈ D
PG

(ε
G
∗ ϕ).

A similar equivalence holds for transversal representation.

Proof. (1) By definition, ε∗
G

(γ) = γ ◦ ε
G

for γ ∈ P
G

; hence, ε∗
G

is continuous. Since X
PG

and (X
G

)con are compact Hausdorff spaces (cf. Add ref. for the first!), it suffices to show that
ε∗
G

is bijective.

(i) ε∗
G

is surjective.

By (3) ⇒ (1) in Theorem IV.4.5 it suffices to show that P (ε
G

) is injective. This follows from
item (ii) of the Representation Theorem IV.1.7: as noted in the proof of IV.4.2 (iv), P (ε

G
) is

the evaluation isomorphism between P
G

and P
PG

.

(ii) ε∗
G

is injective.

This is a straightforward consequence of IV.4.1(iv). Let γ
1
, γ

2
∈ X

PG
be so that ε∗

G
(γ

1
) =

ε∗
G

(γ
2
), i.e., γ

1
◦ ε

G
= γ

2
◦ ε

G
; then, γ

1
d Im(ε

G
) = γ

2
d Im(ε

G
). Since Im(ε

G
) generates P

G

and the γ
i
’s are Post algebra homomorphisms (IV.2.11), we conclude γ

1
= γ

2
.

(2) Just set ĥ = (ε∗
G

)−1(h) for h ∈ X
G

; then, h = ε∗
G

(ĥ) = ĥ ◦ ε
G

. Uniqueness: if for a

fixed h ∈ X
G

a Post algebra character H : P
G
−→3 verifies h = H ◦ ε

G
, then Hd Im(ε

G
) =

ĥ d Im(ε
G

) = h, and IV.4.1(iv) entails ĥ = H. 2

(3) For the first two assertions, the non-trivial implication (⇐) follows at once from item (1)
above and the equivalence of (1), (5) and (6) in Theorem IV.4.5 (and Remark IV.4.6). The
statement for transversal representation is derived from that for ordinary representation by use
of Theorem I.2.8(10), which gives an explicit expression for Dt in terms of D. 2

COMMENT HERE ON DEFINITION OF COMPLETE EMBEDDING AND REPRESEN-
TATION BY NON-PFISTER FORMS IN THE CASE OF RSGs.

IV.4.8 The Post hull of a quotient.

Given a congruence ≡ on a RS, G, (see § II.2) we examine here the structure of the Post
hull P

G/≡ of the quotient real semigroup G/≡ ; we prove, in fact, that formation of the Post

hull “commutes” with the quotient operation. Recall from Proposition IV.1.8 that quotients
of Post algebras are obtained modulo lattice ideals closed under ∇.

Theorem IV.4.9 Let G be a RS and let ≡ be a congruence of G. Let H = H≡ be the
proconstructible subset of X

G
associated to ≡ (cf. Proposition ?? ). Let I = IH≡

= {f ∈
P
G
| f(h) = ⊥ for all h ∈ H}. Then, I is a lattice ideal closed under ∇, and the Post

hull P
G/≡ is isomorphic to the quotient P

G
/I. Furthermore, there is a unique Post-algebra

morphism µ : P
G
−→P

G/≡ making the following diagram commute:

G

π

��

εG //
PG

πI

��

µ

��

G/≡

εG/≡

��
PG/≡ PG/I

µ
oo
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Proof. The stated property of I is obvious, since the Post-algebra operations in P
G

are
pointwise defined, and ∇⊥ = ⊥ (IV.1.4 (b)). Proposition ?? (ii) shows that the Boolean spaces
X
G/≡ and H are homeomorphic via the correspondence that assigns to a character σ ∈ X

G/≡
the composition σ ◦ π, where π : G−→G/≡ is the canonical projection. Hence the Post hull
of the quotient G/≡ is isomorphic to the Post algebra C(H,3). Let µ : P

G
−→ C(H,3) be

the map defined by µ(f) = fdH ( = restriction of f to H). Clearly, µ is a morphism of Post
algebras whose kernel is I. In order to complete the proof we must show that µ is surjective.
Let f : H−→3 be a continuous function, and let U⊥ = f−1[{⊥}], and U> = f−1[{>}]; these
are disjoint clopens of H. Hence, there are clopens U ′, U ′′ of X

G
such that U⊥ = U ′ ∩H and

U> = U ′′ ∩ H. Replacing, if necessary, U ′ and U ′′ by U ′ \ U ′′ and U ′′ \ U ′ respectively, we

may assume U ′, U ′′ disjoint. Then, the map f̂ : X
G
−→3 defined by:

f̂(x) =


⊥ if x ∈ U ′
c if x 6∈ U ′ ∪ U ′′

> if x ∈ U ′′ ,

is a continuous function extending f , and therefore µ(f̂) = f . The required isomorphism
µ : P

G
/I −→P

G/≡ is canonically induced by µ. 2

IV.4.10 Transversal 2-regularity of quotients of Post algebras.

Theorem IV.4.11 Let P be a Post algebra and let I be a lattice ideal of P closed under ∇.
Then the quotient map π : P −→P/I is transversally 2-regular.

Proof. We have to show, for α, β, γ, δ ∈ P/I, that Dt
P/I

(α, β) ∩ Dt
P/I

(γ, δ) 6= ∅ implies the

existence of liftings a, b, c, d ∈ P of α, β, γ, δ, respectively, so that Dt
P

(a, b) ∩ Dt
P

(c, d) 6= ∅.

Recalling the characterization of transversal representation in a Post algebra A given by
Theorem IV.2.7 (i), condition Dt

A
(x, y) ∩ Dt

A
(z, w) 6= ∅ is equivalent to the existence of a

r ∈ A such that (x∧∇y)∨ (y ∧∇x) ≤ r ≤ (x∨∆y)∧ (y ∨∆x) and (z ∧∇w)∨ (w∧∇z) ≤
r ≤ (z ∨∆w)∧ (w∨∆x). This, in turn, is obviously equivalent to

(†) (x∧∇y)∨ (y ∧∇x)∨ (z ∧∇w)∨ (w∧∇z) ≤ (x∨∆y)∧ (y ∨∆x)∧ (z ∨∆w)∧ (w∨∆x).

[For the rest of this proof A will stand either for P or for P/I, and the variables x, y, z, w
either for a, b, c, d ∈ P or for α, β, γ, δ ∈ P/I, respectively.]

By assumption, the inequality (†) is valid in P/I for α, β, γ, δ, and our problem boils down
to finding liftings a, b, c, d of α, β, γ, δ, so that (†) is still valid in P .

From Proposition ?? (ii) we know that the character space X
P/I

of P/I is (homeomorphic

to) a closed subset C of the character space X
P

of P (the topology in these spaces being,
necessarily, the constructible topology). Hence (cf. Theorem IV.1.7 (ii)), α, β, γ, δ can be
viewed as continuous functions from C (with the topology induced by that of X

P
) into 3.

Likewise, a, b, c, d are continuous functions X
P
−→ 3. The requirement that a/I = α, etc.,

simply means that the function a extends α from C to X
P

, and hence we must extend
the functions α, β, γ, δ to continuous functions a, b, c, d : X

P
−→ 3 in such a way that the

inequality (†) is preserved. The result follows, then, from the well-known

Lemma IV.4.12 Let X be a Boolean space and let C be a closed subset. Let U
1
, . . . , U

n
be clopens of X such that U

1
∩ C, . . . , U

n
∩ C form a partition of C into non-empty sets

(obviously clopen in C). Then, there is a partition {V
1
, . . . , V

n
} of X into (necessarily non-

empty) clopens so that V
i
∩ C = U

i
∩ C, for i = 1, . . . , n. [Sketch of proof below.]
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Continuing the proof of Theorem IV.4.11, for every quadruple i, j, k, ` ∈ {−1, 0, 1} let

(††) C
i,j,k,`

= [[α = i ]] ∩ [[β = j ]] ∩ [[ γ = k ]] ∩ [[ δ = ` ]],

where [[χ = m ]] = {x ∈ C |χ(x) = m}, for χ ∈ C(C,3) and m ∈ {−1, 0, 1}, see I.1.17. By
continuity, the sets C

i,j,k,`
are clopen in C; let {C

m
| 1 ≤ m ≤ N} be an indexing without

repetitions of the non-empty sets among the C
i,j,k,`

. Then C
m

= U
m
∩ C for some clopens

U
m

of X (1 ≤ m ≤ N). Let {V
1
, . . . , V

N
} be a partition of X into clopens so that V

m
∩ C =

U
m
∩ C, for m = 1, . . . , N, as given by Lemma IV.4.12. Now we define a, b, c, d ∈ C(X

P
,3) by

their values on the sets V
m

, as follows: if C
m

= C
i,j,k,`

for i, j, k, ` ∈ {−1, 0, 1} (necessarily

unique), we set:

(†††) a dV
m

= i , b dV
m

= j , c dV
m

= k , d dV
m

= ` .

To check the validity of the inequality (†) for the functions a, b, c, d at each point x ∈ X, let
m ∈ {1, . . . , N} be the unique index such that x ∈ V

m
, and let y ∈ V

m
∩ C = C

m
. Since

a, b, c, d have constant sign over each V
m

, (††) and (†††) guarantee that a(x) = α(y), b(x) =
β(y), c(x) = γ(y), d(x) = δ(y), and the stated inequality follows, then, from the fact that (†)
holds for the functions α, β, γ, δ at y. 2

Remark IV.4.13 The method of the foregoing proof, using Lemma IV.4.12, gives also the
following

Proposition. Let P be a Post algebra, and let I be a lattice ideal of P closed under ∇. Let
τ

1
, . . . , τ

n
, σ

1
, . . . , σ

n
be terms of the language {¬,∨,∧ ,∇,⊥ , c} for Post algebras in the free

variables v
1
, . . . , v

k
(i.e., well-formed propositional expressions of the indicated language, built

from the variables v
1
, . . . , v

k
). Assume that the system of inequalities

(∗) τ
i
(v

1
, . . . , v

k
) ≤ σ

i
(v

1
, . . . , v

k
) (i = 1, . . . , n)

has a solution α
1
, . . . , α

k
in P/I. Then, there are liftings a

1
, . . . , a

k
∈ P of α

1
, . . . , α

k
(i.e.,

a
j
/I = α

j
for j = 1, . . . , k), which are a solution of the system (∗) in P . 2

Note that one may include equalities τ
i

= σ
i

in the system (∗), as τ
i

= σ
i
⇔ τ

i
≤ σ

i
and

σ
i
≤ τ

i
.

Sketch of proof of Lemma IV.4.12. Induction on n ≥ 1. For n = 1 just take V
1

= X.
For the induction step (n− 1→n) consider the non-empty clopens U

i
\U

n
(1 ≤ i ≤ n− 1) of

X. With C ′ = C \U
n
, the sets {(U

i
\U

n
) ∩ C ′ | 1 ≤ i ≤ n− 1} obviously partition the closed

set C ′. By induction hypothesis there is a partition {V ′
1
, . . . , V ′

n−1
} of X into clopens so that

V ′
i
∩ C ′ = (U

i
\ U

n
) ∩ C ′, 1 ≤ i ≤ n − 1. Set V

i
= V ′

i
\ U

n
for 1 ≤ i ≤ n − 1, V

n
= U

n
, and

check that these sets have the required property. 2

IV.5 Value sets of quadratic forms

The Post-algebraic techniques developed in previous sections of this chapter are applied here
to study the properties of value sets of quadratic forms over real semigroups. We start with a
general result (Theorem IV.5.1) characterizing representation and transversal representation of
arbitrary quadratic forms over Post algebras in terms of the operators ∆, ∇, and the order and
lattice operations of the algebra. By considering the Post hull ε

G
: G−→P

G
of a given RS,

G, this characterization may be used to obtain information on the structure of the value sets
of higher-dimensional forms over G itself. The possibility of transferring information about
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quadratic forms ϕ with entries in G from P
G

back to G depends, however, on the validity of
the implication

ε
G

(x) ∈ D
PG

(ε
G
∗ ϕ) ⇒ x ∈ D

G
(ϕ),

which does not hold, in general, for arbitrary ϕ’s (the reverse implication is valid without
restrictions on ϕ). However, the weak local-global principle (Corollary IV.4.7 (3)) shows that
this implication holds for arbitrary binary forms and for Pfister forms and their multiples,
yielding interesting consequences in these cases (IV.5.6, IV.5.8 and IV.5.11).

In the sequel we shall repeatedly use the definition of representation and the characterization
of transversal representation in a Post algebra given in Definition IV.2.3 and Theorem IV.2.7 (i),
respectively. Recall that c denotes the center of a Post algebra.

Our point of departure is:

Theorem IV.5.1 Let P be a Post algebra, and let x, b
1
, . . . , b

n
∈ P (n ≥ 1).

(A) The following are equivalent:

(1) x ∈ D
P

(〈 b
1
, . . . , b

n
〉),

(2) b
1
∧ . . .∧ b

n
∧ c ≤ x ≤ b

1
∨ . . .∨ b

n
∨ c.

(B) The following are equivalent:

(1) x ∈ Dt
P

(〈 b
1
, . . . , b

n
〉),

(2) a) ∇b
1
∧ . . .∧∇b

n
≤ ∇x ≤ (∇b

1
∧ . . .∧∇b

n
)∨ (∆b

1
∨ . . .∨∆b

n
), and

b) (∇b
1
∧ . . .∧∇b

n
)∧ (∆b

1
∨ . . .∨∆b

n
) ≤ ∆x ≤ ∆b

1
∨ . . .∨∆b

n
.

Proof. (A) Induction on n for both implications. Recalling that D
G

(〈 b 〉) = {y2b | y ∈ G}
(I.2.7 (a)), the case n = 1 is dealt with by:

Fact. b
1
∧ c ≤ x ≤ b

1
∨ c ⇔ x = x2b

1
.

Proof of Fact. (⇐) Since product in P is symmetric difference, we have x = x2b
1

=

(x2∧¬ b
1
)∨ (b

1
∧¬x2), and x2 = x∧¬x; hence, ¬x2 = x∨¬x. Kleene’s inequality IV.1.2 (b)

implies x2 ≤ c ≤ ¬x2. Therefore,

x = (x2∧¬ b
1
)∨ (b

1
∧¬x2) ≥ b

1
∧¬x2 ≥ b

1
∧ c, and

x ≤ (c∧¬ b
1
)∨ (b

1
∧¬x2) ≤ (c∧¬ b

1
)∨ b

1
≤ b

1
∨ c.

(⇒) We prove the required identity by truth-table checking. Let h : P −→ 3 be a character.
Recall that h(c) = 0. We argue by cases according to the values of h(b

1
).

— h(b
1
) = 1. By assumption, h(b

1
)∧ 0 = 1 (= ⊥) ≤ h(x) ≤ h(b

1
)∨ 0 = 0. Hence, h(x) ∈

{0, 1}; this yields h(x) = h(x2), implying h(x) = h(x2)h(b
1
).

— h(b
1
) = 0. By assumption, h(b

1
)∧ 0 = 0 ≤ h(x) ≤ h(b

1
)∨ 0 = 0 i.e., h(x) = 0, which

clearly yields h(x) = h(x2)h(b
1
) = 0.

— h(b
1
) = −1. By assumption, h(b

1
)∧ 0 = 0 ≤ h(x) ≤ h(b

1
)∨ 0 = −1 (= >). Thus,

h(x) ∈ {0,−1}, which gives h(x) = −h(x2) = h(x2)h(b
1
). 2

The case n = 2 holds by the definition of D
P

(cf. IV.2.3).

Induction step n− 1→ n, n ≥ 3.

(A.1) ⇒ (A.2). Assume x ∈ D
P

(〈 b
1
, . . . , b

n
〉). By the inductive definition of D in RSs (cf.

I.2.7 (a)), there is y ∈ D
P

(〈 b
2
, . . . , b

n
〉) so that x ∈ D

P
(〈 b

1
, y 〉). By induction hypothesis and

the case n = 2, we have
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b
2
∧ . . .∧ b

n
∧ c ≤ y ≤ b

2
∨ . . .∨ b

n
∨ c , and b

1
∧ y ∧ c ≤ x ≤ b

1
∨ y ∨ c .

These inequalities clearly imply condition (A.2) for n.

(A.2) ⇒ (A.1). Assume b
1
∧ . . .∧ b

n
∧ c ≤ x ≤ b

1
∨ . . .∨ b

n
∨ c. Set y = [((b

2
∨ . . .∨ b

n
∨ c)∧ x)

∨ (b
2
∧ . . .∧ b

n
∧ c)] ∈ P . By induction hypothesis it suffices to show

b
2
∧ . . .∧ b

n
∧ c ≤ y ≤ b

2
∨ . . .∨ b

n
∨ c , and b

1
∧ y ∧ c ≤ x ≤ b

1
∨ y ∨ c ;

this gives y ∈ D
P

(〈 b
2
, . . . , b

n
〉) and x ∈ D

P
(〈 b

1
, y 〉), which, by the inductive definition of

D
P

, yields (A.1).

Clearly, y ≥ b
2
∧ . . .∧ b

n
∧ c. From (b

2
∨ . . .∨ b

n
∨ c) ∧ x ≤ b

2
∨ . . .∨ b

n
∨ c it follows that

y ≤ b
2
∨ . . .∨ b

n
∨ c. As for the other inequalities, we have:

b
1
∧ y ∧ c = (b

1
∧ . . .∧ b

n
∧ c)∨ (b

1
∧ c∧ x∧ (b

2
∨ . . .∨ b

n
∨ c)) .

Since b
1
∧ . . .∧ b

n
∧ c ≤ x, both terms of the disjunction are ≤ x. Also,

b
1
∨ y ∨ c = [(b

1
∨ . . .∨ b

n
∨ c)∧ (b

1
∨ c∨ x)] ∨ (b

2
∧ . . .∧ b

n
∧ c) .

By the assumption x ≤ b
1
∨ . . .∨ b

n
∨ c, both terms of the first disjunct are ≥ x; hence

b
1
∨ y ∨ c ≥ x, as required.

(B) First we treat the cases n = 1, 2, and then proceed by induction on n.

n = 1) Condition x ∈ Dt(b
1
) just means x = b

1
. Condition (B.2) boils down to:

∇b
1
≤ ∇x ≤ ∇b

1
∨∆b

1
= ∇b

1
and ∆b

1
= ∇b

1
∧∆b

1
≤ ∆x ≤ ∆b

1
,

i.e., ∇x = ∇b
1

and ∆x = ∆b
1
. By IV.1.4 (h), this is equivalent to x = b

1
.

n = 2) By Theorem IV.2.7 (i), condition (B.1) is equivalent to

(1′) (b
1
∧∇b

2
)∨ (b

2
∧∇b

1
) ≤ x ≤ (b

1
∨∆b

2
)∧ (b

2
∨∆b

1
).

We show this is equivalent to condition (B.2). For the implication (1′)⇒ (B.2) it suffices to ap-
ply the operations ∇ and ∆ to (1′) —taking into account that these are lattice homomorphisms,
and using IV.1.4(d),(e)—, and then perform trivial Boolean transformations.

For the reverse implication, (B.2)⇒ (1′), we use the identities

(†) z = (c∧∇z) ∨∆z = (c∨∆z) ∧∇z,

(cf. IV.1.4(i)) to retrieve the inequalities (1′) from those in (B.2). We illustrate the argument
by proving the left-hand side inequality in (1′):

x = (c∨∆x) ∧∇x ≥ [c∨ (∇b
1
∧∇b

2
∧ (∆b

1
∨∆b

2
))]∧∇b

1
∧∇b

2
=

= (c∨∇b
1
) ∧ (c∨∇b

2
) ∧ (c∨∆b

1
∨∆b

2
) ∧∇b

1
∧∇b

2
=

= (c∨∆b
1
∨∆b

2
) ∧∇b

1
∧∇b

2
= [((c∨∆b

1
) ∧∇b

1
)∧∇b

2
]∨ [((c∨∆b

2
)∧∇b

2
)∧∇b

1
] =

= (b
1
∧∇b

2
) ∨ (b

2
∧∇b

1
),

where the last equality is obtained using the second identity in (†). A similar argument proves
the right-hand side inequality in (1′), using the first identity in (†).

Induction step n− 1→ n, n ≥ 3.

(B.1) ⇒ (B.2). Assume x ∈ Dt
P

(〈 b
1
, . . . , b

n
〉). By the inductive definition of Dt (I.2.7 (a)),

there is y ∈ Dt
P

(〈 b
2
, . . . , b

n
〉) so that x ∈ Dt

P
(〈 b

1
, y 〉). From the induction hypothesis and

the case n = 2, we get, respectively
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∇b
2
∧ . . .∧∇b

n
≤ ∇y ≤ (∇b

2
∧ . . .∧∇b

n
)∨∆b

2
∨ . . .∨∆b

n
,

∇b
1
∧∇y ≤ ∇x ≤ (∇b

1
∧∇y)∨∆b

1
∨∆y ,

and

∇b
2
∧ . . .∧∇b

n
∧ (∆b

2
∨ . . .∨∆b

n
) ≤ ∆y ≤ ∆b

2
∨ . . .∨∆b

n
,

∇b
1
∧∇y ∧ (∆b

1
∨∆y) ≤ ∆x ≤ ∆b

1
∨∆y .

Putting these inequalities together easily yields the desired conclusion.

(B.2) ⇒ (B.1). Assume the inequalities (2.a) and (2.b) of the statement. In order to check
that x ∈ Dt

P
(〈 b

1
, . . . , b

n
〉) via the inductive definition of Dt, we set:

(††) t = (∇x2∧¬∇b
1
) ∨ (x∧¬∆b

1
)∨ [(

n∧
i=2

∇b
i
)∧ (

n∨
i=2

b
i
)].

First we prove:

Claim. ∇x2∧¬∇b
1
≤ ∇x∧¬∇b

1
≤

n∨
i=2

∆b
i
.

Proof of Claim. The left inequality follows from ∇x2 = ∇(x∧¬x) ≤ ∇x. For the other, from
the right-hand side inequality in asumption (2.a) we get:

∇x∧¬∇b
1
≤ ¬∇b

1
∧ [(

n∧
i=1

∇b
i
)∨ (

n∨
i=1

∆b
i
)] =

= [(¬∇b
1
∧∇b

1
)∧

n∧
i=2

∇b
i
]∨ (¬∇b

1
∧∆b

1
)∨

n∨
i=2

(¬∇b
1
∧∆b

i
) =

=

n∨
i=2

(¬∇b
1
∧∆b

i
) ≤

n∨
i=2

∆b
i
,

(here we use that ¬∇b
1
∧∆b

1
≤ ¬∇b

1
∧∇b

1
= ⊥, as ∆b

1
≤ ∇b

1
, and ∆b

1
,∇b

1
are Boolean

elements).

Next, we explicitly compute ∇t and ∆t. Applying the operator ∇ on both sides of (††) and
recalling that ∇ is a lattice homomorphism which is the identity on Boolean elements (IV.1.4),
that ∇z,∆z and their negations are Boolean, and using ∇x2 ≤ ∇x and ¬∇b

1
≤ ¬∆b

1
, we

obtain:

(I) ∇t = (∇x2∧¬∇b
1
)∨ (∇x∧¬∆b

1
)∨ [(

n∧
i=2

∇b
i
)∧ (

n∨
i=2

∇b
i
)] = (∇x∧¬∆b

1
)∨

n∧
i=2

∇b
i
;

thus, ∇t ≥
∧n

i=2
∇b

i
. On the other hand, as in the proof of the Claim, we get:

∇x∧¬∆b
1
≤ (¬∆b

1
∧∇b

1
∧

n∧
i=2

∇b
i
)∨ (¬∆b

1
∧∆b

1
)∨

n∨
i=2

(¬∆b
1
∧∆b

i
)

≤ (

n∧
i=2

∇b
i
)∨ (

n∨
i=2

∆b
i
) ,

which, together with (I), clearly implies ∇t ≤ (
∧n

i=2
∇b

i
)∨ (

∨n

i=2
∆b

i
).

Next, applying ∆ on the equality (††) defining t, we obtain:

(II) ∆t = (∇x2∧¬∇b
1
)∨ (∆x∧¬∆b

1
)∨ [(

n∧
i=2

∇b
i
)∧ (

n∨
i=2

∆b
i
)].

Hence, ∆t ≥ (
∧n

i=2
∇b

i
)∧ (

∨n

i=2
∆b

i
). For the inequality ∆t ≤

∨n

i=2
∆b

i
, observe that the

last disjunct in (II) and, by the Claim, also the first disjunct, are ≤
∨n

i=2
∆b

i
; the inequality

∆x ≤
∨n

i=1
∆b

i
(assumption (2.b)) obviously implies that the middle term in (II) is ≤

∨n

i=2
∆b

i

as well.
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By induction hypothesis, the foregoing bounds on ∆t and ∇t imply t ∈ Dt
P

(〈 b
2
, . . . , b

n
〉).

To complete the proof we must show that x ∈ Dt
P

(b
1
, t). The simplest way of doing this is

by truth-table checking the definition of transversal representation, i.e., showing that, for all
characters h : P −→3,

h(x) ∈ {⊥,>} ⇒ h(x) = h(b
1
) or h(x) = h(t), and h(x) = 0 ⇒ h(b

1
) = −h(t).

— Let h(x) = ⊥. Then, h(∇x2) = ⊥, and (††) yields h(t) = (
∧n

i=2
∇h(b

i
))∧ (

∨n

i=2
h(b

i
)).

Now, we argue according to the values of h(b
1
). If h(b

1
) = ⊥, then h(x) = h(b

1
). If h(b

1
) 6= ⊥,

then ∇h(b
1
) = >. Since

∧n

i=1
∇b

i
≤ ∇x (2.a), and h(∇x) = ⊥, we get h(t) =

∧n

i=2
∇h(b

i
) =

⊥, and then h(t) = ⊥ = h(x).

— If h(x) = >, since h(∇x2) = ⊥, (††) yields:

h(t) = ¬∆h(b
1
)∨ [(

n∧
i=2

∇h(b
i
))∧ (

n∨
i=2

h(b
i
))].

Arguing again according to the values of h(b
1
), we have: if h(b

1
) = >, then h(x) = h(b

1
);

otherwise, ∆h(b
1
) = ⊥, whence h(t) = > = h(x).

— Finally, if h(x) = 0, then h(∇x2) = >, and

h(t) = ¬∇h(b
1
)∨ (0∧¬∆h(b

1
))∨ [(

n∧
i=2

∇h(b
i
))∧ (

n∨
i=2

h(b
i
))].

If h(b
1
) = ⊥, then ¬∇h(b

1
) = >, and h(t) = > = −h(b

1
). If h(b

1
) = >, then ¬∇h(b

1
) =

¬∆h(b
1
) = ⊥, and h(t) = (

∧n

i=2
∇h(b

i
))∧ (

∨n

i=2
h(b

i
)). Since (

∧n

i=1
∇b

i
)∧ (

∨n

i=1
∆b

i
) ≤ ∆x

(cf. (2.b)), and h(∆x) = ⊥, we get
∧n

i=2
∇h(b

i
) = ⊥, and hence h(t) = ⊥ = −h(b

1
).

If h(b
1
) = 0, then ¬∇h(b

1
) = ⊥, ¬∆h(b

1
) = >, and

h(t) = 0∨ [(
n∧
i=2

∇h(b
i
))∧ (

n∨
i=2

h(b
i
))].

We prove that the last term of this disjunction is ≤ 0. Otherwise it equals >, which implies∧n

i=2
∇h(b

i
) =

∨n

i=2
h(b

i
) = >, and hence also

∨n

i=2
∆h(b

i
) = >. Since ∇h(b

1
) = >, we get

> = (
∧n

i=1
∇h(b

i
))∧ (

∨n

i=1
∆h(b

i
)) ≤ ∆h(x) = ⊥, a contradiction. It follows that h(t) = 0 =

−h(b
1
), completing the proof of Theorem IV.5.1. 2

Theorem IV.5.1 shows a remarkable symmetry of the intervals involved in the formulas for
D
P

and Dt
P

. If a RS, G, is identified with its image via ε
G

inside its Post hull P
G

, it shows,
in particular, that for every form ϕ over G,

— D
G

(ϕ) is included in an interval of the lattice P
G

;

— Dt
G

(ϕ) is included in the intersection of the inverse image of two intervals of P
G

by the

(monotone) operators ∇ and ∆.

In either case the endpoints of the relevant intervals are Post-algebraic functions of the entries
of the given form ϕ.

Theorem IV.5.1 yields precise information concerning the value sets of forms, also over
arbitrary real semigroups. First we state some general corollaries and deal later on with the
case of Pfister forms.
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Proposition IV.5.2 Let P be a Post algebra, let x, b
1
, . . . , b

n
∈ P and let ϕ := 〈 b

1
, . . . , b

n
〉.

Then:

(1) D
P

(ϕ) is a sublattice of P containing c.

(2) Dt
P

(ϕ) is a sublattice of P closed under ∆ and ∇. It may not contain either 0, 1 or −1.

However,

(3) If any two of 0, 1,−1 are transversally represented by ϕ, then the third is also transversally
represented, and Dt

P
(ϕ) = P . 3

In case 1 (or −1) is represented or transversally represented by ϕ, the conditions in Theorem
IV.5.1 take a simpler form and give further information; namely:

(4) i) If 1 ∈ D
P

(ϕ), then x ∈ D
P

(ϕ)⇔ x ≤ c ∧
∨n
i=1 bi.

ii) If 1 ∈ Dt
P

(ϕ), then x ∈ Dt
P

(ϕ)⇔ ∇x ≤
∨n
i=1 ∆b

i
.

Hence,

iii) If 1 ∈ D
P

(ϕ) (resp., 1 ∈ Dt
P

(ϕ)), then D
P

(ϕ) (resp., Dt
P

(ϕ)) is a lattice ideal; in

particular, D
P

(ϕ) is closed under ∆.

(5) i) If −1 ∈ D
P

(ϕ), then x ∈ D
P

(ϕ)⇔ c ∧
∧n

i=1
b
i
≤ x.

Hence,

ii) If −1 ∈ Dt
P

(ϕ), then x ∈ Dt
P

(ϕ)⇔
∧n

i=1
∇b

i
≤ ∆x.

iii) If −1 ∈ D
P

(ϕ) (resp., −1 ∈ Dt
P

(ϕ)), then D
P

(ϕ) (resp., Dt
P

(ϕ)) is a lattice filter; in

particular, D
P

(ϕ) is closed under ∇.

Proof. (1) Straightforward verification shows that conditions (A.2) and (B.2 (a,b)) in Theorem
IV.5.1 are preserved under ∧ and ∨. The case of transversal representation uses the fact
(Proposition IV.1.4 (c)) that ∆ and ∇ are lattice endomorphisms of P .

(2) Items (d) and (e) in IV.1.4 imply that all the inequalities in IV.5.1 (B.2) are preserved under
∆ and ∇.

For the remaining assertions we shall need:

Claim. (I) −1 ∈ Dt
P

(ϕ))⇔
∨n

i=1
∆b

i
= −1.

(II) 1 ∈ Dt
P

(ϕ))⇔
∧n

i=1
∇b

i
= 1.

(III) 0 ∈ Dt
P

(ϕ))⇔ (
∧n

i=1
∇b

i
)∧ (

∨n

i=1
∆b

i
) = 1 and (

∧n

i=1
∇b

i
)∨ (

∨n

i=1
∆b

i
) = −1.

Proof of Claim. (I) By IV.5.1 (B.2 (b)), −1 ∈ Dt
P

(ϕ)) implies ∆(−1) = −1 ≤
n∨
i=1

∆b
i

= −1.

Conversely, if
n∨
i=1

∆b
i

= −1, both inequalities in the right-hand side of (B.2 (a,b)) hold for

x = −1; since ∆(−1) = ∇(−1) = −1, the left hand side ones trivially hold.

(II) Proof similar to that in (I).

(III) The implication (⇒) comes from items (B.2 (a,b)) in IV.5.1, as ∆0 = 1 and ∇0 = −1.

(⇐) The inequalities in the right-hand side of (III) entail that the right-hand side inequality
in (B.2 (a)) and the left one in (B.2 (b)) hold with x = 0. The remaining inequalities in (B.2)
come from ∆0 = 1 and ∇0 = −1.

Proof of (3). If 1,−1 ∈ Dt
P

(ϕ)), items (I) and (II) give
∨n

i=1
∆b

i
= −1 and

∧n

i=1
∇b

i
= 1,

3 I.e., the form ϕ is universal. Note that the statement is about transversal representation.
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implying that the right-hand side of (III) holds, whence 0 ∈ Dt
P

(ϕ)).

If 0,−1 ∈ Dt
P

(ϕ)), then (I) and the first inequality in (III) yield
∧n

i=1
∇b

i
= 1, i.e., 1 ∈

Dt
P

(ϕ).

Similar argument in the case 0, 1 ∈ Dt
P

(ϕ)).

Concerning universality, the equivalences (I) and (II) entail that all ineqiualities in (B.2 (a))
and (B.2 (b)) hold for any x ∈ P , i.e., x ∈ Dt

P
(ϕ).

The proof of (5) is similar, using item (I) in the Claim. 2

Preceding Prop. added February 2014.

As an illustration we give a Post-algebraic proof of the following result, (already) used many
times in this text.

Corollary IV.5.3 Let G be a RS. Then:

(i) ([M], Prop. 6.1.5). For all a, b ∈ G there is a unique x such that Dt
G

(a2, b2) = {x} and

x = x2. The same holds for Dt
G

(〈 a2
1
, . . . , a2

n
〉) (a

i
∈ G).

(ii) For all a, b, d ∈ G there is a unique y such that Dt
G

(a2d, b2d) = {y} and y = y2d. The

same holds for Dt
G

(〈 a2
1
d , . . . , a2

n
d 〉) (a

i
∈ G).

Proof. We only prove (ii) for binary forms. If y ∈ Dt
G

(a2d, b2d), Proposition I.2.3(4) gives

y = d2y = y2d.

For uniqueness we show that y ∈ Dt
G

(a2d, b2d) implies ∆y = ∆a2d ∨∆b2d and ∇y =

∇a2d ∨∇b2d, which then follows from Proposition IV.1.4 (h). The asserted identities are con-
sequences of:

Fact IV.5.4 For x, y ∈ P (P a Post algebra ),

(i) ∆x2y = ∆y ∧¬∇x2; (ii) ∇x2y = ∇y ∨∇x2.

Proof. Since in a Post algebra product (as RS) is symmetric difference, we have x2y =
(x2 ∧¬ y) ∨ (y ∧¬x2). Hence,

∆x2y = (∆x2 ∧∆¬ y) ∨ (∆y ∧∆¬x2) = ∆y ∧¬∇x2,

as ∆x2 = ⊥ (cf. IV.1.2(b)), and ∆¬x2 = ¬∇x2. Also,

∇x2y = (∇x2 ∧∇¬ y) ∨ (∇y ∧∇¬x2) = (∇x2 ∧¬∆y) ∨∇y = ∇x2 ∨∇y,

since ∇¬x2 = ¬∆x2 = > and ¬∆y ∨∇y ≥ ¬∆y ∨∆y = >. 2

To finish the proof of Corollary IV.5.3, the Fact implies ∆a2d = ∆d ∧¬∇a2 ≤ ∆d ≤ ∇d ≤
∇d ∨∇b2 = ∇b2d; hence, ∆a2d ∨∆b2d ≤ ∇b2d ∧∇a2d. By (2.a) of Theorem IV.5.1, we have:

∇a2d∧∇b2d ≤ ∇y ≤ (∇a2d ∧∇b2d) ∨∆a2d ∨∆b2d = ∇a2d ∧∇b2d,

i.e., ∇y = ∇a2d ∧∇b2d. Item (2.b) of the same theorem gives:

(∇a2d ∧∇b2d) ∧ (∆a2d ∨∆b2d) = ∆a2d ∨∆b2d ≤ ∆y ≤ ∆a2d ∨∆b2d,

i.e., ∆y = ∆a2d ∨∆b2d, as required. 2

Omit next two corollaries?.

It also follows from Theorem IV.5.1 that the value set and the transversal value set of an
arbitrary form with entries in a Post algebra contain the same Boolean elements (recall an
element x is Boolean if ∇x = ∆x = x).
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Corollary IV.5.5 Let P be a Post algebra, B(P ) be the set of its Boolean elements, and let
x, b

1
, . . . , b

n
∈ P . Then,

x ∈ B(P ) ∩ D
P

(〈 b
1
, . . . , b

n
〉) ⇒ x ∈ Dt

P
(〈 b

1
, . . . , b

n
〉).

Proof. The assumption and IV.5.1(1) give

b
1
∧ . . .∧ b

n
∧ c ≤ x ≤ b

1
∨ . . .∨ b

n
∨ c .

Applying the operators ∇ and ∆ on these inequalities, and recalling that they are lattice
homomorphisms such that ∇c = > and ∆c = ⊥, gives∧n

i=1
∇b

i
≤ ∇x ≤ > and ⊥ ≤ ∆x ≤

∨n

i=1
∆b

i
,

whence (using ∇x = ∆x = x),∧n

i=1
∇b

i
≤ ∇x = ∆x ≤

∨n

i=1
∆b

i
≤ (
∧n

i=1
∇b

i
) ∨ (

∨n

i=1
∆b

i
), and

(
∧n

i=1
∇b

i
)∧ (

∨n

i=1
∆b

i
) ≤

∧n

i=1
∇b

i
≤ ∇x = ∆x ≤

∨n

i=1
∆b

i
.

By Theorem IV.5.1(2) this establishes the desired conclusion. 2

For arbitrary RSs this yields:

Corollary IV.5.6 Let G be a RS and let x be an invertible element of G. If ϕ is either a
binary form or the multiple of a Pfister form with (arbitrary) entries in G, we have

x ∈ D
G

(ϕ) ⇒ x ∈ Dt
G

(ϕ).

Proof. This follows from the previous corollary and the fact that both representation and
transversal representation are reflected from P

G
down to G for forms of the stated type

(Corollary IV.4.7 (3)), upon observing that x is invertible in G (i.e., x2 = 1) if and only if
ε
G

(x) is a Boolean element of P
G

; the reader can easily verify this assertion. 2

Now we turn to the characterization of representation and transversal representation by
Pfister forms in arbitrary real semigroups.

Theorem IV.5.7 Let G be a RS, let x, a
1
, . . . , a

n
∈ G, and let ϕ = 〈〈 a

1
, . . . , a

n
〉〉 =⊗n

i=1〈 1, ai 〉. Then:

(1) x ∈ D
G

(ϕ) ⇔ ε
G

(x) ≤
∨n

i=1
ε
G

(a
i
) ∨ c (in P

G
) .

(2) x ∈ Dt
G

(ϕ) ⇔ ε
G

(x) ≤
∨n

i=1
∆(ε

G
(a
i
)) (in P

G
) .

Proof. By Corollary IV.4.7(3) we may assume without loss of generality that G is a Post
algebra —which we call P—, and omit ε

G
in the right-hand side of the statement.

Let C denote the set of entries of ϕ, i.e., C consists of 1 and all products
∏n
i=1 a

ηi
i , with

η
i
∈ {0, 1}, and y0 = 1, y1 = y. By Theorem IV.5.1 we have:

(1′) x ∈ D
G

(ϕ) ⇔ c ∧
∧

b∈C
b ≤ x ≤ c ∨

∨
b∈C

b, and

(2′) x ∈ Dt
G

(ϕ) ⇔
∧

b∈C
∇b ≤ ∇x ≤ (

∧
b∈C
∇b) ∨ (

∨
b∈C

∆b), and

(
∧

b∈C
∇b)∧ (

∨
b∈C

∆b) ≤ ∆x ≤
∨

b∈C
∆b.
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Now observe:

— 1 ∈ C implies
∧

b∈C
b =

∧
b∈C
∇b = 1 = ⊥;

— x4 y ≤ x∨ y implies
∏n
i=1 a

ηi
i
≤
∨n

i=1
aηi
i
≤
∨n

i=1
a
i

and similarly with a
i

replaced with

∆a
i
.

Hence, the right-hand sides of (1′) and (2′) boil down to

(*) ⊥ ≤ x ≤ c ∨
∨n

i=1
a
i

and ⊥ ≤ ∆x,∇x ≤
∨n

i=1
∆a

i
,

respectively. The first of these inequalities proves (1). As for (2) we observe that the last
inequality in (*) is equivalent to

(**) x ≤
∨n

i=1
∆a

i
.

In fact, (*) ⇒ (**) since x ≤ ∇x. Conversely, applying successively the operators ∆ and ∇
to (**) and using Proposition IV.1.4(c)-(e), we get the last inequality in (*). 2

Next Prop. added Feb. 2014 (improvement from previous versions).

Proposition IV.5.8 Let G be a RS, and let ϕ = 〈〈 a
1
, . . . , a

n
〉〉 be a Pfister form over G.

Then,

(1) D
G

(ϕ) and Dt
G

(ϕ) are subsemigroups, downwards closed under the representation partial
order of G. Further,

(2) 0 ∈ Dt
G

(ϕ) ⇒ Dt
G

(ϕ) = G.

(3) If −1 ∈ DP
G

(〈 a
1
, . . . , a

n
〉), then the Pfister form ϕ is universal in G.

Further, we get an alternative proof of the separation property for Pfister forms (Corollary
I.5.7 ): for a ∈ G,

(4) (i) a ∈ D
G

(ϕ)⇔ For all h ∈ X
G
, h(a) ∈ D

3
(h ∗ ϕ).

(ii) a ∈ Dt
G

(ϕ)⇔ For all h ∈ X
G
, h(a) ∈ Dt

3
(h ∗ ϕ).

Proof. (1) Multiplicativity follows from Theorem IV.5.7 (1,2) (for D and Dt, respectively),
since ε

G
(xy) = ε

G
(x)4 ε

G
(y) ≤ ε

G
(x)∨ ε

G
(y) (in P

G
). As for the second assertion, if x, y ∈ G

and x≤
G
y, then ε

G
(x) ≤ ε

G
(y) (in P

G
), and the conclusion follows, again, using IV.5.7 (1)

for D, and IV.5.7 (2), for Dt.

(2) Since both 0, 1 are transversally represented by ϕ in P
G

, Proposition IV.5.2 (3) implies that
ϕ iss universal in P

G
. Since ϕ is Pfister and has entries in G, by Corollary IV.4.7 universality

is reflected from P
G

down to G.

Let ψ := 〈 a
1
, . . . , a

n
〉. Up to a permutation of entries, ϕ can be written as ψ⊕θ for some form

θ over G; hence, D
G

(ψ)⊆D
G

(ϕ), and the same inclusion holds in P
G

. From I.2.8 (3) we get

−1 ∈ Dt
P
G

((−1)2ϕ) = Dt
P
G

(ϕ). By (1), Dt
P
G

(ϕ) = P
G

and, by Corollary IV.4.7, ϕ is universal

in G.

(i) The implication (⇒) is clear (any h ∈ X
G

is a RS-morphism).

(⇐) Assume a 6∈ D
g
(ϕ). By IV.6.5 (1), in P

G
we have ε

G
(a) 6≤

∨n

i=1
ε
G

(a
i
)∨ c. By Proposition

IV.2.5 (i) there is a PA-character σ of P
G

such that (in 3) σ(ε
G

(a)) > σ(
∨n

i=1
ε
G

(a
i
)) =
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∨n

i=1
σ(ε

G
(a
i
))∨ 0 (σ is a lattice homomorphism). Since 3 itself is a PA, IV.6.5 (1) gives

(−1 =)(σ ◦ ε
G

)(a) 6∈ D
3
((σ ◦ ε

G
) ∗ ϕ); but σ ◦ ε

G
∈ X

G
.

(ii) follows from IV.6.5 (2) by an argument similar to that proving (4.i). 2

Remark. Item (3) fails with −1 replaced by 0: 0 ∈ Dt
P
G

(〈 0 〉) but D
G

(〈〈 0 〉〉) = {1}.

Next we deal with representation by multiples of Pfister forms.

Theorem IV.5.9 Let G be a RS, x, b, a
1
, . . . , a

n
∈ G, and let ϕ = 〈〈 a

1
, . . . , a

n
〉〉. Then,

(1) x ∈ D
G

(b ϕ) ⇔ x = b2x and (in P
G

) ε
G

(bx) ≤ c ∨
∨n

i=1
ε
G

(a
i
).

(2) x ∈ Dt
G

(b ϕ) ⇔ x = b2x and (in P
G

) ε
G

(bx) ≤ ε
G

(b2) ∨
∨n

i=1
∆(ε

G
(a
i
)).

Proof. (1) is just a restatement of Remark IV.4.6 (ii) using the characterization of the elements
represented by Pfister forms in Theorem IV.5.7 (1) (one can also give a proof involving only
Post algebra operations). Unfortunately, we can only offer a long proof for item (2).

(2) As in IV.4.6 (ii), we have:

x ∈ Dt
G

(b ϕ) ⇔ x = b2x and bx ∈ Dt
G

(b2ϕ).

Then, we must prove:

bx ∈ Dt
G

(b2ϕ) ⇔ (in P
G

) ε
G

(bx) ≤ ε
G

(b2) ∨
∨n

i=1
∆(ε

G
(a
i
)).

By Corollary IV.4.7 (3) we may assume that G (= P ) is a Post algebra, and hence omit
reference to ε

G
. Thus, the preceding equivalence boils down to proving that

(i) With C denoting the set of coefficients of ϕ,

(I)
∧

z∈C
∇b2z ≤ ∇bx ≤ (

∧
z∈C
∇b2z)∨ (

∨
z∈C

∆b2z), and

(II) (
∧

z∈C
∇b2z)∧ (

∨
z∈C

∆b2z) ≤ ∆bx ≤
∨
z∈C

∆b2z ,

is equivalent to

(ii) bx ≤ b2 ∨
∨n

i=1
∆a

i
.

Proving this equivalence will require to compute explicitly the quantities occurring in (I)
and (II). In order to achieve this we first prove:

Lemma IV.5.10 Let P be a Post algebra, and let b, x, y ∈ P . Recall that c denotes the center
of P . Then, we have:

(i) b2(x∨ y) = b2x∨ b2y; (ii) b2(x∧ y) = b2x∧ b2y; (iii) b2 ≤ c; (iv) b2c = c;

(v) b2 ≤ bx; (vi) bx ≤ y ⇒ bx ≤ b2y; (vii) ∇b2 ∧∆b2x = ⊥;

(viii) ∇b2 ∨∆b2x = ∇b2 ∨∇x; (ix) ∇b2 ≤ ∇bx.

Proof. (i) is the distributivity of symmetric difference over join, familiar from Boolean algebras.
(ii) – (vi) are proved by truth-table checking (see IV.2.6); as an illustration we prove (vi). Given
a character h, if h(b) 6= 0, then h(b2) = 1, and from the assumption we get h(b)h(x) ≤ h(y) =
h(b2)h(y); if h(b) = 0, the inequality to be checked holds trivially.
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Item (ix) follows by applying ∇ to (v). Items (vii) and (viii) follow from the first identity
in Fact IV.5.4 by trivial manipulations, using that elements of the form ∇z are Boolean. 2

Returning to the proof of Theorem IV.5.9, since 1 ∈ C, from IV.5.10 (ii) we get:

(*)
∧

z∈C
∇b2z = ∇(

∧
z∈C

b2z) = ∇(b2 ·
∧

z∈C
z) = ∇b2.

Note also that
∨
z∈C

b2z = b2 ·
∨
z∈C

z = b2 ·
∨n

i=1
a
i

(IV.5.10 (i)). Using the identity ∆b2z =

∆z ∧¬∇b2 (IV.5.4 (i)), we obtain:

(**)
∨
z∈C

∆b2z = ∆(
∨
z∈C

b2z) = ∆(b2 ·
∨n

i=1
a
i
) = ¬∇b2 ∧

∨n

i=1
∆a

i
.

Substituting (*) and (**), the inequalities (I) and (II) get, respectively, reduced to:

(I′) ∇b2 ≤ ∇bx ≤ ∇b2 ∨ (¬∇b2 ∧
∨n

i=1
a
i
) = ∇b2 ∨

∨n

i=1
∆a

i
, and

(II′) ⊥ ≤ ∆bx ≤ ¬∇b2 ∧
∨n

i=1
∆a

i
.

Since the left inequality in (I′) is valid (IV.5.10 (ix)), (I′) and (II′) boil down to their right-hand
side inequalities. Now we prove:

(ii)⇒ (i). Applying the (monotonous) operator ∇ to (ii) and using IV.1.4 (e), gives (I′). Next,

apply the operator ∆ to (ii) and use ∆b2 = ⊥ to get ∆bx ≤
∨n

i=1
∆a

i
. From ∇b2 ≤ ∇b(−x)

(IV.5.10 (ix)) we get ∆bx ≤ ¬∇b2, which proves (II′).

(i) ⇒ (ii). It suffices to show that the right-hand side inequalities in (I′) and (II′) imply (ii).
Using the identity z = (c∧∇z)∨∆z (IV.1.4 (i)), (I′) and (II′) yield:

(III) bx = (c ∧∇bx)∨∆bx ≤ [ c ∧ (∇b2 ∨
∨n

i=1
∆a

i
)]∨ (¬∇b2 ∧

∨n

i=1
∆a

i
)

= (c ∧∇b2)∨ (c ∧
∨n

i=1
∆a

i
)∨ (¬∇b2 ∧

∨n

i=1
∆a

i
) .

Note that ∆b2 = ⊥ implies b2 = c∧∇b2, and that axiom [L3 (ii)] (IV.1.1) yields b2 ∨¬∇b2 =
b2 ∨¬ b2. Substituting these identities in the last term of (III) and distributing, we obtain:

(IV) bx ≤ [ b2 ∨ (c ∧
∨n

i=1
∆a

i
)∨
∨n

i=1
∆a

i
]∧ [ b2 ∨¬∇b2 ∨ (c ∧

∨n

i=1
∆a

i
) ]

= (b2 ∨
∨n

i=1
∆a

i
)∧ [ b2 ∨¬ b2 ∨ (c ∧

∨n

i=1
∆a

i
) ] .

Kleene’s inequality IV.1.2 (b) implies c ≤ b2 ∨¬ b2; thus, (IV) yields:

bx ≤ (b2 ∨
∨n

i=1
∆a

i
)∧ (b2 ∨¬ b2) = b2 ∨ (¬ b2 ∧

∨n

i=1
∆a

i
) ≤ b2 ∨

∨n

i=1
∆a

i
,

as required. This completes the proof of Theorem IV.5.9. 2

As a corollary to Theorem IV.5.9 we obtain some properties of the value sets of Pfister
forms and their multiples in RSs that are weak versions of results well known in the context of
fields and reduced special groups.

Corollary IV.5.11 Let G be a RS, b, a
1
, . . . , a

n
∈ G, and let ϕ = 〈〈 a

1
, . . . , a

n
〉〉. Then,

(1) b ∈ D
G

(ϕ) ⇒ D
G

(b ϕ) = D
G

(ϕ) ∩ {x ∈ G |x = b2x}.
(2) b ∈ Dt

G
(ϕ) and x ∈ Dt

G
(b ϕ) ⇒ x ∈ Dt

G
(ϕ).

(3) b ∈ Dt
G

(ϕ) ⇒ Dt
G

(b ϕ) = b ·Dt
G

(ϕ) = Dt
G

(ϕ) ∩ {x ∈ G |x = b2x}.
The separation properties of IV.5.8 (4) also hold for multiples of Pfister forms:

(4) (i) a ∈ D
G

(b ϕ)⇔ For all h ∈ X
G
, h(a) ∈ D

3
(h(b) · (h ∗ ϕ)).

(ii) a ∈ Dt
G

(b ϕ)⇔ For all h ∈ X
G
, h(a) ∈ Dt

3
(h(b) · (h ∗ ϕ)).
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Proof. (1) Note that D(b ψ) = b ·D(ψ) holds for arbitrary forms ψ (this follows easily from
Proposition I.2.8 (2)–(4)). Let b ∈ D

G
(ϕ); since D

G
(ϕ) is a subsemigroup of G, D

G
(b ϕ) =

b · D
G

(ϕ)⊆D
G

(ϕ). If x ∈ D
G

(ϕ), then bx ∈ D
G

(ϕ), and b2x ∈ D
G

(b ϕ). If in addition

x = b2x, we get x ∈ D
G

(b ϕ).

(2) Let b ∈ Dt
G

(ϕ); by IV.5.7 (2), ε
G

(b) ≤
∨n

i=1
∆ε

G
(a
i
), in P

G
. Note that ε

G
(b2) ≤ ε

G
(b).

By IV.5.9 (2), x ∈ Dt
G

(b ϕ) implies x = b2x and ε
G

(bx) ≤ ε
G

(b2) ∨
∨n

i=1
∆ε

G
(a
i
). Hence,

ε
G

(bx) ≤
∨n

i=1
∆ε

G
(a
i
), and we get bx ∈ Dt

G
(ϕ). Since Dt

G
(ϕ) is closed under multiplication,

x = b2x ∈ Dt
G

(ϕ).

(3) The inclusion b · Dt
G

(ψ)⊆Dt
G

(b ψ) holds for arbitrary ψ (I.2.8 (2)). Conversely, if x ∈
Dt
G

(b ϕ), then x = b2x and bx ∈ Dt
G

(ϕ); hence, x = b(bx) ∈ b · Dt
G

(ϕ). For the second

equality, item (2) gives the inclusion D
G

(b ϕ)⊆D
G

(ϕ) ∩ {x ∈ G |x = b2x}. For the converse,

if x = b2x and x ∈ Dt
G

(ϕ), we get bx ∈ Dt
G

(ϕ), as Dt
G

(ϕ) is multiplicatively closed; hence,

x = b(bx) ∈ b ·Dt
G

(ϕ). 2

(4) (i) For the non-trivial implication (⇐), assuming a 6∈ D
G

(b ϕ), IV.5.7 (1) implies a 6= b2a

or, that in P
G

we have ε
G

(ba) 6≤
∨n

i=1
ε
G

(a
i
)∨ c. Since X

G
separates points, if the first

alternative holds, there is h ∈ X
G

so that h(a) 6= h(b)2h(a), and IV.5.7 (1) applied in 3 yields

h(a) 6∈ Dt
3
(h(b) · (h ∗ ϕ)). If a = b2a and the second alternative holds, by IV.2.5 (i) there is a

PA-character σ such that (in 3) σ(ε
G

(ba)) > σ(
∨n

i=1
ε
G

(a
i
)∨ c) =

∨n

i=1
σ(ε

G
(a
i
))∨ 0. From

IV.5.7 (1) applied in the PA 3, we get (σ ◦ ε
G

)(a) 6∈ D
3
((σ ◦ ε

G
) ∗ ϕ), with σ ◦ ε

G
∈ X

G
.

(ii) is proved by a similar argument, using IV.5.7 (2) instead. 2

IV.6 Some model theory of Post algebras

In this section we prove some model-theoretic properties of Post algebras. Proposition IV.6.1 —
an immediate consequence of the characterization of RS-Post algebras in Theorem IV.3.2 (4)—
shows that these structures admit a first-order universal/positive-primitive axiomatisation in
the language L

RS
for real semigroups. This automatically yields a number of presevation results

for Post algebras under certain algebraic constructions (Proposition IV.6.3), as well as the fact
that the canonical embedding of a real semigroup, G, into its Post-hull is not pure unless G
itself is a Post algebra (Proposition IV.6.5). The remainder of the section is devoted to show
that, conversely, any RS-embedding of Post algebras is pure (Theorem IV.6.6). 2

Proposition IV.6.1 (Axioms for RS-Post algebras) The class of RS-Post algebras is axiom-
atized in the first-order language L

RS
for real semigroups by the following sentence, together

with the axioms for RSs:

[RS-PA] ∀x ∃yzw
[
y ∈ Dt(1,−x2)∧xy = 0∧ z ∈ Dt(x2,−x)∧w ∈ Dt(x2, x)∧ zw = 0

]
. 2

Remark IV.6.2 Manifestly, axiom [RS-PA] is of the form ∀xψ(x), where ψ is a positive-
primitive L

RS
-formula, i.e., a formula of the form ∃v θ(x, v), with θ a conjunction of atomic

L
RS

-formulas. We shall refer to the formula ψ as the positive-primitive matrix of the
formula in [RS-PA]. 2

The logical form of the axioms above yields:
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Proposition IV.6.3 (1) The class of RS-Post algebras is closed under the following construc-
tions :

— Inductive limits (colimits) over a right-directed index set.

— Reduced products 4 (in particular, arbitrary products).

Further,

(2) Let f : G−→H be a surjective RS-homomorphism, where G,H are RSs. If G is a RS-Post
algebra, so is H.

In particular,

(3) Any quotient G/≡ of a RS-Post algebra, modulo a RS-congruence ≡ (II.2.1) is a RS-Post
algebra.

Hence,

(4) Quotients of RS-Post algebras modulo saturated sets (II.3.B ) are RS-Post algebras.

Proof. (1) Closure under inductive limits and reduced products is known to hold for classes of
structures (in an arbitrary language) axiomatized by first-order sentences of the form
∀v (ϕ

1
→ϕ

2
), where ϕ

1
, ϕ

2
are positive-primitive formulas (cf. [DM6], Appendix A, Thms.

A5, A7 OJO! Correct this ref.). The axioms for RSs and axiom [RS-PA] are of this form.

(2) We check that, for arbitrary structures A, B with language L, say, if f : A−→B is a

surjective L-morphism, θ is an L-sentence of the form θ : ∀v ∃x
∧

i
ϕi(v, x), with the ϕi atomic

L-formulas, and A |= θ, then B |= θ .

This is routine model-theoretic verification: Let b ∈ B, and let a be a tuple in A such that

f(a) = b. Since A |= θ there is a′ ∈ A so that A |=
∧

i
ϕi[a, a′]. Since the ϕi are atomic and f

is a L-morphism, B |= ϕi[f(a), f(a′)] holds for all i, whence B |= ∃x
∧

i
ϕi[b, x]. Since b is an

arbitrary tuple in B we have proved B |= θ .

(3) is a particular instance of (2) with f = π, the canonical quotient map G−→G/≡ given by
Definition II.2.1, and (4) is a particular case of (3), cf. II.3. 2

Remark. Note that item (4) of this Proposition applies, in particular, to the various types of
quotients treated in § II.3: quotients modulo saturated subsemigroups, quotients modulo tran-
versally saturated subsemigroups, localizations and residue spaces at saturated prime ideals.

2

Recall from Corollary IV.4.7 (3) that the Post-hull embedding ε
G

: G−→P
G

of a RS is a
complete embedding. Using the axiomatization of RS-Post algebras given in Proposition IV.6.1
we show in Proposition IV.6.5 that, in general, this embedding does not have the stronger
property of purity.

Definition IV.6.4 A RS-homomorphism 5 f : G−→H is a pure embedding if and only if
it reflects positive-primitive (equivalently, positive-existential ) L

RS
-formulas from H down to

G : for every such formula ϕ(v
1
, . . . , v

n
) on n variables, and all a

1
, . . . , a

n
∈ G,

H |= ϕ[f(a
1
), . . . , f(a

n
)] ⇒ G |= ϕ[a

1
, . . . , a

n
]. 2

(The converse implication holds automatically because f is a RS-morphism.) For more details
on pure embeddings, see [DM1], Ch. 5, § 3, pp. 91–92.

Proposition IV.6.5 Let G be a RS and P be a (RS-)Post algebra. Then,

4Cf. [CK], Def. 4.1.6 and § 6.2, or [H], § 9.4.
5This notion applies, mutatis mutandis, to morphisms of arbitrary first-order structures.
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(1) If f : G−→P is a pure embedding of RSs, then G is a Post algebra.

In particular,

(2) The canonical Post-hull embedding ε
G

: G −→ P
G

is not pure unless G itself is a Post

algebra. In the latter case, ε
G

is an isomorphism of G onto P
G

.

Proof. (1) Assume G is not a Post algebra. Since G is supposed to be a RS, then G 6|= [RS-PA],
and there is a ∈ G such that G |= ¬ψ[a], where ψ is the positive-primitive matrix of axiom
[RS-PA]. Since P |= [RS-PA], we have P |= ψ[f(a)], implying that f is not pure, contradiction.

(2) follows from (1) (f = ε
G

). The last assertion in (2) is proven by chasing the commutative
square in IV.4.2 (ii) with the appropriate entries. 2

Next we establish the converse to item (1) in the preceding Proposition, namely :

Theorem IV.6.6 Let P
1
, P

2
be Post algebras. Any injective RS- (equivalently, PA-) morphism

h : P
1
−→P

2
is a pure embedding (for both the languages of real semigroups and of Post

algebras).

Remark. A similar result for reduced special groups and Boolean algebras was proved in
[DM4], Cor. 2.2 (c), p. 951. The proof below follows the same line of argument, replacing the
Stone representation theorem for BAs by the constructions explained in Theorem IV.1.6. 2

The proof will require some

Preliminaries and Notation IV.6.7 (1) Recall from the Representation Theorem IV.1.7 (ii)
that any Post algebra, P , is isomorphic to C(X

P
,3), where X

P
is the character space of P .

(2) Let L be a first-order language, let M be a L-structure, and let X be a Boolean space. M
is endowed with the discrete topology; C(X,M) is the set of continuous (i.e., locally constant)
functions of X into M. The sets C(X,M) and MX are L-structures by pointwise defining
the operations and relations of L, and the denotation of any constant c of L as the function
with constant value cM. C(X,M) is embedded in MX by sending each f ∈ C(X,M) to its
underlying (set-) function, i.e., “forgetting” continuity. We denote this L-embedding by γ.
Then, the following holds :

Proposition A. ([DM4], Prop. 2.1, pp. 950-951) The embedding γ : C(X,M)−→MX is exis-
tentially closed, i.e., it reflects the validity of existential L-sentences (not necessarily positive )
with parameters in C(X,M), from MX down to C(X,M). 2

Note that no restrictions are imposed on the cardinality of M. We shall use this result
when M is the real semigroup (and Post algebra) 3. Note that both C(X,3) and 3X have the
structure of a RS and of a PA (by the Representation Theorem IV.1.7 (i) and the fact that the
class of PAs is closed under arbitrary products).

(3) We shall also need the following known result from the theory of Post algebras :

Proposition B. ([BD], Thm. X.3.4, p. 196) A Post algebra is injective iff the Boolean algebra
B(P ) of Boolean elements of P (IV.1.5 ) is complete. In particular, (since B(3X) = 2X), the
Post algebras 3X are injective. 2

Proof of Theorem IV.6.6. By IV.2.11, RS-morphisms of Post algebras are the same as PA-
morphisms. We do the proof for PA-morphisms.

The result will be a consequence of the following facts, proved below :
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(i) The map h induces by composition a continuous surjection h∗ : X
2
−→X

1
: for y ∈ X

2
(i.e., y : P

2
−→3 a PA character), h∗(y) := y ◦ h ∈ X

1
.

(ii) In turn, h∗ induces, again by composition, an injective PA homomorphism ĥ : 3X1 −→3X2 :
for f : X

1
−→3, ĥ(f) := f ◦ h∗ ∈ 3X2 .

(iii) The diagram
C(X1,3) = P

1

γ1
��

h //

[D]

P
2

γ2
��

= C(X2,3)

3X1

ĥ

// 3X2

of Post-algebra homomorphisms, commutes.

Using (i) – (iii), the theorem is proved as follows. Since ĥ is an injective PA homomorphism

((ii)) and 3X1 is an injective PA (Proposition B in IV.6.7 (3)), there is a PA homomorphism
g : 3X2 −→3X1 such that g ◦ ĥ = id (on 3X1), i.e, g is a retract of ĥ; in particular, ĥ is pure.
Since the embeddings γ

i
(i = 1, 2) are pure (Proposition A in IV.6.7 (2)), commutativity of the

diagram in (iii) yields at once that h is pure.

Now we prove statements (i) – (iii).

Proof of (i). Continuity. The subbasic clopens for the constructible topology on X
i

(i = 1, 2)

are the sets of the form [[ a = j ]] = {z ∈ X
i
| z(a) = j}, with a ∈ P

i
and j ∈ 3. We have,

(h∗)−1[ [[ a = j ]] ] = {y ∈ X
2
|h∗(y)(a) = j} = {y ∈ X

2
| (y ◦ h)(a) = j} =

= {y ∈ X
2
| y(h(a)) = j} = [[h(a) = j ]] ,

proving that the inverse image of a subbasic clopen of X
1

under h∗ is subbasic clopen in X
2

.

Surjectivity. Let x ∈ X
1

be a PA character. We must find y ∈ X
2

so that h∗(y) = y ◦ h = x.

Note that injectivity of h entails that h[x−1[>, c]] is a filter basis of P
2
. Otherwise, there

are b
1
, . . . , b

n
∈ x−1[>, c] such that h(b

1
)∧ . . . ∧h(b

n
) = h(b

1
∧ . . . ∧ b

n
) = ⊥, and injectivity

of h yields ⊥ = b
1
∧ . . . ∧ b

n
∈ x−1[>, c], contradiction.

Let P ⊆P
2

be a maximal filter containing h[x−1[>, c]]; then, h−1[P] ⊇ x−1[>, c] and, by the
maximality of the latter (IV.1.6 (4)), these sets are equal. If Q is the minimal filter of P

2
under

P (see IV.1.6 (2),(4)), then h−1[Q] = x−1[>]. By IV.1.6 (5) there is a PA-character y : P
2
−→3

such that y−1[>, c] = P and y−1[>] = Q. Hence, h−1[y−1[>, c]] = h−1[P] = x−1[>, c] and
h−1[y−1[>]] = h−1[Q] = x−1[>]. This clearly entails y ◦ h = x.

Proof of (ii). Injectivity is routine checking using the surjectivity of h∗ . That ĥ is a Post-

algebra homomorphism follows from the pointwise definition of the operations in 3X . To
illustrate the argument we check that ĥ preserves the nabla operator, i.e., for f ∈ 3X1 ,

(*) ĥ(∇
1
f) = ∇

2
(ĥ(f)),

where ∇
i

denotes the nabla operator in 3Xi (i = 1, 2). With ∇
3

denoting nabla in 3, the
pointwise definition of nabla gives, for x ∈ X

2
:

ĥ(∇
1
f)(x) = ((∇

1
f) ◦ h∗)(x) = (∇

1
f)(h∗(x)) = ∇

3
(f(h∗(x))), and

(∇
2
(ĥ(f)))(x) = (∇

2
(f ◦ h∗))(x) = ∇

3
((f ◦ h∗)(x)) = ∇

3
(f(h∗(x))),

establishing (*). The remaining verifications are left to the reader.
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Proof of (iii). Since the only effect of the maps γ
i

is to forget continuity of the functions in

C(X
i
,3), we may safely omit them from the notation, and prove :

(I) h(x) = ĥ(x) for all x ∈ P
1

.

By the Representation Theorem IV.1.7 (ii), the isomorphism between P and C(X
P
,3) is given

by evaluation :
x ∈ P 7−→ evx ∈ C(XP

,3) .

Hence, for x ∈ P
1

and δ ∈ X
2

(i.e., δ : P
2
−→3 a PA character), we have :

(II) h(x)(δ) = ev
h(x)

(δ) = δ(h(x)) = evx(δ ◦ h).

Likewise, for f ∈ 3X1 (i.e., any map f : X
1
−→3), we have, for δ ∈ X

2
:

(III) ĥ(f)(δ) = (f ◦ h∗)(δ) = f(h∗(δ)) = f(δ ◦ h) = ev
f
(δ ◦ h) .

In particular, when f = x ∈ P
1

= C(X
1
,3), (II) and (III) prove that diagram [D] commutes,

completing the proof of Theorem IV.6.6. 2

In the reverse direction to IV.6.5, Theorem IV.6.6 yields:

Corollary IV.6.8 Any injective RS-morphism from a Post algebra into a real semigroup is a
pure embedding (and hence, by Remark IV.7.5 (ii), also a complete embedding). In particular,
the canonical embedding of 3 into any real semigroup is pure (and complete).

Proof. Let f : P −→H be an injective RS-morphism from the Post algebra P into the RS H.
In the commutative diagram

P
P

P

(D)

?

- H

ε
P

f

P
H

ε
H

P (f)

?
-

(see IV.4.2 (ii)) we have P
P

= P and ε
P

= id
P

(IV.4.2 (iv)), whence ε
H
◦ f = P (f). Let

ϕ(v
1
, . . . , v

n
) be a positive-existential L

RS
-formula, and let a

1
, . . . , a

n
∈ P be such that H |=

ϕ[f(a
1
), . . . , f(a

n
)]. Since ε

H
preserves positive-existential formulas, ε

H
◦ f = P (f) yields

P
H
|= ϕ[P (f)(a

1
), . . . , P (f)(a

n
)], wherefrom follows P |= ϕ[a

1
, . . . , a

n
], as P (f) is pure by

Theorem IV.6.7. 2

IV.7 Rings and Post algebras

We now characterize the rings whose associated real semigroup is a Post algebra (IV.7.1), and
give concrete examples, notably a certain class of von Neumann-regular rings (Example IV.7.3).
We also prove (Theorem IV.7.4) that every Post algebra is “realized” by a ring, i.e., isomorphic
to the RS associated to some ring. 2

Though proofs are done for the case of RSs of the form G
A

= G
A,ΣA2 , where A is a semi-real

ring, all relevant results in this section carry over to the more general case of RSs of the form
G
A, T

, where T is a preorder of A; their generalization is left as an exercise to the interested

reader.
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The next Proposition yields a pure ring- (and order-) theoretic characterization of those
rings A whose associated RS is a Post algebra.

Proposition IV.7.1 Let A be a semi-real ring. The following are equivalent:

(1) G
A

is a Post algebra.

(2) a) Any two real prime ideals of A are incomparable under inclusion.

b) For every real prime ideal P of A, the fraction field K
P

of A/P has a unique order.

Proof. To ease notation, write X = X
GA

( = Sper (A)).

(2) ⇒ (1). We check condition (2) of Theorem IV.3.2. Let h
1
, h

2
, h

3
∈ X be such that

h
1
h

2
h

3
∈ X. With Z(h

i
) = {a ∈ A |h

i
(a) = 0}, Lemma II.2.11 (1) shows that there is

i ∈ {1, 2, 3} so that Z(h
j
)⊆Z(h

i
) for all j ∈ {1, 2, 3}. Since these are real prime ideals,

assumption (2.a) implies Z(h
1
) = Z(h

2
) = Z(h

3
) ( = P , say).

We know that each h ∈ X with Z(h) = P induces a total order of A/P , namely: α
h

=
{a/P |h(a) ∈ {0, 1}} (hence also one in K

P
). Assumption (2.b) implies, then, α

h1
= α

h2
=

α
h3

. Since h(a) = 1 (resp., −1) iff a/P >αh
0 (resp., <αh

0), equality of the orders α
hi

entails

h
1

= h
2

= h
3
.

(1) ⇒ (2). Item (4) of Theorem IV.3.2 implies that the saturated prime ideals in any RS-Post
algebra are an antichain under inclusion. Indeed, assume that P ⊂ Q are saturated prime
ideals of a RS-Post algebra, G, and let x ∈ Q \ P . By (4.i) in IV.3.2 there is y ∈ Dt

G
(1,−x2)

so that xy = 0. Then, xy ∈ P and, since x 6∈ P , we get y ∈ P ⊆Q. We also have 1 ∈ Dt
G

(y, x2)
which, by saturatedness of Q , yields 1 ∈ Q, contradiction.

In the case of a (semi-real) ring A, the saturated prime ideals of G
A

are in a one-one,
inclusion-preserving correspondence with the real primes of A (cf. II.1.9 and II.1.10). Hence,
if G

A
is a Post algebra, the real prime ideals of A also form an antichain for inclusion. This

proves (2.a).

As for condition (2.b), if P is a real prime ideal of A, by definition the quotient ring A/P
—and hence also K

P
— has at least one order. Further, we know that any order α of A/P

defines a character h
α

of G
A

by the rule h
α
(a) = sgn

α
(a/P ) = a(α) (a ∈ A), and, furthermore,

α 6= β ⇒ h
α
6= h

β
.

Suppose now that α, β are total orders of some quotient ring A/P . Since Z(h
α
) = Z(h

β
) =

P , we clearly have h2
α(a) = 1 if a 6∈ P , and = 0 if a ∈ P . Then h2

αhβ = h
β
, and the

characterization of Post algebras in IV.3.2 (2) entails h
α

= h
β
, which in turn implies α = β.2

Proposition IV.7.1 gives raise to some natural examples of rings whose associated RSs are
Post algebras.

Example IV.7.2 Let A =
∏n
i=1Ki

be a finite product of fields (i.e., A is a reduced semi-local
ring). Assume that at least one of the fields K

i
is formally real and that, whenever K

i
is

formally real, it has a unique order. Then, G
A

is a Post algebra.

Proof. It is well-known (or, otherwise, easily verified) that the prime ideals of A are all of
the form P

i
= K

1
× · · · ×K

i−1
× {0} ×K

i+1
× · · · ×K

n
(i ∈ {1, . . . , n}). In particular, they

are maximal, and hence pairwise incomparable under inclusion. Thus, condition (2.a) in IV.7.1
is fulfilled. Since A/P

i
= K

i
, the real primes are those P

i
such that K

i
is formally real.
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The assumption that at least one K
i

is formally real guarantees that A is semi-real, and the
assumption that the K

i
’s are uniquely ordered whenever formally real ensures that condition

(2.b) in IV.7.1 holds. 2

Generalizing this example, we have:

Example IV.7.3 Let A be a von Neumann-regular ring. If A is semi-real and all residue
fields of A modulo maximal ideals are uniquely ordered, then G

A
is a Post algebra.

Note. (Commutative) von Neumann-regular rings ring!von Neumann-regularvon Neumann-
regular ring are those in which every principal ideal is generated by an idempotent. For
information concerning rings of this type, see [Pi] or [DM5].

Proof. All prime ideals in a von Neumann-regular ring are maximal. In particular, condition
(2.a) in IV.7.1 is automatically fulfilled, and Spec(A) is a Boolean space. In this case, the
stalk of the structure sheaf (or affine scheme) of A at a point P ∈ Spec(A) is the field A/P .
As in the previous example, our assumptions have been made so as to guarantee that A is
semi-real and that condition (2.b) in Proposition IV.7.1 is fulfilled. So, G

A
is, in fact, a Post

algebra. 2

Comment. One may think, at first sight, that Post algebras have, in the context of real
semigroups (and rings), a behaviour similar to that of Boolean algebras in the context of
reduced special groups (and fields). Proposition IV.7.1 and the ensuing examples show that
this similarity is not quite complete. In fact, in [DM1], p. 59 and pp. 78 ff, it is shown that the
(formally real) fields K whose associated RSG, G

red
(K), is a Boolean algebra are exactly the

so-called SAP fields; these may have many orders. In contrast, Proposition IV.7.1 shows that
the situation is more restrictive in the context of RSs and rings. This different behaviour can
be traced to the fact that adding a zero to a Boolean algebra (viewed as a RSG) —as done in
I.2.2 (3)— does not produce a Post algebra (except in the case Z

2
). Indeed, a Boolean algebra,

B, is just the set of invertible elements of the Post hull of the real semigroup B∗ = B ∪ {0}
obtained by adding a zero to B. 2

A well-known result due to Craven (see [P], Thm. 6.9, pp. 97–98) says that every Boolean
algebra is isomorphic, as a special group, to the RSG of some field. Our next result establishes
a similar “realizability” result of Post algebras by rings.

Theorem IV.7.4 Let P be a Post algebra and let X
P

= X be its set of characters. Then P is
RS-isomorphic to the real semigroup of the ring C(X,Z) of integer-valued continuous functions
on X (discrete topology in Z; pointwise operations). Further, the same result holds replacing
Z by any uniquely ordered field (endowed with the discrete topology).

Proof. By the Representation Theorem IV.1.7 (ii), P = C(X,3); let A = C(X,Z). The
elements of A are locally constant functions; that is,

(*) f ∈ A iff there is a finite partition {U
1
, . . . , U

k
} of X into non-empty clopens, and

c
1
, . . . , c

k
∈ Z so that f =

∑k
i=1 ci

χ
Ui

,

where χ
U

is the characteristic function of U : for x ∈ X,

χ
U

(x) =

{
1 if x ∈ U
0 if x 6∈ U.
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Claim. A set I ⊆A is a (proper) real prime ideal if and only if there is x
0
∈ X such that

I = {f ∈ A | f(x
0
) = 0}.

[Recall that an ideal I is real iff for all a
1
, . . . , a

n
∈ A,

∑n
i=1 a

2
i
∈ I implies a

1
, . . . , a

n
∈ I.]

Proof of Claim. (⇐) Clearly, any set of the form {f ∈ A | f(x
0
) = 0} is a real prime ideal.

(⇒) Suppose first that Z(f) = f−1[0] = ∅ for some f ∈ I. Let f =
∑k

i=1 ci
χ
Ui

, with the

clopens U
i

as in (*). Since χ2
U

= χ
U

and χ
Ui
· χ

Uj
= 0 for i 6= j, we have f2 =

∑k
i=1 c

2
i
χ
Ui

.

Since the U
i
’s are non-empty and Z(f2) = ∅, we have c

i
6= 0, i.e., c

i
≥ 1, for all i = 1, . . . , k.

As the U
i
’s form a partition of X,

∑k
i=1

χ
Ui

= 1, and we can write:

f2 = 1 +
∑k

i=1 (c2
i
− 1)χ

Ui
,

with c2
i
− 1 ≥ 0 for all i. Since I is real, χ2

U
= χ

U
, and c2

i
− 1 is a sum of squares, f2 ∈ I

entails 1 ∈ I, a contradiction. This shows that Z(f) 6= ∅ for all f ∈ I.

Consider the family {Z(f) | f ∈ I} of non-empty closed subsets of X. Since
⋂n

i=1
Z(f

i
) =

Z(
∑k

i=1 f
2
i
) for f

1
, . . . , f

n
∈ A, this family has the finite intersection property. By compactness

of X,
⋂

f∈I
Z(f) 6= ∅ . If x

0
is in this set, I ⊆{f ∈ A | f(x

0
) = 0}.

To prove the reverse inclusion, assume f(x
0
) = 0. Representing f in the form f =∑k

i=1 ci
χ
Ui

, as above, there is a unique index i so that x
0
∈ U

i
; we may assume i = 1. Then,

χ
U1

(x
0
) = 1 and χ

Ui
(x

0
) = 0 for i ∈ { 2, . . . , k}; in particular, c

1
= 0. Since χ

Ui
·χ
X\Ui

= 0 ∈ I
and I is prime, either χ

Ui
∈ I or χ

X\Ui
∈ I. If the latter held for some i ≥ 2, the inclusion

I ⊆{f ∈ A | f(x
0
) = 0} would lead to the contradiction x

0
∈ U

1
∩ X \U

i
. Hence, χ

Ui
∈ I for

all i ∈ { 2, . . . , k}. We conclude that f =
∑k

i=1 ci
χ
Ui
∈ I, proving the Claim. 2

Remarks and Notation. (a) Clearly, two distinct points of X are separated by a function in
A. Hence, there is a unique point x

0
∈ X representing a real prime ideal in the form stated in

the Claim. For x ∈ X we write I
x

= {f ∈ A | f(x) = 0}.

(b) For x ∈ X, A/I
x
≈Z (as rings), via the map f 7→ f(x), f ∈ A. In particular, A/I

x
has

a unique order, and Sper (A) gets identified to the set of real prime ideals of A. Recall that,
for f ∈ A, f : Sper (A)−→3 denotes the map giving the sign of (the residue class of) f at
each element of the real spectrum (cf. I.1.2 (e)).

(c) In the sequel of this proof Sper (A) is endowed with the constructible topology, having
as a subbasis the sets [[ f = δ ]] = {I

x
| sgn(f(x)) = δ}, for f ∈ A and δ ∈ {1, 0,−1} = 3.

Obviously, the associated function f is continuous for this topology (3 discrete).

By the Duality Theorem I.5.1, in order to prove that the real semigroup G
A

= G
A,ΣA2

associated to the ring A (and its preorder
∑
A2) is isomorphic to the (RS associated to the)

Post algebra P = C(X,3), it suffices to show that their respective ARSs (Sper (A), G
A

) and
(X,P ) are isomorphic as abstract real spectra, which we do next; cf. [ARS-mor] in the proof
of Theorem I.5.1.

Let τ : X −→ Sper (A) denote the map τ(x) = I
x
. By the discussion in Remark (b) and

the Claim above, τ is surjective. We prove:

(1) τ is continuous.
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Clear, because τ−1[ [[ f = δ ]] ] = {x | sgn(f(x)) = δ} is clopen, as f : X −→Z is continuous.

From (1) we get:

(2) For f ∈ A, f ◦ τ ∈ C(X,3) = P .

By [ARS-mor] (cf. I.5.1), this shows that τ is a morphism of ARSs.

(3) τ is injective.

If x, y ∈ X, x 6= y, there is a clopen U so that x ∈ U, y ∈ X \ U , i.e., χ
U

(x) = 1, χ
U

(y) = 0;
since χ

U
∈ A, we get χ

U
∈ I

y
\ I

x
, whence, I

y
6= I

x
.

To complete the proof we must show that the map τ̂ : G
A
−→P induced by τ , i.e.,

τ̂(f) = f ◦ τ , is bijective.

(4) τ̂ is injective.

If f, g ∈ A are so that f 6= g, there is x ∈ X such that f(I
x
) 6= g(I

x
), i.e., f(τ(x)) 6= g(τ(x)),

i.e., τ̂(f) 6= τ̂(g).

(5) τ̂ is surjective.

Let α ∈ P = C(X,3). For δ ∈ Im(α)⊆3, set U
δ

= α−1[δ], a non-empty clopen of X; the sets
{U

δ
| δ ∈ Im(α)} partition X. Set f =

∑
δ∈Im(α) δ · χUδ . For x ∈ X we have:

f(τ(x)) = δ ⇔ f(I
x
) = δ ⇔ sgn (f(x)) = δ ⇔ x ∈ U

δ
⇔ α(x) = δ,

i.e., f ◦ τ = α, as required.

The last assertion, i.e., that P is realized by any ring of the form C(X,F ), where F is a
uniquely ordered field endowed with the discrete topology, is proved by a slight variant of the
preceding argument; as follows. Note first that F ⊆ C(X,F ) ( = A), via the constant functions.
Then, replace in the Claim the words “real prime ideal” by “prime ideal real over F”. An ideal
I ⊆A is called real over F iff

∑n
i=1 cia

2
i
∈ I, with a

i
∈ A and c

i
∈ F+ (i.e., c

i
> 0), implies

a
1
, . . . , a

n
∈ I. With this proviso the Claim remains true.

With notation as above, f2 =
∑k

i=1 c
2
i
χ2
Ui
∈ I and I real over F imply χ

Ui
∈ I for

i = 1, . . . , k, whence 1 =
∑k

i=1
χ
Ui
∈ I, contradiction (showing, as above, Z(f) 6= ∅ for all

f ∈ I). As in Remark (b) above, uniqueness of the order of F serves to identify Sper (A) with
the set of prime ideals of A real over F . The remainder of the proof proceeds as before. 2

Remark. The two examples given in the preceding Proposition show that one and the same
RS may be realized by very different rings, if at all. For example, in the case above, 2 is not
invertible in the ring C(X,Z), while it is in the ring C(X,F ). Likewise, C(X,Z) is not von
Neumann-regular, while C(X,F ) is. ring!von Neumann-regularvon Neumann-regular ring

Fact IV.7.5 The ring C(X,F ), with X a Boolean space and F a field with the discrete
topology, is von Neumann-regular.

Proof. It suffices to show that f2 divides f , for all f ∈ C(X,F ). As in the proof of Theorem
IV.7.4, f =

∑k
i=1 ci

χ
Ui

for some clopen partition {U
1
, . . . , U

k
} of X, and pairwise different

c
i
’s in F . If 0 occurs among the coefficients c

i
, we may assume c

1
= 0. Let c′

i
= c−1

i
if i ≥ 2,

or i = 1 and c
1
6= 0, while c′

1
= 0 if c

1
= 0. Let f ′ =

∑k
i=1 c

′
i
χ
Ui

. Then, f ′ ∈ C(X,F ). Since

χ
Ui
·χ
Uj

= 0 for i 6= j and χ
Ui

= χ2
Ui

, we clearly have f2 ·f ′ =
∑k

i=1 c
2
i
c′
i
χ
Ui

=
∑k

i=1 ci
χ
Ui

=

f , as contended. 2
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Chapter V

Spectral real semigroups

Introduction

In this chapter we carry out a detailed study of an important class of real semigroups, that
we call spectral . The abstract real spectra dual to these real semigroups were introduced
by Marshall in § 8.8 of [M] under the name “real closed abstract real spectra”1; he briefly
outlined some of their basic properties. We have adopted the name “spectral” in view of the
nowadays standard name for the objects of these RSs, namely spectral maps (here with values
in 3 = {1, 0,−1} endowed with the spectral topology); cf. [DST] and [KS].

One of our most significant results is that there is a full-fledged topological-algebraic dual-
ity —in fact, an anti-equivalence— between the category HNSS of hereditarily normal spec-
tral spaces with spectral maps, and the category SRS of spectral real semigroups with RS-
homomorphisms; see Theorem V.5.4. In fact, our results are finer and show (Theorem V.1.4)
that the structures (of language L

RS
= { · , 1, 0,−1, D}) dual to arbitrary spectral spaces verify

all axioms for real semigroups with the possible exception of [RS3b] (i.e., Dt(· , ·) 6= ∅, cf. I.2.4),

while this axiom is equivalent to the hereditary normality of the space (Theorem V.1.5).

The main thrust in sections V.3, V.4 and V.5 is directed at proving this duality, though
many other results are obtained as a by-product. Noteworthy among the latter is that any real
semigroup has a natural hull in the category SRS, with the required functorial properties; cf.
section V.4 and Theorem V.5.3 (ii) (the existence of this spectral hull was observed in [M], p.
177). Further,

(i) The spectral hull of a real semigroup is idempotent: iteration does not produce a larger
structure (Theorem V.4.5 and Corollary V.4.6).

(ii) Every RS-character of a real semigroup extends uniquely to its spectral hull (Corollary
V.5.5).

Note that similar results hold for the Post hull of a RS; cf. Theorem IV.4.2 (v) and Corollary
IV.4.7 (2).

A second type of result stems from the properties of the representation partial order (I.6.2) in
spectral RSs (it coincides with their pointwise defined order). Our main result in this direction
is Theorem V.6.6, which shows that the spectral RSs are exactly the real semigroups that are
distributive lattices in the representation partial order; distributivity is the crucial point here. In

1 A name presumably motivated by the homonymous terminology in the ring case, that we treat in broader
generality in section V.10 below.
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fact, this property is also equivalent to the existence of a lattice structure in the representation
partial order together with the fact that RS-characters are lattice homomorphisms (into 3).
We also prove (Theorem V.6.2) that any real semigroup generates its spectral hull as a lattice.

Another interesting feature is that the lattice operations ∧ and ∨ of a spectral RS are
first-order definable in terms of the real semigroup product operation and binary representation
relation by positive-primitive formulas (Theorem V.2.1 and Remark V.7.5). This yields a useful
first-order axiomatisation of the class of spectral RSs (Theorem V.7.4), having as a corollary
that the class of spectral RS is closed under (right-directed) inductive limits, reduced products
—in particular, arbitrary products— and, more significantly, also under quotients modulo RS-
congruences (II.2.1); see Proposition V.7.6.

In section V.7 we examine the lattice structure of the spectral RSs together with the invo-
lution “−” (multiplication with −1). This is done using the framework of the so-called Kleene
algebras (see IV.1.9 for definitions). It turns out that spectral RSs are exactly the Kleene
algebras verifying two additional requirements, stated in terms of their lattice structure and
constants 0, 1.

Our main result in section V.8 (Theorem V.8.2 and Corollary V.8.4) shows that the RS-
congruences of a spectral RS are determined by a constructible subset of its character space
(and conversely). Section V.9 is devoted to study the saturated prime ideals of spectral RSs.

In the final section V.10 we prove that the RS associated to any lattice-ordered ring is
spectral (Theorem V.10.4), and that the spectral hull of the RS associated to any semi-real
ring is canonically isomorphic to the RS of its real closure (Proposition V.10.5); cf. [M], Rmk.
(3), p. 178. This result exhibits a huge class of natural examples of spectral RSs among the
RSs associated to rings.

V.1 Spectral real semigroups. Basic theory.

V.1.1 Preliminaries and Notation. Basic notions on spectral spaces have been summarily
introduced in I.1.16. For general background on spectral spaces the reader is referred to [DST],
the notation of which we shall systematically use; certain results therein will be cited here as
needed. See also [KS], Kap. III.

(1) If X is a spectral space, the associated constructible topology is denoted by Xcon.

(2) Recall that a spectral space X is called hereditarily normal iff any of the following
equivalent conditions are verified:

(i) The specialization order of X is a root-system.

(ii) Every proconstructible subset of X endowed with the induced topology is normal.

(iii) Every open, quasi-compact subset of X endowed with the induced topology is normal.

A proof of the equivalence of these conditions can be found in [DST], Thm. 20.2.2.

(3) A map f : X−→Y between spectral spaces X,Y is called spectral iff the preimage of every
open and quasi-compact subset of Y under f is, again, open and quasi-compact. Each of the
following conditions is equivalent to f being spectral:

(i) f is continuous (for the spectral topologies) and continuous for the constructible topologies
of X and Y ([DST], Corol. 3.1.12).

(ii) f is continuous for the constructible topologies and monotone for the specialization orders,
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of X and Y ([DST], Lemma 5.6.6).

See also [DST], Corol. 4.2.3.

(4) We shall consider two different topologies and two different orders on the set {1, 0,−1}.
The first is the discrete topology and the linear order 1 < 0 < −1, already used in previous
sections, denoted, as above, by 3. The second is the spectral topology, where the singletons
{1} and {−1} are a basis of opens, endowed with the specialization partial order:

•
0

•
1

•
−1

The set {1, 0,−1} endowed with this topology (and order) will be denoted by 3sp. Clearly,
the singletons {±1} are quasi-compact and {0} is closed in 3sp. Note that (3sp)con is just the
discrete topology on 3.

Warning. Though 3 and 3sp differ by their orders and their topologies, we shall only consider
in the sequel the unique representation (and transversal representation) relation on {1, 0,−1}
that makes it a real semigroup, namely the relations given by Corollary I.2.5. 2

Definition V.1.2 Spectral maps f : X−→ 3sp from a spectral space X into 3sp will be called
spectral characters. The set of spectral characters on X will be denoted by Sp(X).2

(5) Clearly, f : X−→ 3sp is a spectral character iff f−1[1] and f−1[−1] are quasi-compact open
in X.

(6) (Product in Sp(X)) Sp(X) has a product operation: the pointwise defined product of
spectral characters h, g, is a spectral character; indeed,

(hg)−1[1] = (h−1[1] ∩ g−1[1]) ∪ (h−1[−1] ∩ g−1[−1]),

(hg)−1[−1] = (h−1[−1] ∩ g−1[1]) ∪ (h−1[1] ∩ g−1[−1]);

since X is spectral, the right-hand side of these equalities are quasi-compact open sets.

Obviously, Sp(X) contains the functions with constant values 1, 0,−1 (denoted by the same
symbols). Then, Sp(X) is a commutative semigroup and, since product is pointwise defined,
also a ternary semigroup.

(7) (Representation in Sp(X)) A ternary (representation) relation is pointwise defined: for
h, h

1
, h

2
∈ Sp(X),

h ∈ D
Sp(X)

(h
1
, h

2
) :⇔ ∀x ∈ X (h(x) ∈ D

3
(h

1
(x), h

2
(x))) .

Note that (by the definition of Dt in terms of D), also Dt
Sp(X)

is pointwise defined in terms of

Dt
3
. The structure 〈Sp(X), · , 1, 0,−1, D

Sp(X)
〉 will be denoted by Sp(X).

(8) (The pointwise partial order of Sp(X)) This order is induced by the total order 1 < 0 < −1
of 3 in the obvious way: for f, g ∈ Sp(X),

f ≤ g ⇔ ∀x ∈ X(f(x) ≤ g(x)) (in 3).

The structure Sp(X) is also endowed with a binary relation ≤
Sp(X)

defined as in I.6.2: for

f, g ∈ Sp(X),

(†) f ≤
Sp(X)

g :⇔ f ∈ D
Sp(X)

(1, g) and −g ∈ D
Sp(X)

(1,−f).
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Fact V.1.3 The relation ≤
Sp(X)

coincides with the pointwise partial order ≤.

Proof. Using I.2.5 it is easily checked by hand that the representation partial order ≤
3

of the
RS 3 (I.6.2) is just the order 1 < 0 < −1. Then, for f, g ∈ Sp(X) we have:

f ≤ g ⇔ ∀x ∈ X(f(x)≤
3
g(x))⇔ ∀x ∈ X [ f(x) ∈ D

3
(1, g(x))∧ − g(x) ∈ D

3
(1,−f(x)) ]

⇔ f ∈ D
Sp(X)

(1, g) ∧ − g ∈ D
Sp(X)

(1,−f)⇔ f ≤
Sp(X)

g .

(The equivalences are, respectively, the definition of ≤ together with the preceding observation,
the definition of ≤

3
, the definition of D

Sp(X)
(see (7)), and the definition of ≤

Sp(X)
.) 2

Remark. Note that V.1.3 holds whether or not Sp(X) is a real semigroup. In spite of this
equivalence it will be useful to keep the notational distinction between ≤ and ≤

Sp(X)
. 2

(9) (Lattice structure of Sp(X)) Sp(X) has a lattice structure pointwise induced by the total
order 1 < 0 < −1 of 3 : for f, g ∈ Sp(X) and x ∈ X,

(f ∨ g)(x) := max{f(x), g(x)} (in 3),

(f ∧ g)(x) := min {f(x), g(x)} (in 3).

One must check that the maps f ∨ g, f ∧ g thus defined are spectral; this is clear as

(f ∨ g)−1[1] = f−1[1] ∩ g−1[1] , (f ∨ g)−1[−1] = f−1[−1] ∪ g−1[−1] , and

(f ∧ g)−1[1] = f−1[1] ∪ g−1[1] , (f∧ g)−1[−1] = f−1[−1] ∩ g−1[−1] ,

are quasi-compact open sets.

Since the order in 3 is total, the lattice structure just defined is distributive.

We also note that product in Sp(X) is identical with symmetric difference (defined in terms
of the lattice operations and −) : for g, h ∈ Sp(X),

g · h = g4h (:= (g ∧ − h)∨ (h∧ − g)) .

This follows straightforwardly from the validity of “product = symmetric difference” in 3 and
the pointwise definition of all operations in Sp(X).

(10) (Sp(X) and Post algebras) In this chapter we shall use the results on the real semigroup
structure of Post algebras proved in § IV.2. To abridge, we denote by P (X) the Post algebra
C(Xcon ,3) of continuous functions of Xcon into 3 (pointwise defined operations) and by ≤
its (pointwise defined) order; see IV.1.7 (i). Note that, by item (3.i) above, Sp(X)⊆P (X).
Further, since representation is pointwise defined in both these structures, for f, g, h ∈ Sp(X)
we have

h ∈ D
Sp(X)

(f, g) ⇔ h ∈ D
P (X)

(f, g),

and similarly for transversal representation. The same remark applies to the lattice operations,
i.e. the infimum and the supremum of elements of Sp(X) (see (9)) coincide with those same
operations performed in P (X); in other words, Sp(X) is a sublattice and a L

RS
-substructure

of the Post algebra P (X). 2

Initially we will examine which of the axioms for real semigroups are satisfied by Sp(X) for
an arbitrary spectral space X, and the requirements to be imposed on X for Sp(X) to become
a real semigroup.

Reminder. Recall (I.2.4) that the strong associativity axiom [RS3] is equivalent to the con-
juntion of the weak associativity axiom [RS3a] and the axiom

[RS3b] For all a, b, Dt(a, b) 6= ∅. 2
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Theorem V.1.4 For every spectral space X, the structure Sp(X) satisfies all axioms for real
semigroups —including the weak associativity axiom [RS3a]— except, possibly, axiom [RS3b].

Proof. The validity of the axioms [RS i ] for i 6= 3 (0 ≤ i ≤ 8) is straightforward checking,
stemming from the following observations:

(i) Product and representation are pointwise defined in Sp(X), and

(ii) All axioms for RSs, except [RS3], are universal statements in the language L
RS

= { · , 1, 0,
−1, D}.

Details of this verification are left to the reader.

To prove the weak associativity axiom [RS3a] we will use the lattice structure of Sp(X),
see V.1.1 (9).

Let a, b, c, d, e ∈ Sp(X) be such that a ∈ D
Sp(X)

(b, c) and c ∈ D
Sp(X)

(d, e). We must find

an f ∈ Sp(X) so that f ∈ D
Sp(X)

(b, d) and a ∈ D
Sp(X)

(f, e). We claim that

(*) f = (a∧ − e)∨ (b∧ d)∨ (a∧ b)∨ (a∧ d)

does the job. Indeed:

— f ∈ D
Sp(X)

(b, d).

By the pointwise definition of the lattice operations in Sp(X), this amounts to checking that

For all x ∈ X, f(x) 6= 0 ⇒ f(x) = b(x) or f(x) = d(x).

If f(x) = 1, then all four disjuncts in (*) have value 1 at x; in particular, (b∧ d)(x) = 1. Since
evaluation at a point x ∈ X commutes to the lattice operations, one of b(x) or d(x) is 1.

If f(x) = −1, then at least one of the disjuncts in (*) has value −1 at x and, therefore, both the
conjuncts occurring in it also have value −1 at x. If any of three last disjuncts in (*) has value
−1, we get b(x) = −1 or d(x) = −1. So, assume a(x) = −e(x) = −1. Then, a ∈ D

Sp(X)
(b, c)

entails that one of b(x) or c(x) is −1. If c(x) = −1, then c ∈ D
Sp(X)

(d, e) implies d(x) = −1

or e(x) = −1; but the last possibility is excluded, as e(x) = 1. Hence, in any case we have
b(x) = −1 or d(x) = −1, as required.

— a ∈ D
Sp(X)

(f, e).

So, let x ∈ X be such that a(x) 6= 0, and we show a(x) = f(x) or a(x) = e(x).

If a(x) = 1, from a ∈ D
Sp(X)

(b, c) follows b(x) = 1 or c(x) = 1. If b(x) = 1, noting that

every disjunct in (*) contains a or b, we conclude that f(x) = 1. If c(x) = 1, the assumption
c ∈ D

Sp(X)
(d, e) entails d(x) = 1 or e(x) = 1. In the latter case we are done. So, assume

d(x) = 1. Since every disjunct in (*) contains either a or d, we conclude again that f(x) = 1.

If a(x) = −1, we must prove that f(x) = −1 or e(x) = −1. From a ∈ D
Sp(X)

(b, c) follows

b(x) = −1 or c(x) = −1. In the first case we get (a∧ b)(x) = a(x)∧ b(x) = −1, whence
f(x) = −1. So assume c(x) = −1. From c ∈ D

Sp(X)
(d, e) we get e(x) = −1, and we are done,

or d(x) = −1, in which case (a∧ d)(x) = a(x)∧ d(x) = −1, implying f(x) = −1, as required to
complete the proof of V.1.4. 2

Concerning the remaining axiom [RS3b], we have:

See streamlined proof of V.1.5 in [DP3], Thm. 1.8, pp. 370-372. Replace?
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Theorem V.1.5 The following are equivalent for every spectral space X :

(1) X is hereditarily normal .

(2) The structure Sp(X) verifies axiom [RS3b].

The following known results concerning spectral spaces will be needed in the proof of V.1.5.
Recall that a subset A of a spectral space X is called generically closed if it is downward
closed for the specialization order of X: for x, y ∈ X, x y and y ∈ A imply x ∈ A; cf. [DST],
5.1.6.

Proposition V.1.6 Let X be a spectral space and let D
1
, D

2
be disjoint, generically closed,

quasi-compact subsets of X. Then,

(i) D
1
, D

2
are contained in disjoint quasi-compact open subsets of X.

(ii) Given quasi-compact opens U
1
, U

2
such that Di ⊆ Ui (i = 1, 2) there are disjoint quasi-

compact opens V
1
, V

2
so that Di ⊆ Vi ⊆ Ui (i = 1, 2).

Hint of proof. Item (ii) is a consequence of (i): if V ′
1
, V ′

2
are disjoint quasi-compact opens

such that Di ⊆ V ′i , then the sets Vi = V ′i ∩ Ui (i = 1, 2) satisfy the conclusion of (ii).

Item (i) is Prop. 6.1.14 (iii) in [DST]. (In fact, (i) follows from the more general, and funda-
mental, Separation Lemma 6.0.2 in [DST].) 2

Fact V.1.7 Let X be a topological space, and B,C ⊆X. If B is quasi-compact and C is
closed, then B ∩ C is quasi-compact. 2

Proof of Theorem V.1.5. (1) ⇒ (2). In this proof we use the additional operations of
the Post algebra P (X) containing Sp(X), cf. II.6.1(10). Recall (IV.2.7 (i)) that transversal
representation in P (X) has the following form: for f, g, h ∈ P (X),

h ∈ Dt
P (X)

(f, g) ⇔ (f∧∇g)∨ (g ∧∇f) ≤ h ≤ (∆f ∨ g)∧ (∆g ∨ f).

Furthermore, it is clear that, for functions f, g : X −→3,

(†) f ≤ g ⇔ g−1[1]⊆ f−1[1] and f−1[−1]⊆ g−1[−1].

Now we set :

(*) p := (f∧∇g)∨ (g ∧∇f) and q := (∆f ∨ g)∧ (∆g ∨ f),

and observe :

Claim 1. (i) p−1[1] = f−1[1] ∪ g−1[1].

(ii) p−1[−1] = (f−1[−1] ∩ g−1[0,−1]) ∪ (f−1[0,−1] ∩ g−1[−1]).

(iii) q−1[1] = (f−1[0, 1] ∩ g−1[1]) ∪ (g−1[0, 1] ∩ f−1[1]).

(iv) q−1[−1] = f−1[−1] ∪ g−1[−1].

Proof of Claim 1. To illustrate the argument we just check item (ii). Since the order in 3 is
1 < 0 < −1, for x ∈ X we have,

(††) p(x) = −1 ⇔ (f(x)∧∇g(x))∨ (g(x)∧∇f(x)) = −1

⇔ f(x)∧∇g(x) = −1 or g(x)∧∇f(x) = −1.

Since ∇g(x) = 1 if g(x) = 1, and ∇g(x) = −1 if g(x) ∈ {0,−1}, we get:

f(x)∧∇g(x) = −1 ⇔ f(x) = −1 and ∇g(x) = −1 ⇔ f(x) = −1 and g(x) ∈ {0,−1}.
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Thus, (††) yields:

p(x) = −1 ⇔ (f(x) = −1 and g(x) ∈ {0,−1}) or (g(x) = −1 and f(x) ∈ {0,−1}),

which proves (ii). 2

Observe that, if f, g ∈ Sp(X), then f−1[±1], g−1[±1] are quasi-compact, while f−1[0, 1],
g−1[0, 1], f−1[0,−1], g−1[0,−1] are closed in X. Since the union of two quasi-compact sets is
quasi-compact, Fact V.1.7 and items (ii), (iii) of Claim 1 entail that the sets

K
1

:= q−1[1] and K
2

:= p−1[−1]

are quasi-compact. Let Gen (Ki) = {x ∈ X | There is y ∈ Ki such that x y} denote the
generization of Ki (i = 1, 2) in X, i.e., the downward closure of Ki under the specialization
order  of X; cf. [DST], Def. 5.0.1. Since opens sets are downward closed under  , it
readily follows that Gen (Ki) is also quasi-compact. We claim:

Claim 2. Gen (K
1
) ∩ Gen (K

2
) = ∅.

Proof of Claim 2. Assume there is t ∈ Gen (K
1
) ∩ Gen (K

2
), and let ki ∈ Ki be such that

t ki (i = 1, 2). Since X is assumed to be hereditarily normal, either k1 k2 or k2 k1, say
the first. Since k2 ∈ K2

= p−1[−1]⊆ f−1[−1] ∪ g−1[−1] (see (ii), Claim 1), and the latter sets

are open, we get k1 ∈ f−1[−1] ∪ g−1[−1], whence k1 ∈ (f−1[−1] ∪ g−1[−1]) ∩ q−1[1], contrary
to item (iii) in Claim 1. Similarly, k2 k1 also leads to a contradiction, proving Claim 2. 2

From items (iii) and (i) in Claim 1 we get K
1

= q−1[1]⊆ f−1[1] ∪ g−1[1] = p−1[1], and

since p−1[1] is open, it follows that Gen (K
1
)⊆ p−1[1]. Likewise, Gen (K

2
)⊆ q−1[−1]. Now,

Proposition V.1.6 applied with Di = Gen (Ki), U1 = p−1[1] and U2 = q−1[−1] shows that there
are disjoint quasi-compact open subsets V

1
, V

2
of X such that, for i = 1, 2,

Gen (Ki)⊆Vi⊆
{
p−1[1] if i = 1
q−1[−1] if i = 2 .

We define a map h : X −→3 as follows; for x ∈ X,

h(x) =


1 if x ∈ V

1
−1 if x ∈ V

2
0 if x 6∈ V

1
∪ V

2
.

Then, h−1[1] = V
1
, h−1[−1] = V

2
, which entails h ∈ Sp(X). Further,

Claim 3. p ≤ h ≤ q (in P (X)).

Proof of Claim 3. On the one hand we have h−1[1] = V
1
⊆ p−1[1] and p−1[−1] = K

2
⊆

Gen (K
2
)⊆V

2
= h−1[−1], which proves p ≤ h (see (†) above).

On the other hand, q−1[1] = K
1
⊆Gen (K

1
)⊆V

1
= h−1[1], and h−1[−1] = V

2
⊆ q−1[−1],

which proves h ≤ q. 2

In view of the definition of p and q (see (*) above), from Theorem IV.2.7 (i) we get
h ∈ Dt

P (X)
(f, g). As observed in V.1.1 (10), this representation, together with h ∈ Sp(X),

entails h ∈ Dt
Sp(X)

(f, g), proving that Sp(X) satisfies axiom [RS3b].

(2) ⇒ (1). With  denoting the specialization order of X, assume there are x, y, z ∈ X such
that x y, z, but y 6 z and z 6 y. Thus, z 6∈ {y} and y 6∈ {z}. Then, there are quasi-compact
opens U, V such that z ∈ U, y ∈ V, y 6∈ U and z 6∈ V . Let f

U
, f

V
: X −→3 be the spectral

maps defined by:
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f
U

(x) =

{
1 if x ∈ U
0 if x 6∈ U , f

V
(x) =

{
−1 if x ∈ V
0 if x 6∈ V.

Since Sp(X) |= [RS3b], there is f ∈ Sp(X) such that f ∈ Dt
Sp(X)

(f
U
, f
V

). In particular, for

w ∈ {y, z} it holds f(w) ∈ Dt
3
(f
U

(w), f
V

(w)). Now, f
U

(y) = 0, f
V

(y) = −1 and f
U

(z) = 1,

f
V

(z) = 0 imply f(y) = −1 and f(z) = 1 (cf. Corollary I.2.5). Since f is monotone for the
order of 3sp, x y, z entails f(x) = −1 and f(x) = 1, contradiction. 2

Definition V.1.8 A real semigroup is called spectral if it is of the form Sp(X) for some
spectral space X (necessarily hereditarily normal by the preceding theorem ). 2

V.2 Definability of the lattice structure.

This section is devoted to prove a result that is the key towards a structural theory of spectral
real semigroups and, hence, to many of the results in this chapter. It gives an explicit first-order
definition of the lattice operations of any spectral RS in the language L

RS
= { · , 1, 0,−1, D}

for real semigroups. The specific (logical) form of the definition of the lattice operations given
in the next theorem entails that the RS-characters of spectral RSs are automatically lattice
homomorphisms. This fact plays a crucial role in later results.

Theorem V.2.1 Let G be a spectral real semigroup. For a, b, c, d ∈ G we have:

(i) a∧ 0 = c ⇔ c ∈ Id(G), a · c = c and −a ∈ D
G

(1,−c).

Setting a− := a∧ 0 and a+ := −(−a)− = a∨ 0, we have :

(ii) a∧ b = d ⇔ d ∈ D
G

(a, b), d+ = −a+ · b+ and d− ∈ Dt
G

(a−, b−).

Proof. Let G = Sp(X), X a hereditarily normal spectral space. Owing to Fact V.1.3,
the lattice operations in G can interchangeably be taken in the pointwise order ≤ or in the
representation partial order ≤

G
(we shall use both).

(i). (⇒) We check that c := a∧ 0 verifies the three conditions on the right-hand side of (i).

Firstly, c ≤ 0 implies c ∈ Id(G) (I.6.4 (c)) and c ≤ a implies −a ∈ D
Sp(X)

(1,−c) (I.6.2). To

check a c = c recall that a c = a4 c (4 = symmetric difference, cf. V.1.1 (9)). Now compute:

a4 (a∧ 0) = (a∧ − (a∧ 0))∨ ((a∧ 0)∧ − a) = (a∧ (−a∨ 0))∨ (a∧ − a∧ 0) =

= (a∧ − a)∨ (a∧ 0)∨ (a∧ − a∧ 0) = (a∧ − a)∨ (a∧ 0) ;

since a∧ − a ≤ a, 0 (cf. I.6.5 (8)), the last term equals a∧ 0.

(⇐) Since c ∈ Id(G), Proposition I.6.4 (c) gives c = c2 ≤ 0. By I.2.3 (5) we have c = c2 ∈
D
G

(1, a). By assumption we also have −a ∈ D
G

(1,−c), whence c ≤ a.

To prove c = a∧ 0, let z ∈ G be such that z ≤ 0 and z ≤ a, and show z ≤ c, i.e., z(x) ≤ c(x)
for all x ∈ X. Otherwise, since z = z2, we must have z(x) = 0 and c(x) = 1 for some x ∈ X.
From a c = c we get a(x) = 1, contradicting z(x) ≤ a(x).

(ii). (⇒) Set d := a∧ b. We check the three conditions on the right-hand side of (ii).

a) d ∈ D
G

(a, b).

By the pointwise definition of D
G

, this boils down to ∀x ∈ X(d(x) ∈ D
3
(a(x), b(x)). On the

other hand, the pointwise definition of the lattice operations in G = Sp(X) gives d(x) =
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a(x)∧ b(x) in 3 (x ∈ X). Direct inspection of Corollary I.2.5 shows that, for i, j ∈ 3, i∧ j ∈
D
3
(i, j), as required.

b) (a∧ b)+ = −a+ · b+.

We compute the right-hand side using the distributive lattice structure of G and that product in
G is symmetric difference (V.1.1 (9)). Recall that z+ = z ∨ 0 and −(z 4w) = (−z ∨w)∧ (−w∨ z).
We have:

−a+ · b+ = −(a∨ 0)4(b∨ 0) = (−(a∨ 0)∨ (b∨ 0))∧ (−(b∨ 0)∨ (a∨ 0)) =
= ((−a∧ 0)∨ (b∨ 0))∧ ((−b∧ 0)∨ (a∨ 0)) = (b∨ 0)∧ (a∨ 0) =
= (a∧ b)∨ 0 = (a∧ b)+,

as asserted.

c) (a∧ b)− ∈ Dt
G

(a−, b−).

As Dt
G

is pointwise defined and d = a∧ b, (c) reduces to : ∀x ∈ X(d−(x) ∈ Dt
3
(a−(x), b−(x)).

Observe that, for e ∈ G = Sp(X) and x ∈ X, e−(x) = e(x)∧ 0, whence e−(x)≤
3

0 and
e−(x) ∈ {0, 1}. Further, we have:

(*) e−(x) = 1 ⇔ e(x) = 1; equivalently, e−(x) = 0 ⇔ e(x) ∈ {0,−1}.

Thus, we must prove:

— d−(x) = 1 ⇒ a−(x) = 1 or b−(x) = 1.

— d−(x) = 0 ⇒ a−(x) = b−(x) = 0.

For the first implication, assumption d−(x) = 1 implies d(x) = 1; together with d ∈ D
G

(a, b)
this yields a(x) = 1 or b(x) = 1, which, by (*), entails a−(x) = 1 or b−(x) = 1.

For the second implication, assumption d−(x) = 0 yields 0 = d−(x) = d(x)∧ 0 = a(x)∧ b(x)∧ 0,
which implies a(x), b(x) ∈ {0,−1}; (*) implies, then, a−(x) = b−(x) = 0, as required.

(⇐) Given d ∈ G, we assume d ∈ D
G

(a, b), d+ = −a+ · b+, d− ∈ Dt
G

(a−, b−), and prove
d = a∧ b.

a) d ≤
G
a and d ≤

G
b.

The argument being similar in either case, we prove only the first inequality. In view of the
pointwise definition of ≤

G
(see (†) in V.1.1 (8)), it suffices to prove, for x ∈ X:

— a(x) = 1 ⇒ d(x) = 1,

— a(x) = 0 ⇒ d(x) ∈ {0, 1}.

For the first implication, a(x) = 1 yields a−(x) = 1 (see (*) above). From d− ∈ Dt
G

(a−, b−)

and b−(x) ∈ {0, 1} we get d−(x) ∈ Dt
3
(a−(x), b−(x)) = Dt

3
(1, b−(x)) = {1}, which, by (*), gives

d(x) = 1, as needed.

For the second implication, if a(x) = 0 but d(x) = −1, we would have a+(x) = a(x)∨ 0 = 0
and d+(x) = d(x)∨ 0 = −1, contradicting the equality d+ = −a+ · b+ at the point x.

b) For all z ∈ G, z ≤
G
a and z ≤

G
b imply z ≤

G
d.

We must check, for all x ∈ X :

— d(x) = 1 ⇒ z(x) = 1,

— d(x) = 0 ⇒ z(x) ∈ {0, 1}.
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For the first implication, from (*) we have d−(x) = 1. On the other hand, since a−(x), b−(x) ∈
{0, 1}, from d− ∈ Dt

G
(a−, b−) we obtain 1 = d−(x) ∈ Dt

G
(a−(x), b−(x)). This relation implies

that a−(x), b−(x) cannot be both 0 (cf. I.2.5). If, e.g., a−(x) = 1, then a(x) = 1, and z ≤
G
a

yields z(x) = 1.

For the second implication, suppose d(x) = 0; hence d+(x) = d(x)∨ 0 = 0. This and d+ =
−a+ ·b+ imply that one of a+(x) or b+(x) is 0, say, e.g., a+(x) = 0. Then, 0 = a+(x) = a(x)∨ 0
entails a(x) ∈ {0, 1}; this, together with z ≤

G
a , yields z(x) ∈ {0, 1}, as required.

The proof of Theorem V.2.1 is now complete. 2

Remark. First-order definability of the lattice structure of Sp(X) in L
RS

follows also from
Fact V.1.3 : it suffices to express

(i) The definition of ≤
Sp(X)

in terms of D
Sp(X)

(cf. I.6.2), and

(ii) The usual definition of the glb (∧) and the lub (∨) in terms of the order ≤
Sp(X)

.

However, the definition of the lattice operations obtained in this way does not guarantee that
the next Corollary holds, while that of Theorem V.2.1 does. Though only implicit here, the
reason is that the latter is given by a positive-primitive L

RS
-formula, while the former is not.

For more details, see V.7.5. 2

Corollary V.2.2 The RS-characters of a spectral real semigroup are lattice homomorphisms.

Proof. To begin with we observe that 3 is a spectral RS. Indeed, 3 = Sp(1), where 1 is the
singleton spectral space; the three functions 1−→3sp map the unique element to 1, 0 and −1,
respectively; clearly, they are pointwise ordered in the right way.

Let G be a spectral RS, a, b ∈ G and σ ∈ X
G

; we show that σ(a∧ b) = σ(a)∧σ(b). The
equivalences (i) and (ii) of V.2.1 can (and will) be applied to both G and 3.

We first treat the case b = 0. We know that c = a∧0 verifies the conditions in the right-hand
side of V.2.1 (i). Since σ is a RS-homomorphism we get σ(c) ∈ Id(3) = {0, 1}, σ(a)σ(c) = σ(c)
and −σ(a) ∈ Dt

3
(1,−σ(c)). Using the implication (⇐) of V.2.1 (i) in 3 gives σ(c) = σ(a)∧ 0,

i.e.,

(†) σ(a∧ 0) = σ(a)∧ 0 (equivalently, σ(a−) = σ(a)−).

Since σ(−(−a)−) = −σ((−a)−) = −(σ(−a))− = −(−σ(a))−, we also get

(††) σ(a+) = σ(a)+.

Next, for arbitrary b ∈ G, applying item (ii) of V.2.1 with d = a∧ b, taking into account
that σ is a RS-homomorphism, and using (†) and (††) above, we get σ(d) ∈ D

3
(σ(a), σ(b)),

σ(d)+ = −σ(a)+ · σ(b)+ and σ(d)− ∈ Dt
3

(σ(a)−, σ(b)−). On the other hand, x = σ(a)∧ σ(b)

exists in 3 and verifies x ∈ D
3
(σ(a), σ(b)), x+ = −σ(a)+ · σ(b)+ and x− ∈ Dt

3
(σ(a)−, σ(b)−).

That is, both x and σ(d) verify in 3 the conditions of the right-hand side of (ii) in V.2.1. This
implies x = σ(d), i.e., σ(a)∧ σ(b) = σ(a∧ b), as asserted. 2

Remark. A similar argument shows that RS-homomorphisms between spectral RSs are auto-
matically homomorphisms of the corresponding lattice structures. 2
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V.3 The functor Sp.

We begin here the study of the correspondence X 7−→ Sp(X) assigning to each hereditarily
normal spectral space, X, the real semigroup Sp(X).

In this and the next two sections we set the stage to prove that this correspondence es-
tablishes an anti-equivalence of the category HNSS of hereditarily normal spectral spaces
with spectral maps, with the category SRS of spectral real semigroups with real semigroup
morphisms, a goal to be attained in Theorem V.5.4 below. 2

To begin with, the correspondence X 7−→ Sp(X) extends to spectral maps, and hence
defines a contravariant functor of the first category into the second; namely:

Definition and Notation V.3.1 Given a spectral map ϕ : X −→Y between spectral spaces
X,Y we define a dual map Sp(ϕ) : Sp(Y )−→ Sp(X) by composition: for f ∈ Sp(Y ) we set,

Sp(ϕ)(f) := f ◦ ϕ.

Being a composition of spectral maps, we have Sp(ϕ)(f) ∈ Sp(X). 2

Proposition V.3.2 Let ϕ : X −→Y be a spectral map between spectral spaces. Then Sp(ϕ) is
a homomorphism of L

RS
-structures.

The proof is routine verification from the fact that product and representation in both Sp(Y )
and Sp(X) are pointwise defined. We omit it. Note that it is not required that X,Y be
hereditarily normal. 2

As a beginning step in proving that this functor is an anti-equivalence of categories we show
that any hereditarily normal spectral space, X, is isomorphic in the category of spectral spaces
to the abstract real spectrum XSp(X) of the real semigroup Sp(X). The proof of this requires
a fine touch. First, we observe:

Fact V.3.3 Let X be a spectral space. The evaluation map at a point x ∈ X, evx : Sp(X)−→
3, given by evx(f) = f(x) for f ∈ Sp(X), is a character of L

RS
-structures., i.e., evx ∈ XSp(X).

2

The proof is straightforward and hence omitted.

Let ev : X −→XSp(X) be the map ev(x) = ev
x

(x ∈ X).

Proposition V.3.4 ev : X −→XSp(X) is injective and spectral.

Proof. (1) ev is injective.

This amounts to showing that Sp(X) separates points in X: for x 6= y in X, there is g ∈ Sp(X)
so that g(x) 6= g(y), i.e., evx(g) 6= evy(g), whence evx 6= evy, i.e., ev(x) 6= ev(y).

Since X is T
0

, if x 6= y, there is a quasi-compact open U ⊆X so that x ∈ U and y 6∈ U , or
y ∈ U and x 6∈ U ; say the first. Let g : X −→3 be defined by: g dU = 1, g d (X \U) = 0 . Since
g−1[1] = U, g−1[−1] = ∅ are quasi-compact open, g ∈ Sp(X) and, clearly, g(x) = 1, g(y) = 0.
The case y ∈ U and x 6∈ U is symmetrical.

(2) ev is spectral.

By definition, the family {[[ f = 1 ]] | f ∈ Sp(X)}, where [[ f = 1 ]] = {σ ∈ XSp(X) |σ(f) = 1}
is a subbasis for the spectral topology on XSp(X), cf. I.1.17. It suffices, then, to show that
ev−1[ [[ f = 1 ]] ] is quasi-compact open in X, for f ∈ Sp(X). For x ∈ X we have:
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x ∈ ev−1[ [[ f = 1 ]] ] ⇔ ev(x) = evx ∈ [[ f = 1 ]] ⇔ evx(f) = f(x) = 1,

i.e., ev−1[ [[ f = 1 ]] ] = f−1[1], a quasi-compact open set, as claimed. 2

The surjectivity of ev is the key to establish the anti-equivalence of categories announced
above.

Theorem V.3.5 Let X be a hereditarily normal spectral space. Then, ev : X −→XSp(X) is
surjective.

Proof. Given σ ∈ XSp(X) we have to find x ∈ X so that ev(x) = evx = σ. To accomplish
this we shall use Stone’s representation theorem of spectral spaces by bounded distributive
lattices (cf. [DST], §§ 1,2). This fundamental result proves the existence of a (functorial)
bijective correspondence between the points of a spectral space, X, and the prime filters of
the bounded distributive lattice K(X) of closed constructible —i.e., complements of quasi-
compact open— subsets of X; cf. [DST], Thm. 2.1.7 for a precise statement). We shall

construct a prime filter p of K(X) such that, if x
0

is the unique point of
⋂

p, then σ =

evx0 . Recall that the pointwise order coincides with the representation partial order in Sp(X)
(V.1.3) .

Since σ : Sp(X)−→ 3 is a lattice homomorphism (V.2.2), the set q = σ−1[0,−1] is a prime
filter of the lattice Sp(X). For A ∈ K(X) we define maps c

A
, d
A

: X −→ 3 as follows: for
x ∈ X,

c
A

(x) =

{
0 if x ∈ A
−1 if x 6∈ A , d

A
(x) = −c

A
(x) =

{
0 if x ∈ A
1 if x 6∈ A .

Since X \A is quasi-compact open, we have c
A
, d
A
∈ Sp(X). Further, since d

A
≤ 0 ≤ c

A
and σ

is monotone, we get σ(d
A

) ∈ {0, 1} and σ(c
A

) ∈ {0,−1}. Now set:

p := {A ∈ K(X) | d
A
∈ q } = {A ∈ K(X) |σ(d

A
) = 0 }˙

Claim 1. p is a prime filter of K(X).

Proof of Claim 1. (a) A⊆B and A ∈ p imply B ∈ p.

Clearly, A⊆B ⇒ d
A
≤ d

B
. Since σ is monotone, 0 ≤ σ(d

A
) ≤ σ(d

B
), and from σ(d

B
) ∈ {0, 1},

it follows σ(d
B

) = 0, i.e., B ∈ p.

(b) A,B ∈ p⇒ A ∩B ∈ p.

It suffices to check that d
A∩B = d

A
∧ d

B
, and use that σ is a lattice homomorphism and

σ(d
C

) ∈ {0, 1} for C ∈ K(X).

(c) ∅ 6∈ p.

Clear, since d∅ = 1.

(d) A ∪ B ∈ p⇒ A ∈ p or B ∈ p.

Check that d
A∪B = d

A
∨ d

B
, and argue as in (b).

Claim 2. For f ∈ Sp(X), f ∈ q⇔ f−1[0,−1] ∈ p.

Proof of Claim 2. Set A := f−1[0,−1] ∈ K(X). Observe first:

(i) A ∈ p⇒ d
A
≤ f .

This is clear, since Im(d
A

) = {0, 1} and, for x ∈ X, d
A

(x) = 0⇒ x ∈ A⇒ f(x) ∈ {0,−1}.
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(⇐) If A ∈ p, then d
A
∈ q, and hence f ∈ q (q is a prime filter).

For the converse, observe that

(ii) d
A

= c
A
∧ f .

Indeed, for x ∈ X we have:

— d
A

(x) = 0 ⇒ x ∈ A ⇒ c
A

(x) = 0 and f(x) ∈ {0,−1}, whence (c
A
∧ f)(x) = 0;

— d
A

(x) = 1 ⇒ x 6∈ A ⇒ f(x) = 1 ⇒ (c
A
∧ f)(x) = 1.

(⇒) Assume A 6∈ p; then, σ(d
A

) = 1. Since σ is a lattice homomorphism, (ii) yields: 1 =
σ(d

A
) = σ(c

A
)∧ σ(f); since σ(c

A
) ∈ {0,−1}, this equality entails σ(f) = 1, i.e., f 6∈ q.

Now, with x
0

= the unique point in
⋂

p, we have:

Claim 3. evx0 = σ.

Proof of Claim 3. By Claim 2, for f ∈ Sp(X) we have:

f ∈ q⇔ f−1[0,−1] ∈ p⇔ x
0
∈ f−1[0,−1]⇔ f(x

0
) ∈ {0,−1}.

Using this equivalence we argue by cases according to the values of σ(f):

— σ(f) = 0 ⇒ f ∈ q and −f ∈ q ⇒ f(x
0
), −f(x

0
) ∈ {0,−1} ⇒ f(x

0
) = 0.

— σ(f) = −1 ⇒ σ(−f) = 1 ⇒− f 6∈ q⇒− f(x
0
) = 1 ⇒ f(x

0
) = −1.

— σ(f) = 1 ⇒ f 6∈ q ⇒ f(x
0
) = 1.

This completes the proof of Claim 3 and, hence, of Theorem V.3.5. 2

Corollary V.3.6 For a hereditarily normal spectral space X, ev : X −→XSp(X) is a homeo-
morphism of Xcon onto (XSp(X))con.

Proof. Immediate consequence of Proposition V.3.4 and Theorem V.3.5, using that ev is a
continuous bijection between the Hausdorff spaces Xcon and (XSp(X))con , hence a homeomor-
phism. 2

To prove that ev is an isomorphism between X and XSp(X) in the category of spectral
spaces we show:

Proposition V.3.7 Let X be a hereditarily normal spectral space. Then,

(1) The map ev−1 : XSp(X)−→X is spectral.

Hence,

(2) ev is an isomorphism in the category of spectral spaces. In particular, it is a homeomorphism
of the spectral spaces X and XSp(X).

Proof. (1) By the characterization of spectral maps mentioned in V.1.1 (3.ii) above, and the
preceding Corollary V.3.6 it only remains to prove that, for σ

1
, σ

2
∈ XSp(X),

σ
1
 

XSp(X)
σ

2
⇒ ev−1(σ

1
)
X
 ev−1(σ

2
).

Since ev−1(σi) is the unique xi ∈ X such that ev
xi

= σi, this is equivalent to

ev
x1
 

XSp(X)
ev
x2
⇒ x

1 X
 x

2
.
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Assume x
1 X
6 x

2
, i.e., x

2
6∈ {x

1
}. Then, there is a quasi-compact open U ⊆X such that x

2
∈ U

and x
1
6∈ U . Define f : X −→ 3 by:

f(x) =

{
1 if x ∈ U
0 if x 6∈ U .

Since f−1[1] = U, f−1[−1] = ∅ are quasi-compact open, f ∈ Sp(X), and, clearly, f(x
2
) =

1, f(x
1
) = 0, which shows f ∈ (ev

x2
)−1[1] \ (ev

x1
)−1[1]. Hence, (ev

x2
)−1[1] 6⊆ (ev

x1
)−1[1].

From Lemma I.1.18 it follows that ev
x1
6 

XSp(X)
ev
x2

, as required.

(2) is an immediate consequence of (1). 2

V.4 The spectral hull of a real semigroup. Idempotency.

We now take on a reverse tack, consisting in applying the construction of the spectral real
semigroup Sp(X) to the case where X is the character space X

G
of a given real semigroup G.

The result will be a real semigroup Sp(G) extending G and having the functorial properties of
a hull for G. This spectral hull is at least as interesting as the Post hull introduced in § IV.4,
insofar it gives an algebraic counterpart of properties of the spectral topology of X

G
, not only

of its constructible topology, as the Post hull does; therefore it is more tightly connected than
the latter with the given RS. As the Post hull, the spectral hull construction turns out to be
idempotent, i.e., its iteration does not produce a larger RS. 2

Definition and Notation V.4.1 Let G be a RS and let X
G

be its character space. By [M],
Prop. 6.4.1, p. 114, X

G
is a hereditarily normal spectral space.

(i) We define Sp(G) to be the real semigroup Sp(X
G

) (see V.1.5 ).

(ii) We denote by η
G

the map of G into 3XG defined by evaluation at elements g ∈ G:

η
G

(g) := evg : X
G
−→ 3 where, for σ ∈ X

G
, evg(σ) := σ(g). 2

Proposition V.4.2 Let G be a RS.

(i) For all g ∈ G, evg is a spectral map, i.e., η
G

(g) ∈ Sp(G).

(ii) η
G

is a real semigroup homomorphism.

(iii) η
G

is obtained from the Post hull ε
G

: G−→P
G

of G (§ IV.4 ) by restriction of the
counterdomain to Sp(G).

In particular,

(iv) η
G

is a complete embedding (cf. IV.4.3 ).

(v) η
G

is injective.

Remark. Concerning (iii), η
G

(g) considers the evaluation evg at g ∈ G as a spectral map
X
G
−→ 3sp, while ε

G
considers it as a continuous map (X

G
)con−→3; cf. V.1.1 (3.i).

Proof. (i) Same argument as for item (2) in Proposition V.3.4.

(ii) This is straightforward checking using the fact that the constants, product and representa-
tion in Sp(G) are pointwise defined. Details are left to the reader.

(iii) It suffices to compare the definitions of η
G

and ε
G

.
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(iv) We must show (IV.4.3) that, for forms ϕ,ψ over G,

(*) η
G
∗ ϕ ∼=

Sp(G)
η
G
∗ ψ ⇒ ϕ ∼=

G
ψ .

Since η
G

= ε
G

and

(**) ∼=
Sp(G)

is identical to ∼=
PG

on forms over G ,

the assumption of (*) implies ε
G
∗ ϕ ∼=

PG
ε
G
∗ ψ . By Corollary IV.4.7 (3) this, in turn, yields

ϕ ∼=
G
ψ , as required.

Proof of (∗∗) . By the definition of ∼=, see I.2.7 (c), the assertion follows by straightforward
computation from:

— X
Sp(G)

is in bijective correspondence with X
G

(by the map ev, see V.3.4 and V.3.5);

— X
PG

is in bijective correspondence with X
G

(by the map ε∗
G

, see IV.4.7 (1)).

Note. Alternatively (and equivalently) we may have used Corollary V.5.5 below.

(v) Complete embeddings are injective (IV.4.4 (c)). 2

Definition and Notation V.4.3 (a) The map η
G

: G−→ Sp(G) —or, more precisely, the
pair (Sp(G), η

G
)— will be called the spectral hull of G.

In the sequel we consider the effect of the spectral hull on RS-morphisms.

(b) Any RS-homomorphism f : G−→H gives raise, by composition, to a dual map f∗ :
X
H
−→X

G
: for γ ∈ X

H
,

f∗(γ) := γ ◦ f : G−→3 .

Clearly, f∗(γ) ∈ X
G

.

Fact V.4.4 f∗ : X
H
−→X

G
is a spectral map.

Proof. It suffices to check that, for all g ∈ G, f∗−1[ [[ g = 1 ]] ] is quasi-compact open in X
H

.
For γ ∈ X

H
we have,

γ ∈ f∗−1[ [[ g = 1 ]] ] ⇔ f∗(γ) ∈ [[ g = 1 ]] ⇔ γ ◦ f ∈ [[ g = 1 ]] ⇔ (γ ◦ f)(g) = 1

⇔ γ(f(g)) = 1 ⇔ γ ∈ [[ f(g) = 1 ]] ,

i.e., f∗−1[ [[ g = 1 ]] ] = [[ f(g) = 1 ]] , as needed. 2

(c) In the preceding setup we define, as in V.3.1, a map Sp(f) : Sp(G)−→ Sp(H) again by
composition: for g ∈ Sp(G), Sp(f)(g) := g ◦ f∗. By V.4.4, g ◦ f∗ ∈ Sp(H) . 2

Next we show that the operator Sp is idempotent.

Theorem V.4.5 (Idempotency of Sp) Let X be a hereditarily normal spectral space. Then,
η
Sp(X)

: Sp(X)−→ Sp(Sp(X)) is an isomorphism of real semigroups.

Proof. With Proposition V.4.2 applied with G = Sp(X), it only remains to prove:

(a) η
Sp(X)

is surjective.

(b) η−1
Sp(X)

is a RS-homomorphism.

Proof of (a ). Since Sp is a contravariant functor (V.3.1, V.3.2), ev−1◦ev = id
X

, and ev◦ev−1 =

id
Sp(X)

imply Sp(ev−1 ◦ ev) = Sp(ev) ◦ Sp(ev−1) = id
Sp(X)

and Sp(ev ◦ ev−1) = Sp(ev−1) ◦
Sp(ev) = id Sp(Sp(X)) . Hence, for f ∈ Sp(Sp(X)),
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(*) f = Sp(ev−1)(Sp(ev)(f)) = Sp(ev−1)(f ◦ ev),

cf. V.3.1. Then, it suffices to show:

(c) η
Sp(X)

= Sp(ev−1).

Proof of (c ). We must show, for b ∈ Sp(X) :

Sp(ev−1)(b) = b ◦ ev−1 = η
Sp(X)

(b) = ev
b
,

i.e., (b ◦ ev−1)(γ) = ev
b
(γ) = γ(b), for all γ ∈ X

Sp(X)
.

By definition, ev−1(γ) = the unique x ∈ X such that ev(x) = evx = γ. Then, γ(b) = evx(b) =
b(x), and b(x) = b(ev−1(γ)), i.e., (b ◦ ev−1)(γ) = γ(b), as required. 2

Proof of (b ). In the proof of (a) we noted that

Sp(ev)−1 = Sp(ev−1) and Sp(ev−1)
−1

= Sp(ev) .

This, together with (c), gives:

η−1
Sp(X)

= Sp(ev−1)
−1

= Sp(ev) .

Since Sp(ϕ) is a RS-homomorphism for any spectral map ϕ (V.3.2), Proposition V.3.4 yields
that η−1

Sp(X)
is a RS-homomorphism, proving (b) and Theorem V.4.5. 2

Theorem V.4.5 can be restated as follows :

Corollary V.4.6 Let G be a spectral RS (V.1.8 ). Then, the map η
G

: G−→ Sp(G) is an
isomorphism. In other words, every spectral RS is canonically isomorphic to its spectral hull
(the converse is obviously true ). 2

An easy consequence of V.3.6 is :

Corollary V.4.7 Let G be a real semigroup. Then, G and Sp(G) have the same Post hull :
P
G
' P

Sp(G)
.

Proof. Corollary V.3.6 tells that ev :X
G
−→X

Sp(G)
is a homeomorphism for the respective

constructible topologies. For f ∈ P
Sp(G)

, i.e., f : X
Sp(G)

−→3 continuous in (X
Sp(G)

)con , set

θ(f) := f ◦ ev. Clearly θ(f) ∈ P
G

, and it is a routine exercise to check that θ : P
Sp(G)

−→P
G

is an isomorphism of Post algebras. 2

V.5 An anti-equivalence of categories.

Our main result in this section is the anti-equivalence of the categories HNSS and SRS
(Theorem V.5.4). The commutativity of diagrams required for this result are proven in V.5.1
and V.5.3. These results also have further important consequences, such as:

(i) The duality of the functors * and Sp, and

(ii) Uniqueness of the extension Sp(f) : Sp(G)−→ Sp(H) (V.4.3) of any RS-homomorphism
f : G−→H (G,H |= RS); in particular, unique extension of any RS-character of G to Sp(G).

Example V.5.6 gives a simple illustration of how a RS sits inside its spectral hull.

Finally, V.5.7 is an analog to Theorem IV.4.5 for spectral real semigroups. 2
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Proposition V.5.1 Let X,Y be hereditarily normal spectral spaces and let ϕ : X −→Y be a
spectral map. Let ev

X
: X −→X

Sp(X)
and ev

Y
: Y −→X

Sp(Y )
denote the bijections given by

V.3.4 and V.3.5. The following diagram is commutative:

X

ev
X
��

ϕ // Y

ev
Y

��
X

Sp(X) Sp(ϕ)∗
//
X

Sp(Y )

Proof. Recall that, for x ∈ X, ev
X

(x) = evx : Sp(X)−→3; likewise, ev
Y

(ϕ(x)) = evϕ(x) :
Sp(Y )−→3. By the definition of * (V.4.3 (b)),

(Sp(ϕ)∗ ◦ ev
X

)(x) = Sp(ϕ)∗(evx) = evx ◦ Sp(ϕ),

and
(ev

Y
◦ ϕ)(x) = ev

Y
(ϕ(x)) = evϕ(x) .

Thus, we must check that evϕ(x) = evx ◦ Sp(ϕ). Let b ∈ Sp(Y ); then, Sp(ϕ)(b) = b ◦ ϕ, and
we get:

(evx ◦ Sp(ϕ))(b) = evx(Sp(ϕ)(b)) = evx(b ◦ ϕ) = (b ◦ ϕ)(x) = b(ϕ(x)) = evϕ(x)(b) ,

as required. 2

Next we fix a G |= RS and set X = X
G

. We rebaptize ev
G

: X
G
−→X

Sp(G)
the map ev

XG
considered above, i.e., ev

G
(σ) := ev

σ
, for σ ∈ X

G
. Then,

Fact V.5.2 With notation as above, the following identities hold:

(i) ev−1
G

= η ∗
G

.

(ii) Sp(η ∗
G

) = η
Sp(G)

.

Hence,

(iii) η ∗
G

is injective.

Proof. (i) Fix γ ∈ X
Sp(G)

. Since ev−1
G

(γ) = the unique σ ∈ X
G

so that γ = ev
G

(σ) = ev
σ
,

and η ∗
G

(γ) = γ ◦ η
G

, the identity to be proved boils down to showing that ev
σ
◦ η

G
= σ, for

σ ∈ X
G

. Let g ∈ G; since η
G

(g) = evg, we get

ev
σ
(η
G

(g)) = η
G

(g)(σ) = evg(σ) = σ(g) ,

as wanted.

(ii) From item (c) in the proof of idempotency (V.4.5) with X = X
G

, we have

η
Sp(G)

= η
Sp(XG)

= Sp(ev−1
G

) ,

whence the result follows at once from (i).

(iii) Clear, from V.3.4, V.3.5 and item (i). [Alternatively, one may invoke Proposition V.4.2 (iv)
and Theorem V.5.7.] 2

Next we prove an analog of Thm. 4.17 of [DM1] (and of Theorem IV.4.2 above), a result
of crucial importance:

Theorem V.5.3 (i) Let f : G−→H be a homomorphism of real semigroups. Then Sp(f)
(defined in V.4.3 (c)) is the unique RS-homomorphism F : Sp(G)−→ Sp(H) making the fol-
lowing diagram commute:
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G

η
G
��

f //

[D]

H

η
H
��

Sp(G)
F

// Sp(H)

(ii) Let G be a RS. Then Sp(G) is a hull for G in the category SRS of spectral real semigroups.
That is, every RS-morphism f : G−→ Sp(X), X a hereditarily normal spectral space, factors
uniquely through Sp(G), i.e., there is a unique RS-morphism h : Sp(G)−→ Sp(X) making the
following diagram commute:

G

f
��

η
G // Sp(G)

h
~~

Sp(X)

Proof. (i) We first show that with F = Sp(f) diagram [D] commutes, i.e., η
H

(f(g)) =
Sp(f)(η

G
(g)), for all g ∈ G. By the definition of η

G
, η
H

, and with f∗ defined in V.4.3 (b) , this
amounts to evf(g) = evg ◦ f∗. For γ ∈ X

H
we have evf(g)(γ) = γ(f(g)), and (evg ◦ f∗)(γ) =

evg(f
∗(γ)) = evg(γ ◦ f) = γ(f(g)) .

For uniqueness, let F
1
, F

2
: Sp(G)−→ Sp(H) be RS-homomorphisms making diagram [D]

commute. Applying the functor * to this square we get a commutative diagram

X
G

X
H

f∗oo

X
Sp(G)

η∗
G

OO

X
Sp(H)

η∗
H

OO

F ∗2

oo
F ∗1oo

whence η ∗
G
◦ F ∗

1
= η ∗

G
◦ F ∗

2
(= f∗ ◦ η ∗

H
). Since η ∗

G
is injective (V.5.2 (iii)), F ∗

1
= F ∗

2
, and we

show this entails F
1

= F
2
.

In fact, if F
1
(g) 6= F

2
(g) for some g ∈ Sp(G), since X

Sp(H)
separates points in Sp(H), there

is γ ∈ X
Sp(H)

so that (γ ◦F
1
)(g) 6= (γ ◦F

2
)(g), i.e., γ ◦F

1
6= γ ◦F

2
. By definition F ∗

i
(γ) = γ ◦F

i
,

so we get F ∗
1

(γ) 6= F ∗
2

(γ), contradiction.

(ii) Use the commutative square [D] of (i) with H = Sp(X) and f : G−→ Sp(X) the given map.
By the idempotency theorem V.4.5, η

H
: H −→ Sp(H) is an isomorphism of real semigroups.

Setting h := η−1
H
◦ Sp(f) proves the commutativity of the triangle in (ii). Uniqueness is clear

from that in (i). 2

Putting together some of the preceding results we obtain the anti-equivalence of the cat-
egories HNSS and SRS. This is expressed in rather compact form, using category-theoretic
language, by the following:

Theorem V.5.4 (Anti-equivalence theorem) The functor Sp : HNSS−→SRS assigning to
each hereditarily normal spectral space X the real semigroup Sp(X) is an anti-equivalence of
categories. Its quasi-inverse is the functor ARS : SRS−→HNSS assigning to each G ∈ SRS
its associated abstract real spectrum X

G
. The natural transformations establishing this anti-

equivalence are as follows:

(1) The isomorphism Id
HNSS

7−→ ARS ◦ Sp is the natural transformation that sends X ∈
HNSS to the homeomorphism ev : X −→Sp(X).
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(2) The isomorphism Id
SRS

7−→ Sp ◦ ARS is the natural transformation that sends a spectral
RS, G, to the isomorphism η

G
: G−→ Sp(G).

Proof. (1) Given a spectral map ϕ : X −→Y , with X,Y ∈ HNSS, commutativity of the
diagram in Proposition V.5.1 and the fact that the maps ev

X
: X −→ X

Sp(X)
and ev

Y
:

Y −→X
Sp(Y )

are homeomorphisms of spectral spaces (V.3.7 (2)), prove this assertion.

(2) Given a RS-morphism f : G−→H, where G,H ∈ SRS, commutativity of diagram [D] in
Theorem V.5.3 (i) together with the fact that the canonical embeddings η

G
, η

H
are isomor-

phisms (V.4.6), prove this assertion. 2

Corollary V.5.5 Let G be a RS. Then every σ ∈ X
G

extends uniquely to a RS-character of
Sp(G).

Proof. Follows from V.5.3 (ii) by taking X = 1 (= the singleton spectral space) and observing
that Sp(1) = 3 (see proof of Corollary V.2.2).

Explicitly, the extension σ̂ : Sp(G)−→3 of a RS-character σ ∈ X
G

is defined by evaluation
at σ: for f ∈ Sp(G), σ̂(f) := f(σ) . The reader can readily check that σ̂ ∈ X

Sp(G)
and

σ̂ ◦ η
G

= σ (i.e., σ̂ dG = σ with G canonically embedded into Sp(G) via η
G

) . 2

Remark . The uniqueness statements in Theorem V.5.3 and Corollary V.5.5 indicate that
a real semigroup “generates” its spectral hull. Below (Theorem V.6.2) we will show that it
generates it as a lattice. 2

Example V.5.6 Here is a simple example illustrating the way in which a real semigroup sits
inside its spectral hull. We compute the spectral hull of the “free” fan on one generator,
presented in VI.3.2. A:

F = {1, 0,−1, x,−x, x2,−x2}.

— Firstly, F is represented by the seven elements of the form eva, a ∈ F .

— Besides these, Sp(F ) contains four other elements. Indeed, X
F

has the shape:

h1

•

h2 • • h3

where h1(x) = 0, h2(x) = 1, h3(x) = −1 (the order being specialization). Since the con-
structible topology is discrete, the spectral characters are the maps of X

F
into 3sp that preserve

the specialization order. Note, further, that if a spectral character sends h2 or h3 to 0, then
it must also send h1 to 0. Verification by hand shows, then, that Sp(F ) (= Sp(X

F
)) contains

exactly the following additional maps:

f
1

:


h

1
7→ 0

h
2
7→ 0

h
3
7→ 1,

f
2

:


h

1
7→ 0

h
2
7→ 0

h
3
7→ −1,

f
3

:


h

1
7→ 0

h
2
7→ 1

h
3
7→ 0,

f
4

:


h

1
7→ 0

h
2
7→ −1

h
3
7→ 0 ,

and looks as follows:
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•
−1

•−x2

f2 f4

•x •
0

• −x

f3 f1

• x2

•
1

Note that, while Sp(F ) has 11 elements, the Post hull of F has 33 = 27. 2

Our last result in this section is an analog to Theorem IV.4.5; it gives, in the context of
spectral real semigroups, several characterizations of the surjectivity of the dual map f∗.

Theorem V.5.7 Let G,H be real semigroups, and let f : G−→H be a RS-morphism. With
f∗ denoting the dual of f and Sp(f) its spectral extension (V.4.3 (b), (c)), the following are
equivalent:

(1) f∗ is surjective.

(2) Im(f∗) is dense in (XG)
con

(the constructible topology of X
G

).

(3) Sp(f) is injective.

(4) For every Pfister form ϕ over G and every a ∈ G,

f(a) ∈ D
H

(f ∗ ϕ) ⇒ a ∈ D
G

(ϕ) .

(5) f is a complete embedding (cf. IV.4.3 ).

Sketch of proof. The proof is similar to that of Theorem IV.4.5; we only indicate the
modifications needed therein. Recall f∗ is a spectral map (V.4.4). (1)⇒ (2) is obvious.

(2) ⇒ (1). By Cor. 6.0.2 of [DST], Im(f∗) is a proconstructible subset of X
G

, i.e., closed in
(XG)

con
. This, together with (2), implies (1) at once.

(1) ⇒ (3). Assume there are g
1
, g

2
∈ Sp(X

G
) so that g

1
6= g

2
but Sp(f)(g

1
) = Sp(f)(g

2
), i.e.,

g
1
◦ f∗ = g

2
◦ f∗ and there is σ ∈ X

G
such that g

1
(σ) 6= g

2
(σ). Since f∗ is assumed surjective,

there is γ ∈ X
H

such that f∗(γ) = σ. Then,

(g
1
◦ f∗)(γ) = g

1
(f∗(γ)) = g

1
(σ) 6= g

2
(σ) = (g

2
◦ f∗)(γ),

contradiction.

(3)⇒ (1). The proof is as that of (3)⇒ (1) in Theorem IV.4.5, upon observing that:

— “surjective” = “epic” holds in the category Spec of spectral spaces with spectral maps; cf.
[DST], Cor. 10.0.4;

— For a spectral map ρ : X
G
−→X into a spectral space X, replace the map ρ in the proof of

IV.4.5 by the map Sp(ρ) defined in V.3.1.

— To complete the proof, in order to show, for spectral maps ρ
1
, ρ

2
: X

G
−→X, the implication

Sp(ρ
1
) = Sp(ρ

2
)⇒ ρ

1
= ρ

2
, argue as follows: if ρ

1
6= ρ

2
, then ρ

1
(σ) 6= ρ

2
(σ) for some σ ∈ X

G
.
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Since X is T0, there is a quasi-compact open U ⊆X so that, say, ρ
1
(σ) ∈ U and ρ

2
(σ) 6∈ U (or

the other way around). Let h : X −→3 be given by hdU = 1 and hd(X \U) = 0; h is spectral,
i.e., h ∈ Sp(X), and h(ρ

1
(σ)) = 1 6= 0 = h(ρ

2
(σ)), i.e., Sp(ρ

1
)(h) 6= Sp(ρ

2
)(h), contradiction.

The proofs of (1) ⇒ (4), (1) ⇒ (5), (4) ⇒ (2) and (5) ⇒ (2) are similar to those of
(1)⇒ (5), (1)⇒ (6), (5)⇒ (2) and (6)⇒ (2) in IV.4.5, respectively. 2

Corollary V.5.8 Any injective RS-morphism f : G−→H of spectral RSs, G,H, is a complete
embedding.

Proof. We use the commutative diagram [D] of Theorem V.5.3 (i) with F = Sp(f). Since G,H
are spectral, the embeddings η

G
and η

H
are isomorphisms (V.4.6); hence Sp(f) is injective. By

V.5.7, f is a complete embedding. 2

V.6 The distributive lattice structure of spectral real semi-
groups.

In this section we prove two results concerning the (pure) lattice structure of spectral RSs:
firstly, that any real semigroup generates its spectral hull as a lattice (Theorem V.6.2) ; secondly,
that the spectral real semigroups are exactly those real semigroups whose representation partial
order (I.6.2) is a distributive lattice (Theorem V.6.6). 2

We start by checking the following simple, but important property of the lattice structure
of spectral real semigroups:

Proposition V.6.1 Let G,H be RSs, and let f : G−→H be a RS homomorphism. Then the
spectral extension Sp(f) : Sp(G)−→ Sp(H) of f is a lattice homomorphism: for g

1
, g

2
∈ Sp(G),

Sp(f)(g
1
∧ g

2
) = Sp(f)(g

1
)∧ Sp(f)(g

2
) and Sp(f)(g

1
∨ g

2
) = Sp(f(g

1
)∨ Sp(f)(g

2
) .

Proof. Recall that Sp(f)(g) = g ◦ f∗ for g ∈ Sp(G). Hence, for γ ∈ X
H

we have (g ◦ f∗)(γ) =
g(f∗(γ)) = g(γ ◦ f), and:

((g
1
∨ g

2
) ◦ f∗)(γ) = (g

1
∨ g

2
)(γ ◦ f) = max{ g

1
(γ ◦ f), g

2
(γ ◦ f)} = (g

1
◦ f∗)(γ)∨ (g

2
◦ f∗)(γ) ,

proving the second equality in the statement. Similar argument for the first. 2

Remark. Obviously, the constants 1, 0,−1 of Sp(G) and Sp(H) correspond to each other
under Sp(f); so, Sp(f) is a homomorphism of bounded lattices. 2

We shall now prove that any real semigroup generates its spectral hull as a lattice.2

Theorem V.6.2 Let G be a RS. Then, for every f ∈ Sp(G) there is a finite collection {F
i
| i ∈

I} of finite subsets F
i
⊆G so that f =

∨
i∈I

∧
g∈Fi

η
G

(g); i.e., Sp(G) is generated as a lattice

by Im (η
G

).

Proof. Recall that the family {[[x = 1 ]] |x ∈ G} is a subbasis for the spectral topology of X
G

.
Throughout this proof “basis” means the basis generated by this subbasis, i.e., the collection
of all finite intersections of sets of the form [[x = 1 ]] with x ∈ G. To ease notation we write ĝ
for η

G
(g) = evg (g ∈ G).

Let L denote the sublattice of Sp(G) generated by Im (η
G

), and fix f ∈ Sp(G). We split
the proof that f ∈ L into two cases.

2 For a similar result concerning the Boolean hull of a reduced special group, see [DM1], Prop. 4.10 (b).
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Case I. Both f−1[1] and f−1[−1] are basic opens of X
G

.

That is,

(*) f−1[1] =
⋂k

i=1
[[ a

i
= 1 ]] and f−1[−1] =

⋂n

j=1
[[ b

j
= 1 ]] ,

for some a
1
, . . . , a

k
, b

1
, . . . , b

n
∈ G.

Since Dt
G

(·, ·) 6= ∅ (Proposition I.2.3 (14)) for each i ∈ {1, . . . , k} and j ∈ {1, . . . , n} we pick

an element t
ij
∈ Dt

G
(a
i
,−b

j
) and consider the following element of L:

(**) p :=

[(∨ k

i=1
â
i

)
∧ 0̂

]
∨
[(∧n

j=1
−̂b

j

)
∧
∨ k

i=1

∧n

j=1
t̂
ij

]
.

Claim. p = f . Hence, f ∈ L.

Proof of Claim. To abridge we set r :=

(∨ k

i=1
â
i

)
∧ 0̂ and s :=

(∧n

j=1
−̂b

j

)
∧
∨ k

i=1

∧n

j=1
t̂
ij

in

(**) . The proof proceeds by cases according to the values of f . Let σ ∈ X
G

.

— f(σ) = 1.

By (*), σ(a
i
) = â

i
(σ) = 1 for all 1 ≤ i ≤ k, whence r(σ) = 1. On the other hand,

since f−1[1] and f−1[−1] are disjoint, by (*) there is a j
0
∈ {1, . . . , n} so that σ(b

j0
) ∈

{0,−1}. Fix i ∈ {1, . . . , k}. Since t
ij0
∈ Dt

G
(a
i
,−b

j0
) and −σ(b

j0
) ∈ {0, 1}, we have σ(t

ij0
) ∈

Dt
3
(σ(a

i
),−σ(b

j0
)) = Dt

3
(1,−σ(b

j0
)) = {1} (cf. I.2.5); that is, t̂

ij0
(σ) = σ(t

ij0
) = 1 for all i. It

follows that s(σ) = 1, and hence p(σ) = 1.

— f(σ) = −1.

By (*), σ(b
j
) = b̂

j
(σ) = 1 for all 1 ≤ j ≤ n, i.e.,

∧n

j=1
−̂b

j
(σ) = −1. Since the sets in (*) are

disjoint, there is a i
0
∈ {1, . . . , k} so that σ(a

i0
) ∈ {0,−1}. Fix j ∈ {1, . . . , n}. Since t

i0j
∈

Dt
G

(a
i0
,−b

j
) and −σ(b

j
) ∈ {0,−1}, we get σ(t

i0j
) ∈ Dt

3
(σ(a

i0
),−σ(b

j
)) = Dt

3
(σ(a

i0
),−1) =

{−1} (cf. I.2.5); that is, t̂
i0j

(σ) = σ(t
i0j

) = −1 for all j ∈ {1, . . . , n}, which shows that

s(σ) = −1, and hence p(σ) = −1.

— f(σ) = 0.

In this case, σ 6∈ f−1[1] ∪ f−1[−1], and (*) implies there are indices i
0
∈ {1, . . . , k} and

j
0
∈ {1, . . . , n} so that σ(a

i0
) 6= 1 and σ(b

j0
) 6= 1. Then, we have σ(a

i0
) ∈ {0,−1}, whence

(â
i0
∧ 0̂)(σ) = 0, and therefore r(σ) = 0 . Likewise, σ(b

j0
) ∈ {0,−1} yields −̂b

j0
(σ) ∈ {0, 1},

whence (
∧n

j=1
−̂b

j
)(σ) ≤ 0, which in turn gives s(σ) ≤ 0. These evaluations together entail

p(σ) = 0, ending the proof of the Claim. 2

Case II. f−1[±1] are arbitrary quasi-compact opens.

Then, there are basic quasi-compact opens V
1
, . . . , V

k
, U

1
, . . . , U

n
, so that

f−1[1] =
⋃k

i=1
V
i

and f−1[−1] =
⋃n

j=1
U
j

.

For each pair of indices i ∈ {1, . . . , k}, j ∈ {1, . . . , n} we define a map f
ij

: X
G
−→3 by :

for σ ∈ X
G

,
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f
ij

(σ) =


1 if σ ∈ V

i
−1 if σ ∈ U

j

0 if σ 6∈ V
i
∪ U

j
.

Since V
i
∩ U

j
= ∅, f

ij
is well defined; clearly, f

ij
∈ Sp(X

G
) (= Sp(G)). Since V

i
, U

j
are basic

opens, Case I proves that each of the functions f
ij

is in L. On the other hand, straightforward

checking according to the values of f shows that f =
∨n

j=1

∧k

i=1
f
ij

, entailing f ∈ L. This

completes the proof of Theorem V.6.2. 2

Remark. In connection with the foregoing theorem, recall that the Post hull P
G

of a real
semigroup G is generated by G as a Post algebra, cf. IV.4.1 (iv), i.e., using the additional
operations ∆ and ∇, but in general not as a lattice. 2

Recalling that the lattice operations of Sp(G) are definable in the language L
RS

for real
semigroups (V.2.1), we obtain:

Corollary V.6.3 Let G be a RS. Then, Sp(G)⊆dcl
RS

(G,3XG), the definitional closure of G

in 3XG for the language L
RS

(and 3XG endowed with the pointwise defined L
RS

-structure). In

particular, Sp(G) is rigid over G: every L
RS

-automorphism of 3XG which pointwise fixes G is
the identity on Sp(G). 2

Remark. For the notion of definitional closure of a structure, see [H], pp. 134 ff.

Our last result in this section characterizes the spectral real semigroups as those real semi-
groups for which the representation partial order is a distributive lattice.

Warning. The essential point here is distributivity. In fact, there are other classes of real
semigroups for which the representation partial order is a lattice (necessarily non-distributive);
for example, the RS-fans, a class to be introduced and studied in Chapter VI, have this property;
see Theorem VI.3.5 and Remark VI.3.6 (a). 2

As a preliminary step we prove:

Lemma V.6.4 Let G be a RS. Assume that the representation partial order ≤
G

is a distribu-
tive lattice. Then, product in G coincides with symmetric difference: for a, b ∈ G,

a · b = (a∧ − b)∨ (b∧ − a) (:= a4 b).

Proof. To ease notation we write ≤ for ≤
G

. Since the RS-characters of G preserve represen-
tation and −, they are monotonous for ≤ . The separation theorem I.5.4, and I.6.2 imply, for
x, y ∈ G,

(*) x ≤ y ⇔ ∀σ ∈ X
G

(σ(x)≤
3
σ(y)).

(a) a∧ − b, b∧ − a ≤ a · b. Hence, a4 b ≤ a · b.

By symmetry it suffices to prove the first inequality. Using (*) we prove σ(a∧ − b) ≤ σ(a b),
for σ ∈ X

G
.

— Suppose σ(a∧− b) = 0. By monotonicity, σ(a), σ(−b) ≥ 0, i.e., σ(a) ≥ 0 and σ(b) ≤ 0. This
implies that σ(a b) 6= 1, for σ(a b) = 1 implies that both σ(a), σ(b) are either 1 or −1. Then,
σ(a∧ − b) = 0 ≤ σ(a b).

— If σ(a∧ − b) = −1, by monotonicity, σ(a) = σ(−b) = −1, i.e., σ(a) = −1 and σ(b) = 1.
Hence σ(a b) = −1 = σ(a∧ − b).
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(b) a b ≤ a∨ b, −a∨ − b.

Let σ ∈ X
G

. If σ(a b) = 0, then at least one of σ(a), σ(b) is 0, say σ(a) = 0 ; by monotonicity,
σ(a b) = 0 = σ(a) ≤ σ(a∨ b) and σ(a b) = 0 = σ(−a) ≤ σ(−a∨ − b). If σ(a b) = −1, then,
say σ(a) = −1 and σ(b) = 1 (or the other way round). By monotonicity, −1 = σ(a) ≤ σ(a∨ b)
and −1 = σ(−b) ≤ σ(−a∨ − b), as required.

The Lemma follows from (b). Indeed, using distributivity we have:

(**) a b ≤ (a∨ b)∧ (−a∨ − b) = (a∧ − a)∨ (a∧ − b)∨ (b∧ − a)∨ (b∧ − b).

By I.6.5 (8) we have x∧− x ≤ y ∨− y for all x, y ∈ G (Kleene inequality). Using distributivity
again:

a∧ − a = (a∧ − a)∧ (b∨ − b) = (a∧ − a∧ b)∨ (a∧ − a∧ − b) ≤ (−a∧ b)∨ (−b∧ a),

and, similarly, b∧ − b ≤ (−a∧ b)∨ (−b∧ a). The last term in (**) then equals (−a∧ b)∨
(−b∧ a) = a4 b, proving a b ≤ a4 b, as asserted. 2

Corollary V.6.5 Under the assumptions of Lemma V.6.4, the following holds for a, b ∈ G:

(i) a · (a∨ b), b · (a∨ b) ≤ a b.

(ii) For all x ∈ G, x ∈ D
G

(a2, b2) ⇔ x = x2 and a2 ∧ b2 ≤ x.

(iii) (a∨ b)2 ∈ D
G

(a2, b2).

Proof. (i) By the Lemma,

a · (a∨ b) = a4 (a∨ b) = (a∧ − (a∨ b))∨ ((a∨ b)∧ − a) =

= (a∧ − a∧ − b))∨ (a∧ − a)∨ (b∧ − a) = (a∧ − a)∨ (b ∧ − a) .

The Kleene inequality a∧ − a ≤ b ∨ − b implies that a∧ − a ≤ a4 b = a b ; indeed, by
distributivity

a∧ − a = (a∧ − a)∧ (b ∨ − b) = (a∧ − a∧ b))∨ (a∧ − a∧ − b)) ≤
≤ (−a∧ b)∨ (a∧ − b) = a4 b .

Since, clearly, b ∧ − a ≤ a4 b , our contention follows.

The other inequality in (i) holds by symmetry.

Next, we prove, for σ ∈ X
G

:

(*) σ(a2 ∧ b2) = σ(a2)∧ σ(b2).

Recall from Proposition I.6.8 (2) that {a2 ∧ b2} = Dt
G

(a2, b2) (any G). Since σ preserves Dt,

σ(a2 ∧ b2) ∈ Dt
3
(σ(a2), σ(b2)) = Dt

3
(σ(a)2, σ(b)2) = {σ(a)2 ∧ σ(b)2 },

and (*) follows.

(ii) (⇒) Clearly, x ∈ D
G

(a2, b2) implies x = x2. To show a2 ∧ b2 ≤ x we check that σ(a2 ∧ b2) ≤
σ(x) for all σ ∈ X

G
; by (*) it suffices to verify σ(a2)∧ σ(b2) ≤ σ(x2). But σ(x2) = 1 implies

σ(x) 6= 0, whence, from x = x2 ∈ D
G

(a2, b2) follows 1 = σ(x2) = σ(a2) or 1 = σ(x2) = σ(b2),

and hence σ(a2)∧ σ(b2) = 1.

(⇐) Conversely, from x = x2 we get σ(x) = σ(x2) ∈ {0, 1} for σ ∈ X
G

. If σ(x) = 1, then

a2 ∧ b2 ≤ x and (*) give σ(a2 ∧ b2) = σ(a2)∧ σ(b2) = 1, and hence one of σ(a2) or σ(b2) is 1,
proving that x ∈ D

G
(a2, b2).
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(iii) By (ii) it suffices to prove (a∨ b)2 ≥ a2 ∧ b2. Invoking Lemma V.6.4 and using distribu-
tivity, we get:

(a∨ b)2 = (a∨ b)4 (a∨ b) = (a∨ b)∧ − (a∨ b) = (a∨ b)∧ (−a∧ − b) =

= (a∧ − a∧ − b)∨ (b ∧ − a∧ − b) ≥ (a∧ − a)∧ (b ∧ − b) =

= (a4 a)∧ (b4 b) = a2 ∧ b2,

as needed. 2

Theorem V.6.6 Let G be a RS and let ≤
G

denote its representation partial order. Assume
that (G,≤

G
) is a lattice. The following are equivalent :

(1) (G,≤
G

) is a distributive lattice.

(2) The RS-characters of G are lattice homomorphisms of (G,≤
G

) into 3 (under the order

1 < 0 < −1).

(3) The canonical embedding η
G

: G−→ Sp(G) is a surjective lattice homomorphism. Hence,

G ' Sp(G).

Each of these conditions is equivalent to :

(4) G is a spectral RS.

Proof. (3)⇒ (4) is clear and (4)⇒ (1) has been observed in V.1.1 (9). Note also that (3)⇔ (4)
was proved in V.4.6 and (4)⇒ (2) in V.2.2.

(1)⇒ (2) . We show that every σ ∈ X
G

preserves suprema. This is enough, since σ also
preserves “−” and the De Morgan laws hold in G, i.e., −(a∧ b) = −a∨−b and dually. It suffices
to prove σ(a∨ b) ≤ σ(a)∨ σ(b), as the reverse inequality is immediate from the monotonicity
of σ. We argue by cases:

— σ(a∨ b) = 0 .

From a · (a∨ b) ≤ a b (V.6.5 (i)) comes σ(a)σ(a∨ b) = 0 ≤ σ(a)σ(b). This shows that
σ(a), σ(b) cannot both be 1, i.e., σ(a) ≥ 0 or σ(b) ≥ 0, whence σ(a)∨σ(b) ≥ 0 = σ(a∨ b) .

— σ(a∨ b) = −1 .

Suppose first that σ(a) = σ(b) = 0. From (a∨ b)2 ∈ D
G

(a2, b2) (V.6.5 (iii)) we get σ(a∨ b)2 ∈
D
3
(σ(a)2, σ(b)2) = D

3
(0, 0) = {0}, whence σ(a∨ b) = 0, contradiction. So, one of σ(a) or σ(b)

is 6= 0. If, say, σ(a) = 1, as above we get −1 = σ(a)σ(a∨ b) ≤ σ(a)σ(b) = σ(b), and hence
σ(b) = −1. So, one of σ(a) or σ(b) is −1, and we get σ(a)∨σ(b) = −1 = σ(a∨ b) .

(2)⇒ (3) . (i) η
G

is a lattice homomorphism. This follows from (2) by direct computation: for
a, b ∈ G and σ ∈ X

G
,

η
G

(a∧ b)(σ) = ev
(a∧ b)(σ) = σ(a∧ b) = σ(a)∧σ(b) = ev

a
(σ)∧ ev

b
(σ) = η

G
(a)(σ)∧ η

G
(b)(σ) ,

and similarly for ∨ .

(ii) η
G

is surjective. This is clear from Theorem V.6.2 and (i). 2

Corollary V.6.7 The set of invertible elements of a spectral real semigroup (with induced
product operation, representation relation and constants 1,−1) is a Boolean algebra and, hence,
a reduced special group.

Proof. Recalling I.6.5 (7), for G |= RS and g ∈ G, in the representation partial order ≤
G

we

have g ∧ − g = g2 and g ∨ − g = −g2; hence:
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g invertible in G ⇔ g2 = 1 ⇔ g ∧ − g = 1 and g ∨ − g = −1.

If G is spectral, by the preceding theorem ≤
G

is a distributive lattice, and this shows that −g
is the Boolean complement of g. [With the terminology of the next section, this just means
that the set of Boolean elements of a Kleene algebra form a Boolean algebra .] 2

Example V.6.8 This example (pointed out by F. Miraglia) shows that one may have an
injective RS-morphism f : G−→L of a RS, G, with values in a spectral RS, L, so that its
spectral extension Sp(f) : Sp(G)−→L (= Sp(L)) is not injective.

In [DM1], 5.10, pp. 83-84, an example was constructed of reduced special groups, F ⊆B,
such that F is a (RSG-)fan, B is a Boolean algebra, and F is not a complete subgroup of B.
Indeed, it was shown that there are forms ϕ = 〈 a

1
, a

2
, a

3
〉, ψ = 〈 b

1
, b

2
, b

3
〉 of dimension 3 over

F such that ϕ≡B ψ but ϕ 6≡F ψ, where ≡ denotes isometry. By Pfister’s local-global principle
([DM1], Prop. 3.7, p. 51) we have

(*) sgnσ(ϕ) =
∑3

i=1 σ(a
i
) = sgnσ(ψ) =

∑3
i=1 σ(b

i
),

for every (±1-valued) character σ ∈ X
B

(= the Stone space of B), while this equality fails for
some character γ ∈ X

F
(which, of course, does not extend to B).

Now, add a 0 to both F and B, and extend their respective representation relations in the
manner described in I.2.2 (3), to get real semigroups F ∗ and B∗. Observe that, if G is a RSG
and G∗ = G ∪ {0} is the corresponding RS obtained in this manner, then X

G∗
consists exactly

of the extensions of the ±1-valued characters of G that send 0 to 0; hence, there is an obvious
one-one correspondence between X

G∗
and X

G
.

Let P denote the Post hull of B∗ (a lattice-ordered RS in the representation partial or-
der). The canonical embedding ε : B∗−→P is complete (I.4.12 (3)) and gives, by restric-
tion, a RS-embedding ε dF ∗ : F ∗−→P . However, ε dF ∗ cannot be a complete embedding;
otherwise, the bijection between X

F ∗
and X

F
indicated above, together with (*), would im-

ply that the inclusion F ⊆B is complete, contrary to the choice of F and B. By V.5.7,
Sp(ε dF ∗) : Sp(F ∗)−→ Sp(P ) (= P ) is not injective. 2

V.7 Spectral real semigroups as Kleene algebras.

The arguments in the preceding section and in section V.2 suggest that the spectral real semi-
groups should be treated as distributive lattices together with the involution “−” (i.e., product
with −1). The appropriate framework to deal with structures of this type is that of Kleene
algebras, defined in IV.1.9.

From the preceding results and those in I.6 we have:

Fact V.7.1 Let X be a spectral space, and let ≤, ∧, ∨ denote its pointwise defined partial
order and lattice operations (cf. V.1.1 (8 ),(9 )). Then, the structure (Sp(X) ,∧ ,∨ ,− , 1 , 0) is
a Kleene algebra; in fact, a Kleene subalgebra of the Post algebra P (X) = C(Xcon ,3).

Proof. The validity of axiom [K1] for Kleene algebras (see IV.1.9) was observed in V.1.1 (9).
That of [K2.a] and [K3] is obvious. The De Morgan law [K2.b] is checked by a routine argument,
using the (pointwise) definitions of ∧ and ∨ (V.1.1 (9)), and the obvious fact that f ≤ g ⇔
−g ≤ −f (f, g ∈ Sp(X)). The Kleene inequality [K2.c] is also routine, by the pointwise
definition of ≤ and of the lattice operations, using the fact that it holds in 3.

For the last assertion, recall that spectral maps are continuous for the constructible topolo-
gies of domain and codomain (V.1.1 (3.i)) and that the lattice operations are pointwise defined
in P (X). 2
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As our main result in this section we prove that the spectral real semigroups Sp(X) are
Kleene algebras of a special type; Theorem V.7.2 gives an exact algebraic characterization of
them.

Remark.The proof of Proposition IV.1.11 yields the following additional information: if X
is a spectral space, the Kleene algebra Sp(X) is isomorphic to K(K(X)), where K(X) is
the distributive lattice of quasi-compact opens of X; the isomorphism is given by the map
h(f) = (f−1[1], f−1[−1]), for f ∈ Sp(X) . 2

Theorem V.7.2 Let K be a Kleene algebra with center c. The following are equivalent:

(1) There is a hereditarily normal spectral space X such that K ' Sp(X) .

(2) K verifies condition [dec] in IV.1.11, and

[cn]3 For all a, b ∈ K such that a, b ≤ c, there are x, y ∈ K so that a∧x ≤ b , b∧ y ≤ a and
x∨ y = c.

Proof. (1)⇒ (2). Since Sp(X) ' K(K(X)), see Remark above, then Sp(X) verifies condition
[dec]. We check it also verifies [cn].

Let f, g ∈ Sp(X) be such that f, g ≤ 0. Hence f−1[−1] = g−1[−1] = ∅. Let K1 :=
f−1[1] ∩ g−1[0] and K

2
:= g−1[1] ∩ f−1[0] . By Fact V.1.7, K

1
,K

2
are quasi-compact. Since

open sets are downwards closed under specialization, the generizations Gen (K
i
) of K

i
(i = 1, 2)

are also quasi-compact, see proof of Theorem V.1.5.

Claim 1. Gen (K
1
) ∩ Gen (K

2
) = ∅ .

Proof of Claim 1. Assume there is an element t in this intersection; hence, for i = 1, 2, there
is x

i
∈ K

i
so that t x

i
. Since X is hereditarily normal, either x

1
 x

2
or x

2
 x

1
, say the

first. Since g(x
1
) = 0, from x

1
 x

2
follows g(x

2
) = 0, contradicting x

2
∈ K

2
. 2

By Proposition V.1.6 (i) there are disjoint quasi-compact opens U
1
, U

2
⊆X such that Gen (K

i
)⊆U

i
(i =

1, 2). We define spectral characters h
i

: X −→3sp by:

h
i
(x) =

{
1 if x ∈ U

i
0 if x 6∈ U

i
.

Then, h−1
1

[1] ∩ h−1
2

[1] = U
1
∩ U

2
= ∅, whence h

1
∨h

2
= 0 . We prove:

— f ∧h
2
≤ g. Assume g(x) = 1. If f(x) = 0, then x ∈ K

2
, whence x ∈ U

2
; therefore

h
2
(x) = 1, which implies (f ∧h

2
)(x) = 1. Since g only takes on the values 0, 1, this proves the

asserted inequality.

Likewise, g ∧h
1
≤ f , ending the verification of [cn].

(2)⇒ (1). As a first step in the proof, let K be any Kleene algebra and let X = Hom
Kl

(K,3)
be the set of Kleene-algebra homomorphisms of K into 3. With the topology generated by the
sets [[ a = 1 ]] = {σ ∈ X |σ(a) = 1}, for a ∈ K, as a (sub)basis of opens, X is a spectral space
where the sets of this form are quasi-compact (cf. I.1.17). Since K is a lattice, the family of

these sets is closed under unions and intersections:
⋃n

i=1
[[ a

i
= 1 ]] = [[ (

∧n
i=1 ai) = 1 ]], and

dually for
⋂

; therefore it is a basis for the topology. Note that specialization in X is as follows:

for σ, γ ∈ X,

σ γ ⇔ γ ∈ {σ} ⇔ ∀ a ∈ K (γ ∈ [[ a = 1 ]]⇒σ ∈ [[ a = 1 ]]) ⇔ γ−1[1]⊆σ−1[1] ,

3 [cn] = “completely normal”; cf. Remark V.7.3 (b) below.
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(and hence also γ−1[−1]⊆σ−1[−1]).

We observe:

Claim 2. If K verifies [cn], then X is hereditarily normal.

Proof of Claim 2. Assume, towards a contradiction, that there are σ, γ
1
, γ

2
∈ X such that

σ γ
i

(i = 1, 2), but γ
1
6 γ

2
and γ

2
6 γ

1
. Then, there are a, b ∈ K so that γ

1
(a) = 1, γ

2
(a) 6=

1, γ
2
(b) = 1 and γ

1
(b) 6= 1.

By [cn] applied with a∧ c and b∧ c , there are x, y ∈ K such that a∧x∧ c ≤ b∧ c ,
b∧ y ∧ c ≤ a∧ c and x∨ y = c . Then, γ

2
(b) = 1 and the first inequality give γ

2
(a∧x∧ c) =

γ
2
(a)∧ γ

2
(x)∧ 0 = 1; since γ

2
(a) 6= 1, we get γ

2
(x) = 1. Likewise, the second inequality

and γ
1
(a) = 1 imply γ

1
(y) = 1. Since γ−1

i
[1]⊆σ−1[1] for i = 1, 2, we get σ(x) = σ(y) = 1,

contradicting x∨ y = c . 2

The evaluation maps eva : X −→3sp (a ∈ K) are spectral, since ev−1
a [1] = [[ a = 1 ]]

and ev−1
a [−1] = [[¬ a = 1 ]] . Since homomorphisms into 3 separate points of K, the map

µ : K −→ Sp(X) defined by µ(a) = eva is a well-defined, injective homomorphism of Kleene
algebras. To show it is an isomorphism it remains to prove:

Claim 3. µ is surjective.

Proof of Claim 3. Let f ∈ Sp(X). As the sets f−1[± 1] are quasi-compact open, there are
a, b ∈ K such that

(*) f−1[−1] = [[ a = −1 ]] and f−1[1] = [[ b = −1 ]].

These sets being disjoint, we get a∧ b ≤ c . Condition [cn] applied with ¬ a∧ c and ¬ b∧ c
yields the existence of x, y ∈ K such that ¬ a∧x∧ c ≤ ¬ b∧ c , ¬ b∧ y ∧ c ≤ ¬ a∧ c and
x∨ y = c , whence ¬x∧¬ y = c . Next we apply [dec] to this situation, to get t ∈ K so that
t∨ c = ¬ y and ¬ t∨ c = ¬x, i.e., t∧ c = x . Let

(**) s = (t∧ a)∨ (x∧ c)∨ (¬ b∧ c) .

We assert:

Claim 4. evs = f .

Proof of Claim 4. By (*) and (**), Claim 4 amounts to showing that, for all σ ∈ X:

(i) σ(a) = −1 ⇔ σ(s) = −1;

(ii) σ(b) = −1 ⇔ σ(s) = 1.

Proof of (i) . (⇒) If σ(a) = −1, the inequality ¬ b∧ y ∧ c ≤ ¬ a∧ c entails σ(¬ b∧ y ∧ c) = 1,

which in turn implies σ(¬ b) = 1 or σ(y) = 1. However, the first alternative gives σ(a) =
σ(b) = −1, contradicting a∧ b ≤ c ; then, σ(y) = 1. Since t∨ c = ¬ y, we conclude σ(t) = −1,
whence σ(t∧ a) = −1, and σ(s) = −1 .

(⇐) Conversely, if σ(s) = −1 , then σ(t∧ a) = −1 (as the other disjuncts in (**) are ≤ c), and
hence σ(a) = −1 .

Proof of (ii) . (⇐) Assuming σ(s) = 1, in particular we have σ(¬ b∧ c) = 1, whence σ(¬ b) = 1,

i.e., σ(b) = −1 .

(⇒) Conversely, if σ(b) = −1 , from ¬ a∧x∧ c ≤ ¬ b∧ c we get σ(¬ a) = 1 or σ(x) = 1.
The first alternative yields σ(a) = σ(b) = −1, contradicting a∧ b ≤ c ; then, σ(x) = 1. Since
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t∧ c = x, it follows that σ(t) = 1. Then, σ takes value 1 on all three disjuncts of (**), showing
that σ(s) = 1, and completing the proof of Theorem V.7.2. 2

Remarks V.7.3 (a) It should be clear from our results that, with notation as in the proof
of Theorem V.7.2, the correspondence K 7−→ Sp(Hom

Kl
(K,3)) , f 7−→ Sp(f) (f a Kleene-

algebra homomorphism) establishes an equivalence between the category of Kleene algebras
verifying conditions [dec] and [cn] (with Kleene-algebra homomorphisms) and the category
SRS of spectral real semigroups with RS-homomorphisms. We leave it to the reader to work
out the precise statement.

(b) A bounded distributive lattice is called completely normal if the space Spec (L) —the
set of its prime filters with the standard spectral topology, cf. [DST], § 1.4— is hereditarily
normal. Motivation for our proof of Theorem V.7.2 came from the following result of A.
Monteiro [Mon] : L is completely normal if and only if for all a, b ∈ L there are x, y ∈ L so
that a∧x ≤ b , b∧ y ≤ a and x∨ y = > .

It is clear from the preceding arguments that, if L is a bounded, completely normal distribu-
tive lattice, the Kleene algebra K(L) verifies conditions [dec] and [cn], and hence is a spectral
real semigroup. 2

Summarizing the preceding results and those of section V.2, we have:

Theorem V.7.4 (Axioms for spectral real semigroups)

(1) The following statements, together with the axioms for real semigroups (I.2.1), give a
first-order axiomatization for the class of spectral real semigroups in the language L

RS
=

{ · , 1, 0,−1, D} :

[SRS1] ∀a∃c (c = c2 ∧ a c = c ∧ −a ∈ D(1,−c)).

Setting:

a− := the unique c verifying [SRS1] (see V.2.1 (i)), and a+ := −((−a)−),

[SRS2] ∀a b∃d (d ∈ D(a, b) ∧ d+ = −a+ b+ ∧ d− ∈ Dt(a−, b−)).

(2) The axioms for Kleene algebras verifying conditions [dec] and [cn] —see IV.1.9, IV.1.11,
and V.7.2— constitute an alternative first-order axiomatization for spectral real semigroups in
the language {∧ ,∨ ,¬ ,⊥ , c } . 2

Proof. That the spectral RSs verify axioms [SRS1] and [SRS2] is Theorem V.2.1.

Conversely, axioms [SRS1] and [SRS2] define a lattice structure on a given real semigroup,
G, in the language L

RS
. Since the characters ofG preserve the constants, operation and relation

in L
RS

, these axioms ensure that they are lattice homomorphisms (see Corollary V.2.2). Thus,
condition (2) of Theorem V.6.6 is verified, implying that G is spectral. 2

Remark V.7.5 Axioms [SRS1] and [SRS2] are of the form ∀aψ
1
(a) and ∀ab ψ

2
(a, b), where

ψ
1
, ψ

2
are positive-primitive L

RS
-formulas, i.e., of the form ∃x θ

1
(a, x), ∃y θ

2
(a, b, y), with

θ
1
, θ

2
conjunctions of atomic L

RS
-formulas and y a tuple of variables of suitable length.

This is clear for [SRS1]
[
θ

1
(z, w) : w = w2 ∧ z w = w ∧ −z ∈ D(1,−w)

]
. For [SRS2] (us-

ing uniqueness) replace z− by ∃z
1
θ

1
(z, z

1
) for z ∈ {d, a, b} and, similarly, z+ := −((−z)−)

by ∃z
2
θ

1
(−z, z

2
). Explicitly, in new variables d

i
, a
i
, b
i

(i = 1, 2) (corresponding to d, a, b,
respectively), with y = 〈d, d

1
, d

2
, a

1
, a

2
, b

1
, b

2
〉,

θ
2
(a, b, y) : d ∈ D(a, b)∧

∧
z∈{d,a,b}

θ
1
(z, z

1
)∧ θ

1
(−z, z

2
)∧ d

2
= a

2
b
2
∧ d

1
∈ Dt(a

1
, b

1
). 2
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These manipulations yield analogs to Propositions IV.6.3 and IV.6.5 for spectral real semi-
groups :

Proposition V.7.6 (1) The class of spectral real semigroups is closed under the following
constructions :

— Inductive limits (colimits) over a right-directed index set.

— Reduced products 4 (in particular, arbitrary products).

Further,

(2) Let f : G−→H be a surjective RS-homomorphism, where G,H are RSs. If G is spectral,
so is H.

In particular,

(3) Any quotient G/≡ of a spectral RS, G, modulo a RS-congruence ≡ (II.2.1) is a spectral
RS.

Hence,

(4) Quotients of spectral RSs modulo saturated sets (?? ) are spectral RSs.

Proof. The proof is similar to that of Proposition IV.6.3 in view of the logical form (universal
quantification of positive-primitive formulas) of the axioms [SRS1], [SRS2] for spectral RSs,
and hence omitted. 2

Remark. Note that item (4) of this Proposition applies, in particular, to the various types
of quotients treated in § II.3: quotients modulo saturated subsemigroups, modulo transversally
saturated subsemigroups, localizations and residue spaces at saturated prime ideals. 2

Proposition V.7.7 Let G be a RS and H be a spectral RS. Then,

(1) If f : G−→H is a pure embedding of RSs, then G is a spectral RS.

In particular,

(2) The canonical embedding η
G

: G −→ Sp(G) of G into its spectral hull is not pure unless G
itself is spectral. In the latter case, η

G
is an isomorphism of G onto Sp(G) .

Proof. (1) Let ψ
1
(v), ψ

2
(v

1
, v

2
) denote the positive-primitive matrices of [SRS1], [SRS2] (see

IV.6.2). Assume G 6|= SRS. Since G is supposed to be a RS, one of [SRS1] or [SRS2] fails in
G, say G 6|= [SRS2]. Then, there are a, b ∈ G so that G |= ¬ψ

2
[a, b]. On the other hand, since

H |= [SRS2] by assumption, we have H |= ψ
2

[f(a), f(b)]. Since ψ
2

is positive-primitive, f is
not pure, contradiction.

(2) follows from (1) with f = η
G

. The last assertion is Corollary V.4.6. 2

V.8 Quotients of spectral real semigroups.
In line with preceding results (see Proposition V.7.6 (2)–(4)), we prove in this section that
quotients of spectral real semigroups —in the sense of Definition II.2.1— are determined by
the proconstructible subsets of its character space endowed with the spectral topology. As a
corollary we obtain a characterization of the spectral hull of any RS-quotient. 2

4Cf. [CK], Def. 4.1.6 and § 6.2, or [H], § 9.4.
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V.8.1 Notation and Preliminaries. (i) Given a hereditarily normal spectral space, X, and
a proconstructible subset, Y , we define an equivalence relation on the real semigroup Sp(X)
as follows: for a, b ∈ Sp(X),

a ≡Y b ⇔ ∀y ∈ Y (a(y) = b(y)) ⇔ a dY = b dY .

This is, clearly, a congruence of ternary semigroups. Similarly, we define a ternary relation in
the quotient set Sp(X)/≡Y , by pointwise evaluation at elements of Y : for a, b, c ∈ Sp(X) and
with π

Y
: Sp(X)−→Sp(X)/≡Y canonical,

π
Y

(a) ∈ D
Sp(X)/≡Y

(π
Y

(b), π
Y

(c)) :⇔ ∀y ∈ Y (a(y) ∈ D
3
(b(y), c(y)).

Routine checking shows:

π
Y

(a) ∈ Dt
Sp(X)/≡Y

(π
Y

(b), π
Y

(c)) ⇔ ∀y ∈ Y (a(y) ∈ Dt
3
(b(y), c(y)).

To ease notation we shall write D
Y

for D
Sp(X)/≡Y

, and similarly for transversal representation.

(ii) It is a general and well-known fact that the spectral subspaces of a spectral space X
are exactly the proconstructible subsets Y ⊆X with the induced topology. To avoid possible
confusion, we shall denote by Ysp the proconstructible subset Y endowed with the (spectral)
topology induced from X. The quasi-compact opens of Ysp are exactly the intersections of
quasi-compact opens of X with Y , and similarly for the closed constructible subsets of Ysp.
These results imply that the specialization order of Ysp is just the restriction of specialization
in X. See [DST], Thm. 3.3.1. Hence, it is clear that if, in addition, X is hereditarily normal,
then so is Ysp. To ease notation the real semigroup Sp(Ysp) will be denoted by Sp(Y ). 2

Our first result is:

Theorem V.8.2 Let X be a hereditarily normal spectral space, and let Y be a proconstructible
subset of X. Then,

(1) (Sp(X)/≡Y , DY
) is a real semigroup.

(2) (Sp(X)/≡Y , DY
) is isomorphic to (Sp(Y ), D

Sp(Y )
).

Hence,

(3) The character space X
Sp(X)/≡Y

is homeomorphic to Ysp (spectral topologies ).

(4) Every RS-congruence of Sp(X) is of the form ≡Y for a suitable proconstructible set Y⊆X.

Proof. (1) follows from (2) and V.8.1 (ii), see Theorem V.1.5. Here is a proof of (1) without
invoking (2).

By Theorem II.2.16 (with G = Sp(X), XSp(X) and H = Y ), (Sp(X)/≡Y , DY
) verifies

all axioms for RSs except, possibly, [RS3a]. Now, the proof of Theorem V.1.4 shows that
this structure also verifies axiom [RS3a]: the witness required for weak associativity is π

Y
(f),

where, for given elements a, b, c, d, e ∈ Sp(X) whose images under π
Y

verify the assumptions
of [RS3a] in Sp(X)/≡Y , the element f is defined as in the proof of V.1.4.

(2) The required isomorphism is the map

a/≡Y = π
Y

(a)
ϕ7−→ a dY (a ∈ Sp(X)).

By the definition of ≡Y it is clear that ϕ is a well-defined, injective TS-homomorphism. Since
representation is pointwise defined in both Sp(X)/≡Y and Sp(Y ), we have
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π
Y

(a) ∈ D
Sp(X)/≡Y

(π
Y

(b), π
Y

(c)) ⇔ ∀y ∈ Y (a(y) ∈ D
3
(b(y), c(y))

⇔ a dY ∈ D
Sp(Y )

(b dY, c dY ),

showing that both ϕ and ϕ−1 d Im(ϕ) preserve representation.

The proof that ϕ is surjective is more delicate; it boils down to:

Claim. Every map f ∈ Sp(Y ) extends to a map g ∈ Sp(X).

Proof of Claim. The argument is similar to (a part of) the proof of Theorem V.1.5, using
Proposition V.1.6; we only sketch it.

Recall that f ∈ Sp(Y ) just means that f−1[±1] are quasi-compact opens in Ysp. To get a
spectral map g : X −→3sp extending f it suffices to construct disjoint quasi-compact opens
U
i

(i ∈ {±1}) of X so that f−1[i]⊆U
i
, and set:

g dU
i

= i (i ∈ {±1}) and g d (X \ (U
1
∪ U−1

)) = 0.

For i ∈ {±1} let GenX(f−1[i]) = {x ∈ X | ∃y ∈ f−1[i] (x
X
 y)} be the generization of f−1[i]

in X. Arguments similar to those in the proof of V.1.5 show:

(i) GenX(f−1[i]) is quasi-compact in X (i ∈ {±1}).

(ii) GenX(f−1[1]) ∩ GenX(f−1[−1]) = ∅.

By Proposition V.1.6 there are disjoint quasi-compact open subsets U
i

of X such that

GenX(f−1[i])⊆U
i

(i ∈ {±1}), as required.

(3) follows from (2) by the Duality Theorem I.5.1 and the fact that XSp(Y ) ' Y (Proposition
V.3.7 (2)).

(4) is a particular case of Proposition ??: with notation therein, given a congruence ≡ of
Sp(X), take Y := H≡ (proconstructible by ?? (ii)) ; the last line in the statement of ?? (i)
shows that ≡ = ≡Y . 2

To establish that the equivalence relation ≡Y is a RS-congruence we still have to prove that
the factoring condition II.2.1 (iii) holds. This will follow from the next Proposition, which gives
a lifting for the quotient representation relation D

Y
.

Proposition V.8.3 Let X be a hereditarily normal spectral space, let Y ⊆X be proconstructible,
and let a, b, c ∈ Sp(X). The following are equivalent:

(1) π
Y

(a) ∈ D
Y

(π
Y

(b), π
Y

(c)).

(2) There exists a′ ∈ Sp(X) such that a′dY = a dY and a′ ∈ D
Sp(X)

(b, c).

Proof. (2) ⇒ (1) is clear from the pointwise definition of both D
Y

and D
Sp(X)

.

(1) ⇒ (2). Throughout this proof i stands for ±1. Let U
i

:= a−1[i] and V
i

:= b−1[i] ∪ c−1[i],
quasi-compact open subsets of X. Assumption (1) amounts to U

i
∩ Y ⊆V

i
∩ Y . Set W

i
:=

U
i
∩ V

i
; W

i
is quasi-compact open, and W

1
∩ W−1

= ∅. We define a map a′ : X −→3 by :

a′ dW
i

= i for i ∈ {±1}, and a′ dX \ (W
1
∪ W−1

) = 0 .

Clearly, a′ ∈ Sp(X). We have:

— a′dY = a dY .

Let y ∈ Y ; for i ∈ {±1},
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a(y) = i⇒ y ∈ U
i
∩ Y ⊆V

i
∩ Y ⇒ y ∈W

i
∩ Y ⇒ a′(y) = i ,

and

a(y) = 0⇒ y ∈ X \ (U
1
∪ U−1

)⊆X \ (W
1
∪ W−1

)⇒ a′(y) = 0 .

— a′ ∈ D
Sp(X)

(b, c).

For x ∈ X and i ∈ {±1} we have:

a′(x) = i ⇒ x ∈W
i
⊆V

i
⇒ b(x) = i or c(x) = i ,

as required. 2

Corollary V.8.4 Let X be a hereditarily normal spectral space, and let Y ⊆X be a procon-
structible subset. The equivalence relation ≡Y verifies the factoring condition of Definition
II.2.1 (iii).

Proof. Given a RS-morphism f : Sp(X)−→H into a RS, H, such that a ≡Y b⇒ f(a) = f(b)
for a, b ∈ Sp(X), it suffices to show that the map f̂ : Sp(X)/≡Y = Sp(Y )−→H defined by
f̂ ◦ π = f preserves representation, i.e., for a, b, c ∈ Sp(X),

π
Y

(a) ∈ D
Y

(π
Y

(b), π
Y

(c)) ⇒ f(a) ∈ D
H

(f(b), f(c)).

By Proposition V.8.3, the antecedent implies that a′ ∈ D
Sp(X)

(b, c) for some a′ ∈ Sp(X) such

that a′ dY = a dY , i.e., a′≡
Y
a. By the assumption on f we have f(a) = f(a′) and, since f is

a RS-morphism, f(a) = f(a′) ∈ D
H

(f(b), f(c)), as required. 2

V.8.5 The spectral hull of a RS-quotient.

As an application of the foregoing results we prove that formation of the spectral hull
commutes with the operation of taking quotients under arbitrary RS-congruences. The result
is:

Theorem V.8.6 Let ≡ be a RS-congruence of a real semigroup G. Let Y := H≡⊆XG
denote

the (proconstructible) set of characters defined by ≡ (cf. Proposition ?? ) and let ≡
Y

denote,
as above, the RS-congruence of Sp(G) induced by Y . Then we have Sp(G/≡) ' Sp(G)/≡

Y
.

Proof. Recall that in Theorem V.5.3 (i) we proved that —under identification of the RS G in its
spectral hull Sp(G) via the map η

G
— any RS-homomorphism f : G−→H extends uniquely to

a RS-morphism Sp(f) : Sp(G)−→ Sp(H). The map Sp(f) is defined by Sp(f)(g) = g ◦ f∗ (g ∈
Sp(G)), where the spectral map f∗ : X

H
−→X

G
dual to f is given by right-composition with

f : for γ ∈ X
H

, f∗(γ) = γ ◦ f ; see V.4.3 (b) and V.4.4. We shall use this with H = G/≡ and
f = π

G
= the canonical quotient map G−→G/≡.

As in Theorem V.8.2, π
Y

: Sp(G)−→ Sp(G)/≡
Y

denotes the corresponding quotient map.

We note first:

(a) For a, b ∈ Sp(G), a≡
Y
b ⇒ Sp(π

G
)(a) = Sp(π

G
)(b).

Proof of (a). This implication can be rephrased as

a dY = b dY ⇒ a ◦ π∗
G

= b ◦ π∗
G

.

That is, we must show that, for σ ∈ X
G/≡ , (a ◦ π∗

G
)(σ) = (b ◦ π∗

G
)(σ); equivalently,

a(σ ◦ π
G

) = b(σ ◦ π
G

) . Now, σ ◦ π
G
∈ H≡ = Y (cf. ??); since a dY = b dY , we conclude

a(σ ◦ π
G

) = b(σ ◦ π
G

) , as required.
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Since ≡
Y

is a RS-congruence of Sp(G) (V.8.2 (1) and V.8.4), (a) entails that the map

Sp(π
G

) : Sp(G)−→ Sp(G/≡) induces a RS-morphism Ŝp(π
G

) : Sp(G)/≡
Y
−→ Sp(G/≡) such

that Ŝp(π
G

) ◦ π
Y

= Sp(π
G

). We show that Ŝp(π
G

) is the required RS-isomorphism.

(b) Ŝp(π
G

) is injective.

Proof of (b). This is just the converse implication to (a): for a, b ∈ Sp(G),

Sp(π
G

)(a) = Sp(π
G

)(b) ⇒ a dY = b dY , i.e.,

(*) a ◦ π∗
G

= b ◦ π∗
G
⇒ a dY = b dY .

Let p ∈ Y = H≡. By the definition of H≡ (??) there is σ ∈ X
G/≡ such that p = σ ◦ π

G
. Then,

from the antecedent of (*) comes

a(p) = a(σ ◦ π
G

) = (a ◦ π∗
G

)(σ) = (b ◦ π∗
G

)(σ) = b(σ ◦ π
G

) = b(p);

since p is an arbitrary element of Y , (*) is proved.

(c) Ŝp(π
G

) is surjective.

Proof of (c). We show Sp(π
G

) is surjective. Let f ∈ Sp(G/≡), i.e., f : X
G/≡−→ 3sp is a

spectral map. With ϕ : Y = H≡−→X
G/≡ denoting the (spectral) homeomorphism given by

Proposition ?? (iii), we have f◦ϕ ∈ Sp(Y ). The Claim in the proof of Theorem V.8.2 shows that
f ◦ϕ extends to a map g ∈ Sp(X

G
) = Sp(G), i.e., g dY = f ◦ϕ. Inspection of the definition of ϕ

(proof of ?? (iii)) shows that ϕ = π∗
G

−1. Hence the last equality yields f = g ◦π∗
G

= Sp(π
G

)(g),

proving (c).

(d) Ŝp(π
G

) reflects representation.

Proof of (d). This amounts to proving, for a, b, c ∈ Sp(G),

Sp(π
G

)(a) ∈ D
Sp(G/≡)

(Sp(π
G

)(b),Sp(π
G

)(c)) ⇒ π
Y

(a) ∈ D
Sp(G)/≡Y

(π
Y

(b), π
Y

(c)), i.e.,

(**) a ◦ π∗
G
∈ D

Sp(G/≡)
(b ◦ π∗

G
, c ◦ π∗

G
) ⇒ a dY ∈ D

Sp(Y )
(b dY, c dY ).

For z ∈ Sp(G) and σ ∈ X
G/≡ we have (z ◦ π∗

G
)(σ) = z(σ ◦ π

G
). So, the antecedent of (**)

translates as

(***) ∀σ ∈ X
G/≡

[
a(σ ◦ π

G
) ∈ D

3
(b(σ ◦ π

G
), c(σ ◦ π

G
))
]
.

To end the proof of (**), let p ∈ Y = H≡, i.e., p = σ ◦ π
G

for some σ ∈ X
G/≡. Then, (***)

yields a(p) ∈ D
3
(b(p), c(p)). Since p is an arbitrary element of Y , the conclusion of (**) follows.

2

V.9 Saturated prime ideals of spectral real semigroups.

Recall that Specsat(G) denotes the space of saturated prime ideals of a real semigroup G,
defined in I.6.19.

Theorem V.9.1 Let X be a hereditarily normal spectral space. Then, X is homeomorphic to
Specsat(Sp(X)). Hence, all three spaces X, XSp(X) and Specsat(Sp(X)) are homeomorphic.
In particular, Specsat(Sp(X)) is hereditarily normal.

Proof. The Theorem is proved by the five claims that follow.
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Claim 1. Let P be a prime ideal of Sp(X). Then, the set
⋂
{Z(f) | f ∈ P} is a chain under

the specialization order of X (Z(f) = f−1[0]) .

Proof of Claim 1. Set S :=
⋂
{Z(f) | f ∈ P}. Assume S contains elements x, y incomparable

under  . Then we have :

(a) Gen (x) ∩ Gen (y) = ∅.

This is clear by hereditary normality: if z x, y for some z ∈ X, then x and y are  -
comparable.

(b) Gen (x) and Gen (y) are quasi-compact.

This holds because {x}, {y} are (obviously) quasi-compact and open sets are generically closed
(cf. proof of Theorem V.1.5.)

By Proposition V.1.6 (i) there are disjoint, quasi-compact opens U, V such that Gen (x)⊆U,
Gen (y)⊆V . Define maps f, g : X −→3 by :

fdV = 1 , fd(X \ V ) = 0 and gdU = 1 , gd(X \ U) = 0 .

Since U, V are quasi-compact open, f, g ∈ Sp(X). Also :

x ∈ Gen (x)⊆U ⊆X \ V ⇒ f(x) = 0 and g(x) = 1 ;

y ∈ Gen (y)⊆V ⊆X \ U ⇒ g(y) = 0 and f(y) = 1 .

Since x, y ∈ S, h(x) = h(y) = 0 for all h ∈ P . This and the preceding lines entail f, g 6∈ P .
On the other hand, U ∩ V = ∅ implies X = (X \U) ∪ (X \ V ) = Z(g) ∪ Z(f) = Z(fg), i.e.,
fg = 0 ∈ P , contradicting the assumption that P is prime. 2

Set S′ := S ∩
⋂

g 6∈P
[[ g2 = 1 ]], where [[ g2 = 1 ]] = {x ∈ X | g2(x) = 1}. Since S′⊆S, S′ is

a specialization chain of X.

Claim 2. S′ 6= ∅ (hence, S 6= ∅ ).

Proof of Claim 2. S′ 6= ∅ means that, there is x ∈ X such that for all f ∈ P and g 6∈
P, f(x) = 0 and g(x) 6= 0 . We first note :

(a) For all f ∈ P and g 6∈ P , there is x ∈ X so that f(x) = 0 and g(x) 6= 0 .

Otherwise, Z(f)⊆Z(g). By I.6.5 (1) applied with G = Sp(X), this yields g = f2 g ∈ P ,
absurd.

(b) Now, let f
1
, . . . , f

n
∈ P , g

1
, . . . , g

m
6∈ P be arbitrary finite sets. We show :⋂n

i=1
Z(f

i
) ∩

⋂m

j=1
[[ g2

j = 1 ]] 6= ∅ .

In fact, set g :=
∏m
j=1 gj ; clearly, g 6∈ P and

⋂m

j=1
[[ g2

j = 1 ]] = [[ g2 = 1 ]] . On the other

hand, let f be the unique element of Dt
Sp(X)

(f2
1
, . . . , f2

n
) (cf. IV.5.3 (i)). We have Z(f) =⋂n

i=1
Z(f

i
) and, since P is saturated, f = f2 ∈ P . Thus,

⋂n

i=1
Z(f

i
) ∩

⋂m

j=1
[[ g2

j = 1 ]] =

Z(f) ∩ [[ g2 = 1 ]], and, by (a), this set is non-empty.

Next, observe that Z(f) and [[ g2 = 1 ]] are both closed in Xcon. Then, {Z(f) ∩ [[ g2 =
1 ]] | f ∈ P, g 6∈ P} is a family of closed sets in Xcon with (by (b)) the finite intersection
property. By compactness,
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S′ =
⋂
{Z(f) ∩ [[ g2 = 1 ]] | f ∈ P, g 6∈ P} 6= ∅ ,

proving Claim 2. 2

Thus, S′ is a non-empty, proconstructible specialization chain of X. By [DST], Thm.
5.2.6 (iii), S′ has an infimum in the specialization order, say x

0
(which belongs to S′). We

claim:

Claim 3. For f ∈ Sp(X) , f ∈ P ⇔ f(x
0
) = 0 .

Proof of Claim 3. The implication ⇒ is obvious, since x
0
∈ S′⊆Z(f).

(⇐) Assume f 6∈ P . Since x
0
∈ S′⊆ [[ f2 = 1 ]], we have f2(x

0
) = 1, i.e., f(x

0
) 6= 0 . 2

This shows that the map θ : X −→ Specsat(Sp(X)) given by x 7−→ {f ∈ Sp(X) | f(x) =
0} (:= P

x
) is surjective (cf. [M], Prop. 6.5.1, p. 117). We also have:

Claim 4. θ is injective.

Proof of Claim 4. Let x, y ∈ X ,x 6= y. Since X is T
0

, there is a quasi-compact open set U
such that, say, x ∈ U , y 6∈ U . With f : X −→ 3 defined by fdU = 1 , fd(X \ U) = 0 we have
f ∈ Sp(X) and f(y) = 0, but f(x) = 1, i.e., f ∈ P

y
\ P

x
, whence P

y
6= P

x
. 2

Finally we prove:

Claim 5. θ is a homeomorphism.

Proof of Claim 5. (a) Let f ∈ Sp(X) and let D(f) = {P ∈ Specsat(Sp(X)) | f 6∈ P} be the
basic open set of Specsat(Sp(X)) defined by f (cf. I.6.19). Since (by Claim 3) every saturated
prime ideal of Sp(X) is of the form P

x
for some x ∈ X, we have:

θ−1[D(f)] = {x ∈ X | f(x) 6= 0} = f−1[1] ∪ f−1[−1]

a quasi-compact open subset of X .

(b) Conversely, given a quasi-compact open subset U of X, with f ∈ Sp(X) defined by fdU =
1 , fd(X \ U) = 0, we have θ[U ] = D(f) ; indeed, for x ∈ X ,

x ∈ U ⇔ f(x) = 1 ⇔ f(x) 6= 0 ⇔ f 6∈ P
x
⇔ P

x
∈ D(f) .

This shows that θ−1 establishes a bijection between basic quasi-compact open subsets of
Specsat(Sp(X)) and quasi-compact opens of X, which proves Claim 5, completing the proof of
Theorem V.9.1. 2

Remark. Since any homeomorphism between spectral spaces preserves and reflects special-
ization, the preceding theorem entails:

For all x, y ∈ X , x y ⇔ P
x
 P

y
(i.e., P

x
⊆P

y
) . 2

Added December 2011.

Proposition V.9.2 A quotient of a spectral RS modulo a saturated prime ideal is a quasi
Boolean algebra 5.

Proof. Let G be a spectral RS and P be a saturated prime ideal of G. By Theorem II.3.15 (d)
and with notation therein, G′ := (G/P ) \ {π(0)} is a RSG under the representation D

G/P
. We

show that G′ is a Boolean algebra.

5 That is, a Boolean algebra as a reduced special group with an added zero; cf. I.2.2 (3).
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Since the equivalence relation ∼
P

that determines the quotient G/P (= G/∼
P

) is a RS-
congruence, Proposition V.7.6 (3) shows that G/P is a spectral RS. Now, the argument of
Corollary V.6.7 shows that, under the representation partial order, G′ is a Boolean algebra:
any element of G′ is of the form a/∼

P
with a ∈ G \P . Since G′ is a RSG, we have a2/∼

P
= 1,

and I.6.5 (7) gives:

a/∼
P
∧ − a/∼

P
= a2/∼

P
= 1 and a/∼

P
∨ − a/∼

P
= −a2/∼

P
= −1,

proving, in fact, that G′ is a Boolean algebra. 2

V.10 Rings whose associated real semigroups are spectral.

In this section we prove, first, that the real semigroup associated to any lattice-ordered ring is
spectral. This exhibits a very extensive class of examples of spectral RSs arising from rings.
Use of the axiomatisation given in V.7.4 (1) makes the proof rather simple. A significant
consequence of this, together with previous results, is that the spectral hull of the RS G

A
associated to any semi-real ring A is canonically isomorphic to the RS G

A
associated to the

real closure A of A (real closure in the sense of Schwartz [Sch], see also Prestel-Schwartz, [PS]);
further, the canonical embedding η

GA
of G

A
into Sp(G

A
) (V.4.1 (ii)) is induced by the inclusion

of A into A (see also [M], Remark (3), p. 178). 2

V.10.1 Preliminaries and Notation. We assume known the basics on lattice-ordered rings
(abbreviated `-rings), for which the reader is referred to [BKW], Chs. 8, 9.

Throughout we assume A is an `-ring. The underlying partial order of A will be denoted
by ≤ (not to be confused with the representation partial order of G

A
= G

A,≤, cf. I.6). Without

risk of confusion, the lattice operations in both A and G
A

will be denoted by ∧ ,∨.

V.10.2 Reminder. For ready reference we recall from I.1.2 (e) that the ARS associated to
the real semigroup G

A
is

X
GA

= Sper(A,≤) = {α ∈ Sper(A) |α contains ≤},

and that, for a ∈ A and α ∈ X
GA

,

(∗) a(α) =


1 ⇔ a ∈ α \ (−α) ⇔ πα(a) >

α
0 (in (A/supp(α),≤α)) ,

0 ⇔ a ∈ supp(α) ⇔ πα(a) = 0 ,

−1 ⇔ a ∈ −α \ α ⇔ πα(a) <
α

0.

The lattice operations in A induce binary operations (a, b) 7→ a∧ b (resp. a∨ b) in G
A

. 2

Fact. The operations (a, b) 7→ a∧ b (resp. a∨ b ) are well-defined: for a, a′, b, b′ ∈ A,

a = a′ and b = b′ imply a∧ b = a′ ∧ b′ and a∨ b = a′ ∨ b′.

Sketch of proof. We just sketch the idea of the argument for the case (a, b) 7→ a∧ b.
Obviously it suffices to show: a = a′ ⇒ a∧ b = a′∧ b.

The assumption is a(α) = a′(α), for α ∈ Sper(A,≤). By V.10.2 (*), this amounts to the
fact that πα(a) and πα(a′) have the same strict sign (strictly positive, strictly negative or zero)
in the order ≤α of A/supp(α). Since πα : (A,≤)−→ (A/supp(α),≤α) is a homomorphism of
ordered rings and the counterdomain is totally ordered, we have

(†) πα(a∧ b) = min≤α
{πα(a), πα(b)}.
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Now proceed by a case-wise argument according to the values of (a∧ b)(α), using that πα(a),
πα(a′) have the same sign in ≤α. 2

The simple observations that follow will be used in the proof of our main result, as well as
the characterization of the representation partial order of G

A
given in Proposition I.6.4 (d).

Fact V.10.3 Let A be a `-ring and let G
A

be its associated RS. For a, b ∈ A we have:

(1) a ≤ b ⇒ b ≤ a.

(2) b ≤ a ⇔ There is a′ ∈ A so that a′ = a and a′ ≤ b.

(3) b ≤ 0 ⇔ For all α ∈ Sper(A,≤), πα(b) ≥
α

0 .

(4) a∧ b = a ∨ b and a∨ b = a∧ b.

Proof. (1) By I.6.4 (d) , we must show, for all α ∈ Sper(A,≤):

(i) a(α) = 1 ⇒ b(α) = 1;

(ii) a(α) = 0 ⇒ b(α) ∈ {0, 1}.

By V.10.2 (*) above, these conditions are equivalent to:

(i′) πα(a) >
α

0 ⇒ πα(b) >
α

0;

(ii′) πα(a) = 0 ⇒ πα(b) ≥
α

0.

Since πα : (A,≤)−→ (A/supp(α),≤α) is a homomorphism of ordered rings, a ≤ b implies
πα(a) ≤

α
πα(b), from which (i′) and (ii′) clearly follow.

(2) The implication (⇐) is clear from (1).

(⇒) Assuming b ≤ a (in G
A

), the implications (i′) and (ii′) above hold.

Set a′ := a∧ b. It remains to show that a(α) = a′(α) for all α ∈ Sper(A,≤); we argue by
cases according to the values of a(α):

— a(α) = 1.

Then, πα(a) >
α

0 (see V.10.2 (*)); by (i′), πα(b) >
α

0, and we get,

0 <
α

min≤α
{πα(a), πα(b)} = πα(a∧ b) = πα(a′),

i.e., a′(α) = 1.

— a(α) = 0.

By V.10.2 (*), πα(a) = 0; (ii′) gives πα(b) ≥
α

0; thus, πα(a′) = πα(a∧ b) = min≤α
{πα(a), πα(b)}

= 0, i.e., a′(α) = 0.

— a(α) = −1. An argument similar to the first case yields a′(α) = −1.

(3) The characterization of b ≤ a set forth in items (i′) and (ii′) of the proof of (1) applied with
a = 0, gives, for α ∈ Sper(A,≤):

— πα(0) >
α

0 ⇒ πα(b) >
α

0;

— πα(0) = 0 ⇒ πα(b) ≥
α

0.

The first implication is vacuously true since its antecedent is false, and the second implication
is equivalent to πα(b) ≥

α
0 since its antecedent is true.
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(4) We only prove the first equality. Since a∧ b ≤ a, b (in A), item (1) gives a, b ≤ a∧ b,
whence a∨ b ≤ a∧ b. To prove the reverse inequality we proceed by cases, according to the
values of (a∧ b)(α), α ∈ Sper(A,≤).

— If (a∧ b)(α) = 1 there is nothing to prove.

— (a∧ b)(α) = 0.

By V.10.2 (*), πα(a∧ b) = 0; equality (†) above implies that one of πα(a), πα(b) is 0 and the
other is ≥

α
0, i.e., either a(α) = 0 and b(α) ∈ {0, 1} or the other way round. Since the order

in 3 is 1 < 0 < −1, this clearly yields a(α)∨ b(α) = 0.

— (a∧ b)(α) = −1.

From V.10.2 (*) and (†) we get min≤α
{πα(a), πα(b)}<

α
0. Then, at least one of πα(a) or πα(b)

is <
α
0, i.e., a(α) = −1 or b(α) = −1, which yields a(α)∨ b(α) = −1. 2

Now we turn to the proof of :

Theorem V.10.4 Let (A,≤) be a `-ring. The real semigroup G
A

associated to A is spectral.

Proof. We show that G
A

verifies axioms [SRS1] and [SRS2] of V.7.4. We shall use, mostly
without explicit mention, the results of V.10.3, notably that the order reverses in passing from
A to G

A
and that, for a, b ∈ A and α ∈ Sper(A,≤),

(†) πα(a∧ b) = min≤α
{πα(a), πα(b)} and πα(a∨ b) = max≤α

{πα(a), πα(b)} ;

[SRS1]. Fix a ∈ A, and set c = a∨ 0. Then, c ≥ 0, whence c ≤ 0, and, by I.6.4, c ∈ Id (G
A

); in
particular, c(α) ∈ {0, 1}, i.e., πα(c)≥α 0 for α ∈ Sper(A,≤). Also, c ≥ a, i.e., c ≤ a, whence,
by I.6.2, −a ∈ D

GA
(1,−c).

To prove a c = c, let α ∈ Sper(A,≤). The equality holds at α if c(α) = 0. So, assume
c(α) = 1, i.e., πα(c)>α 0; by (†), πα(c) = max≤α

{πα(a), 0}>α 0 which clearly implies πα(a)>α 0,

i.e., a(α) = 1.

[SRS2]. Given a, b ∈ A, set d = a∨ b, i.e., d = a∧ b. We show:

(i) d ∈ D
GA

(a , b) .

That is, we must prove: d(α) 6= 0 ⇒ d(α) = a(α) or d(α) = b(α), for α ∈ Sper(A,≤). Since
the order ≤α is total, the second equality in (†) yields πα(d) = πα(a) or πα(d) = πα(a), which
obviously entails the required conclusion.

(ii) d
+

= −a+ · b+
.

Since z+ = z ∨ 0 ≥ 0 (z ∈ A), we get z+(α) ∈ {0,−1} for α ∈ Sper(A,≤). To prove (ii), we

argue by cases according to the values of d
+

(α).

— d
+

(α) = −1.

This means (d∧ 0)(α) = −1, i.e., πα(d∧ 0) <α 0; by (†), πα(d) <α 0. Since d = a∨ b, the

second equality in (†) implies that both πα(a) and πα(b) are<α 0, whence a+(α) = b
+

(α) = −1.

It follows that −a+(α) · b+
(α) = −1 = d

+
(α) .

— d
+

(α) = 0.

That is, (d∧ 0)(α) = 0, i.e., πα(d∧ 0) = 0. The first equality in (†) gives πα(d)≥α 0, and (by
d = a∨ b) the second equality shows that at least one of πα(a) or πα(b) must be ≥α 0. Then,
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one of πα(a∧ 0) or πα(b∧ 0) equals 0, i.e., either a+(α) = 0 or b
+

(α) = 0, proving that (ii)
holds at α.

(iii) (d)− ∈ Dt
GA

((a)−, (b)−).

For z ∈ A we have (z)− = z ∧ 0 ≤ 0, and hence (z)−(α) ∈ {0, 1} for α ∈ Sper(A,≤). To
establish (iii) we must show:

— (d)−(α) = 0 ⇒ (a)−(α) = (b)−(α) = 0, and

— (d)−(α) = 1 ⇒ (a)−(α) = 1 or (b)−(α) = 1 .

For the first implication, the assumption is (d∨ 0)(α) = 0, i.e., πα(d∨ 0) = 0. The
first equality in (†) shows that πα(d)≤

α
0, and the second (applied with d = a∨ b) yields

πα(a), πα(b)≤
α
0. We get πα(a∨ 0) = πα(b∨ 0) = 0, i.e., (a)−(α) = (b)−(α) = 0.

For the second implication, the assumption amounts to πα(d∨ 0)>α 0, which implies
πα(d)>α 0. The conclusion to be proved amounts to πα(a)>α 0 or πα(b)>α 0, which obvi-
ously follows from the second equality in (†) applied with d = a∨ b. 2

As a consequence of Theorem V.10.4 and of previous results in this section, we have:

Proposition V.10.5 Let A be a semi-real ring, let A denote its real closure (in the sense of
Prestel-Schwartz [PS]), and let ι : A−→A be the inclusion map. Then,

(1) The spectral hull Sp(G
A

) of the real semigroup G
A

is canonically isomorphic to G
A

, the RS

associated to A.

(2) The canonical embedding η
GA

of G
A

into Sp(G
A

) (cf. V.4.1 (ii)) is induced by the RS-

morphism ι : G
A
−→G

A
given by the ring inclusion ι.

Proof. The result is a consequence of the following observations:

— Sper (A) = Sper (A) (cf. [PS], p. 264) entails Sp(G
A

) = Sp(G
A

); indeed, both these RSs

consist of the spectral characters of the space X = Sper (A) = Sper (A) into 3sp (V.1.2).

— By Theorem V.5.3 (i) we have a commutative diagram

G
A

η
GA

��

ι // G
A

η
GA

��
Sp(G

A
)

Sp(ι)

// Sp(G
A

)

The previous observation and the uniqueness in V.5.3 (i) entail that Sp(ι) is the identity of
Sp(G

A
) = Sp(G

A
) (the reader can easily check that this identity makes the above diagram

commute). Since A (ordered by A
2
) is a `-ring (in fact, a reduced f -ring), by V.10.4 G

A
is a

spectral RS. Corollary V.4.6 entails, then, that η
GA

is an isomorphism of RSs.

Let ϕ : Sp(G
A

)−→G
A

be the map ϕ := η−1
GA
◦ Sp(ι). By the preceding observation, ϕ

is an isomorphism of RSs, which proves (1). Commutativity of the diagram above then gives
η
GA

= ϕ−1 ◦ ι, which proves (2). 2

Remark V.10.6 The well-known Delzell-Madden example of a hereditarily normal spectral
space that is not homeomorphic to the real spectrum of any ring, [DeMa], also yields an
example of a spectral RS not realizable by a ring: if X denotes this space, the duality RS/ARS
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(Theorem I.5.1) and Proposition V.3.7 (2) show that Sp(X) is not isomorphic to G
A

for any
ring A. Further, in [M], p. 177, Marshall observes, using a dual terminology, that Sp(X)
cannot even be of the form G

A,T
for a ring A and a preorder T of A. 2
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Chapter VI

Fans

Introduction

Our aim in this chapter is to introduce a general notion of “fan” in the dual categories of
abstract real spectra (ARS)index[sym]ARSindex[sub]category!ARS and of real semigroups
(RS),index[sym]RSindex[sub]category!RS and to study in detail the properties of these struc-
tures. The notion of a fan is a well-known and a central notion in the categories AOSindex[sym]AOSindex[sub]category!AOS
of abstract order spaces, see [M], Ch. 3, and the dual category RSGindex[sym]RSGindex[sub]category!RSG
of reduced special groups, cf. [DM2], Chs. 1, 3. Furthermore, fans are the building blocks nec-
essary to understand the geometry of AOSs as well as the key to many applications in real
geometry; cf. [ABR], Chs. 3, 4. However, little or no attention has so far been paid to the
role of fans in the categories ARS and RS: only a very particular case of the general notion
introduced below occurs in [M], p. 162.

To motivate the ideas let us briefly review the definition of a fan in the (dual) categories
AOS and RSG:

— A fan in the category AOS (henceforth called an AOS-fan)index[sub]AOS-fanindex[sub]fan!AOS-
is an abstract space of orders (X,G) where “X is biggest possible”; there are two equivalent
ways of making sense of this idea :

(1) X consists of all group homomorphisms h : G−→{±1} such that h(−1) = −1.

(2) (X,G) is an AOS and X is closed under the product of any three of its members.

— A fan in the category RSG (henceforth an RSG-fan)index[sub]RSG-fanindex[sub]fan!RSG-
is a reduced special group G whose binary representation relation is “smallest posible”; there
is only one way of making sense of this:

a ∈ DG(b, c) iff either b = −c or (b 6= −c and a ∈ {b, c}).

Remarks. While condition (1) above implies that (X,G) is an AOS, the last requirement in
(2) alone is not sufficient to guarantee that (X,G) is an AOS; in addition, one must require
that:

(i) X separates points in G, i.e.,
⋂
σ∈X ker(σ) = { 1}.index[sub]separates points

(ii) X verifies the following maximality condition (see [M], axiom [AX2] for AOSs, p. 22):
for every group homomorphism σ : G−→{±1}, if σ(−1) = −1 and a, b ∈ ker(σ) ⇒
D
X

(a, b)⊆ ker(σ), then σ ∈ X.

The definition of binary representation given above (together with 1 6= −1) implies that G is a
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RSG. 2

We shall define the notion of a fan in the category ARS of abstract real spectra by postu-
lating the analogs of conditions (1) and (2) above, upon replacing the underlying notion of a
group of exponent 2 with a distinguished element −1 by that of a ternary semigroup:

Definition VI.0.1 Given a ternary semigroup G and a non-empty X ⊆ 3G,

(1) (X,G) is a fan
1

iff X consists of all TS-homomorphisms from G to 3 = {−1, 0, 1}.
index[sub]fan@fan

1

(2) (X,G) is a fan
2

iff X is an ARS and is closed under the product of any three of its members.
index[sub]fan@fan

2
We shall frequently use in the sequel the following, weaker notion to which we give a name:

(3) (X,G) is a q-fan (quasi-fan) iff X is closed under the product of any three of its members
and X separates points in G, i.e., for every a, b ∈ G, a 6= b, there is h ∈ X such that
h(a) 6= h(b). index[sub]q-fan 2

Note. In (2) we allow products of type h2
1h2; as opposed to the case of special groups, squaring

a TS-homomorphism does not produce a trivial map. Note also that h3 = h, and that the
product of any three TS-homomorphisms is again a TS-homomorphism. 2

In section VI.2 below we shall prove that both these notions of fan are equivalent; until
then we keep the distinction.

As for the dual category RS, we shall prove that, under a suitable necessary condition,
q-fans automatically produce real semigroups where both binary representation relations Dt

and D are smallest possible.

INSERT DESCRIPTION OF CHAPTER’S CONTENTS HERE.

Remark. Recall that Hom
TS

(G, 3) denotes the set of all TS-homomorphisms from the ternary
semigroup G into 3.

VI.1 Preliminaries

Fact VI.1.1 Let G be a ternary semigroup, let X ⊆ Hom
TS

(G, 3), and assume that (X,G)

is a q-fan. A necessary condition for (X,G) to be an ARS is that for all a, b ∈ G, either
Z(a) ⊆ Z(b) or Z(b) ⊆ Z(a). Here, Z(a) = {h ∈ X |h(a) = 0}.

Proof. Assume (X,G) |= ARS but there are a, b ∈ G so that Z(a) 6⊆ Z(b) and Z(b) 6⊆ Z(a),
i.e., h

1
(a) = 0, h

1
(b) 6= 0, h

2
(b) = 0, h

2
(a) 6= 0, for some h

1
, h

2
∈ X. Since (X,G) is a

q-fan, h2
1
h

2
∈ X. By Lemma II.2.11 (1), Z(h

1
) and Z(h

2
) are comparable under inclusion,

contradicting that a ∈ Z(h
1
) \ Z(h

2
) and b ∈ Z(h

2
) \ Z(h

1
). 2

Our next result gives some alternative characterizations of the necessary condition in Fact
VI.1.1.

Proposition VI.1.2 Let T be a ternary semigroup. The following conditions are equivalent:

(1) The family {Z(a) | a ∈ T} is totally ordered under inclusion.

(2) For all a, b ∈ T , either a2b2 = a2 or a2b2 = b2.

(3) Every proper ideal of T is prime.

(4) The set of ideals of T is totally ordered under inclusion.
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Proof. First observe:

(*) Z(a) ⊆ Z(b) ⇔ a2b2 = b2.

This is proved by the argument proving the equivalence of items (ii) and (iii) in Proposition
I.6.5(1), using the separation theorem for ternary semigroups (Theorem I.1.12), instead of the
corresponding result for real semigroups.

The equivalence of (1) and (2) follows immediately from (*).

(2) ⇒ (3). Let I be an ideal of T , and suppose ab ∈ I; then a2b2 ∈ I and, by (2), a2 ∈ I or
b2 ∈ I, which implies a ∈ I or b ∈ I (as x = x3 = x2x).

(3)⇒ (4). If J1, J2 are incomparable ideals, then J1∩J2 is not prime (if a ∈ J2 \J1, b ∈ J1 \J2

then ab ∈ J1 ∩ J2 but a, b 6∈ J1 ∩ J2).

(4) ⇒ (2). Given a, b ∈ T , consider the principal ideals I
a
, I

b
, I

ab
generated by a, b, ab,

respectively (I
c

= {x ∈ G | c2x = x}, cf. I.1.11). Clearly we have I
ab
⊆ I

a
∩ I

b
. Conversely, let

x ∈ I
a
∩ I

b
, i.e., x = ay = bz for some y, z ∈ T . Then, x = x3 = xx2 = (ay)(b2z2) = ab(byz2) ∈

I
ab

. Hence, I
ab

= I
a
∩ I

b
. By (4), either I

a
⊆ I

b
or I

b
⊆ I

a
; say the first; then, I

ab
= I

a
. The

result follows from:

Fact. For x, y ∈ T, I
x

= I
y
⇔ x2 = y2.

Proof of Fact. (⇐) is clear (since x2 = y2 ⇒ x = y2x ∈ I
y
).

(⇒) From I
x

= I
y

we get x = yz and y = xw for some z, w ∈ T . Thus, x2 = y2z2, y2 = x2w2,

whence x2 = x2w2z2, y2 = y2z2w2 = x2w2w2z2 = x2w2z2, i.e., x2 = y2. 2

VI.2 Fans are real semigroups and abstract real spectra

To prove the results announced in the title, our first order of business is to work out the explicit
form of the representation relations corresponding to the notion of “q-fan”. Recall that, given
X ⊆3G, the relations D

X
and Dt

X
are defined by the clauses [R] and [TR] of ?? (b), respectively.

The main results to be proved in this section are:

Theorem VI.2.1 Let G be a ternary semigroup verifying

[Z] ∀ a, b ∈ G (a2b2 = a2 or a2b2 = b2).

Let X ⊆ Hom
TS

(G, 3) be such that (X,G) |= q-fan. With D = D
X

and Dt = Dt
X

denoting the

representation relations defined by [R] and [TR] of ?? (b), for a, b ∈ G we have:

[Dt] Dt(a, b) =


{ a} if Z(a) ⊂ Z(b)
{ b} if Z(b) ⊂ Z(a)
{ a, b} if Z(a) = Z(b) and b 6= −a
{ a2x |x ∈ G} if b = −a.

[D] D(a, b) = a · Id(G) ∪ b · Id(G) ∪ {x ∈ G |xa = −xb ∧ x = a2x}.

Note. xa = −xb implies a2x = b2x. Note also that {a, b}⊆Dt
X

(a, b) whenever Z(b) = Z(a).

Theorem VI.2.2 Let G be a ternary semigroup verifying condition [Z] of Theorem VI.2.1.
Then:

(1) Conditions [D] and [Dt] in VI.2.1 are interdefinable in the following sense:

(a) Assuming that a ternary relation D on G is defined as in [D] and the corresponding transver-
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sal representation is given by the clause

a ∈ Dt(b, c)⇔ a ∈ D(b, c) ∧ −b ∈ D(−a, c) ∧ −c ∈ D(b,−a).

(cf. [t-rep], section I.2 ), then Dt verifies condition [Dt] of VI.2.1.

(b) Conversely, if Dt is defined as in [Dt] and the associated ternary representation relation D
is defined by the stipulation a ∈ D(b, c)⇔ a ∈ Dt(a2b, a2c), then D verifies the equality [D] of
VI.2.1.

(2) (G,D) is a real semigroup.

Before engaging in the proof of these theorems we draw some important consequences of
them.

Corollary VI.2.3 Let G be a TS verifying condition [Z] of Theorem VI.2.1 and let X ⊆
Hom

TS
(G, 3). The following are equivalent:

(1) (X,G) |= fan
1

(i.e., X = Hom
TS

(G, 3) ).

(2) (X,G) is a q-fan and verifies axiom [AX2 ] for ARSs ([M], p. 99): for every subsemigroup
S of G such that S ∪ −S = G and S ∩ −S is a prime ideal, there is h ∈ X such that
S = h−1[ 0, 1].

(3) (X,G) |= fan
2
.

Remark. In (2), S is automatically a saturated subsemigroup of (G,D), since the other
requirements imply that S contains Id(G); see Corollary VI.2.8 below.

Proof. (1) ⇒ (2). With X = Hom
TS

(G, 3), the condition of closure under products in the

definition of q-fan is clear. The condition on separating points is exactly the content of the
separation theorem for ternary semigroups, I.1.12. For the axiom [AX2], with S a saturated
subsemigroup as in the hypotheses of this axiom (cf. [M], p. 99), the map given by:

h(x) =


1 if x ∈ S \ (−S)
0 if x ∈ S ∩ −S
−1 if x ∈ (−S) \ S.

is in Hom
TS

(G, 3) = X and clearly S = h−1[ 0, 1] (cf. Remark I.1.6 ff).

(2) ⇒ (3). Theorems VI.2.1 and VI.2.2 show that if (X,G) is a q-fan, then (G,D
X

) |= RS;
in particular, the strong associativity axiom [RS3] (i.e., axiom [AX3] of [M], p. 100) holds in
(G,D

X
); by (2), (X,G) is an ARS, i.e., (X,G) |= fan

2
.

(3) ⇒ (2). Assumption (3) implies that (X,G) is an ARS; in particular, it satisfies axiom
[AX2] of [M], p. 99, and separates points of G. It is also closed under products of any three
members of X. Hence, (X,G) satisfies condition (2).

(2) ⇒(1). We must prove that Hom
TS

(G, 3)⊆X. Let g ∈ Hom
TS

(G, 3); set S := g−1[0, 1].
Remark I.1.6 shows that it verifies the assumptions of axiom [AX2]. By (2) there is h ∈ X so
that S = h−1[0, 1], whence g−1[0] = S ∩ −S = h−1[0]. The equalities g−1[0, 1] = h−1[0, 1] and
g−1[0] = h−1[0] entail g = h, and hence g ∈ X. 2

Definition and Notation VI.2.4 Henceforth we simply write “fan” (or “ARS-fan”) for
either of the equivalent conditions fan

1
or fan

2
. In using the notation “(X,G) |= fan” we

implicitly assume that the underlying ternary semigroup G verifies condition [Z] in Theorem
VI.2.1; this assumption is crucial and, in fact, distinguishes fans from most other classes of
ARSs. We shall also say “G is a fan” (or an “RS-fan”), tacitly assuming that its representation
relations are those given in Theorem VI.2.1.
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Corollary VI.2.5 Let G be a TS verifying condition [Z] of Theorem VI.2.1. Let H be a
real semigroup, and let f : G −→H be a homomorphism of ternary semigroups. Then, f
preserves the representation relation D defined by clause [D] of VI.2.1, and hence it is a RS-
homomorphism from (G,D) into H. In other words, Hom

RS
((G,D), H) = Hom

TS
(G,H).

Proof. In view of the definition of D the proof boils down to the following obvious facts:

(1) f preserves products and idempotents, hence the clauses defining the relation D.

(2) For a, b, c in an arbitrary RS, H, we have

(i) a · Id(H)⊆D
H

(a, b), and (ii) ca = −cb ∧ c = a2c ⇒ c ∈ D
H

(a, b).

For the proof of (2.ii), observe that, for h ∈ X
H

, h(c) 6= 0 and c = a2c imply h(a) 6= 0.
If h(c) 6= h(a), then ca = −cb yields h(c) = h(b). This shows that h(c) ∈ D

3
(h(a), h(b))

for all h ∈ X
H

; by the Separation Theorem for RSs (Theorem I.5.4 (1)), we conclude that
c ∈ D

H
(a, b). 2

In particular we have:

Corollary VI.2.6 Let G be a TS verifying condition [Z] of Theorem VI.2.1. Then,

(1) Hom
RS

((G,D), 3) = Hom
TS

(G, 3).

Hence,

(2) The ARS dual to the real semigroup (G,D) is (Hom
TS

(G, 3), G). 1

(3) (Hom
TS

(G, 3), G) is a fan
1

(hence an ARS-fan, see VI.2.4).

(4) (G,D) is a RS-fan.

Proof. (1) is VI.2.5 with H = 3, and (2) comes from the definition of the ARS dual to any
RS (see proof of Theorem I.5.1). For (3) and (4) see VI.0.1 (1) and VI.2.7. 2

Corollary VI.2.7 Let (G,D) be a RS-fan. Then, the set G× = {a ∈ G | a2 = 1} of invertible
elements of G with representation induced by restriction of D to G×, is a RSG-fan, i.e., a fan
in the category of reduced special groups.

Proof. It readily follows from axiom [RS6] that D
G

and Dt
G

coincide on G× for any RS, G.

Since Z(a) = ∅ for a ∈ G×, only the last two clauses in the characterization of Dt
G

given by

Theorem VI.2.1 apply, whenever a, b ∈ G×, and we have :

Dt
G

(a, b) =

{
{ a, b} if b 6= −a ,
G if b = −a .

But this is exactly the definition of representation in a RSG-fan, cf. [DM1], Lemma 1.8, p. 9.
Since Dt

G
(a, b) ∩ G× = D

G
(a, b) ∩ G×, our contention is proved. 2

Corollary VI.2.8 Let G be a TS verifying condition [Z] of Theorem VI.2.1 and let D be the
ternary relation on G defined by clause [D] of that Theorem. Then,

(1) Every TS-ideal of G is a saturated ideal of the real semigroup (G,D).

(2) A TS-subsemigroup S of G is saturated in (G,D) iff it contains Id(G) = {x2 |x ∈ G} and
S ∩ −S is an ideal.

1 Recall that G = {a | a ∈ G}, where a ∈ 3
Hom

TS
(G,3)

is the map “evaluation at a” (see item (I) in proof
of I.5.1.
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Proof. (1) Straightforward verification.

(2) The implication (⇒) is obvious. For the converse, write I = S ∩ −S; I is a prime ideal
(VI.1.2(3)). Let a, b ∈ S and c ∈ D(a, b) = a·Id(G)∪ b·Id(G)∪ {x ∈ G |xa = −xb ∧ x = a2x }.
If c ∈ a · Id(G), then c = ax2, whence c ∈ S, since both a and x2 are in S. The case c ∈ b · Id(G)
is similar. If ca = −cb and c = a2c, then c2a = −c2b, which implies c2a ∈ I. Since I is prime,
either a or c are in I; if a ∈ I, then c = a2c ∈ I; in both cases we have c ∈ I ⊆S. 2

Proof of Theorem VI.2.1. First we prove:

(A) (X,G) |= q-fan implies that the relation Dt
X

(defined by clause [TR] in I.3.2 (b)) verifies

condition [Dt] in the statement of the Theorem. Note that:

(1) Z(a)⊆Z(b)⇒ a ∈ Dt
X

(a, b).

(immediate verification). Next we prove:

(2) Z(a)⊆Z(b)∧ b 6= −a ⇒ Dt
X

(a, b)⊆{a, b}.

Proof of (2). Suppose there is c ∈ Dt
X

(a, b) such that c 6= a and c 6= b. Since X separates points,
these inequalities, together with b 6= −a give TS-characters h1, h2, h3 ∈ X whose images at the
points a, b, c verify the corresponding inequalities in 3. By assumption, h = h1h2h3 ∈ X, and
h contradicts c ∈ Dt

X
(a, b); more precisely, h verifies either

(*) h(c) = 0 and h(a) 6= −h(b), or

(**) h(c) 6= 0, h(c) 6= h(a) and h(c) 6= h(b).

(I) Since c 6= a, there is h1 ∈ X so that h1(c) 6= h1(a). According to the values of h1(c) ∈
{0, 1,−1}, conditions c ∈ Dt

X
(a, b) and Z(a)⊆Z(b) yield the following alternatives:

I.a : h1(c) = 0 and h1(a)h1(b) = −1.

I.b : h1(c) = h1(b) = 1 and h1(a) = −1.

I.c : h1(c) = h1(b) = −1 and h1(a) = 1.

(II) Assumption c 6= b, yields a character h2 ∈ X so that h2(c) 6= h2(b). An analysis similar to
that of (I) narrows the possible values of h2 at the points a, b, c down to:

II.a : h2(c) = 0 and h2(a)h2(b) = −1.

II.b : h2(c) = h2(a) = 1 and h2(b) ∈ { 0,−1}.

II.c : h2(c) = h2(a) = −1 and h2(b) ∈ { 0, 1}.

(III) The hypothesis b 6= −a gives an h3 ∈ X such that h3(b) 6= h3(−a). An argument similar
to that of (I) and (II), using the assumptions c ∈ Dt

X
(a, b) and Z(a)⊆Z(b), shows that h3 can

only take the following combination of values at a, b, c :

III.a : h3(a) = h3(b) = h3(c) ∈ {±1}.

III.b : h3(b) = 0 and h3(a) = h3(c) ∈ {±1}.

With these data, a long and tedious, but straightforward checking of all possible combinations
of the values of the characters hi (i = 1, 2, 3) at the points a, b, c, shows that h = h1h2h3 has
the properties (*) and (**), contradicting c ∈ Dt

X
(a, b). This proves item (2).

Next we show:
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(3) Z(a) ⊂ Z(b)⇒ Dt
X

(a, b) = {a}.

Proof of (3). b ∈ Dt
X

(a, b) implies Z(b)⊆Z(a) (immediate verification); hence b 6∈ Dt
X

(a, b) .

Since Z(a) ⊂ Z(b) implies b 6= −a, items (1) and (2) give the conclusion.

The assertions (1) through (3) yield at once:

(4) If b 6= −a, then Dt
X

(a, b) = {a, b} ⇔ Z(a) = Z(b) ⇔ a2 = b2.

(5) c ∈ Dt
X

(a,−a) ⇔ c = a2c ⇔ c = a2x for some x ∈ G.

Proof of (5). The last equivalence is obvious: c = a2x implies a2c = a2(a2x) = a2x = c. As for

the first, we have:

(⇐) Let h ∈ X. Obviously, h(a) = −h(−a). The equality c = a2c implies Z(a)⊆Z(c); hence
h(c) 6= 0 implies h(a) 6= 0, and h(c) equals either h(a) or h(−a), proving c ∈ Dt

X
(a,−a).

(⇒) For h ∈ X, c ∈ Dt
X

(a,−a) and h(c) 6= 0 imply h(c) = h(a) or h(c) = −h(a); hence

h(a) 6= 0. This shows that Z(a)⊆Z(c), which implies a2c2 = c2 (cf. (*) in the proof of VI.1.2);
scaling by c gives c = a2c.

This completes the proof of statement (A).

Next we deal with the identity [D]. We shall, in fact, prove the assertion (1.b) of Theorem
VI.2.2, i.e.,

(B) If the ternary relation Dt is defined as in [Dt] of VI.2.1 and the equivalence

(†) c ∈ D(a, b)⇔ c ∈ Dt(c2a, c2b)

holds for all a, b, c ∈ G, then D verifies the equality [D]. Remark that this equivalence is readily
checked for the relations DX and Dt

X
using their definitions [R] and [TR] in I.3.2 (b). We write

Id for Id(G) = {x2 |x ∈ G}.

(6) a · Id ⊆D(a, b).

Proof of (6). Let x ∈ G. By (†) it suffices to show:

(††) ax2 ∈ Dt(ax2, a2x2b).

Since Z(ax2)⊆Z(a2x2b), in case a2x2b 6= −ax2, the first and third clauses of [Dt] give (††),
and in case a2x2b = −ax2 the last clause in [Dt] proves (††).

(7) ca = −cb ∧ c = a2c ⇒ c ∈ D(a, b).

Proof of (7). Since c2a = −c2b and c = a2c = (c2a)(ac), the last clause in [Dt] yields c ∈
Dt(c2a, c2b), whence, by (†), c ∈ D(a, b).

Items (6) and (7) prove the inclusion ⊇ in [D]. Conversely, assuming c ∈ D(a, b), we have
c ∈ Dt(c2a, c2b), by (†). An analysis according to the inclusions of the zero-sets of c2a and c2b
gives:

(8) If Z(c2a)⊆Z(c2b) and c2a 6= −c2b, then c ∈ Dt(c2a, c2b)⊆{c2a, c2b}, implying c ∈ a · Id ∪
b · Id .

(9) If c2a = −c2b, scaling by c gives ca = −cb and (by the last clause in [Dt]) c = c2a2x for
some x ∈ G; this proves a2c = a2(c2a2x) = c2a2x = c, as required. 2
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Proof of Theorem VI.2.2. Item (1.b) has just been proved ((B), proof of VI.2.1).

Proof of (1.a). Assume that G is as in the statement, that the ternary relation D is defined by

[D] of VI.2.1, and that Dt is given by:

c ∈ Dt(a, b)⇔ c ∈ D(a, b) ∧ −a ∈ D(−c, b) ∧ −b ∈ D(a,−c).

The right-hand side of this equivalence amounts to:

(I) c ∈ a · Id(G) ∪ b · Id(G) ∪ {x ∈ G |xa = −xb ∧x = a2x}.

(II) −a ∈ −c · Id(G) ∪ b · Id(G) ∪ {x ∈ G |xc = xb ∧x = c2x}.

(III) −b ∈ a · Id(G) ∪ −c · Id(G) ∪ {x ∈ G |xa = xc ∧x = a2x}.

As above we write Id for Id(G). Remark that

(*) x ∈ y · Id ⇔ x = yx2, and (**) xy = xz ⇒ xy2 = xz2.

We argue by cases, according to the various clauses in [Dt].

(1) Z(a) ⊂ Z(b) ⇒ c = a.

The clauses −a ∈ b · Id and −a = c2(−a) = b2(−a) (see (**)) in (II) imply Z(b)⊆Z(a), and
hence are excluded; thus, (II) reduces to a ∈ c · Id. The following cases arise from (I) and (II):

(1.i) c ∈ a · Id and a ∈ c · Id.

By (*), c = ac2 and a = ca2. Hence, c = ac2 = (ca2)c2 = ca2 = a.

(1.ii) c ∈ b · Id and a ∈ c · Id.

Then, c = bc2 and a = ca2, implying a = ca2 = a2c2b ; it follows that Z(b)⊆Z(a), contrary to
the assumption in (1).

(1.iii) ca = −cb ∧ c = a2c = b2c ∧ a ∈ c · Id.

The middle equality implies Z(b)⊆Z(c) and the last Z(c)⊆Z(a). Hence Z(b)⊆Z(a), and this
case is also excluded.

(2) Z(b) ⊂ Z(a) ⇒ c = b.

Same argument as in (1) interchanging a and b.

(3) Z(a) = Z(b)∧ b 6= −a ⇒ c ∈ {a, b}.

The first assumption gives a2 = b2. Each of the clauses −a ∈ b · Id in (II) and −b ∈ a · Id in
(III) yield −a = ba2 = b and hence are excluded. From (I) – (III) the following cases arise:

(3.i) c ∈ a · Id and a ∈ c · Id.

We have c = ac2 and a = ca2; as in (1.i) we get c = a.

(3.ii) c ∈ a · Id, ac = ab and a = c2a.

The first term gives c = ac2; hence a = c. The cases

(3.iii) c ∈ b · Id and −b ∈ −c · Id, and

(3.iv) c ∈ b · Id, ab = ac and b = c2b,

are similar to (3.i) and (3.ii) —with b replacing a—, and yield c = b.

(3.v) ca = −cb, c = a2c = b2c and −a ∈ −c · Id.
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As in (3.ii) this gives c = a2c = a (see (*)).

(3.vi) ca = −cb, c = a2c = b2c and −b ∈ −c · Id.

As in (3.v) we obtain c = b.

(3.vii) ca = −cb, c = a2c = b2c, ac = ab, a = c2a, ab = bc and b = c2b (the last disjunct from
(I), (II) and (III)).

We have ac = −bc, ac = ab and ab = bc; hence bc = −bc. Scaling by b, b2c = −b2c, whence
c = −c. It follows that c = 0, which clearly implies a = b = 0, i.e., a, b, c are all 0.

(4) b = −a ⇒ c = a2c = b2c.

Each disjunct in (I) implies c = a2c. The third disjunct contains this condition. If c ∈ a · Id,
then c = ac2 (by (*)); hence a2c = a2(ac2) = ac2 = c. Likewise, c ∈ b ·Id, implies c = b2c = a2c.

Proof of (2). Checking that (G,D) verifies the axioms for real semigroups is straightforward,

except for [RS3], [RS4] and [RS7].

[RS4] e ∈ D(c2a, d2b) ⇒ e ∈ D(a, b).

The antecedent means:

e ∈ ac2 · Id ∪ bd2 · Id ∪ {x ∈ G |xc2a = −xd2b ∧ x = c2a2x = d2b2x }.

Obviously xy2 · Id⊆x · Id, and hence the first two disjuncts give e ∈ a · Id ∪ b · Id. So, assume
the last clause holds:

(i) eac2 = −ebd2 and (ii) e = a2c2e = b2d2e,

and prove the required conclusion: ea = −eb and e = a2e = b2e.

— Scaling (ii) by a2 and by b2 gives ea2 = ea2c2 and eb2 = eb2d2; by (ii) again, e = a2e = b2e.

— From (ii) and (i) we get: (iii) e = ea2c2 = (eac2)a = −(ebd2)a,

which, in turn, yields: (iv) ea = −(ebd2)a2 = −(eba2)d2.

Succesively scaling by b in e = a2e (already proved) and in (ii) gives eb = eba2 and eb = ebd2;
substituting in (iv), yields ea = −(eba2)d2 = −ebd2 = −eb, as required.

[RS7] Dt(a,−b) ∩Dt(b,−a) 6= ∅ ⇒ a = b.

Invoking item (1.b), we can use the expression for Dt given by [Dt] in Theorem VI.2.1, and
analyze according to the inclusions of the zero-sets of a and b.

(i) Z(a) ⊂ Z(b).

In this case [Dt] shows that Dt(a,−b) = {a} and Dt(−a, b) = {−a}. The hypothesis of [RS7]
implies a = −a, which yields a = 0. It follows that Z(a) = Hom

TS
(G, 3), contradicting (i).

(ii) Z(b) ⊂ Z(a).

Same argument as in (i).

(iii) Z(b) = Z(a).

If b 6= a, the third clause in [Dt] gives Dt(a,−b) = {a,−b} and Dt(−a, b) = {−a, b}; the
hypothesis of [RS7] entails, then, that a = −a, and hence a = 0. It follows that Z(a) =
Hom

TS
(G, 3) = Z(b); the separation theorem for ternary semigroups I.1.12 implies b = 0,
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contradicting b 6= a.

[RS3] We shall instead check the equivalent statement

[RS3′] ∀ a, b, c, d (Dt(a, b) ∩Dt(c, d) 6= ∅ ⇒ Dt(a,−c) ∩Dt(−b, d) 6= ∅),

of Proposition I.2.10. This makes the proof shorter than a direct verification of [RS3]. To
abridge, we shall refer to the hypothesis of [RS3′] as (*) and to its conclusion as (**). The
characterization of transversal representation for fans in [Dt] of Theorem VI.2.1 will be of
constant use and will be simply referred to as “[Dt]”.

We consider three cases and therein argue according to the mutual inclusions of the zero-sets
of a, b, c, d.

(1) a = −b.

(1.i) Z(c) ⊂ Z(a).

By the last clause in [Dt] and (*) there is x ∈ G so that a2 x ∈ Dt(c, d). If Z(c) ⊂ Z(d),
we would have Dt(c, d) = {c}, whence a2 x = c, which implies Z(a)⊆Z(c), contrary to (1.i).
Hence, Z(d)⊆Z(c) ⊂ Z(a), and this yields a2 x 6= c, d, implying Dt(c, d) 6⊆ {c, d}. By [Dt] we
then have d = −c, and it follows that Dt(a,−c) ∩Dt(−b, d) = Dt(a,−c) = {−c} 6= ∅.

(1.ii) Z(a) ⊆ Z(c).

From [Dt] we have a ∈ Dt(a,−c), and show that a ∈ Dt(−b, d) = Dt(a, d). Otherwise, by
[Dt] again, we must have Z(d) ⊂ Z(a)⊆Z(c), and assumption (*) gives an x ∈ G such that
a2 x ∈ Dt(c, d) = {d}, implying Z(a)⊆Z(d), a contradiction.

(2) c = −d. Argument similar to that of case (1).

(3) a 6= −b and c 6= −d.

The first three clauses of [Dt] show that Dt(a, b)⊆{a, b} and Dt(c, d)⊆{c, d}. We consider
the following subcases:

(3.i) Z(a) ⊂ Z(b) and Z(c) ⊂ Z(d).

In this case [Dt] and (*) imply a = c, and (**) reduces to Dt(a,−a) ∩ Dt(−b, d) 6= ∅. Since
Z(a) = Z(c) ⊂ Z(b), Z(d), we get b = a2 b and d = a2 d (cf. Proposition I.6.5 (1)). If b 6= d,
the first three clauses of [Dt] show that one of −b or d is in Dt(−b, d), and the preceding
equalities give a2 x ∈ Dt(−b, d) for some x ∈ G. By the last clause of [Dt] this also holds if
b = d, proving that Dt(a,−a) ∩ Dt(−b, d) 6= ∅, as required.

(3.ii) Z(a) ⊂ Z(b) and Z(d) ⊆ Z(c).

From (*) we have a ∈ Dt(c, d), whence a = c or a = d. In either case, Z(d) ⊂ Z(b), whence
Dt(−b, d) = {d}, and we are reduced to prove d ∈ Dt(a,−c).

In case a = c we must show that a2 x = c2 x = d for some x ∈ G. If Z(d) = Z(a) this
holds with x = d by I.6.5 (1). If Z(d) ⊂ Z(a) = Z(c), (*) gives a ∈ Dt(c, d) = {d}, leading to
a = c = d, a contradiction.

Finally, in case a = d, since Dt(−b, d) = {d}, we are reduced to prove d ∈ Dt(d,−c). Since
we may assume d 6= c, this follows from Z(d) ⊆ Z(c), using [Dt].

(3.iii) Z(a) = Z(b) and Z(c) ⊂ Z(d).

Assumptions (*) and (3) imply c = a or c = b, and we have Z(a) = Z(b) = Z(c). Then, the
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conclusion (**) boils down to −b ∈ Dt(a,−c). If c = b this follows from Z(a) = Z(−b) by the
third clause of [Dt]. If c = a, then Z(a) = Z(−b) implies −b = a2(−b), and the conclusion
holds as well.

(3.iv) Z(a) = Z(b) and Z(d) ⊆ Z(c).

If Z(d) ⊂ Z(c), [Dt] and the assumptions (*) and (3) give d ∈ Dt(a, b) = {a, b}. If d = a,
the desired conclusion boils down to a ∈ Dt(−b, a), as Dt(a,−c) = {a}. Since Z(a) = Z(−b),
this holds by the last two clauses of [Dt]. If d = b (and a 6= b), conclusion (**) reduces to
a ∈ Dt(−b, b), since Dt(a,−c) = {a}. But Z(a) = Z(b) implies a = b2 a ∈ Dt(−b, b).

If Z(d) = Z(c), assumptions (*) and (3) give {a, b} ∩ {c, d} 6= ∅. It follows that Z(a) =
Z(b) = Z(c) = Z(d), and then {a,−c}⊆Dt(a,−c) , {−b, d }⊆Dt(−b, d). If a = c, then
Z(a) = Z(c) = Z(d) entails d ∈ Dt(a,−c), and (**) follows. If d = b, the same argument
shows a ∈ Dt(−b, d). If a 6= c and d 6= b, then a = d and b = c; this obviously implies
{a,−c} ∩ {−b, d } 6= ∅, whence Dt(a,−c) ∩ Dt(−b, d) 6= ∅.

(3.v) Z(b) ⊂ Z(a) and Z(c) ⊂ Z(d).

In this case we have Dt(a, b) = {b} and Dt(c, d) = {c}, whence b = c, by (*). Therefore
Z(c) ⊂ Z(a), Z(b) ⊂ Z(d), which yields Dt(a,−c) = {−c}, Dt(−b, d) = {−b}, and hence (**).

(3.vi) Z(b) ⊂ Z(a) and Z(d) ⊆ Z(c).

The first clause of [Dt] gives Dt(a, b) = {b}, and hence b = c or b = d, by (*) and (3). In
the latter case we must show that b2 x ∈ Dt(a,−c) for some x ∈ G. If a ∈ Dt(a,−c), since
b2 a = a (as Z(b) ⊂ Z(a)), it suffices to take x = a. If a 6∈ Dt(a,−c), then Z(c) ⊆ Z(a), and
the second and fourth clauses of [Dt] yield −c ∈ Dt(a,−c); since b2(−c) = −c (Z(b) ⊆ Z(c)),
we can take x = −c.

Finally, if b = c, then Dt(a,−c) = {−c }. If −c 6∈ Dt(−c, d) = Dt(−b, d), then Z(d) ⊂
Z(c) = Z(b) ⊂ Z(a), and (*) yields b = d, a contradiction. Thus, −c ∈ Dt(−b, d), verifying
(**) and completing the proof of Theorem VI.2.2. 2

VI.2.9 A digression on q-fans.index[sub]q-fan—(

The results proved above use in a crucial way the auxiliary —but nonetheless important—
notion of a q-fan, introduced in VI.0.1 (3). In Corollary VI.2.3 we proved that q-fans verifying
Marshall’s axiom [AX2] for ARSs are the same thing as fans. We shall now examine to what
extent this notion is genuinely weaker than that of a fan.

Proposition VI.2.10 Let G be a ternary semigroup and let X ⊆X
G

= Hom
TS

(G, 3) be a
non-empty set of TS-characters closed under product of any three of its members. Then,

(X,G) is a q-fan ⇔ X is dense for the constructible topology of X
G

.

In particular, if X is proconstructible (e.g., if it is finite, then X = X
G

, and hence (X,G) is
a fan.

Sketch of proof. (⇒) The sets of the form

U = U(a
1
) ∩ . . . ∩ U(a

n
) ∩ Z(b

1
) ∩ . . . ∩ Z(b

k
),

with a
1
, . . . , a

n
, b

1
, . . . , b

k
∈ G, form a basis for the constructible topology of X

G
, see I.1.17.

We must show that U 6= ∅ ⇒ U ∩ X 6= ∅.

This is proved by exactly the same inductive argument used in the proof of item (1) in
Theorem I.1.27. This argument only uses the defining properties of q-fans: X separates points
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in G, and X is closed under products of any three elements. We leave the details to the
interested reader. [Note. The set H

2
in the proof of I.1.27 (1) is to be replaced by X, and the

congruence ≡H2
by equality.]

(⇐) Since X is assumed to be closed under products of any three of its members, we need only
show that X separates points in G.

Let a 6= b. By the separation theorem for ternary semigroups (I.1.12), h(a) 6= h(b) for
some h ∈ X

G
, i.e., the set {h ∈ X

G
|h(a) 6= h(b)} is non-empty. This set is also open in the

constructible topology of X
G

(cf. proof of ?? (ii)), and hence it intersects X, i.e., there is h ∈ X
such that h(a) 6= h(b). 2

Example VI.2.11 A q-fan that is not a fan.

Our example relies on the construction, in ??, of a ternary semigroup out of a pair of 2-
semigroups G, H, and a 2-semigroup isomorphism between them. Here we choose G to be the
closed real interval [−r, 0], where r is a positive real, with product = the maximum of the two
factors in the order of the real line, H (= −G) the symmetric interval [0, r] with product = the
minimum of the factors, the isomorphism being the flipping map x 7→ −x (x ∈ G). The unit
1
G

= 1
T

is −r and the absorbent element 0
G

= 0
T

is 0. Thus, with obvious identifications,
T = [−r, r], −1

T
= r, and the semigroup operation of T —which we denote by · instead of

the ∗ used in ??— is as follows: for x, y ∈ T ,

(∗) x · y =


max {x, y} if x, y ∈ G = [−r, 0]
−min {x, y} if x, y ∈ −G = [0, r]
−max {−x, y} if y ∈ G = [−r, 0], x ∈ −G = [0, r]
−max {−y, x} if x ∈ G = [−r, 0], y ∈ −G = [0, r].

With this definition T is a TS (Proposition ??), and we have:

Lemma VI.2.12 The TS-characters of T are exactly the monotone functions from [−r, r]
with the order of the real line into 3 with the order 1 < 0 < −1, that map 1

T
= −r, 0

T
= 0

and −1
T

= r onto 1, 0,−1, respectively.

Proof. First note that with the order 1 < 0 < −1, multiplication in 3 is also given by (∗).

To illustrate the argument we prove the asserted equivalence for the first clause of (∗), i.e.,
when x, y ∈ G = [−r, 0]; the remaining cases are similar.

(⇒) x ≤ y ⇒ h(x) ≤ h(y) for h ∈ X
T

.

Our assumptions give: x·y = max {x, y} = y, whence h(xy) = h(y) and then h(x)h(y) = h(y)
since h is a semigroup homomorphism. Since product in 3 is given by the law (∗), h(x)h(y) =
max {h(x), h(y)} = h(y), whence h(x) ≤ h(y).

(⇐) Assume h is monotone, h(i
T

) = i for i ∈ {1, 0,−1}, and x, y ∈ [−r, 0]. If, for instance,
x ≤ y, we have x ·y = max {x, y} = y, h(x) ≤ h(y), and hence h(x)h(y) = max {h(x), h(y)} =
h(y). Thus, h(xy) = h(y) = h(x)h(y), showing that h preserves product. 2

Corollary VI.2.13 The correspondence h 7→ h−1[−1] (h ∈ X
T

) is a bijection between X
T

and the set of intervals in R of the forms (a, r] with 0 ≤ a < r, and [a, r] with 0 < a ≤ r.

Proof. Let h ∈ X
T

, and let a = inf h−1[−1]. Monotonicity of h (Lemma VI.2.12) implies that

h−1[−1] is either (a, r] or [a, r]. Since h(0
T

) = 0 we clearly have 0 < a ≤ r if h−1[−1] = [a, r],

and 0 ≤ a < r if h−1[−1] = (a, r]. Note also that h−1[0] is a symmetric interval of form
(−a, a) or [−a, a], since h(x) = 0 ⇒ h(−x) = 0. Obviously, the correspondence h 7→ h−1[−1]
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is injective. It also is surjective (onto the set of intervals of the statement) for, given 0 < a ≤ r,
the map

h(x) =


1 if x ∈ [−r,−a]
0 if x ∈ (−a, a)
−1 if x ∈ [a, r],

is non-decreasing and carries 1
T

= −r, 0
T

= 0 and −1
T

= r onto 1, 0,−1, respectively; by
the preceding Lemma it defines a TS-character of T . An obvious variant of this argument
takes cares of the case of left-open intervals (a, r]. 2

Now we define X ⊆X
T

to be the set of all h ∈ X
T

such that the left endpoint, a, of the

interval h−1[−1] is rational. Density of Q obviously entails:

(i) X separates points in T .

Further,

(ii) X is stable under the product of any three elements.

Let h
1
, h

2
, h

3
∈ X and let a

i
= inf h−1

i
[−1] ∈ Q ∩ [−r, r] (i = 1, 2, 3). Since h

i
d (−a

i
, a
i
) = 0

we have inf (h
1
h

2
h

3
)−1[−1] = max {a

1
, a

2
, a

3
} ∈ Q, and hence h

1
h

2
h

3
∈ X.

Then, X is a q-fan. However, since the left endpoint of the interval h−1[−1] can also take
irrational values, we have X 6= X

T
. 2index[sub]q-fan—)

VI.3 Examples

With the aim of illustrating the notions introduced above, we present in this section some
examples of (alas, finite) fans based on ternary semigroups with up to three generators. For
each example we shall draw both the root-system of an ARS-fan ordered under specialization
and the representation partial order of its dual real semigroup.

In order to determine the representation partial order in the examples below, we will need
the following supplement to Propositions I.6.4 and I.6.5, valid in the case of fans.

Lemma VI.3.1 Let G be a RS-fan, and let ≤ denote its representation partial order (§I.6).
For a non-invertible element x ∈ G, and an invertible w ∈ G, we have:

(1) If x ≤ w, then w = −1. (2) If w ≤ x, then w = 1.

In other words, x and w are ≤-incomparable, unless w ∈ {±1}.

(3) If v ∈ G is invertible, v 6= w and v, w 6∈ {±1}, then v and w are ≤-incomparable.

Proof. By assumption, x2 6= 1. Hence, there is h
0
∈ X

G
so that h

0
(x2) 6= 1, whence,

h
0
(x) = 0 (Theorem I.1.12). Note also that h(w) 6= 0 for all h ∈ X

G
.

(1) Assume w 6= −1; there is h
1
∈ X

G
such that h

1
(w) = 1. If h

0
(w) = 1, we have h

0
(x) = 0

>
3

1 = h
0
(w). If h

0
(w) = −1, let h = h2

0
h

1
∈ X

G
; then, h(x) = 0 >

3
1 = h(w). By I.6.4(d)

this proves x 6≤ w.

(2) Apply (1) to −x,−w instead of x,w.

(3) By the Separation Theorem I.1.12, there are characters h
0
, h

1
, h

2
, h′

1
, h′

2
∈ X

G
such that:

h
0
(v) 6= h

0
(w), h

1
(v) = 1, h

2
(v) = −1, h′

1
(w) = 1, h′

2
(w) = −1.
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To fix ideas, let us suppose that h
0
(v) = 1 and h

0
(w) = −1; the reverse case is similar and

left to the reader. Then, h
0
(w) >

3
h

0
(v), and this already shows that w 6≤ v (I.6.4(d)). To

prove v 6≤ w we must get a character h ∈ X
G

so that h(v) = −1 and h(w) = 1. If h
2
(w) = 1

take h = h
2
, and if h′

1
(v) = −1, put h = h′

1
. In the remaining case where h

2
(w) = −1 and

h′
1
(v) = 1, take h = h

0
h′

1
h

2
. 2

VI.3.2 The examples. Recall that condition [Z] in Theorem VI.2.1,

(*) ∀ ab (a2b2 ∈ {a2, b2}),

is a necessary condition to obtain a fan. Once this is fulfilled, the representation relations
defined in VI.2.1 automatically turn the underlying ternary semigroup into an RS-fan.

Example VI.3.2. A. Ternary semigroups on one generator.

Call x the generator. We treat first the case where there are no additional relations (“free”
case). The corresponding TS is:

F
1

= {1, 0,−1, x,−x, x2,−x2}.

The necessary condition (*) is trivially verified. Characters are determined by their value on
x, and any value 1, 0 and −1 is possible; hence the dual ARS, X

F1
, consists of three characters

given by: h
1
(x) = 0, h

2
(x) = 1, h

3
(x) = −1. Clearly, h

1
= h2

1
·h
i
, whence h

i
� h

1
, for i = 2, 3

(Lemma I.1.18). So we get the specialization root-system below left.

h1

•

h2 • • h3

Specialization root-system of X
F1

• −1

• −x2

•−x • 0 • x

• x2

• 1

Representation partial order of F
1

Figure 1

The representation partial order of the real semigroup F
1

—illustrated in Figure 1, right— is
computed straightforwardly from Proposition I.6.4.

Remark. Barring the case where the generator x becomes invertible (i.e., x2 = 1, which gives
a four element RSG-fan with an added 0, cf. I.2.2(3)), the only possible additional relation
is x2 = x, which eliminates the character h

3
. Thus, we get the following diagrams for the

specialization order (left) and the representation order (right):

• h1

• h2

• −1

• −x

• 0

• x

• 1

Figure 2

More interesting examples are given in the sequel.
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Example VI.3.2. B. Ternary semigroups on three generators.

Generators: x, y, z. Condition (*) above gives raise to the following possible relations:

1. x2 = y2 = z2. [(*) is automatically verified in this case.]

2. x2 = y2 6= z2 and x2z2 = y2z2 ∈ {x2, z2}.

The two identities obtained from the last clause give raise to non-isomorphic cases, and, upon
permutation, all cases where two of the three generators have equal squares (i.e., equal zero-sets)
are isomorphic to these.

3. x2, y2, z2 are different, and x2y2 ∈ {x2, y2}, x2z2 ∈ {x2, z2}, y2z2 ∈ {y2, z2}.

A case-by-case analysis of all eight combinations of these values shows that, up to isomorphism
by permutation, the only surviving case is where x2y2 = x2z2 = x2 and y2z2 = y2.

In order to abridge we shall only analyze some of the configurations arising in case (B.2).

(a) x2 = y2 6= z2 and x2z2 = y2z2 = x2.

This amounts to Z(z) ⊂ Z(x) = Z(y) (I.1.19). We consider three alternatives:

i) No relations other than the above.

Routine checking shows that the following are all possible characters:

— h
1

sends all three generators to 0;

— h
2
, h

3
send x, y to 0 and, say, h

2
(z) = 1, h

3
(z) = −1;

— h
4
, . . . , h

11
assign to the generators all possible combinations of values ±1, with, say,

h
4
, . . . , h

7
sending z to 1, and h

8
, . . . , h

11
sending z to −1.

Call F
2

the TS corresponding to this case. Using Lemma I.1.18 one sees at once that the
specialization root-system of the ARS dual to F

2
looks as in Figure 3 below left.

•
h1

•
h2 •

h3

•
h4

•
h5

•
h6

•
h7

•
h8

•
h9

•
h10

•
h11

Specialization root-system of X
F2

•
h1

•
h2 •

h3

•
h4

•
h5

•
h6

•
h7

Specialization root-system of X
F
′
2

Figure 3

Since X
F2

has 11 elements, by Corollary VI.6.18 we must have card (F
2
) = 23; the reader

is invited to check that:

F
2

= {1, 0,−1, x,−x, y,−y, z,−z, x2,−x2, z2,−z2, xy,−xy, xz,−xz,

yz,−yz, x2z,−x2z, xyz,−xyz}.

The Hasse diagram of the representation partial order of F
2

is drawn in Figure 4 below. Propo-
sitions I.6.4 and I.6.5 are used in the computation of this diagram. For example, item (2) of
the latter shows that x2 ≤ xw ≤ −x2 for all w. One uses item (d) in I.6.4 to prove incom-
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parability of elements of F
2

as shown in Figure 4; for instance, to prove that xyz and y are
≤-incomparable, direct inspection of the characters of F

2
given in (a.i) above, shows that there

are h, h′ ∈ X
F2

such that h(y) = 1, h(xz) ∈ {0,−1}—whence h(xyz)>
3
h(y), i.e., xyz 6≤ y—,

and h′(y) = −1, h′(xz) ∈ {0,−1} —hence h′(y)>
3
h(xyz), i.e., y 6≤ xyz. Further details are

left to the reader.

•−1

•−z
2

•−x
2

•−z •−x •−y •−xy •−xz •−yz •−x2z •−xyz • 0 • xyz • x2z • yz • xz •xy • y • x • z

•
x2

• z2

•
1

Figure 4. Representation partial order of F
2
.

One may also consider fans arising from additional relations between generators, such as:

ii) The additional relation xz = x.

Under this relation, each character sending z to −1 must also send x to 0. Thus, the
characters h

8
, . . . , h

11
in the preceding example disappear; the order of specialization of the

resulting ARS, X
F
′
2
, is illustrated in Figure 3 above right. The RS-fan F ′

2
consists of:

F ′
2

= {1, 0,−1, x,−x, y,−y, z,−z, x2,−x2, z2,−z2, xy,−xy}.

The diagram of its representation partial order is computed in much the same way as in the
preceding example; details are left to the reader.

Other relations are also possible. An interesting example is:

iii) The additional relation z2 = 1.

This makes the generator z invertible, and hence forbids characters sending z to 0, i.e., with
notation as in item (a.i), the character h

1
. Specialization among the remaining characters

does not change, but the characters h
2
, h

3
have now become “disconnected”; we obtain a

“two-component” root-system:

•
h2

•
h4

•
h5

•
h6

•
h7

•
h3

•
h8

•
h9

•
h10

•
h11

Figure 5. Specialization root-system of X
F
′′
2

The corresponding RS-fan, F ′′
2

, has 21 elements; in fact, F ′′
2

= F
2
\{z2,−z2}. Its representation
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partial order has a diagram similar to that of F
2
, omitting z2,−z2, with z and −z “linked”

only to 1 and −1 (Lemma VI.3.1).

The notion of connectedness for root-systems —with due attention to the case of ARS-
fans— will be examined in §VI.7 (cf. items VI.7.12 – VI.7.18). In §VI.10 we shall prove
that the phenomenon made apparent by the preceding example holds in full generality: the
connected components of a ARS-fan are uniquely determined by the invertible elements of its
dual RS-fan.

Remark. Adding both the relations xz = x and z2 = 1 produces a two-component root-
system as follows (notation as in (a.i)):

•
h2

•
h4

•
h5

•
h6

•
h7

•
h3

Figure 6. Specialization root-system of X
F
′′′
2

The dual RS-fan is: F ′′′
2

= {1, 0,−1, x,−x, y,−y, z,−z, x2,−x2, xy,−xy}, with representation
partial order:

•−1

•−x
2

•−z •−x •−y •−xy • 0 • xy • y • x • z

•
x2

•
1

Figure 7. Representation partial order of F ′′′
2

The other situation arising in case (B.2) is as follows:

(b) x2 = y2 6= z2 and x2z2 = y2z2 = z2.

This amounts to Z(x) = Z(y) ⊂ Z(z). For this case we consider several alternatives:

i) No relations other than the above.

Here we have the following TS-characters:

— h
1

sends x, y, z to 0;

— h
2
, h

3
h

4
, h

5
send z to 0 and x, y to ±1;

— h
6
, . . . , h

13
assign all combinations of values ±1 to the generators.

Clearly, h
2
, . . . , h

5
� h

1
(cf. Lemma I.1.18). To determine the specialization relations among

the remaining characters we observe that, for i ∈ {2, . . . , 5}, j ∈ {6, . . . , 13} we have:

h
j
� h

i
⇔ h

i
(x) = h

j
(x) and h

i
(y) = h

j
(y).

(This is because h
j
� h

i
⇔ ∀ a ∈ G (h

i
(a) 6= 0 ⇒ h

j
(a) = h

i
(a)), cf. Lemma I.1.18(4)).

Hence, with suitable indexing of the h
i
’s (e.g., h

i
(z) = 1 for i = 6, 8, 10, 12), the corresponding
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ARS, X
F3

, looks as in Figure 8 below, left:

•h1

•h2 •h3 •h4 •h5

•
h6

•
h7

•
h8

•
h9

•
h10

•
h11

•
h12

•
h13

Specialization root-system of X
F3

•h1

•h2 •h3 •h4 •h5

•
h6

•
h7

•
h8

•
h9

Specialization root-system of X
F
′
3

Figure 8

The RS-fan F
3

has cardinality 27:

F
3

= {1, 0,−1, x,−x, y,−y, z,−z, x2,−x2, z2,−z2, xy,−xy, xz,−xz, yz,−yz, xz2,−xz2,

yz2,−yz2, xyz,−xyz, xyz2,−xyz2}.

We leave it to the reader to compute the Hasse diagram of the representation partial order of
F

3
; it is somewhat similar to that of F

2
(Figure 4), and is computed using the same technique,

relying on Propositions I.6.4 and I.6.5.

Next, we consider variants of this example obtained by adding various types of relations
among the generators.

ii) The additional relation xz = z.

Here, any character sending x to −1 must send z to 0. With notation as in the previous
example, this amounts to cutting off, in X

F3
, the characters h

10
, . . . , h

13
. The resulting ARS-

fan, called X
F
′
3
, is drawn in Figure 8, right. As an exercise the reader may compute the

corresponding RS-fan F ′
3

and its representation partial order.

iii) The additional relation z2 = z.

This relation forbids the characters sending z to −1. With notation as in Example (b.i),
only survive the characters h

1
, . . . h

5
, and h

i
for i = 6, 8, 10, 12 (which send z to 1 and x,

y to ±1). The specialization root-system of the corresponding ARS-fan, X
F
′′
3

, is shown in

Figure 9 below, left.

•h1

•h2 •h3 •h4 •h5

•
h6

•
h8

•
h10

•
h12

Specialization root-system of X
F
′′
3

•
h1

•
h2 •

h3

•
h4

•
h5

•
h6

•
h7

Specialization root-system of X
F
′′′
3

Figure 9

This example suggests that a relation of type z2 = z (for a suitable generator z) produces
specialization “without branching” at the appropriate level. In Lemma VI.10.7 we shall prove
in full generality that this is the case for finite ARS-fans.

The RS-fan F ′′
3

is:
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F ′′
3

= {1, 0,−1, x,−x, y,−y, z,−z, x2,−x2, xy,−xy, xz,−xz, yz,−yz, xyz,−xyz}.

Exercises. (1) Prove that the relation x2 = x gives the configuration in Figure 9, right.

(2) Compute the specialization root-system of the free TS on two generators x, y, with Z(x) ⊂
Z(y).

(3) Find explicitly an isomorphism between the RS-fan of Exercise (2) and the RS-fan F ′′′
3

whose dual ARS appears in Figure 9, right. 2

Summarizing a common feature of all the examples presented above, we shall prove that,
under the representation partial order ≤, see § I.6, every RS-fan is a bounded lattice.

We recall from Propositions I.6.4 and I.6.5:

(1) In any RS, G,

(i) For all a, b ∈ G, a2 ≤ 0 ≤ −b2 (I.6.4 (c));

(ii) For all a ∈ G, a2 ≤ ± a ≤ −a2 (I.6.5 (2)).

Further, since the zero-sets of elements of a fan are totally ordered under inclusion (VI.1.1),
Proposition I.6.5 (1) yields:

(2) In a RS-fan, the set Id(F ) ∪ −Id(F ) is totally ordered by ≤.

Lemma VI.3.3 Let F be a RS-fan and let a, b ∈ F . If a, b 6∈ Id(F ) ∪ −Id(F ) —i.e., ± a and
± b are not squares—, and a 6= b, then a, b are incomparable under ≤.

Proof. Assume, towards a contradiction, that a, b are comparable, say a ≤ b, i.e., a ∈ D(1, b)
and −b ∈ D(1,−a) (I.6.2). This implies a ∈ Dt(a2, a2b) and −b ∈ Dt(b2,−b2a), which in turn
gives:

(1) Z(a) = Z(b).

If Z(a) ⊂ Z(b), then Z(a2) ⊂ Z(a2b), and the first clause in the definition of [Dt] in VI.2.1
gives a = a2, contrary to assumption. Likewise, the second transversal representation precludes
Z(b) ⊂ Z(a). Since the zero-sets of elements of a RS-fan are totally ordered under inclusion,
(1) is proved.

It follows that Z(a2) = Z(a2b) and Z(b2) = Z(−b2a). We consider two cases:

(2.a) a2 6= −a2b.

By the third clause in [Dt] of Theorem VI.2.1, Dt(a2, a2b) = {a2, a2b}; since a 6= a2, we get
a = a2b. We have two alternatives:

— b2 6= b2a.

Since −b 6= b2, VI.2.1 leads to b = b2a. We get a2 = a2b2 = b2, which gives a = a2b = b3 = b,
contrary to assumption.

— b2 = b2a.

In this case b = ba, and then a = a2b = a2(ba) = ab = b, a contradiction again.

(2.b) a2 = −a2b.

— If b2 6= b2a, the third clause in [Dt] of VI.2.1 gives b = b2a. Hence, a = −ab = −b2a2 ∈
−Id(F ), contrary to assumption.
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— If b2 = b2a, then b = ba, so a = −ab = −b, and we get a = −ab = a2 ∈ Id(F ), contradiction.
2

Lemma VI.3.4 Let F be a RS-fan and let x, b ∈ F . If b 6∈ Id(F ) (i.e., b 6= b2), then b ≤
−x2 ≤ −b2 implies b2 = x2. That is, −b2 is the smallest y ∈ F such that b ≤ −y2. Dually, b2

is the largest y ∈ F such that y2 ≤ b.

Proof. Assume b ≤ −x2 < −b2. Since b2 ≤ −x2 (I.6.4 (c)), from Proposition I.6.5 (1) follows
Z(b)⊆Z(x), i.e., b2x2 = x2 (I.1.19 (1)). On the other hand, b ≤ −x2 yields b ∈ D(1,−x2), and
then b ∈ Dt(b2,−b2x2) = Dt(b2,−x2). If Z(b) ⊂ Z(x), the first clause of VI.2.1 gives b = b2,
contrary to assumption. So, Z(b) = Z(x), and I.1.19 (1) gives b2 = x2. The dual assertion is
obvious. 2

Theorem VI.3.5 Let F be a RS-fan and let ≤ denote its representation partial order (I.6).
Then, (F,≤) is a lattice with smallest element 1 and largest element −1.

Notation. For elements a, b in a RS, G, we write a ⊥ b to mean that a and b are incomparable
under the representation partial order of G. 2

Proof. We must show that every pair of elements a, b ∈ F has a least upper bound, ∨, and a
greatest lower bound, ∧ , for the order ≤. If a, b are comparable under ≤ there is nothing to
prove; so, we may assume a ⊥ b.

Since F is a RS-fan, the zero-sets of a and b are comparable under inclusion. This, together
with a ⊥ b, implies that one of a or b is not in Id(F ) ∪ −Id(F ); indeed:

— If Z(a)⊆Z(b), I.6.5 (1) yields a2 ≤ b ≤ −a2; hence, a ⊥ b implies a 6∈ Id(F ) ∪ −Id(F ).

— Likewise, Z(b)⊆Z(a) implies b 6∈ Id(F ) ∪ −Id(F ).

Since −a2 and −b2 are ≤-comparable, cf. I.6.5 (1), we may assume without loss of generality
that −a2 ≤ −b2. Further, Lemma VI.3.4 shows

(*) −b2 = least x ∈ −Id(F ) such that a, b ≤ x.

Claim. −b2 = a∨ b.

Proof of Claim. By assumption, a, b ≤ −b2, so we only need prove:

∀c ∈ F (c ≥ a, b ⇒ c ≥ −b2).

Note that c ≥ a, b and a ⊥ b imply c 6= a, b. If c 6∈ Id(F ) ∪ −Id(F ), since one of a, b —say
a— is not in Id(F ) ∪ −Id(F ), then, by Lemma VI.3.3, c 6= a implies c ⊥ a, absurd; hence
c ∈ Id(F ) ∪ −Id(F ). If c ∈ Id(F ), then c ≥ a, b, implies a, b ∈ Id(F ), whence a, b are ≤-
comparable, contradiction. So, c ∈ −Id(F ), and (*) gives c ≥ −b2, as claimed.

Under the current assumptions −a2 ≤ −b2 and a ⊥ b, upon observing that

b2 = largest y ∈ Id(F ) such that y ≤ a, b,

a similar argument yields b2 = a∧ b. 2

Remarks VI.3.6 (a) Examination of the examples presented above shows that the lattices
(F,≤) are not modular —hence not distributive either— except in very special cases. In fact,
most of these lattices contain the configuration
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•
•

•
•

•

as a sublattice (cf. [B], Ch. V, § 2, Thm. 2, p. 66); see Figures 4 and 7 above. Example
VI.3.2. A is modular but not distributive.

(b) Since Id(F ) ∪ −Id(F ) is a totally ordered subset of (F,≤), the proof of Theorem VI.3.5
shows that the lattice operations in (F,≤); satisfy the following identities:

a∧ b =

{
min≤{a2, b2} if a ⊥ b
min≤{a, b} if a, b are ≤ -comparable,

and

a∨ b =

{
max≤{−a2,−b2} if a ⊥ b
max≤{a, b} if a, b are ≤ -comparable.

Note that, if a ⊥ b, then a∧ b, a∨ b ∈ Id(F ) ∪ −Id(F ).

(c) The operation x 7→ −x (x ∈ F ) is not a complement in the lattice-theoretic sense, but it
verifies:

(c
1
) The Kleene inequality IV.1.2 (b):

a ∧ − a ≤ b ∨ − b.

(A particular case of Proposition I.6.5 (7),(8).)

(c
2
) The De Morgan laws:

(i) −(a∧ b ) = −a ∨ − b ; (ii) −(a∨ b ) = −a ∧ − b .

This is clear if a, b are comparable under ≤. If a ⊥ b, assuming without loss of generality that
−a2 ≤ −b2, (i.e., b2 ≤ a2), from (b) we get:

(i) −(a∧ b ) = −(a2 ∨ b2) = −a2, and −a∨ − b = −(−a)2 ∧ − (−b)2 = −a2 ∧ − b2 = −a2.

(ii) −(a∨ b ) = −(−a2 ∧− b2) = −(−a2) = a2, and −a∧− b = (−a)2 ∨ (−b)2 = a2 ∨ b2 = a2.2

VI.4 Characterizations of fans

New section; Jan. 2014.

The main purpose of this section is to prove the characterization of RS-fans given in The-
orem VI.4.2 below. To make the statement understandable we summarize the following

Notation VI.4.1 Let G be a real semigroup and let X
G

= Hom
RS

(G, 3) denote the set of
RS-characters of G.

(i)  stands for the specialization relation of X
G

endowed with the spectral topology (see
I.1.16, I.1.17 and I.1.18 for details).

(ii) For h ∈ X
G

, Z(h) = {a ∈ G |h(a) = 0} denotes the zero-set of h.

(iii) The notion of RS-congruence of a real semigroup is defined, and its basic properties
developed in section II.2. Congruences determined by saturated prime ideals are studied
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in paragraph (F) of section II.3, where in Theorem II.3.15 (d) we prove that the structure
G
I

:= (G/I) \ {π
I
(0)} obtained by omitting “zero” (= π

I
(0)) from the quotient G/I, endowed

with the natural quotient representation D
GI

:= D
G/I
dG

I
(cf. II.3 (F)), is a reduced special

group.

(iv) For the notion of a fan in the dual categories of reduced special groups (RSG-fan) and of
abstract order spaces (AOS-fan) the reader is referred to [DM1], pp. 8-9, 89-90, and [M], Ch.
III (Check ref.) respectively. 2

The characterization of RS-fans alluded to is:

Theorem VI.4.2 For a real semigroup G, the following are equivalent:

(1) G is a RS-fan.

(2) G satisfies the following conditions:

(i) ∀a, b ∈ G (a2b2 = a2 or a2b2 = b2).

(ii) Given g, h ∈ X
G

such that Z(g)⊆Z(h), there is h′ ∈ X
G

such that Z(h) = Z(h′) and
g h′.

(iii) For every saturated prime ideal I of G, the quotient reduced special group (G
I
, D

GI
)

is a RSG-fan.

For the implication (2) ⇒ (1) we seem to need that (X
G
, G) is a q-fan. Check!!

Remark. The proof is organized as follows: Lemma VI.4.3, Proposition VI.4.5 and Corol-
lary VI.11.2 below show, respectively, that any RS-fan satisfies conditions (2.i) – (2.iii), i.e.,
altogether they prove (1) ⇒ (2). The converse implication (2) ⇒ (1) is proved in Proposition
VI.4.10 below.

Lemma VI.4.3 Any RS-fan verifies condition (2.i) of Theorem VI.4.2.

Proof. This follows at once from Fact VI.1.1 and Proposition VI.1.2. 2

Omit Reminder.

VI.4.4 Reminder. Proposition VI.1.2 shows that the following are equivalent to condition
(2.i) of Theorem VI.4.2, for any ternary semigroup G:

• The collection {Z(a) | a ∈ G} of zero-sets of elements of G is totally ordered under
inclusion.

• The set of all ideals of G is totally ordered under inclusion.

• Every proper (TS)-ideal of G is prime. 2

The implication (1) ⇒ (2.i) in Theorem VI.4.2 is item (2) of the following Proposition.

Proposition VI.4.5 Let G be a RS-fan. Then:

(1) For all elements g, h ∈ X
G

such that g h (hence Z(g)⊆Z(h)) and every ideal I such
that Z(g)⊆ I ⊆Z(h) there is f ∈ X

G
such that g f h and Z(f) = I.

(2) For every g ∈ X
G

and every ideal I ⊇ Z(g) there is a (necessarily unique) f ∈ X
G

such
that g f and Z(f) = I.

(3) For every ideal I of F there is an f ∈ X
G

such that Z(f) = I.
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Proof. Since G is a RS-fan, every TS-character f : G−→3 is a RS-homomorphism. Thus, it
suffices to construct TS-homomorphisms f : G−→3 verifying (1) – (3) of the statement.

First we prove (1); the same proof, omitting item (c) below, also proves (2). Let f : G−→ 3
be defined by:

f d I = 0 and f d (G \ I) = g d (G \ I).

(a) Z(f) = I.

By construction, I ⊆ Z(f). Since Z(g)⊆ I, f(x) = g(x) 6= 0 for x ∈ G \ I, i.e., Z(f)⊆ I.

(b) g f .

Clear, from (a) and Lemma I.1.18,

(c) f h.

If f(a) = 0, then a ∈ I ⊆Z(h), and h(a) = 0.

If h(a) 6= 0, then a 6∈ I; since g h, then g(a) = h(a). Hence, f(a) = g(a) = h(a), and we
get f h by Lemma I.1.18.

(d) f is a TS-homomorphism.

Clearly f(0) = 0 and f(±1) = g(±1) = ±1. Let a, b ∈ G. If one of a, b is in I, so is ab, and we
have f(a)f(b) = 0 = f(ab). If a, b 6∈ I, then ab 6∈ I, and f and g take the same value on a, b
and ab; the result follows from the fact that g is a TS-character. Since G is a fan, f ∈ X

G
.

(3) This is Lemma I.1.7 (alternatively, Lemma I.4.8) 2

Remark VI.4.6 The element f such that g f and Z(f) = I in VI.4.5 (2) can also be
obtained by taking any h ∈ X

G
with Z(h) = I (VI.4.5 (3)) and setting f = h2g. 2

OJO! Duplication with Remark VI.6.7; check!

The following Proposition VI.11.1 and its Corollary VI.11.2 prove that every quotient of a
RS-fan is a RS-fan; in particular, the implication (1)⇒ (2.iii) holds in Theorem VI.4.2.

OJO! Duplication with Proposition VI.11.1 and Corollary VI.11.2; check!

Proposition VI.4.7 Let G be a RS-fan and let H be a proconstructible subset of X
G

stable

under product of any three of its elements. Then ≡H is a RS-congruence, the quotient G/H is
a RS-fan, and the spectral spaces X

G/H and H are homeomorphic; in particular, the (Boolean)

spaces (X
G/H)con and Hcon are homeomorphic.

Proof. Follows closely the proof of Theorem I.1.27; we shall use notation therein.

The quotient structure G/H is a ternary semigroup and X
G/H = Hom

TS
(G/H, 3) is its set

of (TS-) characters. The proof of item (3) in Theorem I.1.27 shows that, under our hypotheses
on H , the map θ : X

G/H−→ X
G

given by θ(g) = g ◦ π (g ∈ X
G/H) is a homeomorphism

between the spectral spaces X
G/H and H , as asserted.

According to equality (***) in the proof of Theorem I.1.27 (with U replaced by Z) we have
θ−1[Z(a) ∩ H] = Z(π(a)) for a ∈ G. Since G verifies condition (2.i) in Theorem VI.4.2, this
equality implies that the zero-sets of elements of G/H are also totally ordered by inclusion;
Corollary VI.2.3 implies, then, that (X

G/H, G/H) is a fan. 2

Observe that all RS-congruences of a fan are obtained in the way given by the preceding
Proposition:

Corollary VI.4.8 Let G be a RS-fan and let ≡ be a RS-congruence of G. Then:

(a) ≡ = ≡H for some proconstructible set H⊆X
G

stable under product of any three elements.
Hence,
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(b) G/≡ is a RS-fan.

(c) The correspondence H 7−→ ≡H establishes an inclusion-reversing bijection between procon-
structible subsets of X

G
stable under product of any three elements, and the set Con(G) of

RS-congruences of G.

Proof. (a) The set H = H≡ is given by Proposition ??. Items (b) and (c) follow, respectively,
from Proposition VI.11.1 and Theorem I.1.27. 2

Alternatively, we may use the following, less general but more direct result, that appears as
Proposition V.5.1 of our monograph.

Proposition VI.4.9 Let F be a RS-fan. Let I be a proper ideal of F . Let π = π
I

: F −→F/I
denote the canonical quotient map. Then, F

I
= (F/I) \ {π(0)} is a RSG-fan.

Proof. In Theorem II.3.15 and with notation therein, it was shown that if G is a RS and I is
a saturated prime ideal of G, then 〈 (G/I) \ {π(0)}, ·, π(−1), D

G/I
〉 is a RSG. We must prove:

given a, b ∈ F so that π(a), π(b) 6= 0 and π(a) 6= π(−1),

π(b) ∈ D
F/I

(π(1), π(a)) ⇒ π(b) = π(1) ∨ π(b) = π(a).

By the characterization of D
F/I

in Theorem II.3.15 (b), there are x ∈ F \ I and i ∈ I such

that bx2 ∈ D
F

(i, 1, a). Hence, there is c ∈ F such that bx2 ∈ D
F

(i, c) and c ∈ D
F

(1, a). From
the characterization of representation for fans (Theorem VI.2.1) we get:

(A) bx2 ∈ D
F

(i, c) ⇔ (i) bx2 = iy2 for some y ∈ F , or

(ii) bx2 = cy2 for some y ∈ F , or
(iii) bx2i = −cbx2 and bx2 = i2bx2.

(B) c ∈ D
F

(1, a) ⇔ (i) c = z2 for some z ∈ F , or

(ii) c = az2 for some z ∈ F , or
(iii) c = −ac and c = a2c.

Since b, x 6∈ I, we have bx2 6∈ I, which clearly excludes cases (A.i) and (A.iii), and entails c 6∈ I
in (A.ii), whence π(c2) = π(1). Case (B.iii) yields:

c = −ac ⇒ π(c) = −π(a)π(c) ⇒ π(c)2 = π(1) = −π(a)π(c)2 = −π(a),

and hence π(a) = π(−1), contrary to assumption; thus, case (B.iii) is excluded as well. In the
remaining cases we have:

(1) bx2 = cy2 and c = z2 for some y, z ∈ F .

Hence, bx2 = (yz)2. Since bx2 6∈ I, it follows y, z 6∈ I, and then π(b) = π(b)π(x2) = π((yz)2) =
π(1).

(2) bx2 = cy2 and c = az2 for some y, z ∈ F .

Thus, bx2 = a(yz)2. As in case (1) we have yz 6∈ I. Then, π(b) = π(b)π(x2) = π(a)π((yz)2) =
π(a)π(1) = π(a). 2

The next Proposition proves the implication (2) ⇒ (1) in Theorem VI.4.2.
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Proposition VI.4.10 Let G be a real semigroup verifying conditions (2.i)−(2.iii) of Theorem
VI.4.2. Then, G is a RS-fan.

Proof. From VI.4.4 we know that condition (2.i) implies that every (TS)-ideal of G is prime
and that the set of all (prime) ideals of G is totally ordered under inclusion. By Theorem
VI.2.1, we must show, for a, b, c ∈ G:

(I) c ∈ Dt
G

(a, b) and Z(a) ⊂ Z(b) imply c = a.

(II) c ∈ Dt
G

(a, b), Z(a) = Z(b) and a 6= −b imply c = a or c = b.

Proof of (I). We first observe that the assumptions of (I) imply Z(a) = Z(c).

Let h ∈ X
G

. If h(a) = 0, then h(b) = 0 (as Z(a)⊆Z(b)), and c ∈ Dt
G

(a, b) yields h(c) = 0;

hence, Z(a)⊆Z(c).

If Z(c)⊆Z(b), then c ∈ Dt
G

(a, b) yields −a ∈ Dt
G

(−c, b), and so Z(c)⊆Z(a). If Z(b)⊆Z(c),

then −a ∈ Dt
G

(−c, b) entails Z(b)⊆Z(a), contrary to assumption. Hence, Z(c)⊆Z(a), and

Z(a) = Z(c).

In order to prove c = a, let h ∈ X
G

. If h(b) = 0, then h(c) ∈ D
3
(h(a), 0) = {h(a)}, whence

h(c) = h(a). Henceforth, assume h(b) 6= 0. Since Z(a) ⊂ Z(b), there is g ∈ X
G

so that g(b) = 0
and g(a) 6= 0. Since the set of ideals of G is totally ordered under inclusion, h(b) 6= 0 and
g(b) = 0, we have Z(h) ⊂ Z(g). By (2.ii), there is g′ ∈ X

G
so that Z(g′) = Z(g) and h g′.

Then, g′(b) = 0; from c ∈ Dt
G

(a, b) and g(a) 6= 0 comes g′(a) = g′(c) 6= 0. From h g′ we

infer h(a) = g′(a) and h(c) = g′(c) (Lemma I.1.18 (4)), and from g′(a) = g′(c) we conclude
h(a) = h(c), and hence a = c.

Proof of (II). Assume c ∈ Dt
G

(a, b), Z(a) = Z(b) and a 6= −b; then, there is g ∈ X
G

so that

g(b) = g(a) 6= 0. First we claim:

Claim 1. Under the assumptions of (II), Z(c) = Z(a) = Z(b).

Proof of Claim 1. In fact, c ∈ Dt
G

(a, b) yields Z(a) = Z(b)⊆Z(c). Assume, towards a con-

tradiction, that there is h ∈ X
G

such that h(c) = 0 and h(a) 6= 0. From c ∈ Dt
G

(a, b) and

g(b) = g(a) we get g(c) = g(b) = g(a) 6= 0. Since the set of ideals of G is totally ordered
under inclusion, this and h(c) = 0 imply Z(g)⊆Z(h). By (2.ii), there is h′ ∈ X

G
such that

Z(h′) = Z(h) and g h′; it follows that h′(a) 6= 0 and, since Z(a) = Z(b), h′(b) 6= 0. In-
voking Lemma I.1.18 (4), we get h′(a) = g(a) and h′(b) = g(b); from g(b) = g(a) we obtain
h′(b) = h′(a). On the other hand, c ∈ Dt

G
(a, b) and h′(c) = h(c) = 0 entail h′(a) = −h′(b),

whence h′(a) = h′(b) = 0, contradiction. This proves Z(c) = Z(a) = Z(b), as asserted.

If one of a or b is 0, the equality of zero-sets in Claim 1 implies c = a = b = 0. So, assume,
e.g., b 6= 0. Let I be an ideal of G —necessarily prime and saturated— maximal for b 6∈ I. Let
∼
I

be the congruence relation on G determined by I, namely, for x, y ∈ G,

x∼
I
y ⇔ h(x) = h(y) for all h ∈ X

G
such that Z(h) = I. (Cf. II.4 (F))

Note that the equality of zero-sets established in Claim 1, together with b 6∈ I, implies that
none of a, b, c is in I.

Claim 2. a 6∼
I
− b.

Proof of Claim 2. Assume that a ∼
I
− b. Since g(b) 6= 0, i.e., b 6∈ Z(g), maximality of I entails

Z(g)⊆ I. By (2.ii), there is h ∈ X
G

such that Z(h) = I and g h. Since h(b), h(a) 6= 0, the
specialization g h yields h(a) = g(a) and h(b) = g(b) (I.1.18 (4)), which, by g(a) = g(b),
entails h(a) = h(b). On the other hand, a∼

I
− b and Z(h) = I implies h(a) = −h(b).

Altogether, these equalities imply h(a) = h(b) = 0, a contradiction, showing that a 6∼
I
− b.
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By assumption (2.iii), the reduced special group (quasi-RSG) G
I

is a RSG-fan. With
π
I

: G−→G/I denoting the canonical quotient map, we have π
I
(a) 6= π

I
(−b) = −π

I
(b). Note

also that a, b, c 6∈ I implies π
I
(a), π

I
(b), π

I
(c) 6= π

I
(0). From c ∈ Dt

G
(a, b) it follows π

I
(c) ∈

Dt
G/I

(π
I
(a), π

I
(b)) which implies (since G

I
= (G/I) \ {π

I
(0)} is a RSG-fan) π

I
(c) = π

I
(a) or

π
I
(c) = π

I
(b).

Claim 3. π
I
(c) = π

I
(a) ⇒ c = a.

Proof of Claim 3. Assumption π
I
(c) = π

I
(a) means c ∼

I
a.

Let h ∈ X
G

. Since the saturated prime ideals of G are an inclusion chain, we consider two
cases:

— Z(h)⊆ I.

Invoking (2.ii), let h′ ∈ X
G

be such that Z(h′) = I and h h′. Since a, c 6∈ I, the specialization
h h′ entails h(a) = h′(a) and h(c) = h′(c); further, c ∼

I
a gives h′(c) = h′(a), whence

h(c) = h(a), for all h ∈ X
G

such that Z(h)⊆ I.

— Z(h) ⊃ I.

The maximality of I implies a, b, c ∈ Z(h), i.e., h(a) = h(b) = h(c) = 0.

These two cases prove that h(c) = h(a), for all h ∈ X
G

, i.e., c = a.

A similar argument proves that π
I
(c) = π

I
(b) ⇒ c = b, completing the proof of (II), of

Proposition VI.4.10, and of Theorem VI.4.2. 2

The next two corollaries of Theorem VI.4.2 give stylized (abstract) versions of the notion
of a trivial fan, a basic concept in the theory of (pre-)orders on fields (see [L2], Prop. 5.3, p.
39). Their translation in the case of preordered rings is given in Theorem ?? below, where it
will be obvious that in the case fields they boil down to the notion of a trivial fan defined in
[L2]. Add precise ref.

Corollary VI.4.11 Let G be a real semigroup such that the character space X
G

is totally
ordered under specialization. Then, G is a RS-fan.

Proof. We check that conditions (2.i) – (2.iii) of Theorem VI.4.2 hold.

Since every saturated prime ideal of G is the zero-set of some character (I.4.9) and g h⇒
Z(g)⊆Z(h) for g, h ∈ X

G
(I.1.18 (4)), the set of saturated prime ideals of G is an inclusion

chain, i.e., item (2.i) of VI.4.2 holds.

Further, every saturated prime ideal is the zero-set of a unique character: if h
1
, h

2
∈ X

G

are such that Z(h
1
) = Z(h

2
), then h2

1
= h2

2
(I.1.19 (1)); if, say, h

1
 h

2
, by Lemma I.1.18 (5),

h
2

= h2
2
h

1
= h2

1
h

1
= h

1
. It follows that, for every saturated prime ideal I the quotient G/I

has a unique character, and hence G/I ∼= 3, which is a RS-fan, showing that condition (2.iii)
of VI.4.2 holds.

Finally, to check item VI.4.2 (2.ii), observe that the linearity assumption and the uniqueness
proved in the preceding paragraph yield Z(g)⊆Z(h)⇒ g h. 2

In the sequel we present an example showing that conditions (2.i) and (2.iii) of Theorem
VI.4.2 alone are not sufficient to guarantee that a real semigroup is a RS-fan.

Example VI.4.12 Let G = {±1,±c} be a four-element group of exponent 2, and let x 6∈ G.
We set G[x] := G ∪ {0,±x}, subject to the relations x 6= 0 , x2 = x and cx = −x. It is easily
checked that G[x] is a ternary semigroup whose product extends that of G and whose ideals
are {0} and {0,±x} (both being prime). For i = 1, 2 we define TS-characters hi : G[x]−→3,
as follows:
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h
1
(y) =


0 if y = 0
1 if y ∈ {1, x,−c}
−1 if y ∈ {−1,−x, c}

h
2
(y) =


0 if y ∈ {0,±x}
1 if y ∈ {1, c}
−1 if y ∈ {−1,−c}

Direct inspection shows:

(i) Z(h
1
) = {0} ⊂ {0,±x} = Z(h

2
) (hence VI.4.2 (2.i) holds).

(ii) The set H := {h
1
, h

2
} separates points in G[x].

(iii) h
1
6 h

2
(I.1.18 (4)).

It follows from Theorem I.3.3 and Proposition I.3.4 that the ternary relation DH defined by H
(see clause [D]H in Definition I.3.1), endows the ternary semigroup G[x] with the structure of
a real semigroup. Note that the corresponding transversal representation relation Dt

H
is given

by:

For p, q, r ∈ G[x], p ∈ Dt
H

(q, r) iff hi(p) ∈ Dt
3
(hi(q), hi(r)) for i = 1, 2;

(cf. I.3.2 [TR]). In particular,

(iv) c ∈ Dt
H

(1,−x).

Claim. X
G[x]

:= Hom
RS

((G[x], DH), 3) = H.

Proof of Claim. Let h ∈ X
G[x]

; then, Z(h) = {0} or Z(h) = {0,±x}.

— If Z(h) = {0}, then h(x), h(c) ∈ {±1}. Since x2 = x, we have h(x) ∈ {0, 1}; hence, h(x) = 1.
Since cx = −x, we have h(c) = −1. So, h = h

1
, as they coincide on the generators c, x of G[x].

— If Z(h) = {0,±x}, from (iv) we get h(c) ∈ Dt
3
(1, 0) = {1}, whence h = h

2
, since they

coincide on the generators c, x. 2

The Claim shows:

(1) Condition VI.4.2 (2.ii) fails in (G[x], DH): this real semigroup has no (RS-)character spe-
cializing h

1
and having {0,±x} as zero-set.

(2) Condition VI.4.2 (2.iii) holds in (G[x], DH): both (saturated, prime) ideals I of G[x] are
the zero-sets of exactly one RS-character; then, the quotient G[x]/I has exactly one character,
whence G[x]/I ∼= 3, a RS-fan. 2

VI.5 Fans and preordered rings

New section; Jan. 2014. Replaces old section “Fans and valuation rings”.

The aim of this section is to deal with a number of situations and exhibit some examples of
semi-real rings and preordered rings (hereafter p-rings) whose associated real semigroups are
fans.

A. Basic properties of p-rings whose associated real semigroup is a fan. Throughout
this subsection we assume that 〈A, T 〉 is a p-ring whose associated real semigroup G

A,T
is a

RS-fan.

VI.5.1 Reminder and Notation. (a) From VI.1.2 and VI.2.8 we know that all ideals of
G
A,T

are prime and saturated; further, the family I = I(A, T ) of all ideals of G
A,T

is totally

ordered by inclusion (VI.1.2 (4)).

(b) For J ∈ I, let Ĵ = {a ∈ A | a ∈ J}. By Fact II.1.1, the Ĵ ’s are prime ideals of A and
the collection {Ĵ | J ∈ I} is totally ordered under inclusion. Since J ∈ I is saturated, Ĵ is a
T -radical ideal of A (Theorem II.1.12), hence T -convex (II.1.4 or [BCR], Prop. 4.2.5, p. 87).
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(c) We denote by T (A, T ) the set of all T -convex prime ideals of A.

Fact VI.5.2 With notation as above,

(i) {Ĵ | J ∈ I} = T (A, T ).

(ii) The map J 7→ Ĵ (J ∈ I) is bijective and order-preserving.

Proof. (i) Let I ∈ T (A, T ). By II.1.11, I is a prime ideal of G
A,T

, and by Lemma II.1.8 (b),

I = Î (= T
√
I).

(ii) By (i) the map J 7→ Ĵ is onto T . By II.1.1 (vi) it is also injective. That it preserves
inclusion is proved in II.1.1 (v). 2

Remarks VI.5.3 (i) Since {0} is the smallest element of I, the proof of VI.5.2 (i) (or II.1.8)
shows that T

√
(0) is the smallest element of T .

(ii) The maximal element of T is:

M = set of non-invertible elements of G
A,T

= {x |x ∈ A and x2 6= 1}.
Then, we have:

M = M̂ = {a ∈ A | a ∈M} = {a ∈ A | a2 6= 1} =
= {a ∈ A | ∃α ∈ Sper (A, T ) such that a(α) = 0} =
= {a ∈ A | ∃α ∈ Sper (A, T ) such that a ∈ supp (α)} =
=
⋃
{supp (α) |α ∈ Sper (A, T )}.

(iii) Warning. Even though the ideal M is maximal in T , and prime, it may not be a maximal
ideal of A; however, it is maximal in some important cases, e.g., when 〈A, T 〉 is a bounded
inversion ring (BIR). (Add Ref. here) 2

VI.5.4 In case G
A

(A a semi-real ring) (resp. G
A,T

, 〈A, T 〉 a p-ring) is a fan, the elements

of Sper (A, T ) have a simpler characterization, coming from the characterization of ARS-fans
given in VI.2.3, namely

A real semigroup G is a RS-fan if and only if the set of its prime ideals is totally
ordered under inclusion and every character of ternary semigroups G−→3 preserves
representation.

Since the RS-characters of G
A

(resp. G
A,T

) are, by any another name, the elements of Sper (A)

(resp., Sper (A, T )), see I.5.5, our task is to characterize the TS-characters of G
A

(resp. G
A,T

)

in terms of the ring A (resp., the p-ring 〈A, T 〉). We begin by the simpler case of semi-real
rings.

Proposition VI.5.5 Let A be a semi-real ring and let XGA (or XA for short) denote the set
of all ternary semigroup (TS-)characters of G

A
into 3.

(i) The correspondence

h ∈ XA 7−→ {a ∈ A |h(a) ∈ {0, 1}} = {a ∈ A |h(a) = h(a2)}
establishes a bijection from XA onto the family of all subsets of S⊆A satisfying the following
conditions:

[MSO-1]
∑
A2⊆S;

[MSO-2] S is closed under product;

[MSO-3] −1 6∈ S;
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[MSO-4] S ∪ −S = A;

[MSO-5] S ∩ −S is prime: for all x, y ∈ A, xy ∈ S ∩ −S ⇒ x ∈ S ∩ −S or y ∈ S ∩ −S.

[MSO-6] For every n ≥ 1 and a1, . . . , an ∈ A,
∑n

i=1 a
2
i ∈ S ∩ −S ⇒ a1, . . . , an ∈ S ∩ −S.

(ii) This correspondence is an order isomorphism from XA, ordered by specialization (in the
spectral topology ), onto the set of S⊆A satisfying [MSO-1] – [MSO-6], ordered by inclusion.

Remark. Note that [MSO-2] and [MSO-4] imply that S ∩−S is closed under multiplication by
arbitrary elements of A.

Proof. For h ∈ XA, the set Sh = {a ∈ A |h(a) ∈ {0, 1}} satisfies [MSO-1] – [MSO-6]:

— [MSO-2] holds because h preserves products.

— [MSO-3] comes from h(−1) = −1 (h is a TS-homomorphism).

— [MSO-4] If a ∈ A \ Sh, then h(a) = −1, whence h(−a) = 1, and a ∈ −Sh.

— [MSO-5] Follows from Sh ∩ −Sh = {a ∈ A |h(a) = 0} and the fact that xy = 0 ⇒x = 0 or
y = 0, for x, y ∈ 3.

In order to prove [MSO-1] and [MSO-6] we recall:

Fact 1. Given α ∈ Sper (A), let πα : A−→A/supp (α) denote the canonical ring homomor-
phism and let ≤α denote the (total ) order of A/supp (α) determined by α, i.e., πα(x) ≥α 0 ⇔
x ∈ α (x ∈ A). Then, for a ∈ A, a(α) = sgn≤α(πα(a)). Give ref.: [BCR]. 2

Claim. (i) If a ∈
∑
A2, then a = a2.

(ii) If a =
∑n

i=1 a
2
i and k ∈ {1, . . . , n}, then a · a2

k = a2
k.

Proof of Claim. (i) Let α ∈ Sper (A). Since
∑
A2⊆α, Fact 1 implies a(α) ∈ {0, 1}, and then

a(α) = a2(α), since x2 = x for x ∈ {0, 1}⊆3.

(ii) It suffices to prove a2
k(α) = 1 ⇒ a(α) = 1, for α ∈ Sper (A). Using Fact 1, since

πα is a ring homomorphism, from πα(a2
k) >α 0 and πα(x2) ≥α 0 for all x ∈ A, we get

πα(a) =
∑n

i=1 πα(a2
i ) ≥α πα(a2

k) >α 0 , as required. 2

— [MSO-1] follows at once from item (i) in the Claim.

— [MSO-6] comes from the already noted fact that Sh ∩ −Sh = {a ∈ A |h(a) = 0} and item

(ii) in the Claim: if
∑n

i=1 a
2
i ∈ Sh ∩ −Sh, then h

(∑n
i=1 a

2
i

)
= 0, and (by Claim) h

(
a2
k

)
= 0

(= h(a
k
)), whence a

k
∈ Sh ∩ −Sh, for k ∈ {1, . . . , n}.

Conversely, we must prove that any set S⊆A satisfying [MSO-1] – [MSO-6] determines a
TS-character hS ∈ XA such that S = ShS . For a ∈ A, set

hS(a) =


1 if a ∈ S \ (−S)
0 if a ∈ S ∩ −S
−1 if a ∈ (−S) \ S .

In order to show that hS is well defined, i.e., a = b⇒ hS(a) = hS(b), we will need the following
ring-theoretic characterization of “equality of bars”:

Fact 2. ([M], Cor. 5.4.3, p. 94) Given a p-ring 〈A, T 〉 and a, b ∈ A,

a
T

= b
T
⇔ There exists s, t ∈ T and k ≥ 0 such that sab = (a2 + b2)k + t. 2

— hS is well defined. (In this proof, T =
∑
A2.) Assume a = b, and suppose first that
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hS(a) = 0, i.e., a ∈ S ∩−S; by the Remark following the statement, sab ∈ S ∩−S, and by Fact

2, hS

(
(a2 + b2)k + t

)
= 0. Since t ∈

∑
A2, the sum (a2 + b2)k + t is in

∑
A2. Then, [MSO-6]

yields b ∈ S ∩ −S, i.e., hS(b) = 0. Interchanging a and b, we have hS(a) = 0⇔ hS(b) = 0.

Next, suppose a, b 6∈ S ∩ −S and that hS(a), hS(b) have different signs, e.g., a ∈ S \ (−S),
b ∈ (−S) \ S. Note that s ∈

∑
A2⊆S ([MSO-1]); therefore sab ∈ −S. On the other hand, the

expression in the right-hand side of the equality in Fact 2 is a sum of squares, and hence is in
S ([MSO-1]); it follows that sab ∈ S ∩ −S, whence (a2 + b2)k + t ∈ S ∩ −S (Fact 2) and, by
[MSO-6], a, b ∈ S ∩ −S, contradiction. Conclusion: hS(a) = hS(b), as required.

Next, note that dom(hS) = A, by [MSO-4]. That hS preserves product is proved by cases,
using [MSO-5]; details are left to the reader. That hS(i) = i for i ∈ {0,±1} is routine, using
[MSO-3], 1 = 12 ∈ S and 0 ∈ S ∩ −S ([MSO-5]).

Finally, S = (S \ (−S)) ∪ (S ∩ −S) entails a ∈ S ⇔ hS(a)) ∈ {0, 1}, i.e., S = ShS .

(ii) follows at once from the equivalence of (1) and (3) in Lemma I.1.18. 2

Reminder. We emphasize that the sets S⊆A satisfying conditions [MSO-1] – [MSO-6] may
not be additively closed. Those that are additively closed belong to Sper (A). 2

Remark VI.5.6 The case of G
A,T

requires more care. With notation as in the proof of VI.5.5,

for h ∈ XA,T —i.e., h a TS-character of G
A,T

— we clearly have:

T ⊆Sh ⇔ h dT ⊆{0, 1},
where T = {t | t ∈ T}. Even though this condition holds for

∑
A2 ([MSO-1]), it is not auto-

matically fulfilled by arbitrary preorders of A.

Example VI.5.7 Let X be a completely regular topological space, and let ∅ 6= K ŘX be a
closed subset; with C(X) denoting the ring of real-valued continuous functions on X, set

TK = {f ∈ C(X) | f dK ≥ 0}.
TK is a preorder of C(X). Recall that Spec (C(X)) is canonically homeomorphic to Sper (C(X))
by the map α 7→ α ∩ −α (α ∈ Sper (C(X))); in other words, for every prime ideal P ⊆C(X),
the quotient domain C(X)/P has a unique (total) order, denoted ≤P . For f ∈ C(X) and
P ∈ Spec (C(X)),

f(P ) = sgn≤P (f/P ).

For every x ∈ X, the evaluation

hx(f) = sgn(f(x)) (in R),

is a TS-character of G
C(X)

. By complete regularity, if x0 ∈ X \K, there is t ∈ C(X) so that

t dK = 0 and t(x0) = −1; hence, t ∈ TK and hx0(t) = −1. 2

However, we have:

Proposition VI.5.8 Let 〈A, T 〉 be a p-ring. Then, h dT ⊆{0, 1} (i.e., with notation as in the
proof of VI.5.5, T ⊆Sh) for every TS-character h : G

A,T
−→3 which preserves representation.

In particular, if G
A,T

is a RS-fan, this inclusion holds for every h ∈ XA,T .

Proof. For t ∈ T , we have t = t · 1 + t · 0, and hence t ∈ D
GA,T

(1, 0) (cf. [M], Add ref.). Since

h preserves representation, h(t) ∈ D
3
(h(1), h(0)) = D

3
(1, 0); this entails h(t) ∈ {0, 1}. 2

The analog of Proposition VI.5.5 for p-rings is:
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Proposition VI.5.9 Let 〈A, T 〉 be a p-ring and let X
A,T

denote the set of all ternary semi-

group (TS-)characters of G
A,T

into 3. To keep matters straight we denote by a
T

= a dSper (A, T ) :

Sper (A, T )−→3 (a ∈ A), the elements of G
A,T

.

(i) The correspondence

h ∈ X
A,T
7−→ {a ∈ A |h(a

T
) ∈ {0, 1}} = {a ∈ A |h(a

T
) = h(a2

T
)},

establishes a bijection from X
A,T

onto the family of all subsets of S⊆A satisfying the following

conditions:

[MSO
T
−1] T ⊆S;

[MSO-2] – [MSO-5] as in Proposition VI.5.5.

[MSO
T
−6] For all t

1
, t

2
∈ T , if t

1
+ t

2
∈ S ∩ −S, then t

1
, t

2
∈ S ∩ −S. 2

(ii) This correspondence is an order isomorphism from X
A,T

, ordered by specialization (in the

spectral topology ), onto the set of S⊆A satisfying [MSO
T
−1]–[MSO

T
−6], ordered by inclusion.

Proof. We only indicate the modifications to be done in the proof of Proposition VI.5.5, i.e.,
we prove only [MSO

T
−1] and [MSO

T
−6]. As before, for h ∈ X

A,T
, we set Sh = {a ∈ A |h(a

T
) ∈

{0, 1}} = {a ∈ A |h(a
T

) = h(a2
T

)}.

— [MSO
T
−1] holds because T ⊆α for all α ∈ Sper (A, T ): if t ∈ T ⊆α, then t

T
(α) ∈ {0, 1},

and hence t
T

= t2
T

, which in turn gives h(t
T

) = h(t2
T

).

— [MSO
T
−6], is an immediate consequence of the following analog to item (ii) of the Claim in

the proof of VI.5.5, and h(a
T

) = 0 iff a ∈ S
h
∩ −S

h
.

Claim. For t
1
, t

2
∈ T and t = t

1
+ t

2
, we have t · ti = ti (i = 1, 2).

Proof of Claim. It suffices to show, for α ∈ Sper (A, T ): ti(α) = 1 ⇒ t(α) = 1. Fix i = 1.
The antecedent means πα(t1) >α 0. Since t

2
∈ T implies πα(t2)≥α 0, we get πα(t) = πα(t1) +

πα(t2)≥α πα(t1) >α 0, whence t(α) = 1. 2

Conversely, any set S⊆A satisfying [MSO
T
−1]– [MSO

T
−6], determines a map h

S
: G

A,T
−→3

defined as in the proof of VI.5.5; the proof of well-definedness and of the required properties of
h
S

is a minor modification of that in VI.5.5, replacing
∑
A2 by T .

The proof of (ii) is similar to that of the corresponding item (ii) in Proposition VI.5.5 2

Remark VI.5.10 Proposition VI.5.9 shows that, if G
A,T

is a RS-fan, then every set S⊆A
satisfying conditions [MSO

T
− 1]–[MSO

T
− 6] is automatically closed under addition, i.e., an

element of Sper (A, T ). This is a ring-theoretic analog of the definition of a fan (as a preorder)
in a field, due to [BK]; cf. [L2], Def. 5.1, p. 39. Below we prove that the converse holds as
well. 2

It will be convenient to give a name to the objects at hand. Following the terminology in
[BK], set

Definition VI.5.11 For a semi-real ring A and a preorder T of A, we call:

(i) Multiplicative semi-ordering (or multiplicative prime cone) any set S⊆A satisfying
conditions [MSO-1] – [MSO-6] in Proposition VI.5.5 (i).

2 In other words, the set S ∩ −S (not necessarily an ideal !) is T -convex.
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(ii) Multiplicative T -semi-ordering (or multiplicative T -prime cone) any set S⊆A
satisfying conditions [MSO

T
−1] –[MSO

T
−6] in Proposition VI.5.9 (i).

(iii) M(A) and M(A, T ) will respectively denote the families of multiplicative semi-orderings
and multiplicative T -semi-orderings of A. 2

As a next step we show that the condition M(A, T ) = Sper (A, T ), necessary for G
A,T

to

be a RS-fan, entails that the set T (A, T ) of T -convex prime ideals of A is totally ordered under
inclusion; see VI.1.1.

Proposition VI.5.12 (i) Let 〈A, T 〉 be a p-ring. With notation as above, conditionM(A, T ) =
Sper (A, T ) implies that the set T (A, T ) of T -convex prime ideals of A is totally ordered under
inclusion.

(ii) A similar statement holds for semi-real rings: M(A) = Sper (A) implies that the set of real
prime ideals of A is a chain under inclusion.

Proof. We only prove (i). Let I, J ∈ T (A, T ); let α ∈ Sper (A, T ) be such that I = supp (α)
(cf. [BCR], Prop. 4.3.8, p. 90). Set S = J ∪ α.

We first observe that S ∈ M(A, T ). Conditions [MSO
T
−1], [MSO-2] and [MSO-3] are

obvious.

— [MSO-4]. Since −S = J ∪ −α and α ∪ −α = A, we have S ∪ −S = J ∪ α ∪ −α = A.

— [MSO-5]. By the previous item we have S∩−S = (J ∪α)∩ (J ∪−α) = J ∪ (α∩−α) = J ∪I.
Since both I, J are prime (ideals), we get xy ∈ S ∩ −S implies x ∈ S ∩ −S or y ∈ S ∩ −S.

— [MSO
T
−6]. Again, since S ∩ −S = J ∪ I and both I, J are T -convex, we get the desired

conclusion.

By assumption, S is additively closed. Assume, towards a contradiction, that there are
a, b ∈ A such that a ∈ I \ J and b ∈ J \ I. In particular, a ∈ I ⊆α⊆S and b ∈ J ⊆S, whence
a + b ∈ S. If a + b ∈ J , since −b ∈ J we get a = (a + b) + (−b) ∈ J , contradiction. Then,
a + b ∈ α, and from a ∈ I ⊆− α, we get b = (a + b) + (−a) ∈ α. Next, since −a ∈ I \ J
and −b ∈ J \ I, the preceding argument can be carried out with a, b replaced with −a,−b,
respectively, to conclude that −b ∈ α. Thus, b ∈ α ∩ −α = I, contradiction. 2

Summarizing the preceding arguments, we state:

Corollary VI.5.13 Let A be a semi-real ring and let T be a preorder of A.

(i) Are equivalent:

(a) G
A

is a RS-fan.

(b) Every multiplicative semi-ordering of A is automatically closed under addition, i.e.,
M(A) = Sper (A).

(ii) Are equivalent:

(a) G
A,T

is a RS-fan.

(b) Every multiplicative T -semi-ordering of A is automatically closed under addition, i.e.,
M(A, T ) = Sper (A, T ). 2

Proof. We only comment on (b) ⇒ (a) in (ii). The statement

“Every S⊆A satisfying conditions [MSO
T
−1]–[MSO

T
−6] in VI.5.9 (i) is closed under

addition”,

is just a translation of

“Every TS-character of G
A,T

is a RS-character”,
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which, in the terminology of Definition VI.0.1 (1), means G
A,T

is a “fan 1”. Since we have just

proved (VI.5.12 (i)) that the set T (A, T ) of T -convex prime ideals of A is totally ordered under
inclusion, Fact VI.5.2 shows that the set of all (TS-)ideals of G

A,T
is an inclusion chain; then,

by Proposition VI.1.2, the real semigroup G
A,T

satisfies condition [Z] in Theorem VI.2.1 and,

by Corollary VI.2.3 and the subsequent Remark, G
A,T

is a RS-fan. 2

This characterization yields a first batch of natural examples of p-rings whose associated
real semigroup is a fan.

Corollary VI.5.14 Let K be a field and T be a preorder of K which is a fan. Let A be a subring
of K whose field of fractions is K. Then, the real semigroup G

A,T∩A is a fan. In particular, if

A = Av is the valuation ring of a T -compatible valuation v of K, the real semigroup G
Av ,T∩Av

is a fan.

Proof. According to Corollary VI.5.13 (ii) we must check that any mutiplicative semi-ordering

S ∈M(A, T ∩A) is closed under addition. Let S′ = {a
b
| a, b ∈ A, b 6= 0 and ab ∈ S}⊆K. We

first show:

— S′ \ {0} is a subgroup of K×, T ⊆S′ and −1 6∈ S′.
Clearly, S⊆S′ and (by [MSO-3]) −1 6∈ S′. Since K is the field of fractions of A, any element

of T can be written as
a
b

, with a, b ∈ A, b 6= 0. Then, ab =
a
b
· b2 ∈ T ∩ A. Since T ∩ A⊆S

([MSO
T
−1]), we get

a
b
∈ S′, hence T ⊆S′. Since S is multiplicative ([MSO-2]), it follows that

S′ \ {0} is a subgroup of K×.

According to one of the known characterizations of fans in fields (cf. [L2], Thm. 5.5, p.
40), S′ is closed under addition in K, which clearly implies that S is additively closed in A. 2

Proposition VI.5.15 Let 〈A, T 〉 be a p-ring whose associated real semigroup G
A,T

is a fan.

Then Sper (A, T ) has the following lifting property:

[Lift] For every α ∈ Sper (A, T ) and J ∈ T (A, T ) so that supp (α)⊆ J , there is β ∈ Sper (A, T )

such that α⊆β and supp (β) = J .

Proof. Assume G
A,T

is a RS-fan. By VI.5.13 (ii.b), it suffices to prove [Lift] forM(A, T ). The

argument is, in fact, a reformulation in the present context of the proof Lemma VI.6.7 (2).

Let S ∈M(A, T ) and J ∈ T (A, T ) be such that supp (S) := S∩−S⊆ J . Set β = J∪(S\J).
Clearly, S⊆β; it remains to prove that supp (β) = J and β ∈ M(A, T ) which, under our
standing assumption, yields β ∈ Sper (A, T ). Clearly, T ⊆S⊆β ([MSO

T
−1]), and −1 6∈ β

([MSO-3]).

— β is closed under product ([MSO-2]).

Let a, b ∈ β. If one of a, b is in J , then ab ∈ J ⊆β. So, suppose a, b 6∈ J ; then a, b ∈ S \ J and,
since S is closed under product and J is prime, we get ab ∈ S \ J ⊆β.

Now, note that −β = J ∪ ((−S) \ J).

— β ∪ −β = A ([MSO-4]).

We have: β ∪ −β = J ∪ (S \ J) ∪ ((−S) \ J) = J ∪ ((S ∪ −S) \ J) ⊇ S ∪ −S = A.

— β ∩ −β = J ; in particular, since J is a prime ideal, β ∩ −β verifies [MSO-5] and, since J is
T -convex, β ∩ −β verifies [MSO

T
−6].

We compute:

β ∩ −β = (J ∪ (S \ J)) ∩ (J ∪ ((−S) \ J)) = [J ∩ ((±S) \ J) = ∅]
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= J ∪ ((S \ J) ∩ ((−S) \ J)) = J ∪ ((S ∩ −S) \ J) = [since S ∩ −S⊆ J ]

= J . 2

Notation VI.5.16 For I ∈ T (A, T ) (〈A, T 〉 a p-ring), we let

• A
I

denote the localization of A at I,

• M
I

= I · A
I

denote the maximal ideal of A
I
, and

• T
I

= T · (A \ I)−2 denote the preorder induced by T on A
I
. 2

Fact VI.5.17 T
I
/M

I
is a proper preorder of the field A

I
/M

I
.

Proof. Straightforward checking shows that T
I
/M

I
is a preorder of A

I
/M

I
. We prove that it

is proper.

Assume, on the contrary, that −1 ∈ T
I
/M

I
, i.e., −1 =

(
t
x2

)
/M

I
, with t ∈ T and x ∈ A\I;

that is,
t
x2 + 1 ∈M

I
= I ·A

I
, i.e.,

t+ x2

x2 =
i
y

, for some i ∈ I and y ∈ A \ I. Since I is prime,

we get y · (t+ x2) ≡ x2i (mod I), whence y · (t+ x2) ∈ I, and t+ x2 ∈ I. Since t, x2 ∈ T and I
is T -convex, we obtain x ∈ I, contradiction. 2

B. Total preorders and trivial fans in rings.

Definition VI.5.18 A total preorder in a ring A is a (proper) preorder T such that T∪−T =
A. 2

Fact VI.5.19 For a total preorder T of a ring A, T ∩ −T is a proper ideal of A. 2

The easy proof is left as an exercise.

Remarks VI.5.20 (i) The ideal T ∩ −T may not be prime (see Example VI.5.21). When it
is, the notion of “total preorder”coincides with “prime cone”, i.e., element of Sper (A).

(ii) When T ∩ −T = {0} the total preorders are just the total orders of A. 2

Example VI.5.21 Let A := R[X]/(X2); the elements of A are uniquely representable in the
form aX + b with a, b ∈ R. Clearly, the zero ideal of A is not radical, hence not prime either:
X 6= 0 but X2 = 0. We define a total (pre)order T in A by the stipulation:

aX + b ∈ T iff b > 0 or (b = 0 and a ≥ 0).

Checking that T is a total (pre)order of A is routine, left to the reader. However, the ideal
T ∩ −T = {0} is not prime. 2

Propositions VI.5.22 and ?? below show that total preorders are preserved by localization
at and lifting by convex prime ideals.

Proposition VI.5.22 Let T be a total preorder of a ring A, let I be a T -convex prime ideal of
A, and let T

I
= T · (A \ I)−2 be the preorder induced by T on the localization of A at I. Then,

T
I

is a total preorder of A
I
.

Proof. We already know that T
I

is a proper preorder of A
I

(cf. proof of Lemma VI.5.17;
note that T -convexity of I is needed to prove that T

I
is proper). So, we need only show that

T
I
∪ −T

I
= A

I
. Let

a
x
∈ A

I
, i.e., x 6∈ I. Then,

x
1

is invertible in A
I

and
1
x2 =

(
1
x

)2

∈ T
I
.

Hence,
a
x

=
ax
1
·
(

1
x2

)
. If ax ∈ T , then

a
x
∈ T

I
, and if ax ∈ −T , then

a
x
∈ −T

I
; we conclude

from T ∪ −T = A. 2
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Proposition VI.5.23 Let I be a prime ideal of the ring A and let Q be a total preorder of A
I
.

Then, there is a total preorder T of A such that T
I

= Q. Further,

(i) T ∩ −T = ι
I
−1[Q ∩ −Q], where ι

I
: A−→A

I
is the canonical map a 7→ a

1
(a ∈ A).

(ii) If the maximal ideal M
I

of A
I

is Q-convex, then I is T -convex.

Proof. Let T = ι
I
−1[Q] = {a ∈ A | ι

I
(a) =

a
1
∈ Q}. Since ι

I
is a ring homomorphism, we have:

— T is closed under under sum and product, and contains A2.

— T is proper (since ι
I
(−1) =

−1
1
6∈ Q) .

— T ∪ −T = A .

We show:

— T
I
⊆Q .

Let z ∈ T
I
, i.e., z =

t
x2 , with t ∈ T, x 6∈ I. Then,

t
1
∈ Q,

x2

1
is invertible in A

I
, and

1
x2 ∈ Q.

It follows that z =
t
1
· 1
x2 ∈ Q .

— Q⊆T
I

.

Let z ∈ Q; then, z =
x
y

, with x, y ∈ A, y 6∈ I, which implies z =
xy
y2 ; this gives

y2

1
· z =

xy
1

.

Clearly,
y2

1
=
(
y
1

)2
∈ Q, whence

y2

1
· z ∈ Q, and

xy
1
∈ Q, which shows that xy ∈ T . Hence,

z =
xy
y2 ∈ TI .

(i) It is obvious that T ∩ −T = ι
I
−1[Q ∩ −Q].

(ii) Let t
1
, t

2
∈ T be such that t

1
+ t

2
∈ I. Then,

ti
1
∈ Q (i = 1, 2), and

t1 + t2
1

∈ I ·A
I

= M
I
.

By the convexity assumption,
t1
1
,
t2
1
∈ I · A

I
. For i = 1, 2, we have

ti
1

=
j
x

, with j ∈ I, x 6∈ I.

It follows that xti − j ∈ I, whence ti ∈ I, since x 6∈ I, as required. 2

Remark VI.5.24 Even if Q is a total order of A
I
, T may not be a total order of A. In fact,

T ∩ −T = ι
I
−1[Q ∩ −Q] = ι

I
−1[0],

which, in general is not {0}. Note that, for x ∈ A,

x ∈ ι
I
−1[0] ⇔ ι

I
(x) = 0 (in A

I
) ⇔ ∃ z 6∈ I (zx = 0). 2

The following result proves two important properties of total preorders in rings:

Theorem VI.5.25 (i) Let T be a total preorder of a ring A. Then, the real semigroup G
A,T

is a fan.

(ii) Let T
0
, T

1
be total preorders of a ring A, and let T = T

0
∩T

1
. Assume that the set T (A, T )

of T -convex prime ideals of A is totally ordered under inclusion. Then, the real semigroup G
A,T

is a fan.

Remark. In case the ring A is a field, K, a total preorder is just a (total) order of K. Thus,
Theorem VI.5.25 is a ring-theoretic analog of the well known fact that the intersection of at
most two total orders of a field is a fan, namely a trivial fan, cf. [L2], Prop. 5.3, p. 39. 2

Proof. (i) By Corollary VI.4.11 it suffices to check that Sper (A, T ) (= X
GA,T

) is totally

ordered under inclusion (= specialization); the proof is identical to that showing that the real
spectrum of a ring is a root system: let α, β ∈ Sper (A, T ), and assume that α 6⊆ β and β 6⊆ α;
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let a ∈ α \ β and b ∈ β \ α; since the preorder T is total, either a− b ∈ T ⊆β or b− a ∈ T ⊆α;
hence, a = b+ (a− b) ∈ β or b = a+ (b− a) ∈ α, absurd.

We check that assumptions (1) – (3) of VI.4.12 are verified by G
A,T

.

Assumption (1) holds by hypothesis, as the saturated prime ideals of G
A,T

are in a bijective,

inclusion-preserving correspondence with the T -convex prime ideals of A (cf. Fact VI.5.1 (b)).

Assumption (2) follows from the proof of (i) and:

(∗) Sper (A, T ) = Sper (A, T
0
) ∪ Sper (A, T

1
).

Proof of (∗). Clearly, Sper (A, T
i
)⊆Sper (A, T ) for i = 0, 1. Assume there is α ∈ Sper (A) such

that T ⊆α but T
0
, T

1
6⊆ α, and pick t

i
∈ T

i
\α (i = 0, 1). Then, −t

0
∈ α and t

0
6∈ T

1
(otherwise

t
0
∈ T

0
∩ T

1
⊆α). Since T

1
is a total preorder, t

0
∈ −T

1
. Likewise, −t

1
∈ α and t

1
∈ −T

0
.

From t
0
∈ T

0
and −t

1
∈ T

0
we get −t

0
t
1
∈ T

0
; from t

1
∈ T

1
and −t

0
∈ T

1
we get

−t
0
t
1
∈ T

1
; hence, −t

0
t
1
∈ T

0
∩ T

1
⊆α. From −t

0
,−t

1
∈ α comes t

0
t
1

= (−t
0
)(−t

1
) ∈ α.

Hence, t
0
t
1
∈ α∩−α = supp(α). Since this is a prime ideal, t

i
∈supp(α)⊆α for i = 0 or i = 1,

contradiction.

In order to prove assumption (3) of VI.4.12, we first show:

(∗∗) Every T -convex prime ideal I of A is both T
0
-convex and T

1
-convex.

Proof of (∗∗). From [BCR], Prop. 4.2.8 (ii), p. 87, we know that I is either T
0
-convex or T

1
-

convex. Assume towards a contradiction that I is T
0
-convex but not T

1
-convex. Then, there are

elements t
0
, t

1
∈ T

1
such that t

0
+ t

1
∈ I, but t

0
, t

1
6∈ I. Since I is T -convex, we have t

0
, t

1
6∈ T

0
and, since T

0
is a total preorder, −t

0
,−t

1
∈ T

0
. As we have −(t

0
+ t

1
) ∈ I, T

0
-convexity yields

−t
0
,−t

1
∈ I, whence t

0
, t

1
∈ I, contradiction.

Now, [BCR], Prop. 4.3.8, p. 90 finishes the proof: for i = 0, 1, there is α
i
∈ Sper (A, T

i
) so

that supp(α
i
) = I. 2

Remark VI.5.26 The following example shows that the requirement in item (ii) of Theorem
VI.5.25 does not hold automatically. Let A = C(R) be the ring of real-valued continuous
functions on the reals. For i = 0, 1, let T

i
= {f ∈ A | f(i) ≥ 0} and M

i
= {f ∈ A | f(i) = 0}.

The (maximal) ideal M
i

is T
i
-convex; hence, with T = T

0
∩T

1
, both M

0
and M

1
are T -convex;

however, M
0

and M
1

are incomparable under inclusion. 2

VI.6 Levels of a ARS-fan

Look at changes in “Fans in Th. of Real Semigps.”

The saturated prime ideals of a real semigroup induce a partition of its character space.
The pieces are called levels : the level corresponding to a saturated prime ideal I of G is the
set of all g ∈ X

G
such that Z(g) = I. In the case of RS-fans, (proper) ideals —automatically

prime (VI.1.2) and saturated (VI.2.8)— are totally ordered under inclusion, a fact that of
much help in studying the mutual relationship of its levels. This notion, together with that of
a connected component (VI.6.11), will be the main technical tools employed in the analysis of
the fine structure of ARS-fans, initiated in this section and continued in subsequent ones.

We begin by proving that levels have a canonical structure of AOS-fans (VI.6.2), that is,
of fans in the category of abstract order spaces (cf. [M], § 3.1, pp. 37 ff.). Inclusion of ideals
induces AOS-morphisms between the corresponding levels (REF). The main results proved in
this section are:

(i) The connected components of a ARS-fan are complete join-semilattices under the special-
ization order; we also exhibit interesting relations between the sup operation and product
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(VI.6.12).

(ii) A relation between the cardinality of a finite RS-fan and that of its character space, an
analog for RSs of a result known to hold for reduced special groups (VI.6.18). 2

Move Prop. VI.6.1 before?. To section VI.4?

Proposition VI.6.1 Let F be a RS-fan. Let I be a proper ideal of F . Let π = π
I

: F −→F/I
denote the canonical quotient map. Then, (F/I) \ {π(0)} is a RSG-fan.

Proof. In Theorem II.3.15 and with notation therein, it was shown that if G is a RS and I is
a saturated prime ideal of G, then 〈 (G/I) \ {π(0)}, ·, π(−1), D

G/I
〉 is a RSG. We must prove:

given a, b ∈ F so that π(a), π(b) 6= 0 and π(a) 6= π(−1),

π(b) ∈ D
F/I

(π(1), π(a)) ⇒ π(b) = π(1) ∨ π(b) = π(a).

By the characterization of D
F/I

in Theorem II.3.15 (b), there are x ∈ F \ I and i ∈ I such

that bx2 ∈ D
F

(i, 1, a). Hence, there is c ∈ F such that bx2 ∈ D
F

(i, c) and c ∈ D
F

(1, a). From
the characterization of representation for fans (Theorem VI.2.1) we get:

(A) bx2 ∈ D
F

(i, c) ⇔ (i) bx2 = iy2 for some y ∈ F , or

(ii) bx2 = cy2 for some y ∈ F , or
(iii) bx2i = −cbx2 and bx2 = i2bx2.

(B) c ∈ D
F

(1, a) ⇔ (i) c = z2 for some z ∈ F , or

(ii) c = az2 for some z ∈ F , or
(iii) c = −ac and c = a2c.

Since b, x 6∈ I, we have bx2 6∈ I, which clearly excludes cases (A.i) and (A.iii), and entails c 6∈ I
in (A.ii), whence π(c2) = π(1). Case (B.iii) yields:

c = −ac ⇒ π(c) = −π(a)π(c) ⇒ π(c)2 = π(1) = −π(a)π(c)2 = −π(a),

and hence π(a) = π(−1), contrary to assumption; thus, case (B.iii) is excluded as well. In the
remaining cases we have:

(1) bx2 = cy2 and c = z2 for some y, z ∈ F .

Hence, bx2 = (yz)2. Since bx2 6∈ I, it follows y, z 6∈ I, and then π(b) = π(b)π(x2) = π((yz)2) =
π(1).

(2) bx2 = cy2 and c = az2 for some y, z ∈ F .

Thus, bx2 = a(yz)2. As in case (1) we have yz 6∈ I. Then, π(b) = π(b)π(x2) = π(a)π((yz)2) =
π(a)π(1) = π(a). 2

Remarks and Notation VI.6.2 Given a real semigroup G and a saturated prime ideal I of
G, we denote by G

I
the RSG (G/I) \ {π(0)}. Recall the setup from § II.3 F: Every character

h ∈ X
G

such that Z(h) = I induces a map ĥ : G
I
−→{±1} defined by ĥ ◦π

I
= h. The

correspondence h 7→ ĥ is a bijection between the set L
I
(G) = {h ∈ X

G
|Z(h) = I} and the

space of orders X
GI

of G
I

. (L
I

stands for “I-th level”; see Definition VI.6.6 (b) below.) Thus,

we can identify the set L
I
(G) ⊆X

G
with the AOS (X

GI
, G

I
). We shall systematically use this

identification in the sequel, and unambiguously refer to the AOS structure of the set L
I
(G).

In case G is a RS-fan, the preceding Proposition shows that L
I
(G) is an AOS-fan. 2
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The sets L
I
, I an ideal, form a partition of the ARS associated to a given RS. In the context

of fans, the correspondence assigning to each ideal I the set L
I

is a (functorial) bijection,
preserving, in a suitable sense, the (total) order of inclusion between ideals (VI.1.2(4)).

The following fact will be repeatedly used in the sequel:

Lemma VI.6.3 Let I be an ideal of a RS-fan F . Then, for a, b ∈ F \ I:

a∼
I
b ⇔ ∃z 6∈ I (az = bz).

Proof. (⇒) The congruence ∼
I

determined by an ideal I was defined in § II.3.F. Theorem
II.3.15 (a) proves:

a∼
I
b ⇔ ∃z 6∈ I ∃i ∈ I (i ∈ Dt

F
(az,−bz)).

Clause [Dt] in Theorem VI.2.1 gives:

Dt
F

(az,−bz) =

{
{az,−bz} if az 6= bz
{a2z2x |x ∈ F} if az = bz.

Since az,−bz 6∈ I (as a, b, z 6∈ I) but i ∈ I, the first alternative is excluded; hence, az = bz.

(⇐) Assume az = bz for some z 6∈ I. Since 0 ∈ Dt
F

(az,−bz) ∩ I, we conclude that a∼
I
b. 2

The first step to establish the results mentioned above is: (MAKE MORE PRECISE!)

Proposition VI.6.4 Let F be a RS-fan and let I ⊆ J be ideals of F . With notation as in
Remark VI.6.2, the rule a/J 7→ a/I (a ∈ F \ J) defines a homomorphism of special groups
ι
JI

: F
J
−→F

I
.

Proof. (1) ι
JI

is well-defined.

We must show: a, b ∈ F \ J ∧ a∼
J
b ⇒ a∼

I
b. Since I ⊆ J , this is clear from Lemma VI.6.3.

Clearly, we have:

(2) ι
JI

is a group homomorphism sending −1/J to −1/I.

Since F
J

is a fan, ι
JI

is automatically a SG-homomorphism. 2

The map ι∗
JI

: X
FI
−→X

FJ
dual to ι

JI
is, then, an AOS-morphism. Via the identification

of L
I
(F ) with X

FI
, see Remark VI.6.2, we get:

Fact VI.6.5 Let F be a RS-fan and let I ⊆ J be ideals of F . The map κ
IJ

: L
I
(F )−→L

J
(F )

which assigns to each g ∈ L
I
(F ) the unique element h ∈ L

J
(F ) such that g h is an AOS-

morphism.

Proof. To be precise, the map κ
IJ

is κ
IJ

= (ϕ
J
)−1 ◦ ι∗

JI
◦ϕ

I
, where ϕ

I
denotes the bijection

g 7→ ĝ (g ∈ L
I
(F )), identifying L

I
(F ) with X

FI
(VI.6.2), and similarly for L

J
(F ). It only

remains to be proved that g κ
IJ

(g), for g ∈ L
I
(F ). To ease notation, write h = κ

IJ
(g).

According to Lemma I.1.18 we must show Z(g)⊆Z(h) and a 6∈ Z(h) ⇒ g(a) = h(a). The
inclusion of the zero-sets is I ⊆ J . Let a 6∈ Z(h) = J . Since:

ϕ
J
(h) = ϕ

J
(κ
IJ

(g)) = ι∗
JI

(ϕ
I
(g)) = ϕ

I
(g) ◦ ι

JI
, ϕ

I
(g)(a/I) = g(a) and

ϕ
J
(h)(a/J) = h(a),
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(cf. VI.6.2), we get,

h(a) = (ϕ
I
(g))(ι

JI
(a/J)) = ϕ

I
(g)(a/I) = g(a),

as required. 2

Definition and Notation VI.6.6 Let F be a RS-fan.

(a) We denote by Spec (F ) the set of all (necessarily prime (VI.1.2 (3 )) and saturated (VI.2.8))
proper ideals of F .

(b) For I ∈ Spec (F ) the set L
I
(F ) = {h ∈ X

F
|Z(h) = I} is called the I-th level of X

F
.

(c) For f ∈ X
F

, the depth of f , denoted d(f), is the order type of the set {g ∈ X
F
| f g}

under the order of specialization. (Since (X
F
,  ) is a root-system, the order  is total on

this set.)

(d) For I ∈ Spec (F ), the order type of the set {J ∈ Spec (F ) | J ⊇ I} under the (total ) order
of inclusion will be called the depth of I, denoted d(I).

(e) The length of X
F

, denoted `(X
F

), is the order type of the (totally ordered ) set Spec (F ).
2

Remark. It is clear that the union and the intersection of an inclusion chain of (proper) prime
ideals in any ternary semigroup is a (proper) prime ideal. In particular, if F is a fan, the
totally ordered set Spec(F ) is (Dedekind) complete. Its smallest element is {0} (a prime ideal
by VI.1.2 (3)). Any ternary semigroup has a (unique) largest prime ideal, namely, the set of
non-invertible elements. See also Theorem VI.6.12 (c) below. 2

Next we shall prove that the depth of an ideal in a fan is the same as the depth of any
element in the corresponding level; in particular, elements of the same depth belong to the
same level. We shall need:

Lemma VI.6.7 Let F be a RS-fan. Then:

(1) For all elements g, h ∈ X
F

such that g h (hence Z(g)⊆Z(h)) and every ideal I such
that Z(g)⊆ I ⊆Z(h) there is f ∈ X

F
such that g f h and Z(f) = I.

(2) For every g ∈ X
F

and every ideal I ⊇ Z(g) there is a (necessarily unique) f ∈ X
F

such
that g f and Z(f) = I.

(3) For every ideal I of F there is an f ∈ X
F

such that Z(f) = I.

Remark. The statement obtained by reversing both order relations in (2) is false, in general.

Proof. We first prove (1); the same proof, omitting item (c) below, also proves (2). Let
f : F −→ 3 be defined by:

f d I = 0 and f d (F \ I) = g d (F \ I).

(a) Z(f) = I.

By construction, I ⊆ Z(f). Since Z(g)⊆ I, f(x) = g(x) 6= 0 for x ∈ F \ I, i.e., Z(f)⊆ I.

(b) g f .

Clear, from (a) and Lemma I.1.18,

(c) f h.

If f(a) = 0, then a ∈ I ⊆Z(h), and h(a) = 0.
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If h(a) 6= 0, then a 6∈ I; since g h, then g(a) = h(a). Hence, f(a) = g(a) = h(a), and we
get f h by Lemma I.1.18.

(d) f is a TS-homomorphism.

Clearly f(0) = 0 and f(±1) = g(±1) = ±1. Let a, b ∈ F . If one of a, b is in I, so is ab, and we
have f(a)f(b) = 0 = f(ab). If a, b 6∈ I, then ab 6∈ I, and f and g take the same value on a, b
and ab; the result follows from the fact that g is a TS-character. Since F is a fan, f ∈ X

F
.

(3) This is Lemma I.1.7 (alternatively, Lemma I.4.8) 2

Remark VI.6.8 The element f such that g f and Z(f) = I in VI.6.7(2) can also be obtained
by taking any h ∈ X

F
with Z(h) = I (VI.6.7(3)) and setting f = h2g. 2

Proposition VI.6.9 Let F be a RS-fan. For f ∈ X
F

we have d(f) = d(Z(f)); equiva-
lently, the sets {g ∈ X

F
| f g} (ordered under specialization ) and {J ∈ Spec(F ) | J ⊇ Z(f)}

(ordered under inclusion ) are order-isomorphic.

Proof. To ease notation, set f ↑ = { g ∈ X
F
| f g} and I ↑ = {J ∈ Spec(F ) | J ⊇ I}

(I ∈ Spec(F )).

We prove that the map Z : f ↑ −→ Z(f) ↑ assigning to each g ∈ f ↑ its zero-set, is the
required order isomorphism. That

(a) Z is increasing, and (b) Z is surjective,

is clear, from g h ⇒ Z(g)⊆Z(h) and Lemma VI.6.7(2), respectively.

(c) Z is injective.

Let g, h ∈ f ↑ be such that Z(g) = Z(h). Since (X
F
,  ) is a root-system, either g h or

h g; say the first. Then we must check that Z(g) = Z(h) ∧ g h ⇒ g = h. If a ∈ Z(g),
then g(a) = h(a) = 0. If a 6∈ Z(g), then g(a), h(a) 6= 0; g h yields h = h2g (Lemma I.1.18),
i.e., h(a) = h(a)2g(a) = g(a), since h(a)2 = 1. 2

A trivial variant of the proof of VI.6.9 gives:

Proposition VI.6.10 Let F be a RS-fan. Given f1, f2 ∈ XF
such that f1 f2, the intervals

{ g ∈ X
F
| f1 g f2} (ordered under specialization ) and {J ∈ Spec(F ) |Z(f1)⊆ J ⊆Z(f2)}

(ordered under inclusion ) are order-isomorphic. 2

Revise ↓; put in agreement with Section I.7.

Our next result shows that each connected component of an ARS-fan, endowed with the
specialization order  , is a complete join-semilattice. Further, there are interesting algebraic
relations between the sup operation and the product of characters. Recall:

Definition VI.6.11 Let (X,� ) be a root-system, and let g
1
, g

2
∈ X. Define:

g
1
≡
C
g

2
iff g

1
, g

2
have a common � - upper bound.

≡
C

is an equivalence relation; its classes are called connected components of (X,� ). 2

Theorem VI.6.12 Let F be a RS-fan, and let X
F

be its dual character space. Let
{h

i
| i ∈ I}⊆X

F
be a non-empty family of characters belonging to a single connected com-

ponent of X
F

(i.e., having a common upper bound under  ). Then,
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(a) {h
i
| i ∈ I} has a least upper bound for the specialization order. In other words, each

connected component of X
F

is a complete join-semilattice.

In particular:

(b) Any two elements in the same connected component have a least upper bound for  .

(c) Any ARS-fan is an order-complete root-system, that is, any non-empty chain under special-
ization bounded above (resp., below ) has a least upper bound (resp., a greatest lower bound ).

(d) For g
1
, g

2
∈ X

F
, (

∨
i∈I

h
i
) g

1
g

2
=
∨
i∈I

(h
i
g

1
g

2
).

Proof. Let J =
⋂
{Z(g) | g ∈ X

F
and h

i
 g for all i ∈ I}. By assumption this definition

makes sense, and by VI.2.8 (1) and VI.1.2 (3), J is a saturated prime ideal of F .

(a) Since h
i
 g implies Z(h

i
)⊆Z(g) (i ∈ I), we have

⋃
i∈I
Z(h

i
)⊆ J . By VI.6.7 (2), for each

i ∈ I there is an f
i
∈ X

F
such that h

i
 f

i
and Z(f

i
) = J . We first show:

(a.i) f
i

= f
j

for i, j ∈ I.

Let a ∈ F . If a ∈ J , then f
i
(a) = f

j
(a) = 0. Assume a 6∈ J . By the definition of J there

is a g ∈ X
F

such that h
i
 g for all i ∈ I and a 6∈ Z(g). By Lemma I.1.18 this implies

h
i
(a) = g(a), and h

i
 f

i
, f

i
(a) 6= 0 imply f

i
(a) = h

i
(a); hence f

i
(a) = g(a) for all i ∈ I,

whence f
i
(a) = f

j
(a). This proves (a.i).

Set f = f
i

(any i ∈ I). We claim:

(a.ii) f is the l.u.b. of {h
i
| i ∈ I} for the specialization order.

By the choice of f we have h
i
 f for all i ∈ I. Let g ∈ X

F
be such that h

i
 g for all i ∈ I.

We show that f g.

Firstly, we have Z(f) = J ⊆Z(g). Let a ∈ F be such that g(a) 6= 0. By I.1.18 (4), h
i
 g

implies g(a) = h
i
(a). Since we also have f(a) 6= 0, from h

i
 f follows f(a) = h

i
(a), whence

g(a) = f(a). Lemma I.1.18 (4) implies, then, that f g.

(c) Let C ⊆X
F

be a non-empty  - chain. If C is bounded above, its l.u.b. is given by (a):
{h

i
| i ∈ I} = C meets the assumptions. If C is bounded below, its g.l.b. is obtained by

applying (a) with {h
i
| i ∈ I} = the (non-empty) set {h ∈ X

F
| h g for all g ∈ C} of lower

bounds of C. Since C 6= ∅, the family {h
i
| i ∈ I} has a common upper bound under  ,

namely any element of C. Routine checking shows that the l.u.b. of {h
i
| i ∈ I} is the g.l.b. of

C.

(d) Set f =
∨

i∈I
h
i
. Fact VI.7.4 (a) shows that, for fixed i ∈ I, h

i
 f implies h

i
g

1
g

2
 fg

1
g

2
.

Thus, fg
1
g

2
is a common  -upper bound for the family {h

i
g

1
g

2
| i ∈ I}. By (a),

∨
i∈I
h
i
g

1
g

2

exists; call it f ′; we have proved that f ′ fg
1
g

2
.

To prove fg
1
g

2
 f ′, by I.1.18 (4) it suffices to show:

(d.i) Z(fg
1
g

2
)⊆Z(f ′), and

(d.ii) For a ∈ F, f ′(a) 6= 0 ⇒ f ′(a) = f(a) g
1
(a) g

2
(a).

(d.i) We first note that, for i ∈ I and g′ ∈ X
F

, h
i
g

1
g

2
 g′ ⇒ h

i
 g′g

1
g

2
. In fact, by

Lemma I.1.18 (4) the assumption amounts to g′ = (g′)2g
1
g

2
h
i
; scaling by g

1
g

2
gives g′g

1
g

2
=

(g′g
1
g

2
)2 h

i
, i.e., h

i
 g′g

1
g

2
.
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In particular, since h
i
g

1
g

2
 f ′, we get h

i
 f ′g

1
g

2
for all i ∈ I, which proves that f =∨

i∈I
h
i
 f ′g

1
g

2
. By I.1.18,

(*) Z(f) ⊆ Z(f ′) ∪ Z(g
1
) ∪ Z(g

2
).

Next, from h
i
g

1
g

2
 f ′ we get Z(h

i
g

1
g

2
)⊆ Z(f ′) for all i ∈ I, which gives⋃

i∈I
Z(h

i
) ∪ Z(g

1
) ∪ Z(g

2
) ⊆ Z(f ′).

In particular, Z(g
1
) ∪ Z(g

2
) ⊆ Z(f ′) which, together with (*), gives Z(fg

1
g

2
)⊆Z(f ′).

(d.ii) Let f ′(a) 6= 0 (a ∈ F ). From h
i
g

1
g

2
 f ′ and I.1.18 (4) comes

(**) f ′(a) = h
i
(a) g

1
(a) g

2
(a) 6= 0 (i ∈ I).

By (d.i) we also have f(a) 6= 0, and from h
i
 f we get f(a) = h

i
(a) for all i ∈ I. Together

with (**) this yields f ′(a) = f(a) g
1
(a) g

2
(a), proving (d.ii), and completing the proof of the

theorem. 2

Remark VI.6.13 Further algebraic relations between the sup operation and product in a
ARS-fan follow from item (d) of the preceding Theorem. For example, with h

0
, h

1
, g

0
, g

1
∈ X

F
and h

0
, h

1
in the same connected component, we have:

g
i
 h

i
(i = 0, 1) ⇒ h

0
∨ h

1
= h

0
g

0
g

1
∨ h

1
g

0
g

1
;

in particular, with g
i

= h
i
:

h
0
∨ h

1
= h2

0
h

1
∨ h2

1
h

0
.

Proof. Theorem VI.6.12 (d) gives:

(h
0
∨ h

1
) g

0
g

1
= h

0
g

0
g

1
∨ h

1
g

0
g

1
.

On the other hand, g
i
 h

i
(i = 0, 1) implies (h

0
∨ h

1
) g

0
g

1
= h

0
∨ h

1
. This follows from

(†) g
0
, g

1
 f ⇒ f g

0
g

1
= f (g

0
, g

1
, f ∈ X

F
),

and g
0
, g

1
 h

0
∨ h

1
.

To prove (†), the assumption and I.1.18 (4) yield Z(g
i
)⊆Z(f) (i = 0, 1), whence Z(f) =

Z(f g
0
g

1
), and also f(a) 6= 0⇒ f(a) = g

0
(a) = g

1
(a), which in turn implies f(a) g

0
(a) g

1
(a) =

f(a)3 = f(a). 2

Revise ↑.

Our last result in the section, Corollary VI.6.18, shows that if F is a finite RS-fan and xF
its character space, then card(F ) = 2 ·card(X

F
)+1. This identity is the analog of a well known

result relating the cardinalities of a finite RSG-fan and its space of orders ([ABR], p. 75). The
result follows from a more general observation, valid for RS-fans of arbitrary cardinality.

Proposition VI.6.14 Let I ⊂ J be consecutive ideals of a RS-fan (with, possibly, J = F ).
Then,

(i) Under product induced by F , J \ I is a group of exponent 2 with unit x2 for any x ∈ J \ I
(and distinguished element −1 = −x2).

(ii) The restriction of the quotient map π
I
d(J \ I) : J \ I −→F

I
= F/I \ {π

(
0)} is a group

isomorphism preserving the distinguished element −1.
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Proof. Since I is prime, J \I is closed under product. Given x, y ∈ J \I, we must prove x2 = y2

(which implies x2 = y3 = y). By the separation theorem I.1.12 it suffices to show h(x2) = h(y2)
for all h ∈ X

F
. If J ⊆Z(h), then h(x2) = h(y2) = 0. If Z(h)⊆ I, then h(x), h(y) 6= 0, whence

h(x2) = h(y2) = 1.

(ii) Clearly, π
I
(x) 6= π

I
(0), i.e., π

I
(x) ∈ F

I
, for all x ∈ J \ I, and π

I
preserves product.

— π
I
d(J \ I) is injective.

Suppose π
I
(x) = π

I
(y), i.e., x∼

I
y, with x, y ∈ J \ I. By Lemma VI.6.3, xz = yz for some

z 6∈ I. To prove x = y, let h ∈ X
F

. If J ⊆Z(h), then h(x) = h(y) = 0. If Z(h)⊆ I, then
h(z) 6= 0, and we get h(x) = h(y).

— π
I
(x2) = π

I
(1), for x ∈ J \ I.

Clear, for Z(h) = I implies h(x2) = 1. In particular, π
I

preserves −1.

— π
I
d(J \ I) is onto F

I
.

Let p ∈ F
I
; then, p = π

I
(q) with q 6∈ I. Taking z ∈ J \ I, we have qz2 ∈ J \ I, whence

π
I
(qz2) = π

I
(q)π

I
(1) = π

I
(q) = p. 2

Notation VI.6.15 Let F be a finite RS-fan, and let

{0} = I
n
⊂ I

n−1
⊂ · · · ⊂ I

2
⊂ I

1
⊂ F = I

0

be the set of all its ideals; thus, for 1 ≤ d ≤ n, I
d

is the ideal of depth d. With notation as

in Proposition VI.6.1, we set F
d

= F
Id

= (F/I
d
) \ {π

d
(0)}, where π

d
: F −→ F/I

d
denotes the

canonical quotient map. We also write L
d

for L
Id

; cf. VI.6.6 (b). 2

Clearly, F \{0} =
⋃n
d=1(I

d−1
\I

d
) (disjoint union), whence card (F ) =

∑n
d=1 card (I

d−1
\I

d
)+1.

Further, since the levels L
I

are a partition of X
F

, Remark VI.6.2 yields:

Fact VI.6.16 For any finite RS-fan F , card (X
F

) =
∑n

d=1 card (L
d
) =

∑n
d=1 card (X

Fd
). 2

Lemma VI.6.17 With notation as in VI.6.15, for 1 ≤ d ≤ n we have card (F
d
) =

card (I
d−1
\ I

d
).

Proof. The Lemma follows from the next two assertions, proved below. For 1 ≤ d ≤ n,

(1) card (F
d
) = card ((I

d−1
\ I

d
)/I

d
), where (I

d−1
\ I

d
)/I

d
= {x/I

d
| x ∈ I

d−1
\ I

d
}.

(2) card ((I
d−1
\ I

d
)/I

d
) = card (I

d−1
\ I

d
).

Proof of (1). It suffices to prove:

(*) For all x ∈ F \ I
d

there is y ∈ I
d−1
\ I

d
such that x/I

d
= y/I

d
.

If x ∈ I
d−1

, just take y = x. If x 6∈ I
d−1

, pick any z ∈ I
d−1
\ I

d
and set y = xz2; clearly y ∈

I
d−1
\ I

d
. That x/I

d
= y/I

d
, i.e., x∼

Id
y, follows from Lemma VI.6.3, since yz = (xz2)z = xz

and z 6∈ I
d
.

Proof of (2). It suffices to show:

(**) For x, y ∈ I
d−1
\ I

d
(x/I

d
= y/I

d
⇒ x = y ).

By Lemma VI.6.3 the antecedent of this implication amounts to xz = yz for some z 6∈ I
d

. Since
X
F

separates points in F , to prove the conclusion x = y it suffices to check that h(x) = h(y)
for all h ∈ X

F
. If Z(h) ⊇ I

d−1
, then x, y ∈ I

d−1
yield h(x) = h(y) = 0. If Z(h)⊆ I

d
, then h(x),

h(y) and h(z) are all 6= 0. Taking images under h in xz = yz gives h(x) = h(y), as required. 2
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Corollary VI.6.18 For a finite RS-fan, F , card (F ) = 2 · card (X
F

) + 1.

Proof. Since the F
d

are finite RSG-fans (Proposition VI.6.1), we know that card (F
d
) =

2 · card (X
Fd

) for 1 ≤ d ≤ n. The result follows, then, from the cardinality identities observed

in (and before) Fact VI.6.16, and from Lemma VI.6.17. 2

VI.7 Involutions of ARS-fans

Notation VI.7.1 In addition to the notation introduced in Definition VI.6.6 of the previous
section, for J ⊆ I in Spec(F ) we define the sets:

SI
J

= {h ∈ L
I
| ∃g ∈ X

F
( g h ∧ Z(g)⊆ J )}.

CI
J

= {h ∈ L
I
| ∃g ∈ X

F
( g h ∧ Z(g) = J ) ∧ ∀g′ ∈ X

F
( g′ h⇒ J ⊆Z(g′))}.

That is, SI
J

consists of those elements of level I having predecessors of level J or lower in

the specialization partial order; CI
J

is the set of elements in L
I

having predecessors at level J
but not lower. 2

Remarks VI.7.2 (i) For I ∈ Spec(F ), SI
{0}

= CI
{0}

, and SI
I

= L
I
. (Recall that {0} is the least

member of Spec(F ), i.e., the zero-set of the lowest level of X
F

.)

(ii) For J ⊆ I in Spec(F ), SI
J
6= ∅.

Proof. Let g ∈ X
F

be such that Z(g) = J (exists by Lemma VI.6.7(3)). If h is the unique

 -successor of g of level I (cf. Lemma VI.6.7(2), or Remark VI.6.8), then h ∈ SI
J

.

(iii) For J ⊆ I in Spec(F ), SI
J

= Im (κ
JI

), where κ
JI

: L
J
(F )−→L

I
(F ) is the AOS-morphism

defined in Fact VI.6.5.

(iv) For J ⊆ I in Spec(F ), SI
J
⊇
⋃
{ CI

J ′
| J ′ ∈ Spec(F ) and J ′⊆ J }. (Note that CI

J ′
may be

empty for some J ′⊆ J .)

(v) For J ⊆ I in Spec(F ), CI
J

= SI
J
\
⋃
{SI

J ′
| J ′ ∈ Spec(F ) and J ′ ⊂ J }.

(vi) For J, J ′⊆ I in Spec(F ), J 6= J ′, we have CI
J
∩ CI

J ′
= ∅. 2

The preliminary results which follow will be needed later.

Fact VI.7.3 Let g
1
, . . . , g

r
, h ∈ X

F
be so that

⋃r
i=1Z(g

i
)⊆Z(h). For i = 1, . . . , r, let f

i
∈ X

F
be such that g

i
 f

i
and Z(g

i
)⊆Z(f

i
)⊆Z(h). Then,

(∗) h g
1
· . . . · g

r
= hf

1
· . . . · f

r
.

Note. The products in (*) may not be in X
F

.

Proof. Obviously, (*) holds whenever x ∈ Z(h). If x 6∈ Z(h), from the assumptions we get
x 6∈

⋃r
i=1Z(g

i
) and x 6∈

⋃r
i=1Z(f

i
). Since g

i
 f

i
, we get g

i
(x) = f

i
(x) for i = 1, . . . , r, and

(*) follows. 2

Fact VI.7.4 (a) For i = 1, . . . , r, with r odd, let g
i
, h

i
∈ X

F
be such that g

i
 h

i
. Then,

g
1
· . . . · g

r
 h

1
· . . . · h

r
.

(b) Let h
1
, h

2
, f, g, k ∈ X

F
be such that f, g h

1
, k h

2
, and Z(h

1
)⊆Z(h

2
)). Then, fg k h

2
.
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Note. Here the products are in X
F

as the number of factors is odd.

Proof. (a) For i = 1, . . . , r, h2
i

= h
i
g
i

(Lemma I.1.18). Multiplying these equalities termwise

gives (h
1
· . . . · h

r
)2 = (h

1
· . . . · h

r
)(g

1
· . . . · g

r
), which proves the assertion.

(b) By Lemma I.1.18 we must prove h2
2

= h
2
(fg k). Obviously, this equality holds at every

x ∈ Z(h
2
). If x 6∈ Z(h

2
), then x 6∈ Z(h

1
), and f, g h

1
implies h

1
(x) = f(x) = g(x) 6= 0;

also k h
2

implies h
2
(x) = k(x) 6= 0, whence f(x)g(x) = 1 and h

2
(x)k(x) = 1. This yields

(h
2
fg k)(x) = (f(x)g(x))(h

2
(x)k(x)) = 1. On the other hand, (h

2
(x))2 = 1, proving that the

required identity holds at x 6∈ Z(h
2
) as well. 2

In order to make later arguments as transparent as possible, we recall the following simple
(and well-known) facts about fans in the categories RSG and AOS.

Fact VI.7.5 Let g : H −→G be a SG-homomorphism between RSG-fans, and let g∗ : (X
G
, G)

−→ (X
H
, H) denote the AOS-morphism dual to g. Then,

(1) With representation induced by that of H, Im(g) is a RSG-fan, and G is isomorphic to the
extension of Im(g) by the exponent-two group ∆ = G/ Im(g).

(2) (Im(g∗), H/ ker(g)) is an AOS-fan.

Remarks. (a) For the definition of extension of a SG by a group of exponent two, see [DM1],
Ex. 1.10, p. 10.

(b) By the duality between RSGs and AOSs ([DM1], Ch. 3), the dual statement holds as well:
given an AOS-morphism of (AOS-)fans, κ : (X,G)−→ (Y,H), the assertions (1) and (2) hold
with g := κ∗ (the SG-morphism dual to κ), and with g∗ = κ.

Sketch of proof. (1) The first assertion is easily checked. For the second, Im(g) is a direct
summand of the group G. Let pr : G−→ Im(g) be the projection onto the factor Im(g); pr is a
SG-morphism (G and Im(g) are fans), and is the identity on Im(g). The isomorphism between
G and Im(g)[∆] is: for a ∈ G,

f(a) = 〈 pr(a), a/Im(g) 〉.

(2) Recall that g∗ is defined by composition g∗(σ) = σ ◦ g (σ ∈ X
G

), and that Im(g∗)⊥ =⋂
{ker(γ) | γ ∈ Im(g∗)} =

⋂
{ker(σ ◦ g) |σ ∈ X

G
}. Routine checking from these definitions

proves that Im(g∗) is 3-closed (cf. ??), and that Im(g∗)⊥ = ker(g) (whence Im(g∗)⊆X
H/ker(g)

).

Clearly, the map g : H/ker(g)−→ Im(g) induced by g is an SG-isomorphism. Thus, we
have a commutative diagram of SG-morphisms:

H

π $$

g // Im(g)
� � //

G
f∼= Im(g)[∆]

pr
oo

H/ker(g)

g

OO

It only remains to be shown that Im(g∗) ⊇ X
H/ker(g)

. Any SG-character γ : H/ker(g)−→
Z

2
can be lifted to a map σ : G−→Z

2
, via the identification of G with Im(g)[∆], as follows:

for each a ∈ G there is b ∈ H such that pr(a) = g(b). We set σ(a) = γ(b/ker(g)) = γ(π(b)).
In terms of the diagram above, we have: σ = γ ◦ (g)−1 ◦ pr. It follows that σ is a well-defined
SG-morphism, i.e., σ ∈ X

G
, and (since pr ◦ g = g and (g)−1 ◦ g = π), g∗(σ) = σ ◦ g = γ ◦π. 2

This Fact, together with item (iii) in VI.7.2 and Fact VI.6.5, gives:
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Corollary VI.7.6 Let F be a RS-fan, and let J ⊆ I be in Spec(F ). The set SI
J

is an AOS-

fan. Indeed, it is a sub-fan of L
I
(F ), when the latter is endowed with its structure of AOS-

fan, as indicated in VI.6.2. More generally, if F ⊆L
J
(F ) is an AOS-fan, the set SI

J
(F) =

{h ∈ L
I
| ∃g ∈ F ( g h)} is an AOS-subfan of L

I
(F ).

Proof. The first assertion is a particular case of the second (with F = L
J
(F )). For the latter,

just observe that SI
J

(F) = κ
JI

[F ] = Im(κ
JI
dF) and use Remark (b) following the statement

of VI.7.5. 2

The following definition will have a crucial role in the sequel:

Definition VI.7.7 Let F be a RS-fan, let g
1
, g

2
∈ X

F
, and fix I ∈ Spec(F ) so that Z(g

1
),

Z(g
2
)⊆ I. We define a map ϕ g1,g2

I
: L

I
(F )−→L

I
(F ) as follows: for h ∈ L

I
(F ),

ϕ g1,g2

I
(h) = h g

1
g

2
. 2

Note. Since Z(g
i
)⊆ I = Z(h) (i = 1, 2), we have Z(h g

1
g

2
) = I, whence h g

1
g

2
∈ L

I
.

Fact VI.7.8 With notation as in the preceding Definition, let J ∈ Spec(F ) be such that Z(g
1
)∪

Z(g
2
)⊆ J ⊆ I, and for i = 1, 2, let g′

i
be the unique  -successor of g

i
of level J . Then,

ϕ g1,g2

I
= ϕ g

′
1,g
′
2

I . Thus, in Definition VI.7.7 we may assume Z(g
1
) = Z(g

2
).

Proof. Fact VI.7.3 shows that h g
1
g

2
= h g′

1
g′

2
for h ∈ L

I
. 2

Theorem VI.7.9 With notation as in Definition VI.7.7, we have:

(a) ϕ g1,g2

I
is an AOS-automorphism of L

I
.

(b) ϕ g1,g2

I
is an involution: for h ∈ L

I
, ϕ g1,g2

I
(ϕ g1,g2

I
(h)) = h.

(c) For i = 1, 2, let h
i

be the unique  -successor of g
i

in L
I
. Then, ϕ g1,g2

I
(h

1
) = h

2
.

In particular,

(d) If g
1
, g

2
, have a common  - upper bound h at some level I ⊇ Z(g

1
), Z(g

2
), then h is a

fixed point of ϕ g1,g2

I
.

(e) Let J ⊆ I be in Spec(F ). Assume Z(g
1
), Z(g

2
)⊆ J , and let h

1
∈ L

J
, h

2
∈ L

I
. Then,

h
1
 h

2
⇒ ϕ g1,g2

J
(h

1
) ϕ g1,g2

I
(h

2
).

For the proof of this Theorem we will need an improvement on Remark VI.6.2, valid for
fans but not for arbitrary RSs; namely :

Fact VI.7.10 Let F be a RS-fan, and I be an ideal of F . Any g ∈ X
F

such that Z(g)⊆ I
induces a SG-character ĝ : F

I
−→Z

2
, by setting ĝ ◦π

I
= g.

Proof. The only delicate point is well-definedness: for a ∈ F \ I, a ∼
I

1 ⇒ g(a) = 1. By
Lemma VI.6.3, a ∼

I
1 means az = z for some z 6∈ I; since g(z) 6= 0, taking images under g in

this equality yields g(a) = 1. 2

Proof of Theorem VI.7.9. We begin by proving:

(b) For h ∈ L
I
(F ), ϕ g1,g2

I
(ϕ g1,g2

I
(h)) = h g2

1
g2

2
. But h g2

1
g2

2
= h; this is clear if h(x) = 0

(x ∈ F ); if h(x) 6= 0, then g
i
(x) 6= 0 (since Z(g

i
)⊆Z(h)), and hence g2

i
(x) = 1 (i = 1, 2),

proving the stated identity, and item (b).
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(a) i) ϕ g1,g2

I
is an AOS-morphism.

Since F
I

is the RSG-fan dual to L
I
(F ), we must show:

(*) For every α ∈ F
I

there is β ∈ F
I

such that α̂ ◦ ϕ g1,g2

I
= β̂,

where α̂ : X
FI
−→Z

2
denotes the map “evaluation at α”: for σ ∈ X

FI
, α̂(σ) = σ(α). We claim

that β = α ĝ
1
(α) ĝ

2
(α) does the job. By the Fact above, ĝ

i
(α) ∈ Z

2
(i = 1, 2), whence β ∈ F

I
.

For h ∈ L
I
(F ) we have:

(α̂ ◦ ϕ g1,g2

I
)(h) = α̂ (h g

1
g

2
) = h(α) ĝ

1
(α) ĝ

2
(α) = h(α ĝ

1
(α) ĝ

2
(α)) = h(β) = β̂ (h),

as required. Note that (b) implies

ii) ϕ g1,g2

I
is bijective.

iii) The dual map (ϕ g1,g2

I
)∗ : F

I
−→F

I
is also bijective.

Item (i) proves that, for α ∈ F
I
, (ϕ g1,g2

I
)∗(α) = α ĝ

1
(α) ĝ

2
(α). For injectivity, assume

α ĝ
1
(α) ĝ

2
(α) = 1; if ĝ

1
(α) ĝ

2
(α) = −1, then α = −1, whence (as ĝ

i
is a SG-character),

ĝ
i
(α) = −1 (i = 1, 2), and α = 1, absurd. Thus, ĝ

1
(α) ĝ

2
(α) = 1, which entails α = 1. For

surjectivity, given β ∈ F
I
, set α = β ĝ

1
(β) ĝ

2
(β). Then, ĝ

1
(α) = ĝ

2
(β) and ĝ

2
(α) = ĝ

1
(β),

whence (ϕ g1,g2

I
)∗(α) = β.

(c) We must prove that h
1
g

1
g

2
= h

2
. This clearly holds at any x ∈ Z(h

1
) = Z(h

2
). If

x 6∈ Z(h
i
) (i = 1, 2), then x 6∈ Z(g

i
); since g

i
 h

i
, it follows h

i
(x) = g

i
(x) 6= 0 (see Lemma

I.1.18), and h
i
(x) g

i
(x) = 1; hence, h

1
g

1
g

2
(x) = g

2
(x) = h

2
(x).

(e) Invoking Lemma I.1.18 we must prove: h2
2

= h
2
h

1
⇒ (h

2
g

1
g

2
)2 = (h

2
g

1
g

2
)(h

1
g

1
g

2
). This

is immediate upon multiplying both sides of the antecedent by g2
1
g2

2
. 2

By use of these involutions we obtain a number of regularity results concerning the order
structure of ARS-fans.

Proposition VI.7.11 Let F be a RS-fan. For J ⊆ J
1
⊆ J

2
⊆ I in Spec(F ), and h ∈ SI

J
set:

BJ1,J2(h) = { g ∈ SJ2

J1
| g h }, and AJ1,J2(h) = { g ∈ CJ2

J1
| g h }.

Then,

(a) For h
1
, h

2
∈ SI

J
, we have card (BJ1,J2(h

1
)) = card (BJ1,J2(h

2
)).

(b) For h
1
, h

2
∈ CI

J
, we have card (AJ1,J2(h

1
)) = card (AJ1,J2(h

2
)).

Remark. The assumptions of the Proposition guarantee that the sets BJ1,J2(h) are non-
empty. In fact, given h ∈ SI

J
, there is u h so that Z(u)⊆ J ; set J ′ = Z(u). Since J ′⊆ J ⊆ J

2
,

u has a unique  - successor g in L
J2

. But u g, h and J2 = Z(g)⊆ I = Z(h) imply g h

(Lemma I.1.19(3)). Since J ′⊆ J ⊆ J
1
, we conclude that g ∈ SJ2

J1
, i.e., g ∈ BJ1,J2(h).

The sets AJ1,J2(h) may be empty for some choices of h and the J
i
’s. However, if h ∈ CI

J

and J
1

= J , we have AJ1,J2(h) 6= ∅. Indeed, in this case the element g ∈ SJ2

J
constructed above

is in CJ2

J
, for if g ∈ SJ2

J ′
for some J ′ ⊂ J , then g h would imply h ∈ CI

J ′
, contrary to the

assumption h ∈ CI
J

. 2

Proof. (a) With J
1
, J

2
as in the statement, write B

i
for BJ1,J2(h

i
) (i = 1, 2). The assumption
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h
i
∈ SI

J
implies the existence of elements u

i
∈ X

F
so that u

i
 h

i
and Z(u

i
)⊆ J . Replacing

u
i

by its unique successor of level J we may assume Z(u
i
) = J (see VI.7.8). We fix u

i
’s with

these properties throughout the proof, and for J ⊆J ′⊆I we denote by ϕ
J ′

the involution ϕu1,u2

J ′

of L
J ′

defined in VI.7.7.

Since the maps ϕ
J ′

are bijective, it suffices to prove ϕ
J2

[B
1
] = B

2
. Further, since ϕ

J2
is an

involution it suffices just to prove the inclusion ⊆, i.e.,

(*) g ∈ SJ2

J1
and g h

1
⇒ ϕ

J2
(g) h

2
and ϕ

J2
(g) ∈ SJ2

J1
.

(i) ϕ
J2

(g) = g u
1
u

2
 h

2
.

Immediate consequence of Fact VI.7.4(b), since g, u
1
 h

1
and u

2
 h

2
.

(ii) ϕ
J2

(g) ∈ SJ2

J1
.

Since g ∈ SJ2

J1
, there is a v g so that Z(v)⊆ J

1
. Replacing, if necessary, v by a suitable

successor of a level containing J , we may assume Z(v) ⊇ J = Z(u
i
); thus, v is in the domain

of ϕ
Z(v)

= ϕu1,u2

Z(v)
, and Theorem VI.7.9(e) gives ϕ

Z(v)
(v) ϕ

J2
(g), proving (ii) and item (a).

(b) Write A
i

for AJ1,J2(h
i
) (i = 1, 2). As above, it suffices to prove the analogue of (*):

(**) g ∈ CJ2

J1
and g h

1
⇒ ϕ

J2
(g) h

2
and ϕ

J2
(g) ∈ CJ2

J1
.

where h
1
, h

2
are now assumed to be in CI

J
. In fact, by (*) it only remains to prove:

(iii) There is no w ∈ X
F

such that Z(w) ⊂ J
1

and w ϕ
J2

(g).

Otherwise, we would have w ϕ
J2

(g) h
2

(the last relation holding by (*)). Since h
2
∈ CI

J
,

we get J ⊆Z(w), and since Z(u
i
) = J , ϕ

Z(w)
(w) is defined. Theorem VI.7.9(e) applied to

the first of the preceding inequalities yields: ϕ
Z(w)

(w) ϕ
J2

(ϕ
J2

(g)) = g. This, together with

ϕ
Z(w)

(w) ∈ L
Z(w)

and Z(w) ⊂ J
1
, contradicts the assumption g ∈ CJ2

J1
, proving (iii), and item

(b). 2

A slight variant of the argument proving Proposition VI.7.11 yields:

Proposition VI.7.12 Let F be a RS-fan and let J ⊆ I be in Spec(F ). For g
1
, g

2
∈ X

F
such

that Z(g
i
)⊆ J (i = 1, 2), the map ϕ g1,g2

I
is a permutation of SI

J
and of CI

J
. 2

For a RS-fan, F , and h ∈ X
F

, we denote by P
h

= { g ∈ X
F
| g h } the root-system of

 - predecessors of h. We prove first:

Theorem VI.7.13 (1) P
h

is an ARS-fan.

(2) The RS dual to P
h

is the quotient F/Ph, where the congruence on F determined by P
h

can

be characterized as follows: set T = h−1[1] and ∆ =
⋂
{P (g) | g ∈ P

h
}; then, for a, b ∈ F ,

a ∼
Ph
b iff either (i) a, b ∈ ∆ ∩ −∆ (equivalently, a ∼

Ph
0 ∼

Ph
b),

or (ii) ab ∈ ∆ and there are elements t ∈ T and x, y ∈ Id(G) so that
a2t2 = b2t2x and b2t2 = a2t2y.

Proof. (1) Lemma I.1.18 shows that g h iff T = h−1[1]⊆ g−1[1]. With notation as in [M],
§ 6.3, p. 110, and § 6.6, p. 126, the latter condition just means g ∈ U(T ), i.e., P

h
is the

saturated set U(T )(= W (T ) ∩ U(T 2)). [M], Cor. 6.6.8, p. 126, proves that sets of this form
are ARSs. Fact VI.7.4(a) shows that it is 3-closed, hence a fan by the results of §VI.2.
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(2) Observe first that a ∈ ∆ ∩ −∆ iff a ∼
Ph

0. In fact, since ∆ ∩ −∆ =
⋂
{Z(g) | g ∈ P

h
},

each term in this equivalence just means a ∈
⋂
{Z(g) | g ∈ P

h
}.

(⇐) Obviously (i) implies a∼
Ph
b. Assuming (ii) we show that g(a) = g(b) for all g ∈ P

h
. For

any such g we have g(t2) = 1 and g(x), g(y) ∈ {0, 1}. If one of g(x) or g(y) is 0, say g(x) = 0,
then g(a)2 = g(a2t2) = g(b2t2)g(x) implies g(a) = 0. But then, the equation b2t2 = a2t2y yields
g(b) = 0; thus, g(a) = g(b) = 0. If g(x) = g(y) = 1, then g(a)2 = g(b)2. If one of these is 0,
then, g(a) = g(b) = 0. If both squares are 1, using that ab ∈ ∆, i.e., g(ab) ∈ {0, 1}, we get
g(ab) = 1, whence g(a) = g(b).

(⇒) To prove this implication we apply Theorem II.3.5 to the saturated subsemigroup ∆ of F
defined in the statement, and the multiplicative set T

0
= F \(

⋃
J ), where J = {Z(g) |g ∈ P

h
},

a family of saturated prime ideals of F . Note that the following are equivalent for g ∈ X
F

:

(*) g h ⇔ P (g)⊆P (h) ⇔ T ⊆P (g)⊆P (h).

By Lemma I.1.18 it suffices to prove g h ⇒ T ⊆P (g); items (3) and (4) of that Lemma
prove: T = h−1[1]⊆ g−1[1]⊆P (g)⊆P (h).

First, we check that the assumptions of Theorem II.3.5 hold in the present situation.

(a) ∆ ∩ −∆ =
⋂
J (and hence ∆ ∩ −∆ ∩ T = ∅),

was proved above.

(b) (Condition II.3.4 (C)) x ∈ F \ (
⋃
J ) and a ∈ F imply: ax2 ∈ ∆⇔ a ∈ ∆.

The conclusion just means g(ax2) ≥ 0⇔ g(a) ≥ 0, for all g ∈ P
h
. This clearly holds since, by

assumption, g(x) 6= 0, i.e., g(x2) = 1, for all g ∈ P
h
.

Incidentally, note that

(c) T
0

= F \ (
⋃
J ) = T ∪ −T .

In fact, x 6∈
⋃
J implies x 6∈ Z(h), i.e., h(x) = ±1, i.e., x ∈ T ∪ −T . Conversely, x ∈ T ∪ −T

means h(x) = ±1; if g h, I.1.18(4) shows that g(x) = h(x) 6= 0, and hence x 6∈
⋃
J .

(d) If, as in II.3.5, HT0

∆
= {g ∈ X

F
|∆⊆P (g) and Z(g)⊆ isJ }, then HT0

∆
= P

h
.

The inclusion ⊇ is clear: if g ∈ P
h
, we have ∆⊆P (g) and Z(g) ∈ J . Conversely, assume

g ∈ HT0

∆
. To show g h it suffices to prove P (g)⊆P (h) (I.1.18(3)). Otherwise, there is

y ∈ P (g) so that y 6∈ P (h); then, h(y) = −1, i.e., −y ∈ T ⊆∆⊆P (g). Thus, both g(y) and
g(−y) are ≥ 0, whence y ∈ Z(g). Since Z(g)⊆

⋃
J , there is g′ ∈ P

h
such that g′(y) = 0; then,

y ∈ Z(g′)⊆Z(h)⊆P (h), contradiction.

Theorem II.3.5 (a) gives, then, the following characterization of the congruence ∼
Ph

:

a∼
Ph
b iff ab ∈ ∆ and there are elements t ∈ T

0
= T ∪ −T and d

1
, d

2
∈ ∆

so that a2t2 ∈ Dt
F

(−d
1
, a2b2t2) and b2t2 ∈ Dt

F
(−d

2
, a2b2t2).

Now, it only remains to apply the characterization of Dt
F

given by Theorem VI.2.1 to show

that the tranversal representation relations above imply the validity of conditions (2.i) or (2.ii)
of the statement. This is done by case analysis of the inclusions between the zero-sets of −d

1

(resp. −d
2
) and those of a2b2t2.

First, observe that, for y, z ∈ F ,

(**) If y2 = −z and z ∈ ∆, then y ∈ ∆ ∩ −∆.
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Indeed, for g ∈ P
h

we then have 0 ≤ g(y)2 = −g(z) ≤ 0, whence y ∈ Z(g), and so y ∈
⋂
J =

∆ ∩ −∆.

— Z(d
1
) ⊂ Z(a2b2t2). By the first clause in [Dt], Theorem VI.2.1, a2t2 = −d

1
; by (**),

at ∈ ∆ ∩ −∆; since t 6∈ ∆ ∩ −∆, we get a ∈ ∆ ∩ −∆, i.e., a ∼
Ph

0. The assumption a ∼
Ph
b

gives, then, b ∼
Ph

0. Thus, condition (2.i) holds.

— Z(a2b2t2) ⊂ Z(d
1
). The second clause of [Dt], Theorem VI.2.1 implies a2t2 = a2b2t2; take

x = a2.

— Z(a2b2t2) = Z(d
1
) and a2b2t2 6= d

1
. Then, VI.2.1 gives a2t2 = a2b2t2 or a2t2 = −d

1
. In the

first case take x = a2; by (**), the latter case leads to a, b ∈ ∆ ∩ −∆.

— a2b2t2 = d
1
. The last clause in [Dt], Theorem VI.2.1 yields a2t2 = (a2b2t2)2z for some

z ∈ F . Then, a2t2 = (a2t2)2 = a2b2t2z2; take x = a2z2.

The same analysis, replacing d
1

by d
2
, shows that condition b2t2 ∈ Dt

F
(−d

2
, a2b2t2) implies

either (2.i) or there is y ∈ Id(G) so that b2t2 = a2b2t2y, as asserted. 2

Continuing the analysis of the (AOS-)fans of the form P
h
, we show:

Theorem VI.7.14 Let F be a RS-fan and let J ⊆ I be in Spec(F ). Let h
1
∈ CI

J
, h

2
∈ SI

J
.

For i = 1, 2, we write P
i

for P
hi

. Then,

(1) There is an ARS-embedding ϕ of P
1

into P
2
. Further, ϕ[P

1
] = {u ∈ P

2
| J ⊆ Z(u) }. In

particular, ϕ is an order-embedding of (P
1
,  ) into (P

2
,  ).

(2) If, in addition, h
2
∈ CI

J
, then ϕ is an isomorphism of ARSs.

Proof. Our assumption on the h
i
’s guarantees the existence of u

1
, u

2
∈ L

J
so that u

i
 h

i
(i =

1, 2). For J ⊆ J ′⊆ I in Spec(F ) let ϕ
J ′

denote the involution ϕu1,u2

J ′
of L

J ′
(Definition VI.7.7).

(1) We construct ϕ : P
1
−→P

2
by “collecting together” all the relevant maps ϕ

J ′
(J ⊆ J ′⊆ I):

given g ∈ L
J ′
, g h

1
, we set

ϕ(g) = ϕ
J ′

(g).

Since the levels L
J ′

are pairwise disjoint, ϕ is well-defined.

i) ϕ[P
1
]⊆P

2
.

By Theorem VI.7.9 (e), g h
1

implies ϕ
J ′

(g) ϕ
I
(h

1
). Since h

i
is the unique successor of u

i
at level I, VI.7.9 (c) yields ϕ

I
(h

1
) = h

2
, whence ϕ

J ′
(g) h

2
, as required. Note this also gives

J ⊆ J ′ = Z(ϕ(g)).

ii) {u ∈ P
2
| J ⊆ Z(u) }⊆ ϕ[P

1
].

Let u be in the left-hand side, with J ′ = Z(u), say. Set v = ϕ
J ′

(u); then, ϕ
J ′

(v) = u (VI.7.9(b)).
By VI.7.4(b), u

1
 h

1
and u, u

2
 h

2
imply uu

1
u

2
= ϕ

J ′
(u) = v h

1
, i.e., v ∈ P

1
. Hence

ϕ(v) = u ∈ ϕ[P
1
].

iii) ϕ is injective.

This is clear using VI.7.9(b), since Z(ϕ(g)) = Z(g) for g ∈ P
1
.

iv) ϕ is an ARS-morphism.

The proof is similar to that of item (a) in Theorem VI.7.9. To keep matters straight we make
explicit the changes to be made in the latter. Firstly, the RSG-fan in VI.7.9(a) is to be replaced
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here by the RSs dual to P
1

= U(T
1
) and P

2
= U(T

2
), where T

i
= h

i
−1[1] (i = 1, 2); cf. Theorem

VI.7.13. The statement to be proved is:

(†) For every a ∈ F there is b ∈ F such that (â/T
2
) ◦ϕ = b̂/T

1
,

where â/T
2

: P
2
−→ 3 is the evaluation map: â/T

2
(g) = ĝ (a/T

2
) = g(a), for g ∈ P

2
, and

similarly for b̂/T
1

: P
1
−→ 3. (Note that g ∈ P

2
= U(T

2
) ensures that â/T

2
depends only on

the congruence class of a modulo T
2
.)

The conclusion of (†) can equivalently be written as ϕ̂(g)(a/T
2
) = ĝ (b/T

1
), i.e., (u

1
u

2
g)(a)

= g(b), or u
1
(a)u

2
(a)g(a) = g(b). Since u

i
(a) ∈ {0, 1,−1}, it is clear that the element

b = a u
1
(a)u

2
(a) ∈ F verifies (†); see VI.7.9 (a).

(2) Since h
2
∈ CI

J
, the preceding construction can be performed with the roles of h

1
and h

2

reversed. Routine verification using VI.7.9(b) shows that the map obtained is ϕ−1, which then
is an ARS-morphism, proving that ϕ is an ARS-isomorphism. 2

Proposition VI.7.11 and Theorem VI.7.14 provide significant information on the structure
of the connected components of ARS-fans; see Definition VI.6.11.

Reminder. (a) A connected component of an order-complete root-system contains exactly
one top (i.e., maximal) element, and the component is the set of its predecessors. Recall that
any ARS is order-complete under the order of specialization, Theorem VI.6.12 (c).

(b) Taking h to be a maximal element in the specialization order, Theorem VI.7.13 (a) shows
that the connected components of an ARS-fan are also ARS-fans.

(c) The  - top elements of the connected components of an ARS-fan (X,F ) have all the same
level, namely the level determined by the maximal ideal M of F ; this follows from Remark
VI.6.8 by taking g to be any element in a given component K, and h to be any element of
X such that Z(h) = M . Lemma VI.6.7 (1) shows that if g ∈ K, any ideal I of F such that
Z(g)⊆ I is of the form Z(f) for some f ∈ K (take h = the  - top element of K).

(d) Since every connected component of an ARS-fan is itself an ARS-fan, the zero-sets of its
elements attain a lowest level, which can be explicitly determined, cf. Proposition VI.7.15 be-
low. However, different components may have different lowest levels; more on this in Corollary
VI.7.17. 2

Notation. The sets L
I
, SI

J
and CI

J
defined in VI.6.6 and VI.7.1 relativize in an obvious way to

the connected components of a fan (X,F ); if K is such a component and J ⊆ I are in Spec(F )
we set:

L
I
(K) = L

I
∩ K, SI

J
(K) = SI

J
∩ K, and CI

J
(K) = CI

J
∩ K.

Note that some (or all) of these sets may be empty, depending on I, J and the component K.
Clearly, if h

0
is the  - top element of K, we have L

I
(K) = { g ∈ L

I
| g h

0
}, and similarly

for SI
J

(K) and CI
J

(K). L
I
(K) 6= ∅ just means that K “reaches at least” the I-th level of X

(possibly lower). 2

Proposition VI.7.15 Let K be a connected component of an ARS-fan (X,F ). Let h
0

be the

 - top element of K, and let T = h−1
0

[1]. Then, the lowest level of K (i.e., the smallest ideal

I of F such that L
I
(K) 6= ∅) is I = Γ ∩ −Γ, where Γ is the saturated subsemigroup of F

generated by Id(F ) · T .
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Note. The subsemigroup Id(F ) ·T may not be saturated, since Id(F ) ·T ∩ −(Id(F ) ·T ) is not,
in general, an ideal; see Corollary VI.2.8 (2).

Proof. With notation as in VI.7.13, we have K = P
h0

= U(T ) = {g ∈ X | g dT = 1} =

the ARS X
F/T

(where F/T = F/∼
K

, with ∼
K

denoting the congruence on F induced by

K). Let π
T

: F −→ F/T be the quotient map. The lowest level of X
F/T

is {0}; with K

identified to a subset of X via the map g 7→ ĝ (ĝ ◦π
T

= g), the corresponding ideal of F is

π−1
T

[0] = {a ∈ F | a∼
K

0}. Then, with the ideal I defined in the statement, we must prove:

a∼
K

0 ⇐⇒ a ∈ I (a ∈ F ).

(⇐) This follows from I ⊆Z(g) for all g ∈ K. Since g dT = 1, we get Id ·T ⊆ P (g) = g−1[0, 1];
since P (g) is a saturated subsemigroup, it comes Γ⊆P (g). Hence, x ∈ I = Γ ∩ −Γ implies
g(x) = 0.

(⇒) Assume a 6∈ I. In order to prove a 6∼
K

0 we construct a character g ∈ X such that

g dT = 1 and g(a) 6= 0 (i.e., g(a2) = 1). Applying Lemma I.4.10 (b) to the ideal I, the
saturated subsemigroup Γ and the multiplicative set a2T , condition

(†) I[Γ] ∩ a2T = ∅,

guarantees the existence of a character g ∈ X such that I ⊆Z(g), Γ⊆P (g) and g(a2t) 6= 0 for
all t ∈ T . Since a2T ⊆Γ, we get g[a2T ]⊆{0, 1}, and hence g d (a2T ) = 1; clearly, this yields
g(a2) = 1 and g dT = 1, as required.

To prove (†), assume there is t ∈ T such that a2t ∈ I[Γ], that is, −a2t2 ∈ D
F

(i, d) for some

i ∈ I and d ∈ Γ; since Γ is saturated, we get −a2t2 ∈ Γ, and hence a2t2 ∈ Γ ∩−Γ = I. Since I
is prime, either a ∈ I, contrary to assumption, or t ∈ I, which in turn contradicts T ∩ I = ∅
(recall that h

0
dT = 1, while I ⊆Z(h

0
)). 2

Proposition VI.7.11 implies:

Corollary VI.7.16 Let (X,F ) be an ARS-fan and let K
1
, K

2
be connected components of

(X,F ). Then,

(1) Let I ∈ Spec(F ); if L
I
(K

i
) 6= ∅ for i = 1, 2, then card (L

I
(K

1
)) = card (L

I
(K

2
)).

(2) Let J ⊆ J ′ be in Spec(F ), and assume L
J
(K

i
) 6= ∅ (i = 1, 2). Then, card (SJ

′

J
(K

1
)) =

card (SJ
′

J
(K

2
)).

Proof. (1) follows from (2), as L
I

= SI
I
.

(2) Fix i ∈ {1, 2}. Let h
i

be the  - top element of K
i
. The assumption L

J
(K

i
) 6= ∅ im-

plies that the sets SJ
′

J
(K

i
) = { g ∈ SJ ′

J
| g h

i
} are non-empty. Now, applying Proposition

VI.7.11(a) with I = M (= the maximal ideal of F ), J
1

= J , J
2

= J ′ we have BJ,J ′(h
i
) = { g ∈

SJ
′

J
| g h

i
} = SJ

′

J
(K

i
), and the result follows. 2

Remark. Assertion (2) of Corollary VI.7.16 fails, in general, if the sets SJ
′

J
(K

i
) are replaced

by CJ
′

J
(K

i
), even if both sets CJ

′

J
(K

i
), i = 1, 2, are assumed non-empty. The snag is that

CJ
′

J
(K

i
) 6= ∅ does not imply that the  - top element h

i
of K

i
belongs to CM

J
(K

i
), a condition

required for Proposition VI.7.11(b) to apply. It is easy to construct counterexamples. 2

Theorem VI.7.14 gives:
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Corollary VI.7.17 Let K
1
, K

2
be connected components of the ARS-fan (X,F ). Let I

1
, I

2
∈

Spec(F ) be the lowest levels of K
1
, K

2
, resp. (cf. VI.7.15 ). Then,

(1) If I
2
⊆ I

1
, then K

1
endowed with the specialization order is (order-)isomorphic to the

root-system obtained by deleting all levels I ⊂ I
1

in K
2
.

(2) If I
1

= I
2
, then K

1
, K

2
are order-isomorphic.

Proof. (1) Use Theorem VI.7.14 (1) with I = M = the maximal ideal of F , J = I
1
, and

h
1
, h

2
the  - top elements of K

1
, K

2
, resp. The ARS-embedding ϕ : K

1
−→K

2
constructed

therein verifies ϕ[K
1
] = {u ∈ K

2
| I

1
⊆ Z(u) }, which is exactly the statement (1).

(2) follows from Theorem VI.7.14 (2). 2

VI.7.18 Some impossible configurations.

The preceding results show that there are strong constraints on the order structure of ARS-
fans, especially when there is more than one connected component. We include a few examples
to help the reader visualize the extent of those restrictions.

(1) A configuration like

•
K1

• •

• • • •

•
K2

• • • •

• • • • • • • •

contradicts Corollary VI.7.16 (1).

(2) The four-component configuration

•
K1

• •

• •

• •

• •

• • • •

•
K2

• •

• •

• •

• •

•
K3

• •

• •

• •

•
K4

• •

• •

(where the components pairwise verify the conclusion of VI.7.16 (2)) is also impossible: card (S 3
4

)

= 3 is not a power of 2, and hence S 3
4

cannot be an AOS-fan (see Corollary VI.7.6). However,
the same configuration with K

3
replaced by another copy of K

4
does not clash with either

VI.7.16 or VI.7.17.

Note. Our notation here (and below) follows the convention introduced in VI.6.15 for finite
fans. Thus, S 3

4
stands for the set S I3

I4
, see VI.7.1 and VI.8.1.

(3) The two-component root-system

255



•
K1

• • • •

• • • •
• • • •

• • • • • • • •

1

2

3

4

5

•
K2

• • • •

• • • •
• •

• • • •

1

2

3

4

5

contradicts both Corollary VI.7.16 (2) (card (S 3
4
(K

1
)) = 4, but card (S 3

4
(K

2
)) = 2) and Corol-

lary VI.7.17 (K
1

and K
2

have the same “length” but are not order-isomorphic). 2

VI.8 The specialization root-system of finite ARS-fans

In this section we mainly deal with finite fans in the categories ARS and RS. Our main result
is Theorem VI.8.9 —the isomorphism theorem for finite ARS-fans— which proves that, in this
case, the order of specialization alone determines the isomorphism type. The proof depends on
the notion of a “standard generating system” which we introduce in VI.8.4. 2

Notation VI.8.1 (a) In this and later sections we shall use systematically the notation intro-
duced in VI.6.15 for finite (ARS- and RS-)fans —rather than that of Section 7 which applies
to fans of arbitrary cardinality; that is, the inclusion-decreasing sequence of ideals of a finite
RS-fan, F , is numbered in increasing order:

{0} = I
n
⊂ I

n−1
⊂ · · · ⊂ I

2
⊂ I

1
⊂ F = I

0
;

thus, n = `(X
F

) = the length of the ARS X
F

dual to F (see VI.6.6(e)), I
d

= the ideal of depth
d (1 ≤ d ≤ n), and (hence) I

1
= M = the maximal ideal (i.e., the set of all non-invertible

elements) of F . The notation employed in §7 will be adapted in a self-explanatory way; thus,
for 1 ≤ k ≤ j ≤ n = `(X

F
), L

k
(or L

k
(X

F
), if necessary), will stand for the level L

Ik
, Sk

j
for

the set SIk
Ij

, etc.

(b) We shall also make constant use of the combinatorial geometric structure —as AOS-fans—
of the levels of an ARS-fan X

F
and, more generally, of the sets SI

J
(J ⊆ I in Spec(F )); see

Remark VI.6.2 and Corollary VI.7.6.

Recall that the AOSs have a combinatorial geometric (matroid) structure; it was introduced
in [D1] and [D2] for spaces of orders of fields, and later generalized to abstract order spaces in

256



[Li]. In general, ARSs do not possess such a structure. Thus, combinatorial geometric notions
such as dependent set, independent set, basis, closed set, closure, dimension, etc., will always
refer, below, to the abovementioned combinatorial geometric structure, and apply only to AOSs.
For the definition and the mutual relationships, in the general context of matroid theory, of
combinatorial notions such as those just mentioned, the reader is referred to [Wh].

Since the combinatorial geometric structure of any AOS is isomorphic to that of a set of
vectors in a (possibly infinite-dimensional) vector space over the two-element field F

2
with

the structure induced by linear dependence (cf. [D1], Thm. 3.1, p. 618), the notions above
coincide with the corresponding notions over vector spaces. For example, a subset A⊆X of an
AOS (X,G,−1) (G a group of exponent 2) is dependent iff there are pairwise distinct elements
g, g

1
, . . . , g

r
∈ A (r ≥ 2), such that g = g

1
· . . . · g

r
(as characters of G). Observe that, since

functions in X send −1 to −1, this functional identity can only hold if r is odd. Likewise, A is
closed iff the product of any odd number of members of A belongs to A. 2

Lemma VI.8.2 Let (X,F ) be an ARS-fan (not necessarily finite). Let J ⊆ I be in Spec(F ),
and let A⊆L

J
, B⊆L

I
, be sets such that:

i) The unique  - successor in L
I

of each g ∈ A belongs to B.

ii) Every h ∈ B has a unique  - predecessor in A.

Then, A dependent ⇒ B dependent.

Proof. By assumption there are pairwise distinct elements g, g
1
, . . . , g

r
∈ A such that g =

g
1
· . . . · g

r
; as observed above, r is odd ≥ 3. Let h, h

1
, . . . , h

r
be the unique successors

of g, g
1
, . . . , g

r
, resp., in B coming from (i); thus, g h and g

i
 h

i
, for i = 1, . . . , r. By

VI.7.4(a) we have g = g
1
· . . . · g

r
 h

1
· . . . · h

r
. Since h

1
· . . . · h

r
∈ L

I
(r is odd) and g

has a unique  - successor in L
I
, we get h = h

1
· . . . · h

r
.

By assumption (ii), every element in A is the unique predecessor of an element in B. Since
g
i
6= g

j
, we get h

i
6= h

j
for 1 ≤ i 6= j ≤ r; likewise, h 6= h

i
for i = 1, . . . , r. This proves that h

is the product of r distinct elements in B, and hence that B is dependent. 2

Proposition VI.8.3 (Choice of basis). Let (X,F ) be a finite ARS-fan; let 1 ≤ k < n = `(X).
Let G be an arbitrary AOS-subfan of L

k+1
= L

k+1
(X). Let F = {h ∈ L

k
| There is g ∈ G

such that g h) } be the set of depth-k successors of elements of G; then, F is an AOS-fan.
Assume:

(∗) ∀h, h′ ∈ F , card ({g ∈ G | g h}) = card ({g ∈ G | g h′}).

Let B = {h
1
, . . . , h

r
} be a basis of F (as an AOS ). Let C be a basis of the AOS-fan

{g ∈ G | g h
1
}. For i = 2, . . . , r, let g

i
∈ G be such that g

i
 h

i
. Then, C ∪ {g

2
, . . . , g

r
} is

a basis of G.

Proof. If r = 1, then F = B = {h
1
}, whence G = {g ∈ G | g h

1
}, and the result holds by

the choice of C. Henceforth we assume r ≥ 2. We observe:

— r = card(B) = dim(F). Since F is an AOS-fan, card(F) = 2r−1.

— For every h ∈ F , A
h

= {g ∈ G | g h} is a AOS-fan; this follows from the assumption that
G is an AOS-fan, since A

h
is closed under the product of any three of its elements, cf. Fact

VI.7.4(b).

— A
h
∩ A

h′
= ∅ for h 6= h′ in F .
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By assumption (∗), card (A
h
) = card (A

h′
) (= 2p−1, say), for h, h′ ∈ F . Since G =

⋃
h∈F Ah,

we get card (G) = card (F)· card (A
h
) (any h ∈ F), and then card (G) = 2r−1 · 2p−1 = 2p+r−2;

hence dim (G) = p+ r − 1. Since card ( C ∪ {g
2
, . . . , g

r
}) = p+ r − 1, it suffices to prove:

(∗∗) C ∪ {g
2
, . . . , g

r
} is an independent set.

Proof of (∗∗). Assume false.

Case 1. Some g
i0

, with 2 ≤ i
0
≤ r, is dependent on the rest, i.e., there are C′⊆ C and

J ⊆{2, . . . , r} \ {i
0
} so that gi

0
=
∏
c∈C′ c ·

∏
j∈J gj , i.e.,

(+)
∏
c∈C′ c =

∏
j∈J∪{i0} gj .

— If card (C′) is odd, since A
h1

is an AOS-fan, and hence a closed set, the left-hand side

of (+) is an element g′ h
1
, and we have g′ ·

∏
j∈J∪{i0} gj = 1. Setting A = {g′} ∪ {g

j
|

j ∈ J ∪ {i0} }⊆Lk+1
and B = {h

1
} ∪ {h

j
| j ∈ J ∪ {i0} }⊆Lk, the assumptions of Lemma

VI.8.2 are met. Since A is dependent, so is B, contradicting that B⊆B and B is a basis of F ,
whence an independent set.

— If C′ = ∅, the same argument works, yielding a contradiction.

— Assume card (C′) even > 0. Fix c
0
∈ C′. Then card (C′\{c

0
}) = odd, and g′ =

∏
c∈C′\{c0} c ∈

L
k+1

; also g′ h
1
, and we have:

c
0
· g′ ·

∏
j∈J∪{i0} gj = 1.

Pick any index j
0
∈ J ∪ {i0} (so, j

0
≥ 2). Since c

0
, g′ h

1
and g

j0
 h

j0
, Fact VI.7.4(b)

yields g′
j0

:= c
0
g′ g

j0
 h

j0
, and g′

j0
·
∏
j∈(J∪{i0})\{j0} gj = 1. Hence, A = {g′

j0
} ∪ {g

j
| j ∈

(J ∪ {i
0
})\{j

0
}} is a dependent subset of L

k+1
. Setting B = {h

j
| j ∈ J ∪ {i

0
}} the assumptions

of Lemma VI.8.2 are met, and hence B is also dependent, contradicting that B⊆B.

Case 2. Some c
0
∈ C is dependent on the rest.

Then, there are C′ ⊆ C \ {c
0
} and J ⊆{2, . . . , r} so that

(++) c
0

=
∏
c∈C′ c ·

∏
j∈J gj .

Note that J 6= ∅ (otherwise C would be dependent). Taking J minimal so that (++) holds, and
picking j

0
∈ J , it follows that c

0
is not in the closure (= linear span) of C′ ∪ {g

j
| j ∈ J \{j

0
}}.

By the exchange property, g
j0

is in the closure of C′ ∪ {c
0
} ∪ {g

j
| j ∈ J \ {j

0
}}, contrary to

the result of Case 1. 2

VI.8.4 Standard generating systems.

For any finite ARS-fan, (X,F ), we will construct, by induction on k, 1 ≤ k ≤ n = `(X), a
class of bases B

k
of the AOS-fan L

k
(X). Each basis B

k
will be required to satisfy the additional

condition:

(∗) For k ≤ j ≤ n, B
k
∩ Sk

j
is a basis of the AOS-fan Sk

j
.

This additional requirement guarantees that the inductive construction of the B
k
’s does not

get interrupted before the n-th (and last) step. The construction uses Proposition VI.8.3 and
the results from §VI.7 above. The set B =

⋃n
k=1 Bk will be called a standard generating

system for (X,F ).

Level 1. It suffices to observe that a basis B
1

of L
1

satisfying condition (∗) exists. Begin by
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choosing a basis B
1
(n) of the AOS-fan S1

n
= C1

n
(cf. Corollary VI.7.6). S1

n
is a closed subset

of the (AOS-)fan S1
n−1

= S1
n
∪ C1

n−1
; hence, B

1
(n) is an independent subset of S1

n−1
; choose

B
1
(n− 1) to be a basis of S1

n−1
extending B

1
(n).

In general, assume that, for 1 < j ≤ n an increasing sequence B
1
(n)⊆ . . .⊆B

1
(j) of inde-

pendent subsets of L
1

has been chosen so that B
1
(`) is a basis of the AOS-fan S1

`
(j ≤ ` ≤ n).

As above, B
1
(j) is an independent subset of the fan S1

j−1
= S1

j
∪ C1

j−1
. Let B

1
(j − 1) be a

basis of S1
j−1

extending B
1
(j). Set B

1
= B

1
(1); by construction, B

1
∩ S1

j
= B

1
(j) is a basis of

S1
j
.

Induction step. Given an integer k, 1 ≤ k < n, assume there exists a basis B
k

of L
k

satis-

fying property (∗); thus, for k ≤ j ≤ n, B
k
(j) = B

k
∩ Sk

j
is a basis of Sk

j
. Further, since

Sk
n
⊆ . . .⊆Sk

k
= L

k
, we have B

k
(n)⊆ . . .⊆B

k
(k) = B

k
. Using Proposition VI.8.3 we define a

subset B
k+1

of L
k+1

as follows:

— Firstly, fix an element h
0
∈ B

k
(n) (this set is non-empty because n = `(X)). Pick a basis

B
k+1

(n, h
0
) of the AOS-fan {g ∈ Sk+1

n
| g h

0
}.

— Next, for each h ∈ (B
k
∩ Sk

k+1
) \ {h

0
} there is a maximal index j, k + 1 ≤ j ≤ n, so

that h ∈ B
k
∩ Sk

j
= B

k
(j); clearly, h 6∈Sk

j+1
, whence h ∈ Ck

j
= Sk

j
\ Sk

j+1
(if j = n, then

h ∈ Sk
n

= Ck
n
). Since j ≥ k+ 1, we have {g ∈ Ck+1

j
| g h} 6= ∅. Choose an element g

h
∈ Ck+1

j

so that g
h
 h.

— Finally, set B
k+1

= B
k+1

(n, h
0
) ∪ {g

h
|h ∈ (B

k
∩ Sk

k+1
) \ {h

0
}}.

Now, given an index j such that k+1 ≤ j ≤ n, we apply Proposition VI.8.3 with G = Sk+1
j

—whence F = Sk
j
— and B

k
∩ Sk

j
as the basis B of F . Proposition VI.7.11(a) shows that the

cardinality assumption

card ({g ∈ Sk+1
j
| g h}) = card ({g ∈ Sk+1

j
| g h′}), (h, h′ ∈ Sk

j
)

of VI.8.3 holds, and we conclude that B
k+1
∩ Sk+1

j
= B

k+1
(n, h

0
) ∪ {g

h
|h ∈ (B

k
∩ Sk

j
)\{h

0
}}

is a basis of Sk+1
j

, as required. 2

Remarks VI.8.5 (a) In general, there are many different standard generating systems for a
finite ARS-fan (X,F ). The construction in VI.8.4 allows for several choices of the bases B

1
(j)

(1 ≤ j ≤ n) and, at each successive step, k, for many choices of elements h
0
∈ B

k
(n), of bases

B
k+1

(n, h
0
), and of elements g

h
∈ Ck+1

n
under each h ∈ (B

k
∩ Sk

k+1
) \ {h

0
}. In spite of this

lack of uniqueness, we shall prove below that any standard generating system determines the
isomorphism type of a finite ARS-fan.

(b) Some of the sets Ck
j

= Sk
j
\ Sk

j+1
may be empty. However, if Ck

j
6= ∅, then, necessarily,

B
k
∩ Ck

j
6= ∅. Indeed, if j = n, then Ck

n
6= ∅ (as n = `(X)) and Ck

n
= Sk

n
is an AOS-fan; since

B
k
∩ Ck

n
is a basis of Ck

n
, it must contain at least one element. If j < n, since Sk

j+1
is a fan, it

is a closed set; as it is disjoint from Ck
j
, then no element of Ck

j
is dependent on Sk

j+1
. Hence,

any basis of Sk
j

= Sk
j+1
∪ Ck

j
must contain an element of Ck

j
. 2

Any standard generating system for a finite ARS-fan has the following property:
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Corollary VI.8.6 Let B be a standard generating system for a finite ARS-fan (X,F ); let
n = `(X), and 1 ≤ k ≤ m ≤ n. Then, for every g ∈ B

m
= B ∩ L

m
(X), the unique depth-k

successor of g in X belongs to B (hence to B
k

= B ∩ L
k
(X)).

Proof. Obvious, by construction, for m = k + 1. Then iterate. 2

For the proof of the Isomorphism Theorem VI.8.9 below we shall need some consequences
of the Small Representation Theorem III.2.15. Recall that a map F : (X,G)−→ (Y,H) is an
ARS-morphism iff for all a ∈ H there is b ∈ G so that â ◦F = b̂ (cf. [ARS-mor], proof of
I.5.1).

Corollary VI.8.7 A map F : (X
1
, F

1
)−→ (X

2
, F

2
) between ARS-fans is an ARS-morphism

iff F is continuous for the constructible topology (of both source and target ) and preserves
3-products in X

1
(cf. III.2.14 ).

Proof. (⇐) If F has the stated properties and a ∈ F
2
, then â ◦F : X

1
−→3 also has those

properties, and, by Proposition III.2.15, is represented by an element of F
1
; hence, F is an

ARS-morphism.

(⇒) Assume F is an ARS-morphism. For continuity it suffices to show that F−1[V ] is open
constructible in X

1
whenever V is basic open for the constructible topology of X

2
, i.e., of the

form V = U(a
1
, . . . , a

n
) ∩ Z(a) with a, a

1
, . . . , a

n
∈ F

2
(see [M], p. 111). By the assumption

on F , there are b, b
1
, . . . , b

n
∈ F

1
such that â ◦F = b̂ and â

i
◦F = b̂

i
for i = 1, . . . , n. These

functional identities imply F−1[V ] = U(b
1
, . . . , b

n
) ∩ Z(b), as required.

The preservation of products by F follows easily from the same property for â and b̂ using
the functional identity â ◦F = b̂. 2

We shall also need:

Lemma VI.8.8 Let (X
1
, F

1
), (X

2
, F

2
) be ARS-fans.

(1) For a map F : X
1
−→X

2
the following are equivalent:

(i) F preserves 3-products in X
1
.

(ii) a) F preserves 3-products of elements of the same level: for all I ∈ Spec(F ) and all

h
1
, h

2
, h

3
∈ L

I
(X

1
), F (h

1
h

2
h

3
) = F (h

1
)F (h

2
)F (h

3
).

b) F is monotone for the specialization order: for all g, h ∈ X
1
, g

1
 h ⇒ F (g)

2
 F (h),

(
i
 denotes specialization in X

i
).

(2) If (X
1
, F

1
) is finite, any map verifying one of the equivalent conditions (i) or (ii) in (1) is

a morphism of ARSs.

(3) If both (X
1
, F

1
), (X

2
, F

2
) are finite, any bijection F : X

1
−→X

2
verifiying one of the equiv-

alent conditions in (1) is an isomorphism of ARSs.

Proof. (1). (i) ⇒ (ii). (ii.a) is a particular case of (i).

(ii.b) g
1
 h ⇔ h = h2g (Lemma I.1.18). By (i), F (h) = F (h)2F (g), and this equality (in

X
2
) gives F (g)

2
 F (h).

(ii)⇒ (i). Let h
1
, h

2
, h

3
be any three elements in X

1
; say Z(h

3
)⊆Z(h

2
)⊆Z(h

1
). Let I = Z(h

1
)

and for i = 2, 3 let h′
i

be the unique successor of h
i

in L
I
(X

1
); Fact VI.7.3 shows that

h
1
h

2
h

3
= h

1
h′

2
h′

3
; then the assumption (ii.a) gives
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F (h
1
h

2
h

3
) = F (h

1
)F (h′

2
)F (h′

3
).

By (ii.b) we have F (h
i
)

2
 F (h′

i
), (i = 2, 3). Using again VI.7.3, from Z(F (h′

i
))⊆Z(F (h

1
))

we conclude

F (h
1
)F (h′

2
)F (h′

3
) = F (h

1
)F (h

2
)F (h

3
),

as required.

(2) follows at once from Corollary VI.8.7, since the continuity requirement is automatically
fulfilled in this case: the constructible topology in X

1
is discrete.

(3) By (2) it only remains to prove that F−1 : X
2
−→X

1
preserves 3-products in X

2
. Let

g
1
, g

2
, g

3
∈ X

2
and let h

i
= F−1(g

i
), i = 1, 2, 3. From (1.i) we have F (h

1
h

2
h

3
) = g

1
g

2
g

3
.

Composing both sides of this equality with F−1 gives the desired conclusion:

F−1(g
1
g

2
g

3
) = F−1(F (h

1
h

2
h

3
)) = h

1
h

2
h

3
= F−1(g

1
)F−1(g

2
)F−1(g

3
). 2

Remark. Note that any isomorphism of ARSs between fans preserves depth.

Theorem VI.8.9 (The isomorphism theorem for finite ARS-fans.) Let (X
1
, F

1
), (X

2
, F

2
) be

finite ARS-fans and let
1
 ,

2
 denote their respective specialization orders. If (X

1
,

1
 ) and

(X
2
,

2
 ) are order-isomorphic, then X

1
and X

2
are isomorphic as ARSs.

Proof. The order-isomorphism assumption implies:

(1) `(X
1
) = `(X

2
) ( = n, say, fixed throughout the proof).

(2) For 1 ≤ k ≤ j ≤ n, card(Ck
j
(X

1
)) = card(Ck

j
(X

2
)).

The proof of (2) is an easy exercise. Since Ck
`
∩ Ck

`′
= ∅ for k ≤ ` 6= `′ ≤ n and Sk

j
=
⋃n
`=j C

k
`
,

we get:

(3) For 1 ≤ k ≤ j ≤ n, card(Sk
j
(X

1
)) = card(Sk

j
(X

2
)).

(4) For 1 ≤ k < n and all h ∈ Sk
n
(X

1
), h′ ∈ Sk

n
(X

2
), we have:

card({g ∈ Sk+1
n

(X
1
) | g

1
 h}) = card({g′ ∈ Sk+1

n
(X

2
) | g′

2
 h′}).

Proof of (4). Consider the two-variable formula in the language {≤} of order:

ϕ(x, y) := x ∈ Sk+1
n
∧ x ≤ y.

(It is left as an exercise for the reader to write a first-order formula in {≤} expressing the
notion x ∈ Sk+1

n
; cf. VI.7.1 and VI.9.1.)

If σ denotes the order isomorphism between (X
1
,

1
 ) and (X

2
,

2
 ), for g, h ∈ X

1
we have:

(X
1
,

1
 ) |= ϕ[g, h] ⇔ (X

2
,

2
 ) |= ϕ[σ(g), σ(h)].

It follows that σ maps {g ∈ Sk+1
n

(X
1
) | g

1
 h} bijectively onto {g′ ∈ Sk+1

n
(X

2
) | g′

2
 σ(h)}.

Now, if h ∈ Sk
n
(X

1
), then σ(h) ∈ Sk

n
(X

2
). If h′ ∈ Sk

n
(X

2
), apply Proposition VI.7.11 with

h
1

= h′ and h
2

= σ(h), to conclude. 2

Since the sets in item (4) are AOS-fans (Corollary VI.7.6), they have the same dimension,
i.e., any bases of each of them have the same cardinality. If B1,B2 are standard generating
systems for X

1
, X

2
, respectively, then Bi ∩ Sk

j
(X

i
) is a basis of the fan Sk

j
(X

i
), for 1 ≤ k ≤ j ≤ n

and i = 1, 2; from (3) we get:
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(5) For 1 ≤ k ≤ j ≤ n, card(B1 ∩ Sk
j
(X

1
)) = card(B2 ∩ Sk

j
(X

2
)).

In particular, for Sk
k

= L
k

we obtain:

(6) If 1 ≤ k ≤ n, then card(B1
k
) = card(B2

k
) (where Bi

k
= Bi ∩ L

k
(X

i
)).

Next, we choose an arbitrary standard generating system B1 for X
1
. By induction on k,

1 ≤ k ≤ n, we construct a standard generating system B2 of X
2

(B2 =
⋃n
k=1 B2

k
) and a map

f
k

: B1
k
−→B2

k
so that:

(7) i) For k ≤ j ≤ n, f
k
[B1 ∩ Sk

j
(X

1
))] = B2 ∩ Sk

j
(X

2
)).

ii) If k < n, g ∈ B1
k+1

, h ∈ B1
k

and g
1
 h, then f

k+1
(g)

2
 f

k
(h).

Construction of B2 and the maps f
k
.

Level 1. B2
1

is built as in the level 1 step in VI.8.4; with notation therein, f
1

: B1
1
−→B2

1
is

any bijection mapping B
1
(j) onto B

2
(j), for 1 ≤ j ≤ n. Such a bijection exists by (5) above

(k = 1).

Induction step. Assume B2
1
, . . . ,B2

k
and f

1
, . . . , f

k
already constructed, so that:

— For 1 ≤ j ≤ k and j ≤ ` ≤ n, B2
j
∩ Sj

`
(X

2
) is a basis of the AOS-fan Sj

`
(X

2
) and

f
j
[B1
j
∩ Sj

`
(X

1
)] = B2

j
∩ Sj

`
(X

2
).

— Condition (7.ii) holds for all j such that 1 ≤ j < k.

The basis B2
k+1

, and along with it the map f
k+1

, are defined by performing the construction

of the inductive step in VI.8.4, with the following choice of parameters:

— If h
0
∈ B1

k
∩ Sk

n
(X

1
), and B1

k+1
(n, h

0
) is a basis of the fan {g ∈ Sk+1

n
(X

1
) | g

1
 h

0
}, then

take B2
k+1

(n, f
k
(h

0
)) to be a basis of the fan {g′ ∈ Sk+1

n
(X

2
) | g′

2
 f

k
(h

0
)}. This is possible

since f
k
(h

0
)) ∈ B2

k
∩ Sk

n
(X

2
), by (7.i). Using item (4), we let f

k+1
d B1

k+1
(n, h

0
) be a bijection

between B1
k+1

(n, h
0
) and B2

k+1
(n, f

k
(h

0
)).

— If g ∈ B1
k+1
∩ Ck+1

j
(X

1
) with k+ 1 ≤ j ≤ n, but g 6∈ B1

k+1
(n, h

0
), then, by the construction

performed in the inductive step of VI.8.4, if h is the unique depth-k successor of g, we have
h ∈ B1

k
∩ Ck

j
(X

1
), h 6= h

0
and g = g

h
. In this case choose any element g′

2
 f

k
(h) such that

g′ ∈ Ck+1
j

(X
2
), and set f

k+1
(g) = g′. This is possible since f

k
(h) ∈ B2

k
∩ Ck

j
(X

2
) (which follows

easily from (7.i)).

Clearly, this construction guarantees that (7.i) and (7.ii) hold for k + 1.

Note that (7.ii) implies, by iteration, its own generalization:

(7) iii) If 1 ≤ k < m ≤ n, g ∈ B1
m
, h ∈ B1

k
and g

1
 h, then f

m
(g)

2
 f

k
(h).

Since Bi
k

= Bi ∩ L
k
(X

i
) is a basis of the AOS-fan L

k
(X

i
), i = 1, 2, we get:

(8) The bijection f
k

extends (uniquely) to an AOS-isomorphism f̃
k

: L
k
(X

1
)−→L

k
(X

2
) map-

ping Sk
j
(X

1
) onto Sk

j
(X

2
), for all j such that k ≤ j ≤ n.

Now set F : X
1
−→X

2
to be F =

⋃n
k=1 f̃k. We prove:
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Claim. F is an isomorphism of ARSs.

Proof of Claim. Since X
i

=
⋃n
k=1 Lk(Xi

) (disjoint union) for i = 1, 2, and f̃
k

maps L
k
(X

1
)

bijectively onto L
k
(X

2
), we have:

(a) F is well-defined and bijective.

(b) For all k, 1 ≤ k ≤ n, F preserves 3-products in L
k
.

This is clear: by (8) F dL
k
(X

1
) = f̃

k
: L

k
(X

1
)−→L

k
(X

2
) is an isomorphism of AOS-fans.

(c) F is monotone for the specialization order.

Let g, h ∈ X
1

be such that g
1
 h; say d(g) = m ≥ d(h) = k. We must prove F (g)

2
 F (h).

Since B1
m

generates L
m

(X
1
), then g = g

1
· . . . ·g

r
with g

1
, . . . , g

r
∈ B1

m
and r necessarily odd

(possibly = 1). By Corollary VI.8.6, if h
i

is the unique depth-k successor of g
i
, then h

i
∈ B1

k
.

Also, g
i 1
 h

i
(i = 1, . . . , r) implies g = g

1
· . . . · g

r 1
 h

1
· . . . · h

r
(VI.7.4(a)). Since both

h and h
1
· . . . · h

r
are successors of g of the same level k, we get h = h

1
· . . . · h

r
. As F

preserves products of any odd number of elements of the same level, we have:

F (g) = F (g
1
) · . . . · F (g

r
) and F (h) = F (h

1
) · . . . · F (h

r
).

Since g
i 1
 h

i
, g

i
∈ B1

m
and h

i
∈ B1

k
, item (7.iii) yields F (g

i
) = f

m
(g
i
)

2
 f

k
(h
i
) = F ((h

i
))

(i = 1, . . . , r). Then, by VI.7.4(a) again,

F (g) = F (g
1
) · . . . · F (g

r
)

2
 F (h

1
) · . . . · F (h

r
) = F (h),

which proves (c). The Claim follows from (a)–(c) using Lemma VI.8.8(3). This completes the
proof of Theorem VI.8.9. 2

VI.9 Systems of invariants for isomorphism

From the results of §§VI.7, VI.8 we obtain:

(I) First-order axiomatizations for the root-systems of finite ARS-fans under the order of spe-
cialization.

These axioms are formulated in the language of order, and depend on two parameters: the
length n of the root-system and an upper bound c on its cardinality.

(II) A system of numerical invariants for order-isomorphism of such root-systems.

By the isomorphism theorem VI.8.9, these invariants also determine the isomorphism types
of finite fans in the category ARS. In §VI.10 we shall prove that these systems of invariants
are complete. 2

As our results are somewhat more general, we shall proceed in three steps:

(1) Firstly, we introduce an axiom system FRS(n,c) (FRS for “finite root-system”) in the first-
order language for order, ≤, depending on fixed integers n, c ≥ 1. It follows from Proposition
VI.7.11(a) that the root-systems of finite ARS-fans under specialization are models of FRS(n,c)
for suitable values of n and c. However, FRS(n,c) has, in general, models other than those
arising from finite ARS-fans.

(2) Next, we introduce the systems of numerical invariants alluded to in (II) —consisting of a
finite set of finite sequences of integers—, and prove that these are, in fact, invariants for the
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isomorphism of models of FRS(n,c), whether or not they arise from finite ARS-fans (Theorem
VI.9.5).

(3) Finally, we impose additional axioms on FRS(n,c) and additional requirements on the
integers occurring in the invariant systems of (2); these additional axioms are verified by the
root-systems of finite ARS-fans (and, as shown in §VI.10, do characterize them).

By enlarging the language with a binary product operation and suitable axioms for it, we
also obtain first-order axiomatizations for the finite ARS-fans.

VI.9.1 The axiom-systems FRS. For fixed positive integers n, c, we introduce the fol-
lowing axioms in the language for order, consisting of a single binary relation symbol ≤.
index[sub]formula@FRS!axiom-systems—(index[sub]axiom-systems!FRS—(

[FRS.1] “≤ determines a root system”, i.e.,

— “≤ is a partial order”, and

— “The sets of successors of any element is totally ordered”:

∀x y z (x ≤ y ∧ x ≤ z −→ y ≤ z ∨ z ≤ y).

For the next axiom we introduce the following auxiliary predicates (implicitly used already
in §§VI.7, VI.8; cf. proof of item (4) in Theorem VI.8.9); k is an integer ≥ 1:

— “x has depth ≥ k”: d(x) ≥ k ↔ ∃x
1
. . . x

k−1

(∧k−1

j=1
x < x

j
∧
∧

1≤j<`≤k−1
x
j
< x

`

)
.

— “x has depth ≤ k”: d(x) ≤ k ↔ ∃x
1
. . . x

k−1

(∧k−1

j=1
x < x

j
∧
∧

1≤j<`≤k−1
x
j
< x

`
)∧

∧∀ y (x < y→
∨k−1

j=1
(y = x

j
))

)
.

— “x has depth k”: d(x) = k ↔ d(x) ≥ k ∧ d(x) ≤ k.

[FRS.2] “The root-system has length n”: ∀x(d(x) ≤ n) ∧ ∃x(d(x) = n).

[FRS.3] “The root-system has cardinality ≤ c.”

To state the last axiom we introduce unary predicates Sk
j
(x) and Ck

j
(x), 1 ≤ k ≤ j ≤ n,

as follows:

— Sk
j
(x) ↔ d(x) = k∧ ∃ y (y ≤ x∧ d(y) ≥ j).

— Ck
j
(x) ↔ d(x) = k∧ ∃ y (y ≤ x∧ d(y) = j) ∧ ¬∃ z(z ≤ x∧ d(z) ≥ j + 1).

The following properties are easily verified (cf. VI.7.2):

Fact VI.9.2 Axioms [FRS.1] – [FRS.2] imply:

(a) Ck
n
(x) ↔ Sk

n
(x).

(b) ∀x (Sk
j
(x) ↔

∨n

`=j
Ck
`
(x)) (k ≤ j).

(c) For 1 ≤ k < j < j′ ≤ n, ¬∃x (Ck
j
(x) ∧ Ck

j′
(x)) ∧ ∀x (Sk

j′
(x)→ Sk

j
(x))).

(d) ∀x (Sk
k
(x) ↔ d(x) = k). 2

(As in VI.7.2(i) we call Sk
k

the k-th level, and denote it by L
k
.)
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Recall that, given a first-order formula ϕ(x, y
1
, . . . , y

n
) = ϕ(x, y) on n + 1 variables of a

language L, and a (finite) bound on the cardinalities of a family of L-structures, the statement
“the sets {y |ϕ(x

0
, y)} and {y |ϕ(x

1
, y)} have same (finite) cardinality” is expressed by a

first-order L-formula, that we will denote by ]{y |ϕ(x
0
, y)} = ]{y |ϕ(x

1
, y)}. Details are left

to the reader.

With this terminology, our last axiom is a restatement of Proposition VI.7.11(a).

[FRS.4]
∧

1≤k≤j≤n
∀xx′[Sk

j
(x)∧ Sk

j
(x′)→

∧
k≤t≤p≤n

(]{y ∈ St
p
| y ≤ x} = ]{y ∈ St

p
| y ≤ x′})].

FRS(n,c) denotes the axiom-system [FRS.1] – [FRS.4]. It should be clear that the root-system
(X,  ) of a finite ARS-fan (X,F ) is a model of these axioms, for suitable integers n, c. 2

index[sub]formula@FRS!axiom-systems—)index[sub]axiom-systems!FRS—)

VI.9.3 Numerical invariants for isomorphism of models of FRS. For models (X,≤)
of FRS(n,c), we shall consider finite sets of integers, as follows:

— n = the length of the root-system.

— For each integer k, 1 ≤ k ≤ n, a decreasing sequence of integers, sk
k
≥ · · · ≥ sk

n−1
≥ sk

n
≥ 1 ,

of length n−k+1, where sk
j

is interpreted as the cardinality of the set Sk
j
(X) (1 ≤ k ≤ j ≤ n).

Remarks VI.9.4 (a) Since the sets Ck
j

and Sk
j

are interdefinable, namely:

— Ck
j

= Sk
j
\ Sk

j+1
for 1 ≤ k ≤ j < n, and Ck

n
= Sk

n
;

— Sk
j

=
⋃n
`=j C

k
`

(disjoint union), for 1 ≤ k ≤ j ≤ n,

an equivalent system of invariants consists of a sequence 〈 ck
n
, ck
n−1

, . . . , ck
k
〉 of length n−k+1,

of integers ck
j
≥ 0, for each k (1 ≤ k ≤ n). It suffices to pose:

— ck
j

= sk
j
− sk

j+1
for 1 ≤ k ≤ j < n, and ck

n
= sk

n
; and,

— sk
j

=
∑n

`=j c
k
`

for 1 ≤ k ≤ j ≤ n.

(b) The cardinality of a model (X,≤) of FRS(n,c) is determined by these systems of invariants:
card(X) =

∑n
k=1 s

k
k

=
∑n

k=1

∑n
j=k c

k
j

. In particular, axiom [FRS.3] implies
∑n

k=1 s
k
k
≤ c . 2

Now we prove:

Theorem VI.9.5 Let (X
i
,≤

i
) (i = 1, 2) be models of FRS(n, c). Assume that sequences of

integers as in VI.9.3 are given, and that card(Sk
j
(X

1
)) = card(Sk

j
(X

2
)) = sk

j
for 1 ≤ k ≤ j <

n. Then, (X
1
,≤

1
) and (X

2
,≤

2
) are isomorphic.

Proof. By induction on k, 1 ≤ k ≤ n, we define maps f
k

: L
k
(X

1
)−→L

k
(X

2
) with the

following properties:

(1) f
k

is a bijection. (2) For k ≤ j ≤ n, f
k
[Sk
j
(X

1
)] = Sk

j
(X

2
).

(3) For 1 ≤ k < n, h ∈ L
k
(X

1
) and g ∈ L

k+1
(X

1
): g≤

1
h ⇔ f

k+1
(g)≤

2
f
k
(h).

These conditions are not independent, and imply several others that will be used in the
proof; namely:
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(A) Condition (3) implies its own generalization:

(4) If 1 ≤ k < m ≤ n, h ∈ L
k
(X

1
) and g ∈ L

m
(X

1
) then g≤

1
h ⇔ f

m
(g)≤

2
f
k
(h).

(Induction on m.)

(B) (2) ⇒ (1).

Proof of (B). Since card(Sk
j
(X

1
)) = card(Sk

j
(X

2
)) = sk

j
and these cardinals are finite, con-

dition (2) entails that f
k
dSk

j
(X

1
) is a bijection between the Sk

j
(X

i
)’s, for k ≤ j ≤ n. Since

Sk
k
(X

i
) = L

k
(X

i
) (i = 1, 2), item (1) follows.

(C) Condition (2) is equivalent to:

(2′) For 1 ≤ k ≤ j ≤ n, f
k
[Ck
j
(X

1
)] = Ck

j
(X

2
).

(Routine checking, using VI.9.4(a) and item (1).)

(D) The implication (⇒) in (3) entails its own converse.

Proof of (D). Assume (⇐) false, i.e., there are h ∈ L
k
(X

1
) and g ∈ L

k+1
(X

1
) so that g 6≤

1
h

and f
k+1

(g)≤
2
f
k
(h). Let h′ ∈ L

k
(X

1
) be the unique depth-k successor of g. Then g≤

1
h′ and

(⇒) gives f
k+1

(g)≤
2
f
k
(h′). Thus, both f

k
(h) and f

k
(h′) are depth-k successors of f

k+1
(g),

whence f
k
(h) = f

k
(h′) as (X

2
,≤

2
) is a root-system. Since g≤

1
h′ and g 6≤

1
h, we have h 6= h′,

contradicting injectivity of f
k
.

Assuming that maps f
1
, . . . , f

n
with properties (2) and (3) —hence also (1), (2′) and (4)—

have been constructed, we define a map F : X
1
−→ X

2
, by setting F =

⋃n
k=1 fk. Item (1)

shows that F is well-defined and bijective, and the implication (⇒) (resp., (⇐)) in item (4)
yields that F (resp., F−1) is order-preserving; hence F is the order-isomorphism required to
prove the Theorem.

Next, we proceed with the inductive construction of the maps f
k
. It suffices to prove:

Fact. For 1 ≤ k + 1 ≤ j ≤ n, h ∈ Sk
j
(X

1
) and k + 1 ≤ t ≤ j,

card({g ∈ Sk+1
t

(X
1
) | g≤

1
h}) = card({g′ ∈ Sk+1

t
(X

2
) | g′≤

2
f
k
(h)}).

Assuming this Fact proved, the definition of f
k+1

proceeds as follows:

(I) Fix j and h so that k + 1 ≤ j ≤ n and h ∈ Sk
j
(X

1
). Clearly, {g ∈ Sk+1

t
(X

1
) | g≤

1
h}⊆

{g ∈ Sk+1
t′

(X
1
) | g≤

1
h}) for k + 1 ≤ t ≤ t′ ≤ j, and similarly for the corresponding subsets of

X
2
. We start by choosing a bijection fh

k+1,j
between the sets in the statement of the Fact, for

t = j. Then, by decreasing induction on t (k + 1 ≤ t ≤ j − 1), we pick a bijection

fh
k+1, t

: {g ∈ Sk+1
t

(X
1
) | g≤

1
h} −→ {g′ ∈ Sk+1

t
(X

2
) | g′≤

2
f
k
(h)}

extending the previous bijection fh
k+1, t+1

. Set fh
k+1

= fh
k+1, k+1

. Since Sk+1
k+1

(X
i
) = L

k+1
(X

i
)

(i = 1, 2), fh
k+1

is a bijection from {g ∈ L
k+1

(X
1
) | g≤

1
h} onto {g′ ∈ L

k+1
(X

2
) | g′≤

2
f
k
(h)}

having the following properties: for k + 1 ≤ t ≤ j,

(I.a) fh
k+1
d {g ∈ Sk+1

t
(X

1
) | g≤

1
h} = fh

k+1, t
.

(I.b) fh
k+1

[{g ∈ Sk+1
t

(X
1
) | g≤

1
h}] = {g′ ∈ Sk+1

t
(X

2
) | g′≤

2
f
k
(h)}.
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(I.c) If g ∈ L
k+1

(X
1
) then, g≤

1
h ⇒ fh

k+1
(g)≤

2
f
k
(h).

Checking these is routine, and is left to the reader. [For (I.c) note that g ∈ L
k+1

(X
1
)∧

h ∈ Sk
j
(X

1
)∧ g≤

1
h ⇒ there is t, k + 1 ≤ t ≤ j, such that g ∈ Sk+1

t
(X

1
).]

(II) Now, we define f
k+1

: L
k+1

(X
1
) −→ L

k+1
(X

2
) by setting, for g ∈ L

k+1
(X

1
),

f
k+1

(g) = fh
k+1

(g), where h is the unique depth-k successor of g in X
1
.

We claim that f
k+1

verifies conditions (2) and (3; ⇒) above (this being sufficient by

(D)). The latter follows at once from (I.c) and the definition of f
k+1

. As for item (2), given

g ∈ Sk+1
j

(X
1
), k + 1 ≤ j ≤ n, then h ∈ Sk

j
(X

1
), g≤

1
h and (I.b), imply at once f

k+1
(g) =

fh
k+1

(g) ∈ Sk+1
j

(X
2
). Conversely, given g′ ∈ Sk+1

j
(X

2
), let h′ ∈ L

k
(X

2
) be the immediate

depth-k successor of g′; then, h′ ∈ Sk
j
(X

2
). By induction hypothesis f

k
verifies condition (2);

hence, there is h ∈ Sk
j
(X

1
) so that f

k
(h) = h′. Since fh

k+1
maps {g ∈ Sk+1

j
(X

1
) | g≤

1
h}

onto {u ∈ Sk+1
j

(X
2
) | u≤

2
f
k
(h) = h′} (see (I.b)), there is g ∈ Sk+1

j
(X

1
) such that g≤

1
h and

f
k+1

(g) = fh
k+1

(g) = g′. This shows that Sk+1
j

(X
2
)⊆ f

k+1
[Sk+1
j

(X
1
)], completing the proof of

item (2).

It only remains the

Proof of Fact. Towards computing explicitly the cardinality of {g ∈ Sk+1
t
| g ≤ h}, we first

observe:

(*) Sk+1
t

=
⋃
h∈Skt

{g ∈ Sk+1
t
| g ≤ h}.

For the non-trivial inclusion ⊆, given g ∈ Sk+1
t

and taking h to be its unique depth-k successor

shows that g is in the right-hand side of (*).

Axiom [FRS.4] says that the sets in the right-hand side of (*) have same cardinality —say
γ(k, t)—, for all h ∈ Sk

t
. Then, (*) gives card(Sk+1

t
) = card(Sk

t
) · γ(k, t),

and, since Sk
t
6= ∅: γ(k, t) =

card (Sk+1
t

)

card (Sk
t

)
.

By assumption, both root-systems, (X
i
,≤

i
) have same cardinal invariants card(S`

t
(X

i
)) =

s`
t

(i = 1, 2); hence, γ(k, t,X
1
) = γ(k, t,X

2
) for 1 ≤ k ≤ t ≤ n. This equality proves the

Fact, upon observing that h ∈ Sk
t
(X

1
) and condition (2) imply f

k
(h) ∈ Sk

t
(X

2
). The proof of

Theorem VI.9.5 is now complete. 2

VI.9.6 Binary regular root-systems. The axioms considered so far are not sufficient to
characterize the root-systems of finite ARS-fans under specialization. The missing information
is supplied by the following axiom:

[FRS.5] For 1 ≤ k ≤ j ≤ n, the cardinality of the set Sk
j
(X) is a power of 2 (possibly 1).

The validity of this axiom for finite ARS-fans stems from the fact —proved in Corollary VI.7.6—
that the sets Sk

j
have a structure of AOS-fan.

The argument in §VI.10 below shows that a particular instance of axiom [FRS.4] suffices
to prove the completeness of the axiom-systems FRS. Thus, we introduce:

Definition VI.9.7 A finite root-system (X,≤ ) (of length n, say) is called a binary regu-
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lar root-system (BRRS ) if it verifies axiom [FRS.5] and the following instance of axiom
[FRS.4]: index[sub]binary regular root-system (BRRS)index[sub]root-system!binary regular
(BRRS)index[sym]BRRS

For all 1 ≤ k < j ≤ n and x
1
, x

2
∈ S k

j
(X), card({y ∈ Sk+1

j
(X) | y ≤ x

1
}) =

= card({y ∈ Sk+1
j

(X) | y ≤ x
2
}). 2

Remark. A first-order axiomatization of the finite ARS-fans can now be obtained by enlarging
the language with a binary operation “·”, and adding to FRS the following axioms:

(FF.1) Each of the sets S k
j

(1 ≤ k ≤ j ≤ n) is 3-closed.

(FF.2) ∀x y (x ≤ y ↔ y = y2x).

(Cf. Lemma I.1.18.) 2

VI.10 Finite fans with prescribed root-systems

In this section we show that the numerical invariants introduced in section VI.9 for the order
structure of finite ARS-fans under specialization, form a complete system of invariants. 2

Our main result is:

Theorem VI.10.1 For any BRRS, (X,≤), there is a finite RS-fan, G, whose dual ARS,
(X

G
,  ), is order-isomorphic to (X,≤).

We start with a general construction:

VI.10.2 Construction (First step). Fix integers p ≥ 0, n ≥ 1, and a group H of exponent
2 and cardinality 2n. Fix an element of H \{1} and call it −1. Let {−1, x

2
, . . . , x

n
} be a basis

of H as a F
2
-vector space. We construct a ternary semigroup, G, by adding to H a new set of

generators

{y1
1
, . . . , y1

τ1
; y2

1
, . . . , y2

τ2
; . . . . . . ; yp

1
, . . . , yp

τp
},

split into packages of cardinalities τ
1
, . . . , τ

p
≥ 1, respectively (as usual, if p = 0 this set is

empty). These generators are required to verify the following relations:

(A) (y1
1
)2 = · · · = (y1

τ1
)2; . . . . . . ; (yp

1
)2 = · · · = (yp

τp
)2.

(B) (yj
1
)2 · (yk

1
)2 = (yk

1
)2, for 1 ≤ j ≤ k ≤ p.

(C) (yj
1
)2 6= (yk

1
)2, if 1 ≤ j 6= k ≤ p.

(D) (y1
1
)2 6= 1.

Remark. To keep matters straight, recall that, in order to get a ternary semigroup, the
following requirements must also be fulfilled:

i) G contains an absorbent element 0 (i.e., a · 0 = 0 for all a ∈ G).

ii) The product operation is commutative, associative and 1 is its neutral element.

iii) The generators yi
`

(= y, say) verify the identity y3 = y.

iv) For all a ∈ G \ {0}, −a = (−1) · a 6= a.

Then, G is the set of all finite formal products of elements of H and generators yi
`

verifying

these requirements, conditions (A) – (D) above, as well as other constraints to be specified later.
The value of the parameters p, n, and the cardinalities τ

1
, . . . , τ

p
will be fixed later. 2
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Before proceeding further with our construction we derive some consequences of the relations
just introduced.

VI.10.3 Remarks and Notation. (a) To ease notation, in this section we shall write 〈x 〉 for
the ideal I

x
= x ·G of G generated by x. Since 〈x 〉 = 〈x2 〉 holds in any ternary semigroup,

the identities VI.10.2(A) imply 〈 yk
1
〉 = 〈 yk

r
〉 for 1 ≤ k ≤ p and 1 ≤ r ≤ τ

k
.

(b) For notational uniformity we set yp+1
1

= 0 (and τ
p+1

= 1). 2

Proposition VI.10.4 With notation as in VI.10.2 and VI.10.3, we have:

(1) The following relations hold in G for 1 ≤ j ≤ k ≤ p and all 1 ≤ ` ≤ τ
j

, 1 ≤ r, s ≤ τ
k
:

(B′) (yj
`
)2 · (yk

r
)2 = (yk

s
)2. (C ′) (yj

`
)2 6= (yk

r
)2, whenever j 6= k. (D′) (yj

`
)2 6= 1.

In particular,

(2) None of the generators yj
`

is invertible; hence, H is the set of invertible elements of G.

(3) 〈 yk
1
〉⊆ 〈 yj

1
〉 if 1 ≤ j ≤ k ≤ p, and the inclusion is proper if j < k.

(4) For a ∈ G \ {0} 3 and 1 ≤ k ≤ p, the following are equivalent:

i) a ∈ 〈 yk
1
〉 \ 〈 yk+1

1
〉.

ii) k is the largest integer i ∈ {1, . . . , p } such that some generator yi
r

occurs in any repre-

sentation of a as a product of elements of H and generators yj
`
.

(5) For a ∈ G \ {0} and 1 ≤ k ≤ p,

Z(a) =

{
∅ if a ∈ H
Z(yk

1
) if a ∈ 〈 yk

1
〉 \ 〈 yk+1

1
〉.

[Recall that Z(a) = {f ∈ Hom
TS

(G, 3)| f(a) = 0 }.]

(6) The set {Z(a) | a ∈ G } is totally ordered under inclusion.

(7) Every non-zero proper ideal of G is of the form 〈 yk
1
〉 for some k, 1 ≤ k ≤ p.

Remark. Item (6) means that G verifies the assumption [Z] in Theorem VI.2.1. Hence, with
representation (and transversal representation) defined therein, G is a RS-fan.

Proof. (1) The relations (B′), (C′) and (D′) follow at once from (B), (C) and (D), respectively,
using the identities (A) in VI.10.2; cf. VI.10.3(a).

(2) is clear from (D′) (recall that an element x of a ternary semigroup is invertible iff x2 = 1).

(3) follows from VI.10.2 (B),(C). Indeed, (B) clearly implies 〈 yk
1
〉⊆ 〈 yj

1
〉 for 1 ≤ j ≤ k ≤ p,

whence yk
1
∈ 〈 yj

1
〉, i.e., yk

1
= z yj

1
for some z ∈ G. Let j < k. If equality holds, then yj

1
∈ 〈 yk

1
〉,

i.e., yj
1

= x yk
1

for some x ∈ G. By VI.10.2(C), (yj
1
)2 6= (yk

1
)2. Now, we invoke the separation

theorem for ternary semigroups I.1.12 to get a TS-character f so that f((yj
1
)2) 6= f((yk

1
)2).

Since f(x2) ∈ {0, 1} for any x ∈ G, one of these values is 0 and the other is 1. However, if
f((yj

1
)2) = 0, then yk

1
= z yj

1
entails f((yk

1
)2) = 0; and if f((yk

1
)2) = 0, then yj

1
= x yk

1
yields

f((yj
1
)2) = 0, a contradiction.

3Note that every element of G \ (H ∪ {0}) contains at least one generator yj
r

in its expression as a product.
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(4) (i)⇒ (ii). From a ∈ 〈 yk
1
〉, we get a = yk

1
b with b ∈ G\{0}; this is a representation of a (as

a product of elements in H and generators yj
r
) in which yk

1
occurs. If some representation of

a contained a factor yj
r

with k < j, then a ∈ 〈 yj
r
〉 = 〈 yj

1
〉, and by (3) we get 〈 yj

1
〉⊆ 〈 yk+1

1
〉,

whence a ∈ 〈 yk+1
1
〉, contrary to assumption (i).

(ii) ⇒ (i). The existence of a representation of the form a = yk
r
b with b ∈ G \ {0} and

1 ≤ r ≤ τ
k

, obviously gives a ∈ 〈 yk
r
〉 = 〈 yk

1
〉. However, if a ∈ 〈 yk+1

1
〉, the argument proving

(i)⇒ (ii) shows that yk+1
1

would occur as a factor in some representation of a, contrary to (ii).

(5) Since a2 = 1 for any a ∈ H, we clearly have Z(a) = ∅. Also, a ∈ 〈 yk
1
〉 obviously implies

Z(yk
1
)⊆Z(a). Assuming, in addition, that a 6∈ 〈 yk+1

1
〉 we prove the other inclusion. By (4.ii)

and the remark VI.10.3(a), we may write a in the form

(*) a = (yk
1
)εk · zk−1 · . . . · z1 · b,

with ε
k
∈ {1, 2}, b ∈ H, and each zj (1 ≤ j < k) a product of (some) generators of the

form yj
r
, i.e., zj =

∏τj
`=1 (yj

`
)ηj,` , with η

j,`
∈ {0, 1, 2} (by convention, (yj

`
)0 = 1). Assuming

h 6∈ Z(yk
1
) = Z((yk

1
)2), from the equality (B′) in (1) we get Z(yj

`
)⊆Z(yk

1
), whence h((yj

`
)ηj,`) 6= 0

for 1 ≤ ` ≤ τ
j

and 1 ≤ j < k, and therefore h(zj) 6= 0. Since h(b) 6= 0 for b ∈ H, we conclude

from (*) that h(a) 6= 0; this proves Z(a)⊆Z(yk
1
), as required.

(6) Item (3) implies Z(yj
1
)⊆Z(yk

1
) for 1 ≤ j ≤ k ≤ p. Clearly, (6) follows from this inclusion

and (5).

(7) Since G is a ternary semigroup, item (6) and Proposition VI.1.2 imply that the set of ideals
of G is totally ordered under inclusion, and that every ideal is prime.

First, note that 〈 y1
1
〉 is the maximal ideal of G. Indeed, if a 6= 0 is a non-invertible element

of G, then a 6∈ H, and some generator yj
`

must occur in any representation of a; then, by item

(3), a ∈ 〈 yj
`
〉 = 〈 yj

1
〉⊆ 〈 y1

1
〉.

Next, let I 6= {0} be an ideal of G. By the preceding paragraph, I ⊆〈 y1
1
〉 (the maximal

ideal is unique). Let k be the largest index in {1, . . . , p } such that I ⊆〈 yk
1
〉. Since the ideals

are totally ordered by inclusion and I 6= {0}, we have 〈 yk+1
1
〉 ⊂ I. We show that yk

1
∈ I, thus

proving I = 〈 yk
1
〉. Let a ∈ I \ 〈 yk+1

1
〉; then a ∈ 〈 yk

1
〉 \ 〈 yk+1

1
〉. By (4.ii), all generators yi

r
occurring in any representation of a verify i ≤ k. Then, we can write a = b · c with b ∈ H
and c a product of generators of the form yi

r
with 1 ≤ i ≤ k. Since a ∈ I and b is invertible,

then c ∈ I. Since I is prime, some generator yi
r

, 1 ≤ i ≤ k, must be in I. It follows that

〈 yi
r
〉 = 〈 yi

1
〉⊆ I. From VI.10.2 (B) we get 〈 yk

1
〉⊆ 〈 yi

1
〉⊆ I, whence yk

1
∈ I, as required. 2

Corollary VI.10.5 With notation as in VI.6.15, the ARS X
G

dual to the fan G constructed
in V I.10.2 has the following properties:

(1) `(X
G

) = p+ 1.

(2) For 1 ≤ k ≤ p, L
k
(X

G
) = {h ∈ X

G
|Z(h) = 〈 yk

1
〉}.

(3) L
p+1

(X
G

) = {h ∈ X
G
|Z(h) = {0}}.

(4) card(L
1
(X

G
)) = 2n−1.

Proof. (1) G has p+ 1 ideals (VI.10.4 (7)), ordered as in VI.10.4 (3).
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(2) and (3) are obvious from VI.10.4 (7) and the definition of the level sets L
I

given in VI.6.6 (b);
cf. also VI.6.15.

(4) By (2), a TS-character h ∈ X
G

is in L
1
(X

G
) if and only if h(y1

1
) = 0 (and hence h(yi

r
) = 0

for all i ∈ {1, . . . , p } and all r ∈ {1, . . . , τ
i
}), but otherwise can take arbitrary ±1 values on

the generators x
2
, . . . , x

n
of H. 2

VI.10.2. Construction (Second step). In order to prove Theorem VI.10.1 we must impose
further relations between the generators of G, beyond those set in VI.10.2 above. These are of
two types:

Type I. Identities of the form (yi
1
)2 = yi

1
for some i ∈ {1, . . . , p }. Whenever an identity of

this type is required, we set τ
i

= 1 (i.e., a single generator of level i suffices). We denote by I
the set of indices i ∈ {1, . . . , p } for which an identity of this type is imposed.

Type II. Identities of the form yi
t
· yj

1
= yj

1
for some indices 0 ≤ i < j ≤ p and t ∈ {1, . . . , τ

i
}.

For notational uniformity we adopt the convention that y0
`−1

= x
`

for 2 ≤ ` ≤ n, where

the x
`

are the elements of the basis of H, and set τ
0

= n − 1. Note that, since x2
`

= 1 6= x
`

(and y0
`−1

= x
`
), no equation of type (I) holds at level 0.

The number and specific form of these relations will depend on the cardinal invariants
card(Sk

j
(X)) of a given BRRS (X,≤), and will be fixed later, as needed. 2

Lemma VI.10.6 The following are consequences of any identity yi
t
· yj

1
= yj

1
(0 ≤ i < j ≤ p

and t ∈ {1, . . . , τ
i
}) of type (II):

(a) yi
t
· yj
m

= yj
m

for all m ∈ {1, . . . , τ
j
}.

(b) yi
t
· yk

1
= yk

1
for all k, j ≤ k ≤ p.

Proof. (a) Scaling the given identity by yj
1

we have yi
t
· (yj

1
)2 = (yj

1
)2. Since (yj

1
)2 = (yj

m
)2

(VI.10.2(A)), we get yi
t
· (yj

m
)2 = (yj

m
)2, which yields (a) upon scaling by yj

m
.

(b) Scaling the given identity by (yj
1
)2 · (yk

1
)2 we get yi

t
· (yj

1
)2 · (yk

1
)2 = (yj

1
)2 · (yk

1
)2. Since

(yj
1
)2 ·(yk

1
)2 = (yk

1
)2 (VI.10.2(B)), we obtain yi

t
· (yk

1
)2 = (yk

1
)2; scaling by yk

1
gives (b). 2

The following Lemma clarifies the role of the identities of type (I) in our construction:

Lemma VI.10.7 Let 1 ≤ i ≤ p, and assume τ
i

= 1. The following are equivalent:

(a) The identity (yi
1
)2 = yi

1
holds in G.

(b) Every h ∈ S i
i+1

(X
G

) has a unique  -predecessor of level i + 1, i.e., card(S i
i+1

(X
G

)) =

card(L
i+1

(X
G

)).

Proof. The values of any h ∈ L
i
(X

G
) on generators are as follows:

— h(yi
1
) = 0; hence, by VI.10.4(3), h(yj

r
) = 0 for all i ≤ j ≤ p and r ∈ {1, . . . , τ

j
};

— h(yj
r
) 6= 0 for 0 ≤ j < i and r ∈ {1, . . . , τ

j
}.

If g ∈ L
i+1

(X
G

) and g h, its values on generators are:

— g(yj
r
) = 0 for all i+ 1 ≤ j ≤ p and r ∈ {1, . . . , τ

j
};
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— g(yj
r
) 6= 0 for 0 ≤ j ≤ i and r ∈ {1, . . . , τ

j
}.

— g(yj
r
) = h(yj

r
), whenever h(yj

r
) 6= 0, that is, for 0 ≤ j < i and r ∈ {1, . . . , τ

j
} (cf. Lemma

I.1.18).

In other words, given h and g as above, the values of g are determined on all generators
except on yi

1
, where it must be 6= 0; thus we have:

(a)⇒ (b). If the equation (yi
1
)2 = yi

1
holds in G, then g(yi

1
) ∈ {0, 1}, and hence the character

determined by g(yi
1
) = 1 is the only  -predecessor of h ∈ S i

i+1
(X

G
) of level i+ 1.

(b)⇒ (a). If the equation (yi
1
)2 = yi

1
does not hold in G, any h ∈ S i

i+1
(X

G
) has two  -

predecessors of level i+ 1, by setting g+(yi
1
) = 1 and g−(yi

1
) = −1. 2

The next step is to compute the cardinalities of the sets Sk
j
(X

G
) in terms of the number

of generators and the number of equations of types (I) and (II). To do so we shall need:

VI.10.2. Construction (Third step). To each pair of indices i, j, such that 0 ≤ i < j ≤ p
and i 6∈ I (i.e., there is no equation of type (I) at level i) we associate a set T j

i
subject to the

following requirements:

i) T j
i
⊆{1, . . . , τ

i
}. ii) If k, j > i, k 6= j, then T j

i
∩ T k

i
= ∅.

(Some of these sets may be empty.) We write t
i,j

= card (T j
i
). The sets T j

i
(or, rather, their

cardinalities) determine which equations of type (II) the generators will verify; precisely:

— If p ≥ j > i ≥ 0 and i 6∈ I, then we include an equation yi
t
· yj

1
= yj

1
if and only if

t ∈ T j
i
. (Remark that, since 0 6∈ I, we do include the equations x

t
· yj

1
(= y0

t−1
· yj

1
) = yj

1
for

t− 1 ∈ T j
0
, j > 0.) 2

Now we are ready to prove:

Proposition VI.10.8 For 1 ≤ m < k ≤ p+ 1,

card(Sm
k

(X
G

)) =
m−1∏
i=0
i 6∈I

2τi−
∑k−1
j=i+1 ti,j .

Proof. Throughout this proof we omit X
G

from the notation. The gist of the proof consists
in finding necessary and sufficient conditions for a TS-character to be in Sm

k
, in terms of its

values on generators.

Assume first h ∈ Sm
k

; then h ∈ L
m

, and there is h′ ∈ L
k

so that h′ h. By Corollary

VI.10.5(2), Proposition VI.10.4(3) and Lemma I.1.18, these conditions amount to:

(i) h(ym
1

) = 0; hence, h(yj
r
) = 0 for m ≤ j ≤ p and r ∈ {1, . . . , τ

j
};

(ii) h(yj
r
) 6= 0 for 0 ≤ j ≤ m− 1 and r ∈ {1, . . . , τ

j
};

(i′) If k ≤ p, h′(yk
1
) = 0 ; hence, h′(y`

s
) = 0 for ` ≥ k and s ∈ {1, . . . , τ

`
};

(ii′) h′(y`
s
) 6= 0 for 0 ≤ ` ≤ k − 1 ≤ p and s ∈ {1, . . . , τ

`
};

(iii) h(z) 6= 0⇒ h(z) = h′(z), for all z ∈ G; hence, h(yj
r
) = h′(yj

r
) 6= 0 for 0 ≤ j ≤ m− 1 and

r ∈ {1, . . . , τ
j
}.
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Next, if i ∈ I —i.e., there is an equation (yi
1
)2 = yi

1
—, either:

(iv) k ≤ i ≤ p and h(yi
1
) = h′(yi

1
) = 0 ; or,

(v) m ≤ i ≤ k − 1 and h(yi
1
) = 0, h′(yi

1
) 6= 0; the equation (yi

1
)2 = yi

1
yields h′(yi

1
) = 1; or,

(vi) 1 ≤ i ≤ m− 1; in this case, (iii) and the equation imply h(yi
1
) = h′(yi

1
) = 1.

Assume that i ∈ {0, . . . , p } \ I. According to the third step of construction VI.10.2, we
impose an equation yi

t
· yj

1
= yj

1
of type (II) with i < j whenever t ∈ T j

i
. If i < j ≤ k − 1, by

(ii′) we have h′(yj
1
) 6= 0, and this equation yields:

(vi′) h′(yi
t
) = 1 for t ∈ T i+1

i
∪ . . . ∪ T k−1

i
and 0 ≤ i < k − 1.

From (iii) we infer:

(vii) h(yi
t
) = 1 for t ∈ T i+1

i
∪ . . . ∪ T k−1

i
and 0 ≤ i ≤ m− 1.

These are the sole constraints on h; hence, (ii) gives:

(viii) For i ∈ {0, . . . ,m − 1 } \ I, h(yi
t
) may take on arbitrary ±1 values for t ∈ {1, . . . , τ

i
} \⋃k−1

j=i+1 T
j
i
.

Conversely, we check that any TS-character h verifying conditions (i) and (ii) above is in
Sm
k

. Obviously, these conditions imply h ∈ L
m

(VI.10.5 (3)). In order to show that h ∈ Sm
k

we

have to manufacture a character h′ ∈ L
k

so that h′ h. We define h′ on generators according
to the constraints imposed by clauses (i′), (ii′) and (iii) above:

(*)


h′(yj

r
) = 0 for j ≥ k and r ∈ {1, . . . , τ

j
} (see (i′))

h′(yj
r
) = h(yj

r
) (6= 0) for 0 ≤ j ≤ m− 1 and r ∈ {1, . . . , τ

j
} (see (ii), (iii))

h′(yj
r
) = 1 for m ≤ j ≤ k − 1 and r ∈ {1, . . . , τ

j
} (see (ii′)) .

Obviously, this definition guarantees that h′ ∈ L
k
. By Lemma I.1.18, in order to establish

that h′ h, it suffices to check clause (iii) for all generators z of G. By the second requirement
in (*), this is the case for z = yj

r
, with 0 ≤ j ≤ m − 1 and r ∈ {1, . . . , τ

j
}. For m ≤ j ≤ p

and r ∈ {1, . . . , τ
j
}, clause (i) ensures that h(yj

r
) = 0, and hence (iii) holds vacuously. This

proves h ∈ Sm
k

, as required.

Since conditions (i), (ii), (vi) and (vii) fix the values of any h ∈ Sm
k

on the corresponding

generators, the cardinality of Sm
k

is determined by clause (viii), and clearly is as in the statement
of the Proposition. 2

A similar argument proves:

Proposition VI.10.9 For 2 ≤ k ≤ p+ 1,

card(L
k
(X

G
)) =



m−1∏
i=0
i 6∈I

2τi−
∑k−1
j=i+1 ti,j if k − 1 ∈ I

m−1∏
i=0
i 6∈I

2τi−
∑k−1
j=i+1 ti,j · 2τk−1 if k − 1 6∈ I .

Proof. The argument differs from that proving Proposition VI.10.8 at only one point.

We know that a TS-character h of G is in L
k

if and only if:
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(i) h(yj
r
) = 0 for k ≤ j ≤ p and r ∈ {1, . . . , τ

j
}; and

(ii) h(yj
r
) 6= 0 for 0 ≤ j ≤ k − 1 and r ∈ {1, . . . , τ

j
}.

(Condition (i) holds vacuously if k = p+ 1; cf. VI.10.3(b).) We consider next the effect of the
equations of types (I) and (II) on the values of h on generators.

If i ∈ I, then the equation (yi
1
)2 = yi

1
forces h(yi

1
) ∈ {0, 1}; if, in addition, 0 ≤ i ≤ k − 1,

then (ii) gives h(yi
1
) = 1.

If i ∈ {0, . . . , p } \ I, there is an equation yi
t
· yj

1
= yj

1
of type (II) for each j such that

i < j ≤ p and each t ∈ T j
i
, i.e., for t ∈

⋃p
j=i+1 T

j
i
. By (i) and (ii) these equations determine

the values h(yi
t
) only for i < j ≤ k−1; for these values of j, h(yj

1
) 6= 0, and the corresponding

equations yield:

(iii) h(yi
t
) = 1 for t ∈

⋃p
j=i+1 T

j
i

and 0 ≤ i < k − 1.

From (ii) we get:

(iv) For 0 ≤ i < k − 1, h(yi
t
) takes on arbitrary ±1 values for t ∈ {1, . . . , τ

i
} \
⋃k−1
j=i+1 T

j
i
.

Next, we consider the case i = k−1. If k−1 ∈ I, then, as above, h(yk−1
t

) = 1. If k−1 6∈ I,

then the corresponding equation of type (II), yi
t
· yj

1
= yj

1
, holds only for j ≥ k; since h(yj

1
) = 0

for these j’s, item (ii) gives:

(v) h(yk−1
t

) takes on arbitrary ±1 values for all t ∈ {1, . . . , τ
k−1
}.

Items (iv) and (v) together yield the values of card (L
k
(X

G
)) asserted in the statement. 2

Remark. The formula for card(L
k
(X

G
)) just proved coincides with that obtained by setting

m = k in Proposition VI.10.8, provided we set
∑k−1

j=k tk,j = 0. This is in agreement with the

fact that L
k

= S k
k

. 2

From Propositions VI.10.8 and VI.10.9 we get:

Corollary VI.10.10 With notation as in VI.10.8 and VI.10.9, we have:

(a) For 2 ≤ k ≤ p+ 1,

card(L
k
(X

G
)) =

{
card(S k−1

k
(X

G
)) if k − 1 ∈ I

card(S k−1
k

(X
G

)) · 2τk−1 if k − 1 6∈ I .

(b) For 2 ≤ m < k ≤ p+ 1,

card(Sm
k

(X
G

)) =

{
card(Sm−1

k
(X

G
)) if m− 1 ∈ I

card(Sm−1
k

(X
G

)) · 2τm−1−
∑k−1
j=m tm−1,j if m− 1 6∈ I .

Proof. Staightforward checking from VI.10.8 and VI.10.9. 2

Remark. The factor 2τk−1 in (a) (1 in the first equality) is the number of  -predecessors of
any element of S k−1

k
in L

k
; this number is the same for any two elements of S k−1

k
; cf. VI.9.7.

A similar remark applies to item (b). 2

For the proof of Theorem VI.10.1 we shall also need:

Lemma VI.10.11 Let (X,≤) be a BRRS and 2 ≤ m ≤ k ≤ `(X). Let sm
k

= card (Sm
k

(X)).
Then,
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sm−1
k
· sm
k+1
≤ sm

k
· sm−1
k+1

.

Proof. We write S j
k

for S j
k

(X) (j ≤ k). Given x ∈ Sm
k

, let x∗ denote the unique ≤-successor

of x of level m − 1; hence, x∗ ∈ Sm−1
k

. The definition of a BRRS (cf. VI.9.7) guarantees the

existence, for x
1
, x

2
∈ Sm−1

k
, of a bijection

F
x1, x2

: {y ∈ Sm
k
| y ≤ x

1
} −→ {y ∈ Sm

k
| y ≤ x

2
}.

Define a map β : Sm−1
k

×Sm
k+1
−→ Sm

k
×Sm−1

k+1
, as follows: for (x

1
, x

2
) ∈ Sm−1

k
×Sm

k+1
, we set

β(x
1
, x

2
) = (F

x∗2, x1
(x

2
) , x∗

2
)).

We show that β is injective. Let (x
1
, x

2
), (y

1
, y

2
) ∈ Sm−1

k
×Sm

k+1
be such that β(x

1
, x

2
) =

β(y
1
, y

2
), i.e., F

x∗2, x1
(x

2
) = F

y∗2 , y1
(y

2
) (= z, say), and x∗

2
= y∗

2
. The definition of F gives

z ∈ Sm
k
⊆ L

m
, z ≤ x

1
and z ≤ y

1
. Since (X,≤) is a root-system and x

1
, y

1
∈ L

m−1
, we get

x
1

= y
1
. Thus, F

x∗2, x1
(x

2
) = F

x∗2, x1
(y

2
) and, since F is injective, x

2
= y

2
, as required. 2

Proof of Theorem VI.10.1. Given a BRRS, (X,≤), we shall define the parameters n,
p, τ

1
, . . . , τ

p
≥ 1, occuring in the construction of the fan G (VI.10.2) —as well as the set

I ⊆{1, . . . , p } and the numbers t
i,j

(0 ≤ i < j ≤ p) occuring in VI.10.8 and VI.10.9— in such

a way that `(X) = `(X
G

) and card(Sm
k

(X)) = card(Sm
k

(X
G

)) for all 1 ≤ m ≤ k ≤ `(X).

Theorem VI.9.5 then guarantees that (X
G
,  ) is order-isomorphic to (X,≤).

In this proof log stands for base-2 logarithms, sm
k

for card(Sm
k

(X)), and `
k

= sk
k

=

card(L
k
(X)) (1 ≤ m ≤ k ≤ p). The log of these numbers are integers by the first requirement

(axiom [FRS.5]) in VI.9.7.

Since `(X
G

) = p + 1 (VI.10.5(1)) and card(L
1
(X

G
)) = 2n−1 (VI.10.5(4)), we set p =

`(X) − 1 and n = 1 + log(`
1
). We also know that τ

0
= n − 1 and, τ

i
= 1 for i ∈ I = {k ∈

{1, . . . , p } | There is an equation of type (I) at level k}. The set I is presently defined in terms
of X as follows:

I = {k ∈ {1, . . . , p } | sk
k+1

= `
k+1
} =

= {k | Every element of S k
k+1

(X) has a unique ≤-predecessor in L
k+1

(X)}.

Let k ∈ {1, . . . , p } \ I; invoking the second clause in Corollary VI.10.10(a) (for the value
k + 1), we define:

τ
k

= log(`
k+1

)− log(sk
k+1

).

Since k 6∈ I implies that each element of S k
k+1

(X) has at least two predecessors in L
k+1

(X),

it follows that τ
k
≥ 1.

Next we compute the numbers t
m−1, k

(1 ≤ m ≤ k ≤ p) that, according to Proposition

VI.10.8, determine the cardinalities of the sets Sm
k

(X
G

). First, let m = 1. Since 0 6∈ I,
Proposition VI.10.8 gives

card(S 1
k

(X
G

)) = 2τ0−
∑k−1
j=1 t0,j and card(S 1

k+1
(X

G
)) = 2τ0−

∑k
j=1 t0,j .

Hence, card(S 1
k+1

(X
G

)) = card(S 1
k

(X
G

)) · 2−t0,k . Then, we set:

t
0,k

= log(s1
k
)− log(s1

k+1
), for 2 ≤ k ≤ p .

Since S 1
k+1

(X)⊆S 1
k

(X), we have s1
k+1

≤ s1
k
, and hence t

0,k
≥ 0. For k = 1 we have

card(S1
2
(X

G
)) = 2n−1−t0,1 = card(L

1
(X

G
)) · 2−t0,1 ; so, it suffices to set
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t
0,1

= log(`
1
)− log(s1

2
) ,

which is non-negative since s1
2
≤ `

1
.

Finally, if 2 ≤ m ≤ k ≤ p , Corollary VI.10.10(b) gives

card(Sm
k+1

(X
G

)) = card(Sm−1
k+1

(X
G

)) · 2τm−1−
∑k−1
j=m tm−1,j · 2−tm−1,k , and

2τm−1−
∑k−1
j=m tm−1,j =

card(Sm
k

(X
G

))

card(Sm−1
k

(X
G

))
.

Thus,

card(Sm
k+1

(X
G

)) = card(Sm−1
k+1

(X
G

)) ·
card(Sm

k
(X

G
))

card(Sm−1
k

(X
G

))
· 2−tm−1,k .

It suffices to set:

t
m−1,k

= (log(sm−1
k+1

) + log(sm
k

))− (log(sm−1
k

) + log(sm
k+1

)) .

Lemma VI.10.11 shows that t
m−1,k

≥ 0. This completes the proof of Theorem VI.10.1. 2

VI.11 Quotients of fans

We shall now study the structure of congruences of RS-fans, giving a complete and explicit
description of them. We shall prove that quotients of fans are always fans, and are transversally
2-regular. 2

Proposition VI.11.1 Let F be a RS-fan and let H be a proconstructible subset of X
F

which is 3-closed (i.e., stable under product of any three of its elements). Then ≡H is a

RS-congruence, the quotient F/H is a RS-fan, and the spectral spaces X
F/H and H are

homeomorphic; in particular, the (Boolean) spaces (X
F/H)con and Hcon are homeomorphic.

Proof. Follows closely the proof of Theorem I.1.27; we shall use notation therein.

The quotient structure F/H is a ternary semigroup and X
F/H = Hom

TS
(F/H, 3) is its set

of (TS-) characters. The proof of item (3) in Theorem I.1.27 shows that, under our hypotheses
on H , the map θ : X

F/H−→ X
F

given by θ(g) = g ◦ π (g ∈ X
F/H) is a homeomorphism

between the spectral spaces X
F/H and H , as asserted.

According to equality (***) in the proof of Theorem I.1.27 (with U replaced by Z) we have
θ−1[Z(a) ∩ H] = Z(π(a)) for a ∈ F . Since F verifies condition [Z] in VI.2.1, this equality
implies that the zero-sets of elements of F/H are also totally ordered by inclusion; Corollary
VI.2.3 implies, then, that (X

F/H, F/H) is a fan. 2

Observe that all RS-congruences of a fan are obtained in the way given by the preceding
Proposition:

Corollary VI.11.2 Let F be a RS-fan and let ≡ be a RS-congruence of F . Then:

(a) ≡ = ≡H for some proconstructible and 3-closed set H⊆X
F

. Hence,

(b) F/≡ is a RS-fan.

(c) The correspondence H 7−→ ≡H establishes an inclusion-reversing bijection between procon-
structible and 3-closed subsets of X

F
and the set Con(F ) of RS-congruences of F .
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Proof. (a) The set H = H≡ is given by Proposition ??. Items (b) and (c) follow, respectively,
from Proposition VI.11.1 and Theorem I.1.27. 2

Since F/≡ is a fan, its representation relations are explicitly given by Theorem VI.2.1. We
shall now suffer a bit more and, using this description, prove:

Theorem VI.11.3 Let F be a RS-fan and let ≡ be a RS-congruence of F . The quotient
F/≡ is transversally 2-regular.

Proof. With notation as in the preceding Corollary, H (= H≡) stands for the set of characters

of F that determine the congruence ≡ (whence, F/H = F/≡). Given a, b, c, d, x ∈ F , we
assume:

(*) π(x) ∈ Dt
F/H

(π(a), π(b)) ∩ Dt
F/H

(π(c), π(d)),

and search for elements a′, b′, c′, d′ ∈ F so that a ≡ a′, b ≡ b′, c ≡ c′, d ≡ d′ (i.e., π(a) =
π(a′), . . . ) such that Dt

F
(a′, b′) ∩ Dt

F
(c′, d′) 6= ∅.

Since {Z(y) | y ∈ F} is totally ordered by inclusion, we assume without loss of generality
throughout this proof that Z(a)⊆Z(b) and Z(c)⊆Z(d); in particular, Z(π(a))⊆Z(π(b)) and
Z(π(c))⊆Z(π(d)), see proof of VI.11.1 or (***) in the proof of I.1.27. According to the values
of Dt

F/H
given by Theorem VI.2.1, assumption (*) gives rise to the following cases:

(1.a) Z(π(a)) ⊂ Z(π(b)) and π(x) = π(a), or

(1.b) Z(π(a)) = Z(π(b)), π(a)) 6= −π(b) and π(x) ∈ {π(a), π(b)}, or

(1.c) π(a)) = −π(b) and π(x) = π(a)2 π(x) (= π(b)2 π(x)),

and

(2.a) Z(π(c)) ⊂ Z(π(d)) and π(x) = π(c), or

(2.b) Z(π(c)) = Z(π(d)), π(c)) 6= −π(d) and π(x) ∈ {π(c), π(d)}, or

(2.c) π(c)) = −π(d) and π(x) = π(c)2 π(x) (= π(d)2 π(x)).

These relations lead to the examination of nine cases. Remark that

(†) Z(π(v)) ⊂ Z(π(w)) ⇒ Z(v) ⊂ Z(w),

(††) Z(π(v)) = Z(π(w)) ⇒ vw2 ≡ v.

[Proof of (††): Let h ∈ H. If h(v) = 0, then h(vw2) = h(v) = 0. The assumed equality of
zero-sets entails Z(v) ∩ H = Z(w) ∩ H (see (***), proof of I.1.27). Hence, if h(v) 6= 0, we
get h(w) 6= 0, i.e., h(w2) = 1, and h(vw2) = h(v)h(w2) = h(v).]

I. (1.a) + (2.a). In this case we have π(x) = π(a) = π(c) (i.e., x ≡ a ≡ c) and, by remark
(†), Z(a) ⊂ Z(b) and Z(c) ⊂ Z(b). Since Z(π(x)) = Z(π(a)) ⊂ Z(π(b)), the same remark
gives Z(x) ⊂ Z(b); similarly, Z(x) ⊂ Z(d). Then, x ∈ Dt

F
(x, b) ∩ Dt

F
(x, d). Setting

a′ = x (≡ a), b′ = b, c′ = x (≡ c), d′ = d, we get Dt
F

(a′, b′) ∩ Dt
F

(c′, d′) 6= ∅, as required.

II. (1.a) + (2.b). Here we consider 3 subcases.

(i) Z(c) ⊂ Z(d). If π(x) = π(c), we get x ≡ a ≡ c, and we conclude as in Case I. If
π(x) = π(d), we have x ≡ a ≡ d. Note that π(x) = π(a) = π(d) gives Z(π(a)) = Z(π(d)) =
Z(π(c)) = Z(π(x)) ⊂ Z(π(b)), and hence Z(c) ⊂ Z(d) ⊂ Z(b); from (1.a), Z(a) ⊂ Z(b).
By (††) we have cd 2 ≡ c. Further, π(c)) 6= −π(d) means c 6≡ −d, yielding cd 2 ≡ c 6≡ −d (in
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particular, cd 2 6= −d).

Since Z(cd 2) = Z(c) ∪ Z(d) = Z(d), from VI.2.1 (for F ) we get d ∈ Dt
F

(cd 2, d). Similarly,

from Z(d) ⊂ Z(b) we get d ∈ Dt
F

(b, d). Thus, setting a′ = d, b′ = b, c′ = cd 2, d′ = d we have

a ≡ a′, c ≡ c′, and d ∈ Dt
F

(a′, b′) ∩ Dt
F

(c′, d′), as required.

(ii) Z(d) ⊂ Z(c). Argument similar to that of (i), interchanging c and d.

(iii) Z(c) = Z(d). Since c 6= −d, we have Dt
F

(c, d) = {c, d}. In both the cases π(x) = π(c)

and π(x) = π(d) we proceed as in Case I.

III. (1.a) + (2.c). Here we have π(x) = π(a), π(c)) = −π(d) and π(x) = π(c)2 π(x), i.e.,
x ≡ a, c ≡ −d and x ≡ c2x, whence a ≡ c2a. Further, from (1.a) and (†) we have Z(a) ⊂
Z(b). Since Dt

F
(c,−c) = {y ∈ F | y = yc2} and (c2a)c2 = c2a, we obtain c2a ∈ Dt

F
(c,−c).

Next, we examine under what conditions c2a ∈ Dt
F

(c2a, b). By Theorem VI.2.1 this is

clearly the case whenever Z(c2a)⊆Z(b). We prove next that Z(b) ⊂ Z(c2a) = Z(c) ∪ Z(a) is
impossible. Otherwise, using that assumption (1.a) implies Z(a) ⊂ Z(b) we get Z(b) ⊂ Z(c),
which in turn implies Z(π(b)) ⊂ Z(π(c)). But, on the other hand, π(x) = π(a) = π(c)2 π(a)
yields Z(π(c)) = Z(π(c2))⊆Z(π(c2)π(a)) = Z(π(a)) ⊂ Z(π(b)), contradiction.

Thus, c2a ∈ Dt
F

(c2a, b) ∩ Dt
F

(c,−c), and it suffices to set a′ = c2a (≡ a), b′ = b, c′ =

c, d′ = −c (≡ d).

IV. (1.b) + (2.a). Similar to Case II upon interchanging the roles of the pairs (a, b) and (c, d).

V. (1.b) + (2.b). Clearly, the first and last conditions in (1.b) and (2.b) imply:

Z(π(a)) = Z(π(b)) = Z(π(c)) = Z(π(d)) ( = Z(π(x))).

By (††) above this implies yz2 = y for all y, z ∈ {a, b, c, d}.

We invoke now our standing assumption that Z(a)⊆Z(b) and Z(c)⊆Z(d). The following
cases ought to be considered:

(i) π(x) = π(a) = π(d); (ii) π(x) = π(c) = π(b); (iii) π(x) = π(a) = π(c); and

(iv) π(x) = π(b) = π(d).

(i) By assumption, x ≡ a ≡ d, and from Z(a)⊆Z(b) comes a ∈ Dt
F

(a, b). From Z(a)⊆Z(a) ∪
Z(c) = Z(a2c) follows a ∈ Dt

F
(a, a2c). Since a ≡ d and a2c ≡ c, the desired conclusion is

obtained by setting a′ = a, b′ = b c′ = a2c, d′ = a.

(ii) Since Z(c)⊆Z(d), this case is similar to (i) upon replacing a by c and d by b.

(iii) From Z(c)⊆Z(d) comes c ∈ Dt
F

(c, d) and from Z(c)⊆Z(c) ∪ Z(b) = Z(c2b) comes

c ∈ Dt
F

(c, c2b). Since c2b ≡ b, c ≡ a (≡ x), setting a′ = c, b′ = c2b, c′ = c, d′ = d, we are done.

(iv) Z(b)⊆Z(b) ∪ Z(c) = Z(b2c) gives b ∈ Dt
F

(b2c, b) and Z(b) = Z(b) ∪ Z(a) = Z(b2a)

entails b ∈ Dt
F

(b2a, b). Hence, a′ = b2a (≡ a), b′ = b, c′ = b2c (≡ c) and d′ = b (≡ d), satisfy
the required conditions.

VI. (1.b) + (2.c). Suppose, e.g., that in (1.b) we have π(x) = π(a), i.e., x ≡ a. We compare
the zero-sets of c2a and b. If Z(c2a)⊆Z(b), we have c2a ∈ Dt

F
(c2a, b); we also have c2a ∈

Dt
F

(c,−c), and we are done upon setting a′ = c2a (≡ a), b′ = b, c′ = c, d′ = −c (≡ d) (by

(2.c), x ≡ a and x ≡ c2x imply a ≡ c2a).
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So, it only remains to examine the case Z(b) ⊂ Z(c2a) = Z(c) ∪ Z(a). In this case,
Z(c2b) = Z(c) ∪ Z(b)⊆Z(c) ∪ Z(a) = Z(c2a), which yields c2b ∈ Dt

F
(c2a, c2b). Since we also

have c2b ∈ Dt
F

(c,−c) (as (c2b)c2 = c2b), we would be done by setting a′ = c2a (≡ a), c′ =

c, d′ = −c (≡ d) and b′ = c2b, provided we show c2b ≡ b. This is checked by evaluating
characters: let h ∈ H; if h(b) = 0, we have h(c2b) = h(b) = 0. Let h(b) 6= 0; from the
assumption of (1.b) and (††) we get a2b ≡ b, whence h(a) 6= 0; as observed in the preceding
paragraph, a ≡ c2a, which gives, h(c2) = 1; thus, h(c2b) = h(c2)h(b) = h(b).

The case π(x) = π(b) is similar.

VII. (1.c) + (2.a). Symmetric to Case III.

VIII. (1.c) + (2.b). Symmetric to Case VI.

IX. (1.c) + (2.c). Since 0 ∈ Dt
F

(a,−a) ∩ Dt
F

(c,−c) and by assumption a ≡ −b, c ≡ −d, it

suffices to set a′ = a, b′ = −a, c′ = c, d′ = −c. 2
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[Li] A. Lira, Les groupes spéciaux, Ph. D. thesis, Univ. of Paris VII (1995).

[MacL] S. MacLane, Categories for the Working Mathematician, Springer-Verlag,
Berlin, 1991.

[M] M. Marshall, Spaces of Orderings and Abstract Real Spectra, Lecture Notes
Math. 1636, Springer-Verlag, Berlin, (1996).

[Mir] F. Miraglia, Introduction to Partially Ordered Structures and Sheaves,
Polimetrica, Milan, 2006.

[Mit] B. Mitchell, Theory of Categories, Academic Press, N. York, 1965.

[Mon] A. Monteiro, L’arithmétique des filtres et les espaces topologiques, Segundo Sympo-
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Matemática, Nos. 29-30, published by Instituto de Matemática, Univ. Nacional
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