
Department of ComputingImperial College of Science, Technology and MedicineUniversity of London
Changing the Past:Database Applications of Two-DimensionalTemporal LogicsMarcelo FingerFebruary 1994

A thesis submited for the degree ofDoctor of Philosophy of the University of London

AbstractTemporal active databases are an extension of the traditional database concept. Onthe temporal side, data is associated to time points or periods and, on the activeside, temporal rules provide a means by which some temporal data in the databasemay force the insertion/deletion of some other temporal data. Thus, the temporalrules establish a \temporal link" between the data, either via a procedural execu-tion mechanism or through a declarative historical interpretation. In this databaseframework, we are interested in analysing and detecting the e�ects that a change in(data associated with) the past may cause in the database.Temporal logic techniques are applied to describe and analyse the problems re-lated to the evolution of temporal databases. For that, we start by presenting themathematical framework of two-dimensional temporal logics. Several methods ofcombining two one-dimensional temporal logics are described. Each combinationmethod generates a family of two-dimensional temporal logics. The objective of thisstudy is to establish for each combination method whether some logical propertiesof the one-dimensional systems, e.g. completeness and decidability, are transferredto their two-dimensional combination.A temporal logical description of data representation and temporal queries intemporal databases is provided, and two-dimensional temporal logic is used to de-scribe temporal data evolution through updates. We use this two-dimensional de-scription to characterise the di�erences between the transaction-time and valid-timetypes of temporal databases.A two-dimensional imperative execution semantics and a one-dimensional declar-ative valid-time interpretation for temporal rules are then presented. It is shownthat, under the execution semantics, updates in the past, and in general any his-torical update, may cause a violation of the valid-time interpretation, generating atime paradox . A classi�cation of time paradoxes is proposed and their occurrencesare then considered as the e�ects of changing the past . Finally, several algorithmsfor the detection of occurrences of some types of time paradoxes are presented andtheir correctness is proved.

to Monika

7AcknowledgementsI am deeply grateful to my supervisor, Prof. Dov M. Gabbay, who supported andencouraged me from my early days as an MSc. student until the end. The in
uenceof his ideas, advice and guidance were of great value throughout the development ofthis work. I would like to thank him especially for his constant support throughoutthe period I was unable to work due to strain injuries on my arms.Very special thanks to Leonardo Lazarte and Pedro Savadovski, for their almostpaternal support, advice and numerous discussions on matters ranging from Logicto marriage, to life in general; and to my friend Ben Strulo, for several illuminatingdiscussions, and for reading and commenting all my papers and an earlier draft ofthis thesis.I am also thankful to my friends from the Temporal Logic Group for numerousdiscussions on logic, their comments on my work and for their patience in answeringthe unstoppable
ow of my questions: Ian Hodkinson, Robin Hirsh, Peter McBrien,Richard Owens and Mark Reynolds.Thanks to Ralph Birnbaum for disagreeing with me for three years during ourlunch time. And thanks to Tony Hunter for the pleasant tea breaks and for thenumerous discussion on Logic and not-so-logical topics.Thanks to all my colleagues that helped in the development of this work andin making our life in England a wonderful experience: Paulo Azevedo, Ralph Birn-baum, F�atima Dargam, David Evans, Felipe Fran�ca, Jo~ao Gondim, Luis Hanna,Tony Hunter, Priscila Lima, Roberto Lins, Juarez Muylaert-Filho, Claudia Oliveira,Afonso Pinto, Francisco Simpl��cio and Alessandra Russo.I would also like to thank Sue Brooks and Janice Lonsdale for being alwaysfriendly and helpful.I am thankful to the CAPES, Ministry of Education, Brazil, for their �nancialsupport, grant 1491/89.I am thankful to those who helped me when I was su�ering from repetitivestrain injuries: Dr. Gabriel Panayi, the rheumatologist, Sally Joyce Waters, thephysiotherapist, Garnet B. Symonds, the osteopath, and Dr. Carla Finger, my sister.I would also like to thank Kostas Stathis for typing a few pages of this thesis.Very special thanks to my parents, Salezy and Rosa, for their constant supportand their constant preoccupation about my health.Above all, I am most grateful to my wife Monika. For the constant support,love, tenderness and lively incentive. In those disheartening moments when I couldnot use my hands, when I had to type with my feet or simply could not work, she

8always had a smile, an in�nite patience in doing things for me. I knew I could relyon her. Thank you for your company, Mo.

Contents1 Introduction 111.1 Motivation : 111.1.1 The Organisation of the Thesis : : : : : : : : : : : : : : : : : 171.1.2 Published Material : 181.1.3 Statement of Contribution : 181.2 Background : 191.2.1 Formal Logic Systems : 191.2.2 Propositional Temporal Logics : : : : : : : : : : : : : : : : : 212 Adding a Temporal Dimension to a Logic System 292.1 Introduction : 292.2 Temporalising an Existing Logic : 332.2.1 Temporalising a Logic System : : : : : : : : : : : : : : : : : : 332.2.2 The Correspondence Mapping : : : : : : : : : : : : : : : : : 392.2.3 Completeness of T(L) : 402.3 The Decidability of T(L) and its Complexity : : : : : : : : : : : : : : 432.4 Conservativeness of T(L) : 452.5 Separation over the Added Dimension : : : : : : : : : : : : : : : : : : 452.6 Temporalising First-Order Logic : 492.6.1 Temporalising First-Order Sentences : : : : : : : : : : : : : : 502.6.2 Temporalising First-Order Formulae : : : : : : : : : : : : : : 522.7 Internalising the Temporal Dimension : : : : : : : : : : : : : : : : : : 543 Combinations of One-Dimensional Temporal Logics 573.1 Introduction : 583.2 Independent Combination : 613.3 Full Interlacing : 653.3.1 The Completeness of Klin �Klin : : : : : : : : : : : : : : : : 679

10 CONTENTS3.3.2 Incompleteness Results : 753.4 Restricted Interlacing : 763.5 The Two-dimensional Diagonal : 784 Temporal Database Updates 834.1 A Logical View of Temporal Databases : : : : : : : : : : : : : : : : : 834.2 Propositional Abstractions : 934.3 A Two-dimensional Description of Database Evolution : : : : : : : : 954.4 Valid-time and Transaction-time Databases : : : : : : : : : : : : : : : 995 Detection of Time Paradoxes in Temporal Active Databases 1055.1 Active Databases : 1055.2 The Valid-time Interpretation of Rules : : : : : : : : : : : : : : : : : 1105.2.1 Non-supported Actions : 1115.2.2 Retroactive Actions : 1135.2.3 Rule Violation and Faked Execution : : : : : : : : : : : : : : 1155.2.4 Summary : 1165.3 Syntactical and Temporal Dependences : : : : : : : : : : : : : : : : : 1165.4 Detection of Time Paradoxes : 1246 Conclusions 1356.1 Overall Analysis of Achievements : 1356.2 Contributions to Logic and Temporal Logic : : : : : : : : : : : : : : : 1386.2.1 Comparisons, Extensions and Further Work : : : : : : : : : : 1396.3 Contributions to Temporal Databases : : : : : : : : : : : : : : : : : : 1406.3.1 Further Work : 1416.4 Contributions to Temporal Active Databases : : : : : : : : : : : : : : 1436.4.1 Further Work : 1436.5 Other Contributions : 1456.5.1 Arti�cial Intelligence : 1456.5.2 Computational Linguistics : 146A Algorithms 149A.1 Auxiliary algorithms : 149A.2 Main Algorithms : 151B Auxiliary Proofs 155

Chapter 1Introduction1.1 MotivationThe developments of database technology have extended the traditional relationaldatabase concept in several directions. Of particular interest to this work are thetemporal extension [Snodgrass and Ahn 1985] and the active extension [Morgenstern1983; Stonebraker, Hanson and Potamianos 1988].In the temporal extension, the data is associated with a time point or period, andthe query language is extended to deal with temporal queries. In such a temporaldatabase, the traditional schema and data of a relation in the database is enhancedwith a set of attributes and time related data, adding to the database a temporaldimension that it originally lacked. For example, consider the non-temporal relationEMPLOYEE of a traditional relational database:NAME SALARY DEPARTMENTPeter 2000 MarketingMary 3000 FinanceSuppose the current time is April 1993 (Apr93). In a temporal database, a temporalversion of the above relation, with its extended schema and temporal data, couldbe: NAME SALARY DEPT START TIME END TIMEPeter 1000 R&D Jan90 Dec91Peter 2000 Marketing Feb92 Apr93Mary 3000 Finance Sep91 Apr93In such a temporal relation, the attributes START TIME and END TIME have aspecial status, receiving a temporal semantical interpretation so that it is possible11

12 Introductionto pose queries that were not directly supported by the non-temporal system. Forinstance, with respect to the previous (very simple) temporal database relation, onemay want to know \when did Peter change departments and what was his salaryincrease then?" Or, one may wish to ask \who are the employees that have beenworking for more than two years?" Temporal query languages provide a means topose those questions to temporal databases in a straightforward way, and the extrafunctionality of temporal databases, not present in traditional relational databases,allows for the correct interpretation of the special attributes so as to generate theright answers for the queries; the extra functionality needed for temporal relationaldatabases discussed in [McBrien 1992].The temporal data may possess distinct semantic interpretations. On the onehand, the temporal data may be interpreted as the history of the Universe of Dis-course, i.e. the temporal evolution of the objects of the part of the real world thedatabase is supposed to model; in this case, there is no direct relation between thetime the data is entered in the database and the time in the modelled world thedata refers to. For example, in the previous temporal relation, the fact that Peterstarted working at Jan90 might have been recorded at a later time, e.g. at Feb90.This semantical interpretation is called the valid-time semantics.On the other hand, a di�erent interpretation of the temporal data is possible,where the temporal attributes are seen as referring to the history of the databasesystem, as opposed to that of the Universe of Discourse. Under such interpretation,the previous temporal relation tells us that the information that Peter has startedworking at the R&D department was inserted in the database at Jan90 and deletedat Dec91, independently of when, in reality, Peter has actually started or �nishedworking at that department. This second semantical interpretation of temporal datais called the transaction-time semantics.It is one of the aims of this work to provide a clear, formal distinction betweenthose two kinds of semantical interpretations of the temporal data.The other extension of the relational data model we wish to consider is the activedatabase extension. This extension aims at transforming the database system froma passive repository of facts to one that is able to react to the data it contains.Such an extension is achieved by equipping the database with a set of rules. Forexample, the printing of the payment cheque of an employee may be speci�ed in arule expressed in a logic language, in the following way:if exists Dept such that employee(Name, Salary, Dept)then print payment cheque(Name, Salary)

1.1 Motivation 13It is also the case that there are several semantics and languages for these kindsof rules, and those semantics are either procedural or declarative in nature. Undera procedural semantics, the condition part of the rule is seen as a query that, whensatis�ed, �res an action (the then-part of the rule) in the database. The declarativesemantics of rules is normally associated with deductive rules, so as to enable morecomplex queries; under such semantics, the database does not become an activesystem, for the then-part of the rule is seen as data deduced from the database,rather than an action to be executed. For a broad discussion on logic languages fordatabases and their semantics, expressivity and complexity refer to [Abiteboul andVianu 1991].Recently, both temporal and active extensions were simultaneously applied, gen-erating an Active Temporal Database [Manning and Torsun 1989; Loucopoulos et al.1990], where the temporal rules provide \temporal links" between data associatedto di�erent times. In such case, the previous rule concerning salary payment can beformulated as the following temporal rule, expressed in the ERL temporal languageof the TEMPORA system [McBrien et al. 1991]:if time is end of this month and(employee.X has salary.Sat start of this month)then print payment cheque(X, S)In such a rule, the temporal aspects are explicitly stated, and we can see thatthe rule will be triggered at the end of the month to pay for an employee's salaryas it stood at the beginning of the month. The use of temporal active rules raisesnew issues on their semantics with respect to the dichotomy between procedural anddeclarative semantics, and those issues will be discussed in Chapter 5.This temporal active database scenario provides a framework in which it is pos-sible to change the data that is recorded about the past. In such a case, it makessense to pose the following question, which is the central motivation for this thesis.Question 1.1 How is history a�ected if we change the past?Although the question above may constitute an adequate philosophical questiondeserving an adequate philosophical treatment, we are primarily concerned with thelogical and computational aspects arising from such a question in the context ofdatabases.It is easy to imagine a situation where it is plausible to change the past recordedin the database. For example, an employee may be retroactively hired; he or she

14 Introductionmay receive a retroactive salary increase; his or her name may have been incorrectlytyped in, and later this mistake is recti�ed. The problem is, several actions mayhave been executed by the database using information that has later changed andbecome false. It is the goal of this work to study what are the e�ects generated bythose changes and how to detect them.So far we have set the framework in which to place the problem we are tryingto solve, as expressed by Question 1.1. It is now necessary to set a frameworkin which to search for an answer. This theoretical framework is suggested by thefoundations underlying the concept of a relational database. Note that classical logicis the underlying framework for the relational database; it is also the basis for therelational calculus, serving as the theoretical support to relational query languagessuch as SQL. The same is true for temporal logic with respect to temporal databases.Logic is also the basis for procedural/declarative interpretation of rules; actually,rule-based systems is one area where the interests of logic, arti�cial intelligence(in the form of expert systems) and databases converge. Temporal logic is thenatural candidate to deal with temporal rules. Moreover, the notions of \change"and \evolution" (through updates), that are integral part of Question 1.1, are mostnaturally dealt with in temporal terms. Therefore, temporal logic is the frameworkchosen to investigate Question 1.1; we discuss the basic notions of temporal logic inthe Background Section 1.2.The aim of this thesis can then be set as to give a temporal logic treatment forQuestion 1.1. In fact, instead of being limited to changes of the past, we consider thegeneralisation how is any temporal information a�ected when history is changed? ,which for the purposes of this thesis translates into the question of how the interpre-tation of temporal data stored in a database is a�ected when any data is changedin the presence of active \temporal links".Question 1.1, or its generalised form, motivates several other questions whichneed to be answered if an answer to the original one is to be given.Is not \change" already a temporal notion?What is the meaning of \changing the past"?How can the past or any time in history be changed?Finally, what are the e�ects of \changing the past" and how can they bedetected?

1.1 Motivation 15These motivated questions provide the guidelines that will lead us throughoutthis thesis. Consider the �rst of them, which is concerned with the puzzling natureof the expressions \change the past" or \change the history".Question 1.2 Is not \change" already a temporal notion?In this thesis we maintain that the answer to Question 1.2 is yes, and a temporallogic basis for that answer is given in Chapter 2. There, a means to describe theevolution of any logic system L by adding to it a temporal dimension is presented,in a process called temporalisation. The aim is to be able to describe the temporalevolution of a system speci�ed in a generic logic L. The temporalisation of a genericsystem L with respect to a temporal logic T generates a new logic system T(L), andChapter 2 studies how the logical properties of systems T and L, such as soundness,completeness and decidability, are transferred to the combined system T(L).Once it is established that the notion of change is a temporal one, we already havean initial mathematical framework based on temporal logic to analyse Question 1.1.The next question calls for a broadening of such a temporal logic framework.Question 1.3 What is the meaning of \changing the past"? Or, in general,what is the meaning of changing any time in history at all?To answer that question, the explicit double temporality of \change" on theone hand, and of \past" or \history" on the other, as in the expressions \changingthe past" and \changing the history", is investigated under a formal logic pointof view. Logics for two-dimensional time are developed, in which one temporaldimension contains a description of the history of modelled reality, correspondingto the previously mentioned valid-time interpretation of temporal data, while theother dimension describes the evolution of how the history of modelled reality is seenat di�erent times, corresponding to the transaction-time interpretation of temporaldata.Two-dimensional logics over the two-dimensional plane often do not posses thedesired properties. As it is shown in Section 3.3, although there are complete ax-iomatisations of one-dimensional temporal logics over several linear classes of
owsof time, sometimes it is impossible to obtain complete axiomatisations over the two-dimensional plane, e.g. overZ�ZandR�R. Therefore, we study other possible two-dimensional temporal logics that are weaker than the full two-dimensional case butthat succeed in transferring all several logical properties from the one-dimensionalcase to the two-dimensional one.

16 IntroductionA great number of temporal logics exist in the literature to deal with the greatvariety of properties one may wish to assign to
ows of time. In building two-dimensional temporal logics, the combination of two classes of
ows of time generatesan even greater number of possible systems to be studied. It is, therefore, desirableto study if it is possible to transfer the properties of long known and studied (one-dimensional) temporal logic systems to the two-dimensional case.One possible way to obtain such a two-dimensional temporal logic is to apply thetemporalisation process to a temporal logic, generating the system T1(T2). However,as we shall see, the logic system T1(T2) is very limited in its expressivity, so wehave to look for stronger systems. So in Chapter 3 we propose other methods forcombining two one-dimensional temporal logics so as to obtain more expressive two-dimensional systems. As in Chapter 2, the emphasis continues to be on studyinghow the logical properties transfer from the component logic systems T1 and T2 tothe combined system according to each combination method.Changes in history are then seen as a two-dimensional temporal evolution. Toanswer the next motivated question it is necessary to move from the abstract purelogic framework to a more data oriented one.Question 1.4 How can the past or any time in history be changed?Question 1.4 calls for a representation of temporal data, so that we read \chang-ing the history" as \changing the recorded history". Chapter 4 hence de�nes thenotions of temporal database, temporal data representation and temporal queries interms of temporal logic. A two-dimensional update semantics is provided, in termsof which a formal distinction of the two distinct notions of temporal databases,namely transaction-time databases and valid-time databases, is presented.The mere fact that temporal data can be updated does not imply that updatingdata at one time will have any e�ect on some other data. In Chapter 5 the valid-timedatabase is therefore enhanced with temporal rules, so as to provide \temporal links"between the data in the database. In this context, the �nal motivated question canbe explored.Question 1.5 What are the e�ects of changing the past? More generally,what are the e�ects of changing data associated to any particular time?And how can these e�ects be detected?The temporal rules in the active valid-time database are equipped with an imper-ative two-dimensional semantics and with a declarative one-dimensional valid-time

1.1 Motivation 17interpretation. The imperative interpretation views rules as applicable only at thecurrent execution time, but the declarative interpretation looks at rules as valid-timeconstraints holding at all times. For instance, over discrete time, the ruleif Conditionthen Actioncan be imperatively interpreted by, at the current time, checking whether Conditionholds and in case of success execute Action, and this process is repeated whenevertime is advanced, changing the value of the current time. Alternatively, this rulecan be seen as a historical law, such that at every (valid-) time point, and not onlyat the current one, whenever Condition holds Action (that is seen as a formulathat can be checked against the database state just as Condition can) must hold.It is shown that, due to the occurrence of updates in the past or, in general, at anytime, the execution semantics may cause the valid-time interpretation of the rules tobecome invalid. The occurrences of such invalidations are called time paradoxes andare interpreted as \the e�ects" of changing the past or history itself. The next stepis to analyse how these time paradoxes can be algorithmically detected, which weaccomplish in the following way. A classi�cation of time paradoxes is proposed basedon the di�erent interactions between updates, rule execution and the violation ofthe valid-time interpretation. Finally, several algorithms for the detection of severaltypes of time paradoxes are presented and their correctness is proved.1.1.1 The Organisation of the ThesisThis thesis clearly has two distinct parts, one being formal logic oriented while theother is database oriented. In the �rst part, several methods of combination oftemporal logics are studied. The aim is to determine if the logical properties ofthe combined system are transferred through each method. As a result, severaltwo-dimensional temporal logics are described, with varying degrees of expressivity.The second part is concerned with temporal databases and their evolution throughupdates. Two-dimensional temporal logics are applied in the description of thisevolution. The aim is to determine what are the e�ects of updating history and howto detect them.Throughout this thesis temporal logic|and logic in general|plays a central role.Therefore those notions are described in the Background Section 1.2. Other basicnotions are introduced in the body of the thesis as they are needed, mainly in theinitial section of each chapter. For instance, the formal de�nition of a temporal

18 Introductiondatabase is only introduced in Chapter 4; and the presentation of temporal rules isdelayed until temporal active databases are discussed in Chapter 5.With respect to its degree of generality and abstraction, this thesis moves from avery abstract start to a more practically oriented ending. Chapter 2 presents a verygeneral combination of logics in which a temporal logic is combined to a generic logicsystem via the temporalisation process. Chapter 3 concentrates on methods for thecombination of two temporal logics, generating several two-dimensional logics. InChapter 4, the focus is moved from logic to databases, and two-dimensional temporallogics are applied in the description of updates in temporal databases. Chapter 5enhances the database with temporal rules and discusses the e�ects of updates intemporal active databases; several algorithms are proposed for the detection of suche�ects. Finally, Chapter 6 discusses the results of the thesis, compares them with theliterature and suggests further areas of research. Appendix A collects the algorithmsdeveloped in the thesis and Appendix B contains the proofs of some auxiliary resultsthat were used or cited in the body of the thesis.1.1.2 Published MaterialThe contents of Chapter 2 have appeared in [Finger and Gabbay 1992a] and will soonappear in [Gabbay, Hodkinson and Reynolds 1994, Chapter 14]. Chapters 4 and 5reorganise and largely extend the material that appeared published in [Finger 1992]and [Finger and Gabbay 1992b]. All those papers where developed by the authorworking under the supervision of Prof. D. M. Gabbay.The other papers in which this author appears cited as a coauthor were pro-duced as part of ESPRIT project TEMPORA and do not play a central role in thisthesis [Finger, McBrien and Owens 1991; Finger, Fisher and Owens 1993].1.1.3 Statement of ContributionThe contributions of this thesis are the following.In Chapter 2, the temporalisation process and its property transference resultsare all original.In Chapter 3, the results about independent combination of logics extend theresults of [Kracht and Wolter 1991; Fine and Schurz 1991] to the case of the non-independent temporal modalities; Theorem 3.2 extends a result of [Venema 1990] forthe two-dimensional plane and for distinct
ows of time; the results about restrictedinterlacing are all original and answer a conjecture of Venema [1990].

1.2 Background 19The two-dimensional characterisation of transaction-time databases is the con-tribution of Chapter 4.Finally, the treatment of temporal dependences and the algorithms to detect timeparadoxes originated by con
icts between imperative and declarative semantics oftemporal rules are contributions of Chapter 5.1.2 BackgroundThis section presents the basic de�nitions that will be used constantly throughoutthe thesis. The main concern here is to de�ne logic systems in general, and temporallogics in particular, while in the next two chapters the discussion will focus on thecombination of several temporal logic systems.1.2.1 Formal Logic SystemsThe modern notion of Logic dates back to Frege [1879] and the in
uential works ofWhitehead and Russell [1910] and Hilbert [1925; 1927]. Currently, there are severalapproaches to de�ne what a logic system is, namely the syntactical approach, thesemantical approach and the algebraic approach. This work concentrates in the �rsttwo ones.The syntactical approach is concerned with the inferences that can be obtainedfrom a given, possibly empty set of premises. The entities that are relevant to thisapproach belong to the pair hLL;`Li, where LL is its language and `L is its inferencesystem; the language LL is a set of well-formed sequences of symbols called formulae,constructed from an alphabet �L of symbols according to a set of formation rules;the inference system `L is a relation between sets of formulae and formulae of LL,i.e. a relation between premises and conclusions, and if A 2 LL then, when the setof premises is empty, `L A stands for ? `L A.The semantical approach is concerned with the truth of statements. Truth isevaluated with respect to mathematical structures called models; a model for thelogic L is a structure ML and we denote ML j= A when a formula A 2 LL is trueunder the modelML; the class of all models of L is denoted by KL. The expression\class of models" should be substituted by \set of models", but it is so deeply buriedin the tradition of mathematical logic that we have to keep it.For the purposes of combination of logics which will be considered later, a logicsystem L contains syntactical and semantical elements and consists of a language,an inference system and a class of model structures.

20 IntroductionExample 1.1 Consider the logic system PC of propositional classical logic. Itsvocabulary �PC consists of the boolean connectives :, ^, _ and!, the punctuationsymbols '(' and ')', and a countable set of propositional letters P. The formationrules for LPC are:� P � LPC;� if A 2 LPC then :A 2 LPC;� if A;B 2 LPC then (A^B); (A_B); (A!B) 2 LPC; (the parentheses are omit-ted when no ambiguity is implied and the precedence order :, ^, _, ! isrespected)� nothing else is in LPC.The inference relation, `PC, will be presented here as an axiomatisation, consist-ing of axioms and inference rules. The axioms are(a) p ! (q ! p)(b) (p ! (p ! q)) ! (p ! q)(c) (p ! (q ! r)) ! (q ! (p ! r))(d) (q ! r) ! ((p ! q) ! (p ! r))(e) p ^ q ! p(f) p ^ q ! q(g) p ! (q ! p ^ q)(h) p ! p _ q(i) q ! p _ q(j) ((p ! r) ^ (q ! r)) ! ((p _ q) ! r)(k) (p ! q ^ :q) ! :p(l) ::p ! pThe rules of inference are Modus Ponens: from A and A!B infer B; and Substi-tution: from an axiom A(q) infer A(qnB), where the latter is the formula obtainedby substituting all the occurrence of the the propositional letter q by the formula Bin A. If � is a set of formulae and A is a formula, we write � `PC A if there existsa �nite sequence of formulae ending in A such that each formula in the sequenceis either an axiom, or belongs to �, or is obtained from previous formulae in thesequence through the use of an inference rule.

1.2 Background 21Finally, to de�ne a model MPC for propositional classical logic, let TV =ftrue; falseg be a set of truth values and consider a valuation function v : P ! TV ,such that every propositional letter is associated to a truth value. The modelMPCis a structure composed of MPC = (TV; v), so that the class of all models containsall the possible valuation functions. A formula of LPC that is true in all models Thetruth of a formula A in a modelMPC, represented by MPC j= A, is given by:M j= p i� p 2 P and v(p) = true:M j= :A i� it is not the case that M j= A.M j= A^B i� M j= A and M j= B.M j= A_B i� M j= A or M j= B.M j= A!B i� M 6j= A or M j= B. �Let A be any formula in LL. A logic system L is said to be sound if, whenever`L A, we haveML j= A for allML 2 KL. The logic system L is said to be completeif, wheneverML j= A for allML 2 KL, we have that `L A. A formula A is valid inL ifML j= A for allML 2 KL and the validity problem for L consists of determiningwhether a given A 2 LL is valid or not. A formula A is a theorem of L if `L Aand the decision problem for L consists of determining whether a given A 2 LLis a theorem or not. Soundness, therefore, holds for L if being a theorem impliesbeing a valid formula; completeness holds if being a valid formula implies being atheorem. For example, the propositional classical logic PC is sound and complete,so all propositinal tautologies, i.e. valid formulae, are theorems and vice-versa.1.2.2 Propositional Temporal LogicsThis presentation of Temporal Logic is the result of enhancing the vocabulary ofclassical propositional logic with modal operators. The operators approach to tem-poral logics started with Prior [1957], with the one-place operators P and F , whichwere then called tense operators, while the logic they generated was called tenselogic; an alternative approach to temporal reasoning handles temporal features ina �rst-order language, e.g. [Kowalski and Sergot 1986]. In Prior's approach, if Ais a proposition, the formula of the form PA reads as \sometime in the past, itwas the case that A" and similarly FA reads as \sometime in the future, it willbe the case that A". The purpose of the tense operators was to capture tenses innatural language sentences; since then, the operators approach has been applied

22 Introductionto describe a variety of other \non-tense" temporal systems, e.g. in arti�cial intelli-gence [Halpern and Shoham 1986], in software engineering [Pnueli 1977; Kr�oger 1987]and in databases [Tuzhilin and Cli�ord 1990; Gabbay and McBrien 1991]. The nametemporal logics has been appropriated to encompass this wide area of applications.The Prior F and P operators are not as expressive as the two-place temporaloperators \Since" (S) and \Until" (U) introduced by Kamp [1968]. A formula of theform S(A;B) is read as \since A was the case, B has been the case" and similarly\U(A;B)" is read as \until A is the case, B will be the case."We present here several propositional temporal logics of \Since" and \Until";these logics are de�ned over the same language but vary in the nature of the
owof time they describe. So the language is de�ned starting from a countable set ofpropositional letters P and then formulas are built up from the propositional lettersusing the boolean operators : (negation) and ^ (conjunction) and the two-placetemporal operators S (since) and U (until). Other boolean connectives such as_ (disjunction), ! (material implication) and $ (material biconditional), as wellas the abbreviations > (constant true) and ? (constant false), can be de�ned interms of : and ^ in a standard way; similarly for other temporal operators like P(sometime in the past), F (sometime in the future), H (always in the past) and G(always in the future) with respect to S and U .In the following, propositional letters are represented by p, q, r and s, andtemporal formulae are represented by upper case letter A, B, C and D.De�nition 1.1 Syntax of propositional temporal logics Let P be a countablyin�nite set of propositional letters. The set LUS of temporal propositional formulasis the smallest set such that:� P � LUS;� If A and B are in LUS, then :A and (A ^B) are in LUS;� If A and B are in LUS, then S(A;B) and U(A;B) are in LUS.The mirror image of a formula is another formula obtained by swapping all occur-rences of U by S and vice-versa. �The brackets of a formula are sometimes omitted when no ambiguity is implied.Boolean connectives are de�ned in the standard way, while temporal operators canbe de�ned by:

1.2 Background 23FA =def U (A;>)PA =def S(A;>)GA =def :F:AHA =def :P:AThe ontology of time has to be de�ned before we are able to provide a seman-tics to temporal formulae. According to van Bentehm [1983] there are three basicontologies of time to be considered, namely:(a) points;(b) intervals;(c) events.In this work we concentrate mainly on a point-based temporal ontology. Theinterval based cases have been discussed by [Halpern and Shoham 1986] and [Venema1990] (the latter has shown a relationship between interval based temporal logicsand two-dimensional temporal logics that is of interest to our work here). Theevent-based approach to temporal reasoning has been investigated on the lines ofthe Event Calculus of [Kowalski and Sergot 1986].Under the point-based ontology, a
ow of time is an ordered pair F = (T;<),where T is a possibly in�nite, nonempty set of time points and < is a binary relationover T . Several restrictions can be made to the nature of the
ow of time; thefollowing properties are among the most frequent ones encountered in the literature;for a �rst- and second-order formulation of several other properties, refer to [Burgess1984].(a) irre
exivity: for no t 2 T , t < t;(b) transitivity: for all s; t; u 2 T , if s < t and t < u then s < u;(c) totality: for all s; t 2 T , either s < t or s = t or t < s.(d) linearity: irre
exivity, transitivity and totality.(e) boundedness: there exist tmin; tmax 2 T such that all t 2 T , tmin � t � tmax(a � b is the usual abreviation for a < b or a = b);(f) unboundedness: for every t 2 T , there exist s; u 2 T such that u < t < s;(g) discreteness: for every t 2 T , if there exists s 2 T , t < s then there exist at0 2 T , the successor of t, such that t < t0 and for no u 2 T , t < u < t0; and ifthere exists s 2 T , s < t then there exist a t00 2 T , the predecessor of t, suchthat t00 < t and for no u 2 T , t00 < u < t.

24 Introduction(h) denseness: for every s; t 2 T such that s < t, there exists u 2 T , s < u < t;(i) Z-like: linearity, discreteness, unboundedness such that between every twopoints of T there are only �nitely many points;(j) Q-like: linearity, denseness, unboundedness such that T is countable;(k) R-like: linearity, denseness, unboundedness such that T contains all leastupper bounds and greatest lower bounds of sequences of elements of T .The �rst two properties of irre
exivity and transitivity are sometimes imposedto all
ows of times, but we follow [Burgess 1984] by initially treating < as a genericrelation on the set of time points T . Later in the thesis the < relation will be actuallyconstrained to a linear order, therefore encompassing the properties of irre
exivityand transitivity.De�nition 1.2 Semantics of propositional temporal logicA valuation g is a function assigning to every time point t in T a set of propo-sitional letters g(t) � P, namely the set of proposition letters that are true at thetime point t.1 A model M is a 3-tuple (T;<; g), where (T;<) is the underlying
owof time and g is a valuation. M; t j= A reads \the formula A holds over model Mat time point t" and is de�ned recursively as follows.M; t j= p i� p 2 P such that p 2 g(t):M; t j= :A i� it is not the case that M; t j= A.M; t j= A ^B i� M; t j= A and M; t j= B.M; t j= S(A;B) i� there exists an s 2 T with s < t and M; s j= Aand for every u 2 T , if s < u < t thenM; u j= B.M; t j= U(A;B) i� there exists an s 2 T with t < s and M; s j= Aand for every u 2 T , if t < u < s thenM; u j= B. �A formula A is valid over a class K of
ows of time, indicated by K j= A, iffor everyM whose underlying
ow of time is in K and for every time point t 2 T ,M; t j= A. If � is a set of formulae, we write K j= � to indicate that K j= Afor every A 2 �. Therefore, for di�erent classes K we have di�erent sets of validformulae.The inference system of temporal logics is given here in the form of HilbertAxiom Systems [Hilbert 1925; 1927]. Such systems are composed of a set of axioms1Alternatively a valuation could be de�ned as a function h : P ! 2T , associating every propo-sitional letter to a set of time points in which it holds true [Burgess 1984; Gabbay, Hodkinson andReynolds 1994].

1.2 Background 25and a set of inference rules. An axiomatic system for the US-temporal logic overthe class of all
ows of time K0, `US, contains the following axioms:A0 all classical tautologiesA1a G(p ! q)! (U(p; r)! U(q; r))A1b H(p ! q)! (S(p; r) ! S(q; r))A2a G(p ! q)! (U(r; p)! U(r; q))A2b H(p ! q)! (S(r; p)! S(r; q))A3a (p ^ U(q; r))! U(q ^ S(p; r); r)A3b (p ^ S(q; r))! S(q ^ U(p; r); r)Note that the axioms above come in pairs, represented by a and b, such thatone is the mirror image of the other. The inference rules are:Subst Uniform Substitution, i.e. let A(q) be an axiom containing thepropositional letter q and let B be any formula, then from ` A(q)infer ` A(qnB) by substituting all appearances of q in A by B.MP Modus ponens: from ` A and ` A! B infer ` B.TG Temporal Generalisation: from ` A infer ` HA and ` GA.A deduction is a �nite sequence of formulae each of which is either an axiomor follows from earlier formulae by a rule of inference. A theorem is any formulaA appearing as a last element of a deduction, and we indicate this by `US A. Theaxioms of `US can be extended by a set of axioms � so as to impose restrictionson the
ow of time, therefore generating the inference system `US(�). When � isthe empty set we have `US=`US(?). A formula or set of formulae is consistent withrespect to an inference system ` if falsity (?) cannot be deduced from it. We abusenotation and write A ` ? instead of fAg ` ?.We say that an inference system, `, is sound and complete with respect to aclass K of
ows of time if K j= A i� ` A;or equivalently, A is consistent i� A has a model over K;

26 Introductionsoundness corresponding to the if part and completeness 2 to the only if part. Wewrite US/K to indicate that US is sound and complete over the class K of
ows oftime.Let K0 be the class of all
ows of time, i.e. the set of all pairs (T;<) with nospecial constraint imposed on <. Then we have the following well known result.Theorem 1.1 (Soundness and Completeness of US/K0)The inference system `US is sound and complete with respect to the class K0.An elegant proof of the above is given by Xu [1988]. A proof of completeness forthe class of transitive linear
ows of time, Klin, is given by Burgess [1982] addingthe following set �lin of axioms together with their mirror images (b axioms).A4a U(p; q)! U(p; q ^ U(p; q))A5a U(q ^ U(p; q); q)! U(p; q)A6a (U(p; q) ^ U(r; s))!(U(p ^ r; q ^ s) _ U(p ^ s; q ^ s) _ U(q ^ r; q ^ s))Burgess actually used an extra axiom, but Xu [1988] proved the same resultomitting it and axiom A5b. Axioms A4a, A4b and A5a are responsible for re-stricting the class of
ows of time to a transitive one. The pair of axioms A6a andA6b is responsible for restricting the class of
ows of time to a linear one. TheaxiomA7a F>!U (>;?)and its mirror image A7b are responsible for restricting the
ow of time to adiscrete one. Extending original proofs of completeness to include new axiomsover a more restricted
ow of time is discussed by Burgess [1984]. With axioms�dis = �lin [fA7a;A7bg, we have soundness and completeness results for a classof linear, discrete and transitive
ows of time.Adding the following axiom and its mirror image to �lin, thus obtaining �dense,A8a :U(>;?)2This is sometimes called weak completeness; strong completeness says that for any (possiblyin�nite) set of formula �, if � is consistent then � has a model. Strong completeness implies weakcompleteness but the converse is not true.

1.2 Background 27a complete axiomatisation over the class of all linear dense
ows of time, Kdense, isobtained. Curiously, that axiomatisation is also complete over the set of rationalnumbers Q, implying that there is no axiom that constrains the
ow of time to acountable one. There are also complete axiomatisations US/Rover the reals [Gabbayand Hodkinson 1990; Reynolds 1992] and US/Zover the integers [Reynolds 1992].The issue of obtaining complete axiomatisations has been a great concern inthe literature of logic, in general, and temporal logic, in particular. One possibleexplanation for this fact3 comes from the \boldness" of the completeness property,equating an existential property (`there exists a deduction for A') with a universallyquanti�ed sentence (`A holds in every model'). It also gives us the �rst indication ofcomputability properties associated with the logic, for �nite axiomatisability impliesthat valid formulae are recursively enumerable and that the logic is at least semi-decidable. Note, however, that axiomatisability is not the only interesting propertyand throughout this presentation several other properties of logic systems will bestudied.

3as expressed by Yuri Gurevich on a lecture at Imperial College.

28 Introduction

Chapter 2Adding a Temporal Dimension toa Logic SystemWe introduce a methodology whereby an arbitrary logic system L can be enrichedwith temporal features to create a new system T(L). The new system is constructedby combining L with a pure propositional temporal logic T (such as linear temporallogic with \Since" and \Until") in a special way. We refer to this method as \addinga temporal dimension to L" or just \temporalising L".We show that the logic system T(L) preserves several properties of the origi-nal temporal logic like soundness, completeness, decidability, conservativeness andseparation over linear
ows of time.The temporalisation of �rst-order logic is presented as an example and describedin detail. A comparison is then made between the modal/temporal operators ap-proach to combining logics and other �rst-order approaches to the handling of time.The temporalisation process is the �rst among several methods for combiningtemporal logic systems that will be analysed in Chapter 3.The contents of this chapter have appeared in [Finger and Gabbay 1992a].2.1 IntroductionWe are interested in describing the way that a system S, speci�ed in a logic L,changes over time. There are two main methods for doing so. In the externalmethod, snapshots of S are taken at di�erent moments of time and each describesthe state of S at that time. We can write S t for the way S is at time t, and use Lto describe S t. We then externally add a temporal system that allows us to relatedi�erent S t at di�erent times t. 29

30 Adding a Temporal Dimension to a Logic SystemIn the internal method, instead of considering S as a whole, we observe how Sis built up from internal components and we transform these components into timedependent building blocks. The internal temporal description of each component willgive us the temporal description of the whole system S. We can assume that S canbe completely described through its components and that the way the componentsare put together to make S into a whole is also a (possibly time varying) component.Both the external and the internal methods have their counterpart in standardtemporal logic. A temporal logical system with temporal connectives such as \Since"and \Until" is the result of externally turning classical logic into a temporal (timevarying) system. The use of a two-sorted predicate logic with one time variable inwhich atoms are of the form A(t; x), with t denoting time and x denoting an elementof a domain, is an internal way of making classical logic into a temporal system.The purpose of this chapter is to investigate the external way of temporalisinga logic system. In the external approach, we do not need to have detailed knowl-edge about the components of the system S or about the logical components of itsdescription in L. We introduce a methodology whereby an arbitrary logic systemL can be enriched with temporal features to create a new system T(L). The newsystem is constructed by combining L with a pure propositional temporal logic T(e.g. linear-time temporal logic with \Since" and \Until") in a special way. We referto this method as \adding a temporal dimension to L" or just \temporalising L".The method we use is not con�ned to temporal features only, but is a methodologyof combining two logics by substituting one in another. Thus in the general case wecan combine any two logic systems L1 and L2 to form L1(L2).In classical propositional temporal logic we add to the language of classical propo-sitional logic the connectives P and F and we are able to express statements likein the future A will hold ,by constructing sentences of the form FA, where A is any proposition The idea wedevelop here is to apply temporal operators not only to propositions but also tosentences from an arbitrary logic system L.Our aim can be viewed as describing both the \statics" and the \dynamics" ofa logic system, while still remaining in a logical framework. The \statics" is givenby the properties of the underlying logic system L; in propositional temporal logicT, we already have the ability to describe the \dynamics", i.e. changes in time of aset of atomic propositions. This point of view leads us to combine the upper-leveltemporal T system with an underlying logic system L so as to describe the evolutionin time of a theory in L and its models.

2.1 Introduction 31Another more general point of view comes from the work in [Gabbay 1991c] aboutnetworks of logic databases. A database is considered to be a model of a theory insome logic system L2 and the interaction between databases is modelled by anotherlogic system L1; therefore, two basic logic levels can be identi�ed, namely the locallogic L2 and the global logic L1. The two systems are illustrated in Figure 2.1 with atemporal upper-level system T in the place of L1 and an arbitrary underlying logicsystem L in the place of L2. �
 �	�
 �	�
 �	##@@����(((((����HHH.......................... -Temporal logic system TLogic system L(Local) (Global)Figure 2.1 Two logic levels in a database networkWe consider a network of databases distributed in time, as an extension of themore usual idea of a network of databases distributed in space. The underlying logicsystem L characterises the local behaviour of a database, i.e. the way queries areanswered by a single element of the network. The upper-level logic system describeshow one local system (at some moment in time) relates to another local system (atsome other moment in time). We combine those two logic systems to be able toreason about the \temporal network" as a whole, creating a logic system T(L). Theresult of this combination is the addition of a temporal dimension to system L, asillustrated in Figure 2.2. ##@@����(((((����HHH..........................##@@����(((((����HHH..........................##@@����(((((����HHH.......................... -Figure 2.2 The logic system T(L)The above point of view is not yet the most general setting for our operations.One may ask a general question: given two logics L1 and L2, can we combine theminto one logic? Suppose we take a disjoint union of the two systems, for example amodal logic systemK, with modality21, and a modal logic system S4, with modality

32 Adding a Temporal Dimension to a Logic System22. Here L1 = K and L2 = S4. Form a language with f21;22g and the separateaxioms on21 (K axioms) and on 22 (S4 axioms). What do we know about the union?What is the semantics? These questions have been recently investigated by Fineand Schurz [1991] and by Kracht and Wolter [1991], in a framework in which severalindependently axiomatisable monomodal systems were syntactically combined. Thispresentation di�ers from the above papers in three aspects. Firstly, we are dealingwith binary connectives Since (S) and Until (U). Secondly, temporal logic is abimodal system where the two modalities, one for the past and one for the future,always interact. Thirdly, we are not arbitrarily combining two logics but ratherembedding one logic inside the other. Embedding one modality within another in theframework above would syntactically combine them ruling out formulae containing21 within the scope of 22. This yields what we call L1(L2) (L1 externally appliedto L2). The special case where L1 is a temporal logic T and L2 is an arbitrary logicL, gives us T(L), that we study here. We present the temporal analogue of theindependent combination in Section 3.2.General combinations of logics have been addressed in the literature in variousforms. Combinations of tense and modality were discussed in [Thomason 1984],without explicitly providing a general methodology for doing so. A methodologyfor constructing logics of belief based on existing deductive systems was proposedby Konolige [1986]; in this case, the language of the original system was the basefor the construction of a new modal language, and the modal logic system thusgenerated had its semantics de�ned in terms of the inferences of the original system.The model theory used by Konolige, called a deductive model , was the connectionbetween the original system and the modal one. Here we present a quite di�erentmethodology, in which the language, inference system and semantics of T(L) arebased on, respectively, the language, the inference system and the semantics of Tand L.Extensions of temporal logic are also found in the literature. In [Casanova andFurtado 1982] a family of formal languages was generated by means of certain mech-anisms to de�ne temporal modalities; the approach there was based on grammarsand the resulting family of languages was claimed to be useful in expressing tran-sition constraints for databases. Gabbay [1991b] mixes two predicate languages Gand L, generating the language L�k(G), a two-sorted predicate language in which onesort comes from terms originated in G and the other sort comes from terms origi-nated in L; in the case that the original language G is supposed to describe an orderrelation <, the resulting system L�k(G) can be seen as a predicate logic like approach

2.2 Temporalising an Existing Logic 33to temporal logic. Such a construction corresponds to an internal way of adding atemporal dimension to a logic system. We propose in this work a di�erent approach,in which temporal modalities are applied to an existing logic system and thence atemporal dimension is added. We will informally compare the internal and externalapproaches in Section 2.7.The rest of the chapter is organised as follows. In Section 2.2 we formalise theidea of temporalising a logic system L in terms of the US-temporal logic and weshow the soundness and completeness of the resulting system T(L) over linear time.Section 2.3 shows that T(L) preserves the decidability property of system L overlinear time, and the complexity of the decision procedure is estimated. Section 2.4shows that T(L) is a conservative extension of L. Section 2.5 shows that T(L) hasthe separation property, which is useful to specify how the past states of a databasein
uence its future states. In Section 2.6 we discuss the temporalisation of �rst-order logic as a particularly interesting application; two di�erent temporalisationsof �rst-order logic are shown, yielding two expressively di�erent logics. Finally,in Section 2.7 we show how the added temporal dimension can be internalised in�rst-order logic and we compare the temporalised approach with the internalised�rst-order one.2.2 Temporalising an Existing LogicThis section will construct T(L) out of T and L. Our T is the temporal system with\Since" and \Until". Our L is in general any logic and in particular it can be classicalpredicate logic. We construct T(L) by allowing substitution of formulae of L for theatoms of formulae of T. We are not allowing the substitution of formulae of T oreven formulae of T(L) for atoms of L. Thus the temporal connectives of T are neverwithin the scope of connectives of L.Next we de�ne T(L) both syntactically and semantically and we prove soundnessand completeness for T(L).2.2.1 Temporalising a Logic SystemHaving de�ned a family of US-temporal logics in Section 1.2, we now externallyapply such logic systems to any other logic system L, i.e. we \temporalise" L.We constrain the logic system L to be an extension of classical logic, i.e. allpropositional tautologies must be valid in it. This constraint is due to the fact thatall US-temporal logics presented above are extensions of classical logic and any of

34 Adding a Temporal Dimension to a Logic Systemthem can be taken as the logic T in which we base the temporalisation. We discusslater in this section what should be the case if L is not an extension of classical logic.De�nition 2.1 Boolean combinations and monolithic formulae The set LLis partitioned in two sets, BCL and MLL. A formula A 2 LL belongs to the set ofboolean combinations, BCL, i� it is built up from other formulae by the use of oneof the boolean connectives : or ^ or any other connective de�ned only in terms ofthose; it belongs to the set of monolithic formula MLL otherwise. �We can proceed then to the de�nition of the temporalised language. In thefollowing we will use �, �,
, : : : , to range over formulae of T(L).The result of temporalising over K the logic system L is the logic system T(L)= hLT(L);`T(L)i and its class of models over K. The alphabet of the temporalisedlanguage uses the alphabet of L plus the two-place operators S and U , if they are notpart of the alphabet of L; otherwise, we use S and U or any other proper renaming.De�nition 2.2 Temporalised formulae The set LT(L) of formulae of the logicsystem L is the smallest set such that:1. If � 2 MLL, then � 2 LT(L);2. If �; � 2 LT(L) then :� 2 LT(L) and (� ^ �) 2 LT(L);3. If �; � 2 LT(L) then S(�; �) 2 LT(L) and U(�; �) 2 LT(L).The set ofmaximal monolithic subformulae of �,Mon(�), is the set of all monolithicsubformulae of � that are used to build � up by the rules above. �It is obvious from the de�nition above that the set LT(L) is denumerably in�nite.Note that from item 1 and 2 of the de�nition above, it follows that LL � LT(L). Thereason to de�ne the base case in item 1 in terms of monolithic formulae of L insteadof simply de�ning it in terms of any formula in LL is that we would have a doubleparsing problem. In fact, suppose that instead of item 1 we had a simpler item 10that would state that:10. If � 2 LL, then � 2 LT(L).Suppose we want to de�ne a function over the set of formulae, e.g. the depth of theparsing tree of a formula. Consider the formula (� ^ �) 2 LL; it would belong toLT(L) both by items 10 and 2. If we parse it by 10, then its depth will be 0, but ifwe parse it by 2, its depth will be 1, i.e. depth is not a well de�ned function. To

2.2 Temporalising an Existing Logic 35avoid such problem we introduce the restriction to monolithic formulae in item 1.We also note that, for instance, if 2 is an operator of the alphabet of L and � and� are two formulae in LL, the formula 2U(�; �) is not in LT(L).There is nothing to prevent us from de�ning the temporalisation in terms of someF;P -temporal language, but since the language with S and U is more expressive ithas received our preference.If L is an extension of classical logic, we must pay attention to some detailsbefore being able to describe the semantics of T(L). First, if ML is a model in theclass of models of L, KL, for every formula � 2 LL we must have either ML j= �or ML j= :�. For example, if L is a modal logic system, e.g. S4, we must considera \current world" o as part of its model to achieve that condition. Second, wemust be careful about the semantics of boolean connectives in the temporalisedsystem. The construction of temporalised formulae based on monolithic formulaeof LL guarantees that the semantics of the boolean connectives is the same in boththe upper-level temporal logic system T and in the temporalised system T(L).The language of T(L) is independent of the underlying
ow of time, but not itssemantics and inference system, so we must �x a class K of
ows of time over whichthe temporalisation is de�ned; this is equivalent to �xing one logic T among thefamily of temporal logics presented above.We are then in a position to de�ne the semantics of the temporalised logic systemT(L). Figure 2.1 and Figure 2.2 give us a good idea of the process of generating atemporalised semantics.De�nition 2.3 Semantics of the temporalised logic Consider a
ow of time(T;<) 2 K and a function g : T ! KL, mapping every time point in T to a modelin the class of models of L. A model of T(L) is a triple MT(L) = (T;<; g) and thefact that � is true in MT(L) at time t is written as MT(L); t j= � and de�ned as:MT(L); t j= �, � 2MLL i� g(t) =ML and ML j= �.MT(L); t j= :� i� it is not the case that MT(L); t j= �.MT(L); t j= (� ^ �) i� MT(L); t j= � and MT(L); t j= �.MT(L); t j= S(�; �) i� there exists s 2 T such that s < t andMT(L); s j= � and for every u 2 T , ifs < u < t then MT(L); u j= �.MT(L); t j= U(�; �) i� there exists s 2 T such that t < s andMT(L); s j= � and for every u 2 T , ift < u < s then MT(L); u j= �. �

36 Adding a Temporal Dimension to a Logic SystemWe write T(L) j= � if, for every model MT(L) whose underlying
ow of time(T;<) 2 K and for every time point t 2 T , it is the case that MT(L); t j= �.The inference system of T(L)/K is given by the following:De�nition 2.4 Axiomatisation for T(L)� The axioms of T/K;� The inference rules of T/K;� For every formula � in LL, if `L � then `T(L) �. �The third item above constitutes a new inference rule needed to preserve thetheoremhood of formulae of the logic system L. Therefore we call it Preserve. Theonly inference rules we are considering in this presentation are Subst,MP and TG,but other rules such as the irre
exivity rule IRR, [Gabbay and Hodkinson 1990],can also be added.The �rst concern about the axiomatisation is its soundness, i.e. if whenever`T(L) � we have T(L) j= �.Theorem 2.1 (Soundness of T(L)) If the logic system L is sound and US/K issound over the class of
ows of time K, then so is the logic system T(L)/K.Proof Soundness of US/K gives us the validity of the axioms over K. As for theinference rules, soundness of L guarantees that all formulae generated by Preserveare valid; soundness of US/K guarantees that the other inference rules, when appliedto valid formulae, always generate valid formulae. �Completeness is discussed later in 2.2.3. Let us �rst present a few examples ofthe temporalisation of an existing logic system.Example 2.1 Temporalising modal logic of belief Suppose we have a propo-sitional modal logic of belief B = hLB;`Bi with the modal operator B, in whichBp is intended to mean that p is a proposition that is believed by an agent. Theaxiomatisation, `B, is given by the basic modal logic system K plus the transitivityaxiom 4 as one of the introspective properties of belief systems in [Hintikka 1962]:K 8>>><>>>: All propositional tautologiesB(p! q)! (Bp! Bq)Rules: Subst, MP, B-necessitation + Bp! BBp

2.2 Temporalising an Existing Logic 37The transitivity axiom means that, if some fact is believed, it is believed tobe believed, which represents a positive introspection of the believing agent; for adiscussion on modal logics of belief, see [Halpern and Moses 1985]. This system isprovided with a standard Kripke semantics for modal logics [Hughes and Cresswell1968], with a set of possible worlds W , an accessibility relation R and a valuationfunction V , so that MB = (W;R; V) is a model structure in which the accessibilityrelation R is transitive. Actually, we are considering MB = (W;R; V; o), where o isa \current world" from which the observations are made, so that we may have bothvalidity and satis�ability in the model theory of B.Consider the temporalised logic system T(B) over the class K0 of all
ows oftime. Its inference system `T(B), for example, gives us as theoremsB(p! q)! (Bp! Bq):(Bp ^ :Bp)GB:(Bp ^ :Bp)G(Bp! q)! (U(Bp;Bq)! U(q;Bq)):Suppose we have a theory, i.e. a set of formulae, � = fGBp;Bp! Fp;U(q;Bp)g.We construct one possible model MT(B) by choosing a
ow of time with T =fa; b; c; dg and the partial order < = f(a; b); (b; c); (a; c); (a; d)g. We construct theassignment g such that:g(a) =MB;a j= pg(b) =MB;b j= Bp ^ p,g(c) =MB;c j= Bp ^ q andg(d) =MB;d j= BpIn the resulting model MT(B) = (T;<; g), where T , < and g are constructed asabove, we haveMT(B); a j= � as illustrated below.#" ! #" ! #" !#" !
JĴJĴJĴ-JĴ HHHHHHH����������- ��� ���-���-a dfBpgfpg fBp; qgfBp; pg cb

38 Adding a Temporal Dimension to a Logic SystemBp holds in all points to the future of a, fb; c; dg, so GBp holds at a; Bp is falseat a, so Bp ! Fp holds at a; and q holds at c and Bp holds at b, the only timepoint between a and c, so U(q;Bp) holds at a. �Example 2.2 Temporalising propositional logic Consider classical proposi-tional logic PL = hLPL;`PLi. Its temporalisation generates the logic system T(PL) =hLT(PL);`T(PL)i.It is not di�cult to see that LT(PL) = LUS and `T(PL)=`US, i.e. the temporalisedversion of PL over any K is actually the temporal logic T = US/K. With respect toMT(L), the function g actually assigns, for every time point, a PL model. �Example 2.3 Temporalising US-temporal logic If we temporalise over Kthe one-dimensional logic system US/K we obtain the two-dimensional logic systemT(US) = hLT(US);`T(US)i = T2(PL)=K. In this case we have to rename the two-placeoperators S and U of the temporalised alphabet to, say, S and U .In order to obtain a model for T(US), we must �x a \current time", o, inMUS =(T1; <1; g1) , so that we can construct the modelMT(US) = (T2; <2; g2) as previouslydescribed. Note that, in this case, the
ows of time (T1; <1) and (T2; <2) need not tobe the same. (T2; <2) is the
ow of time of the upper-level temporal system whereas(T1; <1) is the
ow of time of the underlying logic which, in this case, happens tobe a temporal logic.The logic system we obtain by temporalising US-temporal logic is the two-dimensional temporal logic described in [Finger 1992]. �Example 2.4 N-dimensional temporal logic If we repeat the process started inthe last two examples, we can construct an n-dimensional temporal logic Tn(PL)=K(its alphabet including Sn and Un) by temporalising a (n�1)-dimensional temporallogic.Every time we add a temporal dimension, we are able to describe changes inthe underlying system. Temporalising the system L once, we are creating a way ofdescribing the history of L; temporalising for the second time, we are describing howthe history of L is viewed in di�erent moments of time. We can go on inde�nitely,although it is not clear what is the purpose of doing so. �The assumption that the underlying logic system L is an extension of classicallogic allows us to make a clear distinction between boolean and monolithic formulae,avoiding double parsing and reconstructing the boolean formulae and its semanticsin the temporalised system T(L). If we were to temporalise a logic system that is

2.2 Temporalising an Existing Logic 39not an extension of classical logic we could consider all its formulae as being mono-lithic.The problem would then be the di�erent semantics of the boolean connectivesin the underlying system and in the upper-level (classical) temporal system, if thosesymbols are identical in both systems. The solution would be renaming the booleanconnectives, say, in the underlying system. The applications of such a hybrid logicsystem are not clear so, to avoid extra di�culties in the results we are going toprove, we will stick to the constraint that L is an extension of classical logic.2.2.2 The Correspondence MappingWe are now going to relate the temporalised logic system T(L) to the original US-temporal logic used as a base for the temporalisation process. Consider P, a denu-merably in�nite set of propositional letters, and let US be the propositional temporallogic system induced by P. The following de�nes a relationship between a tempo-ralised language LT(L) and a propositional temporal language LUS.De�nition 2.5 The correspondence mapping Consider an enumeration p1,p2, : : :, of elements of P and consider an enumeration �1, �2, : : :, of formulae inMLL. The correspondence mapping � : LT(L) ! LUS is given by:�(�i) = pi for every �i 2MLL; i = 1; 2 : : :�(:�) = :�(�)�(� ^ �) = �(�) ^ �(�)�(S(�; �)) = S(�(�); �(�))�(U(�; �)) = U(�(�); �(�)) �The following is the correspondence lemma, linking temporalised formulae totemporal logic ones.Lemma 2.1 The correspondence mapping is a bijectionProof By two straightforward structural inductions we can prove that � is bothinjective and surjective. Details are omitted. �As a consequence, we can always refer to an element Q of LUS as �(�), becausethere is guaranteed to be a unique � 2 LT(L) such that � is mapped into Q by �. It isclear that the constant ? de�ned as ? = p^:p maps into �(?) = �(p)^:�(p) = ?.We can then establish a connection between consistent formulae in T(L)/K and inUS/K.

40 Adding a Temporal Dimension to a Logic System6??
-
-"(�) consistent�("(�))consistent

model for �
model for �("(�))

� consistent"�
derivedcompleteness of T(L)T(L)

US completeness of US of Lcompleteness
Figure 2.3 Strategy for the proof of completenessLemma 2.2 If � is T(L)-consistent then �(�) is US-consistent.Proof Suppose �(�) is inconsistent. Since all axioms and inference rules in US/Kare also in T(L)/K, the derivation of `US �(�) ! ? can be imitated to derive`T(L) �! ?, which contradicts � being T(L)-consistent. �The results above are very useful for the proof of completeness and decidabilityof T(L).2.2.3 Completeness of T(L)We are going to show here that whenever there exists a complete axiomatisationfor US/K and for L, where K � Klin is any linear class of
ows of time, then thetemporalised logic system T(L)/K is also complete.The strategy of the completeness proof is illustrated in Figure 2.3. We provethe completeness of T(L)/K indirectly by transforming a consistent formula of T(L)and then mapping it into a consistent formula of US. Completeness of US/K is usedto �nd a model for the mapped formula that is used to construct a model for theoriginal T(L) formula.The transformation function " is introduced to deal with the di�erences betweendeductions in US and T(L) due to the presence of the inference rule Preservein T(L). This inference rule states that theorems in L are also theorems in T(L).The model theoretic counterpart of this property is that valid formulae in L arealso valid in T(L). The idea behind the transformation " is to extract the \valid

2.2 Temporalising an Existing Logic 41and contradictory content" that formulae of T(L) may have due to the validity orunsatis�ability of some set of its subformulae in L.De�nition 2.6 The transformations � and " Given a formula � 2 LT(L),consider the following sets:Lit(�) = Mon(�) [f:� j � 2Mon(�)gInc(�) = fV� j � � Lit(�) and � `L ?gwhere Mon(�) is the set of maximal monolithic subformulae of �. We de�ne thenthe operator � (always) and the formulae �(�) and "(�):�� = � ^ G� ^ H��(�) = ^�2Inc(�)�:�"(�) = � ^ �(�) �Since �(�) is a theorem of T(L), we have the following lemma.Lemma 2.3 `T(L) "(�)$ �If K is a subclass of linear
ows of time, we also have the following property:Lemma 2.4 LetMUS be a temporal model over K � Klin such that for some o 2 T ,MUS; o j= �(��). Then, for every t 2 T , MUS; t j= �(��).Therefore, if some subset of Lit(�) is inconsistent, the transformed formula "(�)puts that fact in evidence so that, when � maps it into US, inconsistent subformulaewill be mapped into falsity.To prove the completeness of T(L)/K given the completeness of US/K, we �x an� and assume it is a T(L)-consistent formula. We have then to construct a modelfor � over K.By Lemma 2.3, the formula "(�) is T(L)-consistent and, by Lemma 2.2, �("(�))is US-consistent. Then, by the completeness of US/K, there exists a modelMUS =(T;<; h) with (T;<) 2 K such that for some o 2 T ,MUS; o j= �("(�)).For every t 2 T , de�ne G�(t):G�(t) = f� 2 Lit(�) j MUS; t j= �(�)g

42 Adding a Temporal Dimension to a Logic SystemLemma 2.5 If � is T(L)-consistent, then for every t 2 T , G�(t) is �nite and L-consistent.Proof Since Lit(�) is �nite,G�(t) is �nite for every t. Suppose G�(t) is inconsistentfor some t, then there exist f�1; : : : ; �ng � G�(t) such that `L V�i ! ?. SoV�i 2 Inc(�) and �:(V �i) is one of the conjuncts of "(�). Applying Lemma 2.4to MUS; o j= �("(�)) we get that for every t 2 T , MUS; t j= :(V�(�i)) but by, thede�nition of G�, MUS; t j= V�(�i), which is a contradiction. �We are �nally ready to prove the completeness of T(L)/K.Theorem 2.2 (Completeness for T(L)) If the logical system L is complete andUS/K is complete over a subclass of linear
ows of time K � Klin, then the logicalsystem T(L)/K is complete over K.Proof Assume that � is T(L)-consistent. By Lemma 2.5, we have (T;<) 2 K andassociated to every time point in T we have a �nite and L-consistent set G�(t). By(weak) completeness of L, every G�(t) has a model, so we de�ne the temporalisedvaluation function g:g(t) = fMtL j MtL is a model of G�(t)gConsider the model MT(L) = (T;<; g) over K. By structural induction over �,we show that for every � that is a subformula of � and for every time point t,MUS; t j= �(�) i� MT(L); t j= �We show only the basic case, � 2Mon(�). SupposeMUS; t j= �(�); then � 2 G�(t)andMtL j= �, and henceMT(L); t j= �. SupposeMT(L); t j= � and assumeMUS; t j=:�(�); then :� 2 G�(t) and MtL j= :�, which contradicts MT(L); t j= �; henceMUS; t j= �(�). The inductive cases are straightforward and details are omitted.So, MT(L) is a model for � over K and the proof is �nished. �Theorem 2.2 gives us sound and complete axiomatisations for T(L) over manyinteresting classes of
ows of time, such as the class of all linear
ows of time, Klin,the integers, Z, and the reals, R. These classes are, in their US versions, decidableand the corresponding decidability of T(L) is dealt in Section 2.3. Integer and real
ows of time also have the separation property, which is discussed in Section 2.5.

2.3 The Decidability of T(L) and its Complexity 432.3 The Decidability of T(L) and its ComplexityThe main goal of this section is to show that, if the logic system L is decidable andthe logic system US is decidable over K � Klin, then the logic system T(L) is alsodecidable over K. We assume throughout this section that US/K is complete.De�nition 2.7 Decidability of a Logic System A logic system L is said to bedecidable if there exists an algorithm (a decision procedure) that, for every formula� 2 LL, outputs \yes" if � is a theorem in the logic system L and \no" otherwise.�There are results for decidability of US over several linear classes of
ows of time,among which are the class Klin of all linear
ows of time [Burgess 1984], the integerand the real
ows of time, [Burgess and Gurevich 1985].As in the proof of completeness, we are going to prove the decidability result usingthe correspondence mapping � and the transformation �. Recall De�nition 2.6, inwhich the sets Mon(�), Lit(�) and Inc(�) were all �nite, so that we have thefollowing result about �(�).Lemma 2.6 For any � 2 LT(L), if the logic system L is decidable then there existsan algorithm for constructing �(�).The relationship between T(L) and US that we need to prove the decidability ofT(L) is the following:Lemma 2.7 Over a linear
ow of time, for every � 2 LT(L),`T(L) � i� `US �(�(�)! �):Proof The if case comes trivially from the de�nition of `T(L). For the only if part,suppose `T(L) �. We prove by induction on the deduction of � that `US �(�(�)! �).Basic cases:1. � is obtained using the inference rule Preserve. Then �(�) = ::� and`US �(::�! �).2. � is obtained using the inference rule Subst. Suppose � was obtained bysubstituting pi by �i in some axiom A. Then `US � can be obtained by sub-stituting �(pi) by �(�i) in axiom A.Inductive cases:

44 Adding a Temporal Dimension to a Logic System1. � = G� is obtained using the inference rule TG. Note that �(�) = �(�). Then`US �(�(�))! �(�) by induction hypothesis`US G(�(�(�))! �(�)) by TG`US G(�(�(�)))! �(�) by temporal logic and � = G�`US �(�(�))! G(�(�(�))) by the de�nition of � and K linear`US �(�(�)! �) from the two previous linesSimilarly for � = H�.2. � is obtained from � and � ! � by MP. Then`US �(�(�))! �(�) by induction hypothesis`US �(�(� ! �))! �(� ! �) by induction hypothesis`US �(�(� ! �))! �(�(�)) by the de�nition of �`US �(�(� ! �))! �(�) from the 3rd and 1st lines`US �(�(� ! �))! �(�) from the 4th and 2nd linesLet p be a proposition that occurs in �(�) but not in �(�). If we eliminatefrom �(�(�! �)) all the conjuncts in which p occurs, obtaining �(
), usingthe completeness of US/K we can get `US �(
) ! �(�). If we do that for allsuch propositions, we end up with `US �(�(�)! �). �Theorem 2.3 (Decidability of T(L)) If L is a decidable logic system, and US isdecidable over K � Klin, then the logic system T(L) is also decidable over K.Proof Consider � 2 LT(L). Since L is decidable, by Lemma 2.6 there is an algorith-mic procedure to build �(�). Since � is a recursive function, we have an algorithmto construct �(�(�)! �), and due to the decidability of US over K, we have an ef-fective procedure to decide if it is a theorem or not. Since K is linear, by Lemma 2.7this is also a procedure for deciding whether � is a theorem or not. �Once we have a decidability result, the next natural question is about the com-plexity of the decision procedure. We brie
y discuss here an upper bound for thecomplexity analysis. Let N be the number of (boolean and modal) connectives in aformula, let the complexity of the decision procedure in L be O(fL(N)) and in USbe O(fUS(N)). The decision procedure for T(L) as given by the proof above consistsof basically two steps:1. constructing �(�);2. deciding whether �(�(�)! �) is a theorem or not;

2.4 Conservativeness of T(L) 45The construction of �(�) involves generating all subsets of Lit(�) and applyingthe decision procedure for each subset, therefore its complexity is O(2N � fL(N)).The second step is dominated by the decision procedure of US since the application of� can be done in polynomial time; in the worst case, when all tests in L succeed, thesize of �(�) is O(2N) and therefore the decision is O(fUS(2N)). So an upper boundfor the decision procedure for T(L) is given by the dominating term of O(2N�fL(N))and O(fUS(2N)). As for a lower bound for the decision procedure of T(L), it cannotbe any lower than the highest of the lower bounds for US and L.2.4 Conservativeness of T(L)Conservativeness can be easily derived from the soundness of US and the complete-ness of L, without any assumptions on the
ow of time.De�nition 2.8 Conservative extension A logic system L1 is an extension of alogic system L2 if LL2 � LL1 and if `L2 � then `L1 �. A logic L1 is a conservativeextension of L2 if it is an extension of L2 such that if � 2 LL2, then `L1 � only if`L2 �. �We know that all complete US are conservative extensions of predicate logic PL.Clearly, T(L) is an extension of L. We prove that it is also conservative.Theorem 2.4 (Conservativeness of T(L)) Let L be a complete logic system andUS be sound over K. The logic system T(L) is a conservative extension of L.Proof Let � 2 LL such that `T(L) �. Suppose for contradiction that 6`L �, so bycompleteness of L, there exists a model ML such that ML j= :�. We construct atemporalised model MT(L) = (T;<; g) by making g(t) = ML for all t 2 T . MT(L)clearly contradicts the soundness of T(L) and therefore that of US, so `L �. �2.5 Separation over the Added DimensionThe separation property of the US-temporal logic allows us to rewrite any temporalformula into a conjunction of formulae of the formpast formula and present formula ! future formula.Once a formula is in the format above, it can be imperatively interpreted against apartial temporal model according to [Gabbay 1987], so that if the antecedent holds

46 Adding a Temporal Dimension to a Logic Systemin the past and present in the model, then we must execute the consequent in thefuture so as to make the formula true in the model. The imperative interpretationof a formula (also called the execution of a temporal speci�cation) is based on anasymmetric view of the
ow of time; in a symmetric view of time, whenever theantecedent is true in the past and present, we could either make the consequenttrue in the future or we could try to falsify the antecedent itself, in both casesmaintaining the validity of the temporal speci�cation. In this asymmetric viewof time, we discard the latter possibility and remain with the former as the onlypossibility for the execution of a temporal speci�cation.In this section we want to extend this imperative interpretation of a temporalformula over a logic system L so that, after temporalising L over a
ow of timethat is like the integers or reals, we can execute temporal speci�cations in T(L).The concept of a separated formula is based on the notion of a pure formula, so wepresent the de�nitions of pure formula and separated formula for the US logic.De�nition 2.9 Pure formulae in US1. A pure present formula is a boolean combination of propositional letters.2. A pure past formula is a boolean combination of formulae of the form S(�; �)where � and � are either pure present or pure past formulae.3. A pure future formula is a boolean combination of formulae of the form U(�; �)where � and � are either pure present or pure future formulae.A separated formula is a formula that is a boolean combination of pure formulaeonly. �Once we have a separated formula, it can be brought to a conjunctive normalform, i.e. a conjunction of disjuncts, so that each conjunct can be �nally brought tothe form: pure-present and pure-past ! pure-future.The following is the basic result about separation over the integers.Theorem 2.5 (Separation Theorem) For any formula A 2 LUS there exists aseparated formula B 2 LUS such that A is equivalent to B over an integer-like
owof time.

2.5 Separation over the Added Dimension 47A proof of the separation theorem can be found in [Gabbay 1987; Gabbay, Hod-kinson and Reynolds 1994]. It also holds for the reals. Unfortunately, given aformula A, the automatic generation of an equivalent separated formula involvesexponential computations.The generalisation of pure formula for a temporalised logic system T(L) is givenbelow.De�nition 2.10 Pure temporalised formulae1. every formula � 2 LL is a pure present temporalised formula.2. A pure past temporalised formula is a boolean combination of formulae of theform S(�; �) where � and � are either pure present or pure past temporalisedformulae.3. A pure future temporalised formula is a boolean combination of formulae of theform U(�; �) where � and � are either pure present or pure future temporalisedformulae.A separated temporalised formula is a boolean combination of pure formulae ofT(L). �Example 2.5 Temporalising a modal logic of belief Suppose L is the modallogic system of belief, with the modal operator B. Here are some examples of puretemporalised formulae in T(L):1. Pure present: Bp! p, :(p ^ :p), and any other formula of the logic L.2. Pure past: P (Bp) ! S(Bp;:p).3. Pure future: F (Bp)! :Fp _ G(Bp! :p). �In order to prove the separation theorem for the temporalised logic T(L) we willuse the correspondence mapping. The basic strategy of the proof is illustrated in�gure 2.4.The following is a helpful result that will lead us to the proof of separation forthe temporalised logic T(L).Lemma 2.8 Let � be a correspondence mapping between LT(L) and LUS. �(�) is aseparated formula in the logic US i� � is a separated formula in T(L).

48 Adding a Temporal Dimension to a Logic System6--? equivalence� preservesand separationseparation for T(L)separation for USAny � Separated �Separated �(�)�(�) derived�T(L)USFigure 2.4 Separation of T(L)-formulae via separation of US-formulaeProof From the de�nition of the correspondence mapping it follows that if � isa boolean combination of �1; : : : �n 2 LT(L) then �(�) is a boolean combination of�(�1); : : : ; �(�) 2 LUS. The converse is also true since � is a bijection.Therefore, to show that � is separated in T(L) i� �(�) is separated in US, all wehave to do is to prove that �(�) is a pure formula i� � is a pure formula. We showthe proof for the only if case; the if part is completely analogous.Suppose �(�) is a pure present, then it is a boolean combination of propositionalletters. Therefore � is a boolean combination of monolithic formulae of L, so � is aformula of L and pure present in T(L).Suppose �(�) is pure past, then it is a boolean combination of formulae in LUS ofthe form S(�(�); �(
)) where �(�) and �(
) are pure present or pure past. Therefore� must be a boolean combination of formulae in LT(L) of the form S(
; �), where
and � are, by induction hypothesis, either pure present or pure past. Therefore � isa pure past formula in LT(L).Suppose �(�) is pure future, then by an argument analogous to the previouscase, � is a pure future formula. Therefore we have proved that if �(�) is a pureformula in LUS, � is a pure formula in LT(L). �Theorem 2.6 (Separation Theorem for T(L)) If � is any formula in LT(L),then there exists a separated formula � 2 LT(L) such that � is equivalent to � overan integer-like
ow of time.Proof All we have to do is to prove that if � and � are formulae of T(L) and`US �(�)$ �(�) then `T(L) �$ �. In fact, since all axioms and inference rules ofUS also belong to T(L), the deduction of `US �(�)$ �(�) also leads to `T(L) �$ �.

2.6 Temporalising First-Order Logic 49Let then � be any formula of T(L). From the separation theorem of US, we knowthat there exist a separated �, such that `US �(�) $ �(�) and �(�) is separated.So by Lemma 2.8, � is also a separated formula equivalent to �. �Once we have the separation property for the temporalised system T(L), we canrewrite any temporalised formula into a separated equivalent one of the formpure temporalised past and present ! pure temporalised future.The imperative interpretation of such a formula is the following. If the antecedentholds in past and present models of the logic system L, then we execute the tempo-ralised formula by constructing a future model (or a series or future models) of L soas to make the consequent true.Since the separation property also holds for a real
ow of time, the proof abovecan be trivially adapted to a real
ow of time. Note that the separation property forthe temporalised system was obtained without any assumptions on the underlyinglogic system L, as opposed to the results of soundness, completeness and decidability,all of which depend on whether the property holds for the underlying logic systemL.2.6 Temporalising First-Order LogicIn this section we examine in more detail the addition of a temporal dimension to a�rst-order language as a particularly interesting application of the temporalisationprocess. For fully quanti�ed temporal predicate logic overZ,the set of valid formulaeis not recursively enumerable [Garson 1984], so it is neither complete nor decidable,despite the fact that US/Zis both complete and decidable [Reynolds 1992; Burgessand Gurevich 1985]. It is clear that the discussion of temporalising �rst-order logicwill involve only sublanguages of fully quanti�ed temporal predicate logic.We will consider a �rst-order language with the quanti�er 8, an equality symbol=, a countable set of variables X = fx1; x2; : : :g, a countable set of predicate symbolsP = fp1; p2; : : :g such that every predicate symbol has an associated natural numbern > 0, called its arity, a set C of constant symbols and a set F of functional symbols;C and F are possibly empty. The quanti�er 9 can be de�ned in the normal wayas 9 = :8:. A term is either a variable, a constant symbol or an n-ary functionsymbol applied to n terms. The notion of the set of free variables of a formula isthe usual one. A sentence is a formula with no free variables.

50 Adding a Temporal Dimension to a Logic SystemA �rst-order domain D is a non-empty set. An interpretation I is a mappingthat associates, for every constant in the language an element in the domain, and forevery n-place predicate symbol an n-ary relation over Dn. An assignment function Ais a mapping that associates every variable with an element of the domain. A �rst-order model is a pairM = (D;I). If t is a term, [[t]]I;A 2 D represents its extensionover the domain D under interpretation I and assignment A. The semantics of a�rst-order language is then de�ned in the usual way, where M;A j=FOL � reads \Mis a model of the formula � under assignment A":M;A j=FOL pi(t1; : : : ; tn) i� h[[t1]]I;A; : : : ; [[tn]]I;Ai 2 I(pi), for alln-ary predicate symbols pi 2 P .M;A j=FOL :� i� M;A 6j=FOL �:M;A j=FOL � ^ � i� M;A j=FOL � and M;A j=FOL �:M;A j=FOL t1= t2 i� [[t1]]I;A = [[t2]]I;A.M;A j=FOL 8x� i� for any assignment A0 which agreeswith A, except possibly on variablex,M;A0 j=FOL �.We say that � has a model M, and write M j=FOL �, if M;A j=FOL � for allassignments A (when � is a sentence, either all assignments or none will satisfy it).The derivability relation, F̀OL, can be any of the existent ones for �rst-orderlogic. It can be an axiomatic system, but it needs not.Since in �rst-order logic we have a basic distinction between sentences and or-dinary formulae, we have to consider both cases of adding a temporal dimension tomonolithic sentences and to monolithic formulae in general.2.6.1 Temporalising First-Order SentencesIf we temporalise �rst-order sentences, we have no problems in following the method-ology we have developed so far. We �rst identify the monolithic sentences as thosethat are not in the format �^� or :�. For instance, 8xp(x) and 8x:(q(x)^:q(x))are monolithic sentences, whereas 9xp(x) (implicit negation) and 8xp(x)^ 8y:q(y)are boolean combinations. We then follow the procedure described in Section 2.2,obtaining the logic system T(FOs). Note that in T(FOs) a temporal operator neveroccurs inside the scope of a quanti�er.The structure of the �rst-order models that compose the temporalised modeldeserves some special attention, since one model may di�er form another in several

2.6 Temporalising First-Order Logic 51Element Fixed VariableDomain constant variabledomains domainsConstant and rigid non-rigidFunctional Symbols or
exiblePredicate Symbols rigid non-rigidor
exibleAssignment global localTable 2.1 Degrees of freedom in temporalising �rst-order models.di�erent ways, as if we had various \degrees of freedom" in generating a temporalisedversion of �rst-order models. Those degrees of freedom are illustrated in Table 2.1.If all �rst-order models that compose a temporalised modelMT(FOs) refer to thesame domain, a constant domain assumption is satis�ed; otherwise, we have varyingdomains. We may have rigid constant and rigid functional symbols, i.e. they havethe same interpretation in every model of the temporalised structure; they are callednon-rigid or
exible otherwise. A rigid predicate symbol has the same interpretationat all times; otherwise it is a
exible predicate symbol. And �nally, the assignmentfunction may be global, i.e. all variables are assigned the same domain element inall models of the temporalised structure (global assignments make sense only undera constant domain assumption); otherwise, it is a local assignment.In fact, constant domains or rigid terms or predicates are not a consequenceof the temporalisation; they are, actually, further assumptions on the temporalised�rst-order model made so as to impose some external intended meaning of addinga temporal dimension to a logic system. All the previously established results ofsoundness, completeness and separation are valid for unconstrained T(FOs); decid-ability is obviously not applicable.Nevertheless, there is no quanti�cation over the temporal operators in T(FOs),which means that the expressivity of this logic is clearly limited. In the following,we examine one step further in increasing this expressivity, while still keeping theoriginal idea of adding a temporal dimension to a logic system.

52 Adding a Temporal Dimension to a Logic System2.6.2 Temporalising First-Order FormulaeWe take now general monolithic �rst-order formulae as a basis for the addition ofa temporal dimension, i.e. all �rst-order formulae that are not of the form :� or�^�. We generate thus the logic system T(FOf). Note that the language of T(FOs)is contained in the language of T(FOf).The particular feature that distinguishes this system from all the previouslyconsidered systems is that, since we are considering �rst-order formulae that maycontain free variables, monolithic formulae with free variables only have a de�nedsemantics over a �rst-order model MFOL if a variable assignment function is pro-vided, and the free variables of a �rst-order formula used to build a temporalisedformula � remain free in �.Therefore, while constructing a model for the system T(FOf), we must considerthe existence of a global assignment function, Ag, to cope with the free variables.A global assignment function makes sense only in a constant domain context, so wemust have this assumption as well; we further assume that all terms are rigid. Thee�ect of the global assignmentAg is to ground all the free variables of a temporalisedformula �. Only the interpretation of predicate symbols changes among the modelsof L in the temporalised model structure. We writeMT(FOf) j= � i� MT(FOf);Ag j= � for every Ag:Since the construction of its temporalised model and inference system does notfollow exactly the way other temporal systems were constructed, the results pre-viously established of soundness, completeness and separation cannot be applieddirectly.We know that the more expressive full �rst-order temporal logic has no possible�nite axiomatisation over several useful classes of linear
ows of time like fRg, fZgand fNg, e.g. see [Garson 1984], but we do have a �nite axiomatisation for T(FOs);the full �rst-order temporal logic, or another restriction of it, will be revisited inChapter 4 in the de�nition of a query language for temporal databases. The logicsystem T(FOf) has an intermediary expressive power and it can be shown thatT(FOf) cannot be �nitely axiomatised over the natural numbers, although we willnot do it here; it follows that completeness results are not transferred to T(FOf).Perhaps more interesting is that separation can be achieved for this logic throughmodel theory.Since the concept of separated formula is purely syntactic and does not dependon the model or the inference system, the de�nition of a separated temporalised

2.6 Temporalising First-Order Logic 53formulae given by De�nition 2.10 is also valid for T(FOf). For the same reasons, thede�nition of a correspondence mapping � and the correspondence lemma 2.1 statingthat � is a bijection are also valid in T(FOf).De�nition 2.11 Corresponding Model Let MT(FOf) = (T;<; g) be a model ofT(FOf), and let A be a global assignment. We construct the valuation function g�such that, for every time point t 2 T and for every propositional letter p = �(�) 2 Pwe have �(�) 2 g�(t) i� MT(FOf);A; t j= �:A model of the temporal logic system US, M�US = (T;<; g�), is then called thecorresponding model of MT(L) under the corresponding mapping � and assignmentA. �Lemma 2.9 If M�US is the corresponding model of MT(FOf) under � and A thenM�US; t j= �(�) i� MT(FOf);A; t j= �for every � 2 LT(L) and for every t 2 T .Proof Straightforward by structural induction on �. �Theorem 2.7 (Separation for T(FOf)) For every � 2 LT(FOf) there exists a sep-arated formula � 2 LT(FOf) such that � is equivalent to � over an integer-like
owof time.Proof Let � be a correspondence mapping and A an arbitrary global assignment. Consider a temporalised model MT(FOf) = (T;<; h), (T;<) 2 Z, and let M�US =(T;<; g�) be its correspondent model under � and A. By Lemma 2.9, we haveM�US; t j= �(�) i� MT(FOf);A; t j= � (2.1)for every � 2 LT(FOf) and for every t 2 T .By the separation theorem for US we get that, for every formula �(�) 2 LUSthere exists a separated formula �(�) 2 LUS such thatM�US; t j= �(�) i� M�US; t j= �(�) (2.2)for all time points t 2 T .By Lemma 2.8, we have that the corresponding mapping preserves separation,i.e. � is a separated formula i� �(�) is a separated formula and, by applicationof (2.1) M�US; t j= �(�) i� MT(FOf);A; t j= � (2.3)

54 Adding a Temporal Dimension to a Logic Systemfor all time points t 2 T .Combining (2.1), (2.2) and (2.3) we get that, for every � 2 LT(FOf) there existsa separated � 2 LT(FOf) such that, for all t 2 TMT(FOf);A; t j= � i� MT(FOf);A; t j= � (2.4)Since the assignment A was arbitrarily chosen and the separated � does notdepend on the particular choice ofA, expression (2.4) holds for any global assignmentA, and separation for T(FOf) remains proved. �We note that if we �x a current time, o, and a global assignmentAg, we can applythe temporalisation process to the logic system T(FOf), obtaining a two-dimensionaltemporal predicate system, T2(FOf), as a predicate version of the two-dimensionalpropositional system described in example 2.3.2.7 Internalising the Temporal DimensionThere are three basic approaches to adding a temporal dimension to a logic system,namely:1. The temporal operators approach, i.e. the external approach.2. The �rst-order internalisation of the temporal dimension.3. A mixed approach combining the two approaches above.Those three di�erent approaches are discussed in detail in [Gabbay 1990] in thecontext of propositional temporal logic. The �rst approach is the one we have beenfollowing so far. Here we brie
y present the other ones in the context of temporalisedformulae.Consider the propositional temporal formula in US:raining ! F rainingexpressing that if it is not raining now, it will rain in the future. This statementcould actually be completely coded in a monadic �rst-order language with a singletemporal argument for the predicate raining. The resulting formulation would be:raining�(t)! 9s(t < s ^ raining�(s)):This process of getting rid of the temporal operators by adding a new temporalargument to the predicates plus some extra conditions on those arguments can be

2.7 Internalising the Temporal Dimension 55done systematically by an internalisation function � de�ned inductively over thestructure of a formula of T and also taking as argument a reference time point,generating a monadic predicate formula, one sort over time and the other sort overdomain elements. We call this process the internalisation of the temporal dimension.The internalisation of the temporal dimension can be generalised to temporalised�rst-order sentences and is basically obtained by the standard translation of tem-poral logic into predicate logic, e.g. [van Benthem 1983], with an extra argument toincorporate the temporal reference; this extra argument can be interpreted as theresult of Quine's \eternalisation" of �rst-order sentences [Quine 1960].In the internalised version it is necessary to incorporate a theory expressing theproperties of the
ow of time K = (T;<) to restore the deductive capability oftemporal formulae. However, there are several
ows of time over which there arecomplete temporal axiomatisations that are not de�nable in �rst-order logic, e.g.the integers and the reals.Another way of getting to a �rst-order predicate logic approach to temporallogic, as proposed by Gabbay [1991b], is by mixing two predicate logic languages inthe following way. Let G (for global) and L (for local) be two �rst-order languages.The two-sorted predicate language L�k(G) is the result of mixing the G and L (inour present notation it would be G(L�k)). If we consider the language L�1(G), then aformula of the form A�(t; x1; : : : ; xn) means that A(x1; : : : ; xn) holds at time t (herethe formula A(x1; : : : ; xn)indicates that A is a �rst-order formula with free variablesx1; : : : ; xn). This language is the same language of the internalised temporal di-mension system. But this approach gives us a way of creating an internalised logicsystem in a very similar way to that in which a temporalised system was created,i.e. as a result of putting two languages together. In fact, the original languagesG and L can be seen as two linked languages \sharing variables' in the languageL�1(G) [Gabbay 1991b]. One of the original languages, G, has the exclusivity of deal-ing with temporal facts, as the upper-level US-temporal logic system, whereas thelanguage L is responsible only for the local behaviour at each point in the
ow oftime.The temporal operators approach to a temporalised formula can be seen as treat-ing time points implicitly, always referring to a current time. The �rst-order inter-nalisation refers explicitly to the points in the
ow of time. A hybrid form ofinternalisation of the temporal dimension can be obtained by combining temporaloperators with �rst-order internalised formulae, mixing the explicit reference withthe implicit reference of time.

56 Adding a Temporal Dimension to a Logic SystemIn the combined approach [Gabbay 1991b], every temporalised formula � is as-sociated with a �rst-order atomic formula holds(t; �), where � is now treated as a�rst-order term, and the free variables of � are considered free in holds(t; �). A set ofaxioms is added to combine the holds(t; �) formulae with the �rst-order internalisedformulae, for example:holds(t; �) $ (�)�[t], for all monolithic � 2 LLholds(t; � ^ �) $ holds(t; �) ^ holds(t; �)holds(t; S(�; �)) $ 9s[s < t ^ holds(s; �) ^ 8u(s < u < t! holds(u; �))]etc.As in the internalised approach, in the combined approach we still have to provideaxioms for the
ow of time.ConclusionsWe have shown in this chapter a way of composing an upper-level temporal logicsystem with a generic underlying logic system L and the resulting logic system T(L)was called the temporalisation of system L. We used the correspondence mappingmethod to prove soundness, completeness, decidability, conservativeness and separa-tion for the temporalised logic system over linear
ows of time. All those propertieswere initially properties of the temporal logic system. Many other properties remainto be analysed, such as compactness, �nite model property and interpolation amongothers; the properties discussed here over classes of linear
ows of time remain tobe expanded for all classes of
ows of time.We need by no means restrict the upper-level logic system to temporal logic.In fact, the temporalisation presented here can be generalised to any propositionalmodal logic system M in the role of the upper-level logic system, so as to createa modalised logic system M(L). Its language and inference system can be obtainedfollowing the method we used to derive the those of T(L), based on the monolithicformulae of L. If the logic M has a possible world semantics, each possible world maybe substituted by a model of L, so as to construct a model for the system M(L) inthe same way a model was built for T(L). The correspondence mapping method maythen be used to study how the properties of the modal logic system M are preservedin the modalised logic system M(L).

Chapter 3Combinations of One-DimensionalTemporal LogicsWe have seen in the previous chapter how to add a temporal dimension to a logicsystem. In particular, if a temporal logic is itself temporalised we obtain a two-dimensional temporal logic. Such a logic system is, however, very weakly expressive;if T is the internal (horizontal) temporal logic in the temporalisation process (F 2T), and T is the external (vertical) one (F 2 T), we cannot express that verticaland horizontal future operators commute,FF A$F FA:In fact, the subformula FF A is not even in the temporalised language of T(T), noris the whole formula. In this chapter we study other methods of combining two one-dimensional temporal logics (1DTLs), into a two-dimensional temporal logic (2DTL),that are more expressive than the simple temporalisation of a 1DTL. Our approachto the study of such combinations of logics continues to be based on the analysisof how logical properties are transferred from the component logic systems to thecombined, two-dimensional one. In this chapter we concentrate on the properties ofsoundness, completeness and decidability, and we study the methods for combining1DTLs by independent combination, full interlacing and restricted interlacing intoseveral di�erent 2DTLs. Furthermore, we analyse the notion of a diagonal in atwo-dimensional model.Notation: Throughout this presentation, we refer to one of the temporal di-mensions as the horizontal dimension and the other one as the vertical dimension;the symbols related to the vertical dimension are normally obtained by putting abar on top of the corresponding horizontal ones, e.g. T and T, Fand F , < and <.57

58 Combinations of One-Dimensional Temporal Logics3.1 IntroductionIn this chapter we introduce several methods for combining two one-dimensionaltemporal logics into a two-dimensional one. There are two distinct criteria forde�ning a modal/temporal logic system as two-dimensional:(i) If the alphabet of the language contains two non-empty, disjoint sets of cor-responding modal or temporal operators, � and �, each set associated to adistinct
ow of time, (T;<) and (T ; <), then the system is two-dimensional.(ii) If the truth value of a formula is evaluated with respect to two time points,then the system is two-dimensional. In this case, we even have the distinctionbetween strong and weak interpretation of formulae that, as a consequence,generates di�erent notions of valid formulae (a formulae is valid if it holds inall models for all pair of time points). Under the strong interpretation, thetruth value of atoms depends on both dimensions, giving origin to stronglyvalid formulae when the evaluation of formulae is inductively extended to allconnectives. In the weak interpretation, the truth value of atoms dependsonly on the one dimension, e.g. the horizontal dimension, giving origin toweakly valid formulae. Usually for this notion of two-dimensionality, bothtime points refer to the same
ow of time, so we may also have the notionof (weak/strong) diagonally valid formulae by restricting validity to the casewhere both dimensions refer to the same point, i.e. A is diagonally valid i�M; t; t j= A for all M and t; see [Gabbay, Hodkinson and Reynolds 1994] formore details.Criterion (i) above will sometimes be called the syntactic criterion for two-dimensionality, although it is not completely syntactic, i.e. it depends on the se-mantic notion of
ows of time; criterion (ii) will be called the semantic criterion fortwo- dimensionality.Note that both cases can yield, as an extreme case, one-dimensional temporallogic. In (i), by making T = T and < = (<)�1 = (>), i.e. by taking two
ows withthe same set of time points such that one order is the inverse of the other; in thiscase, the future operators � = fF;G;Ug are associated with (T;<) and the pastoperators � = fP ;H; Sg are associated with (T;>). In (ii), by �xing one dimensionto a single time point so that the second dimension becomes redundant.These two distinct approaches to the two-dimensionality of a system are inde-pendent. In fact, we will see in Section 3.2 a system that contains two distinct sets ofoperators over two classes of
ows of time, but its formulae are evaluated at a single

3.1 Introduction 59point. On the other hand, there are several temporal logics in the literature satisfy-ing (ii) but not (i), containing a single set of temporal operators in which formulaeare evaluated according to two or more time points in the same
ow [Aqvist 1979;Kamp 1971; Gabbay, Hodkinson and Reynolds 1994].A logic system that respects both the syntactic and the semantic criteria fortwo-dimensionality is called broadly two-dimensional , and this will be the kind ofsystem we will be aiming to achieve through combination methods; we considerin this work only strong evaluation and validity; the weak interpretation gener-ates systems with the expressivity of only monadic �rst-order language [Gabbay,Hodkinson and Reynolds 1994], but for broadly two-dimensional systems we areinterested in the expressivity of dyadic �rst-order language, although it is knownthat no set of temporal operators can be expressively complete1 over dyadic �rst-order language [Venema 1990]. Venema's [1990] two-dimensional temporal logic,Segerberg's [1973] two-dimensional modal logic and the temporalisation of a tempo-ral logic are all broadly two-dimensional; so are the combined logics in Sections 3.3and 3.4.In the study of one-dimensional temporal logics (1DTLs) several classes of
owsof time are taken into account. When we move to 2DTLs, the number of suchclasses increases considerably, and every pair of one-dimensional classes can be seenas generating a di�erent two-dimensional class. The study of 2DTLs would bene�tmuch if the properties known to hold for 1DTLs could be systematically transferredto 2DTLs, avoiding the repetition of much of the work that has been published inthe literature. This is a strong motivation to consider methods of combination of1DTLs into 2DTLs and studying the transference of logical properties through eachmethod. Also in favour of such an approach is the fact that the results concerning2DTLs are then presented in a general, compact and elegant form.In providing a method to combine two 1DTLs T and T we have to pay attentionto the following points:(a) A method for combining logics T and T is composed of three submethods,namely a method for combining the languages of T and T, a method forcombining their inference systems and a method for combining their semantics.1A modal/temporal language is expressively complete over a class of �rst-order formulae if,for any �rst-order formula A in that class, there exists a modal/temporal formula B such thatA is �rst-order equivalent to B�, where B� is the standard �rst-order translation of B [Gabbay,Hodkinson and Reynolds 1994].

60 Combinations of One-Dimensional Temporal Logics(b) We study the combined logic system with respect to the way certain logicalproperties of T and T are transferred to the two-dimensional combination. Wefocus here on the properties of soundness, completeness and decidability of thecombined system given those of the component ones.(c) The combined language should be able to express some properties of the inter-action between the two-dimensions; otherwise the combination is just a partialone, and the two systems are not fully combined. For example, it is desirableto express formulae like FF A$F FA and PF A$F PA that are not in thetemporalised language of T(T).(d) If we want to strengthen the interaction between the two systems, some proper-ties of the interaction between the two-dimensions are expected to be theoremsof the combining system, e.g. the commutativity of horizontal and vertical fu-ture operators such as FF A$F FA and PF A$F PA.(e) We want the combination method to be as independent as possible from theunderlying
ows of time.All methods of combination must comply with item (a). The method for com-bining the languages of T and T includes the choice of which sublanguage of T andT is going to be part of the combined two-dimensional language, as well as the wayin which this combination is done; in this presentation we will work, in the mostgeneral case, with the standard languages of S and U , S and U , but we also considersome sublanguages, e.g. the monolithic subformulae in the case of temporalisation,or the sublanguage generated by a set of derived operators, e.g. the vertical \previ-ous" (w) and \next" (g) in Section 3.4. In combining the inference systems of Tand T, we will assume that they are both an extension of classical logic and that theyare presented in the form of a regular, normal axiomatic system (�;I), where � is aset of axioms and I is a set of inference rules; one important requirement is that thecombined system be a conservative extension of the two components. The combinedsemantics has to deal with the structure of the combined model, the evaluation oftwo-dimensional formulae over those structures and also with the combinations ofclasses of
ows of time, e.g. in the temporalisation of T=K with external T=K wegenerated the logic T(T) that is complete over the class K(K).Items (b), (c), (d) and (e) may con
ict with each other. In fact, the rest ofthis chapter shows that this is the case, as we try to compromise between expres-sivity, independence of the underlying
ow of time and the transference of logicalproperties.

3.2 Independent Combination 613.2 Independent CombinationWe have seen that the temporalisation process when applied to a temporal logic gen-erates a weakly expressive 2DTL due to the syntactic restrictions imposed by thetemporalisation method itself. The idea is then to de�ne a new method of combi-nation of logic systems that puts together all the expressivity of the two componentlogic systems; for that we assume that the language of a system is given by a set offormation rules. For example, we repeat here the formation rules of the language ofUS-temporal logic over a set of propositional atoms P:� every atomic proposition is in it;� if A;B are in it, so are :A and A^B;� if A;B are in it, so are U(A;B) and S(A;B).De�nition 3.1 Let Op(L) be the set of non-boolean operators of a generic logic L.Let T and T be logic systems such that Op(T) \ Op(T) = ?. The fully combinedlanguage of logic systems T and T over the set of atomic propositions P, is obtainedby the union of the respective set of connectives and the union of the formationrules of the languages of both logic systems. �Let the operators U and S be in the language of US and U and S be in that of �U�S.Note that the renaming of the temporal operator is done prior to the combination, sothat the combined systems contains the set of boolean operators f:;^g coming fromboth components, plus the set of temporal operators fU;S;U;S g. The formationrules of the languages of US and �U�S have the �rst two rules in common, so theirfully combined language over a set of atomic propositions P is given by� every atomic proposition is in it;� if A;B are in it, so are :A and A^B;� if A;B are in it, so are U(A;B) and S(A;B).� if A;B are in it, so are U (A;B) and S (A;B).In general, we do not want any non-boolean operator to be shared between thetwo languages, for this may cause problems when combining their axiomatisations.For example2, if a generic operator � belongs to both temporal logic system such2this example is due to Ian Hodkinson

62 Combinations of One-Dimensional Temporal Logicsthat T contains axiom q$�q and system T contains axiom :q$�q, the unionof their axiomatisations will result in an inconsistent systems even though eachsystem might have been itself consistent. To avoid such a behaviour the restrictionOp(T) \ Op(T) = ? was imposed on the fully combined language of T and T.Not only are the two languages taken to be independent of each other, but the setof axioms of the two systems are supposed to be disjoint; so we call the followingcombination method the independent combination of two temporal logics.De�nition 3.2 Let US and �U�S be two US-temporal logic systems de�ned over thesame set P of propositional atoms such that their languages are independent. Theindependent combination US � �U�S is given by the following:� The fully combined language of US and �U�S.� If (�;I) is an axiomatisation for US and (�;I) is an axiomatisation for �U�S,then (� [�;I [I) is an axiomatisation for US � �U�S. Note that the set ofaxioms � and � are supposed to be disjoint, but not the inference rules.� The class of independently combined
ows of time is K � K composed ofbiordered
ows of the form (~T;<; <) where the connected components of(~T;<) are in K and the connected components of (~T ; <) are in K, and ~Tis the (not necessarily disjoint) union of the sets of time points T and Tthat constitute each connected component; such a biordered
ow of time hasbeen discussed in [Kracht and Wolter 1991] for the case of the independentcombination of two mono-modal systems.A model structure for T � T over K � K is a 4-tuple (~T;<;<; g), where(~T;<; <) 2 K �K and g is an assignment function g : ~T ! 2P .The semantics of a formula A in a model M = (~T ;<; < ; g) is de�ned as theunion of the rules de�ning the semantics of US=K and �U�S=K. The expressionM; t j= A reads that the formula A is true in the (combined) modelM at thepoint t 2 ~T . The semantics of formulae is given by induction in the standardway:M; t j= p i� p 2 g(t) and p 2 P:M; t j= :A i� it is not the case that M; t j= A.M; t j= A ^B i� M; t j= A and M; t j= B.

3.2 Independent Combination 63M; t j= S(A;B) i� there exists an s 2 ~T with s < t and M; s j= Aand for every u 2 ~T , if s < u < t thenM; u j= B.M; t j= U(A;B) i� there exists an s 2 ~T with t < s and M; s j= Aand for every u 2 ~T , if t < u < s thenM; u j= B.M; t j= S (A;B) i� there exists an s 2 ~T with s< t and M; s j= Aand for every u 2 ~T , if s<u< t thenM; u j= B.M; t j= U (A;B) i� there exists an s 2 ~T with t< s and M; s j= Aand for every u 2 ~T , if t<u<s thenM; u j= B. �Note that, despite the combination of two
ows of time, formulae are evaluatedaccording to a single point. The independent combination generates a system thatis two-dimensional according to the �rst criterion but fails the second one, so it isnot broadly two-dimensional.The following result is due to [Thomason 1980] and is more general than theindependent combination of two US-logics.Proposition 3.1 With respect to the validity of formulae, the independent combi-nation of two modal logics is a conservative extension of the original ones.Note that we have de�ned conservative extension in Chapter 2 in proof theo-retical terms; completeness for the independently combined case will lead to theconservativeness with respect to theorems.As usual, we will assume that K;K � Klin, so < and < are transitive, irre
exiveand total orders; similarly, we assume that the axiomatisations are extensions ofUS/Klin.The temporalisation process will be used as an inductive step to prove the trans-ference of soundness, completeness and decidability for US� �U�S over K�K. Let us�rst consider the degree of alternation of a (US� �U�S)-formula A for US, dg(A), and�U�S, dg(A).dg(p) = 0 dg(p) = 0dg(:A) = dg(A) dg(:A) = dg(A)dg(A^B) = maxfdg(A); dg(B)g dg(A^B) = maxf dg(A); dg(B)gdg(S(A;B)) = maxfdg(A); dg(B)g dg(S (A;B)) = maxf dg(A); dg(B)gdg(U (A;B)) = maxfdg(A); dg(B)g dg(U (A;B)) = maxf dg(A); dg(B)gdg(S (A;B)) = 1 +maxf dg(A); dg(B)g dg(S(A;B)) = 1 +maxfdg(A); dg(B)gdg(U (A;B)) = 1 +maxf dg(A); dg(B)g dg(U(A;B)) = 1 +maxfdg(A); dg(B)g

64 Combinations of One-Dimensional Temporal LogicsAny formula A of US � �U�S can be seen as a formula of some �nite number ofalternating temporalisations of the form US(�U�S(US(: : :))); more precisely, A canbe seen as a formula of US(Ln), where dg(A) = n, US(L0) = US, �U�S(L0) = �U�S, andLn�2i = �U�S(Ln�2i�1), Ln�2i�1 = US(Ln�2i�2), for i = 0; 1; : : : ; dn2e � 1.Lemma 3.1 Let US and �U�S be two complete logic systems. Then, A is a theoremof US� �U�S i� it is a theorem of US(Ln), where dg(A) = n.Proof If A is a theorem of US(Ln), all the inferences in its deduction can berepeated in US� �U�S, so it is a theorem of US� �U�S.Suppose A is a theorem of US � �U�S; let B1; : : : ; Bm = A be a deduction of A inUS� �U�S and let n0 = maxfdg(Bi)g, n0 � n. We claim that each Bi is a theorem ofUS(Ln0). In fact, by induction onm, ifBi is obtained in the deduction by substitutinginto an axiom, the same substitution can be done in US(Ln0); if Bi is obtained byTemporal Generalisation from Bj, j < i, then by the induction hypothesis, Bj is atheorem of US(Ln0) and so is Bi; if Bi is obtained by Modus Ponens from Bj andBk, j; k < i, then by the induction hypothesis, Bj and Bk are theorems of US(Ln0)and so is Bi.So A is a theorem of US(Ln0) and, since US and �U�S are two complete logicsystems, by Theorem 2.4, each of the alternating temporalisations in US(Ln0) is aconservative extension of the underlying logic; it follows that A is a theorem ofUS(Ln), as desired. �The transference of soundness, completeness and decidability follows directlyfrom this result.Theorem 3.1 (Independent Combination) Let US and �U�S be two sound, com-plete and decidable logic systems over the classes K and K, respectively. Then theirindependent combination US � �U�S is sound, complete and decidable over the classK�K.Proof Soundness follows immediately from the validity of axioms and inferencerules. For completeness, suppose that A is a consistent formula in US� �U�S; byLemma 3.1, A is consistent in US(Ln), so we construct a temporalised model for it,and we obtain a model (~T1; <1; g1; o1) over K(K(K(: : :))), where o1 is the \currenttime" necessary for the successive temporalisations. We show now how it can betransformed into a model over K �K.Without loss of generality, suppose that US is the outermost logic system inUS(�U�S(US(: : :))), and let n be the number of alternations. The construction is

3.3 Full Interlacing 65recursive, starting with the outermost logic. Let i � n denote the step of the con-struction; if i is odd, it is a US-temporalisation, otherwise it is a �U�S-temporalisation.At every step i we construct the sets ~Ti+1, <i+1 and < i+1 and the function gi+1.We start the construction of the model at step i = 0 with the temporalisedmodel (~T1; <1; g1; o1) such that (~T1; <1) 2 K, and we take < 1 = ?. At step i < n,consider the current set of time points ~Ti; according to the construction, each t 2 ~Tiis associated to:� a temporalised model gi(t) = (~T ti+1; <ti+1; gti+1; oti+1) 2 K and take <ti+1 = ?,if i is even; or� a temporalised model gi(t) = (~T ti+1; <ti+1; gi+1; oti+1) 2 K and take <ti+1= ?, ifi is odd.The point t is made identical to oti+1 2 ~T ti+1, so as to add the new model to thecurrent structure; note that this preserves the satis�ability of all formulae at t. Let~Ti+1 be the (possibly in�nite) union of all ~T ti+1 for t 2 ~Ti; similarly, <i+1 and < i+1are generated. And �nally, for every t 2 ~Ti+1, the function gi+1 is constructed asthe union of all gti+1 for t 2 ~Ti.Repeating this construction n times, we obtain a combined model over K � K,M = (~Tn; <n; < n; gn), such that for all t 2 ~Tn, gn(t) � P. Since satis�abilityof formulae is preserved at each step, it follows that M is a model for A, andcompleteness is proved.For decidability, again by Lemma 3.1, we can recursively apply the decisionprocedure of US(Ln) and �U�S(Ln�1), starting with n = dg(A), thus obtaining adecision procedure for US� �U�S. �3.3 Full InterlacingWith respect to the generation of two-dimensional systems, the method of inde-pendent combination has two main drawbacks. First, it generates logic systemswhose formulae are evaluated at one single time point, not generating a broadlytwo-dimensional logic. Second, since the method independently combines the twocomponent logic systems, no interaction between the dimension is provided by it. Asa consequence, although a formula like FF A$F FA is expressible in its language, itwill not be valid, as can easily be veri�ed, for it expresses an interplay between thedimensions. We therefore introduce the notion of a two-dimensional plane model .

66 Combinations of One-Dimensional Temporal LogicsDe�nition 3.3 Let K and K be two classes of
ow of time. A two-dimensionalplane model over the fully combined class K �K is a 5-tuple M = (T;<; T ;<; g),where (T;<) 2 K, (T;<) 2 K and g : T�T ! 2P is a two-dimensional assignment.The semantics of the horizontal and vertical operators are independent of each other.M; t; x j= S(A;B) i� there exists s < t such that M; s; x j= A andfor all u, s < u < t,M; u; x j= B.M; t; x j= S (A;B) i� there exists y<x such that M; t; y j= A andfor all z, y<z<x, M; t; z j= B.Similarly for U and U , the semantics of atoms and boolean connectives remainingthe standard one. A formula A is (strongly) valid over K � K if for all modelsM = (T;<; T ;<; g), for all t 2 T and x 2 T we haveM; t; x j= A. �With respect to the expressivity of fully combined two-dimensional languages,Venema [1990] has shown that no �nite set of two-dimensional temporal operatorsis expressively complete over the class of linear
ows with respect to dyadic �rst-order logic | despite the fact that US-temporal logic is expressively complete withrespect to monadic �rst-order logic over N and over R, and that, with additionaloperators (the Stavi operators), we can get expressive completeness over Q and Klin[Gabbay 1981b]. So expressive completeness is not transferred by full interlacing.It is easy to verify that the following formulae expressing the commutativity offuture and past operators between the two dimensions are valid formulae in two-dimensional plane models.I1 FF A$F FAI2 FPA$PFAI3 PF A$F PAI4 PPA$PPATherefore, if we want to satisfy both the syntactic and the semantic criteriafor two-dimensionality, we may de�ne the method of full interlacing containing thefully combined language of US and �U�S and their fully combined class of models. Thequestion is whether there is a method for combining their axiomatisations so as togenerate a fully interlaced axiomatisation that transfers the properties of soundness,completeness and decidability. The answer, however, is no, not in general. Insome cases we can obtain the transference of completeness, in some other cases thetransference fails. To illustrate that, we consider completeness results over classesof the form K�K

3.3 Full Interlacing 673.3.1 The Completeness of Klin � KlinWe start by de�ning some useful abbreviations. Let p be a propositional atom;de�ne:hor(p) = �(p^H:p^G:p)ver(p) = �(p^H:p^G:p)It is clear that hor(p) makes p true along the horizontal line and false elsewhere;similarly for ver(p) with respect to the vertical.The axiomatisation of US��U�S over Klin � Klin extends that of US� �U�S overKlin � Klin by including the interlacing axioms I1{I4 and the following inferencerules:IR1 if ` hor(p)!A and p does not occur in A, then ` AIR2 if ` ver(p)!A and p does not occur in A, then ` AIR1 and IR2 are two-dimensional extensions of the irre
exivity rule (IRR) de�nedin [Gabbay 1981a] for the one-dimensional case : if ` p^H:p!A and p does notoccur in A, then ` A. The use of IR1 and IR2 allows us to de�ne U , S, U and Sin terms of F , P , F and P . So let r be an atom:(U) r^H:r![U(p; q)$F (p^H(Pr!q))](U) r^H:r![U (p; q)$F (p^H(Pr!q))](S) r^H:r![S(p; q)$P (p^G(F (r^H:r)!q))](S) r^H:r![S (p; q)$P (p^G(F (r^H:r)!q))]Therefore, we can base the proof of completeness in terms of F , P , F and P only.Lemma 3.2 The inference rules IR1 and IR2 are valid over Klin �Klin.Proof Suppose that hor(p)!A is a valid formula and p does not occur in A.Let M = (T;<; T;<; g) be a model over Klin � Klin, and let t 2 T , x 2 T , soM; t; x j= hor(p)!A. Consider M0 = (T;<; T ;<; g0) such that, for every t0 2 T ,x0 2 T , p 2 g0(t0; x0) i� x = x0 and, for q 2 P � fpg, q 2 h0(t0; x0) i� q 2 h(t0; x0).Clearly, M0; t; x j= hor(p) and hor(p)!A is valid, so M0; t; x j= A. Since h and h0agree on all atoms in A,M; t; x j= A, so IR1 is valid. Similarly we show that IR2is valid. �

68 Combinations of One-Dimensional Temporal LogicsIt follows directly that the axiomatisation is sound over Klin �Klin.The proof of completeness does not use directly the completeness results of thecomponent US/Klin logics as in the previous methods; we use instead the tech-nique of building a model out of (a special class of) maximal consistent sets. Thisconstruction applies techniques for the IRR rule described in [Gabbay and Hodkin-son 1990]. The general construction strategy is the following. At every step wehave a two-dimensional grid of special maximal consistent sets, IR�-theories. Theuse of IR1 and IR2 give us means to name every set in the grid with a pair ofatoms that characterise the crossing of a vertical and a horizontal line, resembling acoordinate system. A step of the construction consists of �nding a counterexampleof a two-dimensional model in the current grid and �xing this counterexample byadding a new line to the grid, either vertical or horizontal, so as to end up with anew two-dimensional grid. The two-dimensional model is then obtained by takingthe in�nite union of all the grids.IR�-theoriesLet P be a set of proposition atoms and let L be the language generated by P. Amaximal consistent set (MCS) � over a language L is a consistent set of formulaesuch that there exists no consistent set � in L such that � � �. An IR�-theory �over P is an MCS over L such that:(a) there exists u; v 2 P such that hor(u)^ver(v) 2 �;(b) let a #-formula be one of the form #0(B0^#1(B1^ : : :^#mBm) : : :), where#i 2 fF ;P ;F ; Pg; if B 2 � is a #-formula then there exists u; v 2 P suchthat #0(B0^#1(B1^ : : :^#m[Bm^hor(u)^ver(v)]) : : :) 2 �.The following motivates the de�nition of an order over IR�-theories.Proposition 3.2 For any �;�0 MCSs, the following are equivalent:(a) whenever A 2 �, we have PA 2 �0,(b) whenever B 2 �0, we have FB 2 �,(c) whenever GC 2 �, we have C 2 �0,(d) whenever HD 2 �0, we have D 2 �.Similarly for the vertical operators.

3.3 Full Interlacing 69For a proof with the horizontal operators, see Burgess [1984, lemma 1.6]. Theproof for the vertical operators is analogous. Let P be a countably in�nite set ofatoms and let S be the set of all IR�-theories over P. De�ne:(a) � � �0 i� for all GA 2 �, A 2 �0.(b) �� �0 i� for all GA 2 �, A 2 �0.The axioms can be used in a standard way to show that � and � de�ne linearorders on S. The following are straightforward generalisations of results in [Gabbayand Hodkinson 1990], the �rst of which uses directly IR1 and IR2.Proposition 3.3 Let � be a consistent set of formulae over P1. Let P2 � P1 be anextension of P1 by a countably in�nite set of atoms. Then there exists a IR�-theory�0 � � over P2.Proposition 3.4 Let � 2 S. Then:(a) If FA 2 � then there exists �0 2 S with A 2 �0 and � � �0.(b) If PA 2 � then there exists �0 2 S with A 2 �0 and �0 � �.(c) If F A 2 � then there exists �0 2 S with A 2 �0 and �� �0.(d) If PA 2 � then there exists �0 2 S with A 2 �0 and �0� �.The construction of the two-dimensional grid consists of basically of counterex-ample elimination and the �lling of empty corners and gaps in the grid.De�nition 3.4 Let G be a set of IR�-theories such that �1;�1;�2 2 G. These setsform a -corner in G if:� �1 � �2;� �1� �1;� there is no 	 2 G such that �1 � 	 and �2�	.Similarly, de�ne - - and -corners. �We can \�ll in" the corners due to the Corner Filling Lemma.Lemma 3.3 Let G be a set of IR�-theories such that �1;�1;�2 2 G form a -corner. Then there exists 	 2 S such that �1 � 	 and �2�	.

70 Combinations of One-Dimensional Temporal LogicsProof Let 	0 = fA j GA 2 �1g[fB j GB 2 �2g; we show it is consistent. Supposenot, then there is A 2 G�1 and GB 2 �2 such that ` :(A^B); then FGB 2 �1and PFGB 2 �1; by axiom I3, FPGB 2 �1, so FB 2 �1 and F (A^B) 2 �1 whichis a contradiction. So 	0 is consistent.So we extend 	0 to an IR�-theory 	 and clearly we will have �1 � 	 and�2�	. First, since �1;�2 2 S, there are atoms u; v 2 P such that hor(u) 2 �1and ver(v) 2 �2 and hor(u); ver(v) 2 	0.Consider an enumeration B0; B1; : : : of two-dimensional formulae. De�ne 	i byinduction. 	0 is de�ned and if 	i is de�ned, set 	i+1 = 	i if 	i[fBig is inconsistent;otherwise, if Bi is not of a #-formula, set 	i+1 = 	i [fBig.Suppose Bi is a #-formula of the form #0(C0^#1(C1 : : :^#mCm) : : :), where Cmis not a #-formula. Let D = V(�i��0); this is a well de�ned formula since �i��0 is�nite. Then we must have F (D^Bi^ver(v)) 2 �1. For if G:(D^Bi^ver(v)) 2 �1,then :(D^Bi^ver(v)) 2 	0 � 	i, contradicting 	i [fBig is consistent. NowF (D^Bi) is itself a #-formula, so there are atoms un; vn 2 P, n = 0; : : : ;m, suchthat, writing B0i for #0([C0^hor(u0)^ver(v0)]^: : :^#m[Cm^hor(um)^ver(vm)]) : : :),we have that F (D^B0i^ver(v)) 2 �1.We claim that 	i [fB0ig is consistent. Suppose not; then there is GE 2 �1and GE 0 2 �2 such that ` :(D^E^E0^B 0i), so G:(D^E^E0^B0i) 2 �1; sincever(v) 2 �2, it follows that G(ver(v)!E 0) 2 �2 and, by axiom I3, via �1, we getF (ver(v)!E 0) 2 �1, so G(ver(v)!E 0) 2 �1; therefore F (D^B0i^ver(v)^E) 2 �1and F (D^B0i^E 0^E) 2 �1, which is a contradiction and proves the claim.We then de�ne 	i+1 = 	i [fBi; B0ig and set 	 = Si<! 	i. That is clearly anIR�-theory, proving the result. �6.....-. . . .-6 	���� �2�1�1Figure 3.1 A -cornerThe �lling of a -corner is illustrated in Figure 3.1; similar versions of the CornerFilling Lemma are obtainable for the - - and -corners, but we omit the details.Not only corners have to be �lled, but also gaps.

3.3 Full Interlacing 71De�nition 3.5 Let G be a set of IR�-theories such that �1;�2;�1;�2;� 2 G. Thesesets form a t-gap in G if:� �1 � �2.� �1 � �, � � �2;� �1� �1 and �2� �2;� there is no 	 2 G such that ��	 and �1 � 	 � �2.Similarly, de�ne@-A- and u-gaps. �The situation de�ned in a t-gap is illustrated in Figure 3.2. We then proceed tothe Gap Filling Lemma. --- 66 ����� � �2�1 �2�1 Figure 3.2 At-gapLemma 3.4 Let G be a set of IR�-theories such that �1;�2;�1;�2;� 2 G form at-gap. Then there exist 	 2 S such that:(a) ��	; and(b) �1 � 	 � �2.Proof The Gap Filling Lemma gives us a 	 2 S such that ��	 and �1 � 	.By linearity, we have that either 	 = �2 or �2 � 	 or 	 � �2. Since � 2 S, thereis a v 2 P such that ver(v) 2 �; it follows that ver(v) 2 	 and Pver(v) 2 �2,so PPver(v) 2 �2 and, by axiom I4, PPver(v) 2 �2, so P 2 ver(v) 2 �2, whichcontradicts both 	 = �2 and �2 � 	, then 	 � �2. �

72 Combinations of One-Dimensional Temporal Logics6 -- -- 66 �	 ����� � �2�1 �2�1Figure 3.3 Filling a t-gapFigure 3.3 illustrates the result of the previous Lemma as the \�lling" of anincompletet-gap. We can then de�ne the two-dimensional grid.The Two-dimensional GridA two-dimensional grid is a 5-tuple G = (X;<;X; < ; f;) satisfying the followingconditions.C0 X;X are �nite sets, X;X � Q and <; < are the restriction of the standardorder over Q to X and X , respectively.C1 f is a function from f : X �X ! S such that, for all t; s 2 X with t < s, andall x; y 2 X with x < y:f(t; x) � f(s; x) andf(t; x)� f(t; y)We write � 2 G when we mean that � is an IR�-theory in the image of f .We say that a grid G 0 = (X 0; <0;X 0; < 0; f 0) is an extension of G = (X;<;X; < ; f)i� X � X 0, < � <0, X � X 0, < � < 0 and for all t 2 X and all x 2 X ,f(t; x) = f 0(t; x).A grid can also be decomposed in horizontal and vertical lines. The horizontalx-line in G is a 3-tuple (X;<; fx) such that, for every t 2 X, fx(t) = f(t; x).Similarly, the vertical t-line in G is a 3-tuple (X; < ; �ft) such that, for every x 2 X ,�ft(x) = f(t; x). We write (X;<; ~fz) to denote a generic z-line, either horizontal orvertical. The extension of a z-line is de�ned in the obvious way.Grid InitialisationLet �0 be a set of formulae consistent with the two-dimensional axiomatisation overKlin�Klin. By Proposition 3.3, we extend it to a IR�-theory � � �0 over a countably

3.3 Full Interlacing 73in�nite set of atoms P. We then construct an initial grid G0 = (X0; <0;X0; < 0; f0)by making:X0 = X0 = f0g<0= < 0 = ?f0 = f(0; 0;�)gwhich clearly satis�es C0 and C1.Counterexample EliminationWe say that (t; x; FA) is a counterexample for the grid G = (X;<;X; < ; f) i�PA 2 f(t; x) and there is no s 2 X with t < s such that A 2 f(s; x). Analogously,de�ne the counterexamples (t; x; PA), (t; x;F A) and (t; x; PA).Clearly, to every counterexample of the form (t; x; FA) and (t; x; PA) corre-sponds a one-dimensional counterexample in the horizontal x-line. And counterex-amples of the form (t; x;F A) and (t; x; PA) �nd a corresponding one-dimensionalcounterexample in the vertical t-line.Proposition 3.4 accomplishes the counterexample elimination for the one-dimen-sional cases. This is its two-dimensional counterpart.Lemma 3.5 Let G = (X;<;X; < ; f) be a two-dimensional grid and let c be acounterexample to it. Then there exists an extension G0 = (X 0; <0;X 0; < 0; f 0), towhich c is no longer a counterexample.Proof Initially, make f � f 0. By symmetry, assume without loss of generality, thatc is of the form (t; x; FA); for the other cases the proof is completely analogous. ByProposition 3.4, there is an IR�-theory �0 such that A 2 �0 and f(t; x) � �0; for anys 2 X, �0 6= f(s; x), otherwise c would not be a counterexample. Let tmax be thelargest element of X and for every t 2 X, t < tmax, let t0 designate its immediatesuccessor in X.If f(tmax; x) � �0, then make t� = tmax+1 2 Q. Let X 0 = X [ft�g, X 0 = X andf 0(t�; x) = �0, therefore generating a corner in G [�0. By successive applicationsof the suitable version of the Corner Filling Lemma, f 0(t�; y) can be determined forevery y 2 X 0, therefore adding a new vertical t�-line to the grid.Otherwise, �0 � f(tmax; x) and by linearity there exists s 2 X, t < s < tmax,such that f(s; x) � �0 � f(s0; x). Make t� = s+s02 2 Q, X 0 = X [ft�g, X 0 = X andf 0(t�; x) = �0, therefore generating a gap in G [�0. By successive applications of thesuitable version of the Gap Filling Lemma, determine f 0(t�; y), for every y 2 X 0,thus adding a new vertical t�-line to the grid.

74 Combinations of One-Dimensional Temporal LogicsWe have thus extended the original grid into G 0 = (X 0; <0;X 0; < 0; f 0) where c isno longer a counterexample by adding a new vertical line. Similarly for the othertypes of counterexamples where, if c is of the form (t; x;F A) or(t; x; PA), we add anew horizontal line. �To construct the two-dimensional grid, we start with G0 and assume we haveconstructed Gn. For every n, there are at most countably many counterexamples;suppose there is an order on formulae by which the counterexamples are ordered.Choose c as the �rst counterexample and, by application of Lemma 3.5, we obtainGn+1. Take G� = (X�; <�;X�; < �; f�) = Sn<! Gn. Clearly, there are no counterex-amples left in G� and (X�; <�);(X�; < �) 2 Klin and G� satis�es C1 plus:C2a For all t 2 X� and x 2 X�, FA 2 f�(t; x) i� there exists s 2 X�, t <� s, suchthat A 2 f�(s; x).C3a For all t 2 X� and x 2 X�, F A 2 f�(t; x) i� there exists y 2 X�, x< �y, suchthat A 2 f�(t; y).and their mirror images, C2b and C3b. Since we are dealing with IR�-theories,axioms (U), (U), (S) and (S) make G� satisfy:C4a For all t 2 X� and x 2 X�, U(A;B) 2 f�(t; x) i� there exists s 2 X�, t <� s,such that A 2 f�(s; x) and for all u, t <� u <� s, B 2 f�(u; x).C5a For all t 2 X� and x 2 X�, U (A;B) 2 f�(t; x) i� there exists y 2 X�, x< �y,such that A 2 f�(t; y) and for all z, x< �z < �y, B 2 f�(t; z).plus their mirror images (C4b, C5b) .For every atom p de�ne h asp 2 h(x; y) i� p 2 f�(x; y)Let M = (X�; <�;X�; < �; h) be a two-dimensional model; by a simple inductionon A, it can be show that, for every A,M; t; x j= A i� A 2 f�(t; x)It follows that M; 0; 0 j= �0.We have thus proved the following theorem.Theorem 3.2 (2D-completeness) There is a sound and complete axiomatisationover the class of full two-dimensional temporal models over Klin �Klin.

3.3 Full Interlacing 75Furthermore, it is possible to obtain completeness results for other classes oftwo-dimensional plane
ows based on this construction along the usual steps usedin the one-dimensional case; the proof is in Appendix B, Theorem B.1.Theorem 3.3 (2D-completeness) There are sound and complete axiomatisa-tions over the two-dimensional plane classes Kdis�Kdis, Q�Q, Klin�Kdis, Klin�Qand Kdis�Q.3.3.2 Incompleteness ResultsThe negative result is the following.Proposition 3.5 (2D-unaxiomatisability) There are no �nite axiomatisationsfor the (strongly) valid two-dimensional formulae over the classes Z�Z, N�N andR�R.This proposition follows directly from Venema's proof that the valid formulaeover the upper half two-dimensional plane are not enumerable forZ�Z, N�N andR�R, which in its turn was based on [Halpern and Shoham 1986]. Since there aresound, complete and decidable US-temporal logics overZ, N and R [Reynolds 1992],the general conclusion on full interlacing is the following.Theorem 3.4 (Full Interlacing) Completeness and decidability do not transferin general through full interlacing.It has to be noted that two-dimensional temporal logics seem to behave likemodal logics in the following sense. We can see the result of the independent com-bination of US and �U�S as generating a \minimal" combination of the logics, i.e. onewithout any interference between the dimensions. The addition of extra axioms,inference rules or an extra condition on its models has to be studied on its own,just as adding a new axiom to a modal logic or imposing a new property on itsaccessibility relation has to be analysed on its own.The full interlacing method illustrates the con
ict between the generality ofa method and its ability to achieve the transference of logical properties. We nextrestrict the interlacing method so as to recover the transference of logical properties.

76 Combinations of One-Dimensional Temporal Logics3.4 Restricted InterlacingThe fact that the transference of logical properties fails for the interlacing of twoUS-temporal logics does not mean that the interlacing of any two temporal logicsystems fails to achieve this transference. We restrict the vertical logic system toa temporal logic �N�P with operators g for Next time and w for Previous time; theformation rules for the formulae of �N�P are the standard ones. This is a restrictionof the �U�S-language for gand wcan be de�ned in terms of U and S , namely bygA =def U (A;?)wA =def S (A;?)Not only is the expressivity of the language reduced this way, but also the underlying
ow of time is now restricted to a discrete one; in fact, we concentrate our attentionon integer-like
ows of time.Let h :Z! P be a temporal assignment over the integers so that the semanticsof �N�P over the integers is the usual for atoms and boolean operators and(Z; <; h); t j= gA i� (Z; <; h); t+ 1 j= A(Z; <; h); t j= wA i� (Z; <; h); t� 1 j= AAn axiomatisation for NP/Zis given by the classical tautologies plusNP1 g wp!pNP2 g:p$: gpNP3 g(p^q)! gp^ gqNP4 The mirror image of NP1{3 obtained by interchanging gwith wThe rules of inference are the usual Substitution, Modus Ponens and TemporalGeneralisation (from A infer gA and wA).The converse of each axiom can be straightforwardly derived, so the formulaeon both sides of the !-connective are actually equivalent. It follows that every�N�P-formula can be transformed into an equivalent one by \pushing in" the tem-poral operators, e.g. by following the arrows the axioms, and by \cancelling" theoccurrences of gand win a string of temporal operators, e.g. g w w g wp is equiv-alent to wp; the resulting �N�P-normal form formula is a boolean combination offormulae of the form gkp and wlq, where p and q are atoms, k; l 2 N and gk is asequence of g-symbols of size k, similarly for wl; it is useful sometimes to considerk negative or 0, so we de�ne g�kA = wkA and g0A = A. As an example, theformula g g(w w w(p^q)_p) has normal form (wp^ wq)_ g gp. The existence of

3.4 Restricted Interlacing 77such normal form gives us very simple proofs for completeness and decidability of�N�P/Zthat we outline next.For completeness, let � be a possibly in�nite consistent set of �N�P-formulae andassume all formulae in the set is in the normal form. � can be seen as a consistentset of propositional formulae where each maximal subformulae of the form gkpis understood as a new propositional atom, so let h0 be a propositional valuationassigning every extended atom into ftrue, falseg. For n 2 Z, let h(n) = fp 2 P jh0(gnp) = trueg. Clearly (Z; <; h) is a model for the original set.For decidability, let A be a formula of �N�P and let A� be its normal form; clearlythere exists an algorithm to transform A into A�. By considering subformulae of theform gkp as new atoms, k possibly negative, we apply any decision procedure forpropositional logic to A�. A is a �N�P-valid formula i� A� is a propositional tautology.De�nition 3.6 The restricted interlacing of temporal logic systems US/K and�N�P/Zis the two-dimensional temporal logic system US� �N�P given by:� the fully combined language of US and �N�P;� the two-dimensional plane model over K�Z, equipped with the broadly two-dimensional semantics;� the union of the axioms of US/K and �N�P/Zplus the interlacing axiomsgU(p; q)!U (gp; gq)gS(p; q)!S(gp; gq)plus their duals obtained by swapping gwith w; the inference rules are justthe union of the inference rules of both component systems. �The following gives us a normal form for US� �N�P.Lemma 3.6 Let A be a formula of US� �N�P. There exists a normal form formulaA� equivalent to A, such that all the occurrences of g and w in it are in the formgkp and wlq, where p and q are atoms.The proof is in Appendix B, Lemma B.1.Theorem 3.5 (Completeness via restricted interlacing) Let US be a logicsystem complete over the class K � Klin. Then the two-dimensional system US� �N�Pis complete over K �Z.

78 Combinations of One-Dimensional Temporal LogicsProof Consider a US � �N�P-consistent formula A and assume it is in the normalform. So we can seeA as a US-formulae over the extended set of atoms gk, k possiblynegative or 0. From the completeness of US/K there exist a one-dimensional model(T;<; hUS) for A at a point o 2 T , where (T;<) 2 K. De�ne the two-dimensionalassignmenth(k; t) = fp 2 P j gkp 2 hUS(t)g:Clearly, (T;<;Z; <Z; h) is a two-dimensional plane US��N�P-model for A at (o; 0).�Corollary 3.1 If US/K is strongly complete, so is US� �N�P/ K �Z.Theorem 3.6 (Decidability via restricted interlacing) If the logic system USis decidable over K, so is US��N�P over K�Z.Proof The argument of the proof is the same as that of the decidability of NP, allwe have to do is note that there exists an algorithmic way to convert a combinedtwo-dimensional formula into its normal form, so it can be seen as a US-formula andwe can apply the US-decision procedure to it. �So by restricting the expressivity and the underlying class of
ows of time, wecan obtain the transference of the basic logical properties via restricted interlacing.It should not be di�cult to extend these results to N instead of Z, although we donot explore this possibility here.3.5 The Two-dimensional DiagonalWe now study some properties of the diagonal in two-dimensional plane models. Thediagonal is a privileged line in the two-dimensional model intended to represent thesequence of time points we call \now", i.e. the time points on which an historicalobserver is expected to be traverse . The observer is, therefore, on the diagonalwhen he or she poses a query (i.e. evaluates the truth value of a formula) on atwo-dimensional model. The diagonal is illustrated in Figure 3.4So let � be a special atom and consider the formulae:D1 ��^��D2 �!(G:�^H:�^G:�^H:�)D3 �!(HG:�^GH:�)

3.5 The Two-dimensional Diagonal 79
... -
6(�T; <) F � (T;<)P�P�F� �

Figure 3.4 The two-dimensional diagonalLet Diag = ��(D1^D2^D3). The intuition behind Diag is the following. D1implies that the two-dimensional diagonal can always be reached in both verticaland horizontal directions; D2 implies that there are no two diagonal points on thesame horizontal line and on the same vertical line and D3 implies that the diagonalgoes in the direction SW{NE. We say that Diag characterises a two-dimensionaldiagonal in the following sense.Lemma 3.7 Let M = (T;<; T; < ; g) be a full two-dimensional model over K�K,K;K � Klin, and let � be a propositional letter. Then the following are equivalent.(a) M; t; x j= Diag, for some t 2 T and x 2 T .(b) M; t; x j= Diag, for all t 2 T and x 2 T .(c) There exists an isomorphism i : T ! T such that M; t; x j= � i� x = i(t).Proof It is straightforward to show that (a) () (b) and (c) =) (a); we showonly (b) =) (c). So assume that M; t; x j= Diag, for all t 2 T and x 2 T . De�nei = f(t; x) 2 T�T j M; t; x j= �g:All we have to show is that i is an isomorphism.� i; i�1 are functions such that dom(i) = T and dom(i�1) = T . Suppose(t; x1); (t; x2) 2 i; then M; t; x1 j= � and M; t; x2 j= �. By linearity of T ,x1 = x2, x1<x2 or x2<x1, but D2 eliminates the latter two; D1 gives usthat dom(i) = T . Similarly, the linearity of T and D2 gives us that i�1 is afunction and D1 gives us that dom(i�1) = T .� i(t) = x i� i�1(x) = t follows directly from the de�nition. So i is a bijec-tion.

80 Combinations of One-Dimensional Temporal Logics� i preserves ordering. Suppose t1 < t2; by the linearity of T we have threepossibilities:{ i(t1) = i(t2) contradicts i is a bijection.{ i(t2)<i(t1) contradicts D3.{ i(t1)<i(t2) is the only possible option.Therefore i is an isomorphism, which proves the result. �This result shows that by adding D1{D3 to the axiomatisation over Klin�Klin ofSection 3.3 gives us completeness over the class of models of the form (T;<; T;<; g),(T;<) 2 Klin. It follows from [Halpern and Shoham 1986], however, that such logicsystem is undecidable.The diagonal is interpreted as the sequence of time points we call \now". Thediagonal divides the two-dimensional plane in two semi-planes. The semi-plane thatis to the (horizontal) left of the diagonal is \the past", and the formula F� holds overall points of this semi- plane. Similarly, the semi-plane that is to the (horizontal)right of the diagonal is \the future", and the formula P� holds over all points of thissemi-plane. Figure 3.4 puts this fact in evidence. If we assume that Diag holds overM such that i is the isomorphism de�ned in Lemma 3.7, t < s i� i(t)<i(s), thenM; t; x j= F� i� exists s > t such that M; s; x j= � and i(s) = xi� exists y = i(t)<x such that M; t; y j= �i� M; t; x j= P�.Similarly, it can be shown that:M; t; x j= P � i� M; t; x j=F �.It follows that the following formula is valid for US��U�S over Klin�Klin:Diag!((F�$P�) ^ (P�$F �)):As a consequence, P� holds over all points of the \past" semi-plane and F � holdsover all points of the \future" semi-plane, as is indicated in Figure 3.4.It would be desirable to generalise the idea of a diagonal as the sequence of \now"moments to any pair of
ows of time that are not necessarily isomorphic. For that,we would have to create an order between the points of the two
ows, i.e. we wouldhave to merge the
ows.So let (T;<) and (T; <) be two
ows of time such that T and T are disjoint.Then there always exists a
ow (T 0; <0) and a mapping f : T [T ! T 0 such that f

3.5 The Two-dimensional Diagonal 81is one-to-one and order preserving. The f-merge of (T;<) and (T; <) is the
owof time consisting of the image of f ordered by the restriction of <0 to the image off . An example of an f -merge is shown in Figure 3.5, where f(y) is made equal, viamerge, to f(�x) and on the merged
ow the order is preserved, i.e. originally x < yand �x< �y and on the f -merged
ow f(x) <0 f(y) = f(�x) <0 f(�y).	w.................w................. - --(T 0; <0) (�T; <)(T;<) yx ffff �y�xFigure 3.5 The f -mergeWe can then construct a two dimensional model with two copies of the f -merge,in which we can de�ne a diagonal over (T 0; <0)�(T 0; <0) as shown in Figure 3.6..-. -6-6 f(�T; <) (T 0; <0)(T 0; <0) �(T;<)Figure 3.6 The diagonal of two distinct
owsThis construction motivates a method of combining two one-dimensional tem-poral logics into another one-dimensional logic, namely that over the class of allf -merges of its two-component
ows of time. We could then study the transfer-ence of logical properties in the same way as we have done in this and the previouschapter, but we do not investigate those matters here.

82 Combinations of One-Dimensional Temporal Logics

Chapter 4Temporal Database UpdatesIn this chapter we set the temporal database framework in which the past, thepresent and even the future can be changed. For that, we follow [Chomicki andNiwi�nski 1993] by de�ning the notion of a temporal database as a model of �rst-order temporal logic (FOTL); the notion of a temporal query is de�ned on such aframework.That framework, however, contrasts with the presentation so far of propositionaltemporal logics. To bring us back to a propositional framework, we consider thepropositional abstraction of temporal databases, which then allows us to apply thefull propositional two-dimensional model for the description of temporal databaseevolution and helps us to characterise the class of acceptable temporal databaseupdates.The two-dimensional description of temporal database evolution presented hererestricts the generic view of combinations of linear temporal logics, concentratingbasically on discrete
ows of time.We compare the two temporal database notions of valid-time database andtransaction-time database in the light of their two-dimensional evolution, provid-ing a formal characterisation of the di�erences between those two kinds of temporaldatabases.4.1 A Logical View of Temporal DatabasesWe give here a formal presentation of temporal databases in a temporal logic per-spective. For that, we start by analysing the language and semantics of �rst-ordertemporal logic, FOTL, over a �nite signature. Finiteness is an important propertyto be taken into account in the database presentation, for databases are supposed83

84 Temporal Database Updatesto be �nite repositories of information. That will motivate us to de�ne temporalqueries as the restricted class of safe FOTL-formulae.The LanguageWe consider a �rst-order language, without function symbols but including equality,fully combined with a US-temporal logic over the integers; throughout this chapterand the next one, we restrict ourselves to discrete, integer-like
ows of time.A database signature is a pair S = (SC ;SP), where SC is a countable set ofconstant symbols and SP is a set of predicate symbols, such that each predicatesymbol is associated with an arity r � 1; the signature is �nite if SP is �nite.Let V be a countably in�nite set of variables; a term is either a constant or avariable (functional symbols are normally absent from databases); we consider theexistential quanti�er, 9, as primitive and syntactically de�ne the universal quanti�eras 8 � :9:; for reasons that will become clear when we discuss the safeness ofqueries, we will consider both ^ and _ boolean connectives as primitive. The atomicformulae of FOTL are of the form a1 = a2 and p(a1; : : : ; ar), where ai's are termsand p is a predicate symbol of arity r. The set of free variables of a formula Ais represented by free(A). The language of FOTL over the signature (SC ; SP) isde�ned as:� every atomic formula is in it, the set of variables occurring in an atomic formulaare all free;� if A;B are in it, so are :A, A^B, and A_B, with free variables, respectively,free(A), free(A) [free(B) and free(A) [free(B);� if A;B are in it, so are U (A;B) and S(A;B), with free variables free(A) [free(B);� if A is in it, so is 9xA, with free variables free(A)� fxg.We write A(x1; : : : ; xm) to indicate that x1; : : : ; xm are all the free variables of A.A formula is ground if it contains no variables nor quanti�ers. We consider also theusual syntactical de�nitions of other temporal operators as g, F and H in terms ofS and U . We also say that a subformula (or, for that matter, any symbol) occurspositively in a formula if it occurs within the scope of an even number of : symbols;it occurs negatively if it occurs within the scope of an odd number of : symbols.Example 4.1 Consider the following �nite signature S = (SC ;SP):

4.1 A Logical View of Temporal Databases 85SC = fstrings of charactersgSP = femployeegwhere employee(Name; Salary;Department) is a three place predicate symbol. Thefollowing are well formed formulae over this signature:employee(Peter; 2K;Marketing);wemployee(x; 2K;Marketing)^:(x = Peter);P9y9z employee(x; y; z) ^ :9y19z1 employee(x; y1; z1);P employee(x; y;R&D) _ employee(x; y;R&D):The �rst formula is atomic with no free variables, x is free in the second and thirdones and x; y are free in the last one. In the third formula, the predicate symbolemployee occurs both positively and negatively. �The SemanticsA �rst-order �nite structure over the signature (SC ;SP) is a pair (D; I), where D isa countably in�nite set, called the domain, and I is a �nite interpretation consistingof an interpretation of constants, I(c) 2 D, and a �nite interpretation of predicatesymbols, I(p) � Dr, where r is the arity of p.A temporal database D is a model structure obtained through the temporalisationof �rst-order �nite structures with respect to the
ow (Z; <), i.e. the triple D =(Z; <; g), where g associates every time point t 2Zto a �rst-order structure g(t) =(Dt; It); we further require that D respects the additional conditions of constantdomains and rigid constants, i.e. for every t; s 2 Zand c 2 SC it must always bethe case that:Dt = Ds = D andIt(c) = Is(c)where the set D is called the domain of the database; only the interpretation ofpredicate symbols is
exible, i.e. may vary from one time point to another. Notethat the symbol \=" is not a database predicate, for it is an in�nite relation and ithas a rigid interpretation over time. It is usual and very convenient for databases toconsider D = SC , such that I is the identity over constants. Unless otherwise stated,we will assume such a simpli�cation, known as the Herbrand interpretation [Lloyd1987].A (global) variable assignment v is a mapping that associates every variablex 2 V to a domain value v(x) 2 D; the assignment is time independent, so the

86 Temporal Database Updatesvariables are treated as global with respect to time. An assignment v0 is an x-variant of a assignment v if they agree on the values of all variables in V except,possibly, on the value of x.So letD = (Z; <; g) be a temporal database and let v be an assignment. To de�nethe semantics of the formulae of FOTL, it is convenient to extend the assignmentover all terms by making v(c) = It(c) for c 2 SC = D. We de�ne a formula A tobe true in D at time t under assignment v, writing D; v; t j= A, by induction on thestructure of formulae.D; v; t j= p(a1; : : : ; ar) i� hv(a1); : : : ; v(ar)i 2 It(p):D; v; t j= :A i� it is not the case that D; v; t j= A.D; v; t j= A^B i� D; v; t j= A and D; v; t j= B.D; v; t j= A_B i� D; v; t j= A or D; v; t j= B.D; v; t j= S(A;B) i� there exists an s 2 T with s < t andD; v; s j= A and for every u 2 T , when-ever s < u < t then D; v; u j= B.D; v; t j= U(A;B) i� there exists an s 2 T with t < s andD; v; s j= A and for every u 2 T , when-ever t < u < s then D; v; u j= B.D; v; t j= 9xA i� there exists a v0 x-variant of v such thatD; v0; t j= A.A temporal database is temporally bounded if there are time points tmax andtmin such that, for all s < tmin and u > tmax, it is the case that g(s) = g(tmin)and g(u) = g(tmax). In other words, all the atomic predicates have their truthvalue \persisting" to the past before tmin and to the future after tmax. We considerdatabases to be temporally bounded for the rest of this presentation; this is the �rststep in trying to guarantee that queries posed to the database will always have �niteanswers.Example 4.2 Consider a database D over the signature of Example 4.1. The count-ably in�nite domainD = SC of the database is the set of �nite strings built of letters,digits and the symbols `&' and ` '. We take the integer-like
ow of time to be thatof months, f: : : ; Jan92; F eb92;Mar92; : : :g. The (rigid) interpretation of constantsis given by I(c) = c. Let It(employee) be given by� hPeter 1K R&Di 2 It(employee) i� Jan90 � t � Dec92� hPeter 2K Marketingi 2 It(employee) i� Jan93 � t � Apr93

4.1 A Logical View of Temporal Databases 87� hPaul 1K R&Di 2 It(employee) i� Jan90 � t � Dec92� hMary 3K Financei 2 It(employee) i� Sep91 � t � Apr93� nothing else is in It(employee)Note that we have tmin = Dec89 and tmax = May93. If we consider a variableassignment v such that v(x) = Peter and v(y) = 1K, thenD; v;Apr93 6j= P9y9z employee(x; y; z) ^ :9y19z1 employee(x; y1; z1)for Peter is currently an employee, butD; v;Apr93 j= P employee(x; y;R&D) _ employee(x; y;R&D):for Peter was an employee of the R&D department with salary 1K between Jan90and Dec92. �Data RepresentationIn non-temporal databases, the issue of data representation never arises because it isan obvious one. But as pointed out by [Kabanza, Stevenne and Wolper 1990], thereare uncountably many possible temporal databases and we are therefore limited to�nitely representing just a few among those.Note that we have already limited ourselves the countable class of temporallybounded databases. Temporal data (i.e. the coding of FOTL models) will be repre-sented by temporally labelled formulae of the form l : q, where l is a temporal labeland q is an atomic formula. There are several equivalent possibilities for the choiceof temporal labels, and two distinct representations will be described here, namelytemporal intervals and restricted monadic formulae. For the �rst case, let t0; t1 2Zbe integer constants; the temporal label l can be the union of intervals of either form[t0; t1] with t0 � t1[t0;+1)(�1; t0]where, for any t 2 Z, �1 < t < +1. Examples of temporally labelled formulaeare (�1;�3][[7; 23][[72;+1) : p1(a1) and [5; 5] : p2(b1; b2); note that single pointintervals, [t0; t0], are legal labels. Intervals are always closed unless one of the endpoints is �1 or +1.

88 Temporal Database UpdatesAlthough temporally labelled formulae use the notation of Labelled DeductiveSystems (LDS) of [Gabbay 1991a], they are actually representing partial models1; atemporally labelled formula l : p(a1; : : : ; an) represents thatha1; : : : ; ani 2 It(p) for t 2 l:An alternative choice of labels would be to use monadic formulae built fromatoms of the formt = t0 or t < t0 or t0 < tusing only the connectives ^ and _, such that t0 2 Zis any constant and t is theunique variable in the formula and ranges overZ; note that there are no quanti�ersin the label. The label (t0 � t � t1) can be used as the obvious abbreviation oft = t0_(t0 < t^t < t1)_t = t1. The temporally labelled formula l(t) : p(a1; : : : ; an)represents thatha1; : : : ; ani 2 It(p) for t satisfying l(t) overZ.t0 : q is used as an obvious abbreviation for [t0; t0] : q and t = t0 : q.Given a �nite database representation, i.e. a �nite set of temporally labelledformula, it is assumed that the union of the represented partial models constitutesa (total) model; this is a model theoretic counterpart of the syntactic notion of theClosed World Assumption [Reiter 1984].Example 4.3 The database of example 4.2 is represented by� (Jan90 � t � Dec92) : employee(Peter; 1K;R&D)� (Jan93 � t � Apr93) : employee(Peter; 2K;Marketing)� (Jan90 � t � Dec92) : employee(Paul; 1K;R&D)� (Sep91 � t � Apr93) : employee(Mary; 3K;Finance) �1for partial models, it is perhaps more intuitive to think in terms of the equivalent de�nition ofpredicate interpretation, I : SP ! Dn�2Z

4.1 A Logical View of Temporal Databases 89ObservationIn the temporal database literature, it is common to �nd the temporal relationsrestricted to a temporal normal form (TNF) [Navathe and Ahmed 1988]. Thisnormal form assumes that there are no two tuples in a relation with identical keyattribute(s) associated to overlapping intervals. For example, suppose that t1 �t2 � t3 � t4; then the following representation would be violating the TNF, even ift2 = t3:(t1 � t � t3) : q(t2 � t � t4) : qIn the presentation of the subsequent examples, as in the previous ones, thisnormal form will be obeyed, although none of our results actually depends on theexistence of the TNF. It should not be di�cult to see that non-TNF representationscan be brought to an equivalent TNF one, e.g. in the example above (t1 � t � t4) : qis a TNF representation of the same temporal relation.QueriesThe fact that we want the result of queries to be �nite relations forces us to restrictthe format of the formulae that are acceptable as queries. For that, let us �rstde�ne the notion of a relevant domain element. An element d in the domain D isrelevant to a predicate symbol p 2 SP if it occurs in It(p), for some t 2 Z; d isrelevant to a formula A if it is a constant occurring in A or it is relevant to somepredicate symbol occurring in A; let RD � D be the set of all elements relevant tothe predicate symbols in the database signature, which clearly is a �nite set.A domain independent formula A(x1; : : : ; xn) is one whose interpretation gener-ates a �nite n-place relation containing only domain elements that are relevant toit, i.e. for every time t the set of tuples of domain elements hv(x1); : : : ; v(xn)i suchthat D; v; t j= A(x1; : : : ; xn), is �nite and contains only elements that are relevantto A(x1; : : : ; xn). Ideally, an acceptable query should be a domain independent for-mula, but unfortunately it is an undecidable problem to tell whether a formula isdomain independent [Ullman 1988]. Thus we syntactically de�ne the class of safeformulae below as an alternative su�cient condition to obtain domain independence.The basic idea behind safeness is that of \limiting" all free variables that appear indisjunctions, negations and temporal subformulae.For disjunctions A_B, it is simply required that A and B share the same freevariables, for if we have the non-safe formula A(x)_B(y) such that A(x) holds

90 Temporal Database Updatesfor some domain element x0 2 D, there are in�nitely many pairs (x0; d), d 2 D,satisfying the query.For negations, the idea of limiting a variable is similar to that of range restrictedclauses in logic programming [Lloyd 1987]. Basically, all free variables inside anegation are required to occur positively outside the negation. For example, theformula :A(x; y) is not safe, but in :A(x; y)^B(x)^C(y) the free variable of negatedA are limited due to their positive occurrence in B and C.An extra safeness problem occurs with temporal formulae: the temporal formulaS(A(x); B(y)) is not safe, because if A(x) is true at the previous moment for somex0 2 D, there are in�nitely many pairs (x0; d), d 2 D, satisfying the formula; theformula S(A(x)^B(y); B(y))2, however, does not present that problem and it isconsidered safe; that is how the semantics of the S operator is de�ned in the US-based temporal algebra in [Gabbay and McBrien 1991] in terms of the semantics wepresent here. In general, for temporal formulae of the form S(A;B) and U(A;B) tobe safe it is required that:(a) free variables that are limited inside A, are also considered limited in S(A;B)and U (A;B);(b) all free variables occurring in B have to be limited outside B.The variable y is not limited outside B(y) in the non-safe formula S(A(x); B(y)),but it is limited in safe formulae as S(A(x)^B(y); B(y)) and S(A(x); B(y))^C(y).We follow Ullman's [1988] formal presentation of safe formulae for non-temporaldatabases; further discussions on safeness can be found in [Zaniolo 1986; Ramakrish-nan, Bancilhon and Silberschatz 1987]. But, before we present the formal de�nition,just a small remark: a subformula X is a maximal conjunction in a formula A ifX is a subformula that is not part of a conjunction. For example, in the formula(:(A^B^C)_S(A;B))^E there are six maximal conjunction subformulae, namelyA^B^C, :(A^B^C), S(A;B), A, B and the whole formula.De�nition 4.1 Safe queries A formula is safe when:(a) If it contains a subformula that is the disjunction of B1 and B2, thenB1 and B2 share the same free variables, i.e. the subformula is of the formB1(x1; : : : ; xn)_B2(x1; : : : ; xn).2this is equivalent to de�ne the semantics of S(A;B) asD; v; t j= S(A;B) i� 9s < t and D; v; s j= A and 8u, s � u < t implies D; v; u j= B:and similarly for U (A;B).

4.1 A Logical View of Temporal Databases 91(b) If it contains a subformula that is a maximal conjunction B1^ : : :^Bm, thenall the free variables appearing in the Bi's must be limited in the followingsense.� a variable is limited if it occurs in some Bi, where Bi is not an equalitynor is it negated nor temporal;� if Bi is of the form x = c or c = x, where c is a constant, then x is limited;� if Bi is of the form x = y or y = x, where y is a limited variable, then xis limited;� if Bi is of the form S(A;C) or U(A;C), then, recursively, all free variablesthat are limited in A are limited in Bi.(c) It contains a subformula of the form :B(x1; : : : ; xk) only in the terms of(b), i.e. :B(x1; : : : ; xk) must be part of a conjunction or temporal formulasuch that all xi are limited.(d) It contains a subformula of the form S(A;B) or U(A;B) only in the termsof (b), i.e. S(A;B) or U(A;B) must be part of a maximal conjunction suchthat all the free variables are limited.A (safe) query Q is then represented by Q = fx1; : : : ; xm; t j A(x1; : : : ; xm)g,where A(x1; : : : ; xm) is a safe formula with free variables x1; : : : ; xm; the snapshotrelation generated by the query Q on the database D is fhv(x1); : : : ; v(xm)i j thereexists v such that D; v; t j= A(x1; : : : ; xm)g; each tuple in the generated relation issaid to satisfy the query Q at time t. A temporal query is domain independent if,for every t 2Z, it generates only �nite snapshot relations. �If we want queries to retrieve times as well, we can de�ne the temporal relationgenerated by a query Q = fx1; : : : ; xm j A(x1; : : : ; xm)g as the set of labelled tuplest0 : hv(x1); : : : ; v(xm)i, t0 2 Z, such that there exists v, D; v; t0 j= A(x1; : : : ; xm)3.If the database is time bounded and a query is domain independent it follows thatthe full temporal relation it generates can be �nitely represented with the labelledtuples of the format previously described.Proposition 4.1 Safe queries are domain independent.3Note that in our query language there is no reference to time points, so in order to takeadvantadge of full temporal relations it would be necessary to introduce time referrences in thetemporal operators language, as it was done in the TEMPORA ERL-language [McBrien et al. 1991].

92 Temporal Database UpdatesProof We know from [Ullman 1988] that every non-temporal subformulae withlimited variables generate only �nite relations over relevant domain elements, andso do safe disjunctions, thus this is the case for any time t; in fact, this may bederived from Codd's original result on the equivalence of the (�nitely based) rela-tional algebra and the relational calculus [Codd 1970; 1972]. With regards to safetemporal subformulae of the form S(A;B) and U(A;B), A can only generate �-nite relations over relevant domain elements at any time t, and B has all its freevariables limited; since the database is temporally bounded, only �nitely many tu-ples of domain elements (corresponding to the free variables) can satisfy S(A;B)and U(A;B) at every time point. So temporal subformulae can only generate �nitesnapshot relations over relevant domain elements and safe temporal formulae aredomain independent. �Note that we may have non-safe queries that are domain independent. Forinstance, the formulaA(x; y; z)^:(FB(x; y)_C(y; z))is non-safe, but it generates only �nite relations over RD on databases because it islogically equivalent to the safe formulaA(x; y; z)^:FB(x; y)^:C(y; z):In fact, the temporal formula GA(x), de�ned as :S(:A(x);>), is not safe, but it isequivalent over Zto the safe formula g(A(x)^GA(x)).Example 4.4 In the database of Example 4.2, if we want to know the names ofemployees that were sacked in the past, as of Apr93, we can pose the following safequeryfx;Apr93 j P9y9z employee(x; y; z) ^ :9w9v employee(x;w; v)gwhich generates the one-place unary relation fhPaulig: If we want to know thename and salaries of employees that have ever worked in the R&D department, asof Apr93, we pose the following safe query to the databasefx; y;Apr93 j P employee(x; y;R&D) _ employee(x; y;R&D)gwhich generates the relation fhPeter 1Ki; hPaul 1Kig. �

4.2 Propositional Abstractions 93A brief comment on complexity issues is made here. Even though a logic isundecidable, it can still be used to e�ciently compute safe queries. For example,�rst-order logic is undecidable but safe �rst-order queries are computed in polyno-mial time. Full �rst-order temporal logic cannot even be �nitely axiomatised overZ, but safe temporal queries can be computed in polynomial time too; see [Gabbayand McBrien 1991; Tuzhilin and Cli�ord 1990; McBrien 1992]. In this work, thetwo-dimensional temporal model will not be considered for the purposes of queryevaluation; the results of the previous chapters will show their usefulness in thediscussion on database updates.4.2 Propositional AbstractionsThe �rst-order approach of the previous section di�ers from the propositional treat-ment of temporal features in the previous chapters. To reconcile these two di�erentapproaches this section presents a propositional abstraction of database queries.Let D be the database domain and let RD � D be the �nite set of domainelements that are relevant to the predicate symbols in the database signature SP .We de�ne the propositional signature P abstracting from S as consisting of thefollowing propositional atoms:� [[a = b]], for each a; b 2 D;� [[p(a1; : : : ; aar(p))]], for each p 2 SP and each ai 2 D.It is no coincidence that we choose �rst-order [[]]-enclosed atoms to representpropositions; the �rst item above allows us to equate two constant symbols, a con-stant symbol with a domain element, and two domain elements (this latter equalitywhen relating to two distinct domain elements will actually generate propositionsthat are always false, in the same way that equating two identical symbols will gener-ate propositions that are always true); the second item above generates a propositionfor each possible ground predicate. The generalisation of this notation will give usa propositional abstraction of FOTL-formulae. If v is an assignment, let Bv be av-grounded formula obtained by substituting every free variable x occurring in B byv(x). For every safe FOTL-formula A, we de�ne its propositional abstraction withrespect to v by taking B = Av and generalising the above propositional notationover v-grounded formulae, denoted by [[B]], where:� [[:B]] = :[[B]];

94 Temporal Database Updates� [[B1^B2]] = [[B1]]^[[B2]];� [[S(B1; B2)]] = S([[B1]]; [[B2]]);� [[U(B1; B2)]] = U ([[B1]]; [[B2]]);� [[9xB]] = _d2RD[[B(x n d)]].where B(x n d) is the formula obtained by substituting all free occurrences of x inB by d; the last item above is a well de�ned propositional formula because RD is a�nite set.De�nition 4.2 Given a database D = (Z; <; g) over a signature S = (SC ;SP), wesay that a propositional model M = (Z; <; h) over P abstracts from D if for everyassignment v extended over constant symbols, and every t 2 Z, it is the case thatfor every atomic formula of the form p(a1; : : : ; ar),[[p(a1; : : : ; ar)]] 2 h(t) i� hv(a1); : : : ; v(ar)i 2 It(p);and for every atomic formula of the form a = b[[a = b]] 2 h(t) i� v(a) = v(b): �A straightforward induction on the structure of formulae then shows that:D; v; t j= B(x1; : : : ; xm) i� M; t j= [[Bv]]:The relation generated by the safe formula B(x1; : : : ; xm) can be expressed asfhv(x1); : : : ; v(xm)i j there exists v such thatM; t j= [[B(x1 n v(x1); : : : ; xm n v(xm))]]g:The propositional abstraction as de�ned above has nothing especially \temporal"about it, the whole purpose of it being the elimination of variables and quanti�ersfrom safe formulae. However, it is important for sending us back to the propositionalframework. From now on, we refer to the contents of a database by its propositionalabstraction M; moreover, we can refer to the update of ground atomic informationin a database as the update of propositional atoms. We assume that the countablyin�nite domain D of the database remains the same after the update, and so doesthe database signature.

4.3 A Two-dimensional Description of Database Evolution 95Example 4.5 Consider the database D from Example 4.2 (where RD � D = SC);let v an assignment such that v(x) = Peter and v(y) = 10K 62 RD. A few of theproperties of the database propositional abstraction modelM = (Z; <; h) are� [[employee(Peter;1K;R&D)]] 2 h(t) i� Jan90 � t � Dec92;� [[employee(Peter;y;R&D)v]] 62 h(t), for every t 2Z.Consider the following safe formula about sacked employeesA(x) = P9y9z employee(x; y; z) ^ :9y9z employee(x; y; z):and its propositional abstraction under v:[[A(x)v]] = P 0@ _c2RD _d2RD [[employee(Peter; c; d)]]1A ^:0@ _c2RD _d2RD [[employee(Peter; c; d)]]1A :It follows that, for all t 2Z, D; v; t j= A(x) i� M; t j= P [[A(x)v]]: �Notation: We may sometimes abuse the notation and represent the proposi-tional abstraction of a predicate formula by the formula itself. We do this when noambiguity is implied, mainly when we refer to atomic formulae with no free variables.4.3 A Two-dimensional Description of DatabaseEvolutionIn describing the evolution of a temporal database, we have to distinguish thedatabase evolution from the evolution of the world it describes. The \world", alsocalled theUniverse of Discourse, is understood to be any particular set of objectsin a certain environment that we may wish to describe. The database, in its turn,contains a description of the world. Conceptually, we have to bear in mind twodistinct types of evolution, as we introduced in [Finger 1992]:� The evolution of the modelled world is the result of changes in the world thatoccur independently of the database.� A temporal database contains a description of the history of the modelledworld that is also constantly changing due to database updates, generating asequence of database states. This evolution of the temporal description does

96 Temporal Database Updatesnot depend only on what is happening at the present; changes in the waythe past is viewed also alter this historical description; moreover, changesin expectations about the future, if those expectations are recorded in thedatabase, also generate an alteration of the historical description. This processis also called historical revision.These two distinct concepts of evolution are re
ected by a distinction betweentwo kinds of
ows of time, whether their time points refer to a moment in thehistory of the world, or whether they are associated to a moment in time at whicha historical description is in the database.Several di�erent names are found in the literature for these two time concepts.The former is called evaluation time [Kamp 1971; Gabbay, Hodkinson and Reynolds1994], historical time [Finger 1992], valid time [Snodgrass and Ahn 1985] and eventtime [McKenzie and Snodgrass 1991]. The latter time concept is called utterancetime [Kamp 1971], reference time [Gabbay, Hodkinson and Reynolds 1994], trans-action time [Finger 1992; Snodgrass and Ahn 1985] and belief time [Sripada 1990].In this presentation we chose to follow a glossary of temporal database conceptsproposed in [Jensen et al. 1992], calling the former valid-time, which is associatedto the horizontal dimension in our two-dimensional model, and calling the lattertransaction-time, which is associated to the vertical dimension.So we use the two-dimensional plane model to simultaneously cope with thetwo notions of time in the description of the evolution of a temporal database, asillustrated in Figure 4.1.
... -
6

-valid-time database state at xMx\now"xtimetransaction
Figure 4.1 Two-dimensional database evolutionLet M = (T;<; T; < ; g) be a two-dimensional plane model over K�K; its hor-izontal projection with respect to the vertical point x 2 T is the one-dimensionaltemporal model

4.3 A Two-dimensional Description of Database Evolution 97Mx = (T;<; gx);such that, for every propositional atom q, time points t 2 T and x 2 T ,q 2 gx(t) i� q 2 g(t; x):It follows that for every horizontal US-formula A and for every t 2 T and x 2 T ,Mx; t j= A i� M; t; x j= A:The horizontal projection represents a state of a temporal database. According toour convention, we have that K = fZg; and since we are interested in describing theevolution of database states as a linear and discrete process, we also �x K = fZg.Updating temporal databases requires that, besides specifying the atom to beinserted or deleted, we specify the time where the atom is to be inserted or deleted.For that reason, it is convenient to use the notation of temporally labelled formulaeto represent the data being inserted and deleted; in most cases, we will restrict ourattention to labelled atoms only. Labelled formulae allow for �nite representationof possibly in�nite information, but for update purposes we will consider possiblyin�nite sets of restricted labelled formulae of the form t0 : q, t0 2 Z; eventually,these sets will be replaced by those representable by �nite sets of temporally labelledformulae as de�ned in Section 4.1.An update pair (�+; ��) consists of two disjoint sets of restricted labelled atoms,where �+ is the insertion set and �� is the deletion set . We say that an updatepair determines or characterises a database update �x occurring at transaction timex 2 Zif the application of the update function �x to the database state Mx =(T;<; gx) generates a database state �x(Mx) = (T;<;�x(gx)) satisfying, for everypropositional atom q and every time point t0 2 T ,� if t0 : q 2 �+, then q 2 �x(gx)(t0);� if t0 : q 2 ��, then q 62 �x(gx)(t0);� if neither t0 : q 2 �+ nor t0 : q 2 ��, then q 2 �x(gx)(t0) i� q 2 gx(t0).The �rst item corresponds to the insertion of atomic information, the second onecorresponds to the deletion of atomic information, and the third one correspondsto the persistency of the una�ected atoms in the database. Note that only a �nitenumber of propositional atoms can occur in �+ and �� because there are only �nitelymany atoms in the database. The update �x is a database state transformation

98 Temporal Database Updatesfunction. An update may be empty (�+ = �� = ?), in which case the transformationfunction is just the identity and the database state remains the same.Let �x be a database update characterised by the pair (�+; ��). It is a boundedupdate if there exist t0; t00 2Zsuch that for every atom q in �+ (resp. q in ��),� for all t0 > t0, t0 : q 2 �+ (resp. t0 : q 2 ��) i� t0 : q 2 �+ (resp. t0 : q 2 ��);and� for all t0 < t00 t0 : q 2 �+ (resp. t0 : q 2 ��) i� t00 : q 2 �+ (resp. t00 : q 2 ��).A sequence of database updates f�xgx2Zis said to be bounded if every databaseupdate �x is bounded.We say that a two-dimensional plane modelM represents the evolution in timeof a temporal database through the update sequence f�xgx2Zif, for every x 2 Z,�x(Mx) =Mx+1.Proposition 4.2 Let M be a two-dimensional model representing the evolution atemporal database through the update sequence f�xgx2Zwith initial time x0, suchthatMx0 is temporally bounded. Then, for every x � x0, Mx is temporally boundedi� f�xgx2Zis bounded.Proof The two directions of the i�-condition are proved separately.(() If �x is a bounded database update, there exists a time t0 after which, forevery atom q, either its truth value is determined and equal for all times, or itstruth value is not a�ected by the update; similarly towards the past. Therefore, if�x is applied to a temporally bound database state it generates another temporallybounded database state.()) Suppose Mx and �x(Mx) = Mx+1 are both temporally bounded. Theneither there is only �nite amount of labelled formulae t : q changing its value fromone state to the next, in which case �x is bounded, or there are atoms qi such thattheir value has changed in �nitely many times. In this last case, since both Mxand Mx+1 are temporally bounded, there must be times t0 and t00 after which andbefore which, respectively, t : q was always inserted or always deleted. Therefore �xis bounded. �The Proposition above shows us that bounded updates are the kind of updatewe want to allow in temporally bounded databases, for which the two-dimensionalmodels describe the evolution. Bounded updates are easily shown to be �nitelyrepresentable by the labelled formulae of Section 4.1, as shown by the followingexample.

4.4 Valid-time and Transaction-time Databases 99Example 4.6 Consider the evolution monthly evolution of the database of Exam-ple 4.2. Suppose that at Apr93 we decide to retroactively increase Mary's monthlysalary to 5K for the whole year, which is illustrated in Figure 4.2.This situation is described by an update �Apr93 = (�+; ��), where�+ = f[Jan93;Dec93] : employee(Mary; 5K;Finance)g�� = f[Jan93;Dec93] : employee(Mary; 3K;Finance)gNote that we speci�ed the deletion of Mary's old salary until Dec93; the same e�ectwould be achieved had we only speci�ed the deletions until Apr93, i.e. the samehorizontal projection would have been generated for MMay93. Note also that wehave changed not only the past, but also Mary's salary at the present, Apr93, andalso its expectation for the future.
..

6
-\now" valid timeJan93Feb93Mar93Apr93 � � �� � � 93Dec93Apr93Mar93Feb93Jan92Dec91Sep BA = employee(Mary,3K,Finance)B = employee(Mary,5K,Finance)timetransaction A A AAFigure 4.2 Two-dimensional diagram of database evolutionIf we wanted to increase Mary's salary inde�nitely to the future, we could haveused the following in�nite update �Apr93 = (�+; ��), where�+ = f[Jan93;+1) : employee(Mary; 5K;Finance)g�� = f[Jan93;Dec93] : employee(Mary; 3K;Finance)gThis illustrates the result of Proposition 4.2, where time boundedness is preservedby this in�nite update. �4.4 Valid-time and Transaction-time DatabasesIn the previous section we pointed out a conceptual di�erence between the valid-timeand transaction-time
ows of time, and treated them separately but simultaneously

100 Temporal Database Updatesin the two-dimensional model of the evolution of a temporal database. For that, weassumed that the database records the valid-time
ow of time; however, it need notbe so.In their taxonomy of time in databases, Snodgrass and Ahn [1985] distinguisha historical database (called here a valid-time database), a temporal database thatrecords only valid time, from a rollback database (called here a transaction-timedatabase), a database that records only transaction time. The temporal data in avalid-time database is supposed to describe the evolution of the modelled part ofthe world that occurs independently from the database; on the other hand, the tem-poral information associated with any piece of data recorded in a transaction-timedatabase is generated automatically and is supposed to represent the times whenthat information held in the database; therefore, transaction time has no existenceindependent from the database. For example, suppose that at (transaction time)Sep91 the piece of data employee(Mary; 3K;Finance) is inserted in the transaction-time database; this information will persist for all times t, from t starting at Sep91,until the time that data is deleted from the database. Suppose the deletion happensat (transaction time) Apr93, so that in the database model we have[Sep91; Apr93] : employee(Mary; 3K; Finance):Note that the temporal information was generated automatically at the times ofinsertion and deletion, without the need to externally supply them. If we wantthen, at Apr93, to increase Mary's salary retroactively to the beginning of the year,we cannot record this fact in the transaction-time database. The transaction-timedatabase records only a sequence of (non-temporal) database states, attributing toeach state a (transaction) time-stamp, thus allowing us to reconstruct a previousstate but not to modify it.No present and past query that may be posed to a temporal database can tellwhether it is a valid-time or a transaction-time database. In fact, the query languageand the notion of a correct answer (the generated relation) for a query are exactlythe same in both cases. Even if we do not have in the database any information con-cerning a time later than the current time, based on the fact that transaction-timedatabases record only the present and past states of the database, we cannot guar-antee that the given temporal database is a transaction-time one, for it is perfectlylegal for a valid-time database to store only data about the present and past.The di�erence between valid-time and transaction-time databases lies in theirdynamic behaviour, not in their static query answering. We still consider the stateof any temporal database to be the horizontal projection of a two-dimensional plane

4.4 Valid-time and Transaction-time Databases 101model with respect to some vertical (hence transaction-time) point. An tt-update(transaction time update) is a state transformation function �x, where x is thecurrent (transaction-) time, determined by the update pair (�+; ��) satisfying thefollowing conditions.(a) the formulae of �+ and �� are of the form y : q where y � x , i.e. there are noupdates in the past;(b) x : q 2 �+ (resp. x : q 2 ��) i� for all y � x, y : q 2 �+ (resp. y : q 2 ��);i.e. updates persist to the future.We can then use the two-dimensional plane model to describe the evolution of atransaction-time database so that we may characterise it by the properties of the two-dimensional plane model that describe its evolution. The basic distinction betweenvalid-time and transaction-time databases is that in transaction-time databases wecannot change the past, whereas in the valid-time database any change is allowed.To characterise this impossibility to change the past, we will have to �rst characterisethe existence of a \now" in the two-dimensional plane model.Recall that in Section 3.5 we used a special propositional symbol � to characterisethe \diagonal" of a two-dimensional modelM; the formulaeD1 ��^��D2 �!(G:�^H:�^G:�^H:�)D3 �!(HG:�^GH:�)are valid over a two-dimensional plane model over K�K i� there is an isomorphismbetween the horizontal and vertical
ows of time. In the case of a model M overZ�Z, we can take the identity of points over the horizontal and vertical
ows oftime as the obvious choice of isomorphism, so that the formula ��(D1^D2^D3)is valid i�, for all t 2Z,M; t; t j= �:The points where � holds are exactly those where the valid- and transaction-times coincide, so we use those diagonal points as the ones where \now" holds. Theformula D1^D2^D3 belongs to the fully combined language of US and �U�S, but itdoes not belong to the partially interlaced language of US��N�P. This problem canbe solved by adopting the formulaed1 ��d2 �!(G:�^H:�)d3 �$ g g�

102 Temporal Database Updatesthat are in the language of US��N�P overZ�Z. We de�ne a formula A to hold over atwo-dimensional plane modelM = (T;<; T ; < ; g), which is represented byM j= A,if for every t 2 T and x 2 T , M; t; x j= A. Then the following result gives us thedesired equivalence; the proof is in Appendix B, Lemma B.2.Lemma 4.1 LetM be a two-dimensional plane model overZ�Z. Then the formulaD1^D2^D3 holds over M i� d1^d2^d3 holds over M.To characterise the persistence of present data towards the future, we make theone-dimensional formulaPersist (�^q)!Gq;hold over a two-dimensional modelM for every literal q, where a literal is an atomor the negation of an atom.The \no change in the past" feature of transaction-time databases is charac-terised as the persistence of atomic information of the \now", i.e. on the diagonal,towards the vertical future. Therefore, the following formula must hold over two-dimensional plane models that represent the evolution of a temporal databaseRoll ((�_F�)^q)! gq;where q is any literal. Note that the formula above belongs to all languages pre-viously mentioned. The subformula (�_F�) represents the fact that we are in thepresent or past, so whatever information we have then will persist to the next verticalmoment, when it will certainly be part of the (horizontal, therefore the database's)past. By making such a formula hold over the two-dimensional plane model, weguarantee the persistence of the information about the past in all states of thedatabase. The following property generalises Roll for a larger class of formulae; theproof is in Appendix B, Lemma B.3.Lemma 4.2 If Roll holds over a two-dimensional M for any literal q, it also holdsover M for any US-formula that does not contain future operators, i.e. does notcontain U and its derived operators.For the languages resulting from the full combination of US and �U�S,anotherversion of Roll is possible, namely if the following holds over a two-dimensionalplane modelM for any literal qRoll2 P (�^q)!q:

4.4 Valid-time and Transaction-time Databases 103It actually expresses that whatever was true on the diagonal remains true; Roll2can also be extended over M for any past-present US- formula.The characterisation of transaction-time databases as \no updates in the past"is given by the following.Proposition 4.3 Let M be a two-dimensional model representing the evolution ofa temporal database through the update sequence f�xgx2Zsuch that Persist holdsover M. Then the following are equivalent:(a) every update �x is a tt-update;(b) Roll holds over M, for the fully combined language of US � �U�S, for thefully combined language of US � �N�P.(c) Roll2 holds over M, for the fully combined language of US � �U�S.Proof (a) b) A tt-update does not update the past, so for t � x, by the semanticsof two-dimensional updates, the atomic information in M at t; t persist into thevertical, transaction-time future. So Roll holds overM.(b) c) We need to consider only t � x. Assume Roll holds over M; a simpleinduction on x� t shows thatM; t; x j= q i�M; t; t j= q, for any literal q. So Roll2holds overM.(c) a). Assume that (c) holds and suppose that at transaction time x therewas an update in the past time t < x. Without loss of generality, suppose it wasan insertion, so that for some atom q, M; t; x j= :q and M; t; x + 1 j= q. If weconcentrate on the diagonal, if M; t; t j= q then P (q^�)!q fails at (t; x), and ifM; t; t j= :q then P (q^�)!q fails at (t; x+ 1), contradicting (c). �The formulae Persist, Roll and Roll2 are not axioms in the sense that wereused in the previous chapters. This formulae are actually meta-level constraints ona two-dimensional model M (in fact, they are even second order, for they requirethat some property hold \for all literals").It follows that a transaction-time database is one whose evolution is describedby a two-dimensional model M such that Persist and Roll hold over M. Thepersistence of information on a transaction-time database is illustrated in Figure 4.3.It is no coincidence that there is a diagonal symmetry in Figure 4.3, where it can beseen that a literal q that holds at the diagonal (i.e. at some current time) persistsinto the horizontal future in the current database state, and also persists into thevertical future throughout all the future database states, when it will be part of theunmodi�able past.

104 Temporal Database Updates
... -
6 6 -q^�q qtt valid-time

\now"timetransaction
Figure 4.3 Persistence of atomic data in transaction time databasesA temporal database is a valid-time one if it is possible that a two- dimensionalmodel describing its evolution does not satisfy the three \meta-level" axioms above.That does not mean that all two- dimensional models describing the evolution ofa valid-time database invalidate all those meta-level axioms, because it is possiblefor a valid-time database to behave like a transaction- time one, i.e. the valid-timedatabase can simulate a transaction-time one.

Chapter 5Detection of Time Paradoxes inTemporal Active DatabasesIn this chapter we show how to create logical links between information associated topossibly distinct times in history and we discuss the e�ects that changes in historymay have upon those temporal links.For the purpose of establishing those links, we extend a valid-time database withtemporal rules, and we provide those rules with an execution semantics; the resultingcombined system is called an active valid-time database.Besides the execution semantics, we de�ne a declarative valid-time interpretationof the rules in an active database. We show that, under the execution semantics,the occurrence of updates at any time may cause an invalidation of the valid-timeinterpretation of rules the at some time in the database state, generating a timeparadox . In the same way that database updates were interpreted as changes inhistory, these time paradoxes are interpreted as the problems of changing history orhow changes in history a�ect other times.We classify these time paradoxes and, in order to detect their occurrences, thenotions of temporal and syntactical dependences of a rule are studied. These notionsare then used to develop algorithms that perform the detection of time paradoxes.All algorithms developed in this chapter are collected and presented in the Ap-pendix A.5.1 Active DatabasesValid-time databases as presented in the previous chapter are passive repositories ofdata wherein any data is, in principle, updatable; no interaction takes place between105

106 Detection of Time Paradoxes in Temporal Active Databasestemporal data to either generate or remove other data, or to execute a program inthe database environment. To allow for this interaction we introduce temporal rulesin the database. The addition of rules to the database does not contradict theview of the database as a model, for the rules will not be seen as a theory fromwhich inferences can be drawn, but as a constraints that force the two-dimensionalevolution of the database to occur according to the execution semantics of the rules.As a consequence, we will be providing the database with logical links whereby theexistence of some data will force the insertion or deletion of some other data.Temporal rules were �rst introduced by Gabbay [1987] under the paradigm of\imperative future", which was then applied and further developed in several papers[Barringer et al. 1989; 1991; Loucopoulos et al. 1990; Manning and Torsun 1989; Fin-ger, McBrien and Owens 1991; Finger, Fisher and Owens 1993]. Gabbay's temporalrules were temporal formulae of the form�(Condition! Action)where Condition is a boolean combination of pure-present and pure-past formulaeand Action is a pure-future formula; the propositional atoms are of two kinds, con-trollable and environment atoms, such that environment atoms can only appear inCondition but not in Action. The intended meaning of such rules is that, wheneverCondition holds against the past and present data in history, Action is executedimperatively by making it hold in the future in the database; hence the name im-perative future.While that semantic interpretation of temporal rules does provide the databasewith links between data associated to distinct time points, and despite its intuitiveappeal, the restriction to the format \past and present implies future" has a fewproblems.With respect to the format of Condition, we note that valid-time databases canalso store information about the future, which is then interpreted as an expectationabout what is going to happen. It is reasonable to base the execution of actions notonly on the data recorded about the past and present, but also on the expectationson the future. For example, if one expects to attend a meeting abroad in a coupleof weeks time, it is reasonable to book
ight tickets now, which may indeed beperformed automatically if the information is present in the database; if share pricesare expected to fall, it is reasonable to start selling.On the other hand, accepting any pure-future formulae as actions brings theproblem of deciding which atomic information is to be inserted in the database andat which time, a problem due to the existence of indeterminate actions of the form

5.1 Active Databases 107A_B and FA. It may also become intractable to decide whether a set of rulescontaining such actions is always consistent. Moreover, to con�ne actions to bepure-future formulae is too restrictive, for we have the possibility of updating dataassociated with any time in an valid-time database.Besides updating the database, we want to have the ability of starting a programin the database environment by means of external actions, e.g. the automatic
ightbooking may be one of such programs. It is clear that external actions can beperformed only at the current time.We therefore modify the format of temporal rules to cope with the problemsmentioned above. We distinguish between two kinds of atomic actions. Databaseactions are atomic updates represented by negated and non-negated atoms. Ex-ternal actions are non-negated atoms associated to programs such that, wheneveran atomic external action a is executed, a is inserted at the current time in thedatabase and its associated program �a is executed in the database environment(in a �rst-order database, every external predicate action is associated with a pro-gram and the predicate arguments are seen as parameters passed to the program;all variables in an external action atom must be bound to a value at executiontime, so that the propositional abstraction can be extended naturally). For ex-ample, the formula :employee(Peter; 1K;R&D) is a database deletion action andemployee(Mary; 5K;Finance) is a database insertion action; the formula pay(x; y)is an external action associated with a program � that takes as parameters a personname, x, and an integer y, and prints a $y payment cheque to x.Notation: In the following, we represent Both Condition- and Action-partsof rules as FOTL-formulae, since this is the natural way to express rules in a realdatabase. This should bring no con
ict, for we de�ne the semantics of rule ex-ecution in terms of their propositional abstraction. Also, we use the meta-levelwords Condition and Action to represent �rst-order formulae or their propositionalabstractions, i.e. we may use \Condition" instead of \[[Conditionv]], for some valu-ation v", and similarly with Action.De�nition 5.1 A temporal rule is a formula of the formCondition(x1; : : : ; xm)) Action(x1; : : : ; xm)where Condition is any temporal query formula, i.e. a safe formula, with free vari-ables x1; : : : ; xm, and Action(x1; : : : ; xm) is a deterministic action, which is de�nedas follows in two steps; �rst de�ne update actions:� every database action is an update action;

108 Detection of Time Paradoxes in Temporal Active Databases� if A and B are update actions, so are gA, wA and A^B;then de�ne deterministic action:� every update action and every external action is a deterministic action;� if A and B are deterministic actions, so is A^B. �The double arrow ()) was used instead the single arrow (!) for we are goingto present two semantical interpretations of temporal rules Condition) Action,namely the execution semantics and the valid-time interpretation of rules. In noneof them) is identical to!. As a consequence, both Condition and Action are safeformulae belonging to the FOTL language de�ned in Section 4.1, but not the ruleitself.Note that all free variables occurring in the Action part of the rule must occurin the Condition part. Since Condition is a safe formula, this guarantees that therewill be only a �nite number of actions to be executed and all its arguments will thenbe bound to a value.Due to this new format of temporal rule in De�nition 5.1, the intuitive notionof \past and present implies future" does not hold any more over the valid-time
ow; however, it will be recovered over the transaction-time
ow of time by thetwo-dimensional execution semantics of temporal rules given below.De�nition 5.2 (Execution Semantics) LetM be a two-dimensional model rep-resenting the evolution of an active valid-time database containing the set of tem-poral rules:Conditioni) ActioniConsider the �nite setact(t) = f[[Actionvi]] j there exists i, v such that M; t; t j= [[Conditionvi]]gof actions �red at the diagonal point t. The semantics of rule execution says that ifact(t) is satis�able, then g(V act(t)) must hold at the next transaction time, i.e.M; t; t j= Conditioni implies M; t; t+ 1 j= Actioni �

5.1 Active Databases 109Note that this semantics is equivalent to reading the temporal rule as the two-dimensional formula (�^Conditioni)! gActioni holding over M, which satis�esthe format \present implies future" over the transaction-time
ow. The elementsof act(t) are called executed actions at time t. For every external atomic action inact(t) its associated program is executed against the database environment. Rulesare always executed at present time, i.e. on the diagonal of the two-dimensionalplane; in this sense, those programs will always be executed at some current time.If the set act(t) is unsatis�able the situation is unde�ned. Typically this wouldmean that the database transaction that has caused the generation of the invalidstate will be rolled back so as to restore a satis�able state of the database. Note thatsince we have deterministic actions, the unsatis�ability check can be done e�ciently.The treatment of transactions remains outside the scope of this work.De�nition 5.3 (Active Database) An active valid-time database is a valid-timedatabase enhanced with a �nite set of temporal rules such that, if M is a two-dimensional representation of the evolution of the database, then M satis�es theexecution semantics of De�nition 5.2. �This de�nition accommodates the view of the database as a model with thepresence of rules as part of the database.Concerning the ways an active database can interact with its environment, thepresence of rules adds a bidirectionality to that interaction that does not exist innon-active databases. Both rules and updates have an e�ect on the evolution ofthe database, each taking part as one side of a two-way interaction between thedatabase and its environment:� Environment ! Database: the environment acts upon the database by up-dating it.� Database ! Environment: the rules react to the data in the database, chang-ing the data in it and, possibly, executing a program in the environment.Example 5.1 Suppose that we add the following rule to the database of Exam-ple 4.2, so that an employee is to be payed every month the amount correspondingto the previous month salary,wemployee(Person; Salary;Dept)) pay(Person; Salary):

110 Detection of Time Paradoxes in Temporal Active DatabasesAction pay(Person; Salary) is associated to a program that prints a cheque ofamount Salary to Person. Suppose we have the following information in thedatabase at transaction time Apr93� [Jan90;Dec92] : [[employee(Peter; 1K;R&D)]]� [Jan93; Apr93] : [[employee(Peter; 2K;Marketing)]]� [Jan90;Dec92] : [[employee(Paul; 1K;R&D)]]� [Sep91; Apr93] : [[employee(Mary; 3K;Finance)]]If that information had been monthly added to the database since Jan90, dueto the execution of the rules the following would also be in the database.� [Feb90; Jan93] : [[pay(Peter; 1K)]]� [Feb93; Apr93] : [[pay(Peter; 2K)]]� [Feb90; Jan93] : [[pay(Paul; 1K)]]� [Oct91; Apr93] : [[pay(Mary; 3K)]] �5.2 The Valid-time Interpretation of RulesSuppose we have in the database only rules of the form \past implies present" andthat the past is never changed by an update so that, once a rule is executed in thedatabase, both the condition part that holds in the database (we call it the rule'ssupport in the database) and the executed action that is consequently recorded inthe database remains forever in the database and is never changed.In this scenario, one may try to confront the rules of an active valid-time databaseagainst the database state, i.e. testing for the execution of rules at every valid-timein that state. If one does such a confrontation expecting to �nd that, at every valid-time, the support and the recorded actions of a rule must either both hold or fail,we say one is using a valid-time interpretation of the rules.In the presence of arbitrary updates in the past or with rules with a more liberalformat, like that we have adopted in the previous section, the valid-time interpre-tation of rules may not hold. This (perhaps intuitive) static view of rules does notfollow, in the general case, directly from the dynamic semantics of rule execution and

5.2 The Valid-time Interpretation of Rules 111it may indeed become invalid due to the occurrence of database updates, generatinga time paradox . This section discusses the kinds of time paradoxes that may appearfrom the con
ict between execution semantics and the valid-time interpretation inthe presence of generic updates.We can express these ideas more precisely. In a valid-time interpretation of rulesevery rule support holding at a database state should imply that its correspondingaction was executed and recorded in the database; furthermore, to avoid actions be-ing executed without any support, in a kind of \spontaneous generation of actions",a recorded action should hold in the database only if accompanied by its correspond-ing support; that would be equivalent to reading the \)" symbol in rules as \$"and not simply as \!". In other words, under the valid-time interpretation, therule Condition) Actionis understood as the formula�(Condition$Action)holding over the database state. Such a view is the one originally presented as thedeclarative past and imperative future view of a temporal database; there, however,the issue of updating the past was not raised, so no con
ict was generated.There are several update generated ways of invalidating the declarative valid-time interpretation of rules, generating a time paradox. Updates, either comingfrom the environment or resulting from the execution of an action, can a�ect boththe support and the record of an executed action of a rule with respect to some pasttime t, invalidating the valid-time interpretation; such invalidation can occur bothin the case the rule was once executed in the past at t and in the case it was not,i.e. the support of the rule did not hold at the diagonal point t.The importance of those time paradoxes comes from the fact that they are in-terpreted as being the problems that arise from changes in history. In the absenceof the temporal links given by temporal rules, no such anomaly could exist. Withinthe framework of an active valid-time database we can therefore study the problemsof changing in the past. Next we discuss and classify such time paradoxes. Theirdetection in a database is the subject of the remaining sections of this chapter.5.2.1 Non-supported ActionsAfter the execution of a rule an update can falsify its support, leaving a recordedaction in a database state in which there is no apparent justi�cation for its existence.

112 Detection of Time Paradoxes in Temporal Active DatabasesUnder the valid-time interpretation of rules, this is a contradiction, for Action holdsbut not Condition.Formally, let M be a model describing the database evolution; we say that[[Actionv]] becomes non-supported at transaction time x and valid time t if it wasexecuted in the past moment t < x, i.e. M; t; t j= [[Conditionv]], such that untiltransaction time x�1 the support and recorded actions of the rule persist, i.e. for t <y � x � 1, M; t; y j= [[(Condition^Action)v]], but after an update �x�1, M; t; x j=:[[Conditionv]]^[[Actionv]]. Typically, an update in the past is the cause for theappearance of a non-supported action in the database, but since the support of arule is not restricted to the past only, any update can cause it.Example 5.2 Consider the temporal active database of Example 5.1, where theaction pay(Mary; 3K) was executed from Sep91 until Apr93. Consider the situa-tion illustrated in Example 4.6 where, at Apr93, Mary's salary is increased to 5Kretroactively to the beginning of the 1993 year. This would leave the database withaction pay(Mary; 3K) non-supported from Feb93 until Apr93. In other words, atApr93 there is no longer a justi�cation in the database for having paid Mary only3K from Feb93 until Apr93. This situation is illustrated in Figure 5.1....................................6
-non-supported C = pay(Mary,3K)C valid time� � �� � � 93Dec93Apr93Mar93Feb93Jan92Dec91Sep

timetransactionApr93 CMar93 A BA B = employee(Mary,5K,Finance)A = employee(Mary,3K,Finance)
Figure 5.1 Non-supported paymentNote that the rule we are dealing with does respect the imperative future formatrestriction of \past implies present or future", but a non-supported actions may stilloccur. The only way to avoid such time paradox would be to forbid updates in thepast, transforming the valid-time database into a transaction-time one. �

5.2 The Valid-time Interpretation of Rules 1135.2.2 Retroactive ActionsAn update, mainly one of the past, may leave the database in a state where thereexists support at a past time t for an action to have been executed in the past,but the action was not executed at t. It is obvious that, if an employee is not inthe database, it will not be paid a salary; salaries are only paid to employees thatexist in the database at the time of the payment . But if an update inserts a newemployee retroactively two months in the past, this employee will not have beenpaid two months salary because that information was not present at the time ofpayment. In this case, the payment of his salary is said to be a retroactive action.Recall that, according to the semantics of rule execution, rules may only beexecuted at time points corresponding to the two-dimensional diagonal, i.e. at thecurrent time, so no rule can be executed in the past. As a consequence, a retroac-tively �red rule and its corresponding retroactive action will never be executed.The retroactive �ring of an action can be seen as dual to the appearance of non-supported action. In the case of non-supported actions, both Condition and Actionare true before the update, but after it Condition is falsi�ed and Action still holds;in the case of retroactive actions, on the other hand, both Condition and Actionare false before the update, yet Condition holds after the update but not Action.Formally, if M is a model describing the evolution of an active database con-taining the rule Condition) Action, we say that an action or rule is retroactively�red at valid-time t according to transaction- time x > t if M; t; t 6j= [[Conditionv]]for some valuation v, so that the rule is not �red and [[Actionv]] is not executed,and this situation persists until transaction time x � 1, i.e. for t � y � x� 1,M; t; y 6j= [[Conditionv]] and M; t; y 6j= [[Actionv]]; but after an update �x�1, atthe database state at transaction-time x, M; t; x j= [[(Condition^:Action)v]]. Theformula �(Condition$Action) does not hold over the database state Mx.As in the previous case, an update in the past is typically the cause for itsappearance, however since the support of a rule is not restricted to the past, anyupdate can in principle cause it.Example 5.3 Continuing Example 5.2 on Mary's retroactive salary salary increasefrom 3K to 5K, we see that the action pay(Mary; 5K) was retroactively �red fromFeb93 until Apr93, i.e. it has a justi�cation in the current state of the database fornot having been executed, but the database state re
ects that the execution neverhappened. This situation is illustrated in Figure 5.2

114 Detection of Time Paradoxes in Temporal Active Databases..6
-retroactive actionsDC valid time� � �� � � 93Dec93Apr93Mar93Feb93Jan92Dec91Sep

timetransactionApr93 CMar93 A BA A = employee(Mary,3K,Finance)B = employee(Mary,5K,Finance)C = pay(Mary,3K)D = pay(Mary,5K)Figure 5.2 Retroactive �ring of payment actionNote that there is no obvious \corrective action" to the time paradox generatedby a retroactively �red action. In Mary's case, the payment of the outstandingamount may depend on the company's policy. The payment may be made throughan extra cheque at the current month, or its value may be added to next monthpayment, or it may be converted into shares of the company, etc.The simple correction of the violation of the valid-time interpretation is no solu-tion to the time paradox, because, in this case, it would mean adding to the databasethe payment of a 5K cheque to Mary, which never occurred, or the deletion of hernew salary, undoing her retroactive increase for the sake of a paradox-free database;clearly, those are not adequate corrective actions. The situation is not better if wetry to \correct" non-supported actions. The speci�cation of such corrective action, ifdone formally so as to be executed automatically, may have to take into account thedynamic nature of retroactive actions and therefore it would require the expressiv-ity of two-dimensional temporal logic. We do not explore these \corrective actions"in this work, concentrating only on the detection of the occurrence of problematicsituations. �Examples 5.2 and 5.3 show the simultaneous occurrence of non-supported andretroactive actions due to a modi�cation update. When this happens, we call themconnected actions. Note, however, that there can exist non-supported actions with-out a connected retroactive one, e.g. the removal of all past records of an employeeleaving all past payments non-supported. There can also exist retroactive actionswithout a connected non-supported one, e.g. the retroactive hiring of an employee,retroactively �ring payments that never occurred.

5.2 The Valid-time Interpretation of Rules 1155.2.3 Rule Violation and Faked ExecutionAfter a rule was triggered and executed at valid time t, an update may remove therecorded actions of the rule, leaving the database in a state that, at t, the supportof a rule is in the database but not its corresponding recorded actions. Therefore,it is said that the execution of the rule was violated.LetM be a two dimensional model representing the evolution of an active valid-time database and let Condition) Action be a rule in it. We say that there is arule violation in M at valid time t and transaction time x if:M; t; x j= Condition^:Action^S (�^Condition;Condition^Action)It excludes the case where both the recorded actions and the support of a rule aresimultaneously deleted, for then there is no invalidation of the valid-time interpre-tation.The dual of rule violation occurs when an update in the past inserts in thedatabase the recorded actions of a rule that was not �red at that past time, thereforefaking its execution.We say that a faked execution is introduced inM at valid time t and transactiontime x if :M; t; x j= Action^S (�^:Condition;:Action):Note that this de�nition excludes the case where the action was executed, thena later update removed both its recorded actions and support, and then only therecorded actions are restored to the database; in this case, the execution is notconsidered faked because it actually happened, although it does violate the valid-time interpretation. The execution is considered faked even if the support of therule is simultaneously inserted in the database with its recorded actions, even thoughthere is no violation of the valid-time interpretation in this case; programs associatedwith an external action included in the faked recorded actions will not be executed,for programs are executed only at a present time (note that it follows from thede�nition that t < x), so the execution is still considered faked.Faked actions are not considered a serious problem that deserves having itsoccurrences always detected. In fact, a faked execution may be even part of the\corrective action" taken in the case of a retroactively �red rule, in which case thefaked action is not seen as a paradox any more.

116 Detection of Time Paradoxes in Temporal Active Databases5.2.4 SummaryTable 5.1 contains a summary of the possible e�ects of temporal updates in ac-tive valid-time databases. The �rst four rows present the update generated timeparadoxes arising from con
icts between the execution semantics and the valid-timeinterpretation of rules. The other three rows present the cases where no invalidationof the valid-time interpretation occurs, namely when neither support nor recordedactions of the rule is changed, and when both support and recorded actions aresimultaneously removed from the database, therefore keeping the validity of thevalid-time interpretation.The fact that an action was executed or not at a certain time t cannot be detectedby looking at the state of a one-dimensional valid-time database. If the support of arule is in the database at time t but not its recorded actions, it may either be the casethat it was there at execution time, but an update later removed its recorded actions,or it may be the case that the support did not hold at t, but was later introducedby an update. The detection of a past execution is, in fact, two-dimensional andcannot be extracted from the database state.Executed Support Recorded ActionNon-supported Action Yes False TrueRetroactive Action No True FalseRule Violation Yes True FalseFaked Execution No True/False TrueNo Change Yes True TrueNo False FalseSimultaneous Deletion Yes False FalseTable 5.1 E�ects of temporal updates in active databasesIn the following we concentrate on a method for detecting the occurrence of suchtime paradoxes.5.3 Syntactical and Temporal DependencesWe describe here a method for detecting the appearance of non-supported actionsin the database and we show how this method can be used to detect their connectedretroactive actions. The method produces, as a side e�ect, a way of detecting ruleviolation, but we do not attempt to detect faked executions. The detection of loss ofsupport is particularly interesting in the case of non-supported external actions, for

5.3 Syntactical and Temporal Dependences 117then a program has no justi�cation in the database for its past execution against thedatabase environment and, since we cannot change the past state of the environment,those actions are of particular interest for detection. In the following, whenever werefer to a non-supported or retroactive action, unless otherwise speci�ed, we meanan external action.The naive method for detecting loss of support consists of rechecking the databasefor rule support of executed actions at every past time point after every update. Ofcourse, this solution just uses brute force and is computationally very expensive;therefore it is unacceptable.The �rst thing deserving notice is that it is not necessary to check every rule atevery time point in the past if we keep a log of executed rules and their executiontimes; we postpone an exact description of this log until later, but note that thislog may increase inde�nitely, so we concentrate on the detection of loss of supportin a \recent past", i.e. we may �x, a priori , the time interval we will be searchingin the past. The log allows us to recheck only the rules that were once executed.However, even with the log there are still too many checks to be done, for anupdate usually does not a�ect all the data at all times in the database. Ideally, weshould only recheck the support of executed rules whose support was a�ected by anupdate. To deal with this idea of \a�ected support" we introduce the notions ofsyntactic dependence and temporal dependence of a query.The syntactic dependence of a �rst-order formula consists of the set of the pred-icate symbols occuring in the formula. The positive syntactic dependence of a for-mula is the set of predicate symbols occurring within the scope of an even numberof \:" symbols; the negative syntactic dependence of a formula is the set of pred-icate symbols occurring within the scope of an odd number of \:" symbols. Thepositive/negative dependences of a rule are those of its Condition-part.The temporal dependences of a formula A at a valid time t consist of sets oftime points at which the truth or falsity of atomic formulae in the database givessupport to the truth of A at t and, as in the syntactical case, there are positiveand negative temporal dependences. It follows that the temporal dependences ofa formula actually depends on the database state, i.e. it relies on the semanticsof the formula. In order to formally de�ne the temporal semantics, we make useof an extended representation of temporally labelled formulae and we de�ne thesemantics of such labelled formulae where, if t is a time point, d+ and d� are sets oftime points and A is a temporal formula, (t; d+; d�) : A is a well formed temporallylabelled formula. Let x be the current time and let Mx = (Z; <; h) be a temporal

118 Detection of Time Paradoxes in Temporal Active Databasesmodel representing the database state at x; the expressionMx j= (t; d+; d�) : Ameans that the formulaA is true inMx at time t with positive temporal dependenced+ and negative temporal dependence d�. Table 5.2 contains the extended de�nitionof the semantics of temporally labelled formulae with temporal dependences.Note that Mx 6j= (t; d+; d�) : A does not imply Mx j= (t; d+; d�) : :A; theformer means that A is not true at t with temporal dependences d+ and d�, butit may well be true at t with other sets of dependences; the latter means that :Ais true at t with the dependences d+ and d�. Table 5.2 therefore treats separatelyeach case of negation. Note that it is also possible to have several distinct temporaldependences for the same formula at the same time, e.g. if s < u < t and q holdsat s and u then both Mx j= (t; fsg;?) : P q and Mx j= (t; fug;?) : Pq. As in thesyntactic case, the positive/negative dependences of a rule at time t are those of itsCondition-part.Lemma 5.1 There exist temporal dependence sets d+ and d� such that Mx j=(t; d+; d�) : A if and only if Mx; t j= A.Proof The proof is by induction on Table 5.2; the \if and only if" is part of theinduction hypothesis. For the basic cases, note that p 2 h(t) i� Mx; t j= p i�Mx j= (t; ftg;?) : p and p 62 h(t) i�Mx; t j= :p i�Mx j= (t;?; ftg) : :p. The non-negated cases in Table 5.2 are straightforward to prove and are therefore omitted;double negation and negation of conjunction are also straightforward and omitted.The interesting parts of Table 5.2 are those concerning the negation of the tempo-ral operators overZ. We discuss here the case for the S-operator; for the U -operatorthe situation is analogous. Recall the semantics of S(A;B) where it holds at a pointt i�(a) A holds somewhere to the past of t, at s; and(b) B holds at all points u between s and t.The negation of the formula S(A;B) is satis�ed if either of those cases is not. The�rst one is not satis�ed if there is no such s at the past where A holds, so H:A holdsat t; by induction hypothesis, Mx j= (s; ds+; ds+) : :A for all s < t and by Table 5.2,Mx j= (t;Ss<t ds+;Ss<t ds+) : :S(A;B). The second one fails to hold over an integer-like
ow of time if, going towards the past, we reach :B before we reach A; overa Z-like
ow of time, this means that :B^:A is satis�ed in the past and since

5.3 Syntactical and Temporal Dependences 119Mx j= (t; ftg;?) : p i� p 2 h(t)Mx j= (t;?; ftg) : :p i� p 62 h(t)Mx j= (t; d+; d�) : ::A i� Mx j= (t; d+; d�) : A.Mx j= (t; d+; d�) : A^B i� Mx j= (t; d0+; d0�) : A andMx j= (t; d00+; d00�) : Bwhere d+ = d0+ [d00+ and d� = d0� [d00�.Mx j= (t; d+; d�) : :(A^B) i� Mx j= (t; d+; d�) : :A orMx j= (t; d+; d�) : :BMx j= (t; d+; d�) : S(A;B) i� there exists s < t, Mx j= (s; ds+; ds�) : A, andfor all u, s < u < t, Mx j= (u; du+; du�) : B,where d+ = [s�v<t dv+ and d� = [s�v<t dv�.Mx j= (t; d+; d�) : :S(A;B) i� for all s < t, Mx j= (s; ds+; ds�) : :A,where d+ = [s<t ds+ and d� = [s<t ds�;orthere exists s < t,Mx j= (s; ds+; ds�) : :B^:A, andfor all u, s < u < t, Mx j= (s; du+; du�) : :Awhere d+ = [s�v<t dv+ and d� = [s�v<t dv�.Mx j= (t; d+; d�) : U(A;B) i� there exists s > t, Mx j= (s; ds+; ds�) : A, andfor all u, t < u < s, Mx j= (u; du+; du�) : B,where d+ = [t<u�s du+ and d� = [t<u�s du�.Mx j= (t; d+; d�) : :U(A;B) i� for all s > t, Mx j= (s; ds+; ds�) : :Awhere d+ = [t<s ds+ and d� = [t<s ds�;orthere exists s > t,Mx j= (s; ds+; ds�) : :B^:A andfor all u, t < u < s, Mx j= (s; du+; du�) : :Awhere d+ = [t�v<s dv+ and d� = [t�v<s dv� .Table 5.2 Temporal dependences

120 Detection of Time Paradoxes in Temporal Active Databasesthen :A holds, which can be expressed as the formula S(:B^:A;:A) holding at t;therefore, by induction hypothesis, there exists s < t, Mx j= (s; ds+; ds�) : :B^:A,and for all u, s < u < t, Mx j= (s; du+; du�) : :A, and by Table 5.2, Mx j=(t;Ss�v<t dv+;Ss�v<t dv�) : :S(A;B). For dense
ows of time and for
ows that allow\gaps"1, there are other possibilities to falsify the second case which we need nottake into account here. On the other hand, ifMx j= (t; d+; d�) : :S(A;B), then byTable 5.2 either of the above two cases is unsatis�ed, so the induction hypothesisgives us Mx; t j= :S(A;B). This �nishes the proof. �When there is a generic update in the database, several time points are a�ected.Let �x be an update determined by the pair (�+; ��). The set of time pointspositively a�ected by the update, Aff+(�x), is de�ned asAff+(�x) = ft j t : q 2 �+gand the set of time points negatively a�ected by the update, Aff�(�x), asAff�(�x) = ft j t : q 2 ��g:The support of formulae is preserved after an update under the following case.Lemma 5.2 For every transaction time x and every valid time t and every formulaA such that Mx�1 j= (t; d+; d�) : A, if Aff+(�x�1) \ d� = Aff�(�x�1) \ d+ = ?then Mx j= (t; d+; d�) : AProof By induction on Table 5.2. For the base cases, if A = q then d+ = ftgand d� = ?; it follows that t : q 62 ��, so by update semantics we have Mx; t j= qand Mx j= (t; d+; d�) : q. If A = :q then d� = ftg and d+ = ?; it follows thatt : q 62 �+, so Mx j= (t; d+; d�) : :q. This �nishes the base cases.For the inductive cases, we only examine the cases involving the temporal opera-tor S; the other cases are either analogous or straightforward. IfMx�1 j= (t; d+; d�) :S(A;B) then there exists s < t, Mx�1 j= (s; ds+; ds�) : A, and for all u, s < u < t,Mx�1 j= (u; du+; du�) : A, where d+ = Ss�v<t dv+ and d� = Ss�v<t dv�. By inductionhypothesis, there exists s < t, Mx j= (s; ds+; ds�) : A, and for all u, s < u < t,Mx j= (u; du+; du�) : A, so Mx j= (t; d+; d�) : S(A;B).IfMx�1 j= (t; d+; d�) : :S(A;B) we have to examine two cases. Suppose for alls < t,Mx�1 j= (s; ds+; ds�) : :A, where d+ = Ss<t ds+ and d� = Ss<t ds�; in this case,by induction hypothesis, for all s < t,Mx j= (s; ds+; ds�) : :A andMx j= (t; d+; d�) :1A
ow contains a gap if it contains an in�nite ascending/descending sequence but does notcontain the least upper/greatest lower bound of such sequence.

5.3 Syntactical and Temporal Dependences 121:S(A;B). For the second case, suppose that there exists s < t,Mx�1 j= (s; ds+; ds�) ::B, and for all u, s < u < t, Mx�1 j= (u; du+; du�) : :A where d+ = Ss�v<t dv+ andd� = Ss�v<t dv�. Then, by induction hypothesis, Mx j= (s; ds+; ds�) : :B, and for allu, s < u < t, Mx j= (u; du+; du�) : :A; it follows that Mx j= (t; d+; d�) : :S(A;B),which �nishes the proof. �By combining temporal dependences and temporal a�ectedness we get the fol-lowing necessary condition for an action to become non-supported.Theorem 5.1 (Non-supported actions) LetM describe the evolution of an ac-tive temporal database containing the rule Condition) Action such that Mx�1 j=(t; d+; d�) : Condition. A necessary condition for an executed Action to becomenon-supported at transaction time x and valid time t is[Aff+(�x�1) \ d�] [[Aff�(�x�1) \ d+] 6= ?Proof Suppose Mx�1 j= (t; d+; d�) : Condition so, by Lemma 5.1, Mx�1; t j=Condition. If we assume that Aff+(�x�1) \ d� = Aff�(�x�1) \ d+ = ?, byLemma 5.2 it follows that Mx j= (t; d+; d�) : Condition and, by Lemma 5.1,Mx; t j= Condition, which contradicts the fact that Action becomes non-supportedat transaction time x and valid time t. �A similar result can be obtained for the syntactic dependences on the �rst-orderview of a database. Let �x be an update determined by (�+; ��). Let Pred(�+)be the set of predicate symbols whose [[]]-abstraction occurs in �+, and similarly forPred(��) with respect to ��.Theorem 5.2 (Syntactic Dependencies) Let M describe the evolution of anactive temporal database containing the rule Condition) Action such that s+ ands� are, respectively, its positive and negative syntactic dependences and Mx�1; t j=Condition. A necessary condition for an executed Action to become non-supportedat transaction time x and valid time t such that �x is an update determined by(�+; ��) is[Pred(�+) \ s�] [[Pred(��) \ s+] 6= ?Proof Suppose Mx�1; t j= Conditionv and Mx; t j= :Conditionv for some v.A simple induction on the structure of Condition shows us that [Pred(�+) \ s�] [[Pred(��)\s+] 6= ?. For the base cases, if Condition = p(x) then s+ = fpg s� = ?;then Condition can only be falsi�ed if t : [[p(x)v]] is deleted, so p 2 Pred(��). IfCondition = :p(x) then s� = fpg and s+ = ?; then Condition can only be

122 Detection of Time Paradoxes in Temporal Active Databasesfalsi�ed if t : [[p(x)v]] is inserted, so p 2 Pred(�+). The inductive cases are allstraightforwardly proved and we omit the details. �Since the notion of syntactical dependence is primarily a �rst-order one, it isreasonable to ask how the de�nition of temporal dependences translates from thepropositional abstraction into the �rst-order case. For that, we combine the de�ni-tion of temporal dependences from Table 5.2 and the propositional abstraction fromSection 4.2; recall that RD is the set of all relevant domain elements of the databaseD; furthermore we apply the three-place labels to safe �rst-order temporal formulae.The quanti�er free cases are basically those of Table 5.2; for the quanti�ed cases weobtain:D; v j= (t; d+; d�) : 9xA i� there exists v0 an x-variant of v such thatv0(x) 2 RD and D; v0 j= (t; d+; d�) : A.D; v j= (t; d+; d�) : :9xA i� for every v0 anx-variant of v such that v0(x) 2RD, D; v0 j= (t; dv0(x)+ ; dv0(x)�) : :A, where d+ =[c2RD dc+ and d� = [c2RD dc�.It follows from the safeness of formula A that both Lemmas 5.1 and 5.2 andTheorem 5.1 are extended to the �rst-order case with the de�nition above comple-menting Table 5.2. Note that a formula of the form 9xA may have several distincttemporal dependences.We now examine the feasibility of computing the temporal dependences duringquery evaluation. Table 5.2 can be seen as a reasonable means for actually com-puting the temporal dependences during a query evaluation; in fact, real databasescontaining large tables demand better optimisations to achieve acceptable responsetimes for queries, but for the sake of showing the feasibility of computing temporaldependences for quanti�er free formulae, we consider Table 5.2 satisfactory; the is-sue of incorporating the computation of temporal dependences to the optimisationof queries is outside the scope of this work.The extension dealing with quanti�ers, however, does present us with a compu-tational problem. Although the positive version of 9xA does not pose any problem,the negative case of :9xA seems to demand that the temporal dependences for:A(x) be calculated for each element of RD, which places a great computationalburden; note that it leads to considering domain elements that are not even relevantto A. One possible improvement is to consider only the domain elements that arerelevant to A, but this would still place a considerable burden on the system. Wepropose here a more straightforward computation of the dependencies in that case;

5.3 Syntactical and Temporal Dependences 123such a simpli�cation will not a�ect the correctness of Algorithm 5.5 for the detectionof non-supported actions.Consider the labelled formula (t; d+; d�) : :9xA. The computation of (d+; d�)is done in the following (syntactical) way. We start with d+ = d� = ? and let q(x)represent an atom containing the variable x. Then:� if there is an atom q(x) occurring positively in A, but not within the scope ofany temporal operator, then d� := ftg;� if there is an atom q(x) occurring negatively in A, but not within the scope ofany temporal operator, then d+ := ftg;� if there is an atom q(x) in A occurring positively inside the scope of a pastoperator, but not within the scope of any future operator, then d� := d�[fs js < tg;� if there is an atom q(x) in A occurring negatively inside the scope of a pastoperator, but not within the scope of any future operator, then d+ := d+[fs js < tg;� if there is an atom q(x) in A occurring positively inside the scope of a futureoperator, but not within the scope of any past operator, then d� := d� [fs js > tg;� if there is an atom q(x) in A occurring negatively inside the scope of a futureoperator, but not within the scope of any past operator, then d+ := d+ [fs js > tg;� if there is an atom q(x) in A occurring positively inside the scope of both afuture and a past operator, then d� :=Z;� if there is an atom q(x) in A occurring negatively inside the scope of both afuture and a past operator, then d+ :=Z.This leaves us with the following result.Proposition 5.1 There is a polynomial time algorithm that calculates the temporaldependences of a formula against a temporal database state.We conclude that it is e�ective to compute the temporal dependences of queries,which will then allow us to detect some of the time paradoxes described in Sec-tion 5.2.

124 Detection of Time Paradoxes in Temporal Active Databases5.4 Detection of Time ParadoxesThe results of the previous section allow us to discuss ways of detecting some ofthe time paradoxes arising from the con
icts between the execution semantic oftemporal rules and the valid-time interpretation of rules. We concentrate basicallyon the algorithm for the detection of non-supported external actions, i.e. actionsthat caused a program to be executed against the environment; eventually otherkinds of time paradoxes will be detectable following this path. The presentation ofthe algorithms will be done in a pseudo-programming language. All algorithms arecollected and presented in Appendix A.We represent the data structures by means of Prolog-style structures, i.e. func-tional terms of �rst-order logic. We start by indicating the representation of tem-poral dependences as a list of pairs of integer numbers[(s1; e1); : : : ; (sn; en)]such that, for every i, 1 � i � n, si and ei are integer numbers, si � ei and si+1 >ei + 1. The pairs (si; ei) intends to represent the interval fx j si � x � eig and thelist is supposed to represent the disjoint union of those intervals; eventually, s1 maybe equal to *", where the pair (�; e1) represents the set fx j x � e1g, and similarlyen may be equal to *" so that (sn; �) represents the set fx j x � sng. According tothat de�nition, the list [(�; 5); (6; 9); (12; 12)] is not acceptable as a representationof temporal dependences because s2 = 6 is not greater than e1 + 1 = 5 + 1. Ifwe coalesce the two initial pairs, generating the list [(�; 9); (12; 12)], we obtain anacceptable representation. This process of generating acceptable representationsfrom generic lists of pairs can be done automatically; a description of such a coalescefunction can be found in [McBrien 1992], together with a description of algorithmson how to insert or delete time points to this representation of sets of time points.We assume that every rule in the active database has a unique identi�cation.This information will be used to indicate which rules will have to be rechecked forthe purpose of con�rming its support.Two-auxiliary tables are de�ned in the form of prolog predicates. The �rst tableis a static one, i.e. it can be generated taking as input only the set of rules in thedatabase and does not depend on the contents of the database at any time. Thetable of syntactical dependences has the form:syntactical dependences(Pred Name; Pos dep list;Neg dep list)

5.4 Detection of Time Paradoxes 125where Pred Name is the name of a predicate in the database, Pos dep list is a listof rule identi�ers such that each correspondent rule has Pred Name as a positivesyntactical dependency; similarly for Neg dep list with respect to negative syntac-tical dependency. In order to construct such a table we do the following. For eachrule, we construct the parsing tree for its Condition-part; predicate names will beat the leaves of the tree. We then assign either `+' or `-' to every node in the tree inthe following way. The root node receives `+'. If a node contains the :-symbol, itschildren receive the opposite sign as the node itself received; otherwise, the childrenreceive the same sign as the father. For each predicate name on a leaf we includethe rule identi�er on its list of positive dependences if it is assigned a `+'; otherwisewe include it in the list of negative dependences. Figure 5.3 shows the parsing treefor the formula 9x9y:(:p(x)^(p(y)^q(x))), in which p occurs both positively andnegatively, and q occurs negatively.
@@��aaa��� +:9y -: q(x)+: p(x) -: p(y) -:^-:: -: ^+::+: 9x

Figure 5.3 Parsing tree for 9x9y:(:p(x)^(p(y)^q(x)))Pred Name is supposed to be the key of this table, so there are no two entriesat the table with the same value for Pred Name. For convenience, we use thefollowing two functions to access the syntactical dependences. All algorithms arepresented in an informal pseudo-programming language, in the fashion algorithmsare presented in basic books of relational database theory such as [Maier 1983] and[Ullman 1988]. An SQL-like notation is used to access the tables.Algorithm 5.1 Positive syntactical dependencesInput: a predicate nameOutput: a list of rule identifiersPOSSYNT(PredName)BEGINSelect Pos dep list from syntactical dependences

126 Detection of Time Paradoxes in Temporal Active Databaseswhere Pred Name = PredName;return Pos dep list;ENDAlgorithm 5.2 Negative syntactical dependencesInput: a predicate nameOutput: a list of rule identifiersNEGSYNT(PredName)BEGINSelect Neg dep list from syntactical dependenceswhere Pred Name = PredName;return Neg dep list;ENDThe second table is a dynamic one, i.e. it is constructed as the database runs,and contains information about the external actions that were executed in the pastby the system. The table executed action(Action;Rule id; Parms; T ime; d+; d�)consists of the following:Action The action name and the parameters passed to the external action at exe-cution time are stored in the format of a Prolog term, e.g. pay(Peter; 50).Rule id The identi�er of the rule whose �ring caused the action to be executed.Parms The list of parameters [x1; : : : ; xm] that the condition part of the rule,Condition(x1; : : : ; xm), is true of at the time of execution.T ime The time at which the action was executed.d+; d� Lists representing positive and negative temporal dependences of the rule atT ime.The insertion of information in the table occurs at execution time. We assumethat the temporal dependences are generated together with the query evaluationaccording to the description for �rst-order formulae in the previous section. Thekey for this table is composed of the Action name and parameters, and the T ime ofits execution. This table implements the previously cited \log of executed actions"and it is a substitute for storing all the information about the transaction dimension.For convenience, we provide two functions to access its table. Both take asinput a rule identi�er and a set of time points and both return a set of rows from

5.4 Detection of Time Paradoxes 127the executed action table such that, in the �rst one, the row contains the inputrule identi�er and a positive d+ intersection with the input set of time points isnon-empty; the second one does a similar thing with respect to d�.Algorithm 5.3 Positive intersection rowsInput: a rule ID and a list of time points.Output: a set of rows from executed action table.POSROWS(RID, TIMES)BEGINROWS := ?;For every row of the table given bySelect Action, Rule id, Parms, T ime, d+, d�from executed actionwhere RID = Rule id and d+\ TIMES 6= ?do ROWS := ROWS [frow(Action;Rule id; Parms; T ime; d+; d�)gENDAlgorithm 5.4 Negative intersection rowsInput: a rule ID and a list of time points.Output: a set of rows from executed action table.NEGROWS(RID, TIMES)BEGINROWS := ?;For every row of the table given bySelect Action, Rule id, Parms, T ime, d+, d�from executed actionwhere RID = Rule id and d�\ TIMES 6= ?do ROWS := ROWS [frow(Action;Rule id; Parms; T ime; d+; d�)gENDThe detection of the appearance of non-supported actions takes as input thepair (�+; ��) that characterise an update. Each set is represented as a �nite list oflabelled elements of the form:times : atom

128 Detection of Time Paradoxes in Temporal Active Databaseswhere times is a Prolog-style list representing a set of time points as describedpreviously and atom is a ground atomic predicate in the database. We also assumethere is a function PREDNAME that takes as input an atom and returns its predicatename, and a function COND that takes as input a rule identi�er and returns thecondition part of that rule. We have then the following algorithm to detect theoccurrence of non-supported actions.Algorithm 5.5 Detection of non-supported actionsInput: update sets �+ and ��.Output: A set of time-labelled non-supported actionsDETECT NONSUP(�+, ��)BEGINNONSUP := ?;/* The first part of the algorithm deals with insertions */For every times : atom in �+BEGINFor every rule id RID in table NEGSYNT(PREDNAME(atom))BEGINFor each row(Action; RID; Parms; T ime; d+; d�)in NEGROWS(RID, times)BEGINIf the query COND(RID) is unsatisfied by Parms at T imeand T ime : Action holds in the databasethenNONSUP := NONSUP [fT ime : Actiong;delete the row from the executed action table./* OBS */else if COND(RID) is satisfied with new temporaldependences d0+ 6= d+ or d0� 6= d�,then modify the row in the executed action tablewith dependences d0+ and d0�.ENDENDEND

5.4 Detection of Time Paradoxes 129/* The second part of the algorithm deals with deletions */For every times : atom in ��BEGINFor every rule id RID in table POSSYNT(PREDNAME(atom))BEGINFor each row(Action; RID; Parms; T ime; d+; d�)in POSROWS(RID, times)BEGINIf the query COND(RID) is unsatisfied by Parms at T imeand T ime : Action holds in the databasethenNONSUP := NONSUP [fT ime : Actiong;delete the row from the executed action table. /* OBS */else if COND(RID) is satisfied with new temporaldependences d0+ 6= d+ or d0� 6= d�,then modify the row in the executed action tablewith dependences d0+ and d0�.ENDENDENDreturn(NONSUP)ENDThe parts of the algorithm with the comments /* OBS */ will be used later whenwe extend it to detect connected retroactive actions. We �rst prove the correctnessof the algorithm as it is.Theorem 5.3 (Correctness of Algorithm 5.5) If an external action becomesnon-supported, Algorithm 5.5 will detect it.Proof The Algorithm 5.5 selects a (possibly empty) subset of rules to have itsCondition-part rechecked. This selection occurs in two stages for both insertion anddeletion. The �rst stage consists of selecting the rules whose syntactical dependencesare a�ected by the update; due to Theorem 5.2, no relevant rule is missed out.With this initial selection as input, a second selection is done based on the temporaldependences. In the non-quanti�ed case, the correctness of this second selection

130 Detection of Time Paradoxes in Temporal Active Databasesfollows directly from Theorem 5.1; the quanti�ed case follows from the discussionat the end of last section, where we generate a big enough interval for the temporaldependences. As a consequence, we are guaranteed to recheck every rule that losesits support after the update.Obviously, we are assuming here that the tables syntactical dependences andexecuted action are generated and maintained correctly as described previously. Infact, the correct maintenace of the latter a�ects the correctness of the algorithm, aswe will see next.When the condition part is rechecked, three possibilities may occur. The �rstis that the rule is satis�ed with the same temporal dependences as those stored inexecuted action, in which case there is nothing to be done. The second possibility iswhen the query is satis�ed, but with temporal dependences distinct from those storedat the table; this corresponds to the fact that the update may change the support ofa rule (i.e. the evaluation of the condition now visits di�erent time points) withoutleaving it unsatis�ed; Theorem 5.1 uses the value of the temporal dependences justbefore the update, not at evaluation time, so in order to use it correctly to selectthe set of rules to recheck, we have to update table executed action with the currentversion of d+ and d�, which is what the algorithm does. Finally, if the recheck failsand T ime : Action still holds then, by de�nition, Action has become non-supportedat the current transaction time, at the valid time T ime when the rule was executedin the past. �A slight alteration to Algorithm 5.5 can do better than just detect non-supportedactions. In the case that the Condition-part of a rule is not satis�ed by the param-eters Parms in the executed action table, it is possible that it is satis�ed by adi�erent set of parameters that did not satisfy it at the execution time. This char-acterizes the appearance of a retroactive action connected to the non-supportedaction just detected. This, however, does not guarantee that all retroactive actionsare detected, just those connected ones. In order to change Algorithm 5.5 to detectall the connected retroactive actions, we add to the initialization the variable RETROinitially set to ? and that is also returned at the end. Then, in the places wherethe comment /* OBS */ occurs in Algorithm 5.5, we add the following piece.Algorithm 5.6 Detection of connected retroactive actions/* OBS:A non-supported action was detected atrow(Action; RID; Parms; T ime; d+; d�)*/

5.4 Detection of Time Paradoxes 131If the query COND(RID) is satisfied at T ime by Parms0 6= Parmsand there is no row in table executed action such thatit contains Action(Parms0), RID, Parms0 and T imethenRETRO := RETRO [fT ime : Action(Parms0)gIn the algorithm above, Action(Parms0) represent the action we obtain by suit-ably substituting the new parameters in Action. We could execute Algorithm 5.6after every recheck instead, so that we may even �nd some retroactive actions notconnected to any non-supported action. Although this would generate only correctanswers, i.e. every action detected has been retroactively �red, there are still noguarantees that all retroactive actions would be detected. The problem of �ndingall the retroactive actions comes from the fact that no information is stored aboutthe rules and parameters that were unsatis�ed at execution time. This must clearlybe so, for there are in�nitely many ways a rule might be unsatis�ed (given a count-ably in�nite domain). Nor can we a�ord to recheck every rule at every time point inthe past after every update. So the detection of just connected retroactive actionsseems a good compromise.A complete version of Algorithm 5.5, including two occurences of Algorithm 5.6and the correct initialization of RETRO, is presented in the Appendix A.Note that in Algorithm 5.5 the detection of one non-supported action is indepen-dent of all the others. We may decide that it is worthwhile to apply the detectionjust to a certain group of rules and with the same algorithm; that would decreasethe size of both auxiliary tables and consequently the time of rechecking, makingthe whole process more e�cient. The algorithm will then correctly select the rulesfrom the restricted set that must be rechecked.The propagation of loss of support is one issue not discussed yet. Suppose wehave the following rulew7wednesday) wednesdaystating that if seven days ago was wednesday, then today is wednesday again. Sup-pose we have been executing this rule for several months and the database is popu-lated with several wednesdays, when we delete the �rst occurrence of a wednesday.The second occurrence of a wednesday will become non-supported, but in factit is reasonable to expect that all the subsequent wednesdays be pointed as non-supported through propagation. This corresponds to considering a detected non-supported action as an automatically deleted action. In this case, it is enough to

132 Detection of Time Paradoxes in Temporal Active Databasesreapply the algorithm above after every automatic deletion to detect, recursively, allpropagated non-supported actions. The deletion of a detected non-supported actionis, however, a \corrective action" to the detection of an time paradox; we have al-ready decided to leave to a user to decide when and how to apply corrective actions,and the process of detecting non-supported actions, even propagated ones, shouldnot change the state of the database. A solution for that would be to fake the dele-tion of the detected non-supported action during the propagation, i.e. consider thedetection and propagation of loss of support as a database process|a transaction|that temporarily deletes from the database the detected non-supported action andcall Algorithm 5.5 until it returns an empty set, at which point we have reachedthe end of the propagating process and the temporarily deleted information may berestored. This process may be enriched with the temporary insertion of retroactiveactions eventually detected.To �nalise the detection of time paradoxes, since we have already stated that weare not interested in detecting faked executions, all we have to do is show how todetect rule violation. The process is very simple if we restrict ourselves to the detec-tion of violation of executed external actions, for then we may use the informationstored in table executed action.Algorithm 5.7 Detection of rule violation for external actionsInput: update set ��.Output: A set of time-labelled actionsDETECT VIOLATION(��)BEGINVIOLATE := ?For all t : atom in �� doIf PRED(atom) is an external action andatom occurs in executed action(Action;Rule id; Parms; T ime; d+; d�)with T ime = tand Action = atomand COND(Rule id) is satisfied by Parmsthen VIOLATE := VIOLATE [ft : atomg;return(VIOLATE);ENDIf we assume that the table executed action contains all executed external ac-tions, the algorithm clearly detects all rule violations caused by the deletion of an

5.4 Detection of Time Paradoxes 133executed external action. In practice, it is reasonable to expect neither the databasenor the auxiliary tables to retain all the information about the past, but just thata \recent" past be kept, while the \distant" past may be periodicaly transferred totapes and only brought back to the database for special applications; the de�nitionof what \recent" means is clearly a database design decision. As long as the auxil-iary tables used here cover the same period of time towards the past as the databaseitself, the algorithms presented in this section will remain correct; this periodicalremoval of information from the database into tapes is considered as a huge updatethat will cause the table executed action to be maintained appropriately, but wemay wish to disable the detection of non-supported actions at that time.All the main algorithms described are to be executed after the database has beenupdated. They can be executed immediately after the update or after a transactionhas committed, in which case the detection of non-supported actions, connectedretroactive actions and rule violation can be considered as an independent trans-action. This has the advantage that, exept for the computation and storage oftemporal dependencies, no extra overhead is placed on the original transaction dueto the detection of time paradoxes.With respect to the worst case complexity of the algorithm for the detectionof non-supported actions, we note that if every rule is �red at all times and withtemporal dependencies equal to the whole set of time points, the algorithm ends uprechecking every rule at every time point after every update, and therefore degen-erating into the naive method for the detection of loss of support. That extremecase, however, appears very unlikely to occur in practice, in which case the describedalgorithm should perform well. A more detailed analysis of the complexity of thepresented algorithms should take in consideration the complexity of the accesses tothe database itself, and therefore remains outside the scope of this thesis. The num-ber of rules and the average number of actions executed at each transaction-timeshould also play a role in determining this complexity. A good evaluator of thee�ciency if the detection of loss of support would be the ratio r between the num-ber of non-supported actions detected and the number of rules rechecked; clearly,0 � r � 1, and the closer r is to 1, the smaller is the number of useless rechecks thealgorithm performed; to evaluate r, however, it would require having the algorithmimplemented in a database system running a real application, which is also outsidethe scope of this presentation.This �nishes our presentation of the detection of update generated time para-doxes arising from con
icts between the semantics of rule execution and the static

134 Detection of Time Paradoxes in Temporal Active Databasesvalid-time interpretation of rules in temporal active databases.

Chapter 6ConclusionsIn this chapter the results obtained in this thesis are discussed, compared with theliterature and further work based on the results is proposed.This thesis investigated themes belonging to several areas of Computing Science,that will be revisited in this chapter. The thesis investigates themes in logic andtemporal logic, temporal databases and active databases. Moreover, we can seeapplications of the results obtained here in arti�cial intelligence and computationallinguistics.All those areas will be separately discussed in this chapter. Our contribution toeach one is summarised. Simplifying assumptions in our work are pointed out. Pos-sible extensions and further works will be suggested and related to works publishedin the literature.6.1 Overall Analysis of AchievementsThe starting point of this work was the analysis of the computational aspects ofhistorical revisionism1 in temporal active databases. The basic motivation was foundin the following question, which is presented here in its generalised form:Question 6.1 How is temporal information a�ected when history is changed?The fact that the question was analysed on the sole basis of its applications to thedatabase framework did not imply that we were con�ned to the realm of databases.In fact, the analysis of this question sent us to explore and extend the formal logic1It was pointed out to me by David Evans that the expression historical revisionism is the oneactually applied in philosophical and political references to attempts to change the past, or theaccepted or o�cial history. 135

136 Conclusionsbasis of temporal databases, so several contributions of this thesis deal with logicand temporal logic. The double temporality contained in the expression \changinghistory" led us to study combinations of linear temporal logics with increasing de-gree of expressivity. Several families of two-dimensional temporal logics were thengenerated and analysed.We were then able to come back to the database framework with a formal, two-dimensional temporal logic basis to describe historical updates. This allowed for acharacterisation of the di�erences between the possible semantical interpretations oftemporal data.The task was then to analyse the e�ects of those updates when the tempo-ral database was extended with temporal rules, generating an interdependency be-tween the data stored in the temporal database. The e�ects of historical updateswere analysed as the time paradoxes arising from the invalidation of the valid-timeinterpretation under the execution semantics for temporal rules. At this point wewere �nally able to answer the original motivating question in the temporal activedatabase framework, providing algorithms for the detection of the occurrence of thee�ects of changing history.A possible criticism of our approach is that the generality of the presentationof combination of logics in Chapters 2 and 3 does not seem to be justi�ed by ourpresentation of temporal databases in Chapters 4 and 5. In the pure logical partof this thesis, the results were obtained for temporal logics referring to any classof linear
ows of time, but the temporal database models considered later dealtbasically with discrete, integer-like
ows of time, in both valid-time and transaction-time dimensions; the relevant two-dimensional temporal logics used for the databasestudy were �U�S=Z�US=Z, �N�P=Z�US=Zand, as an intermediary case, �U�S=Z(US=Z)and �U�S=Z
 US=Z. The expressivity of both fully two-dimensional systems provedto be adequate for the purposes of our study so we were never forced to chose one,although the logical properties of �N�P=Z� US=Zwere proved to be nicer.One possible explanation for that di�erence in generality is that it is natural toaim at higher generality in the abstract pure logic presentation than that we getin the more application-oriented presentation of databases. While this explanationseems a reasonable one, we argue that there are other reasons supporting the gen-erality of the presentation of combinations of logics. Those reasons are found eitherin possible extensions of the database concept or in research that has been carriedoutside the scope of this work.

6.1 Overall Analysis of Achievements 137� In the temporal database presentation the restriction toZ-like valid-time
owswas due to a predominance of systems implementing that restriction, and notfor any theoretical reasons; this predominance ofZ-based systems re
ects com-putational reasons such as e�ciency and that real systems clocks are discrete.It is reasonable to expect that if temporal databases become normal, the needfor representing dense or real
ows of time will be felt, and our logical pre-sentation covers these cases. For example, the axiomatic characterisation oftransaction-time databases can be directly applied to those cases, relying onlyon the linearity of the
ow.� The transaction-time
ow of time was chosen to be Z-like due to the discretenature of update occurrences; however, if we extend the presentation to in-clude the possibility of concurrent transactions, it may become necessary totreat transaction time as dense. Real-time consideration in the execution oftransactions may also become an issue, in which case both transaction andvalid-time
ows may be treated as real.� Besides considerations of possible extensions of the temporal database, thereare reasons for the generality of the presentation of the combination of logicsthat �nd their justi�cation outside the scope of this work. In the literature,temporal logic has traditionally dealt with a variety of classes of
ows of timeand our treatment is a contribution to that tradition.� Combinations of logics can be seen as a research topic on its own. Other worksthat deal with the independent combination of monomodal logics [Kracht andWolter 1991; Fine and Schurz 1991] have also been developed in a frameworkof the same or even higher generality.� Also, the idea of the temporalisation process has recently been applied inComputational Linguistics for a di�erent, non-temporal external logic (seediscussion below in Section 6.5.2), therefore showing the applicability of ourpresentation even in areas we had not originally anticipated.We proceed to analyse the contributions of the thesis to several areas of Com-puter Science, indicating how our work can be extended and what further work itmotivates.

138 Conclusions6.2 Contributions to Logic and Temporal LogicThe main focus of this thesis in the area of logic dealt with the combination of twologic systems in order to obtain a new logic system. The issues were:� Several methods of combination of two logic systems were presented. Eachcombination involved at least one temporal logic system. Each method had aparticular discipline for combining the language, the semantics and the infer-ence system of two logic systems. Each combination generated a single logicsystem.� The study of transference of logical properties from the component systemsinto their combined form has been the major point in the analysis of combi-nation methods. The basic logical properties whose transference was analysedwere soundness, completeness and decidability; for some combination meth-ods, the transference of other properties was also investigated such as: theseparation property, conservativeness and the compactness property (in theform of strong completeness).� The investigation of four basic methods has been accomplished. The tem-poralisation method and the independent combination method were shownto transfer all basic properties, although they do not generate an expres-sive enough system to be called fully two-dimensional. The full interlacingmethod does generate a fully two-dimensional temporal system, but in manycases it failed to transfer even the completeness property. As a compromise,it was shown that a restricted interlacing method, although generating two-dimensional temporal logic systems that were not as expressive and genericas the fully interlaced one, accomplishes the transference of all basic logicalproperties.Another contribution of our analysis was to answer a question raised by Ven-ema [1990] on the existence of a fragment of the two-dimensional plane temporallogic that, in his own words, was `better behaved' than the two-dimensional planesystem with respect to completeness and decidability properties. We have shownthat the two-dimensional temporal logic systems obtained by restricted interlacingare an example of such fragments.Another question raised by Venema in that same work remains open, namely,whether it is possible to have a complete axiomatisation over the two-dimensional

6.2 Contributions to Logic and Temporal Logic 139model using only canonical inference rules, i.e. without using the special inferencerules IR1 and IR2. This problem seems to be a very hard one. Neverthelesswe succeeded in extending Venema's completeness result, that originally holds foronly two-dimensional
ows built from two identical one-dimensional
ows, to anytwo-dimensional
ow built from any
ow in the classes Klin, Kdis, Kdense and Q.6.2.1 Comparisons, Extensions and Further WorkWith respect to combination of logics, the works in the literature that most closelyapproximate ours in spirit and aims, are those of Kracht and Wolter [1991] andof Fine and Schurz [1991]. Both works concentrated on monomodal logics, andinvestigated the transference of logical properties for only the method we calledhere independent combination. However, their work investigated several paths thatsuggest that further work may be done in our studies. First, they analysed thetransference of many other properties from two logic systems to its combined form,e.g. �nite model property and interpolation. Second, both works did not concentrateonly in linear systems and they were able to extend their results to any class of un-derlying Kripke frames. Third, Fine and Schurz's work generalised the independentcombination method to more than two monomodal logics.Those two papers cited above therefore suggest several extensions to our work.Note, however, that the temporalisation method was easily shown to be extensi-ble to many temporal logic systems in Example 2.4. The focus on linear
ows oftime was due to the later application to linear database systems, but we believethat this restriction may be lifted without damaging the transference results of thetemporalisation and independent combination methods. These have to be furtherinvestigated and the transference of any other logical property has to be analysedon its own.The generalisation of combination methods other than the independent com-bination method to modal logics is another area for further work. As noted inChapter 2, the temporalisation process is directly extensible to monomodal logics.It may even be the case that, for monomodal logics, the full interlacing methodachieves transference of completeness over several classes of fully two-dimensionalKripke frames using only canonical inference rules, as it is suggested by the resultsin [Segerberg 1973].Note that all the systems dealt with in Chapters 2 and 3 were extensions of clas-sical logic. It is possible that the temporalisation process preserves its transferenceproperties even in the case the underlying system is not an extension of classical

140 Conclusionslogic. What if the external temporal logic is non-classical itself? The same ques-tion applies to other combination methods. Do they achieve transference of logicalproperties when one or both of the combined temporal of modal logics is not clas-sical? Gabbay [1992] has recently posed that question in a very generic frameworkinvolving Labelled Deductive Systems (LDS) and found that in order to obtain thetransference of completeness we do not need the full power of classical logic butonly some weaker form of monotonicity. He has also developed other methods ofcombination called �bring that depends on the choice of a �bring function. A �bringfunction maps the truth value of atoms in one logic's semantics with the semanticsof formulae in other logic's semantics. Gabbay's dovetailing process, obtained with acertain class of �bring functions, is similar to the independent combination methodextended to logics respecting those weaker conditions of monotonicity. More workon this area is needed to clarify exactly how �bring is related to existing combinationmethods.There are also other possible types of combinations of one-dimensional temporallogics that may be explored. As pointed out in the end of Chapter 4, two linear
ows of time can be merged into another one; the question is then how to combinetwo one-dimensional temporal logics into another one-dimensional temporal logicover the merged
ow.6.3 Contributions to Temporal DatabasesBesides the work on logic and temporal logic, the other topic of this thesis wasdatabase theory, focusing on the dynamic aspects of temporal databases (Chapter 4)and on temporal active databases (Chapter 5).Temporal databases were formally presented over a �rst-order temporal logicframework; safe temporal formulae were adopted as queries, which allowed a propo-sitional abstraction over the �rst-order presentation, enabling us to apply the propo-sitional two-dimensional framework we had developed to the study of temporaldatabases. The main achievements then dealt with the dynamics of temporaldatabases in the following ways.� The two-dimensional plane model was used to describe the semantics of up-dates in temporal databases.� A formal characterisation of the di�erence between the transaction-time and

6.3 Contributions to Temporal Databases 141valid-time databases was obtained by means of an abstract, axiom-based de-scription over the two-dimensional framework. This description did not relyon the details of how updates were actually done, but rather stressed only thee�ects of updates.6.3.1 Further WorkThe two-dimensional plane temporal model and the several logics associated to it canbe seen as a formal basis for temporal databases that store both valid and transactiontimes. This kind of two-dimensional temporal database (or bitemporal database, ascalled in [Jensen et al. 1992]) was described by Snodgrass and Ahn [1985], whereevery piece of data is associated to two time stamps, one representing the usercontrolled period of history to which the data refers to, the other representing theperiod between the insertion and deletion of the data. In this case, a two-dimensionalalgebra is needed as a counterpart of the two-dimensional temporal logic basedcalculus.In a survey of temporal algebras, McKenzie and Snodgrass [1991] reported ba-sically only one-dimensional temporal algebras. Our work with the composition oftemporal logics suggests that a family of two-dimensional temporal algebras mightbe obtainable by an analogous composition of existing one-dimensional ones. Oneinteresting property to be studied then would be the equivalence of query expres-sivity between the algebra and the logic, in the same lines that query expressivitywas shown to be equivalent for the non-temporal relational calculus and algebra.The temporal data representation and the temporal query language of our ex-position can be extended. The temporal database was restricted to contain onlytemporally bounded discrete information represented by labelled atoms, where thelabels were conjunctions of terms of the form t = t0, t < t0 and t0 < t, for t aterm variable and t0 a term constant. Kabanza, Stevenne and Wolper [1990] haveproposed a more expressive data representation called linear repetitive points, orl.r.p.'s, and showed them to have the same expressivity as formulae labelled withPressburger arithmetic expressions, i.e. �rst-order formulae over the signature con-taining predicate symbols = and < and function symbols suc and + [Boolos andJe�rey 1989]. Furthermore, the associated query language was not based on tem-poral logic, but consisted of a two-sorted �rst-order language, one-sort for time andthe other sort for domain elements.Even with our less expressive data representation, it is possible to extend theexpressiveness of the temporal query languages (the contrasts between temporal data

142 Conclusionsexpressivity and temporal query expressivity were studied in [Baudinet, Niezetteand Wolper 1991]). Chomicki and Imieli�nski [1988] use a two-sorted datalog-stylelanguage for temporal recursive queries, adding deductive rules to the database thatare declaratively interpreted. An equivalently expressive deductive query languageinvolving temporal operators and recursion can be found in [Abadi and Manna 1989].The two-dimensional description of database updates is independent of the datarepresentation. To extend our results from temporally bounded data to l.r.p.'s weneed only �nd an equivalent version of Proposition 4.2 dealing with l.r.p.'s and l.r.p.updates. The expressivity of the query language does not a�ect the dynamics oftemporal databases either, so the two-dimensional model of database evolution couldgo along more expressive data representation and query languages without majorchanges. In fact, the two-dimensional model is based solely on the linearity of thevalid-time
ow of time and, although the majority of temporal database systemssurveyed in [McKenzie and Snodgrass 1991] deals with discrete, integer-like
ows oftime, the model and even the axiomatic distinction between transaction-time andvalid-time databases must hold over dense and continuous valid-time
ows of time(provided the transaction
ow of time remains integer-like).A totally unmentioned but very important theme in the study of temporaldatabases is their physical implementation. File organisation and special index-ing strategies for temporal data are important issues to take into consideration fore�cient querying and updating of temporal databases. Unfortunately, these sub-jects lie outside the scope of this work; refer to [Gunadhi and Segev 1993; Tanselet al. 1993] for an account of some recent developments in this area.To �nalise, we would like to comment on a recently published book containinga collection of papers on temporal databases [Tansel et al. 1993], which came toour knowledge by the time of �nishing this work. The book is divided in fourparts. In the �rst part, several temporal extensions of the relational data modelare presented; several distinct temporal query languages, temporal algebras anddata representation are presented; and di�erent temporal ontologies are considered,such as point based and interval based
ows of time. The second part is concernedwith temporal extensions of non-relational data models, e.g. the object-oriented, theextended entity-relationship, time sequences and the deductive data models. Thethird part deals with implementation issues such as query processing, optimisation,indexing and storage strategies. The last part deals with other temporal databaserelated issues, such as temporal knowledge bases for simulations, heterogeneousenvironmentsand temporal reasoning in general. Particularly conspicuous is the

6.4 Contributions to Temporal Active Databases 143absence in that book of any paper dealing with the problem of updating temporaldatabases, which is our main concern in this work. The book is, however, a goodreference for much of the data modelling and implementation work that has beendone in the �eld of temporal databases.6.4 Contributions to Temporal Active DatabasesThe framework of temporal databases was shifted from a passive repository to anactive one with the addition of temporal rules, which followed the imperative futureparadigm. This work contributions to the area of temporal active databases wereas follows:� A two-dimensional view of the imperative future paradigm allowed for thegeneralisation of the format of temporal rules, eliminating the restriction \pastand present implies future"; the e�ects of that restriction had already beendiscussed in [Manning and Torsun 1989].� Two distinct semantics for temporal rules, one imperative and the other declar-ative, were contrasted and as a result several \time paradoxes" were classi�ed.The imperative semantics unfolded over the two-dimensional model, while thevalid-time one is one-dimensional. The classi�cation of time paradoxes wasbased on the two-dimensional model.� Algorithms for the detection of some of the occurrence of time paradoxes wereproposed. It was not require that the second (transaction-time) dimension befully stored in the database. Only transaction-time information related to the�ring and execution of rules was needed.6.4.1 Further WorkSeveral implementation issues of temporal active databases remain to be investi-gated. The most expensive of all involved operations is the evaluation of the con-dition part of rules. This can be done more e�ciently than the naive evaluation ofall condition parts at all transaction times by avoiding recomputation of unchangedqueries. For non-temporal rules, Rete [Forgy 1982] is the most usual algorithmcoming from arti�cial intelligence applications of production systems and expertsystems. When transposed to relational databases, the Rete algorithm was shown

144 Conclusionsto have several de�ciencies, so other algorithms were proposed aiming at the re-duction of recomputation [Sellis, Lin and Raschid 1993]. The Rete algorithm wasextended to �nite hierarchical possible worlds [Cavalcanti 1993], but temporal ap-plications so far seem to rely basically on the naive evaluation of the condition partof all rules at every transaction time [Loucopoulos et al. 1990; Barringer et al. 1989;Manning and Torsun 1989].A natural extension of temporal rules as previously presented, which actuallyhas an impact on the e�ciency of the execution of rules, is the addition of triggersto temporal rules. Triggers are (possibly 0-ary) predicates that are placed as a labelof the ruletrigger : Cond) Action;so that Cond will be evaluated only when trigger is active. Triggers are normalyrepresented in rule based languages in the formatwhen Trigger if Condition then Actionas, for example, in the ERL-language of [McBrien et al. 1991]. Triggers remainactive for only one evaluation cycle which, in terms of the two-dimensional model,corresponds to the persistence of the triggers for only one unit over the transaction
ow of time, ie they may hold only at the diagonal points; except for that peculiarity,triggers can be seen as a conjunt of the condition part of a rule. Their e�ect, however,is felt in the e�ciency of rule based systems, for in each evaluation cycle, only thetriggered rules will have their Condition-part evaluated, saving a lot of time. In theTEMPORA system [Loucopoulos et al. 1990], rule triggers are called
ows and canbe either external, i.e. activated by an external user agent, or internal, i.e. activatedby the action part of a rule, or they can be event driven triggers, i.e. activated bythe ticking of the system's clock or the updating of a relation. Flows can also becombined with boolean operators to form more complex triggers.The notion of a transaction is one that deserves a special treatment in activevalid-time databases, but remained outside the scope of our presentation. Thetraditional view of a transaction is one of a \logical unit of work" in the database,that must either be entirely completed (when the transaction commits) or all itse�ects must be removed from the database (when the transaction is rolled back).The problem with active valid-time databases is that external actions executed inthe past cannot be rolled back. Therefore, if a transaction takes more than oneunit of time to be �nished, the \logical unit of work" may be violated due to the

6.5 Other Contributions 145impossibility of rolling it back. The solution in the TEMPORA system was to limittransactions to a single tick. With this constraint, a transaction is initiated byactivating a special kind of trigger, called external
ow; the transaction goes on byrepeating the execution cycle in the same valid time, until there are no actions toexecute, in which case the transaction commits and all the external actions thatwere �red are sent to the database environment; if, during the execution cycles, thetransaction is aborted, no external action has been sent to the environment, so thetransaction may be rolled back.Further work is being developed in the design, capturing and structuring of rulesthat remains outside the scope of this work; such work is very important in makingthe rule-based approach easier to manipulate from a programmer's point of view.On the system's side, a topic that deserves further consideration is how to overcomethe constraint of transactions lasting at most one time unit, so that the notion of arule-based temporal transaction may be formed.6.5 Other Contributions6.5.1 Arti�cial IntelligenceBelief revision is a topic of study of arti�cial intelligence and cognitive sciences thatdeals with the problem of changing one's idea about the world. Most approachesto this problem have focused on the non-monotonic aspects of this change of belief,i.e. the set of inferred data is not always preserved when a new piece of data isincluded to the original premises. Since we are working with \changes in history",our work has some features that contribute to the study of belief revision:� With the temporalisation process, we have contributed in explicating the in-trinsic temporality in the change of belief.� The two-dimensional temporal evolution provides a framework which allows forchanges in history without giving up monotonicity, in the sense that the extradimension preserves the set of all conclusions reachable at each transaction-time. The persistence of unchanged data from one transaction time to thenext one is obviously non-monotonic.The two-dimensional model can also serve as part of a data model for expertsystems that are supposed to give explanations of past actions. In this case, thesystems ability to retrieve not only the current state of history, but also the history

146 Conclusionsas seen at previous moments, can provide enough basis to explain why things werethen done in a way for which now there seems to be no rational support.Furthermore, the rule based approach arround which we build the temporal links,and for which we developed the detection of changes in the past may be adapted toexpert systems. For instance, if an expert system provides advice on some domain ofknowledge with temporal data (e.g. an investment advisor), changes in the temporaldata (e.g. correction of data, discovery of frauds, release of new information aboutthe past) may lead to non-supported actions (e.g. the retraction of earlier advice)which can then propagate to the present (e.g. the generation of new advice). Theinclusion of such a capability in existing systems, such as PAYE or METATEM, issubject to further investigation.Another possible line of research is to extend the two-dimensional system toseveral temporal agents. As it is, the system copes only with the evolution of oneagent's beliefs (i.e. the view the database manager has of an evolving history). Wecould then think of several agents with communicating capabilities and with internal`extra dimensions' capable of recording the evolution of beliefs of the other agents.This would imply a combination of techniques of distributed AI, reasoning withincomplete information and the two-dimensional approach, which seems no trivialtask; therefore, we do not suggest here that such an integration may be done in astraightforward way, but rather that this is a subject for a substantial amount ofresearch.6.5.2 Computational LinguisticsOur work is connected to computational linguistics in a few ways. The very idea oftwo-dimensional temporal logics �rst appeared in the literature in the analysis byKamp [1971] of the temporal meaning of the word \now" in gramatical sentences.Recently, the ideas of the temporalisation process have been adopted by compu-tational linguists as a form of layering. Blackburn, Gardent and Meyer-Viol [1993]follow the same principles of the temporalisation process in order to provide theright level of expressive power needed to model many grammar formalisms. They�rst de�ne LT, a modal logic to describe constraints on grammar parsing trees; theythen describe how to decorate the parsing tree with feature structures described by ageneric feature logic, LF, generating the combined logic LT(LF) by means of combin-ing their syntax, semantics and inference systems. They show how such combinedlogic LT(LF) can be used to model an existing linguistic theory.In the same lines of combination of logics, but perhaps going even further in the

6.5 Other Contributions 147interaction between the two component logics, we found the brand new ideas of �bredsemantics being applied as a combination of computational linguistic frameworks.In a still unpublished paper [D�orre, Gabbay and K�onig 1993], the ideas of �bring theLambek Calculus with feature logics are developed, and an example case is providedwith the combination of the Lambek Calculus and Horn-clause logic programming.We can only wait to see what other new applications of the ideas in this work willappear in the future, among the computational linguistics community or elsewhere.

148 Conclusions

Appendix AAlgorithmsThis appendix presents all the algorithms developed in Chapter 5.A.1 Auxiliary algorithmsWe present here the alogorithms that manipulate the data structuressyntactical dependences(Pred Name; Pos dep list;Neg dep list)executed action(Action;Rule id; Parms; T ime; d+; d�)The �rst two algorithms manipulate the �rst data structure fo the retrieval ofthe rules a�ected by a given positive/negative syntactical dependence.Algorithm A.1 Positive syntactical dependences (equivalent to Algorithm 5.1)Input: a predicate nameOutput: a list of rule identifiersin which the predicate appear asa positive syntactical dependencePOSSYNT(PredName)BEGINSelect Pos dep list from syntactical dependenceswhere Pred Name = PredName;return Pos dep list;END 149

150 AlgorithmsAlgorithm A.2 Negative syntactical dependences (equivalent to Algorithm 5.2)Input: a predicate nameOutput: a list of rule identifiersin which the predicate appear asa negative syntactical dependenceNEGSYNT(PredName)BEGINSelect Neg dep list from syntactical dependenceswhere Pred Name = PredName;return Neg dep list;ENDThe following algorithms manipulate the second data structure for the retrivalof executed actions that may have been a�ected by an update.Algorithm A.3 Positive intersection rows (equivalent to Algorithm 5.3)Input: a rule ID and a list of time points.Output: a set of rows from executed action tablewith the same rule ID, RID,and positive dependence overlapping TIMES.POSROWS(RID, TIMES)BEGINROWS := ?;For every row of the table given bySelect Action, Rule id, Parms, T ime, d+, d�from executed actionwhere RID = Rule id and d+\ TIMES 6= ?do ROWS := ROWS [frow(Action;Rule id; Parms; T ime; d+; d�)greturn ROWS;ENDAlgorithm A.4 Negative intersection rows (equivalent to Algorithm 5.4)Input: a rule ID and a list of time points.Output: a set of rows from executed action table

A.2 Main Algorithms 151with the same rule ID, RID,and negative dependence overlapping TIMES.NEGROWS(RID, TIMES)BEGINROWS := ?;For every row of the table given bySelect Action, Rule id, Parms, T ime, d+, d�from executed actionwhere RID = Rule id and d�\ TIMES 6= ?do ROWS := ROWS [frow(Action;Rule id; Parms; T ime; d+; d�)greturn ROWS;ENDA.2 Main AlgorithmsWe present here a combination of the main algorithm to detect non-supported ac-tions, Algorithm 5.5, and its extension to detect connected retroactive actions, Al-gorithm 5.6. Note that the output now is a pair of sets, namely the set of detectednon-supported actions and the set of connected retroactive actions, generated by arecent update.Algorithm A.5 Detection of non-supported and connected retroactive actionsInput: update sets �+ and ��.Output: A pair containing a set of time-labelled non-supported actionsand a set of retroactive actions.DETECT NONSUP(�+, ��)BEGINNONSUP := ?;RETRO := ?;/* The first part of the algorithm deals with insertions */For every times : atom in �+BEGINFor every rule id RID in NEGSYNT(PREDNAME(atom))

152 AlgorithmsBEGINFor each row(Action; RID; Parms; T ime; d+; d�)in NEGROWS(RID, times)BEGINIf the query COND(RID) is not satisfied by Parms at T imeand T ime : Action holds in the databasethenBEGINNONSUP := NONSUP [fT ime : Actiong;delete the row from the executed action table./* OBS: The detection of retroactive actions *//* is inserted here (Algorithm 5.6)*/If the query COND(RID) is satisfied at T ime for Parms0 6= Parmsand there is no row in table executed action such thatit contains Action(Parms0), ttRID, Parms0 and T imethenRETRO := RETRO [fT ime : Action(Parms0)g;ENDelse if COND(RID) is satisfied with new temporaldependences d0+ 6= d+ or d0� 6= d�,then modify the row in the executed action tablewith dependences d0+ and d0�.ENDENDEND/* The second part of the algorithm deals with deletions */For every times : atom in ��BEGINFor every rule id RID in POSSYNT(PREDNAME(atom))BEGINFor each row(Action; ttRID;Parms; T ime; d+; d�)in POSROWS(RID, times)BEGINIf the query COND(RID) is not satisfied by Parms at T ime

A.2 Main Algorithms 153and T ime : Action holds in the databasethenBEGINNONSUP := NONSUP [fT ime : Actiong;delete the row from the executed action table./* OBS: The detection of retroactive actions *//* is inserted again here (Algorithm 5.6) */If the query COND(RID) is satisfied at T ime for Parms0 6= Parmsand there is no row in table executed action such thatit contains Action(Parms0), ttRID, Parms0 and T imethenRETRO := RETRO [fT ime : Action(Parms0)g;ENDelse if COND(RID) is satisfied with new temporaldependences d0+ 6= d+ or d0� 6= d�,then modify the entry in the tablewith dependences d0+ and d0�.ENDENDENDreturn((NONSUP, RETRO))ENDThe �nal algorithm deals with the detection of rule violations.Algorithm A.6 (equivalent to 5.7) Detection of rule violation for external actionsInput: update set ��.Output: A set of time-labelled actionsDETECT VIOLATION(��)BEGINVIOLATE := ?;For all t : atom in �� doIf PRED(atom) is an external action andatom occurs in executed action(Action;Rule id; Parms; T ime; d+; d�)with T ime = tand Action = atom

154 Algorithmsand COND(Rule id) is satisfied Parmsthen VIOLATE := VIOLATE [ft : atomg;return(VIOLATE);END

Appendix BAuxiliary ProofsThis appendix presents proofs of some auxiliary or secondary lemmas and proposi-tions cited in the body of the thesis.Two-dimensional completenessTheorem B.1 (2D-completeness) (Theorem 3.3)There are sound and complete axiomatisations over the two-dimensional planeclasses Kdis�Kdis, Q�Q, Klin�Kdis, Klin�Q and Kdis�Q.Proof We prove completeness over Kdis�Q, the other cases being simpli�cationsof this one. For that, on the horizontal dimension we add the discreteness axiomDis-a F>!U (>;?)together with its mirror image Dis-b. On the vertical dimension we add axioms fordenseness and no end points:Den-a :U (>;?)Noe-a F>together with their mirror images Den-b and Noe-b. The construction of IR�-theories has to take into account the extra axioms, but except for that it is completelyanalogous to that over Klin �Klin in Section 3.3.1.Let �0 be a set of formulae consistent with the two-dimensional axiomatisationover Kdis�Q. Since this axiomatisation extends that over Klin �Klin, the gap andcorner �lling lemmas still hold and the construction of the grid is totally analogousof the previous one. So we obtain a two dimensional grid G� = (X�; <�;X�; < �; f�)such that there are no counterexamples left in G� and (X�; <�);(X�; < �) 2 Klin155

156 Auxiliary Proofsand G� satis�es C1, C2a, C2b, C3a, C3b, C4a, C4b, C5a, C5b as de�ned inSection 3.3.1.It remains only to be proved that (X�; <�) 2 Kdis � Klin and (X�; < �) isisomorphic to Q. For that, let x 2 X� and t 2 X�. Suppose t is not the last elementof X�, so that, by C2a, F> 2 f�(t; x); by axiom Dis-a, U (>;?) 2 f�(t; x). Then,by C4a, it follows that there exists s 2 X�, t <� s, such that > 2 f�(s; x) and forall u, t <� u <� s, ? 2 f�(u; x), i.e. there exists no such u 2 X� between t and s.So s is the successor of t. Analogously, Dis-b and C4b gives us a predecessor of t.We have thus proved that (X�; <�) 2 Kdis.By Axiom Den-a, it follows that for every x 2 X� and t 2 X�, :U (>;?) 2f(t; x) and by condition C4a one of the following must hold:� There is no y, x< �y with > 2 f(t; y). This contradicts Noe-a; similarly,Noe-b yields no initial points. So� For every y, x< �y, there exists z, x< �z < �y, ? 62 f(t; z) (which is alwaystrue); in other words, (X�; < �) is dense.The
ow (X�; < �) is therefore linear, dense with no end points and, by construction,it is also countable. So (X�; < �) is isomorphic to Q. This ends the proof. �Normal form for US� �N�PLemma B.1 (Lemma 3.6)Let A be a formula of US� �N�P. There exists a normal form formula A� equivalentto A, such that all the occurrences of gand w in it are in the form gkp and wlq,where p and q are atoms.Proof First we show that converse of the interlacing axioms are theorem too. Forthat, note that U and S respect the congruence property, i.e. if A$C and B$Dthen U(A;B)$U(C;D) and S(A;B)$S(C;D). Also note thatequiv (p$ g wp)^(p$ w gp)The transitivity of! connects the steps in the proof of U(gp; gq)! gU(p; q) below:U(gp; gq)! g wU(gp; gq) by equiv! gU(w gp; w gq) by interlacing axiom! gU(p; q) by equiv and congruence

157It follows that U(gp; gq)$ gU (p; q). It is completely analogous to show theconverse of other interlacing axioms, so we omit the details.Given A in the language of US � �N�P, the equivalence between both sides ofthe interlacing axioms allows for \pushing in" the vertical operators g and w,so a simple induction on the number of nested temporal operators in A shows analgorithmic way to generate an equivalent formula A� in the desired normal form.�Equivalence of diagonal axiomsLemma B.2 (Lemma 4.1)Consider the formulaeD1 ��^��D2 �!(G:�^H:�^G:�^H:�)D3 �!(HG:�^GH:�) and d1 ��d2 �!(G:�^H:�)d3 �$ g g�LetM be a two-dimensional plane model overZ�Z. Then the formula D1^D2^D3holds over M i� d1^d2^d3 holds over M.Proof By Lemma 3.7 we know that D1^D2^D3 holds over M i� the relation ide�ned as belowi = f(t; x) 2Z�Zj M; t; x j= �g:is an isomorphism in Z. So all we have to do is to prove that i as de�ned aboveis an isomorphism i� d1^d2^d3 holds over M. The only if is a straightforwardveri�cation that for all x and t in Z, M; t; x j= d1^d2^d3.Assume d1^d2^d3 holds overM. Then:1. d1 gives us that for every x there exists a t such that M; t; x j= �;2. d2 gives us that for every x; t; t0, t 6= t0, M; t; x j= � impliesM; t0; x 6j= �;3. d3 give us that for every x; t, M; t; x j= � i� M; t+ 1; x+ 1 j= � i� for everyn 2Z,M; t+ n; x+ n j= �The �rst two items give us that i�1 :Z!Zis a function. To show that i is alsoa function, suppose that (t; x1); (t; x2) 2 i. By linearity of Z, it follows that eitherx1 < x2 or x2 < x1 or x1 = x2. Let x1 � x2 = m; then, by the third item above,(t + m;x2 +m = x1) 2 i, so t = (t + m) and m = 0. It follows that x1 = x2, soi :Z!Zis a function. Directly by the de�nition of i, it follows that i is a bijection.

158 Auxiliary ProofsAgain by the third item above, if i(t1) = x1 and i(t2) = x2, then t1�t2 = x1�x2.It follows that i is order preserving and hence an isomorphism, which �nishes theproof. �The meta-level axiom RollLemma B.3 (Lemma 4.2)Consider the meta-level axiomRoll ((�_F�)^q)! gq:If Roll holds over a two-dimensional M for any literal q, it also holds over M forany US-formula that does not contain future operators, i.e. does not contain U andits derived operators.Proof By induction on the length of A, where A is a formula that does not containU and its derived operators and the length of a formula is the number of symbolsin it. The cases A = q and A = :q are given by the fact that Roll holds overM.If A = ::B, thenM; t; x j= ::B i�M; t; x j= B. By the induction hypothesis,M; t; x+ 1 j= B, so M; t; x j= ((�_F�)^A)! gA.If A = B^C, then fromM; t; x j= B^C it followsM; t; x j= B and M; t; x j= Cand hence, by induction hypothesis, M; t; x + 1 j= B and M; t; x + 1 j= C, soM; t; x j= ((�_F�)^A)! gA.If A = :(B^C), then M; t; x j= :B and M; t; x j= :C and hence, by inductionhypothesis,M; t; x+1 j= :B orM; t; x+1 j= :C, soM; t; x j= ((�_F�)^A)! gA.If A = S(B;C), then from M; t; x j= (�_F�)^S(B;C) it follows that t � xand that there exists s < t such that M; s; x j= B and for every u, s < u < tM; u; x j= C. Then induction hypothesis,M; s; x+1 j= B and for every u, s < u < tM; u; x+ 1 j= C. HenceM; t; x j= ((�_F�)^A)! gA.Finally, if A = :S(B;C), then we have to consider two cases. One possibilityis that M; t; x j= (�_F�)^H:B. On the other hand, if there exists s < t suchthat M; s; x j= B then there exists s0, s < s0 < t such that M; s0; x j= :B andM; s0; x j= :C and for all u, s0 < u < t , M; u; x j= :B. In both cases, theinduction hypothesis leads us to M; t; x j= ((�_F�)^A)! gA. �

BibliographyAbadi, M. and Z. Manna [1989]. \Temporal Logic Programming." Journal of Sym-bolic Computation, 8:277{295.Abiteboul, S. and V. Vianu [1991]. \Datalog Extensions for Database Queries andUpdates." J. of Computer and System Sciences, 43:62{124.Aqvist, L. [1979]. \A Conjectured Axiomatization of Two-dimensional Reichen-bachian Tense Logic." J. of Philosophical Logic, 8:1{45.Barringer, H., M. Fisher, D. M. Gabbay, G. Gough, and R. P. Owens [1989].\METATEM: A Framework for Programming in Temporal Logic." In REXWorkshop on Stepwise Re�nement of Distributed Systems: Models, Formal-ism, Correctness, volume 430 of LNCS, pages 94{129. Springer-Verlag, Mook,Netherlands.Barringer, H., M. Fisher, D. Gabbay, and A. Hunter [1991]. \Meta-Reasoning in Exe-cutable Temporal Logic." In Second Conference on the Principles of Knowledgeand Reasoning, pages 40{49, San Mateo, California. Morgan Kaufmann.Baudinet, M., M. Niezette, and P. Wolper [1991]. \On the Representation of In�-nite Temporal Data and Queries." In 1Oth ACM Symposium on Principles ofDatabase Systems, pages 280{290.Blackburn, P., C. Gardent, and W. Meyer-Viol [1993]. \Talking About Trees." In6th Conference of the European Chapter of the Association of ComputationalLinguistics, pages 21{29.Boolos, G. S. and R. C. Je�rey [1989]. Computability and Logic. Cambridge Uni-versity Press, third edition.Burgess, J. P. and Y. Gurevich [1985]. \The Decision Problem for Linear Logic."Notre Dame Journal of Formal Logic, 26(2):566{582.Burgess, J. P. [1982]. \Axioms for Tense Logic I: \Since" and \Until"." Notre DameJournal of Formal Logic, 23(4):367{374.159

160 BIBLIOGRAPHYBurgess, J. P. [1984]. \Basic Tense Logic." In Gabbay, D. and F. Guenthner, editors,Handbook of Philosophical Logic, volume II, pages 89{133. D. Reidel PublishingCompany.Casanova, M. A. and A. L. Furtado [1982]. \A Family of Temporal Languages forthe Description of Transition Constraints." In 3rd Worksohp on Logical Basesfor Databases, Toulouse, France.Cavalcanti, M. [1993]. \PW-XRete: The Possible World in Real Life." In Proc.International Joint Conference of Arti�cial Intelligence.Chomicki, J. and T. Imieli�nski [1988]. \Temporal Deductive Databases and In�niteObjects." In 7th ACM Symposium on Principles of Database Systems, pages61{73, Austin, Texas.Chomicki, J. and D. Niwi�nski [1993]. \On the Feasibility of Checking TemporalIntegrity Constraints." In 12th ACM SIGACT-SIGMOD-SIGART Symposiumon Principles of Database Systems.Codd, E. F. [1970]. \A Relational Model for Large Shared Data Banks." Commu-nications of the ACM, 13(6):377{387.Codd, E. F. [1972]. \Relational Completeness of Data Base Sublanguages." InRustin, R., editor, Data Base Systems, pages 65{98. Prentice-Hall, EnglewoodCli�s, New Jersey.D�orre, J., D. Gabbay, and R. K�onig. \Fibred Semantics for Feature-Based GrammarLogic." Preliminary unpublished draft | 28 Jully, 1993, 1993.Fine, K. and G. Schurz. \Transfer theorems for strati�ed multimodal logics." Un-published manuscript, 1991.Finger, M. and D. M. Gabbay [1992a]. \Adding a Temporal Dimension to a LogicSystem." Journal of Logic Language and Information, 1:203{233.Finger, M. and D. M. Gabbay [1992b]. \Updating Atomic Informations in LabelledDatabase Systems." In 4th International Conference on Database Theory, pages188{200, Berlin.Finger, M., M. Fisher, and R. Owens [1993]. \MetateM at work: ModellingReactive SystemsUsing Executable Temporal Logic." In Sixth InternationalConference on Industrial and Engineering Applications of Arti�cial Intelligenceand Expert Systems, Edinburgh.

BIBLIOGRAPHY 161Finger, M., P. McBrien, and R. Owens [1991]. \Databases and Executable Tem-poral Logic." In Annual Esprit Conference, pages 288{302. Comission of theEuropean Communities.Finger, M. [1992]. \Handling Database Updates in Two-dimensional TemporalLogic." J. of Applied Non-Classical Logic, 2(2):201{224.Forgy, C. L. [1982]. \Rete: A Fast Algorithm for the Many Pattern/Many ObjectPattern Match Problem." Arti�cial Intelligence, 19.Frege, G. [1879]. \Begri�sschrift." In [Heijennort 1982], pages 1{82. Harvard Uni-versity Press.Gabbay, D. M. and I. M. Hodkinson [1990]. \An axiomatization of the temporal logicwith Until and Since over the real numbers." Journal of Logic and Computation,1(2):229{259.Gabbay, D. M. and P. McBrien [1991]. \Temporal Logic and Historical Databases."In 17th Conference on Very Large Databases, pages 423{430, Barcelona.Gabbay, D. M., I. M. Hodkinson, and M. A. Reynolds. \Temporal Logic | Mathe-matical Foundations and Computational Aspects." To appear in OUP, 1994.Gabbay, D. M. [1981a]. \An Irre
exivity Lemma." In Monnich, U., editor, Aspectsof Philosophical Logic, pages 67{89. Reidel, Dordrecht.Gabbay, D. M. [1981b]. \Expressive Functional Completeness in Tense Logic." InMonnich, U., editor, Aspects of Philosophical Logic, pages 91{117. Reidel, Dor-drecht.Gabbay, D. M. [1987]. \The Declarative Past and the Imperative Future." InBanieqbal, B. et al., editors, Coloquium on Temporal Logic and Speci�cations| Lecture Notes in Computer Science 389, Manchester. Springer-Verlag.Gabbay, D. M. [1990]. \Temporal Logic, Tense or Non-tense | inaugural lectureat Imperial College (17 May 1988)." In Spencer-Smith, R. and S. Torrance,editors, Machinations | Computational Studies of Logic, Language and Cog-nition. Ablex Publishing Co.Gabbay, D. M. [1991a]. \Labelled Deductive Systems { Part I." Technical Re-port CIS{Bericht{90{22, Universit�at M�unchen, Centrum f�ur Informations {und Sprachverarbeitung.Gabbay, D. M. [1991b]. \Modal and Temporal Logic Programming III | metalevelfeatures in the object level." In Cerro, L. F. and M. Penttonen, editors, Non-Classical Logic Programming. Oxford University Press.

162 BIBLIOGRAPHYGabbay, D. M. [1991c]. \Theoretical Foundations for Non-monotonic Reasoning Part2: Structured Non-monotonic Theories." In SCAI 91 { Third ScandinavianConference on AI, pages 19{40.Gabbay, D. M. \Fibred semantics and combinations of logics." Manuscript, ImperialCollege, 1992.Garson, J. W. [1984]. \Quanti�cation in Modal Logic." In Gabbay, D. and F. Guen-thner, editors, Handbook of Philosophical Logic, volume II, pages 249{307. D.Reidel Publishing Company.Gunadhi, H. and A. Segev [1993]. \E�cient Indexing Methods for Temporal Rela-tions." Transactions on Knowledge and Data Engineering, 5(3):495{509.Halpern, J. Y. and Y. Moses [1985]. \A Guide to the Modal Logics of Knowledge andBelief." In Proceedings of the 9th International Joint Conference on Arti�cialIntelligence (IJCAI-85), pages 480{490.Halpern, J. Y. and Y. Shoham [1986]. \A Propositional Modal Logic of Time In-tervals." In Proceedings of the Symposium on Logics in Computer Science {LICS86, pages 279{292, Washington.Heijennort, J., editor [1982]. From Frege to G�odel: A Source Book in MathematicalLogic, 1879{1931. Harvard University Press, Cambridge, Massachussets.Hilbert, D. [1925]. \On the In�nite." In [Heijennort 1982], pages 367{392. HarvardUniversity Press.Hilbert, D. [1927]. \The Foundations of the Mathematics." In [Heijennort 1982],pages 464{479. Harvard University Press.Hintikka, J. [1962]. Knowledge and Belief. Cornell University Press.Hughes, G. E. and M. J. Cresswell [1968]. An Introduction to Modal Logic. Methuen.Jensen, C. S., J. Cli�ord, S. K. Gadia, A. Segev, and R. T. Snodgrass [1992]. \AGlossary of Temporal Database Concepts." SIGMOD RECORD, 21(3):35{43.Kabanza, F., J. M. Stevenne, and P. Wolper [1990]. \Handling In�nite TemporalData." In Proc. ACM Symposium on Principles of Database Systems, pages392{403.Kamp, J. A. W. [1968]. Tense Logic and the Theory of Linear Order. PhD thesis,UCLA.Kamp, J. A. W. [1971]. \Formal Properties of Now." Theoria, 35:227{273.

BIBLIOGRAPHY 163Konolige, K. [1986]. A Deductive Model of Belief. Research notes in Arti�cialIntelligence. Morgan Kaufmann.Kowalski, R. A. and M. J. Sergot [1986]. \A Logic Based Calculus of Events." NewGeneration Computing, 4(1):67{95.Kracht, M. and F. Wolter [1991]. \Properties of independently axiomatizable bi-modal logics." Journal of Symbolic Logic, 56(4):1469{1485.Kr�oger, F. [1987]. Temporal Logics of Programs. Springer EATCS Monographs onTheoretical Computer Science. Springer-Verlag.Lloyd, J. W. [1987]. Foundations of Logic Programming. Springer-Verlag, secondedition.Loucopoulos, P., P. McBrien, U. Persson, F. Schumacker, and P. Vasey [1990].\TEMPORA | Integrating Database Technology, Rule Based Systems andTemporal Reasoning for E�ective Software." In European Communities, Com-mission, editor, The Annual ESPRIT Conference, pages 388{411, Brussels.Kluwer Academic Publishers.Maier, D. [1983]. The Theory of Relational Databases. Pitman Publishing Limited.Manning, K. J. and I. Torsun [1989]. \The Application of Temporal Logic to PAYETax Regulation." Technical report, Department of Computing, Bradford Uni-versity.McBrien, P., M. Ni�ezette, D. Pantazis, A. Seltveit, U. Sundin, B. Theodoulidis,G. Tziallas, and R. Wohed [1991]. \A Rule Language to Capture and ModelBusiness Policy Speci�cations." In Proceedings of the Third Nordic Conferenceon Advanced Information Systems Engineering. Springer-Verlag. LNCS 498.McBrien, P. [1992]. \The Query and Updating of a Historical Database held in anRDMS." Technical report, Imperial College.McKenzie, Jr., L. E. and R. T. Snodgrass [1991]. \Evaluation of Relational AlgebraIncorporating the Time Dimension in Databases." ACM Computing Surveys,23(4):501{544.Morgenstern, M. [1983]. \Active Databases as a Paradigm for Enhanced ComputingEnvironments." In Ninth International Conference on Very Large Data Bases,pages 34{42.Navathe, S. B. and R. Ahmed [1988]. \TSQL | a language interface for historydatabases." In Rolland, C., F. Bodart, and M. Leonard, editors, TemporalAspects in Information Systems, pages 109{122. North Holland.

164 BIBLIOGRAPHYPnueli, A. [1977]. \The Temporal Logic of Programs." In Proc. 18th Symposium onthe Foundations of Computer Science.Prior, A. [1957]. Time and Modality. Oxford University Press.Quine, W. V. O. [1960]. Word and Object. MIT Press.Ramakrishnan, R., F. Bancilhon, and A. Silberschatz [1987]. \Safety of RecursiveHorn Clauses with In�nite Relations." In Proc. Sixth Symposium on Principlesof Database Systems, pages 328{339.Reiter, R. [1984]. \Towards a Logical Reconstruction of Relational Database The-ory." In Brodie, M. L. et al., editors, On Conceptual Modelling: Perspectivesfrom Arti�cial Intelligence, Databases and Programming Languages, pages 191{233. Springer-Verlag.Reynolds, M. A. [1992]. \An Axiomatisation for Until and Since over the realswithout the IRR Rule." Studia Logica, 51(2):165{194.Segerberg, K. [1973]. \Two-dimensional Modal Logic." J. of Philosophical Logic,2:77{96.Sellis, T., C.-C. Lin, and L. Raschid [1993]. \Coupling Production Systems andDatabase Systems: A Homogeneous Approach." IEEE Transaction on Knowl-edge and Data Engineering, 5(2):240{256.Snodgrass, R. and I. Ahn [1985]. \A Taxonomy of Time in Databases." In ACMSIGMOD International Conference on Management of Data, pages 236{246,Austin, Texas.Sripada, S. M. [1990]. \A Basis for Historical Deductive Databases." Internal report,Imperial College, Department of Computing.Stonebraker, M., E. Hanson, and S. Potamianos [1988]. \The POSTGRESS RuleManager." IEEE Transaction on Software Engineering, 14(7):897{907.Tansel, A., J. Cli�ord, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors[1993]. Temporal Databases: Theory, Design and Implementaition. DatabaseSystems and Application Series. Benjamin/Cummings Pub. Co.Thomason, S. K. [1980]. \Independent Propositional Modal Logics." Studia Logica,39:143{144.Thomason, R. H. [1984]. \Combinations of Tense and Modality." In Gabbay, D.and F. Guenthner, editors, Handbook of Philosophical Logic, volume II, pages135{165. D. Reidel Publishing Company.

BIBLIOGRAPHY 165Tuzhilin, A. and J. Cli�ord [1990]. \A Temporal Relational Algebra as a Basis forRelational Completeness." In Proc. 16th Conference on Very Large Databases,Brisbane, Australia.Ullman, J. D. [1988]. Principles of Database and Knowledge-base systems, volume I.Computer Science Press.van Benthem, J. [1983]. The Logic of Time. Reidel, Dordrecht.Venema, Y. [1990]. \Expressiveness and Completeness of an Interval Tense Logic."Notre Dame Journal of Formal Logic, 31(4).Whitehead, A. N. and B. A. W. Russel [1910]. Principia Mathematica. CambridgeUniversity Press.Xu, M. [1988]. \On some U;S-Tense Logics." Journal of Philosophical Logic, 17:181{202.Zaniolo, C. [1986]. \Safety and compilation of non-recursive horn clauses." In Proc.First Int. Conf. on Expert Database Systems, pages 237{252.

