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Abstract

Temporal active databases are an extension of the traditional database concept. On
the temporal side, data is associated to time points or periods and, on the active
side, temporal rules provide a means by which some temporal data in the database
may force the insertion/deletion of some other temporal data. Thus, the temporal
rules establish a “temporal link” between the data, either via a procedural execu-
tion mechanism or through a declarative historical interpretation. In this database
framework, we are interested in analysing and detecting the effects that a change in
(data associated with) the past may cause in the database.

Temporal logic techniques are applied to describe and analyse the problems re-
lated to the evolution of temporal databases. For that, we start by presenting the
mathematical framework of two-dimensional temporal logics. Several methods of
combining two one-dimensional temporal logics are described. Each combination
method generates a family of two-dimensional temporal logics. The objective of this
study is to establish for each combination method whether some logical properties
of the one-dimensional systems, e.g. completeness and decidability, are transferred
to their two-dimensional combination.

A temporal logical description of data representation and temporal queries in
temporal databases is provided, and two-dimensional temporal logic is used to de-
scribe temporal data evolution through updates. We use this two-dimensional de-
scription to characterise the differences between the transaction-time and valid-time
types of temporal databases.

A two-dimensional imperative execution semantics and a one-dimensional declar-
ative valid-time interpretation for temporal rules are then presented. It is shown
that, under the execution semantics, updates in the past, and in general any his-
torical update, may cause a violation of the valid-time interpretation, generating a
time paradox. A classification of time paradoxes is proposed and their occurrences
are then considered as the effects of changing the past. Finally, several algorithms
for the detection of occurrences of some types of time paradoxes are presented and

their correctness is proved.
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Chapter 1

Introduction

1.1 Motivation

The developments of database technology have extended the traditional relational
database concept in several directions. Of particular interest to this work are the
temporal extension [Snodgrass and Ahn 1985] and the active extension [Morgenstern
1983; Stonebraker, Hanson and Potamianos 1988].

In the temporal extension, the data is associated with a time point or period, and
the query language is extended to deal with temporal queries. In such a temporal
database, the traditional schema and data of a relation in the database is enhanced
with a set of attributes and time related data, adding to the database a temporal
dimension that it originally lacked. For example, consider the non-temporal relation

EMPLOYEE of a traditional relational database:

NAME SALARY DEPARTMENT
Peter 2000 Marketing
Mary 3000 Finance

Suppose the current time is April 1993 (Apr93). In a temporal database, a temporal
version of the above relation, with its extended schema and temporal data, could

be:

NAME SALARY DEPT START TIME END TIME
Peter 1000 R&D Jan90 Dec9l
Peter 2000 Marketing Feb92 Apr93
Mary 3000 Finance Sep9l Apr93

In such a temporal relation, the attributes START TIME and END TIME have a

special status, receiving a temporal semantical interpretation so that it is possible

11



12 Introduction

to pose queries that were not directly supported by the non-temporal system. For
instance, with respect to the previous (very simple) temporal database relation, one
may want to know “when did Peter change departments and what was his salary
increase then?” Or, one may wish to ask “who are the employees that have been
working for more than two years?” Temporal query languages provide a means to
pose those questions to temporal databases in a straightforward way, and the extra
functionality of temporal databases, not present in traditional relational databases,
allows for the correct interpretation of the special attributes so as to generate the
right answers for the queries; the extra functionality needed for temporal relational
databases discussed in [McBrien 1992].

The temporal data may possess distinct semantic interpretations. On the one
hand, the temporal data may be interpreted as the history of the Universe of Dis-
course, i.e. the temporal evolution of the objects of the part of the real world the
database is supposed to model; in this case, there is no direct relation between the
time the data is entered in the database and the time in the modelled world the
data refers to. For example, in the previous temporal relation, the fact that Peter
started working at Jan90 might have been recorded at a later time, e.g. at F'eb90.
This semantical interpretation is called the valid-time semantics.

On the other hand, a different interpretation of the temporal data is possible,
where the temporal attributes are seen as referring to the history of the database
system, as opposed to that of the Universe of Discourse. Under such interpretation,
the previous temporal relation tells us that the information that Peter has started
working at the R&D department was inserted in the database at Jan90 and deleted
at Dec91, independently of when, in reality, Peter has actually started or finished
working at that department. This second semantical interpretation of temporal data
is called the transaction-time semantics.

It is one of the aims of this work to provide a clear, formal distinction between
those two kinds of semantical interpretations of the temporal data.

The other extension of the relational data model we wish to consider is the active
database extension. This extension aims at transforming the database system from
a passive repository of facts to one that is able to react to the data it contains.
Such an extension is achieved by equipping the database with a set of rules. For
example, the printing of the payment cheque of an employee may be specified in a

rule expressed in a logic language, in the following way:

if exists Dept such_that employee(Name, Salary, Dept)
then print payment cheque( Name, Salary )
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It is also the case that there are several semantics and languages for these kinds
of rules, and those semantics are either procedural or declarative in nature. Under
a procedural semantics, the condition part of the rule is seen as a query that, when
satisfied, fires an action (the then-part of the rule) in the database. The declarative
semantics of rules is normally associated with deductive rules, so as to enable more
complex queries; under such semantics, the database does not become an active
system, for the then-part of the rule is seen as data deduced from the database,
rather than an action to be executed. For a broad discussion on logic languages for
databases and their semantics, expressivity and complexity refer to [Abiteboul and
Vianu 1991].

Recently, both temporal and active extensions were simultaneously applied, gen-
erating an Active Temporal Database [Manning and Torsun 1989; Loucopoulos et al.
1990], where the temporal rules provide “temporal links” between data associated
to different times. In such case, the previous rule concerning salary payment can be

formulated as the following temporal rule, expressed in the ERL temporal language

of the TEMPORA system [McBrien et al. 1991]:

if time_is end of this month and
(employee.X has salary.S
at start_of_this month)

then print payment cheque( X, S )

In such a rule, the temporal aspects are explicitly stated, and we can see that
the rule will be triggered at the end of the month to pay for an employee’s salary
as it stood at the beginning of the month. The use of temporal active rules raises
new issues on their semantics with respect to the dichotomy between procedural and
declarative semantics, and those issues will be discussed in Chapter 5.

This temporal active database scenario provides a framework in which it is pos-
sible to change the data that is recorded about the past. In such a case, it makes

sense to pose the following question, which is the central motivation for this thesis.
Question 1.1  How is history affected if we change the past?

Although the question above may constitute an adequate philosophical question
deserving an adequate philosophical treatment, we are primarily concerned with the
logical and computational aspects arising from such a question in the context of
databases.

It is easy to imagine a situation where it is plausible to change the past recorded

in the database. For example, an employee may be retroactively hired; he or she
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may receive a retroactive salary increase; his or her name may have been incorrectly
typed in, and later this mistake is rectified. The problem is, several actions may
have been executed by the database using information that has later changed and
become false. It is the goal of this work to study what are the effects generated by
those changes and how to detect them.

So far we have set the framework in which to place the problem we are trying
to solve, as expressed by Question 1.1. It is now necessary to set a framework
in which to search for an answer. This theoretical framework is suggested by the
foundations underlying the concept of a relational database. Note that classical logic
is the underlying framework for the relational database; it is also the basis for the
relational calculus, serving as the theoretical support to relational query languages
such as SQL. The same is true for temporal logic with respect to temporal databases.
Logic is also the basis for procedural/declarative interpretation of rules; actually,
rule-based systems is one area where the interests of logic, artificial intelligence
(in the form of expert systems) and databases converge. Temporal logic is the
natural candidate to deal with temporal rules. Moreover, the notions of “change”
and “evolution” (through updates), that are integral part of Question 1.1, are most
naturally dealt with in temporal terms. Therefore, temporal logic is the framework
chosen to investigate Question 1.1; we discuss the basic notions of temporal logic in
the Background Section 1.2.

The aim of this thesis can then be set as to give a temporal logic treatment for
Question 1.1. In fact, instead of being limited to changes of the past, we consider the
generalisation how is any temporal information affected when history is changed?,
which for the purposes of this thesis translates into the question of how the interpre-
tation of temporal data stored in a database is affected when any data is changed
in the presence of active “temporal links”.

Question 1.1, or its generalised form, motivates several other questions which

need to be answered if an answer to the original one is to be given.
Is not “change” already a temporal notion?
What is the meaning of “changing the past”?
How can the past or any time in history be changed?

Finally, what are the effects of “changing the past” and how can they be
detected?
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These motivated questions provide the guidelines that will lead us throughout
this thesis. Consider the first of them, which is concerned with the puzzling nature

of the expressions “change the past” or “change the history”.
Question 1.2 s not “change” already a temporal notion?

In this thesis we maintain that the answer to Question 1.2 is yes, and a temporal
logic basis for that answer is given in Chapter 2. There, a means to describe the
evolution of any logic system L by adding to it a temporal dimension is presented,
in a process called temporalisation. The aim is to be able to describe the temporal
evolution of a system specified in a generic logic L. The temporalisation of a generic
system L with respect to a temporal logic T generates a new logic system T(L), and
Chapter 2 studies how the logical properties of systems T and L, such as soundness,
completeness and decidability, are transferred to the combined system T(L).

Once it is established that the notion of change is a temporal one, we already have
an initial mathematical framework based on temporal logic to analyse Question 1.1.

The next question calls for a broadening of such a temporal logic framework.

Question 1.3  What is the meaning of “changing the past”? Or, in general,

what is the meaning of changing any time in history at all?

To answer that question, the explicit double temporality of “change” on the
one hand, and of “past” or “history” on the other, as in the expressions “changing
the past” and “changing the history”, is investigated under a formal logic point
of view. Logics for two-dimensional time are developed, in which one temporal
dimension contains a description of the history of modelled reality, corresponding
to the previously mentioned valid-time interpretation of temporal data, while the
other dimension describes the evolution of how the history of modelled reality is seen
at different times, corresponding to the transaction-time interpretation of temporal
data.

Two-dimensional logics over the two-dimensional plane often do not posses the
desired properties. As it is shown in Section 3.3, although there are complete ax-
iomatisations of one-dimensional temporal logics over several linear classes of flows
of time, sometimes it is impossible to obtain complete axiomatisations over the two-
dimensional plane, e.g. over Zx 7. and R x IR. Therefore, we study other possible two-
dimensional temporal logics that are weaker than the full two-dimensional case but
that succeed in transferring all several logical properties from the one-dimensional

case to the two-dimensional one.



16 Introduction

A great number of temporal logics exist in the literature to deal with the great
variety of properties one may wish to assign to flows of time. In building two-
dimensional temporal logics, the combination of two classes of flows of time generates
an even greater number of possible systems to be studied. It is, therefore, desirable
to study if it is possible to transfer the properties of long known and studied (one-
dimensional) temporal logic systems to the two-dimensional case.

One possible way to obtain such a two-dimensional temporal logic is to apply the
temporalisation process to a temporal logic, generating the system T1(T;). However,
as we shall see, the logic system T1(Tz) is very limited in its expressivity, so we
have to look for stronger systems. So in Chapter 3 we propose other methods for
combining two one-dimensional temporal logics so as to obtain more expressive two-
dimensional systems. As in Chapter 2, the emphasis continues to be on studying
how the logical properties transfer from the component logic systems T; and T, to
the combined system according to each combination method.

Changes in history are then seen as a two-dimensional temporal evolution. To
answer the next motivated question it is necessary to move from the abstract pure

logic framework to a more data oriented one.
Question 1.4 How can the past or any time in history be changed?

Question 1.4 calls for a representation of temporal data, so that we read “chang-
ing the history” as “changing the recorded history”. Chapter 4 hence defines the
notions of temporal database, temporal data representation and temporal queries in
terms of temporal logic. A two-dimensional update semantics is provided, in terms
of which a formal distinction of the two distinct notions of temporal databases,
namely transaction-time databases and valid-time databases, is presented.

The mere fact that temporal data can be updated does not imply that updating
data at one time will have any effect on some other data. In Chapter 5 the valid-time
database is therefore enhanced with temporal rules, so as to provide “temporal links”
between the data in the database. In this context, the final motivated question can

be explored.

Question 1.5  What are the effects of changing the past? More generally,
what are the effects of changing data associated to any particular time?
And how can these effects be detected?

The temporal rules in the active valid-time database are equipped with an imper-

ative two-dimensional semantics and with a declarative one-dimensional valid-time
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interpretation. The imperative interpretation views rules as applicable only at the
current execution time, but the declarative interpretation looks at rules as valid-time

constraints holding at all times. For instance, over discrete time, the rule

if Condition

then Action

can be imperatively interpreted by, at the current time, checking whether Condition
holds and in case of success execute Action, and this process is repeated whenever
time is advanced, changing the value of the current time. Alternatively, this rule
can be seen as a historical law, such that at every (valid-) time point, and not only
at the current one, whenever Condition holds Action (that is seen as a formula
that can be checked against the database state just as Condition can) must hold.
It is shown that, due to the occurrence of updates in the past or, in general, at any
time, the execution semantics may cause the valid-time interpretation of the rules to
become invalid. The occurrences of such invalidations are called time paradozes and
are interpreted as “the effects” of changing the past or history itself. The next step
is to analyse how these time paradoxes can be algorithmically detected, which we
accomplish in the following way. A classification of time paradoxes is proposed based
on the different interactions between updates, rule execution and the violation of
the valid-time interpretation. Finally, several algorithms for the detection of several

types of time paradoxes are presented and their correctness is proved.

1.1.1 The Organisation of the Thesis

This thesis clearly has two distinct parts, one being formal logic oriented while the
other is database oriented. In the first part, several methods of combination of
temporal logics are studied. The aim is to determine if the logical properties of
the combined system are transferred through each method. As a result, several
two-dimensional temporal logics are described, with varying degrees of expressivity.
The second part is concerned with temporal databases and their evolution through
updates. Two-dimensional temporal logics are applied in the description of this
evolution. The aim is to determine what are the effects of updating history and how
to detect them.

Throughout this thesis temporal logic—and logic in general—plays a central role.
Therefore those notions are described in the Background Section 1.2. Other basic
notions are introduced in the body of the thesis as they are needed, mainly in the

initial section of each chapter. For instance, the formal definition of a temporal
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database is only introduced in Chapter 4; and the presentation of temporal rules is
delayed until temporal active databases are discussed in Chapter 5.

With respect to its degree of generality and abstraction, this thesis moves from a
very abstract start to a more practically oriented ending. Chapter 2 presents a very
general combination of logics in which a temporal logic is combined to a generic logic
system via the temporalisation process. Chapter 3 concentrates on methods for the
combination of two temporal logics, generating several two-dimensional logics. In
Chapter 4, the focus is moved from logic to databases, and two-dimensional temporal
logics are applied in the description of updates in temporal databases. Chapter 5
enhances the database with temporal rules and discusses the effects of updates in
temporal active databases; several algorithms are proposed for the detection of such
effects. Finally, Chapter 6 discusses the results of the thesis, compares them with the
literature and suggests further areas of research. Appendix A collects the algorithms
developed in the thesis and Appendix B contains the proofs of some auxiliary results

that were used or cited in the body of the thesis.

1.1.2 Published Material

The contents of Chapter 2 have appeared in [Finger and Gabbay 1992a] and will soon
appear in [Gabbay, Hodkinson and Reynolds 1994, Chapter 14]. Chapters 4 and 5
reorganise and largely extend the material that appeared published in [Finger 1992]
and [Finger and Gabbay 1992b]. All those papers where developed by the author
working under the supervision of Prof. D. M. Gabbay.

The other papers in which this author appears cited as a coauthor were pro-
duced as part of ESPRIT project TEMPORA and do not play a central role in this
thesis [Finger, McBrien and Owens 1991; Finger, Fisher and Owens 1993].

1.1.3 Statement of Contribution

The contributions of this thesis are the following.

In Chapter 2, the temporalisation process and its property transference results
are all original.

In Chapter 3, the results about independent combination of logics extend the
results of [Kracht and Wolter 1991; Fine and Schurz 1991] to the case of the non-
independent temporal modalities; Theorem 3.2 extends a result of [Venema 1990] for
the two-dimensional plane and for distinct flows of time; the results about restricted

interlacing are all original and answer a conjecture of Venema [1990].
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The two-dimensional characterisation of transaction-time databases is the con-
tribution of Chapter 4.

Finally, the treatment of temporal dependences and the algorithms to detect time
paradoxes originated by conflicts between imperative and declarative semantics of

temporal rules are contributions of Chapter 5.

1.2 Background

This section presents the basic definitions that will be used constantly throughout
the thesis. The main concern here is to define logic systems in general, and temporal
logics in particular, while in the next two chapters the discussion will focus on the

combination of several temporal logic systems.

1.2.1 Formal Logic Systems

The modern notion of Logic dates back to Frege [1879] and the influential works of
Whitehead and Russell [1910] and Hilbert [1925; 1927]. Currently, there are several
approaches to define what a logic system is, namely the syntactical approach, the
semantical approach and the algebraic approach. This work concentrates in the first
two ones.

The syntactical approach is concerned with the inferences that can be obtained
from a given, possibly empty set of premises. The entities that are relevant to this
approach belong to the pair (£, L), where £ is its language and b is its inference
system; the language £ is a set of well-formed sequences of symbols called formulae,
constructed from an alphabet ¥ of symbols according to a set of formation rules;
the inference system | is a relation between sets of formulae and formulae of £,
i.e. a relation between premises and conclusions, and if A € £ then, when the set
of premises is empty, k| A stands for @ F A.

The semantical approach is concerned with the truth of statements. Truth is
evaluated with respect to mathematical structures called models; a model for the
logic L is a structure M| and we denote M| = A when a formula A € £ is true
under the model M| ; the class of all models of L is denoted by K. The expression
“class of models” should be substituted by “set of models”, but it is so deeply buried
in the tradition of mathematical logic that we have to keep it.

For the purposes of combination of logics which will be considered later, a logic
system L contains syntactical and semantical elements and consists of a language,

an inference system and a class of model structures.
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Example 1.1 Consider the logic system PC of propositional classical logic. Its
vocabulary Ypc consists of the boolean connectives =, A, V and —, the punctuation
symbols '(" and ’)’, and a countable set of propositional letters P. The formation

rules for Lpc are:

P C Lpc;
o if Ac 'CPC then = A ¢ 'CPC;

o if A, B € Lpc then (AAB),(AVB),(A—B) € Lpc; (the parentheses are omit-
ted when no ambiguity is implied and the precedence order =, A, V, — is

respected)

nothing else is in Lpc.

The inference relation, Fpc, will be presented here as an axiomatisation, consist-

ing of axioms and inference rules. The axioms are

The rules of inference are Modus Ponens: from A and A— B infer B; and Substi-
tution: from an axiom A(q) infer A(¢\B), where the latter is the formula obtained
by substituting all the occurrence of the the propositional letter ¢ by the formula B
in A. If A is a set of formulae and A is a formula, we write A Fpc A if there exists
a finite sequence of formulae ending in A such that each formula in the sequence
is either an axiom, or belongs to A, or is obtained from previous formulae in the

sequence through the use of an inference rule.
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Finally, to define a model Mpc for propositional classical logic, let TV =
{true, false} be a set of truth values and consider a valuation function v : P — TV,
such that every propositional letter is associated to a truth value. The model Mpc
is a structure composed of Mpc = (T'V,v), so that the class of all models contains
all the possible valuation functions. A formula of Lpc that is true in all models The

truth of a formula A in a model Mpc, represented by Mpc = A, is given by:

MEp iff p € P and v(p) = true.

ME-A iff it is not the case that M = A.

MEAAB it M= Aand M = B.

MEAVB it MEAor M = B.

MEA-Bft M EAor M EB. O

Let A be any formula in £,. A logic system L is said to be sound if, whenever
FL A, we have M| |E A for all M| € K. The logic system L is said to be complete
if, whenever M| = A for all M| € K, we have that F_ A. A formula A is valid in
Lif M| | A for all M| € K and the validity problem for L consists of determining
whether a given A € £ is valid or not. A formula A is a theorem of L if - A
and the decision problem for L consists of determining whether a given A € £,
is a theorem or not. Soundness, therefore, holds for L if being a theorem implies
being a valid formula; completeness holds if being a valid formula implies being a
theorem. For example, the propositional classical logic PC is sound and complete,

so all propositinal tautologies, i.e. valid formulae, are theorems and vice-versa.

1.2.2 Propositional Temporal Logics

This presentation of Temporal Logic is the result of enhancing the vocabulary of
classical propositional logic with modal operators. The operators approach to tem-
poral logics started with Prior [1957], with the one-place operators P and F', which
were then called tense operators, while the logic they generated was called tense
logic; an alternative approach to temporal reasoning handles temporal features in
a first-order language, e.g. [Kowalski and Sergot 1986]. In Prior’s approach, if A
is a proposition, the formula of the form PA reads as “sometime in the past, it
was the case that A” and similarly F'A reads as “sometime in the future, it will
be the case that A”. The purpose of the tense operators was to capture tenses in

natural language sentences; since then, the operators approach has been applied



22 Introduction

to describe a variety of other “non-tense” temporal systems, e.g. in artificial intelli-
gence [Halpern and Shoham 1986], in software engineering [Pnueli 1977; Kroger 1987]
and in databases [Tuzhilin and Clifford 1990; Gabbay and McBrien 1991]. The name
temporal logics has been appropriated to encompass this wide area of applications.

The Prior F' and P operators are not as expressive as the two-place temporal
operators “Since” (5) and “Until” (/) introduced by Kamp [1968]. A formula of the
form S(A, B) is read as “since A was the case, B has been the case” and similarly
“U(A, B)” is read as “until A is the case, B will be the case.”

We present here several propositional temporal logics of “Since” and “Until”;
these logics are defined over the same language but vary in the nature of the flow
of time they describe. So the language is defined starting from a countable set of
propositional letters P and then formulas are built up from the propositional letters
using the boolean operators — (negation) and A (conjunction) and the two-place
temporal operators S (since) and U (until). Other boolean connectives such as
V (disjunction), — (material implication) and < (material biconditional), as well
as the abbreviations T (constant true) and L (constant false), can be defined in
terms of = and A in a standard way; similarly for other temporal operators like P
(sometime in the past), F' (sometime in the future), H (always in the past) and G
(always in the future) with respect to S and U.

In the following, propositional letters are represented by p, ¢, r and s, and

temporal formulae are represented by upper case letter A, B, C' and D.

Definition 1.1 Syntax of propositional temporal logics Let P be a countably
infinite set of propositional letters. The set Lys of temporal propositional formulas

is the smallest set such that:
o P C Luys;
o If A and B are in Lys, then =A and (A A B) are in Lus;
o If A and B are in Lys, then S(A, B) and U(A, B) are in Lys.

The mirror image of a formula is another formula obtained by swapping all occur-

rences of U by S and vice-versa. d

The brackets of a formula are sometimes omitted when no ambiguity is implied.

Boolean connectives are defined in the standard way, while temporal operators can

be defined by:
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FA =45 UAT)
PA =45 S(A,T)
GA =45 —F-A
HA =45 -P-A

The ontology of time has to be defined before we are able to provide a seman-
tics to temporal formulae. According to van Bentehm [1983] there are three basic

ontologies of time to be considered, namely:

(a) points;
(b) intervals;

(c) events.

In this work we concentrate mainly on a point-based temporal ontology. The
interval based cases have been discussed by [Halpern and Shoham 1986] and [Venema
1990] (the latter has shown a relationship between interval based temporal logics
and two-dimensional temporal logics that is of interest to our work here). The
event-based approach to temporal reasoning has been investigated on the lines of
the Event Calculus of [Kowalski and Sergot 1986].

Under the point-based ontology, a flow of time is an ordered pair F = (T, <),
where T is a possibly infinite, nonempty set of time points and < is a binary relation
over T. Several restrictions can be made to the nature of the flow of time; the
following properties are among the most frequent ones encountered in the literature;
for a first- and second-order formulation of several other properties, refer to [Burgess

1984).

(a) drreflexivity: fornot € T, t < t;

(b) transitivity: for all s,t,u € T, if s <t and t < u then s < u;

(c) totality: for all s,t € T, either s <tors=tort<s.

(d)
)

d
(e

linearity: irreflexivity, transitivity and totality.

boundedness: there exist t,,im,tmar € 1 such that all t € T, 1., <1t <t
(a < bis the usual abreviation for a < b or a = b);

(f) unboundedness: for every t € T, there exist s,u € T such that u <t < s;

(g) discreteness: for every t € T, if there exists s € T', t < s then there exist a
t" € T, the successor of t, such that ¢t <t and for no v € T, t < u < t'; and if
there exists s € T', s < { then there exist a t” € T, the predecessor of ¢, such
that ¢ <t and fornou e 1T, 1" < u < .
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(h) denseness: for every s,t € T such that s <1, there exists u € T, s < u < t;

(i) Z-like: linearity, discreteness, unboundedness such that between every two

points of T' there are only finitely many points;
(j) Q-like: linearity, denseness, unboundedness such that 7' is countable;

(k) IR-like: linearity, denseness, unboundedness such that 7" contains all least

upper bounds and greatest lower bounds of sequences of elements of T'.

The first two properties of irreflexivity and transitivity are sometimes imposed
to all flows of times, but we follow [Burgess 1984] by initially treating < as a generic
relation on the set of time points T'. Later in the thesis the < relation will be actually
constrained to a linear order, therefore encompassing the properties of irreflexivity

and transitivity.

Definition 1.2 Semantics of propositional temporal logic

A valuation ¢ is a function assigning to every time point ¢ in T' a set of propo-
sitional letters g(¢) C P, namely the set of proposition letters that are true at the
time point ¢.! A model M is a 3-tuple (T, <, g), where (T, <) is the underlying flow
of time and ¢ is a valuation. M,t |= A reads “the formula A holds over model M

at time point ¢” and is defined recursively as follows.

M, tEp iff p € P such that p € ¢(1).
Mt E-A iff it is not the case that M.t = A.
MtEAANB it M tE Aand Mt |E B.
M.t |E S(A, B) iff there exists an s € T with s <t and M,s E A
and for every u € T, if s < u < t then M, u = B.
M.t E U(A, B) iff there exists an s € T with t < s and M,s E A
and for every u € T, ift < u < s then M,u = B. .
A formula A is valid over a class K of flows of time, indicated by K = A, if
for every M whose underlying flow of time is in K and for every time point ¢t € T,
Mt E A, If ¥ is a set of formulae, we write K | ¥ to indicate that £ = A
for every A € Y. Therefore, for different classes K we have different sets of valid
formulae.
The inference system of temporal logics is given here in the form of Hilbert

Axiom Systems [Hilbert 1925; 1927]. Such systems are composed of a set of azioms

! Alternatively a valuation could be defined as a function h : P — 27 associating every propo-
sitional letter to a set of time points in which it holds true [Burgess 1984; Gabbay, Hodkinson and
Reynolds 1994].
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and a set of inference rules. An axiomatic system for the US-temporal logic over

the class of all flows of time K, Fys, contains the following axioms:

A0 all classical tautologies

Note that the axioms above come in pairs, represented by a and b, such that

one is the mirror image of the other. The inference rules are:

Subst Uniform Substitution, i.e. let A(¢) be an axiom containing the
propositional letter ¢ and let B be any formula, then from F A(q)
infer - A(¢\ B) by substituting all appearances of ¢ in A by B.

MP Modus ponens: from - A and F A — B infer - B.

TG Temporal Generalisation: from = A infer F HA and - G'A.

A deduction is a finite sequence of formulae each of which is either an axiom
or follows from earlier formulae by a rule of inference. A theorem is any formula
A appearing as a last element of a deduction, and we indicate this by Fys A. The
axioms of Fys can be extended by a set of axioms ¥ so as to impose restrictions
on the flow of time, therefore generating the inference system Fyszy. When ¥ is
the empty set we have Fys=tys(z). A formula or set of formulae is consistent with
respect to an inference system F if falsity (L) cannot be deduced from it. We abuse
notation and write A F L instead of {A} F L.

We say that an inference system, I, is sound and complete with respect to a

class K of flows of time if

K Aiff F A,

or equivalently,

A is consistent iff A has a model over K,



26 Introduction

soundness corresponding to the if part and completeness ? to the only if part. We
write US/K to indicate that US is sound and complete over the class K of flows of
time.

Let Ko be the class of all flows of time, i.e. the set of all pairs (T, <) with no

special constraint imposed on <. Then we have the following well known result.

Theorem 1.1 (Soundness and Completeness of US/K)

The inference system Fys is sound and complete with respect to the class Ky.

An elegant proof of the above is given by Xu [1988]. A proof of completeness for
the class of transitive linear flows of time, Ky, is given by Burgess [1982] adding

the following set ¥, of axioms together with their mirror images (b axioms).

Ada U(p,q) — Ulp,qg AU(p,q))
A5a U(gNU(p,q),q) — U(p,q)

A6a (U(p,q) NU(r,s)) —

(UpAr,ghs)VU((pAs,gANs)VU(gAT,gNs))

Burgess actually used an extra axiom, but Xu [1988] proved the same result
omitting it and axiom A5b. Axioms A4a, A4b and A5a are responsible for re-
stricting the class of flows of time to a transitive one. The pair of axioms A6a and
AG6Db is responsible for restricting the class of flows of time to a linear one. The

axiom
ATa FT—=U(T,1)

and its mirror image ATb are responsible for restricting the flow of time to a
discrete one. Extending original proofs of completeness to include new axioms
over a more restricted flow of time is discussed by Burgess [1984]. With axioms
Yais = Y U {AT7a, ATb}, we have soundness and completeness results for a class
of linear, discrete and transitive flows of time.

Adding the following axiom and its mirror image to ;,, thus obtaining »j..sc,

A8a —U(T, L)

2This is sometimes called weak completeness; strong completeness says that for any (possibly
infinite) set of formula T', if T is consistent then T' has a model. Strong completeness implies weak
completeness but the converse 1s not true.
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a complete axiomatisation over the class of all linear dense flows of time, Kyepse, is
obtained. Curiously, that axiomatisation is also complete over the set of rational
numbers (), implying that there is no axiom that constrains the flow of time to a
countable one. There are also complete axiomatisations US/IR over the reals [Gabbay
and Hodkinson 1990; Reynolds 1992] and US/7Z over the integers [Reynolds 1992].

The issue of obtaining complete axiomatisations has been a great concern in
the literature of logic, in general, and temporal logic, in particular. One possible
explanation for this fact® comes from the “boldness” of the completeness property,
equating an existential property (‘there exists a deduction for A’) with a universally
quantified sentence (‘A holds in every model’). It also gives us the first indication of
computability properties associated with the logic, for finite axiomatisability implies
that valid formulae are recursively enumerable and that the logic is at least semi-
decidable. Note, however, that axiomatisability is not the only interesting property
and throughout this presentation several other properties of logic systems will be
studied.

3as expressed by Yuri Gurevich on a lecture at Imperial College.
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Chapter 2

Adding a Temporal Dimension to

a Logic System

We introduce a methodology whereby an arbitrary logic system L can be enriched
with temporal features to create a new system T(L). The new system is constructed
by combining L with a pure propositional temporal logic T (such as linear temporal
logic with “Since” and “Until”) in a special way. We refer to this method as “adding
a temporal dimension to L” or just “temporalising L”.

We show that the logic system T(L) preserves several properties of the origi-
nal temporal logic like soundness, completeness, decidability, conservativeness and
separation over linear flows of time.

The temporalisation of first-order logic is presented as an example and described
in detail. A comparison is then made between the modal/temporal operators ap-
proach to combining logics and other first-order approaches to the handling of time.

The temporalisation process is the first among several methods for combining
temporal logic systems that will be analysed in Chapter 3.

The contents of this chapter have appeared in [Finger and Gabbay 1992a].

2.1 Introduction

We are interested in describing the way that a system &, specified in a logic L,
changes over time. There are two main methods for doing so. In the external
method, snapshots of § are taken at different moments of time and each describes
the state of § at that time. We can write §; for the way & is at time ¢, and use L
to describe §;. We then externally add a temporal system that allows us to relate

different S, at different times 7.

29
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In the internal method, instead of considering & as a whole, we observe how &
is built up from internal components and we transform these components into time
dependent building blocks. The internal temporal description of each component will
give us the temporal description of the whole system §. We can assume that S can
be completely described through its components and that the way the components
are put together to make S into a whole is also a (possibly time varying) component.

Both the external and the internal methods have their counterpart in standard
temporal logic. A temporal logical system with temporal connectives such as “Since”
and “Until” is the result of externally turning classical logic into a temporal (time
varying) system. The use of a two-sorted predicate logic with one time variable in
which atoms are of the form A(#, x), with ¢ denoting time and @ denoting an element
of a domain, is an internal way of making classical logic into a temporal system.

The purpose of this chapter is to investigate the external way of temporalising
a logic system. In the external approach, we do not need to have detailed knowl-
edge about the components of the system S or about the logical components of its
description in L. We introduce a methodology whereby an arbitrary logic system
L can be enriched with temporal features to create a new system T(L). The new
system is constructed by combining L with a pure propositional temporal logic T
(e.g. linear-time temporal logic with “Since” and “Until”) in a special way. We refer
to this method as “adding a temporal dimension to L” or just “temporalising L”.
The method we use is not confined to temporal features only, but is a methodology
of combining two logics by substituting one in another. Thus in the general case we
can combine any two logic systems Ly and L, to form Ly(L,).

In classical propositional temporal logic we add to the language of classical propo-

sitional logic the connectives P and F' and we are able to express statements like
in the future A will hold,

by constructing sentences of the form F'A, where A is any proposition The idea we
develop here is to apply temporal operators not only to propositions but also to
sentences from an arbitrary logic system L.

Our aim can be viewed as describing both the “statics” and the “dynamics” of
a logic system, while still remaining in a logical framework. The “statics” is given
by the properties of the underlying logic system L; in propositional temporal logic
T, we already have the ability to describe the “dynamics”, i.e. changes in time of a
set of atomic propositions. This point of view leads us to combine the upper-level
temporal T system with an underlying logic system L so as to describe the evolution

in time of a theory in L and its models.
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Another more general point of view comes from the work in [Gabbay 1991c] about
networks of logic databases. A database is considered to be a model of a theory in
some logic system Ly and the interaction between databases is modelled by another
logic system Ly; therefore, two basic logic levels can be identified, namely the local
logic Ly and the global logic Ly. The two systems are illustrated in Figure 2.1 with a
temporal upper-level system T in the place of Ly and an arbitrary underlying logic

system L in the place of Ls.

' OO 0
(Local) (Global)
Logic system L Temporal logic system T

Figure 2.1 Two logic levels in a database network

We consider a network of databases distributed in time, as an extension of the
more usual idea of a network of databases distributed in space. The underlying logic
system L characterises the local behaviour of a database, i.e. the way queries are
answered by a single element of the network. The upper-level logic system describes
how one local system (at some moment in time) relates to another local system (at
some other moment in time). We combine those two logic systems to be able to
reason about the “temporal network” as a whole, creating a logic system T(L). The
result of this combination is the addition of a temporal dimension to system L, as

illustrated in Figure 2.2.

Figure 2.2 The logic system T(L)

The above point of view is not yet the most general setting for our operations.
One may ask a general question: given two logics Ly and Ly, can we combine them
into one logic? Suppose we take a disjoint union of the two systems, for example a

modal logic system K, with modality Oy, and a modal logic system S4, with modality
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O,. Here Ly = K and L, = S4. Form a language with {0, 05} and the separate
axioms on Oy (K axioms) and on Oy (S4 axioms). What do we know about the union?
What is the semantics? These questions have been recently investigated by Fine
and Schurz [1991] and by Kracht and Wolter [1991], in a framework in which several
independently axiomatisable monomodal systems were syntactically combined. This
presentation differs from the above papers in three aspects. Firstly, we are dealing
with binary connectives Since (5) and Until (U). Secondly, temporal logic is a
bimodal system where the two modalities, one for the past and one for the future,
always interact. Thirdly, we are not arbitrarily combining two logics but rather
embedding one logic inside the other. Embedding one modality within another in the
framework above would syntactically combine them ruling out formulae containing
0O, within the scope of Oy. This yields what we call Li(Ly) (L externally applied
to Lp). The special case where Ly is a temporal logic T and Ly is an arbitrary logic
L, gives us T(L), that we study here. We present the temporal analogue of the

independent combination in Section 3.2.

General combinations of logics have been addressed in the literature in various
forms. Combinations of tense and modality were discussed in [Thomason 1984],
without explicitly providing a general methodology for doing so. A methodology
for constructing logics of belief based on existing deductive systems was proposed
by Konolige [1986]; in this case, the language of the original system was the base
for the construction of a new modal language, and the modal logic system thus
generated had its semantics defined in terms of the inferences of the original system.
The model theory used by Konolige, called a deductive model, was the connection
between the original system and the modal one. Here we present a quite different
methodology, in which the language, inference system and semantics of T(L) are

based on, respectively, the language, the inference system and the semantics of T

and L.

Extensions of temporal logic are also found in the literature. In [Casanova and
Furtado 1982] a family of formal languages was generated by means of certain mech-
anisms to define temporal modalities; the approach there was based on grammars
and the resulting family of languages was claimed to be useful in expressing tran-
sition constraints for databases. Gabbay [1991b] mixes two predicate languages G
and L, generating the language L;(G), a two-sorted predicate language in which one
sort comes from terms originated in G and the other sort comes from terms origi-
nated in L; in the case that the original language G is supposed to describe an order

relation <, the resulting system L;(G) can be seen as a predicate logic like approach
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to temporal logic. Such a construction corresponds to an internal way of adding a
temporal dimension to a logic system. We propose in this work a different approach,
in which temporal modalities are applied to an existing logic system and thence a
temporal dimension is added. We will informally compare the internal and external
approaches in Section 2.7.

The rest of the chapter is organised as follows. In Section 2.2 we formalise the
idea of temporalising a logic system L in terms of the US-temporal logic and we
show the soundness and completeness of the resulting system T(L) over linear time.
Section 2.3 shows that T(L) preserves the decidability property of system L over
linear time, and the complexity of the decision procedure is estimated. Section 2.4
shows that T(L) is a conservative extension of L. Section 2.5 shows that T(L) has
the separation property, which is useful to specify how the past states of a database
influence its future states. In Section 2.6 we discuss the temporalisation of first-
order logic as a particularly interesting application; two different temporalisations
of first-order logic are shown, yielding two expressively different logics. Finally,
in Section 2.7 we show how the added temporal dimension can be internalised in
first-order logic and we compare the temporalised approach with the internalised

first-order one.

2.2 Temporalising an Existing Logic

This section will construct T(L) out of T and L. Our T is the temporal system with
“Since” and “Until”. Our L isin general any logic and in particular it can be classical
predicate logic. We construct T(L) by allowing substitution of formulae of L for the
atoms of formulae of T. We are not allowing the substitution of formulae of T or
even formulae of T(L) for atoms of L. Thus the temporal connectives of T are never
within the scope of connectives of L.

Next we define T(L) both syntactically and semantically and we prove soundness

and completeness for T(L).

2.2.1 Temporalising a Logic System

Having defined a family of US-temporal logics in Section 1.2, we now externally
apply such logic systems to any other logic system L, i.e. we “temporalise” L.

We constrain the logic system L to be an extension of classical logic, i.e. all
propositional tautologies must be valid in it. This constraint is due to the fact that

all US-temporal logics presented above are extensions of classical logic and any of
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them can be taken as the logic T in which we base the temporalisation. We discuss

later in this section what should be the case if L is not an extension of classical logic.

Definition 2.1 Boolean combinations and monolithic formulae The set £
is partitioned in two sets, BC| and M L_. A formula A € £ belongs to the set of
boolean combinations, BC, iff it is built up from other formulae by the use of one
of the boolean connectives = or A or any other connective defined only in terms of

those; it belongs to the set of monolithic formula M L, otherwise. d

We can proceed then to the definition of the temporalised language. In the
following we will use «, 3, 7, ..., to range over formulae of T(L).

The result of temporalising over K the logic system L is the logic system T(L)
= <,CT(|_), I—T(L)> and its class of models over K. The alphabet of the temporalised
language uses the alphabet of L plus the two-place operators S and U, if they are not

part of the alphabet of L; otherwise, we use S and U or any other proper renaming.

Definition 2.2 Temporalised formulae The set L1 of formulae of the logic

system L is the smallest set such that:
. fa € ML, then o € L1(1y;
2. If o, B € Ly) then —a € L1y and (a A ) € Lry;
3. If a, B € Ly then S(a, B) € L1y and U(a, B) € Ly

The set of mazimal monolithic subformulae of oo, Mon(a), is the set of all monolithic

subformulae of « that are used to build a up by the rules above. d

It is obvious from the definition above that the set Ly(.) is denumerably infinite.
Note that from item 1 and 2 of the definition above, it follows that £ C Ly(). The
reason to define the base case in item 1 in terms of monolithic formulae of L instead
of simply defining it in terms of any formula in £ is that we would have a double
parsing problem. In fact, suppose that instead of item 1 we had a simpler item 1’
that would state that:

. If « € L, then « € L‘T(L)-

Suppose we want to define a function over the set of formulae, e.g. the depth of the
parsing tree of a formula. Consider the formula (o A ) € L; it would belong to
L1y both by items 1" and 2. If we parse it by 1’, then its depth will be 0, but if
we parse it by 2, its depth will be 1, i.e. depth is not a well defined function. To
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avoid such problem we introduce the restriction to monolithic formulae in item 1.
We also note that, for instance, if O is an operator of the alphabet of L and « and
f# are two formulae in £, the formula OU(«, 3) is not in Ly).

There is nothing to prevent us from defining the temporalisation in terms of some
I, P-temporal language, but since the language with S and U is more expressive it
has received our preference.

It L is an extension of classical logic, we must pay attention to some details
before being able to describe the semantics of T(L). First, if M| is a model in the
class of models of L, K\, for every formula o € £, we must have either M| E «
or M| E —a. For example, if L is a modal logic system, e.g. S4, we must consider
a “current world” o as part of its model to achieve that condition. Second, we
must be careful about the semantics of boolean connectives in the temporalised
system. The construction of temporalised formulae based on monolithic formulae
of £ guarantees that the semantics of the boolean connectives is the same in both
the upper-level temporal logic system T and in the temporalised system T(L).

The language of T(L) is independent of the underlying flow of time, but not its
semantics and inference system, so we must fix a class K of flows of time over which
the temporalisation is defined; this is equivalent to fixing one logic T among the
family of temporal logics presented above.

We are then in a position to define the semantics of the temporalised logic system
T(L). Figure 2.1 and Figure 2.2 give us a good idea of the process of generating a

temporalised semantics.

Definition 2.3 Semantics of the temporalised logic Consider a flow of time
(T,<) € K and a function ¢ : T' — K, mapping every time point in 7" to a model
in the class of models of L. A model of T(L) is a triple My = (7, <,g) and the

fact that o is true in My at time ¢ is written as M), ¢ E « and defined as:

Mruy,t o, e ML iff g(t) = ML and M| |= a.

M), t = —-a iff it is not the case that My, t = a.
MT(L),t |: (Oé A\ ﬂ) iff MT(L),t |: o and MT(L),t |: ﬂ
M.t = S(a, B) iff there exists s € T such that s < ¢ and

My, s | a and for every u € T, if
s <u <1 then My, u = p.

M.t = Ula, B) iff there exists s € T such that ¢ < s and
My, s | a and for every u € T, if
t <u<sthen My, u = p. O
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We write T(L) | « if, for every model M) whose underlying flow of time
(T, <) € K and for every time point ¢ € T', it is the case that M), |= a.
The inference system of T(L)/K is given by the following:

Definition 2.4 Axiomatisation for T(L)
e The axioms of T/K;
e The inference rules of T/K;

o For every formula o in Ly, if b« then 1y a. O

The third item above constitutes a new inference rule needed to preserve the
theoremhood of formulae of the logic system L. Therefore we call it Preserve. The
only inference rules we are considering in this presentation are Subst, MP and TG,
but other rules such as the irreflexivity rule IRR, [Gabbay and Hodkinson 1990],
can also be added.

The first concern about the axiomatisation is its soundness, i.e. if whenever

Fry a we have T(L) = o

Theorem 2.1 (Soundness of T(L)) If the logic system L is sound and US/K is
sound over the class of flows of time K, then so is the logic system T(L)/K.

Proof Soundness of US/K gives us the validity of the axioms over K. As for the
inference rules, soundness of L guarantees that all formulae generated by Preserve
are valid; soundness of US/K guarantees that the other inference rules, when applied

to valid formulae, always generate valid formulae. d

Completeness is discussed later in 2.2.3. Let us first present a few examples of

the temporalisation of an existing logic system.

Example 2.1 Temporalising modal logic of belief Suppose we have a propo-
sitional modal logic of belief B = (Lg,Fg) with the modal operator B, in which
Bp is intended to mean that p is a proposition that is believed by an agent. The
axiomatisation, g, is given by the basic modal logic system K plus the transitivity

axiom 4 as one of the introspective properties of belief systems in [Hintikka 1962]:

All propositional tautologies
K< B(p—q)— (Bp— Bq) + Bp — BBp
Rules: Subst, MP, B-necessitation
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The transitivity axiom means that, if some fact is believed, it is believed to
be believed, which represents a positive introspection of the believing agent; for a
discussion on modal logics of belief, see [Halpern and Moses 1985]. This system is
provided with a standard Kripke semantics for modal logics [Hughes and Cresswell
1968], with a set of possible worlds W, an accessibility relation R and a valuation
function V, so that Mg = (W, R, V) is a model structure in which the accessibility
relation R is transitive. Actually, we are considering Mg = (W, R, V,0), where o is
a “current world” from which the observations are made, so that we may have both
validity and satisfiability in the model theory of B.

Consider the temporalised logic system T(B) over the class K¢ of all flows of

time. Its inference system Fy(g), for example, gives us as theorems

B(p—q) — (Bp — Bq)
=(BpA-Bp)
G'B-(Bp A = Bp)
G(Bp — q) — (U(Bp, Bq) — Ulq, Bq)).
Suppose we have a theory, i.e. a set of formulae, I' = {GBp, Bp — Fp,U(q, Bp)}.
We construct one possible model Mgy by choosing a flow of time with 7' =
{a,b,¢,d} and the partial order < = {(a,b), (b, ¢),(a,¢),(a,d)}. We construct the

assignment ¢ such that:

gla) =Mega Ep
9(b) = Mgy |= Bp Ap,
g(c) = Mg = BpAqand

In the resulting model M@y = (1, <,g), where T', < and ¢ are constructed as

above, we have My, a |= I as illustrated below.

o)

a {Bp,p} {Bp,q}

{Bp}
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Bp holds in all points to the future of a, {b, ¢, d}, so GBp holds at a; Bp is false
at a, so Bp — Fp holds at a; and ¢ holds at ¢ and Bp holds at b, the only time
point between a and ¢, so U(gq, Bp) holds at a. O

Example 2.2 Temporalising propositional logic Consider classical proposi-
tional logic PL = (Lp, Fp). Its temporalisation generates the logic system T(PL) =
{(Ltpuys Frepy)-

It is not difficult to see that Lypy = Lus and Frpry=Fus, i.e. the temporalised
version of PL over any K is actually the temporal logic T = US/K. With respect to

M), the function g actually assigns, for every time point, a PL model. d

Example 2.3 Temporalising US-temporal logic If we temporalise over K
the one-dimensional logic system US/K we obtain the two-dimensional logic system
T(US) = (Lrws),Frs)) = T2(PL)/K. In this case we have to rename the two-place
operators S and U of the temporalised alphabet to, say, S and U.

In order to obtain a model for T(US), we must fix a “current time”, o, in Mys =
(T1,<1,91) , so that we can construct the model Myys) = (T3, <2, ¢2) as previously
described. Note that, in this case, the flows of time (71, <1) and (7%, <3) need not to
be the same. (T3, <3) is the flow of time of the upper-level temporal system whereas
(T1, <) is the flow of time of the underlying logic which, in this case, happens to
be a temporal logic.

The logic system we obtain by temporalising US-temporal logic is the two-
dimensional temporal logic described in [Finger 1992]. O

Example 2.4 N-dimensional temporal logic If we repeat the process started in
the last two examples, we can construct an n-dimensional temporal logic T"(PL)/K
(its alphabet including S, and U,,) by temporalising a (n — 1)-dimensional temporal
logic.

Every time we add a temporal dimension, we are able to describe changes in
the underlying system. Temporalising the system L once, we are creating a way of
describing the history of L; temporalising for the second time, we are describing how
the history of L is viewed in different moments of time. We can go on indefinitely,

although it is not clear what is the purpose of doing so. a

The assumption that the underlying logic system L is an extension of classical
logic allows us to make a clear distinction between boolean and monolithic formulae,
avoiding double parsing and reconstructing the boolean formulae and its semantics

in the temporalised system T(L). If we were to temporalise a logic system that is
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not an extension of classical logic we could consider all its formulae as being mono-
lithic.The problem would then be the different semantics of the boolean connectives
in the underlying system and in the upper-level (classical) temporal system, if those
symbols are identical in both systems. The solution would be renaming the boolean
connectives, say, in the underlying system. The applications of such a hybrid logic
system are not clear so, to avoid extra difficulties in the results we are going to

prove, we will stick to the constraint that L is an extension of classical logic.

2.2.2 The Correspondence Mapping

We are now going to relate the temporalised logic system T(L) to the original U.S-
temporal logic used as a base for the temporalisation process. Consider P, a denu-
merably infinite set of propositional letters, and let US be the propositional temporal
logic system induced by P. The following defines a relationship between a tempo-

ralised language L1(1) and a propositional temporal language Luys.

Definition 2.5 The correspondence mapping Consider an enumeration py,

p2, - .., of elements of P and consider an enumeration aq, asg, ..., of formulae in

)

ML_. The correspondence mapping o : Ly — Luys is given by:

o(a;) = p; for every a; € ML ,i=1,2...
o(—a) = -o(a)

oclaNB) = ola)ANa(p)

o(S(a,B)) = S(o(a),0(B))

o(U(a,B)) = Ulo(a),a(B))

O

The following is the correspondence lemma, linking temporalised formulae to

temporal logic ones.

Lemma 2.1 The correspondence mapping is a bijection

Proof By two straightforward structural inductions we can prove that o is both

injective and surjective. Details are omitted. d

As a consequence, we can always refer to an element @) of Lys as o(«), because
there is guaranteed to be a unique o € L) such that a is mapped into Q) by o. It is
clear that the constant L defined as L = pA=p maps into (L) = o(p)A-o(p) = L.

We can then establish a connection between consistent formulae in T(L)/K and in

US/K.
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] derived
T(L) « consistent > model for «
completeness of T(L)
€
completeness

£(«) consistent of L

o
) completeness of US
US | o(e(a))consistent model for o(c(«))

Figure 2.3 Strategy for the proof of completeness

Lemma 2.2 [f a is T(L)-consistent then o(a) is US-consistent.

Proof Suppose o(«) is inconsistent. Since all axioms and inference rules in US/K
are also in T(L)/K, the derivation of Fys o(a) — L can be imitated to derive

Fry @ — L, which contradicts a being T(L)-consistent. a

The results above are very useful for the proof of completeness and decidability

of T(L).

2.2.3 Completeness of T(L)

We are going to show here that whenever there exists a complete axiomatisation
for US/K and for L, where K C Ky, is any linear class of flows of time, then the
temporalised logic system T(L)/K is also complete.

The strategy of the completeness proof is illustrated in Figure 2.3. We prove
the completeness of T(L)/K indirectly by transforming a consistent formula of T(L)
and then mapping it into a consistent formula of US. Completeness of US/K is used
to find a model for the mapped formula that is used to construct a model for the
original T(L) formula.

The transformation function ¢ is introduced to deal with the differences between
deductions in US and T(L) due to the presence of the inference rule Preserve
in T(L). This inference rule states that theorems in L are also theorems in T(L).
The model theoretic counterpart of this property is that valid formulae in L are

also valid in T(L). The idea behind the transformation ¢ is to extract the “valid
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and contradictory content” that formulae of T(L) may have due to the validity or

unsatisfiability of some set of its subformulae in L.

Definition 2.6 The transformations n and ¢ Given a formula a € L),

consider the following sets:

Lit(a) = Mon(a)U{=p |3 € Mon(a)}
Inc(a) = {AT'|I' C Lit(a) and I' - L}

where Mon(«a) is the set of maximal monolithic subformulae of o. We define then

the operator O (always) and the formulae n(«) and («):

03 = BAGB A HB

na) = A O
B€Inc(a)

ca) = annla)

Since n(«a) is a theorem of T(L), we have the following lemma.
Lemma 2.3 by c(a) < o
It K is a subclass of linear flows of time, we also have the following property:

Lemma 2.4 Let Mys be a temporal model over K C Ky, such that for some o € T,
Muys, o = o(Qa). Then, for everyt € T, Mys,t E o(Oa).

Therefore, if some subset of Lit(«) is inconsistent, the transformed formula ¢(«)
puts that fact in evidence so that, when o maps it into US, inconsistent subformulae
will be mapped into falsity.

To prove the completeness of T(L)/K given the completeness of US/K, we fix an
a and assume it is a T(L)-consistent formula. We have then to construct a model
for « over K.

By Lemma 2.3, the formula e(«) is T(L)-consistent and, by Lemma 2.2, o(e(a))
is US-consistent. Then, by the completeness of US/K; there exists a model Mys =
(T, <, h) with (T, <) € K such that for some 0o € T, Mys, 0 = o(e(a)).

For every t € T, define G, ():

G.(t) = {p € Lit(a) | Muys,t Eo(B)}
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Lemma 2.5 If « is T(L)-consistent, then for everyt € T, G,(t) is finite and L-

consistent.

Proof Since Lit(«) is finite, G, (1) is finite for every . Suppose (i, (1) is inconsistent
for some ¢, then there exist {f1,...,3,} € Gu(t) such that H. AB; — L. So
A Bi € Inc(a) and O=(A ;) is one of the conjuncts of e(«). Applying Lemma 2.4
to Mus, 0 |= o(e(a)) we get that for every t € T, Muys,t = ~(A (i) but by, the
definition of GG, Muys,t E Ao(8;), which is a contradiction. O

We are finally ready to prove the completeness of T(L)/K.

Theorem 2.2 (Completeness for T(L)) If the logical system L is complete and
US/K is complete over a subclass of linear flows of time K C Ky, then the logical
system T(L)/K is complete over K.

Proof Assume that « is T(L)-consistent. By Lemma 2.5, we have (T, <) € K and
associated to every time point in 7" we have a finite and L-consistent set G/, (). By
(weak) completeness of L, every (G, (?) has a model, so we define the temporalised

valuation function ¢:
g(t) = {M| | M{ is a model of G,(t)}

Consider the model M1y = (1, <,g) over K. By structural induction over 3,

we show that for every  that is a subformula of « and for every time point ¢,
Muys,t = o(B) iff Myt =8

We show only the basic case, § € Mon(«a). Suppose Mys,t = o(/); then 8 € G, (1)
and M| = 3, and hence My, t |= . Suppose My, t = 3 and assume Muys,  |=
-0 (3); then =4 € G,(t) and M| = =8, which contradicts M), |= 3; hence
Muys,t = o(B). The inductive cases are straightforward and details are omitted.

So, M) is a model for o over K and the proof is finished. a

Theorem 2.2 gives us sound and complete axiomatisations for T(L) over many
interesting classes of flows of time, such as the class of all linear flows of time, X;,,,
the integers, 7, and the reals, IR. These classes are, in their US versions, decidable
and the corresponding decidability of T(L) is dealt in Section 2.3. Integer and real

flows of time also have the separation property, which is discussed in Section 2.5.
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2.3 The Decidability of T(L) and its Complexity

The main goal of this section is to show that, if the logic system L is decidable and
the logic system US is decidable over K C Ky, then the logic system T(L) is also
decidable over K. We assume throughout this section that US/K is complete.

Definition 2.7 Decidability of a Logic System A logic system L is said to be
decidable if there exists an algorithm (a decision procedure) that, for every formula

a € L, outputs “yes” if « is a theorem in the logic system L and “no” otherwise.

O

There are results for decidability of US over several linear classes of flows of time,
among which are the class Ky, of all linear flows of time [Burgess 1984], the integer
and the real flows of time, [Burgess and Gurevich 1985].

Asin the proof of completeness, we are going to prove the decidability result using
the correspondence mapping o and the transformation 5. Recall Definition 2.6, in
which the sets Mon(a), Lit(a) and Inc(a) were all finite, so that we have the
following result about n(«).

Lemma 2.6 For any o € L1, if the logic system L is decidable then there exists

an algorithm for constructing n(«).

The relationship between T(L) and US that we need to prove the decidability of
T(L) is the following:

Lemma 2.7 Over a lincar flow of time, for every o € L),

Frwy o iff Fus a(n(a) = a).

Proof The if case comes trivially from the definition of Fy(.). For the only if part,
suppose () a. We prove by induction on the deduction of v that Fys o(n(a) — «).

Basic cases:

1. « is obtained using the inference rule Preserve. Then n(a) = ——a and

Fus o(=—a — a).

2. « is obtained using the inference rule Subst. Suppose « was obtained by
substituting p; by f; in some axiom A. Then Fys « can be obtained by sub-
stituting o(p;) by (3;) in axiom A.

Inductive cases:
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1. o = (G is obtained using the inference rule TG. Note that n(a) = n(/). Then

Fus o(n(a)) — o(3) by induction hypothesis

s Glo(n(a)) — o(8) by TG

Fus Go(n(a))) — o(a) by temporal logic and a = G
Fus o(n(a)) — G(o(n(«))) by the definition of n and K linear
Fus o(n(a) — «) from the two previous lines

Similarly for o = Hf3.

2. « is obtained from # and  — « by MP. Then
Fus o(n(B)) — o(B) by induction hypothesis

Fus c(n(f — «)) — o(f — «a) by induction hypothesis

Fus o(n( — «)) — o(n(B)) by the definition of 5

Fus c(n(B — «)) — o(B3) from the 3rd and 1st lines
( — o

p—a))

Let p be a proposition that occurs in o(3) but not in o(a). If we eliminate

Fus a(n «) from the 4th and 2nd lines

from o(n(a — B3)) all the conjuncts in which p occurs, obtaining o(y), using
the completeness of US/K we can get Fys o(v) — o(a). If we do that for all

such propositions, we end up with Fys o(n(a) — ). a

Theorem 2.3 (Decidability of T(L)) IfL is a decidable logic system, and US is
decidable over K C Ky, then the logic system T(L) is also decidable over K.

Proof Consider a € L1(). Since L is decidable, by Lemma 2.6 there is an algorith-
mic procedure to build n(«). Since o is a recursive function, we have an algorithm
to construct o(n(a) — «), and due to the decidability of US over K, we have an ef-
fective procedure to decide if it is a theorem or not. Since K is linear, by Lemma 2.7

this is also a procedure for deciding whether « is a theorem or not. a

Once we have a decidability result, the next natural question is about the com-
plexity of the decision procedure. We briefly discuss here an upper bound for the
complexity analysis. Let NV be the number of (boolean and modal) connectives in a
formula, let the complexity of the decision procedure in L be O(f.(N)) and in US
be O(fus(N)). The decision procedure for T(L) as given by the proof above consists
of basically two steps:

1. constructing n(Oé);

2. deciding whether o(n(a) — «) is a theorem or not;
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The construction of n(«) involves generating all subsets of Lit(«) and applying
the decision procedure for each subset, therefore its complexity is O(2V x fL(N)).
The second step is dominated by the decision procedure of US since the application of
o can be done in polynomial time; in the worst case, when all tests in L succeed, the
size of n(a) is O(2V) and therefore the decision is O(fus(2V)). So an upper bound
for the decision procedure for T(L) is given by the dominating term of O(2V x f (N))
and O(fus(2V)). As for a lower bound for the decision procedure of T(L), it cannot
be any lower than the highest of the lower bounds for US and L.

2.4 Conservativeness of T(L)

Conservativeness can be easily derived from the soundness of US and the complete-

ness of L, without any assumptions on the flow of time.

Definition 2.8 Conservative extension A logic system L; is an extension of a
logic system L, if £, C £, and if F, « then |, a. A logic Ly is a conservative
extension of Ly if it is an extension of L, such that if & € £, then k|, « only if

FL, a. d

2

We know that all complete US are conservative extensions of predicate logic PL.

Clearly, T(L) is an extension of L. We prove that it is also conservative.
Theorem 2.4 (Conservativeness of T(L)) Let L be a complete logic system and
US be sound over K. The logic system T(L) is a conservative extension of L.

Proof Let o € £ such that by a. Suppose for contradiction that /| «, so by
completeness of L, there exists a model M| such that M| E —a. We construct a
temporalised model M1y = (T, <,g) by making ¢(t) = My for all t € T. Mt
clearly contradicts the soundness of T(L) and therefore that of US, so k| a. a

2.5 Separation over the Added Dimension

The separation property of the U S-temporal logic allows us to rewrite any temporal

formula into a conjunction of formulae of the form
past formula and present formula — future formula.

Once a formula is in the format above, it can be imperatively interpreted against a

partial temporal model according to [Gabbay 1987], so that if the antecedent holds
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in the past and present in the model, then we must execute the consequent in the
future so as to make the formula true in the model. The imperative interpretation
of a formula (also called the execution of a temporal specification) is based on an
asymmetric view of the flow of time; in a symmetric view of time, whenever the
antecedent is true in the past and present, we could either make the consequent
true in the future or we could try to falsify the antecedent itself, in both cases
maintaining the validity of the temporal specification. In this asymmetric view
of time, we discard the latter possibility and remain with the former as the only
possibility for the execution of a temporal specification.

In this section we want to extend this imperative interpretation of a temporal
formula over a logic system L so that, after temporalising L over a flow of time
that is like the integers or reals, we can execute temporal specifications in T(L).
The concept of a separated formula is based on the notion of a pure formula, so we

present the definitions of pure formula and separated formula for the US logic.

Definition 2.9 Pure formulae in US
1. A pure present formula is a boolean combination of propositional letters.

2. A pure past formula is a boolean combination of formulae of the form S(a, 3)

where « and (3 are either pure present or pure past formulae.

3. A pure future formula is a boolean combination of formulae of the form U(«, /3)

where « and (3 are either pure present or pure future formulae.

A separated formula is a formula that is a boolean combination of pure formulae

only. d

Once we have a separated formula, it can be brought to a conjunctive normal
form, i.e. a conjunction of disjuncts, so that each conjunct can be finally brought to

the form:

pure-present and pure-past — pure-future.
The following is the basic result about separation over the integers.
Theorem 2.5 (Separation Theorem) For any formula A € Lys there exists a

separated formula B € Lys such that A is equivalent to B over an integer-like flow

of time.
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A proof of the separation theorem can be found in [Gabbay 1987; Gabbay, Hod-
kinson and Reynolds 1994]. It also holds for the reals. Unfortunately, given a
formula A, the automatic generation of an equivalent separated formula involves
exponential computations.

The generalisation of pure formula for a temporalised logic system T(L) is given

below.

Definition 2.10 Pure temporalised formulae
1. every formula a € £ is a pure present temporalised formula.

2. A pure past temporalised formula is a boolean combination of formulae of the
form S(a, ) where a and 3 are either pure present or pure past temporalised

formulae.

3. A pure future temporalised formula is a boolean combination of formulae of the
form U(a, #) where a and 3 are either pure present or pure future temporalised

formulae.

A separated temporalised formula is a boolean combination of pure formulae of

T(L). O

Example 2.5 Temporalising a modal logic of belief Suppose L is the modal
logic system of belief, with the modal operator B. Here are some examples of pure

temporalised formulae in T(L):
1. Pure present: Bp — p, =(p A =p), and any other formula of the logic L.
2. Pure past: P(Bp) — S(Bp,—p).

3. Pure future: F(Bp) — —~FpV G(Bp — —p). O

In order to prove the separation theorem for the temporalised logic T(L) we will
use the correspondence mapping. The basic strategy of the proof is illustrated in
figure 2.4.

The following is a helpful result that will lead us to the proof of separation for
the temporalised logic T(L).

Lemma 2.8 Let o be a correspondence mapping between Lty and Lys. o(«) is a

separated formula in the logic US iff o is a separated formula in T(L).
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Figure 2.4 Separation of T(L)-formulae via separation of US-formulae

Proof From the definition of the correspondence mapping it follows that if « is
a boolean combination of ay,...a, € Ly then o(a) is a boolean combination of
o(ay),...,o(a) € Lys. The converse is also true since o is a bijection.

Therefore, to show that « is separated in T(L) iff o(«) is separated in US, all we
have to do is to prove that o(«) is a pure formula iff  is a pure formula. We show
the proot for the only if case; the if part is completely analogous.

Suppose o(a) is a pure present, then it is a boolean combination of propositional
letters. Therefore « is a boolean combination of monolithic formulae of L, so « is a
formula of L and pure present in T(L).

Suppose o(«) is pure past, then it is a boolean combination of formulae in Lys of
the form S(o(3),0(~)) where o(/3) and o(v) are pure present or pure past. Therefore
a must be a boolean combination of formulae in L1() of the form S(v, d), where v
and ¢ are, by induction hypothesis, either pure present or pure past. Therefore « is
a pure past formula in L.

Suppose o(«) is pure future, then by an argument analogous to the previous
case, « is a pure future formula. Therefore we have proved that if o(«a) is a pure

formula in Lys, a is a pure formula in Ly ). a

Theorem 2.6 (Separation Theorem for T(L)) If a is any formula in Ly,
then there exists a separated formula 3 € Lty such that 3 is equivalent to o over

an integer-like flow of time.

Proof All we have to do is to prove that if o and 8 are formulae of T(L) and
Fus o(a) < o(B) then )y a < 3. In fact, since all axioms and inference rules of

US also belong to T(L), the deduction of Fys o(a) < o(83) also leads to by o « 3.
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Let then a be any formula of T(L). From the separation theorem of US, we know
that there exist a separated /3, such that Fys o(«) < o(3) and o(3) is separated.

So by Lemma 2.8, 3 is also a separated formula equivalent to «. d

Once we have the separation property for the temporalised system T(L), we can

rewrite any temporalised formula into a separated equivalent one of the form
pure temporalised past and present — pure temporalised future.

The imperative interpretation of such a formula is the following. If the antecedent
holds in past and present models of the logic system L, then we execute the tempo-
ralised formula by constructing a future model (or a series or future models) of L so
as to make the consequent true.

Since the separation property also holds for a real flow of time, the proot above
can be trivially adapted to a real flow of time. Note that the separation property for
the temporalised system was obtained without any assumptions on the underlying
logic system L, as opposed to the results of soundness, completeness and decidability,

all of which depend on whether the property holds for the underlying logic system
L.

2.6 Temporalising First-Order Logic

In this section we examine in more detail the addition of a temporal dimension to a
first-order language as a particularly interesting application of the temporalisation
process. For fully quantified temporal predicate logic over Z.the set of valid formulae
is not recursively enumerable [Garson 1984], so it is neither complete nor decidable,
despite the fact that US/Z is both complete and decidable [Reynolds 1992; Burgess
and Gurevich 1985]. It is clear that the discussion of temporalising first-order logic
will involve only sublanguages of fully quantified temporal predicate logic.

We will consider a first-order language with the quantifier ¥V, an equality symbol
=, a countable set of variables X = {x1,x2,...}, a countable set of predicate symbols
P = {p1,p2,...} such that every predicate symbol has an associated natural number
n > 0, called its arity, a set C' of constant symbols and a set [ of functional symbols;
C and F' are possibly empty. The quantifier 3 can be defined in the normal way
as 3 = =V, A term is either a variable, a constant symbol or an n-ary function
symbol applied to n terms. The notion of the set of free variables of a formula is

the usual one. A sentence is a formula with no free variables.
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A first-order domain D is a non-empty set. An interpretation Z is a mapping
that associates, for every constant in the language an element in the domain, and for
every n-place predicate symbol an n-ary relation over D”. An assignment function A
is a mapping that associates every variable with an element of the domain. A first-
order model is a pair M = (D, ). If t is a term, [t]7** € D represents its extension
over the domain D under interpretation Z and assignment A. The semantics of a

first-order language is then defined in the usual way, where M, A =« reads “M
FOL
is a model of the formula o under assignment A”:

MAE pilty, ..o tn) i ([0]5A, L [E]5) € Z(ps), for all

ok n-ary predicate symbols p; € P.
MAE -« iff MJAE o
FOL FOL
MAE aAp it MAE aand MJAE 3.
FOL FOL FOL
M AE =1, iff [t,]54 = [t 5.
FOL
M AE Vaa iff for any assignment A" which agrees
ok with A, except possibly on variable
z, VA |E  «a.
FOL
We say that o has a model M, and write M | «, if M, A E « for all

FOL FOL
assignments A (when « is a sentence, either all assignments or none will satisfy it).

The derivability relation, F

vors can be any of the existent ones for first-order

logic. It can be an axiomatic system, but it needs not.
Since in first-order logic we have a basic distinction between sentences and or-
dinary formulae, we have to consider both cases of adding a temporal dimension to

monolithic sentences and to monolithic formulae in general.

2.6.1 Temporalising First-Order Sentences

It we temporalise first-order sentences, we have no problems in following the method-
ology we have developed so far. We first identify the monolithic sentences as those
that are not in the format aw A 8 or —av. For instance, Vap(x) and Va—(g(x) A —¢(x))
are monolithic sentences, whereas Jxp(x) (implicit negation) and Vap(x) A Vy—q(y)
are boolean combinations. We then follow the procedure described in Section 2.2,
obtaining the logic system T(FOs). Note that in T(FOs) a temporal operator never
occurs inside the scope of a quantifier.

The structure of the first-order models that compose the temporalised model

deserves some special attention, since one model may differ form another in several
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Element Fized Variable

Domain constant | variable
domains | domains

Constant and rigid non-rigid
Functional Symbols or flexible
Predicate Symbols | rigid non-rigid
or flexible
Assignment global local

Table 2.1 Degrees of freedom in temporalising first-order models.

different ways, as if we had various “degrees of freedom” in generating a temporalised

version of first-order models. Those degrees of freedom are illustrated in Table 2.1.

If all first-order models that compose a temporalised model M ros) refer to the
same domain, a constant domain assumption is satisfied; otherwise, we have varying
domains. We may have rigid constant and rigid functional symbols, i.e. they have
the same interpretation in every model of the temporalised structure; they are called
non-rigid or flexible otherwise. A rigid predicate symbol has the same interpretation
at all times; otherwise it is a flexible predicate symbol. And finally, the assignment
function may be global, i.e. all variables are assigned the same domain element in
all models of the temporalised structure (global assignments make sense only under

a constant domain assumption); otherwise, it is a local assignment.

In fact, constant domains or rigid terms or predicates are not a consequence
of the temporalisation; they are, actually, further assumptions on the temporalised
first-order model made so as to impose some external intended meaning of adding
a temporal dimension to a logic system. All the previously established results of
soundness, completeness and separation are valid for unconstrained T(FOs); decid-

ability is obviously not applicable.

Nevertheless, there is no quantification over the temporal operators in T(FOs),
which means that the expressivity of this logic is clearly limited. In the following,
we examine one step further in increasing this expressivity, while still keeping the

original idea of adding a temporal dimension to a logic system.
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2.6.2 Temporalising First-Order Formulae

We take now general monolithic first-order formulae as a basis for the addition of
a temporal dimension, i.e. all first-order formulae that are not of the form —a or
a A 3. We generate thus the logic system T(FOf). Note that the language of T(FOs)
is contained in the language of T(FOf).

The particular feature that distinguishes this system from all the previously
considered systems is that, since we are considering first-order formulae that may
contain free variables, monolithic formulae with free variables only have a defined
semantics over a first-order model Mpo if a variable assignment function is pro-
vided, and the free variables of a first-order formula used to build a temporalised
formula & remain free in a.

Therefore, while constructing a model for the system T(FOf), we must consider
the existence of a global assignment function, A,, to cope with the free variables.
A global assignment function makes sense only in a constant domain context, so we
must have this assumption as well; we further assume that all terms are rigid. The
effect of the global assignment A, is to ground all the free variables of a temporalised
formula a. Only the interpretation of predicate symbols changes among the models

of L in the temporalised model structure. We write
Mrory | o iff Myror, Ay |= o for every A,.

Since the construction of its temporalised model and inference system does not
follow exactly the way other temporal systems were constructed, the results pre-
viously established of soundness, completeness and separation cannot be applied
directly.

We know that the more expressive full first-order temporal logic has no possible
finite axiomatisation over several useful classes of linear flows of time like {IR}, {Z}
and {N}, e.g. see [Garson 1984], but we do have a finite axiomatisation for T(FOs);
the full first-order temporal logic, or another restriction of it, will be revisited in
Chapter 4 in the definition of a query language for temporal databases. The logic
system T(FOf) has an intermediary expressive power and it can be shown that
T(FOf) cannot be finitely axiomatised over the natural numbers, although we will
not do it here; it follows that completeness results are not transferred to T(FOf).
Perhaps more interesting is that separation can be achieved for this logic through
model theory.

Since the concept of separated formula is purely syntactic and does not depend

on the model or the inference system, the definition of a separated temporalised
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formulae given by Definition 2.10 is also valid for T(FOf). For the same reasons, the
definition of a correspondence mapping o and the correspondence lemma 2.1 stating
that o is a bijection are also valid in T(FOf).

Definition 2.11 Corresponding Model Let Myrof = (1, <,g) be a model of
T(FOf), and let A be a global assignment. We construct the valuation function g,
such that, for every time point ¢ € T and for every propositional letter p = o(a) € P

we have

U(Oz) € gg(t) iff MT(Fof),.A,t |: Q.
A model of the temporal logic system US, Ms = (1, <,g,), is then called the

corresponding model of My under the corresponding mapping ¢ and assignment

A. O
Lemma 2.9 If M is the corresponding model of M ror) under o and A then
M.t a(a) iff Mrgon, At E a

Jor every a € Ly and for every t € T'.

Proof Straightforward by structural induction on «. a

Theorem 2.7 (Separation for T(FOf)) For every o € Ly(rory there exists a sep-
arated formula 3 € LtFor) such that 3 is equivalent to o over an integer-like flow

of time.

Proof Let o be a correspondence mapping and A an arbitrary global assignment
. Consider a temporalised model Mrory = (1, <, k), (T, <) € Z, and let Mg =
(T, <,g,) be its correspondent model under o and A. By Lemma 2.9, we have

MBSvt |: U(a) iff MT(FOf)v At |: « (2'1)

for every a € Lt(ror) and for every ¢t € T
By the separation theorem for US we get that, for every formula o(a) € Lys
there exists a separated formula o(3) € Lys such that

M.t | o(a) if M{s.t = o(B) (2.2)

for all time points ¢t € T.

By Lemma 2.8, we have that the corresponding mapping preserves separation,
i.e. 4 is a separated formula iff () is a separated formula and, by application
of (2.1)

M.t o(B)ff Mo, At 3 (23)
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for all time points ¢ € T.
Combining (2.1), (2.2) and (2.3) we get that, for every a € Ly(ror) there exists
a separated 3 € Lt(rof) such that, for all € T

MT(Fof), .A,t |: o iff MT(Fof), .A,t |: V] (2.4)

Since the assignment A was arbitrarily chosen and the separated § does not
depend on the particular choice of A, expression (2.4) holds for any global assignment

A, and separation for T(FOf) remains proved. O

We note that if we fix a current time, o, and a global assignment A, we can apply
the temporalisation process to the logic system T(FOf), obtaining a two-dimensional
temporal predicate system, T?(FOf), as a predicate version of the two-dimensional

propositional system described in example 2.3.

2.7 Internalising the Temporal Dimension

There are three basic approaches to adding a temporal dimension to a logic system,

namely:
1. The temporal operators approach, i.e. the external approach.
2. The first-order internalisation of the temporal dimension.
3. A mixed approach combining the two approaches above.

Those three different approaches are discussed in detail in [Gabbay 1990] in the
context of propositional temporal logic. The first approach is the one we have been
following so far. Here we briefly present the other ones in the context of temporalised
formulae.

Consider the propositional temporal formula in US
—ratning — F raining

expressing that if it is not raining now, it will rain in the future. This statement
could actually be completely coded in a monadic first-order language with a single

temporal argument for the predicate raining. The resulting formulation would be
araining™(t) — Js(t < s A raining™(s)).

This process of getting rid of the temporal operators by adding a new temporal

argument to the predicates plus some extra conditions on those arguments can be
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done systematically by an internalisation function * defined inductively over the
structure of a formula of T and also taking as argument a reference time point,
generating a monadic predicate formula, one sort over time and the other sort over
domain elements. We call this process the internalisation of the temporal dimension.
The internalisation of the temporal dimension can be generalised to temporalised
first-order sentences and is basically obtained by the standard translation of tem-
poral logic into predicate logic, e.g. [van Benthem 1983], with an extra argument to
incorporate the temporal reference; this extra argument can be interpreted as the

result of Quine’s “eternalisation” of first-order sentences [Quine 1960].

In the internalised version it is necessary to incorporate a theory expressing the
properties of the flow of time K = (7, <) to restore the deductive capability of
temporal formulae. However, there are several flows of time over which there are
complete temporal axiomatisations that are not definable in first-order logic, e.g.

the integers and the reals.

Another way of getting to a first-order predicate logic approach to temporal
logic, as proposed by Gabbay [1991b], is by mixing two predicate logic languages in
the following way. Let G (for global) and L (for local) be two first-order languages.
The two-sorted predicate language L;(G) is the result of mixing the G and L (in
our present notation it would be G(L})). If we consider the language L;(G), then a
formula of the form A*(¢,xq,...,2,) means that A(x1,...,x,) holds at time ¢ (here
the formula A(xq,...,z,)indicates that A is a first-order formula with free variables
T1,...,%,). This language is the same language of the internalised temporal di-
mension system. But this approach gives us a way of creating an internalised logic
system in a very similar way to that in which a temporalised system was created,
i.e. as a result of putting two languages together. In fact, the original languages
G and L can be seen as two linked languages “sharing variables’ in the language
L3(G) [Gabbay 1991b]. One of the original languages, G, has the exclusivity of deal-
ing with temporal facts, as the upper-level US-temporal logic system, whereas the
language L is responsible only for the local behaviour at each point in the flow of

time.

The temporal operators approach to a temporalised formula can be seen as treat-
ing time points implicitly, always referring to a current time. The first-order inter-
nalisation refers explicitly to the points in the flow of time. A hybrid form of
internalisation of the temporal dimension can be obtained by combining temporal
operators with first-order internalised formulae, mixing the explicit reference with

the implicit reference of time.
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In the combined approach [Gabbay 1991b], every temporalised formula « is as-
sociated with a first-order atomic formula holds(t, ), where « is now treated as a
first-order term, and the free variables of « are considered free in holds(t, o). A set of
axioms is added to combine the holds(t, o) formulae with the first-order internalised

formulae, for example:

holds(t, «) — (a)*[t], for all monolithic o € £
holds(t,a N 3)  « holds(t,a) A holds(t, 3)
holds(t, S(c, 3)) « ds[s <t A holds(s,a) ANVu(s < u <t — holds(u, 3))]

etc.

Asin the internalised approach, in the combined approach we still have to provide

axioms for the flow of time.

Conclusions

We have shown in this chapter a way of composing an upper-level temporal logic
system with a generic underlying logic system L and the resulting logic system T(L)
was called the temporalisation of system L. We used the correspondence mapping
method to prove soundness, completeness, decidability, conservativeness and separa-
tion for the temporalised logic system over linear flows of time. All those properties
were initially properties of the temporal logic system. Many other properties remain
to be analysed, such as compactness, finite model property and interpolation among
others; the properties discussed here over classes of linear flows of time remain to
be expanded for all classes of flows of time.

We need by no means restrict the upper-level logic system to temporal logic.
In fact, the temporalisation presented here can be generalised to any propositional
modal logic system M in the role of the upper-level logic system, so as to create
a modalised logic system M(L). Its language and inference system can be obtained
following the method we used to derive the those of T(L), based on the monolithic
formulae of L. If the logic M has a possible world semantics, each possible world may
be substituted by a model of L, so as to construct a model for the system M(L) in
the same way a model was built for T(L). The correspondence mapping method may
then be used to study how the properties of the modal logic system M are preserved
in the modalised logic system M(L).



Chapter 3

Combinations of One-Dimensional

Temporal Logics

We have seen in the previous chapter how to add a temporal dimension to a logic
system. In particular, if a temporal logic is itself temporalised we obtain a two-
dimensional temporal logic. Such a logic system is, however, very weakly expressive;
if T is the internal (horizontal) temporal logic in the temporalisation process (F' €
T), and T is the external (vertical) one (F' € T), we cannot express that vertical

and horizontal future operators commute,
FFASEFFA.

In fact, the subformula FF' A is not even in the temporalised language of T(T), nor
is the whole formula. In this chapter we study other methods of combining two one-
dimensional temporal logics (1DTLs), into a two-dimensional temporal logic (2DTL),
that are more expressive than the simple temporalisation of a 1DTL. Our approach
to the study of such combinations of logics continues to be based on the analysis
of how logical properties are transferred from the component logic systems to the
combined, two-dimensional one. In this chapter we concentrate on the properties of
soundness, completeness and decidability, and we study the methods for combining
1DTLs by independent combination, full interlacing and restricted interlacing into
several different 2DTLs. Furthermore, we analyse the notion of a diagonal in a
two-dimensional model.

Notation: Throughout this presentation, we refer to one of the temporal di-
mensions as the horizontal dimension and the other one as the vertical dimension;
the symbols related to the vertical dimension are normally obtained by putting a

bar on top of the corresponding horizontal ones, e.g. T and T, Fand F', < and <.

57
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3.1 Introduction

In this chapter we introduce several methods for combining two one-dimensional
temporal logics into a two-dimensional one. There are two distinct criteria for

defining a modal/temporal logic system as two-dimensional:

(i) If the alphabet of the language contains two non-empty, disjoint sets of cor-
responding modal or temporal operators, ® and ®, each set associated to a

distinct flow of time, (T, <) and (T, <), then the system is two-dimensional.

(ii) If the truth value of a formula is evaluated with respect to two time points,
then the system is two-dimensional. In this case, we even have the distinction
between strong and weak interpretation of formulae that, as a consequence,
generates different notions of valid formulae (a formulae is valid if it holds in
all models for all pair of time points). Under the strong interpretation, the
truth value of atoms depends on both dimensions, giving origin to strongly
valid formulae when the evaluation of formulae is inductively extended to all
connectives. In the weak interpretation, the truth value of atoms depends
only on the one dimension, e.g. the horizontal dimension, giving origin to
weakly valid formulae. Usually for this notion of two-dimensionality, both
time points refer to the same flow of time, so we may also have the notion
of (weak/strong) diagonally valid formulae by restricting validity to the case
where both dimensions refer to the same point, i.e. A is diagonally valid iff
Mt t E A for all M and t; see [Gabbay, Hodkinson and Reynolds 1994] for

more details.

Criterion (i) above will sometimes be called the syntactic criterion for two-
dimensionality, although it is not completely syntactic, i.e. it depends on the se-
mantic notion of flows of time; criterion (ii) will be called the semantic eriterion for
two- dimensionality.

Note that both cases can yield, as an extreme case, one-dimensional temporal
logic. In (i), by making T =T and < = (<)~ = (>), i.e. by taking two flows with
the same set of time points such that one order is the inverse of the other; in this
case, the future operators ® = {F, G, U} are associated with (7, <) and the past
operators ® = {P, [I, S} are associated with (T,>). In (ii), by fixing one dimension
to a single time point so that the second dimension becomes redundant.

These two distinct approaches to the two-dimensionality of a system are inde-

pendent. In fact, we will see in Section 3.2 a system that contains two distinct sets of

operators over two classes of flows of time, but its formulae are evaluated at a single
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point. On the other hand, there are several temporal logics in the literature satisfy-
ing (ii) but not (i), containing a single set of temporal operators in which formulae

are evaluated according to two or more time points in the same flow [Aqvist 1979;

Kamp 1971; Gabbay, Hodkinson and Reynolds 1994].

A logic system that respects both the syntactic and the semantic criteria for
two-dimensionality is called broadly two-dimensional, and this will be the kind of
system we will be aiming to achieve through combination methods; we consider
in this work only strong evaluation and validity; the weak interpretation gener-
ates systems with the expressivity of only monadic first-order language [Gabbay,
Hodkinson and Reynolds 1994], but for broadly two-dimensional systems we are
interested in the expressivity of dyadic first-order language, although it is known
that no set of temporal operators can be expressively complete! over dyadic first-
order language [Venema 1990]. Venema’s [1990] two-dimensional temporal logic,
Segerberg’s [1973] two-dimensional modal logic and the temporalisation of a tempo-
ral logic are all broadly two-dimensional; so are the combined logics in Sections 3.3

and 3.4.

In the study of one-dimensional temporal logics (1DTLs) several classes of flows
of time are taken into account. When we move to 2DTLs, the number of such
classes increases considerably, and every pair of one-dimensional classes can be seen
as generating a different two-dimensional class. The study of 2DTLs would benefit
much if the properties known to hold for 1IDTLs could be systematically transferred
to 2DTLs, avoiding the repetition of much of the work that has been published in
the literature. This is a strong motivation to consider methods of combination of
1DTLs into 2DTLs and studying the transference of logical properties through each
method. Also in favour of such an approach is the fact that the results concerning

2DTLs are then presented in a general, compact and elegant form.

In providing a method to combine two 1IDTLs T and T we have to pay attention
to the following points:

(a) A method for combining logics T and T is composed of three submethods,
namely a method for combining the languages of T and T, a method for

combining their inference systems and a method for combining their semantics.

LA modal/temporal language is expressively complete over a class of first-order formulae if,
for any first-order formula A in that class, there exists a modal/temporal formula B such that
A is first-order equivalent to B* where B* is the standard first-order translation of B [Gabbay,
Hodkinson and Reynolds 1994].
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(b) We study the combined logic system with respect to the way certain logical
properties of T and T are transferred to the two-dimensional combination. We
focus here on the properties of soundness, completeness and decidability of the

combined system given those of the component ones.

(¢) The combined language should be able to express some properties of the inter-
action between the two-dimensions; otherwise the combination is just a partial
one, and the two systems are not fully combined. For example, it is desirable
to express formulae like FFFFA—F FA and PFA—F PA that are not in the
temporalised language of T(T).

(d) If we want to strengthen the interaction between the two systems, some proper-
ties of the interaction between the two-dimensions are expected to be theorems

of the combining system, e.g. the commutativity of horizontal and vertical fu-

ture operators such as FFFA—F FA and PFA—F PA.

(e) We want the combination method to be as independent as possible from the

underlying flows of time.

All methods of combination must comply with item (a). The method for com-
bining the languages of T and T includes the choice of which sublanguage of T and
T is going to be part of the combined two-dimensional language, as well as the way
in which this combination is done; in this presentation we will work, in the most
general case, with the standard languages of S and U, S and U, but we also consider
some sublanguages, e.g. the monolithic subformulae in the case of temporalisation,
or the sublanguage generated by a set of derived operators, e.g. the vertical “previ-
ous” (@) and “next” (O) in Section 3.4. In combining the inference systems of T
and T, we will assume that they are both an extension of classical logic and that they
are presented in the form of a regular, normal axiomatic system (X, 7), where ¥ is a
set of axioms and 7 is a set of inference rules; one important requirement is that the
combined system be a conservative extension of the two components. The combined
semantics has to deal with the structure of the combined model, the evaluation of
two-dimensional formulae over those structures and also with the combinations of
classes of flows of time, e.g. in the temporalisation of T/K with external T/K we
generated the logic T(T) that is complete over the class K (K).

Items (b), (¢), (d) and (e) may conflict with each other. In fact, the rest of
this chapter shows that this is the case, as we try to compromise between expres-

sivity, independence of the underlying flow of time and the transference of logical

properties.
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3.2 Independent Combination

We have seen that the temporalisation process when applied to a temporal logic gen-
erates a weakly expressive 2DTL due to the syntactic restrictions imposed by the
temporalisation method itself. The idea is then to define a new method of combi-
nation of logic systems that puts together all the expressivity of the two component
logic systems; for that we assume that the language of a system is given by a set of
formation rules. For example, we repeat here the formation rules of the language of

US-temporal logic over a set of propositional atoms P:
e every atomic proposition is in it;
o if A, B are in it, so are 7 A and AAB;

e if A, B are in it, so are U(A, B) and S(A, B).

Definition 3.1 Let Op(L) be the set of non-boolean operators of a generic logic L.
Let T and T be logic systems such that Op(T) N Op(T) = @. The fully combined
language of logic systems T and T over the set of atomic propositions P, is obtained
by the union of the respective set of connectives and the union of the formation

rules of the languages of both logic systems. a

Let the operators U and S be in the language of US and U and S be in that of US.
Note that the renaming of the temporal operator is done prior to the combination, so
that the combined systems contains the set of boolean operators {—, A} coming from
both components, plus the set of temporal operators {U,S,U,5}. The formation
rules of the languages of US and US have the first two rules in common, so their

fully combined language over a set of atomic propositions P is given by
e every atomic proposition is in it;
o if A, B are in it, so are 7 A and AAB;
e if A, B are in it, so are U(A, B) and S(A, B).
e if A, B are in it, so are U(A, B) and S (A, B).

In general, we do not want any non-boolean operator to be shared between the
two languages, for this may cause problems when combining their axiomatisations.

For example?, if a generic operator O belongs to both temporal logic system such

2this example is due to Tan Hodkinson
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that T contains axiom ¢«Og and system T contains axiom —¢«Og, the union
of their axiomatisations will result in an inconsistent systems even though each
system might have been itself consistent. To avoid such a behaviour the restriction
Op(T) N Op(T) = @ was imposed on the fully combined langnage of T and T.
Not only are the two languages taken to be independent of each other, but the set
of axioms of the two systems are supposed to be disjoint; so we call the following

combination method the independent combination of two temporal logics.

Definition 3.2 Let US and US be two US-temporal logic systems defined over the
same set P of propositional atoms such that their languages are independent. The

independent combination US @ US is given by the following:

o The fully combined language of US and US.

o If (X,7) is an axiomatisation for US and (X,7) is an axiomatisation for US,
then (X U ¥, TU T) is an axiomatisation for US @ US. Note that the set of

axioms Y and ¥ are supposed to be disjoint, but not the inference rules.

e The class of independently combined flows of time is K & K composed of
biordered flows of the form (T, <, <) where the connected components of
(T, <) are in K and the connected components of (T, <) are in K, and T
is the (not necessarily disjoint) union of the sets of time points 7" and T
that constitute each connected component; such a biordered flow of time has
been discussed in [Kracht and Wolter 1991] for the case of the independent

combination of two mono-modal systems.

A model structure for T @ T over K & K is a 4-tuple (T,<,Z,g), where
(T, <, <) €K @K and g is an assignment function ¢ : Y

The semantics of a formula A in a model M = (T, <, <,g) is defined as the
union of the rules defining the semantics of US/K and US/K. The expression
M, t |E A reads that the formula A is true in the (combined) model M at the
point ¢ € 7. The semantics of formulae is given by induction in the standard
way:

M tEDp iff p € g(t) and p € P.

M, tE-A iff it is not the case that M, = A.

Mt EAANBIt Mt E A and Mt E B.
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M.t |= S(A, B) iff there exists an s € T with s < t and M,s |= A
and for every u € T, if s < u < t then M, u E B.
M.t |= U(A, B) iff there exists an s € T with t < s and M,s = A
and forevery u € T, ift < u < s then M, u E B.
M.t |= §(A, B) iff there exists an s € T with s<t and M, s = A
and for every v € T, if s<u< 1 then M, u E B.
M.t |= U(A, B) iff there exists an s € T with t<s and M, s = A
and for every u € T, if t Su<s then M, u E B.

O

Note that, despite the combination of two flows of time, formulae are evaluated
according to a single point. The independent combination generates a system that
is two-dimensional according to the first criterion but fails the second one, so it is
not broadly two-dimensional.

The following result is due to [Thomason 1980] and is more general than the

independent combination of two US-logics.

Proposition 3.1 With respect to the validity of formulae, the independent combi-

nation of two modal logics is a conservative extension of the original ones.

Note that we have defined conservative extension in Chapter 2 in proot theo-
retical terms; completeness for the independently combined case will lead to the
conservativeness with respect to theorems.

As usual, we will assume that K, K C Ky, so < and < are transitive, irreflexive
and total orders; similarly, we assume that the axiomatisations are extensions of
US/Kiin-

The temporalisation process will be used as an inductive step to prove the trans-
ference of soundness, completeness and decidability for US @ US over K @ K. Let us
first consider the degree of alternation of a (US @ US)-formula A for US, dg(A), and
US, dG(A).

) B)) S (A, B)) = maz{ dg(A). dg(B)}
dg(U(A, B)) = maw{dg(A),dg(B)} | dg(U(A, B)) = maa{dg(A), dy(B)}
d9(5 (A, B)) = 1 + maa{dg(A). dg(B)} | dg(S(A, B)) = L + mazx{dg(A), dg(B)}
dg(U(A, B)) = 1 + maa{dg(A). dg(B)} | dg(U(A. B)) = 1 + maz{dg(A),dg(B)}
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Any formula A of US & US can be seen as a formula of some finite number of
alternating temporalisations of the form US(US(US( ... ))); more precisely, A can
be seen as a formula of US(L, ), where dg(A) = n, US(Ly) = US, US(Ly) = US, and
Ln—2i = US(Ly—2i-1), Lacaict = US(Lagiz2), for i = 0,1,..., [2] — L.

2

Lemma 3.1 Let US and US be two complete logic systems. Then, A is a theorem
of US @ US iff it is a theorem of US(L,), where dg(A) = n.

Proof If A is a theorem of US(L,), all the inferences in its deduction can be
repeated in US @ US, so it is a theorem of US @ US.

Suppose A is a theorem of US @ US; let By, ..., B,, = A be a deduction of A in
US @ US and let n’ = max{dg(B;)}, n' > n. We claim that each B; is a theorem of
US(L,). In fact, by induction on m, if B; is obtained in the deduction by substituting
into an axiom, the same substitution can be done in US(L,/); if B; is obtained by
Temporal Generalisation from B;, 7 < ¢, then by the induction hypothesis, B; is a
theorem of US(L,s) and so is B;; if B; is obtained by Modus Ponens from B; and
By, j, k < 1, then by the induction hypothesis, B; and B}, are theorems of US(L,,)
and so is B;.

So A is a theorem of US(L,s) and, since US and US are two complete logic
systems, by Theorem 2.4, each of the alternating temporalisations in US(L,/) is a

conservative extension of the underlying logic; it follows that A is a theorem of

US(L,), as desired. O

The transference of soundness, completeness and decidability follows directly

from this result.

Theorem 3.1 (Independent Combination) Let US and US be two sound, com-
plete and decidable logic systems over the classes K and K, respectively. Then their
independent combination US @ US is sound, complete and decidable over the class
Kak.
Proof Soundness follows immediately from the validity of axioms and inference
rules. For completeness, suppose that A is a consistent formula in US @ US; by
Lemma 3.1, A is consistent in US(L,), so we construct a temporalised model for it,
and we obtain a model (Tl, <1,91,01) over K(K(K(...))), where o; is the “current
time” necessary for the successive temporalisations. We show now how it can be
transformed into a model over K & K.

Without loss of generality, suppose that US is the outermost logic system in
US(US(US( ... ))), and let n be the number of alternations. The construction is
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recursive, starting with the outermost logic. Let ¢ < n denote the step of the con-
struction; if 7 is odd, it is a US-temporalisation, otherwise it is a US-temporalisation.
At every step ¢ we construct the sets Tz’+1, <41 and < ;4q and the function g;44.
We start the construction of the model at step ¢ = 0 with the temporalised
model (Tl, <4, ¢1,01) such that (Tl, <1) € K, and we take <1 = @. At step ¢ < n,
consider the current set of time points 7}; according to the construction, each ¢ € T}

is associated to:

e a temporalised model ¢;(t) = (T»t_l_l, <1, ghq,0l ) € K and take <) = @,

K3

if 7 is even; or

e a temporalised model ¢;(t) = (Tfﬂ,Zf_'_l,giH,ofH) € K and take <! ;= @&, if
¢ 1s odd.

The point ¢ is made identical to of,, € T-|—1v so as to add the new model to the
current structure; note that this preserves the satisfiability of all formulae at ¢. Let
TH—l be the (possibly infinite) union of all Tit—l—l for t € Ti; similarly, <;41 and <41
are generated. And finally, for every ¢t € Tz’+17 the function ¢;11 is constructed as
the union of all g;, | for t € T;.

Repeating this construction n times, we obtain a combined model over K & K,
M = (Tn,<n,2n,gn), such that for all ¢t € T, gn(t) € P. Since satisfiability
of formulae is preserved at each step, it follows that M is a model for A, and
completeness is proved.

For decidability, again by Lemma 3.1, we can recursively apply the decision
procedure of US(L,) and US(L,_,), starting with n = dg(A), thus obtaining a
decision procedure for US & us. O

3.3 Full Interlacing

With respect to the generation of two-dimensional systems, the method of inde-
pendent combination has two main drawbacks. First, it generates logic systems
whose formulae are evaluated at one single time point, not generating a broadly
two-dimensional logic. Second, since the method independently combines the two
component logic systems, no interaction between the dimension is provided by it. As
a consequence, although a formula like F'FF A« F F' A is expressible in its language, it
will not be valid, as can easily be verified, for it expresses an interplay between the

dimensions. We therefore introduce the notion of a two-dimensional plane model.
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Definition 3.3 Let K and K be two classes of flow of time. A two-dimensional
plane model over the fully combined class K x K is a 5-tuple M = (T, <,T,<, g),
where (T, <) € K, (T, <) € K and g : TxT — 2% is a two-dimensional assignment.

The semantics of the horizontal and vertical operators are independent of each other.

M, t,x = S(A,B) iff there exists s < ¢ such that M s,z E A and
for all v, s <u <t, M,u,z E B.

Mtz = S(A,B) iff there exists y<x such that M,t,y = A and
for all z, y<z<a, M, t,z E B.

Similarly for U and U, the semantics of atoms and boolean connectives remaining
the standard one. A formula A is (strongly) valid over K x K if for all models
M= (T,<,T,<,g),for all t € T and x € T we have M,t,z = A. O

With respect to the expressivity of fully combined two-dimensional languages,
Venema [1990] has shown that no finite set of two-dimensional temporal operators
is expressively complete over the class of linear flows with respect to dyadic first-
order logic — despite the fact that US-temporal logic is expressively complete with
respect to monadic first-order logic over N and over R, and that, with additional
operators (the Stavi operators), we can get expressive completeness over ) and Ky,
[Gabbay 1981b]. So expressive completeness is not transferred by full interlacing.

It is easy to verify that the following formulae expressing the commutativity of
future and past operators between the two dimensions are valid formulae in two-

dimensional plane models.

Il FFA<FFA
12 FPA«PFA
I3 PFA—FPA
14 PPA—~PPA

Therefore, if we want to satisfy both the syntactic and the semantic criteria
for two-dimensionality, we may define the method of full interlacing containing the
fully combined language of US and US and their fully combined class of models. The
question is whether there is a method for combining their axiomatisations so as to
generate a fully interlaced axiomatisation that transfers the properties of soundness,
completeness and decidability. The answer, however, is no, not in general. In
some cases we can obtain the transference of completeness, in some other cases the

transference fails. To illustrate that, we consider completeness results over classes

of the form X xX
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3.3.1 The Completeness of Kj;, x Ky,

We start by defining some useful abbreviations. Let p be a propositional atom;

define:

hor(p) = O(pAH~pAG=p)
ver(p) = O(pAH-pAG—p)

It is clear that hor(p) makes p true along the horizontal line and false elsewhere;
similarly for ver(p) with respect to the vertical.

The axiomatisation of USxUS over Ky, X Kun extends that of US @& US over
Kiin & Ky by including the interlacing axioms 11-I4 and the following inference

rules:

IR1 ifF hor(p)—A and p does not occur in A, then - A
IR2 if F ver(p)—A and p does not occur in A, then - A

IR1 and IR2 are two-dimensional extensions of the irreflexivity rule (IRR) defined
in [Gabbay 1981a] for the one-dimensional case : if - pAH-p—A and p does not
occur in A, then F A. The use of IR1 and IR2 allows us to define U/, S, U and S
in terms of I, P, I' and P. So let r be an atom:

(U) rAH-r—[U(p,q)=F(pAH(Pr—q))]
(U)  rAH-r—=[U(p, q)=F (pAH(Pr—q))]
(:5) rAH=r—[S(p, q)«= P(pAG(F(rAH=r)—q))]
() rAH-r—=[S(p,q)=P(pAG(F (rANH=1r)—q))]

Therefore, we can base the proof of completeness in terms of F, P, F' and P only.

Lemma 3.2 The inference rules IR1 and IR2 are valid over Ky, X Ky .

Proof Suppose that hor(p)—A is a valid formula and p does not occur in A.
Let M = (T,<,T,<,g) be a model over Ky, X Kjsn, and let ¢t € T, 2 € T, so
M.tz | hor(p)—A. Consider M’ = (T,<,T,<,g') such that, for every ¢ € T,
o' eT,pegt,2)iff z =2 and, for ¢ € P — {p}, ¢ € K'(¥',2") iff ¢ € h(¥,2').
Clearly, M’ t,x |= hor(p) and hor(p)— A is valid, so M',t,x |= A. Since h and b’
agree on all atoms in A, M, t,z = A, so IR1 is valid. Similarly we show that IR2
is valid. a
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It follows directly that the axiomatisation is sound over K, X Kip.

The proof of completeness does not use directly the completeness results of the
component US/K;, logics as in the previous methods; we use instead the tech-
nique of building a model out of (a special class of) maximal consistent sets. This
construction applies techniques for the IRR rule described in [Gabbay and Hodkin-
son 1990]. The general construction strategy is the following. At every step we
have a two-dimensional grid of special maximal consistent sets, IR*-theories. The
use of IR1 and IR2 give us means to name every set in the grid with a pair of
atoms that characterise the crossing of a vertical and a horizontal line, resembling a
coordinate system. A step of the construction consists of finding a counterezample
of a two-dimensional model in the current grid and fixing this counterexample by
adding a new line to the grid, either vertical or horizontal, so as to end up with a
new two-dimensional grid. The two-dimensional model is then obtained by taking

the infinite union of all the grids.

IR*-theories

Let P be a set of proposition atoms and let £ be the language generated by P. A
mazimal consistent set (MCS) I' over a language £ is a consistent set of formulae
such that there exists no consistent set A in £ such that I' C A. An IR*-theory I’
over P is an MCS over L such that:

(a) there exists u,v € P such that hor(u)Aver(v) € I';

(b) let a #-formula be one of the form #o(BoA#1(BiA ... A#HnBn)...), where
#: € {F,P,F,P}; if B €T isa #-formula then there exists u,v € P such
that #o(BoA#1(BiA ... A#n[BnAhor(u)Aver(v)])...) € T

The following motivates the definition of an order over IR*-theories.

Proposition 3.2 For any I', 1V MCSs, the following are equivalent:

(a) whenever A € T', we have PA € 17,
(b) whenever B € I, we have FB €T,
(¢) whenever GC € I', we have C € 17,
(d) whenever HD € 1", we have D € T'.

Stmilarly for the vertical operators.
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For a proof with the horizontal operators, see Burgess [1984, lemma 1.6]. The
proof for the vertical operators is analogous. Let P be a countably infinite set of

atoms and let & be the set of all IR*-theories over P. Define:

(a) ' < I"iff forall GAeT, Ael
(b) T=T"iff forall GAeT, AT

The axioms can be used in a standard way to show that < and < define linear
orders on §. The following are straightforward generalisations of results in [Gabbay

and Hodkinson 1990], the first of which uses directly IR1 and TR2.

Proposition 3.3 Let I' be a consistent set of formulae over Py. Let Py O Py be an
extension of P1 by a countably infinite set of atoms. Then there exists a IR*-theory
IV DT over Ps.

Proposition 3.4 Let ' € §. Then:

(a) If FA €T then there exists 1" € § with A €1” and I' <17,
(b) If PA €T then there exists ' € S with A€ " and I" < T.
(¢c) If FA €T then there exists I' € S with A € T" and I 31",
(d) If PA €T then there exists I' € S with A € T" and I"=T.

The construction of the two-dimensional grid consists of basically of counterex-

ample elimination and the filling of empty corners and gaps in the grid.

Definition 3.4 Let G be a set of IR*-theories such that I'y, Ay, Ay € G. These sets

form a L-corner in G if:
o Ay < Ay;
o Ay <TYy;
e thereis no ¥ € G such that I'j < ¥ and A, < V.

Similarly, define 71- _I- and " -corners. d
We can “fill in” the corners due to the Corner Filling Lemma.

Lemma 3.3 Let G be a set of IR*-theories such that I'1,A1,Ay € G form a L-
corner. Then there exists W € S such that '} <V and Ay <V,
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Proof Let Uy = {A|GA e T'}U{B|GB € Ay}; weshow it is consistent. Suppose
not, then there is A € GI'; and GB € A, such that = =(AAB); then FGB € A
and PFGB € T'y; by axiom I3, FPGB € T'y, so FB € I'y and F(AAB) € T'y which
1s a contradiction. So Wy is consistent.

So we extend ¥y to an IR*-theory ¥ and clearly we will have I'y < ¥ and
Ay < W. First, since I'1, Ay € S, there are atoms u,v € P such that hor(u) € I'y
and ver(v) € Ay and hor(u),ver(v) € Wy.

Consider an enumeration By, By, ... of two-dimensional formulae. Define ¥, by
induction. g is defined and if W; is defined, set W, ; = W, if U;U{B;} is inconsistent;
otherwise, if B; is not of a #-formula, set ;11 = ¥, U {B;}.

Suppose B; is a #-formula of the form #o(CoA#1(C1 ... A#nCr) .. .), where C,
is not a #-formula. Let D = A(I'; —'y); this is a well defined formula since I'; — 'y is
finite. Then we must have F(DAB;Aver(v)) € I'1. For if G=(DAB;Aver(v)) € T,
then =(DAB;Aver(v)) € Uy C W,, contradicting W; U {B;} is consistent. Now
F(DAB;) is itself a #-formula, so there are atoms u,,v, € P, n = 0,...,m, such
that, writing B! for #o([CoAhor(ug)Aver(vo)A. . .A#n[ConAhor(uy,)Aver(v,)]) .. .),
we have that F'(DAB!Aver(v)) € I'y.

We claim that W, U {B!} is consistent. Suppose not; then there is GE € Iy
and GE' € A, such that b ~(DAEAE'AB!), so G-(DAEAE'AB!) € T; since
ver(v) € Ay, it follows that G(ver(v)—E') € Ay and, by axiom I3, via A;, we get
F(ver(v)—FE') € I'y, so G(ver(v)—FE") € I'y; therefore F(DAB!Aver(v)AE) € T'y
and F(DABIAE'AE) € Ty, which is a contradiction and proves the claim.

We then define W,y = W; U{B;, B/} and set ¥ = ;. ¥;. That is clearly an
IR*-theory, proving the result. d

o —» ¢
Ay Ay
Figure 3.1 A [_-corner

The filling of al_-corner is illustrated in Figure 3.1; similar versions of the Corner
Filling Lemma are obtainable for the - _I- and M-corners, but we omit the details.

Not only corners have to be filled, but also gaps.
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Definition 3.5 Let G be a set of IR*-theories such that I'y, 'y, Ay, Ay, @ € G. These
sets form a U-gap in G if:

Iy <Ts.

A1-<(I),(I)-<A2;

A1 <17 and Ay <Ty;

o there is no W € ¢ such that ® <V and I'; < ¥ < I's.

Similarly, define--3- and M-gaps. d

The situation defined in aU-gap is illustrated in Figure 3.2. We then proceed to
the Gap Filling Lemma.

Fl FQ
> @

® > @ > @

Al ) AQ

Figure 3.2 A U-gap

Lemma 3.4 Let G be a set of IR*-theories such that I'y, 1y, A1, Ay, ® € G form a
U-gap. Then there exist Y € S such that:

(a) ®=<V; and
(b)) T'1 < ¥ < Ty

Proof The Gap Filling Lemma gives us a ¥ € § such that @<V and I'y < V.
By linearity, we have that either W = 1"y or I'y < W or W < I';. Since ® € S, there
is a v € P such that ver(v) € ®; it follows that ver(v) € U and Pver(v) € A,,
so PPver(v) € Ty and, by axiom I4, PPver(v) € I'y, so P € ver(v) € 'y, which
contradicts both W =1I'y and I'y < ¥, then ¥ < I';. O
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Fl b4 FQ
® > @ > @
® > @ > @
A d Ay

Figure 3.3 Filling a U-gap

Figure 3.3 illustrates the result of the previous Lemma as the “filling” of an

incompletell-gap. We can then define the two-dimensional grid.

The Two-dimensional Grid

A two-dimensional grid is a 5-tuple G = (X, <, X, <, f,) satisfying the following

conditions.

CO X, X are finite sets, X, X C Q and <, < are the restriction of the standard
order over ) to X and X, respectively.

C1 fis a function from f: X x X — S such that, for all ,s € X with ¢ < s, and
all 2,y € X with 2 < y:

ft,2) < f(s,z) and
ft,x) =< f(ty)

We write I' € G when we mean that I' is an IR*-theory in the image of f.

We say that a grid G’ = (X', <X, = f")is an extension of G = (X, <. X, <, f)
f X CX, <C<,XCX,<Z C T andforallt € X and all 2 € X,
f(t2) = /().

A grid can also be decomposed in horizontal and vertical lines. The horizontal
z-line in G is a 3-tuple (X, <, f;) such that, for every t € X, f.(t) = f(t, z).
Similarly, the vertical t-line in G is a 3-tuple (X, <, f;) such that, for every z € X,
fi(z) = f(t,z). We write (X, <, fz) to denote a generic z-line, either horizontal or

vertical. The extension of a z-line is defined in the obvious way.

Grid Initialisation

Let I'y be a set of formulae consistent with the two-dimensional axiomatisation over

Kiin X Kiin. By Proposition 3.3, we extend it to a IR*-theory I' O I'y over a countably
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infinite set of atoms P. We then construct an initial grid Gy = (Xo, <0, X0, <o, fo)

by making:
XO — 70 — {0}
<o= <=9

fo=1{(0,0,T)}
which clearly satisfies CO and C1.

Counterexample Elimination

We say that (t,z, F'A) is a counterezample for the grid ¢ = (X, <, X, <, f) iff
PA € f(t,x) and there is no s € X with ¢ < s such that A € f(s,x). Analogously,
define the counterexamples (¢,x, PA), (t,z,F A) and (t,z, PA).

Clearly, to every counterexample of the form (¢,z, FFA) and (¢,x, PA) corre-
sponds a one-dimensional counterexample in the horizontal x-line. And counterex-
amples of the form (t,z,F A) and (¢,x, PA) find a corresponding one-dimensional
counterexample in the vertical ¢-line.

Proposition 3.4 accomplishes the counterexample elimination for the one-dimen-

sional cases. This is its two-dimensional counterpart.

Lemma 3.5 Let G = (X, <, X, <, f) be a two-dimensional grid and let ¢ be a
counterexample to it. Then there exists an extension G' = (X’,<’,7/, <’ f), to

which ¢ is no longer a counterexample.

Proof Initially, make f C f’. By symmetry, assume without loss of generality, that
¢ is of the form (¢, x, F'A); for the other cases the proof is completely analogous. By
Proposition 3.4, there is an IR*-theory I'" such that A € IV and f(¢,x) < I'; for any
s € X, I # f(s,x), otherwise ¢ would not be a counterexample. Let t,,,, be the
largest element of X and for every t € X, 1 < {42, let t' designate its immediate
successor in X.

If f(tmas, ) <1, then make t* =t,,,, +1 € Q. Let X' = X U{t*}, X' =X and
f'(t*,x) = 1", therefore generating a corner in G U 1”. By successive applications
of the suitable version of the Corner Filling Lemma, f'(t*,y) can be determined for
every y € 7/, therefore adding a new vertical ¢*-line to the grid.

Otherwise, I'" < f(t;42, %) and by linearity there exists s € X, ¢ < s < ty44,
such that f(s,a) <17 < f(s',2). Make t* = 5‘;—5/ e, X'=Xu{t}, X' =X and
f'(t*,x) = 1", therefore generating a gap in GUI". By successive applications of the
suitable version of the Gap Filling Lemma, determine f'(t*,y), for every y € 7/,

thus adding a new vertical ¢*-line to the grid.
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We have thus extended the original grid into G’ = (X’, <X, =2, f') where ¢ is
no longer a counterexample by adding a new vertical line. Similarly for the other
types of counterexamples where, if ¢ is of the form (¢,z,F A) or(t,z, PA), we add a

new horizontal line. O

To construct the two-dimensional grid, we start with Gy and assume we have
constructed G,. For every n, there are at most countably many counterexamples;
suppose there is an order on formulae by which the counterexamples are ordered.
Choose ¢ as the first counterexample and, by application of Lemma 3.5, we obtain
Gnt1. Take G* = (X7, <X, <", ) = Upcw Gn. Clearly, there are no counterex-
amples left in G* and (X, <*),(7*, <) € K, and G satisfies C1 plus:

C2a Forallt e X*andz € X, FA € F*(t, x) iff there exists s € X*, t <* s, such
that A € f*(s, ).

C3a Forallte X*and ez e X ,FA€ f*(t,x) iff there exists y € X", £ <"y, such
that A € f*(t,y).

and their mirror images, C2b and C3b. Since we are dealing with IR*-theories,

axioms (U), (U), (S) and (S') make G* satisfy:

Cda For all t € X* and = € X, U(A, B) € f*(t,z) iff there exists s € X*, ¢ <* s,
such that A € f*(s,x) and for all u, t <* u <* s, B € f*(u,x).

C5a For allt € X* and z € X, U(A, B) € f*(t, ) iff there exists y € X, 2 <"y,
such that A € f*(t,y) and for all z, 2 <*2<*y, B € f*(¢,2).

plus their mirror images (C4b, C5b) .

For every atom p define h as

p € hz,y)iff p e f*(x,y)

Let M = (X, <X, <*, h) be a two-dimensional model; by a simple induction

on A, it can be show that, for every A,
M t,a EAIff Ae f7(t,x)

It follows that M, 0,0 = T.
We have thus proved the following theorem.

Theorem 3.2 (2D-completeness) There is a sound and complete axiomatisation

over the class of full two-dimensional temporal models over K, X Kiip.
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Furthermore, it is possible to obtain completeness results for other classes of
two-dimensional plane flows based on this construction along the usual steps used

in the one-dimensional case; the proof is in Appendix B, Theorem B.1.

Theorem 3.3 (2D-completeness) There are sound and complete axiomatisa-
tions over the two-dimensional plane classes Kgis X Kais, QX Q, Kiin X Kgis, Kin X Q
and ICdiSX@.

3.3.2 Incompleteness Results

The negative result is the following.

Proposition 3.5 (2D-unaxiomatisability) There are no finite axiomatisations

for the (strongly) valid two-dimensional formulae over the classes 7, x 7, N x N and
R x R.

This proposition follows directly from Venema’s proof that the valid formulae
over the upper half two-dimensional plane are not enumerable for Z x Z, N x I¥ and
R x IR, which in its turn was based on [Halpern and Shoham 1986]. Since there are
sound, complete and decidable US-temporal logics over Z, I¥ and IR [Reynolds 1992],

the general conclusion on full interlacing is the following.

Theorem 3.4 (Full Interlacing) Completeness and decidability do not transfer

in general through full interlacing.

It has to be noted that two-dimensional temporal logics seem to behave like
modal logics in the following sense. We can see the result of the independent com-
bination of US and US as generating a “minimal” combination of the logics, i.e. one
without any interference between the dimensions. The addition of extra axioms,
inference rules or an extra condition on its models has to be studied on its own,
just as adding a new axiom to a modal logic or imposing a new property on its
accessibility relation has to be analysed on its own.

The full interlacing method illustrates the conflict between the generality of
a method and its ability to achieve the transference of logical properties. We next

restrict the interlacing method so as to recover the transference of logical properties.
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3.4 Restricted Interlacing

The fact that the transference of logical properties fails for the interlacing of two
US-temporal logics does not mean that the interlacing of any two temporal logic
systems fails to achieve this transference. We restrict the vertical logic system to
a temporal logic NP with operators O for Next time and @ for Previous time; the
formation rules for the formulae of NP are the standard ones. This is a restriction

of the US-language for O and @ can be defined in terms of U and S, namely by

OA=4;U(A, L)
@A=4;5(A, 1)

Not only is the expressivity of the language reduced this way, but also the underlying
flow of time is now restricted to a discrete one; in fact, we concentrate our attention
on integer-like flows of time.

Let h : Z — P be a temporal assignment over the integers so that the semantics

of NP over the integers is the usual for atoms and boolean operators and

(Z,<,h),t = DA iff (Z,<.h),t+1]=A
(Z,<,h),t = @A iff (Z,<.h),i—1]A

An axiomatisation for NP/Z is given by the classical tautologies plus

NP1 Cep—p
NP2 O-p=-0Op
NP3 O(pAq)—0OpAOq

NP4 The mirror image of NP1-3 obtained by interchanging O with @

The rules of inference are the usual Substitution, Modus Ponens and Temporal
Generalisation (from A infer OA and @ A).

The converse of each axiom can be straightforwardly derived, so the formulae
on both sides of the —-connective are actually equivalent. It follows that every
NP-formula can be transformed into an equivalent one by “pushing in” the tem-
poral operators, e.g. by following the arrows the axioms, and by “cancelling” the
alent to @p; the resulting NP-normal form formula is a boolean combination of
formulae of the form O"p and @'¢, where p and ¢ are atoms, k,I € N and O is a
sequence of O-symbols of size k, similarly for il; it is useful sometimes to consider
k negative or 0, so we define C_)_kA = ikA and O'A = A. As an example, the
formula OO (@ @ ®(pAq)Vp) has normal form (@pA@¢)VOOp. The existence of
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such normal form gives us very simple proofs for completeness and decidability of
NP/Z that we outline next.

For completeness, let ¥ be a possibly infinite consistent set of NP-formulae and
assume all formulae in the set is in the normal form. ¥ can be seen as a consistent
set of propositional formulae where each maximal subformulae of the form C_)kp
is understood as a new propositional atom, so let hg be a propositional valuation
assigning every extended atom into {true, false}. Forn € 7, let h(n) = {p € P |
ho(O"p) = true}. Clearly (Z, <, h) is a model for the original set.

For decidability, let A be a formula of NP and let A* be its normal form; clearly
there exists an algorithm to transform A into A*. By considering subformulae of the
form C_)kp as new atoms, k possibly negative, we apply any decision procedure for

propositional logic to A*. A is a NP-valid formula iff A* is a propositional tautology.

Definition 3.6 The restricted interlacing of temporal logic systems US/K and
NP/Z is the two-dimensional temporal logic system US x NP given by:

o the fully combined language of US and NP;

o the two-dimensional plane model over K x Z, equipped with the broadly two-

dimensional semantics;

e the union of the axioms of US/K and NP/Z plus the interlacing axioms

@]

U(p,q¢)—U(Op, Og)
S(p,¢)—S(Op, Oq)

@]

plus their duals obtained by swapping O with @; the inference rules are just

the union of the inference rules of both component systems. d
The following gives us a normal form for US x NP.

Lemma 3.6 Let A be a formula of US x NP. There exists a normal form formula
A* equivalent to A, such that all the occurrences of O and @ in it are in the form

O"p and @'q, where p and q are atoms.
The proof is in Appendix B, Lemma B.1.

Theorem 3.5 (Completeness via restricted interlacing) Let US be a logic
system complete over the class K C Ky;,,. Then the two-dimensional system US x NP

is complete over K x Z.
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Proof Consider a US x NP-consistent formula A and assume it is in the normal
form. So we can see A as a US-formulae over the extended set of atoms C_)k, k possibly
negative or 0. From the completeness of US/K there exist a one-dimensional model
(T, <, hus) for A at a point o € T', where (T, <) € K. Define the two-dimensional

assignment
hik,t) = {p € P| 0" € hus(t)}.

Clearly, (T, <,Z, <z, h) is a two-dimensional plane USxNP-model for A at (0,0). O

Corollary 3.1 If US/K is strongly complete, so is US x NP/ K x Z.

Theorem 3.6 (Decidability via restricted interlacing) If the logic system US
is decidable over K, so is USXNP over K xZ.

Proof The argument of the proof is the same as that of the decidability of NP, all
we have to do is note that there exists an algorithmic way to convert a combined
two-dimensional formula into its normal form, so it can be seen as a US-formula and

we can apply the US-decision procedure to it. d

So by restricting the expressivity and the underlying class of flows of time, we
can obtain the transference of the basic logical properties via restricted interlacing.
It should not be difficult to extend these results to N instead of Z, although we do
not explore this possibility here.

3.5 The Two-dimensional Diagonal

We now study some properties of the diagonal in two-dimensional plane models. The
diagonal is a privileged line in the two-dimensional model intended to represent the
sequence of time points we call “now”, i.e. the time points on which an historical
observer is expected to be traverse . The observer is, therefore, on the diagonal
when he or she poses a query (i.e. evaluates the truth value of a formula) on a
two-dimensional model. The diagonal is illustrated in Figure 3.4

So let ¢ be a special atom and consider the formulae:

D1 $6ADS
D2 §—(G-6ANH=NG-6NH=S)
D3 §—(HG-6AGH=6)



3.5 The Two-dimensional Diagonal 79

Ps

(T, <)

Figure 3.4 The two-dimensional diagonal

Let Diag = OO(D1AD2AD3). The intuition behind Diag is the following. D1
implies that the two-dimensional diagonal can always be reached in both vertical
and horizontal directions; D2 implies that there are no two diagonal points on the
same horizontal line and on the same vertical line and D3 implies that the diagonal
goes in the direction SW-NE. We say that Diag characterises a two-dimensional

diagonal in the following sense.

Lemma 3.7 Let M = (T, <,T, <,g) be a full two-dimensional model over KxK,
K,K C Kiin, and let § be a propositional letter. Then the following are equivalent.

(a) M,t,z |= Diag, for somet € T and z € T.
(b) M,t,z|= Diag, forallt €T and z €T.
(¢c) There exists an isomorphism i : T — T such that M, t,z |= 6 iff © = i(t).

Proof It is straightforward to show that (a) <= (b) and (¢) = (a); we show
only (b) = (c). So assume that M, ¢,z |= Diag, for all t € T and x € T. Define

i ={(t,x) e TxT | M,t,z |= &},

All we have to show is that ¢ is an isomorphism.

L are functions such that dom(:) = T and dom(:~') = T. Suppose

(t,21),(t,v9) € 7; then M. t, 2y | & and M, t, 25 = 6. By linearity of T,
Ty = To, Ty < Ty O T3 <z, but D2 eliminates the latter two; D1 gives us
that dom(:) = T'. Similarly, the linearity of 7 and D2 gives us that i~! is a
function and D1 gives us that dom(:7!) =T.

N

e ((t) =a iff i7'(x) =1 follows directly from the definition. So i is a bijec-

tion.
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e ; preserves ordering. Suppose t; < ty; by the linearity of 7" we have three

possibilities:

— 1(t1) = i(t2) contradicts ¢ is a bijection.

i(t)

<i(ty) contradicts D3.
i(t1) <i(t2) is the only possible option.

Therefore ¢ is an isomorphism, which proves the result. d

This result shows that by adding D1-D3 to the axiomatisation over Ky;, x Ky, of
Section 3.3 gives us completeness over the class of models of the form (T, <, T, <, ¢),
(T, <) € Kyn. It follows from [Halpern and Shoham 1986], however, that such logic
system is undecidable.

The diagonal is interpreted as the sequence of time points we call “now”. The
diagonal divides the two-dimensional plane in two semi-planes. The semi-plane that
is to the (horizontal) left of the diagonal is “the past”, and the formula F'¢ holds over
all points of this semi- plane. Similarly, the semi-plane that is to the (horizontal)
right of the diagonal is “the future”, and the formula P¢ holds over all points of this
semi-plane. Figure 3.4 puts this fact in evidence. If we assume that Diag holds over

M such that ¢ is the isomorphism defined in Lemma 3.7, t < s iff ¢(¢) <i(s), then

M t,x = Féiff exists s > ¢ such that M, s,z =6 and i(s) =«
iff exists y = ¢(¢) <a such that M, t,y E 6
iff M.tz = Pé.

Similarly, it can be shown that:
Mtz = Péiff Mtz =16,

It follows that the following formula is valid for USxUS over Ky, x Kiin:
Diag—( (F§—P8) A (P§—F6)).

As a consequence, P holds over all points of the “past” semi-plane and I holds
over all points of the “future” semi-plane, as is indicated in Figure 3.4.

It would be desirable to generalise the idea of a diagonal as the sequence of “now”
moments to any pair of flows of time that are not necessarily isomorphic. For that,
we would have to create an order between the points of the two flows, i.e. we would
have to merge the flows.

So let (T, <) and (T, <) be two flows of time such that 7" and T are disjoint.
Then there always exists a flow (77, <) and a mapping f: T UT — T’ such that f



3.5 The Two-dimensional Diagonal 81

is one-to-one and order preserving. The f-merge of (T, <) and (T, <) is the flow
of time consisting of the image of f ordered by the restriction of <’ to the image of
f. An example of an f-merge is shown in Figure 3.5, where f(y) is made equal, via
merge, to f(z) and on the merged flow the order is preserved, i.e. originally « < y

and £ <y and on the f-merged flow f(x) <" f(y) = f(z) <’ f(y).

(r.<) 7 Y (T,<)

—+ 8
4

Figure 3.5 The f-merge

We can then construct a two dimensional model with two copies of the f-merge,

in which we can define a diagonal over (7", <")x(T’,<’) as shown in Figure 3.6.

(T, 3) (1", <") 6

(T, <) (T, <"

Figure 3.6 The diagonal of two distinct flows

This construction motivates a method of combining two one-dimensional tem-
poral logics into another one-dimensional logic, namely that over the class of all
f-merges of its two-component flows of time. We could then study the transtfer-
ence of logical properties in the same way as we have done in this and the previous

chapter, but we do not investigate those matters here.
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Chapter 4
Temporal Database Updates

In this chapter we set the temporal database framework in which the past, the
present and even the future can be changed. For that, we follow [Chomicki and
Niwiniski 1993] by defining the notion of a temporal database as a model of first-
order temporal logic (FOTL); the notion of a temporal query is defined on such a
framework.

That framework, however, contrasts with the presentation so far of propositional
temporal logics. To bring us back to a propositional framework, we consider the
propositional abstraction of temporal databases, which then allows us to apply the
full propositional two-dimensional model for the description of temporal database
evolution and helps us to characterise the class of acceptable temporal database
updates.

The two-dimensional description of temporal database evolution presented here
restricts the generic view of combinations of linear temporal logics, concentrating
basically on discrete flows of time.

We compare the two temporal database notions of valid-time database and
transaction-time database in the light of their two-dimensional evolution, provid-
ing a formal characterisation of the differences between those two kinds of temporal

databases.

4.1 A Logical View of Temporal Databases

We give here a formal presentation of temporal databases in a temporal logic per-
spective. For that, we start by analysing the language and semantics of first-order
temporal logic, FOTL, over a finite signature. Finiteness is an important property

to be taken into account in the database presentation, for databases are supposed

83
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to be finite repositories of information. That will motivate us to define temporal

queries as the restricted class of safe FOTL-formulae.

The Language

We consider a first-order language, without function symbols but including equality,
fully combined with a US-temporal logic over the integers; throughout this chapter
and the next one, we restrict ourselves to discrete, integer-like flows of time.

A database signature is a pair § = (S¢,Sp), where S¢ is a countable set of
constant symbols and Sp is a set of predicate symbols, such that each predicate
symbol is associated with an arity » > 1; the signature is finite if Sp is finite.
Let V' be a countably infinite set of variables; a term is either a constant or a
variable (functional symbols are normally absent from databases); we consider the
existential quantifier, 4, as primitive and syntactically define the universal quantifier
as YV = —d-; for reasons that will become clear when we discuss the safeness of
queries, we will consider both A and V boolean connectives as primitive. The atomic
formulae of FOTL are of the form a; = as and p(as,...,a,), where a;’s are terms
and p is a predicate symbol of arity r. The set of free variables of a formula A
is represented by free(A). The language of FOTL over the signature (S¢, Sp) is
defined as:

e every atomic formulais in it, the set of variables occurring in an atomic formula

are all free;

o if A, B are in it, so are = A, AAB, and AV B, with free variables, respectively,
free(A), free(A)U free(B) and free(A)U free(B);

e if A, B are in it, so are U(A, B) and S(A, B), with free variables free(A) U
free(B);

o if Aisinit,sois JxA, with free variables free(A) — {x}.

We write A(xq,...,2,) to indicate that a1,..., 2, are all the free variables of A.
A formula is ground if it contains no variables nor quantifiers. We consider also the
usual syntactical definitions of other temporal operators as O, F' and H in terms of
S and U. We also say that a subformula (or, for that matter, any symbol) occurs
positively in a formula if it occurs within the scope of an even number of = symbols;

it occurs negatively if it occurs within the scope of an odd number of = symbols.

Example 4.1 Consider the following finite signature & = (S¢, Sp):



4.1 A Logical View of Temporal Databases 85

Sc = {strings of characters}

Sp = {employee}

where employee( Name, Salary, Department)is a three place predicate symbol. The

following are well formed formulae over this signature:

employee(Peter, 2K, Marketing);

®cmployee(x, 2K, Marketing) A—(x = Peter);
P3y3zemployee(x,y,z) A =3Iy 3z employee(x, y1, 21);
P employee(x,y, R&D) V employee(x,y, R&D).

The first formula is atomic with no free variables, x is free in the second and third
ones and x,y are free in the last one. In the third formula, the predicate symbol

employee occurs both positively and negatively. d

The Semantics

A first-order finite structure over the signature (S¢,Sp) is a pair (D, ), where D is
a countably infinite set, called the domain, and [ is a finite interpretation consisting
of an interpretation of constants, I(c) € D, and a finite interpretation of predicate
symbols, I(p) € D", where r is the arity of p.

A temporal database D is a model structure obtained through the temporalisation
of first-order finite structures with respect to the flow (Z, <), i.e. the triple D =
(7,<,g), where ¢ associates every time point ¢ € Z to a first-order structure ¢(t) =
(Dy, It); we further require that D respects the additional conditions of constant
domains and rigid constants, i.e. for every t,s € Z and ¢ € S¢ it must always be

the case that:
Di=D, =D and
Ii(c) = I(c)

where the set D is called the domain of the database; only the interpretation of
predicate symbols is flexible, i.e. may vary from one time point to another. Note
that the symbol “=" is not a database predicate, for it is an infinite relation and it
has a rigid interpretation over time. It is usual and very convenient for databases to
consider D = 8¢, such that [ is the identity over constants. Unless otherwise stated,
we will assume such a simplification, known as the Herbrand interpretation [Lloyd
1987].

A (global) variable assignment v is a mapping that associates every variable

z € V to a domain value v(x) € D; the assignment is time independent, so the
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variables are treated as global with respect to time. An assignment o’ is an x-
variant of a assignment v if they agree on the values of all variables in V' except,
possibly, on the value of .

Solet D = (Z, <, g) be a temporal database and let v be an assignment. To define
the semantics of the formulae of FOTL, it is convenient to extend the assignment
over all terms by making v(c) = I(c) for ¢ € S = D. We define a formula A to
be true in D at time ¢ under assignment v, writing D, v,t = A, by induction on the

structure of formulae.

D,v,t Eplay,...,a,) iff (v(ar),...,v(a,)) € L(p).

D,v,t E-A iff it is not the case that D,v,t E A.
D,v,t |E ANB ift D,v,t = A and D,v,t = B.
D,v,t |E AVB ift D,v,t = Aor D,v,t EB.

D,v,t E S(A,B) iff there exists an s € T with s < ¢ and
D,v,s = A and for every u € T, when-
ever s < u < t then D,v,u = B.

D,v,t EU(A,B) iff there exists an s € T with { < s and
D,v,s = A and for every u € T, when-
ever t < u < s then D,v,u = B.

D,v,t = JzA iff there exists a v’ x-variant of v such that

D't E A

A temporal database is temporally bounded if there are time points t,,,, and
tmin such that, for all s < t,,;, and u > t,,4,, it is the case that g(s) = g(tmin)
and g(u) = ¢(tmaz). In other words, all the atomic predicates have their truth
value “persisting” to the past before t,,;, and to the future after ¢,,,,. We consider
databases to be temporally bounded for the rest of this presentation; this is the first
step in trying to guarantee that queries posed to the database will always have finite

answers.

Example 4.2 Consider a database D over the signature of Example 4.1. The count-
ably infinite domain D = S¢ of the database is the set of finite strings built of letters,
digits and the symbols ‘&’ and ‘_’. We take the integer-like flow of time to be that
of months, {..., Jan92, Feb92, Mar92,...}. The (rigid) interpretation of constants
is given by I(¢) = ¢. Let I,(employee) be given by

o (Peter IK R&D) € Li(employee) iff  Jan90 <t < Dec92

o (Peter 2K Marketing) € I;(employee) iff Jan93 <t < Apr93
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e (Paul 1K R&D) € I(employee) iff Jan90 <t < Dec92
e (Mary 3K Finance) € Ii(employee) iff Sep9l <t < Apr93
e nothing else is in I;(employee)

Note that we have t,,;,, = Dec89 and t,,,, = May93. If we consider a variable
assignment v such that v(x) = Peter and v(y) = 1K, then

D, v, Apr93 = PIy3dz employee(x,y,z) A =Jy13z employee(x, y1, z1)
for Peter is currently an employee, but
D,v, Apr93 = P employee(x,y, R&D) V employee(x,y, R&D).

for Peter was an employee of the R&D department with salary 1K between Jan90
and Dec92. a

Data Representation

In non-temporal databases, the issue of data representation never arises because it is
an obvious one. But as pointed out by [Kabanza, Stevenne and Wolper 1990], there
are uncountably many possible temporal databases and we are therefore limited to
finitely representing just a few among those.

Note that we have already limited ourselves the countable class of temporally
bounded databases. Temporal data (i.e. the coding of FOTL models) will be repre-
sented by temporally labelled formulae of the form [ : ¢, where [ is a temporal label
and ¢ is an atomic formula. There are several equivalent possibilities for the choice
of temporal labels, and two distinct representations will be described here, namely
temporal intervals and restricted monadic formulae. For the first case, let tg,1; € Z

be integer constants; the temporal label [ can be the union of intervals of either form

[to,tl] with to S tl
[tov —I_OO)

(—o0, to]

where, for any t € 7, —oco < t < +o0. Examples of temporally labelled formulae
are (—oo, —3]U[7,23]U[72,400) : p1(a1) and [5,5] : pa(b1, by); note that single point
intervals, [to, o], are legal labels. Intervals are always closed unless one of the end

points i1s —oo or +o0.
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Although temporally labelled formulae use the notation of Labelled Deductive
Systems (LDS) of [Gabbay 1991a], they are actually representing partial models'; a

temporally labelled formula [ : p(ay,...,a,) represents that
(a1,...,a,) € Ii(p) for t € .

An alternative choice of labels would be to use monadic formulae built from

atoms of the form
t=1goril<igoriy<t

using only the connectives A and V, such that ¢ty € Z is any constant and ¢ is the
unique variable in the formula and ranges over Z; note that there are no quantifiers
in the label. The label (#p <t < t1) can be used as the obvious abbreviation of
t =1V(ty < tAt < t1)Vt = t;. The temporally labelled formula {(¢) : p(aq,...,a,)

represents that
(a1,...,a,) € Li(p) for t satisfying [(t) over Z.

to : ¢ is used as an obvious abbreviation for [tg, o] : ¢ and ¢ = 14 : q.
Given a finite database representation, ¢.e. a finite set of temporally labelled
formula, it is assumed that the union of the represented partial models constitutes

a (total) model; this is a model theoretic counterpart of the syntactic notion of the

Closed World Assumption [Reiter 1984].

Example 4.3 The database of example 4.2 is represented by
o (Jan90 <t < Dec92) : employee(Peter, 1K, R&D)
o (Jan93 <t < Apr93) : employee(Peter, 2K, Marketing)
o (Jan90 <t < Dec92) : employee(Paul, 1K, R&D)
o (Sep9l <t < Apr93) : employee(Mary, 3K, Finance)

O

Hor partial models, it is perhaps more intuitive to think in terms of the equivalent definition of

predicate interpretation, / : Sp — D" x 27
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Observation

In the temporal database literature, it is common to find the temporal relations
restricted to a temporal normal form (TNF) [Navathe and Ahmed 1988]. This
normal form assumes that there are no two tuples in a relation with identical key
attribute(s) associated to overlapping intervals. For example, suppose that #; <
ty < t3 < ty; then the following representation would be violating the TNF, even if
1ty = t3:

In the presentation of the subsequent examples, as in the previous ones, this
normal form will be obeyed, although none of our results actually depends on the
existence of the TNF. It should not be difficult to see that non-TNF representations
can be brought to an equivalent TNF one, e.g. in the example above (t; <t <t4) : ¢

is a TNF representation of the same temporal relation.

Queries

The fact that we want the result of queries to be finite relations forces us to restrict
the format of the formulae that are acceptable as queries. For that, let us first
define the notion of a relevant domain element. An element d in the domain D is
relevant to a predicate symbol p € Sp if it occurs in I(p), for some t € Z; d is
relevant to a formula A if it is a constant occurring in A or it is relevant to some
predicate symbol occurring in A; let Rp C D be the set of all elements relevant to
the predicate symbols in the database signature, which clearly is a finite set.

A domain independent formula A(xq,...,x,) is one whose interpretation gener-
ates a finite n-place relation containing only domain elements that are relevant to
it, i.e. for every time ¢ the set of tuples of domain elements (v(x1),...,v(x,)) such
that D,v,t = A(x1,...,2,), is finite and contains only elements that are relevant
to A(x1,...,x,). Ideally, an acceptable query should be a domain independent for-
mula, but unfortunately it is an undecidable problem to tell whether a formula is
domain independent [Ullman 1988]. Thus we syntactically define the class of safe
formulae below as an alternative sufficient condition to obtain domain independence.
The basic idea behind safeness is that of “limiting” all free variables that appear in
disjunctions, negations and temporal subformulae.

For disjunctions AV B, it is simply required that A and B share the same free
variables, for if we have the non-safe formula A(z)VB(y) such that A(z) holds
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for some domain element xq € D, there are infinitely many pairs (zo,d), d € D,
satisfying the query.

For negations, the idea of limiting a variable is similar to that of range restricted
clauses in logic programming [Lloyd 1987]. Basically, all free variables inside a
negation are required to occur positively outside the negation. For example, the
formula = A(x, y) is not safe, but in = A(z, y)AB(2)AC(y) the free variable of negated
A are limited due to their positive occurrence in B and C'.

An extra safeness problem occurs with temporal formulae: the temporal formula
S(A(z), B(y)) is not safe, because if A(x) is true at the previous moment for some
xo € D, there are infinitely many pairs (zo,d), d € D, satisfying the formula; the
formula S(A(z)AB(y), B(y))?, however, does not present that problem and it is
considered safe; that is how the semantics of the S operator is defined in the US-
based temporal algebra in [Gabbay and McBrien 1991] in terms of the semantics we
present here. In general, for temporal formulae of the form S(A, B) and U(A, B) to
be safe it is required that:

(a) free variables that are limited inside A, are also considered limited in S(A, B)
and U(A, B);

(b) all free variables occurring in B have to be limited outside B.

The variable y is not limited outside B(y) in the non-safe formula S(A(x), B(y)),
but it is limited in safe formulae as S(A(x)AB(y), B(y)) and S(A(x), B(y))AC(y).

We follow Ullman’s [1988] formal presentation of safe formulae for non-temporal
databases; further discussions on safeness can be found in [Zaniolo 1986; Ramakrish-
nan, Bancilhon and Silberschatz 1987]. But, before we present the formal definition,
just a small remark: a subformula X is a maximal conjunction in a formula A if
X is a subformula that is not part of a conjunction. For example, in the formula
(7(AABAC)VS(A, B))AE there are six maximal conjunction subformulae, namely
ANBAC, =(AANBAC), S(A, B), A, B and the whole formula.

Definition 4.1 Safe queries A formula is safe when:

(a) If it contains a subformula that is the disjunction of B; and B, then
By and B; share the same free variables, ¢.e. the subformula is of the form
Bl(l'l, ceey $n)\/B2(l’1, ceey l’n)

%this is equivalent to define the semantics of S(A, B) as
D,v,t = S(A,B)iff 3s <t and D,v,s |E A and Vu, s < u <t implies D, v, u = B.
and similarly for U(A, B).
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(b) If it contains a subformula that is a maximal conjunction BiA ... AB,,, then
all the free variables appearing in the B;’s must be limited in the following

sense.

e a variable is limited if it occurs in some B;, where B; is not an equality

nor is it negated nor temporal;
o if B;is of the form & = ¢ or ¢ = x, where ¢ is a constant, then x is limited;

o if B; is of the form # = y or y = x, where y is a limited variable, then x
is limited;
e if B, is of the form S(A, C') or U(A, C), then, recursively, all free variables

that are limited in A are limited in B;.

(c¢) It contains a subformula of the form = B(x1,...,2;) only in the terms of
(b), i.e. =" B(x1,...,x;) must be part of a conjunction or temporal formula

such that all z; are limited.

(d) It contains a subformula of the form S(A, B) or U(A, B) only in the terms
of (b), i.e. S(A, B) or U(A, B) must be part of a maximal conjunction such

that all the free variables are limited.

A (safe) query @ is then represented by @ = {x1,...,2m;t | A(x1,...,2m)},
where A(xq,...,2,) is a safe formula with free variables w1,...,2,,; the snapshot
relation generated by the query Q@ on the database D is {(v(x1),...,v(x,)) | there
exists v such that D,v,t |= A(xy,...,2,)}; each tuple in the generated relation is
said to satisfy the query @) at time . A temporal query is domain independent if,

for every t € 7, it generates only finite snapshot relations. d

If we want queries to retrieve times as well, we can define the temporal relation
generated by a query Q@ = {@1,..., 2, | A(x1,...,2,)} as the set of labelled tuples
to : (v(xy),...,v(xn)), to € Z, such that there exists v, D,v,tg |E A(zy,...,2m)>
If the database is time bounded and a query is domain independent it follows that
the full temporal relation it generates can be finitely represented with the labelled

tuples of the format previously described.

Proposition 4.1 Safe queries are domain independent.

3Note that in our query language there is no reference to time points, so in order to take
advantadge of full temporal relations it would be necessary to introduce time referrences in the
temporal operators language, as it was done in the TEMPORA ERL-language [McBrien et al. 1991].



92 Temporal Database Updates

Proof We know from [Ullman 1988] that every non-temporal subformulae with
limited variables generate only finite relations over relevant domain elements, and
so do safe disjunctions, thus this is the case for any time ¢; in fact, this may be
derived from Codd’s original result on the equivalence of the (finitely based) rela-
tional algebra and the relational calculus [Codd 1970; 1972]. With regards to safe
temporal subformulae of the form S(A, B) and U(A, B), A can only generate fi-
nite relations over relevant domain elements at any time ¢, and B has all its free
variables limited; since the database is temporally bounded, only finitely many tu-
ples of domain elements (corresponding to the free variables) can satisfy S(A, B)
and U(A, B) at every time point. So temporal subformulae can only generate finite
snapshot relations over relevant domain elements and safe temporal formulae are

domain independent. d

Note that we may have non-safe queries that are domain independent. For

instance, the formula
A, g, 2)A~(F Bz, y VC(y, 2)

is non-safe, but it generates only finite relations over Rp on databases because it is

logically equivalent to the safe formula
Az, y, 2)AFB(z,y)A~C(y, 2).

In fact, the temporal formula G A(x), defined as =S(—A(x), T), is not safe, but it is
equivalent over 7 to the safe formula O(A(x)AGA(x)).

Example 4.4 In the database of Example 4.2, if we want to know the names of

employees that were sacked in the past, as of Apr93, we can pose the following safe

query
{x; Apr93 | P3y3z employee(x,y,z) A =FwIvemployee(x,w,v)}

which generates the one-place unary relation {(Paul)}. If we want to know the
name and salaries of employees that have ever worked in the R&D department, as

of Apr93, we pose the following safe query to the database
{x,y; Apr93 | P employee(x,y, R&D) V employee(x,y, R&D)}

which generates the relation {(Peter 1K), (Paul 1K)}. O
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A brief comment on complexity issues is made here. Even though a logic is
undecidable, it can still be used to efficiently compute safe queries. For example,
first-order logic is undecidable but safe first-order queries are computed in polyno-
mial time. Full first-order temporal logic cannot even be finitely axiomatised over
7, but safe temporal queries can be computed in polynomial time too; see [Gabbay
and McBrien 1991; Tuzhilin and Clifford 1990; McBrien 1992]. In this work, the
two-dimensional temporal model will not be considered for the purposes of query
evaluation; the results of the previous chapters will show their usefulness in the

discussion on database updates.

4.2 Propositional Abstractions

The first-order approach of the previous section differs from the propositional treat-
ment of temporal features in the previous chapters. To reconcile these two different
approaches this section presents a propositional abstraction of database queries.
Let D be the database domain and let Ep C D be the finite set of domain
elements that are relevant to the predicate symbols in the database signature Sp.
We define the propositional signature P abstracting from S as consisting of the

following propositional atoms:
o [a = b], for each a,b € D;
o [p(ai,..., a4 )], for each p € Sp and each a; € D.

[t is no coincidence that we choose first-order [J-enclosed atoms to represent
propositions; the first item above allows us to equate two constant symbols, a con-
stant symbol with a domain element, and two domain elements (this latter equality
when relating to two distinct domain elements will actually generate propositions
that are always false, in the same way that equating two identical symbols will gener-
ate propositions that are always true); the second item above generates a proposition
for each possible ground predicate. The generalisation of this notation will give us
a propositional abstraction of FOTL-formulae. If v is an assignment, let BY be a
v-grounded formula obtained by substituting every free variable = occurring in B by
v(x). For every safe FOTL-formula A, we define its propositional abstraction with
respect to v by taking B = A" and generalising the above propositional notation

over v-grounded formulae, denoted by [B], where:

o [-B] =~[BI;
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[B1AB:] = [BiA[Ba];

[5(B1, B:)] = S([B1], [Ba]);

[U(By, By)] = U([B1], [ B2]);

[BzBl= "\ [B(x\d)].

dERD

where B(z \ d) is the formula obtained by substituting all free occurrences of x in
B by d; the last item above is a well defined propositional formula because Rp is a

finite set.

Definition 4.2 Given a database D = (Z, <, g) over a signature § = (S¢,Sp), we
say that a propositional model M = (Z, <, h) over P abstracts from D if for every
assignment v extended over constant symbols, and every ¢ € 7, it is the case that

for every atomic formula of the form p(as,...,q,),

Ip(as,...,a.)] € h(t) iff (v(ar),...,v(a.)) € Lp);

and for every atomic formula of the form a = b

[a =0] € h(t) iff wv(a)=v(b).

A straightforward induction on the structure of formulae then shows that:
D,v,t E B(ay,...,2,) iff M.t E[B].
The relation generated by the safe formula B(xq,...,2,,) can be expressed as

{{v(x1),...,v(xy)) | there exists v such that
Mt E[Blxi\v(x1),...oxm \ v(zm))]}-

The propositional abstraction as defined above has nothing especially “temporal”
about it, the whole purpose of it being the elimination of variables and quantifiers
from safe formulae. However, it is important for sending us back to the propositional
framework. From now on, we refer to the contents of a database by its propositional
abstraction M; moreover, we can refer to the update of ground atomic information
in a database as the update of propositional atoms. We assume that the countably
infinite domain D of the database remains the same after the update, and so does

the database signature.
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Example 4.5 Consider the database D from Example 4.2 (where Rp C D = S¢);
let v an assignment such that v(x) = Peter and v(y) = 10K ¢ Rp. A few of the
properties of the database propositional abstraction model M = (Z, <, h) are

o [employee(Peter, IK,R&D)] € h(t) iff Jan90 <t < Dec92;

o [employee(Peter,y, R&D)"] & h(t), for every t € Z.

Consider the following safe formula about sacked employees
A(x) = P3y3zemployee(x,y, z) A ~JyIz employee(x,y, z).

and its propositional abstraction under v:

[A(z)'] =P ( \/ \ [employee(Peter,c, d)]]) A

CERD dERD
- ( \ \V [employee(Peter,ec, d)]]) .
CERD dERD
It follows that, for all ¢t € Z, D,v,t = A(x) iff M,t E P[A(x)"]. O

Notation: We may sometimes abuse the notation and represent the proposi-
tional abstraction of a predicate formula by the formula itself. We do this when no

ambiguity is implied, mainly when we refer to atomic formulae with no free variables.

4.3 A Two-dimensional Description of Database

Evolution

In describing the evolution of a temporal database, we have to distinguish the

database evolution from the evolution of the world it describes. The “world”. also

b
called the Universe of Discourse, is understood to be any particular set of objects
in a certain environment that we may wish to describe. The database, in its turn,
contains a description of the world. Conceptually, we have to bear in mind two

distinct types of evolution, as we introduced in [Finger 1992]:

o The evolution of the modelled world is the result of changes in the world that

occur independently of the database.

e A temporal database contains a description of the history of the modelled
world that is also constantly changing due to database updates, generating a

sequence of database states. This evolution of the temporal description does
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not depend only on what is happening at the present; changes in the way
the past is viewed also alter this historical description; moreover, changes
in expectations about the future, if those expectations are recorded in the
database, also generate an alteration of the historical description. This process

is also called historical revision.

These two distinct concepts of evolution are reflected by a distinction between
two kinds of flows of time, whether their time points refer to a moment in the
history of the world, or whether they are associated to a moment in time at which
a historical description is in the database.

Several different names are found in the literature for these two time concepts.
The former is called evaluation time [Kamp 1971; Gabbay, Hodkinson and Reynolds
1994], historical time [Finger 1992], valid time [Snodgrass and Ahn 1985] and event
time [McKenzie and Snodgrass 1991]. The latter time concept is called utterance
time [Kamp 1971], reference time [Gabbay, Hodkinson and Reynolds 1994], trans-
action time [Finger 1992; Snodgrass and Ahn 1985] and belief time [Sripada 1990].
In this presentation we chose to follow a glossary of temporal database concepts
proposed in [Jensen et al. 1992], calling the former valid-time, which is associated
to the horizontal dimension in our two-dimensional model, and calling the latter
transaction-time, which is associated to the vertical dimension.

So we use the two-dimensional plane model to simultaneously cope with the
two notions of time in the description of the evolution of a temporal database, as

illustrated in Figure 4.1.

transaction - ’
" “now

time

it e ~ Ma

database state at =

valid-time

Figure 4.1 Two-dimensional database evolution

Let M = (T,<,T, <,g) be a two-dimensional plane model over K xK; its hor-
izontal projection with respect to the vertical point « € T is the one-dimensional

temporal model
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Mx = (T, <7gx)7

such that, for every propositional atom ¢, time points ¢t € T and x € T,
q €9g-(t) Mt qeg(tx).

It follows that for every horizontal US-formula A and for every t € T and z € T,
M tEA Mt Mtz A

The horizontal projection represents a state of a temporal database. According to
our convention, we have that K = {Z}; and since we are interested in describing the
evolution of database states as a linear and discrete process, we also fix K = {Z}.

Updating temporal databases requires that, besides specifying the atom to be
inserted or deleted, we specify the time where the atom is to be inserted or deleted.
For that reason, it is convenient to use the notation of temporally labelled formulae
to represent the data being inserted and deleted; in most cases, we will restrict our
attention to labelled atoms only. Labelled formulae allow for finite representation
of possibly infinite information, but for update purposes we will consider possibly
infinite sets of restricted labelled formulae of the form tq : ¢, tg € 7Z; eventually,
these sets will be replaced by those representable by finite sets of temporally labelled
formulae as defined in Section 4.1.

An update pair (04,0_) consists of two disjoint sets of restricted labelled atoms,
where 6, is the insertion set and 0_ is the deletion set. We say that an update
pair determines or characterises a database update ©, occurring at transaction time
x € Z if the application of the update function ©, to the database state M, =
(T, <,g:) generates a database state ©,(M,) = (T, <,0,(g,)) satisfying, for every

propositional atom ¢ and every time point to € T,
o if {o:q €04, then g € O,(g,)(to);
o if tg:q€f_, then ¢ € 0.(g.)(to);
e if neither to: ¢ € 04 nor tg: ¢ € 6_, then ¢ € O,(g,)(to) iff ¢ € g.(to).

The first item corresponds to the insertion of atomic information, the second one
corresponds to the deletion of atomic information, and the third one corresponds
to the persistency of the unaffected atoms in the database. Note that only a finite
number of propositional atoms can occur in #; and #_ because there are only finitely

many atoms in the database. The update O, is a database state transformation
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function. An update may be empty (0, = 6_ = @), in which case the transformation
function is just the identity and the database state remains the same.

Let ©, be a database update characterised by the pair (04,0_). It is a bounded
update if there exist ¢',t"” € Z such that for every atom ¢ in 4 (resp. ¢ in 6_),

o forall to >t/ tg:q €0y (resp. to:qe §_)iff t' : g € O (vesp. t': q € 0_);

and
o forall tg<t"ty:q€ b (vesp.to:qef_)iff t":q€ b (vesp. t":q€b_).

A sequence of database updates {(91’}er is said to be bounded if every database
update 0O, is bounded.
We say that a two-dimensional plane model M represents the evolution in time

of a temporal database through the update sequence {(91’}er if, for every = € Z,
®x(M1’) = MgH_l.

Proposition 4.2 Let M be a two-dimensional model representing the evolution a
temporal database through the update sequence {(91’}er with initial time xo, such
that M, ts temporally bounded. Then, for every x > xo, M, is temporally bounded
iff {©:},c7 is bounded.

Proof The two directions of the iff-condition are proved separately.

(<) If O, is a bounded database update, there exists a time ¢’ after which, for
every atom ¢, either its truth value is determined and equal for all times, or its
truth value is not affected by the update; similarly towards the past. Therefore, if
0, is applied to a temporally bound database state it generates another temporally
bounded database state.

(=) Suppose M, and O,(M,) = M, are both temporally bounded. Then
either there is only finite amount of labelled formulae ¢ : ¢ changing its value from
one state to the next, in which case O, is bounded, or there are atoms ¢; such that
their value has changed in finitely many times. In this last case, since both M,
and M1 are temporally bounded, there must be times ¢’ and ¢ after which and

before which, respectively, t : ¢ was always inserted or always deleted. Therefore ©,

is bounded. O

The Proposition above shows us that bounded updates are the kind of update
we want to allow in temporally bounded databases, for which the two-dimensional
models describe the evolution. Bounded updates are easily shown to be finitely
representable by the labelled formulae of Section 4.1, as shown by the following

example.
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Example 4.6 Consider the evolution monthly evolution of the database of Exam-
ple 4.2. Suppose that at Apr93 we decide to retroactively increase Mary’s monthly
salary to 5K for the whole year, which is illustrated in Figure 4.2.

This situation is described by an update © 45,95 = (04, 60_), where

0+ = {[Jan93, Dec93| : employee(Mary, 5K, Finance)}
0_ = {[Jan93, Dec93| : employee(Mary, 3K, Finance)}

Note that we specified the deletion of Mary’s old salary until Dec93; the same effect
would be achieved had we only specified the deletions until Apr93, i.e. the same
horizontal projection would have been generated for Mps,y93. Note also that we
have changed not only the past, but also Mary’s salary at the present, Apr93, and

also its expectation for the future.

transaction A = employee(Mary,3K,Finance)
time B = employee(Mary,5K,Finance)
~now”
Apro3 T A R
Mar93 T A
Feb93 T A
4 _ A
Jan93
| R | | | |
T T T T T T T
Sep .. DecJan Feb Mar Apr  Dec valid time
91 92 93 93 93 93 93

Figure 4.2 Two-dimensional diagram of database evolution
If we wanted to increase Mary’s salary indefinitely to the future, we could have
used the following infinite update © 4,,03 = (64+,0-), where

0, = {[Jan93, +00) : employee(Mary, 5K, Finance)}
0_ = {[Jan93, Dec93| : employee(Mary, 3K, Finance)}

This illustrates the result of Proposition 4.2, where time boundedness is preserved
by this infinite update. d

4.4 Valid-time and Transaction-time Databases

In the previous section we pointed out a conceptual difference between the valid-time

and transaction-time flows of time, and treated them separately but simultaneously
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in the two-dimensional model of the evolution of a temporal database. For that, we
assumed that the database records the valid-time flow of time; however, it need not
be so.

In their taxonomy of time in databases, Snodgrass and Ahn [1985] distinguish
a historical database (called here a valid-time database), a temporal database that
records only valid time, from a rollback database (called here a transaction-time
database), a database that records only transaction time. The temporal data in a
valid-time database is supposed to describe the evolution of the modelled part of
the world that occurs independently from the database; on the other hand, the tem-
poral information associated with any piece of data recorded in a transaction-time
database is generated automatically and is supposed to represent the times when
that information held in the database; therefore, transaction time has no existence
independent from the database. For example, suppose that at (transaction time)
Sep9l the piece of data employee(Mary, 3K, Finance) is inserted in the transaction-
time database; this information will persist for all times ¢, from ¢ starting at Sep91,
until the time that data is deleted from the database. Suppose the deletion happens

at (transaction time) Apr93, so that in the database model we have
[Sep9l, AprI3] : employee(Mary, 3K, Finance).

Note that the temporal information was generated automatically at the times of
insertion and deletion, without the need to externally supply them. If we want
then, at Apr93, to increase Mary’s salary retroactively to the beginning of the year,
we cannot record this fact in the transaction-time database. The transaction-time
database records only a sequence of (non-temporal) database states, attributing to
each state a (transaction) time-stamp, thus allowing us to reconstruct a previous
state but not to modify it.

No present and past query that may be posed to a temporal database can tell
whether it is a valid-time or a transaction-time database. In fact, the query language
and the notion of a correct answer (the generated relation) for a query are exactly
the same in both cases. Even if we do not have in the database any information con-
cerning a time later than the current time, based on the fact that transaction-time
databases record only the present and past states of the database, we cannot guar-
antee that the given temporal database is a transaction-time one, for it is perfectly
legal for a valid-time database to store only data about the present and past.

The difference between valid-time and transaction-time databases lies in their
dynamic behaviour, not in their static query answering. We still consider the state

of any temporal database to be the horizontal projection of a two-dimensional plane



4.4 Valid-time and Transaction-time Databases 101

model with respect to some vertical (hence transaction-time) point. An tt-update
(transaction time update) is a state transformation function ©,, where x is the
current (transaction-) time, determined by the update pair (6,,6_) satisfying the

following conditions.

(a) the formulae of 64 and §_ are of the form y : ¢ where y > x , i.e. there are no
updates in the past;
(b) 2 :q €0y (vresp. x:gef_)iff forall y > x, y:q € 0y (vesp. y : ¢ € 0_);

i.e. updates persist to the future.

We can then use the two-dimensional plane model to describe the evolution of a
transaction-time database so that we may characterise it by the properties of the two-
dimensional plane model that describe its evolution. The basic distinction between
valid-time and transaction-time databases is that in transaction-time databases we
cannot change the past, whereas in the valid-time database any change is allowed.
To characterise this impossibility to change the past, we will have to first characterise
the existence of a “now” in the two-dimensional plane model.

Recall that in Section 3.5 we used a special propositional symbol ¢ to characterise

the “diagonal” of a two-dimensional model M; the formulae

D1 $6ADS
D2 §—(G-6NH=NG-6NH=S)
D3 §—(HG-6ANGH=S)

are valid over a two-dimensional plane model over K x K iff there is an isomorphism
between the horizontal and vertical flows of time. In the case of a model M over
Zix 7, we can take the identity of points over the horizontal and vertical flows of
time as the obvious choice of isomorphism, so that the formula OO(D1AD2AD3)
is valid iff, for all t € 7,

M.t =6

The points where ¢ holds are exactly those where the valid- and transaction-
times coincide, so we use those diagonal points as the ones where “now” holds. The
formula D1AD2AD3 belongs to the fully combined language of US and US, but it
does not belong to the partially interlaced language of USxNP. This problem can
be solved by adopting the formulae

dl1 &6
d2 6—(G-6AH=0)
d3 =006
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that are in the language of USxNP over ZxZ. We define a formula A to hold over a
two-dimensional plane model M = (T, <, T, <, g), which is represented by M = A,
if for every t € T and * € T, M,t,x = A. Then the following result gives us the

desired equivalence; the proof is in Appendix B, Lemma B.2.

Lemma 4.1 Let M be a two-dimensional plane model over ZxZ. Then the formula
D1AD2AD3 holds over M iff d1Ad2Ad3 holds over M.

To characterise the persistence of present data towards the future, we make the

one-dimensional formula
Persist (6Aq)—Gly,

hold over a two-dimensional model M for every literal ¢, where a literal is an atom
or the negation of an atom.

The “no change in the past” feature of transaction-time databases is charac-
terised as the persistence of atomic information of the “now”, i.e. on the diagonal,
towards the vertical future. Therefore, the following formula must hold over two-

dimensional plane models that represent the evolution of a temporal database
Roll ((6VFé)Ag)—Oq,

where ¢ is any literal. Note that the formula above belongs to all languages pre-
viously mentioned. The subformula (6VF¢) represents the fact that we are in the
present or past, so whatever information we have then will persist to the next vertical
moment, when it will certainly be part of the (horizontal, therefore the database’s)
past. By making such a formula hold over the two-dimensional plane model, we
guarantee the persistence of the information about the past in all states of the
database. The following property generalises Roll for a larger class of formulae; the

proof is in Appendix B, Lemma B.3.

Lemma 4.2 [f Roll holds over a two-dimensional M for any literal q, it also holds
over M for any US-formula that does not contain future operators, i.e. does not

contain U and its derived operators.

For the languages resulting from the full combination of US and US.,another
version of Roll is possible, namely if the following holds over a two-dimensional

plane model M for any literal ¢

Roll2 P(§Aq)—q.
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It actually expresses that whatever was true on the diagonal remains true; Roll2
can also be extended over M for any past-present US- formula.
The characterisation of transaction-time databases as “no updates in the past”

is given by the following.

Proposition 4.3 Let M be a two-dimensional model representing the evolution of
a temporal database through the update sequence {(91’}er such that Persist holds
over M. Then the following are equivalent:

(a) every update O, is a tt-update;

(b) Roll holds over M, for the fully combined language of US x US, for the
fully combined language of US x NP.

(¢) Roll2 holds over M, for the fully combined language of US x US.

Proof (a=-b) A tt-update does not update the past, so for t < x, by the semantics
of two-dimensional updates, the atomic information in M at t,¢ persist into the
vertical, transaction-time future. So Roll holds over M.

(b = ¢) We need to consider only ¢t < x. Assume Roll holds over M; a simple
induction on = — ¢ shows that M, ¢,z |E ¢ ifft M,t,1 |= ¢, for any literal ¢. So Roll2
holds over M.

(c = a). Assume that (c¢) holds and suppose that at transaction time x there
was an update in the past time ¢t < x. Without loss of generality, suppose it was
an insertion, so that for some atom ¢, M,{,2 E —¢ and M,t,2 + 1 = ¢. If we
concentrate on the diagonal, if M,#.t |= q then P(gA§)—q fails at (¢,x), and if
M. t,t = —q then P(gA8)—q fails at (¢, z + 1), contradicting (c). O

The formulae Persist, Roll and Roll2 are not axioms in the sense that were
used in the previous chapters. This formulae are actually meta-level constraints on
a two-dimensional model M (in fact, they are even second order, for they require
that some property hold “for all literals”).

It follows that a transaction-time database is one whose evolution is described
by a two-dimensional model M such that Persist and Roll hold over M. The
persistence of information on a transaction-time database is illustrated in Figure 4.3.
It is no coincidence that there is a diagonal symmetry in Figure 4.3, where it can be
seen that a literal ¢ that holds at the diagonal (i.e. at some current time) persists
into the horizontal future in the current database state, and also persists into the
vertical future throughout all the future database states, when it will be part of the

unmodifiable past.
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Figure 4.3 Persistence of atomic data in transaction time databases

A temporal database is a valid-time one if it is possible that a two- dimensional
model describing its evolution does not satisty the three “meta-level” axioms above.
That does not mean that all two- dimensional models describing the evolution of
a valid-time database invalidate all those meta-level axioms, because it is possible
for a valid-time database to behave like a transaction- time one, i.e. the valid-time

database can simulate a transaction-time one.



Chapter 5

Detection of Time Paradoxes in

Temporal Active Databases

In this chapter we show how to create logical links between information associated to
possibly distinct times in history and we discuss the effects that changes in history
may have upon those temporal links.

For the purpose of establishing those links, we extend a valid-time database with
temporal rules, and we provide those rules with an execution semantics; the resulting
combined system is called an active valid-time database.

Besides the execution semantics, we define a declarative valid-time interpretation
of the rules in an active database. We show that, under the execution semantics,
the occurrence of updates at any time may cause an invalidation of the valid-time
interpretation of rules the at some time in the database state, generating a time
paradoxr. In the same way that database updates were interpreted as changes in
history, these time paradoxes are interpreted as the problems of changing history or
how changes in history affect other times.

We classify these time paradoxes and, in order to detect their occurrences, the
notions of temporal and syntactical dependences of a rule are studied. These notions
are then used to develop algorithms that perform the detection of time paradoxes.
All algorithms developed in this chapter are collected and presented in the Ap-
pendix A.

5.1 Active Databases

Valid-time databases as presented in the previous chapter are passive repositories of

data wherein any data is, in principle, updatable; no interaction takes place between
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temporal data to either generate or remove other data, or to execute a program in
the database environment. To allow for this interaction we introduce temporal rules
in the database. The addition of rules to the database does not contradict the
view of the database as a model, for the rules will not be seen as a theory from
which inferences can be drawn, but as a constraints that force the two-dimensional
evolution of the database to occur according to the execution semantics of the rules.
As a consequence, we will be providing the database with logical links whereby the
existence of some data will force the insertion or deletion of some other data.
Temporal rules were first introduced by Gabbay [1987] under the paradigm of
“imperative future”, which was then applied and further developed in several papers
[Barringer et al. 1989; 1991; Loucopoulos et al. 1990; Manning and Torsun 1989; Fin-
ger, McBrien and Owens 1991; Finger, Fisher and Owens 1993]. Gabbay’s temporal

rules were temporal formulae of the form
O(Condition — Action)

where C'ondition is a boolean combination of pure-present and pure-past formulae
and Action is a pure-future formula; the propositional atoms are of two kinds, con-
trollable and environment atoms, such that environment atoms can only appear in
C'ondition but not in Acteon. The intended meaning of such rules is that, whenever
Condition holds against the past and present data in history, Action is executed
imperatively by making it hold in the future in the database; hence the name im-
perative future.

While that semantic interpretation of temporal rules does provide the database
with links between data associated to distinct time points, and despite its intuitive
appeal, the restriction to the format “past and present implies future” has a few
problems.

With respect to the format of Condition, we note that valid-time databases can
also store information about the future, which is then interpreted as an expectation
about what is going to happen. It is reasonable to base the execution of actions not
only on the data recorded about the past and present, but also on the expectations
on the future. For example, if one expects to attend a meeting abroad in a couple
of weeks time, it is reasonable to book flight tickets now, which may indeed be
performed automatically if the information is present in the database; if share prices
are expected to fall, it is reasonable to start selling.

On the other hand, accepting any pure-future formulae as actions brings the
problem of deciding which atomic information is to be inserted in the database and

at which time, a problem due to the existence of indeterminate actions of the form



5.1 Active Databases 107

AVEB and FA. It may also become intractable to decide whether a set of rules
containing such actions is always consistent. Moreover, to confine actions to be
pure-future formulae is too restrictive, for we have the possibility of updating data
associated with any time in an valid-time database.

Besides updating the database, we want to have the ability of starting a program
in the database environment by means of external actions, e.g. the automatic flight
booking may be one of such programs. It is clear that external actions can be
performed only at the current time.

We therefore modify the format of temporal rules to cope with the problems
mentioned above. We distinguish between two kinds of atomic actions. Database
actions are atomic updates represented by negated and non-negated atoms. FEz-
ternal actions are non-negated atoms associated to programs such that, whenever
an atomic external action a is executed, a is inserted at the current time in the
database and its associated program =, is executed in the database environment
(in a first-order database, every external predicate action is associated with a pro-
gram and the predicate arguments are seen as parameters passed to the program;
all variables in an external action atom must be bound to a value at execution
time, so that the propositional abstraction can be extended naturally). For ex-
ample, the formula —employee(Peter, 1K, R&D) is a database deletion action and
employee(Mary, 5K, Finance) is a database insertion action; the formula pay(z,y)
is an external action associated with a program 7 that takes as parameters a person
name, x, and an integer y, and prints a £y payment cheque to z.

Notation: In the following, we represent Both Condition- and Action-parts
of rules as FOTL-formulae, since this is the natural way to express rules in a real
database. This should bring no conflict, for we define the semantics of rule ex-
ecution in terms of their propositional abstraction. Also, we use the meta-level
words Condition and Action to represent first-order formulae or their propositional
abstractions, i.e. we may use “Condition” instead of “[Condition’], for some valu-

ation v”, and similarly with Action.

Definition 5.1 A temporal rule is a formula of the form
Condition(xq,...,¢,) = Action(xq,..., 1)

where C'ondition is any temporal query formula, i.e. a safe formula, with free vari-
ables x1,..., &y, and Action(xq,...,x,,) is a deterministic action, which is defined

as follows in two steps; first define update actions:

e cvery database action is an update action;
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o if A and B are update actions, so are OA, @A and AAB;
then define deterministic action:
e cvery update action and every external action is a deterministic action;

o if A and B are deterministic actions, so is AAB.

O

The double arrow (=) was used instead the single arrow (—) for we are going
to present two semantical interpretations of temporal rules Condition = Action,
namely the execution semantics and the valid-time interpretation of rules. In none
of them = is identical to —. As a consequence, both C'ondition and Action are safe
formulae belonging to the FOTL language defined in Section 4.1, but not the rule
itself.

Note that all free variables occurring in the Action part of the rule must occur
in the C'ondition part. Since Condition is a safe formula, this guarantees that there
will be only a finite number of actions to be executed and all its arguments will then
be bound to a value.

Due to this new format of temporal rule in Definition 5.1, the intuitive notion
of “past and present implies future” does not hold any more over the valid-time
flow; however, it will be recovered over the transaction-time flow of time by the

two-dimensional execution semantics of temporal rules given below.

Definition 5.2 (Execution Semantics) Let M be a two-dimensional model rep-
resenting the evolution of an active valid-time database containing the set of tem-

poral rules:
Condition; = Action;
Consider the finite set
act(t) = {[Action]] | there exists 7, v such that M,t,t = [Condition]]}

of actions fired at the diagonal point . The semantics of rule execution says that if

act(t) is satisfiable, then O(A act(?)) must hold at the next transaction time, i.e.

M, t,t E Condition; implies M, t,t+ 1= Action;
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Note that this semantics is equivalent to reading the temporal rule as the two-
dimensional formula (6ACondition;)—O Action; holding over M, which satisfies
the format “present implies future” over the transaction-time flow. The elements
of act(t) are called executed actions at time t. For every external atomic action in
act(t) its associated program is executed against the database environment. Rules
are always executed at present time, ¢.e. on the diagonal of the two-dimensional
plane; in this sense, those programs will always be executed at some current time.

If the set act(t) is unsatisfiable the situation is undefined. Typically this would
mean that the database transaction that has caused the generation of the invalid
state will be rolled back so as to restore a satisfiable state of the database. Note that
since we have deterministic actions, the unsatisfiability check can be done efficiently.

The treatment of transactions remains outside the scope of this work.

Definition 5.3 (Active Database) An active valid-time database is a valid-time
database enhanced with a finite set of temporal rules such that, if M is a two-
dimensional representation of the evolution of the database, then M satisfies the

execution semantics of Definition 5.2. O

This definition accommodates the view of the database as a model with the
presence of rules as part of the database.

Concerning the ways an active database can interact with its environment, the
presence of rules adds a bidirectionality to that interaction that does not exist in
non-active databases. Both rules and updates have an effect on the evolution of
the database, each taking part as one side of a two-way interaction between the

database and its environment:

e Environment — Database: the environment acts upon the database by up-

dating it.

e Database — Environment: the rules react to the data in the database, chang-

ing the data in it and, possibly, executing a program in the environment.

Example 5.1 Suppose that we add the following rule to the database of Exam-
ple 4.2, so that an employee is to be payed every month the amount corresponding

to the previous month salary,

®cmployee( Person, Salary, Dept) = pay(Person, Salary).
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Action pay(Person, Salary) is associated to a program that prints a cheque of
amount Salary to Person. Suppose we have the following information in the

database at transaction time Apr93
o [Jan90, Dec92] : [employee(Peter, 1K, R&D)]
o [Jan93, Apr93] : [employee(Peter, 2K, Marketing)]
o [Jan90, Dec92] : [employee(Paul, 1K, R&D)]
o [Sep9l, Apr93] : [employee(Mary, 3K, Finance)]

It that information had been monthly added to the database since Jan90, due

to the execution of the rules the following would also be in the database.
o [Feb90, Jan93] : [pay(Peter, 1K)]
o [Feb93, Apr93] : [pay(Peter, 2K)]
o [Feb90, Jan93] : [pay(Paul, 1K)]

o [Oct9l, Apr93] : [pay(Mary, 3K)]

5.2 The Valid-time Interpretation of Rules

Suppose we have in the database only rules of the form “past implies present” and
that the past is never changed by an update so that, once a rule is executed in the
database, both the condition part that holds in the database (we call it the rule’s
support in the database) and the executed action that is consequently recorded in
the database remains forever in the database and is never changed.

In this scenario, one may try to confront the rules of an active valid-time database
against the database state, i.e. testing for the execution of rules at every valid-time
in that state. If one does such a confrontation expecting to find that, at every valid-
time, the support and the recorded actions of a rule must either both hold or fail,
we say one is using a valid-time interpretation of the rules.

In the presence of arbitrary updates in the past or with rules with a more liberal
format, like that we have adopted in the previous section, the valid-time interpre-
tation of rules may not hold. This (perhaps intuitive) static view of rules does not

follow, in the general case, directly from the dynamic semantics of rule execution and
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it may indeed become invalid due to the occurrence of database updates, generating
a time paradox. This section discusses the kinds of time paradoxes that may appear
from the conflict between execution semantics and the valid-time interpretation in
the presence of generic updates.

We can express these ideas more precisely. In a valid-time interpretation of rules
every rule support holding at a database state should imply that its corresponding
action was executed and recorded in the database; furthermore, to avoid actions be-
ing executed without any support, in a kind of “spontaneous generation of actions”,
a recorded action should hold in the database only if accompanied by its correspond-

ing support; that would be equivalent to reading the “=" symbol in rules as “«”

and not simply as “—7. In other words, under the valid-time interpretation, the

rule
Condition = Action

is understood as the formula
O(Condition« Action)

holding over the database state. Such a view is the one originally presented as the
declarative past and imperative future view of a temporal database; there, however,
the issue of updating the past was not raised, so no conflict was generated.

There are several update generated ways of invalidating the declarative valid-
time interpretation of rules, generating a time paradox. Updates, either coming
from the environment or resulting from the execution of an action, can affect both
the support and the record of an executed action of a rule with respect to some past
time ¢, invalidating the valid-time interpretation; such invalidation can occur both
in the case the rule was once executed in the past at ¢ and in the case it was not,
i.e. the support of the rule did not hold at the diagonal point ¢.

The importance of those time paradoxes comes from the fact that they are in-
terpreted as being the problems that arise from changes in history. In the absence
of the temporal links given by temporal rules, no such anomaly could exist. Within
the framework of an active valid-time database we can therefore study the problems
of changing in the past. Next we discuss and classify such time paradoxes. Their

detection in a database is the subject of the remaining sections of this chapter.

5.2.1 Non-supported Actions

After the execution of a rule an update can falsify its support, leaving a recorded

action in a database state in which there is no apparent justification for its existence.
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Under the valid-time interpretation of rules, this is a contradiction, for Action holds
but not Condition.

Formally, let M be a model describing the database evolution; we say that
[Action”] becomes non-supported at transaction time x and valid time ¢ if it was
executed in the past moment ¢ < z, i.e. M,1,t | [Condition’], such that until
transaction time x —1 the support and recorded actions of the rule persist, i.e. for t <
y <ax—1, M t,y E [(ConditionNAction)"], but after an update ©,_1, M, 1,z |=
—[Condition’]A[Action®]. Typically, an update in the past is the cause for the
appearance of a non-supported action in the database, but since the support of a

rule is not restricted to the past only, any update can cause it.

Example 5.2 Consider the temporal active database of Example 5.1, where the
action pay(Mary,3K) was executed from Sep91 until Apr93. Consider the situa-
tion illustrated in Example 4.6 where, at Apr93, Mary’s salary is increased to 5K
retroactively to the beginning of the 1993 year. This would leave the database with
action pay(Mary,3K) non-supported from Feb93 until Apr93. In other words, at
Apr93 there is no longer a justification in the database for having paid Mary only
3K from Feb93 until Apr93. This situation is illustrated in Figure 5.1

4
transaction
time non-supported
_________ G Y A = employee(Mary,3K,Finance)
Apr93 7 A B B = employee(Mary,5K,Finance)
C = pay(Mary,3K)
________ G
Mar93 - A
| | | | | | |
I I I I I I I
Sep . Dec Jan FebMar Apr  Dec valid time
91 92 93 93 93 93 93

Figure 5.1 Non-supported payment

Note that the rule we are dealing with does respect the imperative future format
restriction of “past implies present or future”, but a non-supported actions may still
occur. The only way to avoid such time paradox would be to forbid updates in the

past, transforming the valid-time database into a transaction-time one. d
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5.2.2 Retroactive Actions

An update, mainly one of the past, may leave the database in a state where there
exists support at a past time ¢ for an action to have been executed in the past,
but the action was not executed at ¢. It is obvious that, if an employee is not in
the database, it will not be paid a salary; salaries are only paid to employees that
exist in the database at the time of the payment. But if an update inserts a new
employee retroactively two months in the past, this employee will not have been
paid two months salary because that information was not present at the time of
payment. In this case, the payment of his salary is said to be a retroactive action.
Recall that, according to the semantics of rule execution, rules may only be
executed at time points corresponding to the two-dimensional diagonal, i.e. at the
current time, so no rule can be executed in the past. As a consequence, a retroac-
tively fired rule and its corresponding retroactive action will never be executed.
The retroactive firing of an action can be seen as dual to the appearance of non-
supported action. In the case of non-supported actions, both Condition and Action
are true before the update, but after it C'ondition is falsified and Action still holds;
in the case of retroactive actions, on the other hand, both Condition and Action
are false before the update, yet Condition holds after the update but not Action.
Formally, if M is a model describing the evolution of an active database con-
taining the rule C'ondition = Action, we say that an action or rule is retroactively
fired at valid-time ¢ according to transaction- time @ > ¢ if M, t,t [£ [Condition”]
for some valuation v, so that the rule is not fired and [Action] is not executed,
and this situation persists until transaction time x — 1, i.e. for t < y < o —1,
Mty £ [Condition”] and M, t,y £ [Action’]; but after an update ©,_, at
the database state at transaction-time x, M., 2 = [(ConditionA—=Action)’]. The
formula O(C'ondition«< Action) does not hold over the database state M,.
As in the previous case, an update in the past is typically the cause for its
appearance, however since the support of a rule is not restricted to the past, any

update can in principle cause it.

Example 5.3 Continuing Example 5.2 on Mary’s retroactive salary salary increase
from 3K to 5K, we see that the action pay(Mary,5K) was retroactively fired from
Feb93 until Apr93, i.e. it has a justification in the current state of the database for
not having been executed, but the database state reflects that the execution never

happened. This situation is illustrated in Figure 5.2
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4
transaction
time . .
| ..... D..... | retroactive actions
--------- R 4
Apro3 7 A B A = employee(Mary,3K,Finance)
B = employee(Mary,5K,Finance)
________ o C = pay(Mary,3K)
Mar93 A D = pay(Mary,5K)
| —t—f—F+— |
Sep . Dec Jan FebMar Apr  Dec valid time
91 92 93 93 93 93 93

Figure 5.2 Retroactive firing of payment action

Note that there is no obvious “corrective action” to the time paradox generated
by a retroactively fired action. In Mary’s case, the payment of the outstanding
amount may depend on the company’s policy. The payment may be made through
an extra cheque at the current month, or its value may be added to next month

payment, or it may be converted into shares of the company, etc.

The simple correction of the violation of the valid-time interpretation is no solu-
tion to the time paradox, because, in this case, it would mean adding to the database
the payment of a 5K cheque to Mary, which never occurred, or the deletion of her
new salary, undoing her retroactive increase for the sake of a paradox-free database;
clearly, those are not adequate corrective actions. The situation is not better if we
try to “correct” non-supported actions. The specification of such corrective action, if
done formally so as to be executed automatically, may have to take into account the
dynamic nature of retroactive actions and therefore it would require the expressiv-
ity of two-dimensional temporal logic. We do not explore these “corrective actions”
in this work, concentrating only on the detection of the occurrence of problematic

situations. O

Examples 5.2 and 5.3 show the simultaneous occurrence of non-supported and
retroactive actions due to a modification update. When this happens, we call them
connected actions. Note, however, that there can exist non-supported actions with-
out a connected retroactive one, e.g. the removal of all past records of an employee
leaving all past payments non-supported. There can also exist retroactive actions
without a connected non-supported one, e.g. the retroactive hiring of an employee,

retroactively firing payments that never occurred.
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5.2.3 Rule Violation and Faked Execution

After a rule was triggered and executed at valid time ¢, an update may remove the
recorded actions of the rule, leaving the database in a state that, at ¢, the support
of a rule is in the database but not its corresponding recorded actions. Therefore,
it is said that the execution of the rule was violated.

Let M be a two dimensional model representing the evolution of an active valid-
time database and let C'ondition = Action be a rule in it. We say that there is a

rule violation in M at valid time ¢ and transaction time x if:
Mtz = ConditionA\—ActionAS (6 ACondition, Condition AAction)

It excludes the case where both the recorded actions and the support of a rule are
simultaneously deleted, for then there is no invalidation of the valid-time interpre-
tation.

The dual of rule violation occurs when an update in the past inserts in the
database the recorded actions of a rule that was not fired at that past time, therefore
faking its execution.

We say that a faked execution is introduced in M at valid time ¢ and transaction

time x if :
M.tz = ActionAS (8A=Condition, - Action).

Note that this definition excludes the case where the action was executed, then
a later update removed both its recorded actions and support, and then only the
recorded actions are restored to the database; in this case, the execution is not
considered faked because it actually happened, although it does violate the valid-
time interpretation. The execution is considered faked even if the support of the
rule is simultaneously inserted in the database with its recorded actions, even though
there is no violation of the valid-time interpretation in this case; programs associated
with an external action included in the faked recorded actions will not be executed,
for programs are executed only at a present time (note that it follows from the
definition that ¢t < ), so the execution is still considered faked.

Faked actions are not considered a serious problem that deserves having its
occurrences always detected. In fact, a faked execution may be even part of the
“corrective action” taken in the case of a retroactively fired rule, in which case the

faked action is not seen as a paradox any more.
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5.2.4 Summary

Table 5.1 contains a summary of the possible effects of temporal updates in ac-
tive valid-time databases. The first four rows present the update generated time
paradoxes arising from conflicts between the execution semantics and the valid-time
interpretation of rules. The other three rows present the cases where no invalidation
of the valid-time interpretation occurs, namely when neither support nor recorded
actions of the rule is changed, and when both support and recorded actions are
simultaneously removed from the database, therefore keeping the validity of the
valid-time interpretation.

The fact that an action was executed or not at a certain time ¢ cannot be detected
by looking at the state of a one-dimensional valid-time database. If the support of a
rule is in the database at time ¢ but not its recorded actions, it may either be the case
that it was there at execution time, but an update later removed its recorded actions,
or it may be the case that the support did not hold at ¢, but was later introduced
by an update. The detection of a past execution is, in fact, two-dimensional and

cannot be extracted from the database state.

FExecuted | Support | Recorded Action

Non-supported Action Yes False True
Retroactive Action No True False
Rule Violation Yes True False
Faked Execution No True/False True
No Change Yes True True

No False False
Simultaneous Deletion Yes False False

Table 5.1 Effects of temporal updates in active databases

In the following we concentrate on a method for detecting the occurrence of such

time paradoxes.

5.3 Syntactical and Temporal Dependences

We describe here a method for detecting the appearance of non-supported actions
in the database and we show how this method can be used to detect their connected
retroactive actions. The method produces, as a side effect, a way of detecting rule
violation, but we do not attempt to detect faked executions. The detection of loss of

support is particularly interesting in the case of non-supported external actions, for
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then a program has no justification in the database for its past execution against the
database environment and, since we cannot change the past state of the environment,
those actions are of particular interest for detection. In the following, whenever we
refer to a non-supported or retroactive action, unless otherwise specified, we mean

an external action.

The naive method for detecting loss of support consists of rechecking the database
for rule support of executed actions at every past time point after every update. Of
course, this solution just uses brute force and is computationally very expensive;

therefore it is unacceptable.

The first thing deserving notice is that it is not necessary to check every rule at
every time point in the past if we keep a log of executed rules and their execution
times; we postpone an exact description of this log until later, but note that this
log may increase indefinitely, so we concentrate on the detection of loss of support
in a “recent past”, i.e. we may fix, a priori, the time interval we will be searching

in the past. The log allows us to recheck only the rules that were once executed.

However, even with the log there are still too many checks to be done, for an
update usually does not affect all the data at all times in the database. Ideally, we
should only recheck the support of executed rules whose support was affected by an
update. To deal with this idea of “affected support” we introduce the notions of

syntactic dependence and temporal dependence of a query.

The syntactic dependence of a first-order formula consists of the set of the pred-
icate symbols occuring in the formula. The positive syntactic dependence of a for-
mula is the set of predicate symbols occurring within the scope of an even number
of “=7 symbols; the negative syntactic dependence of a formula is the set of pred-
icate symbols occurring within the scope of an odd number of “=” symbols. The

positive/negative dependences of a rule are those of its C'ondition-part.

The temporal dependences of a formula A at a valid time ¢ consist of sets of
time points at which the truth or falsity of atomic formulae in the database gives
support to the truth of A at ¢ and, as in the syntactical case, there are positive
and negative temporal dependences. It follows that the temporal dependences of
a formula actually depends on the database state, i.e. it relies on the semantics
of the formula. In order to formally define the temporal semantics, we make use
of an extended representation of temporally labelled formulae and we define the
semantics of such labelled formulae where, if ¢ is a time point, d; and d_ are sets of
time points and A is a temporal formula, (¢,d;,d_) : A is a well formed temporally

labelled formula. Let @ be the current time and let M, = (Z, <, h) be a temporal
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model representing the database state at x; the expression
M, E(tdy,do): A

means that the formula A is true in M, at time ¢ with positive temporal dependence
d; and negative temporal dependence d_. Table 5.2 contains the extended definition
of the semantics of temporally labelled formulae with temporal dependences.

Note that M, [ (t,dy,d_) : A does not imply M, = (¢,d;,d_) : ~A; the
former means that A is not true at ¢ with temporal dependences dy and d_, but
it may well be true at ¢ with other sets of dependences; the latter means that = A
is true at ¢ with the dependences d; and d_. Table 5.2 therefore treats separately
each case of negation. Note that it is also possible to have several distinct temporal
dependences for the same formula at the same time, e.g. if s < u < t and ¢ holds
at s and u then both M, | (¢,{s}, @) : Pqg and M, |= (t,{u},d) : Pq. As in the
syntactic case, the positive/negative dependences of a rule at time ¢ are those of its

Condition-part.

Lemma 5.1 There exist temporal dependence sets dy and d_ such that M, =
(t,dy,d_): Aif and only if M,,t E A.

Proof The proof is by induction on Table 5.2; the “if and only if” is part of the
induction hypothesis. For the basic cases, note that p € h(t) iff M, ,t = p iff
M, E (t,{t},2):pand p & h(t) iff M.t |=-piff M, = (¢,9,{t}): —p. The non-
negated cases in Table 5.2 are straightforward to prove and are therefore omitted;
double negation and negation of conjunction are also straightforward and omitted.

The interesting parts of Table 5.2 are those concerning the negation of the tempo-
ral operators over Z. We discuss here the case for the S-operator; for the U-operator

the situation is analogous. Recall the semantics of S(A, B) where it holds at a point

tiff
(a) A holds somewhere to the past of £, at s; and
(b) B holds at all points u between s and ¢.

The negation of the formula S(A, B) is satisfied if either of those cases is not. The
first one is not satisfied if there is no such s at the past where A holds, so H—A holds
at t; by induction hypothesis, M, |= (s,d5,d5 ) : = A for all s <t and by Table 5.2,
M, = (4L, User 4%, Ui d5) - 2S(A, B). The second one fails to hold over an integer-
like flow of time if, going towards the past, we reach =B before we reach A; over

a Z-like flow of time, this means that ~BA—A is satisfied in the past and since
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METT2) 7 T Eh
Ml’ |:(t,@,{t}):—|p iff pght)
M, | (tdy,d): —=A if M, (t,dy,d_): A
M, E(t,dy,d-): ANB iff M, = (t,d,d_): Aand

M, = (tdL,d"): B

where d :d’_l_Ud’_I’_ and d_ =d Ud".
M, = (tdye,d ) : ~(AAB) iff M, = (t,dy,d_): = A or

M, =(t,dy,d-): -B

M, = (t,dy,do): S(A,B) iff there exists s <1, M, |= (s,d,d%) : A, and
for all u, s <u <t, M, |= (u,dy,d"): B,
where dy = U dy and d_ = U d’.
s<u<t s<v<t
Mo = (tdy,do): =2S(A, B) iff forall s <1, M, = (s,d%,d?): -A,
where dy = U dj_ and d_ = U d’;

s<t s<t
or

there exists s <,
M, = (s,d%,d>) : ~BA-A, and
for all u, s <u < t, M, E (s,d%,d"): -A

s U
where dy = U dﬁ_ and d_ = U dv .
s<v<t s<v<t

M, = (t,dy,do) :U(A,B) iff there exists s > 1, M, |= (s,d,d”) : A, and
for all u, t <u < s, M, |= (u,dy,d"): B,
where dy = U dfl‘_ and d_ = U d*.

t<u<s t<u<s

M, = (t,dy,do) : ~U(A, B) iff forall s > 1, M, |=(s,d%,d>): —A
where dy = | Jd5, and d_ = | J d*;

t<s t<s
or

there exists s >,

M, = (s,d,d>) : ~BA-A and

for all u, t <u < s, My = (s,dy,d"): —A
where dy = U dy and d_ = U d’ .

t<v<s t<v<s

Table 5.2 Temporal dependences
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then = A holds, which can be expressed as the formula S(=BA—A, = A) holding at ¢;
therefore, by induction hypothesis, there exists s < t, M, = (s,d5,d% ) : "BA-A,
and for all w, s < u < {, M, |= (s,d},d*) : =A, and by Table 5.2, M, |=
(t, Uscocr 45 Uscuer d2) : mS(A, B). For dense flows of time and for flows that allow
“oaps”!, there are other possibilities to falsify the second case which we need not
take into account here. On the other hand, if M, = (¢,dy,d_) : =S(A, B), then by
Table 5.2 either of the above two cases is unsatisfied, so the induction hypothesis

gives us M, t = =5(A, B). This finishes the proof. O

When there is a generic update in the database, several time points are affected.
Let O, be an update determined by the pair (64,0_). The set of time points
positively affected by the update, Aff(0,), is defined as

Affe(O:)={t[t:q€ b4}

and the set of time points negatively affected by the update, Aff_(0,), as

AFF(@,)={t|t:qe0}.

The support of formulae is preserved after an update under the following case.

Lemma 5.2 For every transaction time x and every valid time t and every formula
A such that M,y = (t,dy,d_) : A, if Affe(Op1)Ndo = Aff-(Op1)Ndy = @
then M, = (t,dy,d-): A

Proof By induction on Table 5.2. For the base cases, if A = ¢ then d; = {t}
and d_ = @; it follows that ¢t : ¢ & 0_, so by update semantics we have M, t E ¢
and M, | (t,dy,d_) 1 q. If A = g then d_ = {t} and dy = @; it follows that
t:q &0, 80 M, |=(t,dy,d_): —g. This finishes the base cases.

For the inductive cases, we only examine the cases involving the temporal opera-
tor S; the other cases are either analogous or straightforward. If M, |= (t,dy,d_) :
S(A, B) then there exists s < ¢, My [= (s,d%,d>) : A, and for all u, s < u < t,
Mooy | (u,dy,dh) o A, where dy = Uy df and d_ = U<y d2. By induction
hypothesis, there exists s < ¢, M, |= (s,d5,d>) : A, and for all u, s < u < {,
My = (u,dy,dv) A so M, = (tdy,d) : S(A, B).

If M,_1 [ (t,dy,d-) : =S(A, B) we have to examine two cases. Suppose for all
s <t, My_y |=(s,d5,d%) - = A, where d} = U, d% and d_ = U, d”; in this case,

by induction hypothesis, for all s <1, M, [= (s,d%,d”> ) : mAand M, |= (t,dy,d_):

LA flow contains a gap if it contains an infinite ascending/descending sequence but does not
contain the least upper/greatest lower bound of such sequence.
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—~S(A, B). For the second case, suppose that there exists s <, M,_y = (s,d5,d?):
=B, and for all u, s <u <t, M,y |= (u,d},d") : =A where dy = U;<pc; d} and
d_ = Us<oct d2. Then, by induction hypothesis, M, |= (s,d5,d”) : =B, and for all
u, s <u<t, My |= (u,dy,d) : =A; it follows that M, |= (t,dy,d_) : ~S(A, B),
which finishes the proof. d

By combining temporal dependences and temporal affectedness we get the fol-

lowing necessary condition for an action to become non-supported.

Theorem 5.1 (Non-supported actions) Let M describe the evolution of an ac-
tive temporal database containing the rule Condition = Action such that M,_1 =
(t,dy,d_) : Condition. A necessary condition for an executed Action to become

non-supported at transaction time x and valid time 1 is

(A f+(O,m) Nd_U[ASf-(Opmr) Nds] # 2

Proof Suppose M,y = (t,d;,d_) : Condition so, by Lemma 5.1, M,_4,1 |
Condition. If we assume that Aff (Q,_1)Nd- = Aff_(0,1)Ndy = @, by
Lemma 5.2 it follows that M, | (f,dy,d_) : Condition and, by Lemma 5.1,
M., t = Condition, which contradicts the fact that Action becomes non-supported

at transaction time x and valid time t. O

A similar result can be obtained for the syntactic dependences on the first-order
view of a database. Let O, be an update determined by (0.,6_). Let Pred(6;)
be the set of predicate symbols whose []J-abstraction occurs in 6, , and similarly for
Pred(0_) with respect to 0_.

Theorem 5.2 (Syntactic Dependencies) Let M describe the evolution of an
active temporal database containing the rule Condition = Action such that sy and
s_ are, respectively, its positive and negative syntactic dependences and M,_1,1 |=
Condition. A necessary condition for an executed Action to become non-supported

at transaction time x and valid time t such that O, ts an update determined by

(04,0_) is
[Pred(0.)Ns_]U[Pred(0-)Nsi] # @

Proof Suppose M,_1,t = Condition’ and M,,t E —Condition’ for some v.
A simple induction on the structure of Condition shows us that [Pred(6y) N s_]U
[Pred(0-)Nsi] # @. For the base cases, if Condition = p(x) then sy = {p} s_ = @,

then Condition can only be falsified if ¢ : [p(x)"] is deleted, so p € Pred(f_). If
Condition = —p(x) then s_ = {p} and s; = @; then Condition can only be
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falsified if ¢ : [p(x)"] is inserted, so p € Pred(f;). The inductive cases are all
straightforwardly proved and we omit the details. d

Since the notion of syntactical dependence is primarily a first-order one, it is
reasonable to ask how the definition of temporal dependences translates from the
propositional abstraction into the first-order case. For that, we combine the defini-
tion of temporal dependences from Table 5.2 and the propositional abstraction from
Section 4.2; recall that Rp is the set of all relevant domain elements of the database
D; furthermore we apply the three-place labels to safe first-order temporal formulae.
The quantifier free cases are basically those of Table 5.2; for the quantified cases we

obtain:

D,v = (t,dy,d-):FJxA  iff there exists v’ an z-variant of v such that
v'(x) € Rp and D, |= (t,dy,d-) : A.
D,v = (t,dy,d-) :=JaA iff for every v” anz-variant of v such that o'(z) €
Rp, D)v' E (t,di(x),dqi/(x)) : = A, where dy =
U di and d_ = U de.

CERD CERD

It follows from the safeness of formula A that both Lemmas 5.1 and 5.2 and
Theorem 5.1 are extended to the first-order case with the definition above comple-
menting Table 5.2. Note that a formula of the form Jx A may have several distinct
temporal dependences.

We now examine the feasibility of computing the temporal dependences during
query evaluation. Table 5.2 can be seen as a reasonable means for actually com-
puting the temporal dependences during a query evaluation; in fact, real databases
containing large tables demand better optimisations to achieve acceptable response
times for queries, but for the sake of showing the feasibility of computing temporal
dependences for quantifier free formulae, we consider Table 5.2 satisfactory; the is-
sue of incorporating the computation of temporal dependences to the optimisation
of queries is outside the scope of this work.

The extension dealing with quantifiers, however, does present us with a compu-
tational problem. Although the positive version of dx A does not pose any problem,
the negative case of =dxrA seems to demand that the temporal dependences for
—A(x) be calculated for each element of Rp, which places a great computational
burden; note that it leads to considering domain elements that are not even relevant
to A. One possible improvement is to consider only the domain elements that are
relevant to A, but this would still place a considerable burden on the system. We

propose here a more straightforward computation of the dependencies in that case;
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such a simplification will not affect the correctness of Algorithm 5.5 for the detection
of non-supported actions.

Consider the labelled formula (¢,d;,d_) : =3z A. The computation of (d,d-)
is done in the following (syntactical) way. We start with dy = d_ = @ and let ¢(x)

represent an atom containing the variable x. Then:

e if there is an atom ¢(x) occurring positively in A, but not within the scope of

any temporal operator, then d_ := {t};

e if there is an atom ¢(x) occurring negatively in A, but not within the scope of

any temporal operator, then d := {t};

e if there is an atom ¢(x) in A occurring positively inside the scope of a past
operator, but not within the scope of any future operator, then d_ := d_U{s |

s <t}

e if there is an atom ¢(x) in A occurring negatively inside the scope of a past
operator, but not within the scope of any future operator, then d; := dy U{s |
s <t}

e if there is an atom ¢(x) in A occurring positively inside the scope of a future
operator, but not within the scope of any past operator, then d_ :=d_ U {s |
s> 1}

e if there is an atom ¢(x) in A occurring negatively inside the scope of a future
operator, but not within the scope of any past operator, then d; :=d; U {s |
s> 1}

e if there is an atom ¢(x) in A occurring positively inside the scope of both a

future and a past operator, then d_ := 7;

e if there is an atom ¢(x) in A occurring negatively inside the scope of both a

future and a past operator, then d; := Z.

This leaves us with the following result.

Proposition 5.1 There is a polynomial time algorithm that calculates the temporal

dependences of a formula against a temporal database state.

We conclude that it is effective to compute the temporal dependences of queries,
which will then allow us to detect some of the time paradoxes described in Sec-

tion 5.2.
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5.4 Detection of Time Paradoxes

The results of the previous section allow us to discuss ways of detecting some of
the time paradoxes arising from the conflicts between the execution semantic of
temporal rules and the valid-time interpretation of rules. We concentrate basically
on the algorithm for the detection of non-supported external actions, i.e. actions
that caused a program to be executed against the environment; eventually other
kinds of time paradoxes will be detectable following this path. The presentation of
the algorithms will be done in a pseudo-programming language. All algorithms are
collected and presented in Appendix A.

We represent the data structures by means of Prolog-style structures, i.e. func-
tional terms of first-order logic. We start by indicating the representation of tem-

poral dependences as a list of pairs of integer numbers

[(s1,€1)s- s (Sn,€n)]

such that, for every 7, 1 < < n, s; and e; are integer numbers, s; < ¢; and s;11 >
¢; + 1. The pairs (s;,¢;) intends to represent the interval {z | s; <« < ¢;} and the
list is supposed to represent the disjoint union of those intervals; eventually, s; may

“*7 where the pair (%, e1) represents the set {z | # < e1}, and similarly

be equal to
e, may be equal to “*” so that (s,,*) represents the set {z | # > s, }. According to
that definition, the list [(*,5),(6,9),(12,12)] is not acceptable as a representation
of temporal dependences because sy = 6 is not greater than e; +1 =5+ 1. If
we coalesce the two initial pairs, generating the list [(*,9),(12,12)], we obtain an
acceptable representation. This process of generating acceptable representations
from generic lists of pairs can be done automatically; a description of such a coalesce
function can be found in [McBrien 1992], together with a description of algorithms
on how to insert or delete time points to this representation of sets of time points.

We assume that every rule in the active database has a unique identification.
This information will be used to indicate which rules will have to be rechecked for
the purpose of confirming its support.

Two-auxiliary tables are defined in the form of prolog predicates. The first table
is a static one, i.e. it can be generated taking as input only the set of rules in the
database and does not depend on the contents of the database at any time. The

table of syntactical dependences has the form:

syntactical dependences(Pred_Name, Pos_dep_list, Neg_dep_list)
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where Pred_Name is the name of a predicate in the database, Pos_dep_list is a list
of rule identifiers such that each correspondent rule has Pred_Name as a positive
syntactical dependency; similarly for Neg_dep_list with respect to negative syntac-
tical dependency. In order to construct such a table we do the following. For each
rule, we construct the parsing tree for its C'ondition-part; predicate names will be
at the leaves of the tree. We then assign either ‘+’ or *-” to every node in the tree in
the following way. The root node receives ‘+’. It a node contains the =-symbol, its
children receive the opposite sign as the node itself received; otherwise, the children
receive the same sign as the father. For each predicate name on a leaf we include
the rule identifier on its list of positive dependences if it is assigned a ‘“+’; otherwise
we include it in the list of negative dependences. Figure 5.3 shows the parsing tree
for the formula Jx3y—(=p(x)A(p(y)Ag(x))), in which p occurs both positively and

negatively, and ¢ occurs negatively.

A

-

/ ) \
N

+: p(x) -: ply) -1 g(w)

Figure 5.3 Parsing tree for Jx3y—(—p(z)A(p(y)Aq(x)))

Pred_Name is supposed to be the key of this table, so there are no two entries
at the table with the same value for Pred_Name. For convenience, we use the
following two functions to access the syntactical_dependences. All algorithms are
presented in an informal pseudo-programming language, in the fashion algorithms
are presented in basic books of relational database theory such as [Maier 1983] and
[Ullman 1988]. An SQL-like notation is used to access the tables.

Algorithm 5.1 Positive syntactical dependences

Input: a predicate name

Output: a list of rule identifiers
POSSYNT(PredName)

BEGIN

Select Pos_dep_list from syntactical_dependences
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where Pred_Name = PredName;
return Pos_dep_list;
END

Algorithm 5.2 Negative syntactical dependences

Input: a predicate name

Output: a list of rule identifiers

NEGSYNT (PredName)

BEGIN

Select Neg_dep_list from syntactical _dependences
where Pred_Name = PredName;

return Neg_dep_list;

END

The second table is a dynamic one, i.e. it is constructed as the database runs,
and contains information about the external actions that were executed in the past
by the system. The table executed.action(Action, Rulead, Parms,Time,dy,d_)

consists of the following:

Action The action name and the parameters passed to the external action at exe-

cution time are stored in the format of a Prolog term, e.g. pay(Peter, 50).
Rule_td The identifier of the rule whose firing caused the action to be executed.

Parms The list of parameters [z,...,2,,] that the condition part of the rule,

Condition(x1,...,2y,), is true of at the time of execution.
Tvme The time at which the action was executed.

dy,d_ Lists representing positive and negative temporal dependences of the rule at

Time.

The insertion of information in the table occurs at execution time. We assume
that the temporal dependences are generated together with the query evaluation
according to the description for first-order formulae in the previous section. The
key for this table is composed of the Action name and parameters, and the Time of
its execution. This table implements the previously cited “log of executed actions”
and it is a substitute for storing all the information about the transaction dimension.

For convenience, we provide two functions to access its table. Both take as

input a rule identifier and a set of time points and both return a set of rows from
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the executed_action table such that, in the first one, the row contains the input
rule identifier and a positive d; intersection with the input set of time points is

non-empty; the second one does a similar thing with respect to d_.

Algorithm 5.3 Positive intersection rows

Input: a rule ID and a list of time points.
Output: a set of rows from exvecuted_action table.
POSROWS (RID, TIMES)
BEGIN
ROWS := &;
For every row of the table given by
Select Action, Rulead, Parms, Time, dy, d_
from executed_action
where RID = Ruleid and d;N TIMES # @
do ROWS := ROWS U{row(Action, Rule_id, Parms,Time,d;,d_)}
END

Algorithm 5.4 Negative intersection rows

Input: a rule ID and a list of time points.
Output: a set of rows from exvecuted_action table.
NEGROWS (RID, TIMES)
BEGIN
ROWS := &;
For every row of the table given by
Select Action, Rulead, Parms, Time, dy, d_
from executed_action
where RID = Ruleid and d_N TIMES # @
do ROWS := ROWS U{row(Action, Rule_id, Parms,Time,d;,d_)}
END

The detection of the appearance of non-supported actions takes as input the
pair (64,0_) that characterise an update. Each set is represented as a finite list of

labelled elements of the form:

times : atom
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where times is a Prolog-style list representing a set of time points as described
previously and atom is a ground atomic predicate in the database. We also assume
there is a function PREDNAME that takes as input an atom and returns its predicate
name, and a function COND that takes as input a rule identifier and returns the
condition part of that rule. We have then the following algorithm to detect the

occurrence of non-supported actions.

Algorithm 5.5 Detection of non-supported actions

Input: wupdate sets #, and 6_.
Output: A set of time-labelled non-supported actions

DETECT NONSUP (6., #_)
BEGIN
NONSUP := O;

/* The first part of the algorithm deals with insertions */
For every times: atom in 6,
BEGIN
For every rule id RID in table NEGSYNT( PREDNAME( atom ) )
BEGIN
For each row(Action,RID, Parms, Time,d,d_)
in NEGROWS( RID, times )
BEGIN
If the query COND( RID ) is unsatisfied by Parms at Time
and Time: Action holds in the database
then
NONSUP := NONSUP U{T'ime: Action};
delete the row from the executed_action table.
/* 0BS */
else if COND( RID ) is satisfied with new temporal
dependences d! # d; or d_ #d_,
then modify the row in the executed_action table
with dependences d’_l_ and d’ .
END
END
END



5.4 Detection of Time Paradoxes 129

/* The second part of the algorithm deals with deletions */
For every times:atom in 6_
BEGIN
For every rule id RID in table POSSYNT( PREDNAME( atom ) )
BEGIN
For each row(Action,RID, Parms, Time,dy,d_)
in POSROWS( RID, times )
BEGIN
If the query COND( RID ) is unsatisfied by Parms at Time
and Time: Action holds in the database
then
NONSUP := NONSUP U{Time : Action};
delete the row from the ewxecuted_action table. /* 0BS */
else if COND( RID ) is satisfied with new temporal
dependences d! # d; or d_ #d_,
then modify the row in the executed_action table
with dependences d/, and d_.
END
END
END
return( NONSUP )
END

The parts of the algorithm with the comments /* 0BS */ will be used later when
we extend it to detect connected retroactive actions. We first prove the correctness

of the algorithm as it is.

Theorem 5.3 (Correctness of Algorithm 5.5) [f an external action becomes

non-supported, Algorithm 5.5 will detect it.

Proof The Algorithm 5.5 selects a (possibly empty) subset of rules to have its
C'ondition-part rechecked. This selection occurs in two stages for both insertion and
deletion. The first stage consists of selecting the rules whose syntactical dependences
are affected by the update; due to Theorem 5.2, no relevant rule is missed out.
With this initial selection as input, a second selection is done based on the temporal

dependences. In the non-quantified case, the correctness of this second selection
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follows directly from Theorem 5.1; the quantified case follows from the discussion
at the end of last section, where we generate a big enough interval for the temporal
dependences. As a consequence, we are guaranteed to recheck every rule that loses
its support after the update.

Obviously, we are assuming here that the tables syntactical dependences and
erecuted_action are generated and maintained correctly as described previously. In
fact, the correct maintenace of the latter affects the correctness of the algorithm, as
we will see next.

When the condition part is rechecked, three possibilities may occur. The first
is that the rule is satisfied with the same temporal dependences as those stored in
executed_action, in which case there is nothing to be done. The second possibility is
when the query is satisfied, but with temporal dependences distinct from those stored
at the table; this corresponds to the fact that the update may change the support of
a rule (i.e. the evaluation of the condition now visits different time points) without
leaving it unsatisfied; Theorem 5.1 uses the value of the temporal dependences just
before the update, not at evaluation time, so in order to use it correctly to select
the set of rules to recheck, we have to update table executed_action with the current
version of dy and d_, which is what the algorithm does. Finally, if the recheck fails
and Ttme : Action still holds then, by definition, Action has become non-supported
at the current transaction time, at the valid time Teme when the rule was executed
in the past. d

A slight alteration to Algorithm 5.5 can do better than just detect non-supported
actions. In the case that the Condition-part of a rule is not satisfied by the param-
eters Parms in the executed_action table, it is possible that it is satisfied by a
different set of parameters that did not satisfy it at the execution time. This char-
acterizes the appearance of a retroactive action connected to the non-supported
action just detected. This, however, does not guarantee that all retroactive actions
are detected, just those connected ones. In order to change Algorithm 5.5 to detect
all the connected retroactive actions, we add to the initialization the variable RETRO
initially set to @ and that is also returned at the end. Then, in the places where

the comment /* 0BS */ occurs in Algorithm 5.5, we add the following piece.

Algorithm 5.6 Detection of connected retroactive actions

/* OBS:A non-supported action was detected at
row(Action,RID, Parms, Time, d;, d_)
*/
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If the query COND( RID ) is satisfied at Time by Parms’ # Parms
and there is no row in table cxeculed_action such that
it contains Action(Parms’), RID, Parms and Time

then
RETRO := RETRO U{Twme : Action(Parms’)}

In the algorithm above, Action(Parms’) represent the action we obtain by suit-
ably substituting the new parameters in Action. We could execute Algorithm 5.6
after every recheck instead, so that we may even find some retroactive actions not
connected to any non-supported action. Although this would generate only correct
answers, i.e. every action detected has been retroactively fired, there are still no
guarantees that all retroactive actions would be detected. The problem of finding
all the retroactive actions comes from the fact that no information is stored about
the rules and parameters that were unsatisfied at execution time. This must clearly
be so, for there are infinitely many ways a rule might be unsatisfied (given a count-
ably infinite domain). Nor can we afford to recheck every rule at every time point in
the past after every update. So the detection of just connected retroactive actions
seems a good compromise.

A complete version of Algorithm 5.5, including two occurences of Algorithm 5.6
and the correct initialization of RETRO, is presented in the Appendix A.

Note that in Algorithm 5.5 the detection of one non-supported action is indepen-
dent of all the others. We may decide that it is worthwhile to apply the detection
just to a certain group of rules and with the same algorithm; that would decrease
the size of both auxiliary tables and consequently the time of rechecking, making
the whole process more efficient. The algorithm will then correctly select the rules
from the restricted set that must be rechecked.

The propagation of loss of support is one issue not discussed yet. Suppose we

have the following rule
® wednesday = wednesday

stating that if seven days ago was wednesday, then today is wednesday again. Sup-
pose we have been executing this rule for several months and the database is popu-
lated with several wednesdays, when we delete the first occurrence of a wednesday.
The second occurrence of a wednesday will become non-supported, but in fact
it is reasonable to expect that all the subsequent wednesdays be pointed as non-
supported through propagation. This corresponds to considering a detected non-

supported action as an automatically deleted action. In this case, it is enough to
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reapply the algorithm above after every automatic deletion to detect, recursively, all
propagated non-supported actions. The deletion of a detected non-supported action
is, however, a “corrective action” to the detection of an time paradox; we have al-
ready decided to leave to a user to decide when and how to apply corrective actions,
and the process of detecting non-supported actions, even propagated ones, should
not change the state of the database. A solution for that would be to fake the dele-
tion of the detected non-supported action during the propagation, i.e. consider the
detection and propagation of loss of support as a database process—a transaction—
that temporarily deletes from the database the detected non-supported action and
call Algorithm 5.5 until it returns an empty set, at which point we have reached
the end of the propagating process and the temporarily deleted information may be
restored. This process may be enriched with the temporary insertion of retroactive
actions eventually detected.

To finalise the detection of time paradoxes, since we have already stated that we
are not interested in detecting faked executions, all we have to do is show how to
detect rule violation. The process is very simple if we restrict ourselves to the detec-
tion of violation of executed external actions, for then we may use the information

stored in table executed_action.

Algorithm 5.7 Detection of rule violation for external actions

Input: wupdate set 6_.
Output: A set of time-labelled actions
DETECT_VIOLATION(H_)
BEGIN
VIOLATE := &
For all t¢:atom in A_ do
If PRED(atom) is an external action and
atom occurs in executed_action(Action, Rule_id, Parms, Time, d;, d_)
with Time =1
and Action = atom
and COND(Rule:d) is satisfied by Parms
then VIOLATE := VIOLATE U{t{: atom};
return(VIOLATE) ;
END

If we assume that the table executed_action contains all executed external ac-

tions, the algorithm clearly detects all rule violations caused by the deletion of an
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executed external action. In practice, it is reasonable to expect neither the database
nor the auxiliary tables to retain all the information about the past, but just that
a “recent” past be kept, while the “distant” past may be periodicaly transferred to
tapes and only brought back to the database for special applications; the definition
of what “recent” means is clearly a database design decision. As long as the auxil-
iary tables used here cover the same period of time towards the past as the database
itself, the algorithms presented in this section will remain correct; this periodical
removal of information from the database into tapes is considered as a huge update
that will cause the table executed_action to be maintained appropriately, but we

may wish to disable the detection of non-supported actions at that time.

All the main algorithms described are to be executed after the database has been
updated. They can be executed immediately after the update or after a transaction
has committed, in which case the detection of non-supported actions, connected
retroactive actions and rule violation can be considered as an independent trans-
action. This has the advantage that, exept for the computation and storage of
temporal dependencies, no extra overhead is placed on the original transaction due

to the detection of time paradoxes.

With respect to the worst case complexity of the algorithm for the detection
of non-supported actions, we note that if every rule is fired at all times and with
temporal dependencies equal to the whole set of time points, the algorithm ends up
rechecking every rule at every time point after every update, and therefore degen-
erating into the naive method for the detection of loss of support. That extreme
case, however, appears very unlikely to occur in practice, in which case the described
algorithm should perform well. A more detailed analysis of the complexity of the
presented algorithms should take in consideration the complexity of the accesses to
the database itself, and therefore remains outside the scope of this thesis. The num-
ber of rules and the average number of actions executed at each transaction-time
should also play a role in determining this complexity. A good evaluator of the
efficiency if the detection of loss of support would be the ratio r between the num-
ber of non-supported actions detected and the number of rules rechecked; clearly,
0 <r <1, and the closer r is to 1, the smaller is the number of useless rechecks the
algorithm performed; to evaluate r, however, it would require having the algorithm
implemented in a database system running a real application, which is also outside

the scope of this presentation.

This finishes our presentation of the detection of update generated time para-

doxes arising from conflicts between the semantics of rule execution and the static
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valid-time interpretation of rules in temporal active databases.



Chapter 6
Conclusions

In this chapter the results obtained in this thesis are discussed, compared with the
literature and further work based on the results is proposed.

This thesis investigated themes belonging to several areas of Computing Science,
that will be revisited in this chapter. The thesis investigates themes in logic and
temporal logic, temporal databases and active databases. Moreover, we can see
applications of the results obtained here in artificial intelligence and computational
linguistics.

All those areas will be separately discussed in this chapter. Our contribution to
each one is summarised. Simplifying assumptions in our work are pointed out. Pos-
sible extensions and further works will be suggested and related to works published

in the literature.

6.1 Overall Analysis of Achievements

The starting point of this work was the analysis of the computational aspects of
historical revisionism! in temporal active databases. The basic motivation was found

in the following question, which is presented here in its generalised form:
Question 6.1 How is temporal information affected when history is changed?

The fact that the question was analysed on the sole basis of its applications to the
database framework did not imply that we were confined to the realm of databases.

In fact, the analysis of this question sent us to explore and extend the formal logic

Tt was pointed out to me by David Evans that the expression historical revisionism is the one
actually applied in philosophical and political references to attempts to change the past, or the
accepted or official history.
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basis of temporal databases, so several contributions of this thesis deal with logic
and temporal logic. The double temporality contained in the expression “changing
history” led us to study combinations of linear temporal logics with increasing de-
gree of expressivity. Several families of two-dimensional temporal logics were then

generated and analysed.

We were then able to come back to the database framework with a formal, two-
dimensional temporal logic basis to describe historical updates. This allowed for a
characterisation of the differences between the possible semantical interpretations of

temporal data.

The task was then to analyse the effects of those updates when the tempo-
ral database was extended with temporal rules, generating an interdependency be-
tween the data stored in the temporal database. The effects of historical updates
were analysed as the time paradoxes arising from the invalidation of the valid-time
interpretation under the execution semantics for temporal rules. At this point we
were finally able to answer the original motivating question in the temporal active
database framework, providing algorithms for the detection of the occurrence of the

effects of changing history.

A possible criticism of our approach is that the generality of the presentation
of combination of logics in Chapters 2 and 3 does not seem to be justified by our
presentation of temporal databases in Chapters 4 and 5. In the pure logical part
of this thesis, the results were obtained for temporal logics referring to any class
of linear flows of time, but the temporal database models considered later dealt
basically with discrete, integer-like flows of time, in both valid-time and transaction-
time dimensions; the relevant two-dimensional temporal logics used for the database
study were US/7Z x US/Z, NP/7 x US/Z and, as an intermediary case, US/Z(US/7Z)
and US/Z © US/Z. The expressivity of both fully two-dimensional systems proved
to be adequate for the purposes of our study so we were never forced to chose one,

although the logical properties of NP/Z x US/Z were proved to be nicer.

One possible explanation for that difference in generality is that it is natural to
aim at higher generality in the abstract pure logic presentation than that we get
in the more application-oriented presentation of databases. While this explanation
seems a reasonable one, we argue that there are other reasons supporting the gen-
erality of the presentation of combinations of logics. Those reasons are found either
in possible extensions of the database concept or in research that has been carried

outside the scope of this work.
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e In the temporal database presentation the restriction to Z-like valid-time flows
was due to a predominance of systems implementing that restriction, and not
for any theoretical reasons; this predominance of Z-based systems reflects com-
putational reasons such as efficiency and that real systems clocks are discrete.
It is reasonable to expect that if temporal databases become normal, the need
for representing dense or real flows of time will be felt, and our logical pre-
sentation covers these cases. For example, the axiomatic characterisation of
transaction-time databases can be directly applied to those cases, relying only

on the linearity of the flow.

e The transaction-time flow of time was chosen to be Z-like due to the discrete
nature of update occurrences; however, if we extend the presentation to in-
clude the possibility of concurrent transactions, it may become necessary to
treat transaction time as dense. Real-time consideration in the execution of
transactions may also become an issue, in which case both transaction and

valid-time flows may be treated as real.

e Besides considerations of possible extensions of the temporal database, there
are reasons for the generality of the presentation of the combination of logics
that find their justification outside the scope of this work. In the literature,
temporal logic has traditionally dealt with a variety of classes of flows of time

and our treatment is a contribution to that tradition.

e Combinations of logics can be seen as a research topic on its own. Other works
that deal with the independent combination of monomodal logics [Kracht and
Wolter 1991; Fine and Schurz 1991] have also been developed in a framework

of the same or even higher generality.

e Also, the idea of the temporalisation process has recently been applied in
Computational Linguistics for a different, non-temporal external logic (see
discussion below in Section 6.5.2), therefore showing the applicability of our

presentation even in areas we had not originally anticipated.

We proceed to analyse the contributions of the thesis to several areas of Com-
puter Science, indicating how our work can be extended and what further work it

motivates.
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6.2 Contributions to Logic and Temporal Logic

The main focus of this thesis in the area of logic dealt with the combination of two

logic systems in order to obtain a new logic system. The issues were:

e Several methods of combination of two logic systems were presented. Each
combination involved at least one temporal logic system. Each method had a
particular discipline for combining the language, the semantics and the infer-
ence system of two logic systems. Each combination generated a single logic

system.

o The study of transference of logical properties from the component systems
into their combined form has been the major point in the analysis of combi-
nation methods. The basic logical properties whose transference was analysed
were soundness, completeness and decidability; for some combination meth-
ods, the transference of other properties was also investigated such as: the
separation property, conservativeness and the compactness property (in the

form of strong completeness).

e The investigation of four basic methods has been accomplished. The tem-
poralisation method and the independent combination method were shown
to transfer all basic properties, although they do not generate an expres-
sive enough system to be called fully two-dimensional. The full interlacing
method does generate a fully two-dimensional temporal system, but in many
cases it failed to transfer even the completeness property. As a compromise,
it was shown that a restricted interlacing method, although generating two-
dimensional temporal logic systems that were not as expressive and generic
as the fully interlaced one, accomplishes the transference of all basic logical

properties.

Another contribution of our analysis was to answer a question raised by Ven-
ema [1990] on the existence of a fragment of the two-dimensional plane temporal
logic that, in his own words, was ‘better behaved’ than the two-dimensional plane
system with respect to completeness and decidability properties. We have shown
that the two-dimensional temporal logic systems obtained by restricted interlacing
are an example of such fragments.

Another question raised by Venema in that same work remains open, namely,

whether it is possible to have a complete axiomatisation over the two-dimensional
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model using only canonical inference rules, i.e. without using the special inference
rules TR1 and IR2. This problem seems to be a very hard one. Nevertheless
we succeeded in extending Venema’s completeness result, that originally holds for
only two-dimensional flows built from two identical one-dimensional flows, to any

two-dimensional flow built from any flow in the classes Ky Kais, Kgense and Q.

6.2.1 Comparisons, Extensions and Further Work

With respect to combination of logics, the works in the literature that most closely
approximate ours in spirit and aims, are those of Kracht and Wolter [1991] and
of Fine and Schurz [1991]. Both works concentrated on monomodal logics, and
investigated the transference of logical properties for only the method we called
here independent combination. However, their work investigated several paths that
suggest that further work may be done in our studies. First, they analysed the
transference of many other properties from two logic systems to its combined form,
e.g. finite model property and interpolation. Second, both works did not concentrate
only in linear systems and they were able to extend their results to any class of un-
derlying Kripke frames. Third, Fine and Schurz’s work generalised the independent
combination method to more than two monomodal logics.

Those two papers cited above therefore suggest several extensions to our work.
Note, however, that the temporalisation method was easily shown to be extensi-
ble to many temporal logic systems in Example 2.4. The focus on linear flows of
time was due to the later application to linear database systems, but we believe
that this restriction may be lifted without damaging the transference results of the
temporalisation and independent combination methods. These have to be further
investigated and the transference of any other logical property has to be analysed
on its own.

The generalisation of combination methods other than the independent com-
bination method to modal logics is another area for further work. As noted in
Chapter 2, the temporalisation process is directly extensible to monomodal logics.
It may even be the case that, for monomodal logics, the full interlacing method
achieves transference of completeness over several classes of fully two-dimensional
Kripke frames using only canonical inference rules, as it is suggested by the results
in [Segerberg 1973].

Note that all the systems dealt with in Chapters 2 and 3 were extensions of clas-
sical logic. It is possible that the temporalisation process preserves its transference

properties even in the case the underlying system is not an extension of classical
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logic. What if the external temporal logic is non-classical itself? The same ques-
tion applies to other combination methods. Do they achieve transference of logical
properties when one or both of the combined temporal of modal logics is not clas-
sical? Gabbay [1992] has recently posed that question in a very generic framework
involving Labelled Deductive Systems (L.DS) and found that in order to obtain the
transference of completeness we do not need the full power of classical logic but
only some weaker form of monotonicity. He has also developed other methods of
combination called fibring that depends on the choice of a fibring function. A fibring
function maps the truth value of atoms in one logic’s semantics with the semantics
of formulae in other logic’s semantics. Gabbay’s dovetailing process, obtained with a
certain class of fibring functions, is similar to the independent combination method
extended to logics respecting those weaker conditions of monotonicity. More work
on this area is needed to clarify exactly how fibring is related to existing combination
methods.

There are also other possible types of combinations of one-dimensional temporal
logics that may be explored. As pointed out in the end of Chapter 4, two linear
flows of time can be merged into another one; the question is then how to combine
two one-dimensional temporal logics into another one-dimensional temporal logic

over the merged flow.

6.3 Contributions to Temporal Databases

Besides the work on logic and temporal logic, the other topic of this thesis was
database theory, focusing on the dynamic aspects of temporal databases (Chapter 4)
and on temporal active databases (Chapter 5).

Temporal databases were formally presented over a first-order temporal logic
framework; safe temporal formulae were adopted as queries, which allowed a propo-
sitional abstraction over the first-order presentation, enabling us to apply the propo-
sitional two-dimensional framework we had developed to the study of temporal
databases. The main achievements then dealt with the dynamics of temporal

databases in the following ways.

e The two-dimensional plane model was used to describe the semantics of up-

dates in temporal databases.

o A formal characterisation of the difference between the transaction-time and
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valid-time databases was obtained by means of an abstract, axiom-based de-
scription over the two-dimensional framework. This description did not rely
on the details of how updates were actually done, but rather stressed only the

effects of updates.

6.3.1 Further Work

The two-dimensional plane temporal model and the several logics associated to it can
be seen as a formal basis for temporal databases that store both valid and transaction
times. This kind of two-dimensional temporal database (or bitemporal database, as
called in [Jensen et al. 1992]) was described by Snodgrass and Ahn [1985], where
every piece of data is associated to two time stamps, one representing the user
controlled period of history to which the data refers to, the other representing the
period between the insertion and deletion of the data. In this case, a two-dimensional
algebra is needed as a counterpart of the two-dimensional temporal logic based
calculus.

In a survey of temporal algebras, McKenzie and Snodgrass [1991] reported ba-
sically only one-dimensional temporal algebras. Our work with the composition of
temporal logics suggests that a family of two-dimensional temporal algebras might
be obtainable by an analogous composition of existing one-dimensional ones. One
interesting property to be studied then would be the equivalence of query expres-
sivity between the algebra and the logic, in the same lines that query expressivity
was shown to be equivalent for the non-temporal relational calculus and algebra.

The temporal data representation and the temporal query language of our ex-
position can be extended. The temporal database was restricted to contain only
temporally bounded discrete information represented by labelled atoms, where the
labels were conjunctions of terms of the form ¢ = ¢, t < # and #, < ¢, for t a
term variable and #y a term constant. Kabanza, Stevenne and Wolper [1990] have
proposed a more expressive data representation called linear repetitive points, or
l.r.p.’s, and showed them to have the same expressivity as formulae labelled with
Pressburger arithmetic expressions, i.e. first-order formulae over the signature con-
taining predicate symbols = and < and function symbols suc and + [Boolos and
Jeffrey 1989]. Furthermore, the associated query language was not based on tem-
poral logic, but consisted of a two-sorted first-order language, one-sort for time and
the other sort for domain elements.

Even with our less expressive data representation, it is possible to extend the

expressiveness of the temporal query languages (the contrasts between temporal data
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expressivity and temporal query expressivity were studied in [Baudinet, Niezette
and Wolper 1991]). Chomicki and Imielifiski [1988] use a two-sorted datalog-style
language for temporal recursive queries, adding deductive rules to the database that
are declaratively interpreted. An equivalently expressive deductive query language

involving temporal operators and recursion can be found in [Abadi and Manna 1989].

The two-dimensional description of database updates is independent of the data
representation. To extend our results from temporally bounded data to l.r.p.’s we
need only find an equivalent version of Proposition 4.2 dealing with l.r.p.’s and L.r.p.
updates. The expressivity of the query language does not affect the dynamics of
temporal databases either, so the two-dimensional model of database evolution could
go along more expressive data representation and query languages without major
changes. In fact, the two-dimensional model is based solely on the linearity of the
valid-time flow of time and, although the majority of temporal database systems
surveyed in [McKenzie and Snodgrass 1991] deals with discrete, integer-like flows of
time, the model and even the axiomatic distinction between transaction-time and
valid-time databases must hold over dense and continuous valid-time flows of time

(provided the transaction flow of time remains integer-like).

A totally unmentioned but very important theme in the study of temporal
databases is their physical implementation. File organisation and special index-
ing strategies for temporal data are important issues to take into consideration for
efficient querying and updating of temporal databases. Unfortunately, these sub-
jects lie outside the scope of this work; refer to [Gunadhi and Segev 1993; Tansel

et al. 1993] for an account of some recent developments in this area.

To finalise, we would like to comment on a recently published book containing
a collection of papers on temporal databases [Tansel et al. 1993], which came to
our knowledge by the time of finishing this work. The book is divided in four
parts. In the first part, several temporal extensions of the relational data model
are presented; several distinct temporal query languages, temporal algebras and
data representation are presented; and different temporal ontologies are considered,
such as point based and interval based flows of time. The second part is concerned
with temporal extensions of non-relational data models, e.g. the object-oriented, the
extended entity-relationship, time sequences and the deductive data models. The
third part deals with implementation issues such as query processing, optimisation,
indexing and storage strategies. The last part deals with other temporal database
related issues, such as temporal knowledge bases for simulations, heterogeneous

environmentsand temporal reasoning in general. Particularly conspicuous is the
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absence in that book of any paper dealing with the problem of updating temporal
databases, which is our main concern in this work. The book is, however, a good
reference for much of the data modelling and implementation work that has been

done in the field of temporal databases.

6.4 Contributions to Temporal Active Databases

The framework of temporal databases was shifted from a passive repository to an
active one with the addition of temporal rules, which followed the imperative future
paradigm. This work contributions to the area of temporal active databases were

as follows:

o A two-dimensional view of the imperative future paradigm allowed for the
generalisation of the format of temporal rules, eliminating the restriction “past
and present implies future”; the effects of that restriction had already been

discussed in [Manning and Torsun 1989].

e Two distinct semantics for temporal rules, one imperative and the other declar-
ative, were contrasted and as a result several “time paradoxes” were classified.
The imperative semantics unfolded over the two-dimensional model, while the
valid-time one is one-dimensional. The classification of time paradoxes was

based on the two-dimensional model.

o Algorithms for the detection of some of the occurrence of time paradoxes were
proposed. It was not require that the second (transaction-time) dimension be
fully stored in the database. Only transaction-time information related to the

firing and execution of rules was needed.

6.4.1 Further Work

Several implementation issues of temporal active databases remain to be investi-
gated. The most expensive of all involved operations is the evaluation of the con-
dition part of rules. This can be done more efficiently than the naive evaluation of
all condition parts at all transaction times by avoiding recomputation of unchanged
queries. For non-temporal rules, Rete [Forgy 1982] is the most usual algorithm
coming from artificial intelligence applications of production systems and expert

systems. When transposed to relational databases, the Rete algorithm was shown
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to have several deficiencies, so other algorithms were proposed aiming at the re-
duction of recomputation [Sellis, Lin and Raschid 1993]. The Rete algorithm was
extended to finite hierarchical possible worlds [Cavalcanti 1993], but temporal ap-
plications so far seem to rely basically on the naive evaluation of the condition part
of all rules at every transaction time [Loucopoulos et al. 1990; Barringer et al. 1989;
Manning and Torsun 1989].

A natural extension of temporal rules as previously presented, which actually
has an impact on the efficiency of the execution of rules, is the addition of triggers
to temporal rules. Triggers are (possibly 0-ary) predicates that are placed as a label
of the rule

trigger : Cond = Action,

so that C'ond will be evaluated only when trigger is active. Triggers are normaly

represented in rule based languages in the format
when Trigger if Condition then Action

as, for example, in the ERL-language of [McBrien et al. 1991]. Triggers remain
active for only one evaluation cycle which, in terms of the two-dimensional model,
corresponds to the persistence of the triggers for only one unit over the transaction
flow of time, ie they may hold only at the diagonal points; except for that peculiarity,
triggers can be seen as a conjunt of the condition part of a rule. Their effect, however,
is felt in the efficiency of rule based systems, for in each evaluation cycle, only the
triggered rules will have their C'ondition-part evaluated, saving a lot of time. In the
TEMPORA system [Loucopoulos et al. 1990], rule triggers are called flows and can
be either external, i.e. activated by an external user agent, or internal, i.e. activated
by the action part of a rule, or they can be event driven triggers, ¢.e. activated by
the ticking of the system’s clock or the updating of a relation. Flows can also be
combined with boolean operators to form more complex triggers.

The notion of a transaction is one that deserves a special treatment in active
valid-time databases, but remained outside the scope of our presentation. The
traditional view of a transaction is one of a “logical unit of work” in the database,
that must either be entirely completed (when the transaction commits) or all its
effects must be removed from the database (when the transaction is rolled back).
The problem with active valid-time databases is that external actions executed in
the past cannot be rolled back. Therefore, if a transaction takes more than one

unit of time to be finished, the “logical unit of work” may be violated due to the
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impossibility of rolling it back. The solution in the TEMPORA system was to limit
transactions to a single tick. With this constraint, a transaction is initiated by
activating a special kind of trigger, called external flow; the transaction goes on by
repeating the execution cycle in the same valid time, until there are no actions to
execute, in which case the transaction commits and all the external actions that
were fired are sent to the database environment; if, during the execution cycles, the
transaction is aborted, no external action has been sent to the environment, so the
transaction may be rolled back.

Further work is being developed in the design, capturing and structuring of rules
that remains outside the scope of this work; such work is very important in making
the rule-based approach easier to manipulate from a programmer’s point of view.
On the system’s side, a topic that deserves further consideration is how to overcome
the constraint of transactions lasting at most one time unit, so that the notion of a

rule-based temporal transaction may be formed.

6.5 Other Contributions

6.5.1 Artificial Intelligence

Belief revision is a topic of study of artificial intelligence and cognitive sciences that
deals with the problem of changing one’s idea about the world. Most approaches
to this problem have focused on the non-monotonic aspects of this change of belief,
i.e. the set of inferred data is not always preserved when a new piece of data is
included to the original premises. Since we are working with “changes in history”,

our work has some features that contribute to the study of belief revision:

o With the temporalisation process, we have contributed in explicating the in-

trinsic temporality in the change of belief.

e The two-dimensional temporal evolution provides a framework which allows for
changes in history without giving up monotonicity, in the sense that the extra
dimension preserves the set of all conclusions reachable at each transaction-
time. The persistence of unchanged data from one transaction time to the

next one is obviously non-monotonic.

The two-dimensional model can also serve as part of a data model for expert
systems that are supposed to give explanations of past actions. In this case, the

systems ability to retrieve not only the current state of history, but also the history
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as seen at previous moments, can provide enough basis to explain why things were
then done in a way for which now there seems to be no rational support.

Furthermore, the rule based approach arround which we build the temporal links,
and for which we developed the detection of changes in the past may be adapted to
expert systems. For instance, if an expert system provides advice on some domain of
knowledge with temporal data (e.g. an investment advisor), changes in the temporal
data (e.g. correction of data, discovery of frauds, release of new information about
the past) may lead to non-supported actions (e.g. the retraction of earlier advice)
which can then propagate to the present (e.g. the generation of new advice). The
inclusion of such a capability in existing systems, such as PAYE or METATEM, is
subject to further investigation.

Another possible line of research is to extend the two-dimensional system to
several temporal agents. As it is, the system copes only with the evolution of one
agent’s beliefs (i.e. the view the database manager has of an evolving history). We
could then think of several agents with communicating capabilities and with internal
‘extra dimensions’ capable of recording the evolution of beliefs of the other agents.
This would imply a combination of techniques of distributed Al, reasoning with
incomplete information and the two-dimensional approach, which seems no trivial
task; therefore, we do not suggest here that such an integration may be done in a
straightforward way, but rather that this is a subject for a substantial amount of

research.

6.5.2 Computational Linguistics

Our work is connected to computational linguistics in a few ways. The very idea of
two-dimensional temporal logics first appeared in the literature in the analysis by
Kamp [1971] of the temporal meaning of the word “now” in gramatical sentences.

Recently, the ideas of the temporalisation process have been adopted by compu-
tational linguists as a form of layering. Blackburn, Gardent and Meyer-Viol [1993]
follow the same principles of the temporalisation process in order to provide the
right level of expressive power needed to model many grammar formalisms. They
first define LT, a modal logic to describe constraints on grammar parsing trees; they
then describe how to decorate the parsing tree with feature structures described by a
generic feature logic, LT, generating the combined logic LT(LF) by means of combin-
ing their syntax, semantics and inference systems. They show how such combined
logic LT(LF) can be used to model an existing linguistic theory.

In the same lines of combination of logics, but perhaps going even further in the
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interaction between the two component logics, we found the brand new ideas of fibred
semantics being applied as a combination of computational linguistic frameworks.
In a still unpublished paper [Dérre, Gabbay and Konig 1993], the ideas of fibring the
Lambek Calculus with feature logics are developed, and an example case is provided
with the combination of the Lambek Calculus and Horn-clause logic programming.

We can only wait to see what other new applications of the ideas in this work will

appear in the future, among the computational linguistics community or elsewhere.
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Appendix A

Algorithms

This appendix presents all the algorithms developed in Chapter 5.

A.1 Awuxiliary algorithms

We present here the alogorithms that manipulate the data structures

syntactical dependences(Pred_Name, Pos_dep_list, Neg_dep_list)

executed_action( Action, Rulead, Parms, Time,dy,d_)

The first two algorithms manipulate the first data structure fo the retrieval of

the rules affected by a given positive /negative syntactical dependence.

Algorithm A.1 Positive syntactical dependences (equivalent to Algorithm 5.1)

Input: a predicate name
Output: a list of rule identifiers
in which the predicate appear as

a positive syntactical dependence

POSSYNT(PredName)

BEGIN

Select Pos_dep_list from syntactical_dependences
where Pred_Name = PredName;

return Pos_dep_list;

END

149
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Algorithm A.2 Negative syntactical dependences (equivalent to Algorithm 5.2)

Input: a predicate name
Output: a list of rule identifiers
in which the predicate appear as

a negative syntactical dependence

NEGSYNT (PredName)

BEGIN

Select Neg_dep_list from syntactical _dependences
where Pred_Name = PredName;

return Neg_dep_list;

END

The following algorithms manipulate the second data structure for the retrival

of executed actions that may have been affected by an update.

Algorithm A.3 Positive intersection rows (equivalent to Algorithm 5.3)

Input: a rule ID and a list of time points.
Output: a set of rows from executed_action table
with the same rule ID, RID,
and positive dependence overlapping TIMES.
POSROWS (RID, TIMES)
BEGIN
ROWS := &;
For every row of the table given by
Select Action, Ruleud, Parms, Time, dy, d_
from executed_action
where RID = Ruleid and d N TIMES # @
do ROWS := ROWS U{row(Action, Rule_id, Parms,Time,d;,d_)}
return ROWS;
END

Algorithm A.4 Negative intersection rows (equivalent to Algorithm 5.4)

Input: a rule ID and a list of time points.

Output: a set of rows from executed_action table
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with the same rule ID, RID,
and negative dependence overlapping TIMES.

NEGROWS (RID, TIMES)
BEGIN
ROWS := &;
For every row of the table given by
Select Action, Rulead, Parms, Time, dy, d_
from executed_action
where RID = Ruleid and d_N TIMES # @
do ROWS := ROWS U{row(Action, Rule_id, Parms,Time,d;,d_)}
return ROWS;
END

A.2 Main Algorithms

We present here a combination of the main algorithm to detect non-supported ac-
tions, Algorithm 5.5, and its extension to detect connected retroactive actions, Al-
gorithm 5.6. Note that the output now is a pair of sets, namely the set of detected
non-supported actions and the set of connected retroactive actions, generated by a

recent update.

Algorithm A.5 Detection of non-supported and connected retroactive actions

Input: update sets 6, and 6_.
OQutput: A pair containing a set of time-labelled non-supported actions

and a set of retroactive actions.

DETECT_NONSUP (., 6_)

BEGIN
NONSUP := g;
RETRO := O,

/* The first part of the algorithm deals with insertions */
For every times:atom in 6,
BEGIN

For every rule id RID in NEGSYNT( PREDNAME( atom ) )
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BEGIN

For each row(Action,RID, Parms, Time,d,d_)

in NEGROWS( RID, times )

BEGIN
If the query COND( RID ) is not satisfied by Parms at Time
and Time : Action holds in the database
then
BEGIN

NONSUP := NONSUP U{T'ime: Action};

delete the row from the cxecuted_action table.

/* 0BS: The detection of retroactive actions */

/* is inserted here (Algorithm 5.6)*/

If the query COND( RID ) is satisfied at Time for Parms’ # Parms
and there is no row in table execcuted_action such that
it contains Action(Parms’), ttRID, Parms and Time

then
RETRO := RETRO U{Twme : Action(Parms’)};

END
else if COND( RID ) is satisfied with new temporal

dependences d! # d; or d_ #d_,

then modify the row in the executed_action table

with dependences d/, and d_.

END
END
END

/* The second part of the algorithm deals with deletions */
For every times: atom in 6_
BEGIN
For every rule id RID in POSSYNT( PREDNAME( atom ) )
BEGIN
For each row(Action,ttRID, Parms, Time,d;,d_)
in POSROWS( RID, times )
BEGIN
If the query COND( RID ) is not satisfied by Parms at Time
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and Time : Action holds in the database
then
BEGIN

NONSUP := NONSUP U{Time : Action};

delete the row from the cxecuted_action table.

/* 0BS: The detection of retroactive actions */

/* is inserted again here (Algorithm 5.6) */

If the query COND( RID ) is satisfied at Time for Parms’ # Parms
and there is no row in table executed_action such that
it contains Action(Parms’), ttRID, Parms and Time

then
RETRO := RETRO U{T'ime : Action(Parms’)};

END
else if COND( RID ) is satisfied with new temporal

dependences d! # d; or d_ #d_,

then modify the entry in the table

with dependences d; and d’ .

END
END
END
return( (NONSUP, RETRO) )
END

The final algorithm deals with the detection of rule violations.

Algorithm A.6 (equivalent to 5.7) Detection of rule violation for external actions

Input: update set 6_.
Output: A set of time-labelled actions

DETECT_VIOLATION(A_)
BEGIN
VIOLATE := J;
For all t:atom in A_ do
If PRED(atom) is an external action and
atom occurs in executed_action(Action, Rule_id, Parms, Time, d;, d_)
with Time =1

and Action = atom
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and COND(Rulesd) is satisfied Parms
then VIOLATE := VIOLATE U{t{: atom};
return(VIOLATE) ;
END



Appendix B

Auxiliary Proofs

This appendix presents proofs of some auxiliary or secondary lemmas and proposi-
tions cited in the body of the thesis.

Two-dimensional completeness

Theorem B.1 (2D-completeness) (Theorem 3.3)
There are sound and complete ariomatisations over the two-dimensional plane

classes K is X Kais, QX Q, Kiin X Kais, KiinxXQ and Kg;sx Q.

Proof We prove completeness over K 45X, the other cases being simplifications

of this one. For that, on the horizontal dimension we add the discreteness axiom
Dis-a FT—=U(T,1)

together with its mirror image Dis-b. On the vertical dimension we add axioms for

denseness and no end points:

Den-a —U(T,1)
Noe-a F'T

together with their mirror images Den-b and Noe-b. The construction of IR*-
theories has to take into account the extra axioms, but except for that it is completely
analogous to that over Ky, x Ky, in Section 3.3.1.

Let I'y be a set of formulae consistent with the two-dimensional axiomatisation
over Kysx Q. Since this axiomatisation extends that over Ky, X Ky, the gap and
corner filling lemmas still hold and the construction of the grid is totally analogous
of the previous one. So we obtain a two dimensional grid G* = (X, <X, <, )

such that there are no counterexamples left in G* and (X*, <*),(7, <*) € Kin
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and G* satisfies C1, C2a, C2b, C3a, C3b, C4a, C4b, C5a, C5b as defined in
Section 3.3.1.

It remains only to be proved that (X*, <*) € Kus € Ky and (7*, <*) is
isomorphic to Q. For that, let + € X and t € X*. Suppose t is not the last element
of X*, so that, by C2a, F'T € f*(t,z); by axiom Dis-a, U(T, L) € f*(¢t,z). Then,
by C4a, it follows that there exists s € X*, ¢ <* s, such that T € f*(s,2) and for
all u, t <*u<*s, L € f*(u,x), i.e. there exists no such u € X* between ¢ and s.
So s is the successor of t. Analogously, Dis-b and C4b gives us a predecessor of t.
We have thus proved that (X*, <*) € Ky;s.

By Axiom Den-a, it follows that for every z € X and t € X*, -U(T, L) e
f(t,2) and by condition C4a one of the following must hold:

e There is no y, «<*y with T € f(¢,y). This contradicts Noe-a; similarly,
Noe-b yields no initial points. So

e For every y, # <*y, there exists z, e <*2<*y, L & f(t,z) (which is always

true); in other words, (X, <*) is dense.

The flow (7*, < *) is therefore linear, dense with no end points and, by construction,

it is also countable. So (7*, <*) is isomorphic to Q. This ends the proof. d

Normal form for US x NP

Lemma B.1 (Lemma 3.6)
Let A be a formula of US x NP. There exists a normal form formula A* equivalent
to A, such that all the occurrences of O and @ in il are in the form OFp and @'q,

where p and q are atoms.

Proof First we show that converse of the interlacing axioms are theorem too. For
that, note that U/ and S respect the congruence property, i.e. it A—C and B«—D
then U(A, B)«U(C, D) and S(A, B)~S(C, D). Also note that

equiv (p—~>O@p)A(p—@Op)
The transitivity of — connects the steps in the proof of U(Op, Oq)—OU(p, q) below:

q) by equiv
Og¢) by interlacing axiom

Ulp,q) by equiv and congruence
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It follows that U(Op, Oq)«0OU(p,q). It is completely analogous to show the
converse of other interlacing axioms, so we omit the details.

Given A in the language of US x NP, the equivalence between both sides of
the interlacing axioms allows for “pushing in” the vertical operators O and @,
so a simple induction on the number of nested temporal operators in A shows an

algorithmic way to generate an equivalent formula A* in the desired normal form. O

Equivalence of diagonal axioms

Lemma B.2 (Lemma 4.1)

Constder the formulae

D1 O6AD6 dl ¢o
D2 6—(G-SAH-6AG-6NH-8) and d2 6—(G-6AH-8)
D3 §—(HG-6AGH-6) d3 6006

Let M be a two-dimensional plane model over Z.x7Z.. Then the formula D1IND2AD3
holds over M iff d1ANd2Ad3 holds over M.

Proof By Lemma 3.7 we know that D1AD2AD3 holds over M iff the relation ¢
defined as below

i ={(t,x) € ZxZ | M.t = 6}.

is an isomorphism in Z. So all we have to do is to prove that : as defined above
is an isomorphism iff d1Ad2Ad3 holds over M. The only if is a straightforward
verification that for all x and ¢ in Z, M, t,2 = d1Ad2Ad3.

Assume d1Ad2Ad3 holds over M. Then:

1. d1 gives us that for every = there exists a ¢ such that M, ¢,z | 6;
2. d2 gives us that for every x, ¢, ¢/, t £/, M, t, 2 = 6 implies M, ', x }£ ¢;

3. d3 give us that for every z,t, M, t,x E 6 it M,t+ 1,2+ 1 | 6 iff for every
neZ, Mt+n,a+nkEd

The first two items give us that i~' : Z — Z is a function. To show that ¢ is also
a function, suppose that (¢, 1), (¢,22) € i. By linearity of Z, it follows that either
x1 < Tg or ¥y < 11 Or ¥1 = x5. Let xy — w9 = m; then, by the third item above,
(t+m,zo+m =x1) €¢,50t = (t+m)and m = 0. It follows that x; = 22, so
11 7. — 75 1s a function. Directly by the definition of ¢, it follows that ¢ is a bijection.
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Again by the third item above, if ¢(t1) = @1 and ¢(t2) = xq, then t1 —t3 = 11 — 2.
It follows that ¢ is order preserving and hence an isomorphism, which finishes the

proof. d

The meta-level axiom Roll

Lemma B.3 (Lemma 4.2)

Consider the meta-level axiom
Roll ((6VFé)Aq)—Ogq.

If Roll holds over a two-dimensional M for any literal ¢, it also holds over M for
any US-formula that does not contain future operators, i.e. does not contain U and

its derived operators.

Proof By induction on the length of A, where A is a formula that does not contain
U and its derived operators and the length of a formula is the number of symbols
in it. The cases A = ¢ and A = —q are given by the fact that Roll holds over M.

If A=-=B,then M,t,z E =B iff M,t,2 = B. By the induction hypothesis,
M t,e+1E B,so M, t,x E ((6VF§ANA)—OA.

If A= BAC, then from M, t,x = BAC it follows M t,z = B and M, t,z E C
and hence, by induction hypothesis, M,t,2 + 1 E B and M,t,2 + 1 E C, so
Mtz = ((6VFO)NA)— DO A.

If A=-(BAC), then M,t,2 = =B and M,t,2 | ~C and hence, by induction
hypothesis, M,t,2+1 | ~Bor M,t,x+1 | ~C,s0 M,t,z = ((6VFOHNA)—OA.

If A= S(B,C), then from M,t,x |= (6VF6)AS(B,C) it follows that ¢t < x
and that there exists s < t such that M,s,x = B and for every u, s < u <t
M, u,z | C. Then induction hypothesis, M, s, 2+1 = B and for every u, s < u < {
M,u,x+ 1 C. Hence M, t,x |= ((6VFO)ANA)—DA.

Finally, if A = =5(B, (), then we have to consider two cases. One possibility
is that M,t,2 |= (6VFO)AH-B. On the other hand, if there exists s < ¢ such
that M, s, @ = B then there exists s', s < s’ < t such that M,s', 2 E =B and
M,s' x| E =C and for all v, s < u <t , M,u,z = =B. In both cases, the
induction hypothesis leads us to M, t, 2 = ((6VFANA)—OA. O
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