
A KE Tableau for a Logic of Formal

Inconsistency

Adolfo Neto and Marcelo Finger

Computer Science Department
Institute of Mathematics and Statistics

University of São Paulo
{adolfo,mfinger}@ime.usp.br

Abstract. In this paper we describe a KE tableau system for a Logic of
Formal Inconsistency (LFI) called mCi. The family of LFIs is a family
of paraconsistent logics with philosophical relevance and applications in
computer science. We prove that the KE System for mCi is correct and
complete, and describe the implementation of such a system, presenting
the strategies designed for the actual implementation within the KEMS

framework; KEMS is a multi-strategy theorem prover based on the KE

refutation method for propositional logics. We conclude by presenting
some problems we have developed to evaluate theorem provers for mCi,
as well as the evaluation results obtained with KEMS.

1 Introduction

Paraconsistent logics can be used as the underlying logic to inconsistent but non-
trivial theories [10]. Logics of Formal Inconsistency (LFIs) [3] are a family of
paraconsistent logics that internalize the notions of consistency and inconsistency
at the object-language level. This family of logics has some nice proof-theoretic
features and have been used in some computer science applications such as the
integration of inconsistent information in multiple databases [9]. They can also
be used as a tool for knowledge engineering and as the base logic in rule-based
decision-support systems.

We have designed and implemented KEMS [11,13], a multi-strategy theorem
prover based on the KE method [8,7] for propositional logics. KEMS current
version implements strategies for three logics: classical propositional logic (CPL)
and two LFIs: mbC and mCi. In a previous paper [12], we presented the im-
plementation of a KE system for mbC in KEMS. In this paper we present our
investigations and results concerning mCi, a stronger logical system.

1.1 Outline

Here are the contributions of this paper. First, after presenting mCi in Section 2
we give a new proof that mCi’s decision problem is co-NP-complete. Second, we
present a new KE tableau system for mCi and prove that this system is correct



and complete (Section 3). Third, we describe the two new KEMS strategies we
have designed that use the mCi KE system in Section 4. With these strategies,
we have a theorem prover for mCi. Fourth, we present three problem families
to evaluate theorem provers for mCi (Section 5). These problems are used in
the evaluation of mCi KEMS strategies but can also be used in future theorem
provers for mCi. Next, we show the first benchmark results for these fami-
lies, comparing the performance of two KEMS strategies for mCi. Finally, we
present concluding remarks and point to further work in Section 6.

2 mCi, a Logic of Formal Inconsistency

Logics of Formal Inconsistency are a class of paraconsistent logics, which in-
ternalize the notions of consistency and inconsistency at the object-language
level [3]. A logic is paraconsistent if it can be used as the underlying logic to
inconsistent but non-trivial theories, which we call paraconsistent theories [10].

A Logic of Formal Inconsistency is defined in [3] as any logic in which the
‘Principle of Explosion’ (ie ∀Γ∀A∀B(Γ, A,¬A ⊢ B)) does not hold, but the
‘Principle of Gentle Explosion’ does, that is ∀A∀B(Γ,©(A), A,¬A ⊢ B) for some
set of formulas ©(A) depending on A. This family of logics has some nice proof-
theoretic features and have been used in some computer science applications
such as the integration of inconsistent information in multiple databases [9].

2.1 Axiomatization

The logic mCi is an LFI based on classical logic [3] and adds a new unary symbol
◦, where ◦A means “A is consistent”. Any LFI based on classical logic can be
axiomatized starting from positive classical logic (CPL+), whose axiomatization
is that of CPL without the (exp) axiom schema (see axiomatization below).
We assume familiarity with the syntax and semantics of CPL and present below
the CPL axiomatization used in [3] as a basis for defining LFI axiomatizations:
Axiom schemas:

(Ax1) A → (B → A)
(Ax2) (A → B) → ((A → (B → C)) → (A → C))
(Ax3) A → (B → (A ∧ B))
(Ax4) (A ∧ B) → A

(Ax5) (A ∧ B) → B

(Ax6) A → (A ∨ B)
(Ax7) B → (A ∨ B)
(Ax8) (A → C) → ((B → C) → ((A ∨ B) → C))
(Ax9) A ∨ (A → B)
(Ax10) A ∨ ¬A

(exp) A → (¬A → B)

Inference rule schema:



(MP)
A, A → B

B

The axiomatization for mCi is obtained from CPL+ axiomatization, by
adding the following axiom schemas:

(bc1) (◦A) → (A → (¬A → B));
(ci) (¬ ◦ A) → (A ∧ ¬A);
(cc)n ◦¬n ◦ A (n ≥ 0).

where (cc)n is an infinite set of axiom schemas:

1. (cc)0: ◦ ◦ A;
2. (cc)1: ◦¬ ◦ A;
3. (cc)2: ◦¬¬ ◦ A

...

Notice that a new unary connective was introduced here: ‘◦’, the consistency
connective. The intended reading of ◦A is ‘A is consistent’. In mCi, ◦A is log-
ically independent from ¬(A ∧ ¬A), that is, ◦ is a primitive unary connective,
not an abbreviation depending on conjunction and negation, as it happens in da
Costa’s Cn hierarchy of paraconsistent logics [6].

An inconsistency connective ‘•’ can be defined in mCi as •A
def

= ¬◦A. It was
shown in [3] that mCi can be defined either setting ‘◦’ as primitive and ‘•’ as
defined, or the opposite, that is, by setting ‘•’ as primitive and ‘◦’ as defined.

2.2 Semantics

Let 2
def

= {0, 1} be the set of truth-values, where 1 denotes the ‘true’ value
and 0 denotes the ‘false’ value. Let For be the set of mCi formulas. Below we
inductively present a definition of a valuation for mCi [3]:

Definition 1. An mCi-valuation is any function v : For −→ 2 subject to the
following clauses:

(v1) v(A ∧ B) = 1 iff v(A) = 1 and v(B) = 1;
(v2) v(A ∨ B) = 1 iff v(A) = 1 or v(B) = 1;
(v3) v(A → B) = 1 iff v(A) = 0 or v(B) = 1;
(v4) v(¬A) = 0 implies v(A) = 1;
(v5) v(◦A) = 1 implies v(A) = 0 or v(¬A) = 0;
(v6) v(¬ ◦ A) = 1 implies v(A) = 1 and v(¬A) = 1;
(v7.n) v(◦¬n ◦ A) = 1 for n ≥ 0.

A formula X is said to be satisfiable if truth-values can be assigned to its
propositional variables in a way that makes the formula true, i.e. if there is at
least one valuation such that v(X) = 1. A formula is a tautology if all possible
valuations make the formula true. In mCi, for instance, A∨B is satisfiable, but
it is not a tautology, while ¬ ((A ∧ ¬A) ∧ (◦A)) is a tautology.



It is important to notice that the semantics in Definition 1 is non-deterministic
due to clauses (v4)-(v6).

Let Γ be a set of formulas in For, and A a formula in For. We say that A

is a semantical consequence of Γ (denoted by Γ |= A) if for any valuation v we
have the following [2]:

if v(B) = 1 for all B in Γ, then v(A) = 1.

The mCi axiomatization we have presented above is sound and complete
with respect to the semantical consequence relation presented in Definition 1
(see [3]). That is, for any Γ and A, Γ ⊢CPL A implies Γ |=CPL A (soundness [2]).
And Γ |=CPL A implies Γ ⊢CPL A (strong completeness [2]).

It is easy to verify (and it was shown in [3]) that A ∧ ¬A ⊣⊢ ¬ ◦ A in mCi.
Therefore, ¬ ◦ A and (A ∧ ¬A) are equivalent in mCi. The (cc)n axioms were
used in the definition of mCi(i) to make formulas of the form ¬ ◦ A ‘behave
classically’, and (ii) to obtain a logic that is controllably explosive in contact

with formulas of the form ¬n ◦ A, where ¬0A
def

= A and ¬n+1A
def

= ¬¬nA. That
is, with these axioms, any formula of the form ¬n ◦ A ‘behaves classically’ such
that {¬n ◦ A,¬n+1 ◦ A} is an explosive theory in mCi. Much more about mCi
can be found in [3].

2.3 Complexity

The satisfiability problem for CPL formulas (SAT) was the first known NP-
complete problem. The class of NP-complete problems is a subclass of NP. While
P is the class of decision problems that can be solved in polynomial time by a
deterministic algorithm, NP is the class of decision problems that can be solved
in polynomial time by a nondeterministic algorithm. Therefore P ⊆ NP. The
problems in NP are such that positive solutions can be verified in polynomial
time. NP-complete problems are the most difficult problems in NP, the ones
most likely not to be in P. If we find a polynomial time algorithm for any NP-
complete problem, we can solve all problems in NP in polynomial time, because
there is a polynomial time reduction from any NP problem into any NP-complete
problem.

The complement of a decision problem is the decision problem resulting from
reversing the ‘yes’ and ‘no’ answers. We can generalize this to the complement of
a complexity class, called the complement class, which is the set of complements
of every problem in the class. co-NP is the complement of the complexity class
NP. It is the class of problems for which a ‘no’ answer can be verified in polyno-
mial time. And co-NP-complete is the complement of the class of NP-complete
problems.

The CPL decision problem (given a propositional formula, decide whether or
not it is a tautology) is co-NP-complete, because a formula in CPL is a tautology
if and only if its negation is unsatisfiable; and the CPL satisfiability problem is
a well-known NP-complete problem [5].



Here we prove that the mCi decision problem is also co-NP-complete, as it
was suggested in [3]. First we have to show that the mCi decision problem is
co-NP-hard. This is true because it was shown in [3] that the decision problem
for mbC, a LFI of which mCi is an extension, is co-NP-complete.

To complete the proof, we need a NP algorithm for the complement of mCi
decision: the falsification of a formula. That is, we must show that given a formula
A and an mCi-valuation v it is possible to verify if v(A) = 0 in polynomial time.

Let A be an mCi formula. We show below how to construct an mCi-valuation
v for A. This is here only to show that it is more difficult to build an mCi-
valuation than a CPL-valuation.

Let SSF(A) be the set of all strict subformulas of A. A strict subformula of A

is any subformula of A except A itself. Then we construct a new set ESSF(A),
such that for all X ∈ SSF(A), X , ◦X and ¬X belong to ESSF(A).

If n is the size of A, then the size of ESSF(A) is at most 2n − 2. To build a
valuation v for A we must, for any X ∈ ESSF(A), set v(X) either to 0 or to 1,
obeying the mCi-valuation clauses presented in Definition 1.

Up to now, we have only v(X) for all X ∈ ESSF(A) (not necessarily a value
for v(A)). The following algorithm allows us to find a value for v(A):

1. if, for some X , A is ◦X , then:

(a) if v(¬X) = 0, then v(X) = 1 and v(A) can be set either to 0 or to 1;
(b) if v(X) = 1 and v(¬X) = 1, then v(A) = 0;
(c) if v(X) = 0 and v(¬X) = 1, then v(A) can be set either to 0 or to 1;

2. if, for some X , A is ¬X , then:

(a) if v(X) = 1 then:
i. if v(◦X) = 1 then v(A) = 0;
ii. if v(◦X) = 0 then v(A) can be set either to 0 or to 1;

(b) if v(X) = 0 then v(A) = 1;

3. if, for some X, Y , A is X ∧ Y , then:

(a) if v(X) = 1 and v(Y ) = 1, then v(A) = 1;
(b) otherwise, v(A) = 0;

4. if, for some X, Y , A is X ∨ Y , then:

(a) if v(X) = 0 and v(Y ) = 0, then v(A) = 0;
(b) otherwise, v(A) = 1;

5. if, for some X, Y , A is X → Y , then:

(a) if v(X) = 1 and v(Y ) = 0, then v(A) = 0;
(b) otherwise, v(A) = 1.

Therefore, it is more difficult to build an mCi-valuation than a CPL-valuation1.
But, given a formula A, if we have a valuation for all formulas in ESSF(A), it is
easy to verify that v(A) can be 0. The algorithm above is clearly polynomial in
time (and also in space). As the NP class contains the problems that can be veri-
fied in polynomial time [5], the complement of the decision problem (falsification)
for mCi is in NP. Therefore, the decision problem for mCi is co-NP-complete.

1 A CPL-valuation can be built by setting values only to atomic formulas (see [3]).



3 A KE System for mCi

A sound and complete tableau system for mCi obtained by using a general
method for constructing tableau systems was presented in [3]. Let us call this
system an mCi C3M tableau system. The C3M tableau system rules for mCi
are shown in Figure 1. The rules for the binary connectives are the same as that
from Smullyan’s analytic tableaux (AT) [15].

T A → B

FA | TB
(T →)

FA → B

T A

F B

(F→)

FA ∧ B

FA | F B
(F∧)

T A ∧ B

TA

TB

(T∧)

TA ∨ B

TA | T B
(T∨)

F A ∨ B

FA

FB

(F∨)

T ◦ A

FA | F ¬A
(T◦)

F ¬A

TA
(F¬ )

T ¬ (◦A)

TA

T ¬A

(T¬◦)
T ◦ (¬ n(◦A)) for (n≥0)

(T ◦ ¬ n◦)

TA | F A
(PB)

Fig. 1. mCi C3M tableau rules.

In total, the mCi C3M system has 5 branching rules. As explained in [7],
branching rules lead to inefficiency. To obtain a more efficient proof system, we
used the C3M tableau system for mCi as a basis to devise an original mCi KE
system. The rules of this system are presented in Figure 2.

Let us briefly explain how we have arrived at this set of rules. First, we have
substituted all mCi C3M rules for binary connectives by CPL KE rules [7]
for binary connectives. In this way we got rid of 3 branching rules. After that,
we have substituted (T◦) by (T¬ ′), to get rid of another branching rule. Notice
that (T¬ ′) is a rule that can be derived in the mCi C3M system, using the
definition of derived rule presented in [4]. For instance, (T¬ ′) can be derived in
mCi C3M because {T A,T ◦ A,FA} closes is mCi C3M.

With only one branching rule left (PB) (the Principle of Bivalence), we can
say that this is a KE system; the rule (PB) corresponds directly to the sequent



calculus cut rule. We went further and have substituted the infinite set of rules
(T ◦¬ n◦) by the branch closing condition (F ◦¬ n◦), since the last set of rules is
analytic and it is easier to implement in KEMS (see Section 4), because it has
one premise.

TA → B

TA

T B

(T→1)

TA → B

F B

F A

(T→2)

F A → B

TA

FB

(F→)

FA ∧ B

T A

FB

(F∧1)
FA ∧ B

TB

FA

(F∧2)
TA ∧ B

TA

TB

(T∧)

TA ∨ B

F A

TB

(T∨1)

TA ∨ B

FB

TA

(T∨2)

FA ∨ B

FA

FB

(F∨)

T ¬A

T ◦ A

FA

(T¬ ′)
F ¬A

TA
(F¬ )

T ¬ (◦A)

TA

T ¬A

(T¬◦)
F ◦ (¬ n(◦A))

× for (n≥0)
(F ◦ ¬ n◦)

TA | FA
(PB)

Fig. 2. mCi KE rules.

3.1 Correctness and Completeness Proof

Our intention here is to prove that the mCi KE system is sound and complete
with respect to mCi valuation semantics. The proof will be as follows. First we
will redefine the notion of downward saturatedness for mCi. Then we will prove
that every downward saturated set is satisfiable. The mCi KE proof search
procedure for a set of signed formulas S either provides one or more downward
saturated sets that give a valuation satisfying S or finishes with no downward
saturated set.

Therefore, if an mCi KE tableau for a set of formulas S closes, then there is
no downward saturated set that includes it, so S is unsatisfiable. However, if the
tableau is open and completed, then any of its open branches can be represented
as a downward saturated set and be used to provide a valuation that satisfies S.
We then conclude that the mCi KE system is sound and complete.



Definition 2. A set of mCi signed formulas DS is downward saturated:

1. whenever a signed formula is in DS, its conjugate is not in DS;
2. when all premises of any mCi KE rule (except (PB) and (F ◦ ¬ n◦), for

n ≥ 0) are in DS, its conclusions are also in DS;
3. when the major premise of a two-premise mCi KE rule is in DS, either its

auxiliary premise or its conjugate is in DS. If T ¬X is in DS, either T ◦X or
F ◦X can be in DS, but only if ◦X is a subformula of some other formula in
DS. If ◦X is not a subformula of some other formula in DS, neither T ◦ X

nor F ◦ X are in DS;
4. if a signed formula S X is in DS, then for any sign S, for any formula X ,

for all subformulas Y of X and for all n ≥ 0, the signed formula T ◦ ¬n ◦ Y

is in DS.

We now prove a Hintikka’s Lemma for mCi downward saturated sets:

Lemma 1. (Hintikka’s Lemma) Every mCi downward saturated set is satisfi-
able.

Proof. For any downward saturated set DS, we can easily construct an mCi
valuation v such that for every signed formula SX in the set, v(SX) = 1. How
can we guarantee this is in fact a valuation? First, we know that there is no
pair TX and FX in DS. Second, all mCi KE rules with one or more premises
(except (F ◦¬ n◦) rules) preserve valuations. Note that (F ◦¬ n◦) rules are taken
into account by the last clause in Definition 2. That is, if we have a set of signed
formulas that contains F ◦ ¬n ◦ X , every downward saturated set that contains
this set should also contain T ◦ ¬n ◦X . Therefore it is not downward saturated.
To be downward saturated a set DS must contain, for all its subformulas2 X ,
T ◦ ¬n ◦ X (and must not contain any F ◦ ¬n ◦ X). As we can see in clause
(v7.n) of the mCi valuation definition (see Definition 1), v(T ◦ ¬n ◦X) = 1 for
all X . Therefore, DS is satisfiable.

Theorem 1. Let DS’ be a set of signed formulas. DS’ is satisfiable if and only
if there exists a downward saturated set DS” such that DS’ ⊆ DS”.

Proof. (⇐) First, let us prove that if there exists a downward saturated set DS”
such that DS’ ⊆ DS”, then DS’ is satisfiable. This is obvious because from DS”
we can obtain a valuation that satisfies all formulas in DS”, and DS’ ⊆ DS”.

(⇒) Now, let us prove that if DS’ is satisfiable, there exists a downward
saturated set DS” such that DS’ ⊆ DS”.

So, suppose that DS’ is satisfiable and that there is no downward saturated
set DS” such that DS” ⊇ DS’. Using items (2) and (3) of Definition 2, we can
obtain a family of sets of signed formulas DS’i (i ≥ 1) that include DS’. If none
of them is downward saturated, it is because for all i, {TX,FX} ∈DS’i for
some X . But all rules are valuation-preserving, so this can only happen if DS is
unsatisfiable, which is a contradiction.

2 To be precise, by the subformulas of a set of signed formulas {SiFi}, where Si is a
sign and Fi is an unsigned formula, we mean the set of subformulas of {Fi}.



Corollary 1. DS’ is a unsatisfiable set of formulas if and only if there is no
downward saturated set DS” such that DS” ⊆ DS’.

Theorem 2. The mCi KE system is sound and complete.

Proof. The mCi KE proof search procedure for a set of signed formulas S either
provides one or more downward saturated sets that give a valuation satisfying S

or finishes with no downward saturated set. The mCi KE system is a refutation
system. The mCi KE system is sound because if an mCi KE tableau for a set
of formulas S closes, then there is no downward saturated set that includes it,
so S is unsatisfiable. If the tableau is open and completed, then any of its open
branches can be represented as a downward saturated set and be used to provide
a valuation that satisfies S (in other words, S is satisfiable).

The mCi KE system is complete because if S is satisfiable, no mCi KE
tableau for a set of formulas S closes. And if S is unsatisfiable, all completed
mCi KE tableau for S close.

4 KEMS for mCi

KEMS is a multi-strategy theorem prover based on the KE method for proposi-
tional logics [11,13]. A multi-strategy theorem prover is a theorem prover where
we can vary the strategy without modifying the core of the implementation.
Everytime we want to solve a problem with KEMS we must choose a strategy
and a sorter. A strategy is responsible, among other things, for: (i) choosing the
next inference rule to be applied, (ii) choosing the formula on which to apply the
Cut rule, and (iii) finding contradictions that close proof tree branches. A sorter
is an object that tells a strategy how to sort a list of formulas before trying to
apply rules. Further details about sorters can be found in [11]. We present below
the actual KE systems for mCi we have implemented in KEMS as well as the
two strategies for mCi implemented in KEMS current version.

4.1 Extended mCi KE System

In KEMS we work with an extended version of the mCi KE (see Section 3)
system. This extended version, called e-mCi-KE, has two additional zeroary
connectives: ‘⊤’ and ‘⊥’. In Figure 3 we present the KE rules added to the
original mCi KE system to obtain e-mCi-KE.

T⊤
(T⊤)

F⊥
(F⊥)

Fig. 3. ‘Top’ and ‘bottom’ KE rules.



Trying to achieve better performance with some problems, we have added
some derived rules to e-mCi-KE. These rules can be used to shorten some
proofs. In Figure 4 we show four rules that can be derived from the original
rules and that can be added to the e-mCi-KE.

T ◦ A

TA

F ¬A

(T◦′′)

T ¬A

T A

F ◦ A

(T¬ ′′)

FA

T ¬A
(Fformula)

T ◦ A

TB → A

TB → ¬A

F B

(T◦′)

Fig. 4. Derived mCi KE rules.

As a matter of fact, the current KEMS version has mCi strategies that use
only (T◦′′) and (T¬ ′′) as additional rules, but new KEMS strategies can be
implemented to use the other two rules, or even other derived rules.

4.2 Strategies for mCi

When we decided to implement strategies for mCi, we had already implemented
some strategies for CPL and mbC. Therefore, we could use their implementa-
tion as a basis for the implementation of mCi strategies, reusing much of the
code. For mCi, we have implemented the two following strategies.

mCi Simple Strategy This is an extension of CPL Simple Strategy (see [11])
for mCi. It implements the e-mCi-KE system. This is the order of rule appli-
cations:

1. all mCi KE one-premise rules;
2. all mCi KE two-premise rules;
3. (PB) rule.

To apply a one-premise rule is easy. We iterate over a list of formulas. For
each formula, we verify if the formula matches the pattern of the premise of an
one-premise rule. If it does, we apply the rule and include its conclusion in the
list.

It is a little bit more difficult to apply a two-premise rule. We also iterate
over a list of formulas. For each formula, we verify if the formula matches the
pattern of the main3 premise of a two-premise rule. If it does, we look for a

3 In our presentation, the main premise is always the first premise loooking top-down.
The other premise is called auxiliary.



formula that matches the auxiliary premise of the same rule for the previously
found main premise. If it finds the second premise, we apply the rule and include
its conclusion in the list.

When there is no more one- or two-premise rule that can be applied, we
apply the (PB) rule and branch the proof. We then put one of the branches in
the top of a stack of open branches to be further analyzed and continue the proof
procedure with the other branch.

mCi Extended Strategy This is an extension of the previous strategy. It
implements the e-mCi-KE system extended with two derived rules: (T◦′′) and
(T¬ ′′). This is the order of rule applications:

1. all mCi KE one-premise rules;
2. all mCi KE original two-premise rules;
3. all mCi KE derived two-premise rules;
4. (PB) rule.

The other features are equal to mCi Simple Strategy features.

5 Evaluation

Theorem provers are usually compared by using benchmarks [17]. SATLIB [14]
(for CPL) and TPTP [16] (for first-order classical logic) are two web sites that
contain benchmark problems to evaluate theorem provers. As there were no
existing family of difficult problems for LFIs, we have developed new problem
families to test KEMS. These families can be used to evaluate future theorem
provers for mCi and other LFIs and are presented below.

5.1 Problem Families to Evaluate mCi Provers

In [11] we have presented nine families of difficult problems to evaluate LFI
theorem provers. Here we present the seventh, eighth, and ninth families, which
were developed specifically to evaluate mCi theorem provers. We had two objec-
tives in mind. First, to obtain families of valid problems whose KE proofs were
as complex as possible. And second, to devise problems which required the use
of many, if not all, mCi KE rules. These families are not classically valid, since
their formulas use the consistency and inconsistency connectives. However, if we

define ◦X
def

= ⊤ and •X
def

= ⊥ in CPL4, then all families become CPL-valid and
can be used for evaluating CPL provers.

The sequent to be proved (Φ7
n) for the seventh family is:

n∧

i=1

(Ai),
n∧

i=1

(Bi → (¬Ai)),
n∨

i=1

(◦Ai) ⊢
n∧

i=1

((•Ai) ∨ (¬Bi))

4 A natural way of extending CPL presented in [3].



In this sequent, the
∨n

i=1(◦Ai) formula is actually not essential to arrive at the

conclusion. Therefore, we can define a variant (called Φ7′

) of this family where
this formula does not appear. The Φ7 family is probably more difficult to prove
because of the irrelevant premise.

For the eighth family, this is the sequent to be proved (Φ8
n):

n∨

i=1

(•Ai),

n∧

i=1

(Ai → (¬Bi)),

n∧

i=1

((¬Ai) → C(n−i+1)) ⊢

n∧

i=1

((¬Bi) ∧ C(n−i+1))

Finally, the sequent to be proved (Φ9
n) for the ninth family is:

n∨

i=1

(◦Ai),
n∧

i=1

(Bi → (•Ai)) ⊢
n∨

i=1

¬((◦(◦Ai)) → Bi)

We can have several valid variations of the ninth family, for m ≥ 0 and p ≥ 0:

n∨

i=1

(¬m(◦Ai)),

n∧

i=1

(Bi → (¬m(•Ai))) ⊢

n∨

i=1

¬((◦(¬p(◦Ai))) → Bi)

where (¬1A)
def

= (¬A) and (¬nA)
def

= (¬(¬n−1A)).

5.2 Results

In this section we exhibit some of the results obtained by KEMS on the prob-
lem families we just presented. All results were obtained on a Pentium IV
machine with a 3.20G Hz processor and 3775MB memory running Linux ver-
sion 2.6.15-26-386. The java -jar kems.jar command5 was issued with the
-Xms200m -Xmx2048m options to set the initial and maximum heap sizes. This
allows KEMS to use more of the computer’s main memory than the default
memory allocated by the java virtual machine. The time limit for the proof
search procedure was set to three minutes.

The user can present to KEMS a problem and a prover configuration. The
most important prover configuration parameters for our evaluation were the
strategy and the sorter. The reason is that we have noticed through our experi-
ments that these two are the parameters that most affect a prover configuration
performance. For this reason, in the following we will refer to a prover configu-
ration as a strategy-sorter pair, or simply a pair.

In the tables we display below each prover configuration will be represented
by a binary tuple:

<strategyId,sorterId>

where strategyId and sorterId can vary.
These are the ids for strategies:

5 The command used to execute kems.jar, which is the java archive that contains
KEMS executable version.



MCISS - mCi Simple Strategy;
MCIES - mCi Extended Strategy.

And these are the ids for sorters:

ins - insertion order;
rev - reverse order;
and - ‘and’ connective;
or - ‘or’ connective;
imp - ‘implication’ connective;
T - ‘true’ sign;
F - ‘false’ sign;
inc - increasing complexity;
dec - decreasing complexity;
nfo - string order;
rfo - reverse string order.

In Tables 1, 2 and 3 we present the results (time spent in milliseconds and
proof size) obtained by some selected strategy-sorter pairs for the bigger instance
solved of each mCi family. And in Table 4 we present best mCi strategy-sorter
pairs in time and proof size.

We conclude that mCi Simple Strategy and mCi Extended Strategy achieved
comparable results. In all LFI tests the sorter in the best pairs varied according
to the problem family. And it was interesting to notice that for some families
the sorter choice was almost as important as the strategy choice.

The results obtained by KEMS with the mCi families are the first bench-
mark results for these families. These results can be compared with other provers
for mCi and are available in KEMS site [13].

Pair Time spent Proof Size Comments

<MCIES,and> 849 3524 best in time

<MCISS,nfo> 883 3504 best in size

<MCISS,F> 963 3504 best in size

<MCISS,and> 964 3504 best in size

<MCIES,rev> 40445 105872 worst in time and size

Table 1. mCi Φ7
20 results table.

6 Conclusion

We have presented in this paper a KE tableau system for mCi and we proved
that this system is correct and complete. We have also presented here the two
KEMS strategies we have designed that use the mCi KE system. With these



Pair Time spent Proof Size Comments

<MCISS,or> 18430 25407 best in time and in size

<MCISS,dec> 18442 25407 second best in time

<MCIES,or> 18635 25507 worst in size

<MCIES,dec> 18969 25507 worst in time and size

Table 2. mCi Φ8
50 results table.

Pair Time spent Proof Size Comments

<MCIES,inc> 59644 47691 best in time and size

<MCIES,imp> 59818 47691 second best in time

<MCISS,rev> 100869 48142 worst in time and size

Table 3. mCi Φ9
75 results table.

strategies, we have built a theorem prover for mCi. Besides that, we have created
three problem families to evaluate theorem provers for mCi, and used these
families to compare the performance of KEMS strategies for mCi. The results
obtained are the first benchmark results for these families.

6.1 Further work

It would be useful to have a general procedure for automatically generating
correct and complete KE systems for LFIs and other logical systems, similar to
the procedure for generating tableau systems presented in [1]. This could help
us to extend KEMS to other logical systems. Work in this direction are being
studied by some authors of [1]. Having this method would facilitate one to extend
KEMS to be able to deal with other logical systems.

Acknowledgements

This paper has been partially sponsored by FAPESP Thematic Project Grant
ConsRel 2004/14107-2. Marcelo Finger is partly supported by CNPq grant PQ
301294/2004-6.

Bigger instance solved Problem size Best time pair Best size pair

Φ7
20 336 <MCIES,and> <MCISS,nfo>

Φ8
50 946 <MCISS,or> <MCISS,or>

Φ9
75 1197 <MCIES,inc> <MCIES,inc>

Table 4. Best mCi strategy-sorter pairs.



References

1. Carlos Caleiro, Walter Carnielli, Marcelo E. Coniglio, and Joao Marcos. Two’s
company: “The humbug of many logical values”. In Logica Universalis, pages 169–
189. Birkhäuser Verlag, Basel, Switzerland, 2005. Pre-print available at http:

//tinyurl.com/yb5qbz. Last accessed, November 2006.
2. Walter Carnielli, Marcelo Coniglio, and Ricardo Bianconi. Logic and Applications:

Mathematics, Computer Science and Philosophy (in Portuguese). Unpublished,
2005. Preliminary Version.

3. Walter Carnielli, Marcelo E. Coniglio, and Joao Marcos. Logics of Formal In-
consistency. In Handbook of Philosophical Logic, volume 12. Kluwer Academic
Publishers, 2007. To appear. Pre-print available at http://tinyurl.com/ybn4yw.
Last accessed, November 2006.

4. Walter Carnielli and Mamede Lima-Marques. Reasoning under Inconsistent
Knowledge. Journal of Applied Non-Classical Logics, 2(1):49–79, 1992.

5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms - Second Edition. MIT Press, 2001.

6. Newton C. A. da Costa, Décio Krause, and Otávio Bueno. Paraconsistent log-
ics and paraconsistency: Technical and philosophical developments. CLE e-prints
(Section Logic), 4(3), 2004. Pre-print available at http://tinyurl.com/yxhon7.
Last accessed, November 2006.

7. Marcello D’Agostino. Tableau methods for classical propositional logic. In Mar-
cello D’Agostino et al., editor, Handbook of Tableau Methods, chapter 1, pages
45–123. Kluwer Academic Press, 1999.

8. Marcello D’Agostino and Marco Mondadori. The taming of the cut: Classical
refutations with analytic cut. Journal of Logic and Computation, pages 285–319,
1994.

9. Sandra de Amo, Walter Carnielli, and João Marcos. A Logical Framework for
Integrating Inconsistent Information in Multiple Databases. In Thomas Eiter and
Klaus-Dieter Schewe, editors, Lecture Notes in Computer Science, volume 2284,
pages 67–84. Springer-Verlag, Berlim., 2002.

10. Itala M. Loffredo D’Ottaviano and Milton Augustinis de Castro. Analytical
Tableaux for da Costa’s Hierarchy of Paraconsistent Logics Cn, 1 ≤ n ≤ ω. Journal
of Applied Non-Classical Logics, 15(1):69–103, 2005.

11. Adolfo Neto. A Multi-Strategy Tableau Prover. PhD thesis, University of São
Paulo, 2007. http://kems.incubadora.fapesp.br/portal/documentos-1/tese.
Last accessed, February 2007.

12. Adolfo Neto and Marcelo Finger. Effective Prover for Minimal Inconsistency Logic.
In Artificial Intelligence in Theory and Practice, IFIP International Federation for
Information Processing, pages 465–474. Springer Verlag, 2006. Available at http:
//www.springerlink.com/content/b80728w7m6885765. Last accessed, November
2006.

13. Adolfo Neto and Marcelo Finger. KEMS - A KE Multi-Strategy Tableau Prover,
2006. http://kems.iv.fapesp.br. Last accessed, November 2006.

14. Satisfiability library, 2003. http://www.satlib.org. Last accessed, March 22,
2005.

15. Raymond M. Smullyan. First-Order Logic. Springer-Verlag, 1968.
16. Geoff Sutcliffe. Thousands of problems for theorem provers, 2001. http://www.

cs.miami.edu/~tptp. Last accessed, March 2005.
17. Geoff Sutcliffe and Christian Suttner. The CADE ATP System Competition, 2003.

http://www.cs.miami.edu/~tptp/CASC. Last accessed, March 2005.


