Comparing Two Markov Methods for
Part-of-Speech Tagging of Portuguese

No Author Given

No Institute Given

Abstract. There is a wide variety of statistical methods applied to Part-
of-Speech (PoS) tagging, that associate words in a text to their corre-
sponding PoS. The majority of those methods analyse a fixed, small
neighborhood of words imposing some form of Markov restriction. In
this work we implement and compare a fixed length hidden Markov
model (HMM) with a variable length Markov chain (VLMC); the lat-
ter is, in principle, capable of detecting long distance dependencies. We
show that the VLMC model performs better in terms of accuracy and
almost equally in terms of tagging time, also doing very well in training
time. However, the VLMC method actually fails to capture really long
distance dependencies, and we analyse the reasons for such behaviour.

1 Introduction

An empiric approach to Natural Language Processing (NLP) suggests that we
can learn the complicated and extensive structure of language by searching com-
mon patterns in its use, identified via Probability Theory. This leads to prob-
abilistic models of linguistic phenomena whose parameters are induced by the
application of statistical and machine learning methods.

This work concentrates on part-of-speech analysis, that is, attributing to
words in context their correspondent part-of-speech (PoS) tag. Several com-
putational linguistic tasks benefit from such analysis, such as parsing, automatic
translation, grammar correction and information extraction.

Many words have more than one possible PoS tag, which is disambiguated
by the context in which these words occur. However, even with contextual in-
formation some words remain ambiguous.

Several computational approaches use statistical methods to model relations
between words, tags and contexts, which are normally computed by employing
some form of supervised learning from a manually tagged corpus.

A traditionally used method is the Hidden Markov Model (HMM) [1], that
tags a word generally by analysing the tags of the two previous words. This
method works quite well, classifying correctly more than 93% of the words of a
Portuguese corpus. This relatively great accuracy is due to the fact that most
contextual dependencies is short distanced, so that just the two previous tags
can determine the tag of a word. But considering that the tagging accuracy of
several existing limited-context methods have practically converged to a value

inferior to 100% (~97%), an extra portion of efficiency could be reached de-
veloping methods that consider longer distance dependencies. However, due to
data sparseness, contexts with size greater than two can hardly improve accu-
racy on these methods, since several contexts occur only once in the corpus, and
therefore cannot capture any dependency. This can be seen even with contexts
of size two, as shown in the results (Section 4). Moreover, the time necessary to
train a HMM model, that is, to count and to calculate the probabilities of tags
in context, is usually too large, with an exponential growth on the number of
words considered in the context. The other method we study is Variable Length
Markov Chains (VLMC), and we use it to try to capture variable long distance
dependecies, thus overcoming these problems and reaching that extra efficiency.

This work presents a comparison between two methods applied to PoS tag-
ging of Portuguese: the classically used HMM method, and the not so known
VLMC method. It also presents a study about the treatment of short, average,
and long distance dependencies in the Brazilian Portuguese when using VLMC.
We obtained accuracy results very near the best ones reported for Portuguese,
and also with training and execution times well bellow the existing ones in lit-
erature.

The article is organized as the following. Section 2 briefly presents the ap-
plication of VLMC to the PoS tagging problem. Section 3 describes the taggers’
implementation. The obtained results are analysed in Section 4, and a compar-
ison with similar results in literature is shown in Section 5. Conclusions about
the application of the methods are then discussed in Section 6.

2 Variable Length Markov Chains

The idea is to allow the memory of a Markov chain to have variable length,
depending on the observed past values. We will explain the concept of Vari-
able Length Markov Chains considering the PoS tagging context. For a formal
description see [2,3].

Consider a Markov chain with a finite, large order k. Let [; be a tag, and
li—k,i—1 be the tags preceding /;. The idea of a variable length memory can be
seen as a cut of irrelevant states from the [;_j ;1 history. We call the set of
these states the context of [;.

Given a tag [;, its context l;_p—1, h < k, is given by the context function
¢(li—k,i—1)- The states that determine the probabilities of the VLMC are given
by the values of the context functions of the tags. These states are represented
as a tree.

A context tree is a tree with a root node in the top, from which ramifications
go down, such that each internal node has at most |£| sons, where L is the
tagset. Each value of a context function c¢(-) is represented as a branch of such
tree. For example, the context given by c¢(l;_x—1) is represented as a branch
whose sub-branch in the top is determined by [;,_;, the next sub-branch by I;_o,
and so on, until the leaf, determined by I;_p.

The parameters of a VLMC are the underlying functions ¢(-) and their prob-
abilities. To obtain these parameters we use a version of the context algorithm
of Rissanen [4]. First, it builds a big context tree, using a training corpus. For
a tag [;, its maximal history l;_x,—1 is placed as a branch in the tree. Then,
the algorithm uses a pruning function considering a local decision criterion. This
pruning cuts off the irrelevant states from the tags’ histories. For each leaf u of
the context tree, and branch v that goes from the root to the upper node of w,
u is pruned from the tree if

Ay = P(ljou) log
lel

P(l|ou)
(Pv)) C(vu) < K, (1)

where C'(vu) is the number of occurrences of the sequence vu in the training
corpus, and K is a threshold value, called the cut value of the context tree,

If the probability of a tag does not change much between considering the
entire branch together with the leaf (all past history) and considering only the
branch (the history without the oldest tag), then the leaf does not need to be
considered, and can be removed from the tree.

3 Implementation

We have implemented two PoS taggers, one based on VLMC and one based on
HMM.
The HMM tagger uses second order Markov models — that is, the tag of
a word depends on the word itself and on the two previous tags — where the
states represent the tags and the observations represent the words. The transition
probabilities depend on the states, in this case pairs of tags, and the outcome
probabilities depend on the destination state. Formally, we wish to find the best
sequence of tags [...l for a given sequence of words w; ... wr of size T, that
is,
T
arg max [T Pt 1i—2) P (will) (2)

i=1

where [y and [_; are sentence starting markers.

The probabilities are estimated from a tagged corpus. We use maximum
likelihood probabilities P, which are derived from the relative frequencies of
words and sequences of tags. For example, the probability of a tag l3 given the
sequence [1, 5 is equal to the number of times the three tags occur in sequence
(l1,12,13) in the corpus divided by the number of times only the two previous
tags occur in sequence (I1,15). That is, P(Is|ly,ls) = %

In the VLMC tagger the sequences of tags obtained from the training corpus
are used to feed the context tree, which after pruned defines the context func-
tions. This way, for a given sequence of tags l;_j ;—1, the probability that the
next tag is l; is given by P(l;|c(li—k,i—1))-

We decided to use the value of K given by an equation defined empirically:

_ log(n) n
K= tog(2) 17 ®)

where | L] is the size of the tagset, |S| the number of sentences, and n the number
of words of the training corpus. For the whole training corpus (775,602 words),
K was equal to 54.6615. The results showed in Section 4 were obtained with this
equation.

3.1 Treating Unknown Words

When a text is tagged, words new to the training corpus are found. Thus, in
order to tag them more correctly as possible, a special treatment is needed.

We used two complementary methods. The first consists in restricting the
possible tags for an unknown word, eliminating closed tags. Closed tags, like the
articles and the conjunctions, are those tags that are only assigned to a limited
number of different words. Yet other tags like verbs and nouns can be assigned
to a great number of distinct words, and therefore are called open tags.

In the second method the word’s morphology analyzed. We use a simplificated
suffix analysis!: a tree is built with the suffixes of all words of the training
corpus that have an open tag; next, this tree is normalized, creating probability
distributions; then, for an unknown word, a search for its greatest suffix existing
in the tree is made, returning the probabilities of the possible tags. We consider
as the suffix of a word used to build the tree the last half of the word. Moreover,
we check to see if the first letter of a word is uppercase and if so, if this word
is not sentence starting, we assign to it a higher probability of being a proper
noun.

4 Tests and Results

Both taggers were implemented using C++ and STL (Standard Template Library),
and were compiled with g++ version 3.3.4. The tests were made on a machine
equipped with one Intel Pentium 4 processor of 3 GHz, and 1 GB of RAM.

The taggers were trained and tested with the Tycho Brahe corpus [5], which
uses a set of 383 tags and contains various texts from historical Portuguese
manually tagged, in a total of 1,035, 593 words. These words were splitted into
a training corpus containing 775,602 words, and a testing corpus containing
259,991 words.

We executed sets of tests varying the size of the training corpus, choosing
5%,10%, . ..,95%, 100% of its sentences and executing 10 times with each one of
these sizes (randomizing the sentences each time), but always using the testing
corpus without modifications.

! The term suffix we use means “final sequence of characters of a word”, what is not
necessarily a linguistically significant suffix.

Figure 1 shows accuracy? results for both taggers. It can be seen that the

96 T T
Tagger

VLMC Tagger —+— e
HMM T —X—
o5 agger ’-/ J—,
7’/
94 //
P e X
//* e L X

| /o
1
1

1

Accuracy (%)

89

0 100000 200000 300000 400000 500000 600000 700000 800000
Number of Training Words

Fig. 1. HMM tagger’s and VLMC tagger’s accuracy.

VLMC tagger has consistently a greater accuracy than the HMM tagger’s one;
for the whole corpus, 95.51% over 93.48%. The VLMC tagger’s curve grows
quicker than the HMM tagger’s one. Based on this information we can say that,
even increasing the number of words in the training corpus, the HMM tagger
will not reach the accuracy of the VLMC tagger.

In the graph of the Figure 2 three curves are shown, representing the total
accuracy of the VLMC tagger, its accuracy for known words, and its accuracy for
unknown words. When using the entire training corpus, 69.53% of the unknown
words are correctly tagged. With only 5% of the training corpus, the average
accuracy for unknown words was only 63.97%, a difference of more than 5%.
Considering the fact that the number of unknown words is greater when using
a smaller training corpus, this difference represents approximately 4% of the
testing corpus, which means more than 10,650 tagging mistakes. With respect
to known words, the average accuracy with 5% of the training corpus was 94.20%,
and with the entire corpus 96.39%. This difference is approximately 3, 872 words,
about 1.49% of the testing corpus.

In the HMM tagger, the percentage of unknown words correctly tagged varied
from 62.37% with 5% of the training corpus, to 68.81% with the entire corpus; a

% By accuracy we mean the proportion of words from the testing corpus to which the
tagger assigns the correct tag.

100

BT B e AT (A SIS N s S/
95 S ey A ATANE
I T

wl

85

80

Accuracy (%)

75

" IV A e A T G A
65 ol Average Accuracy .
* Total —+—

of Known Words —X—
of Unklnown Wordls —k—

0 100000 200000 300000 400000 500000 600000 700000 800000
Number of Training Words

60

Fig. 2. VLMC tagger’s accuracy for known and unknown words.

difference of 6.5%, which in the VLMC tagger was of 5%. This can be explained
by the fact that the HMM tagger considers very small contexts, and therefore
it ends out leaving the choice of the best tag for an unknown word only to the
suffix tree. This is why an increase in the number of training words improves the
accuracy for the unknown words.

The fact that the HMM tagger considers very small context also explains the
interesting result obtained for the known words. The variation in the accuracy
according to the size of the training corpus was small: 93.62% with 5% of it, and
94.32% with the entire corpus. A difference of only 0.7%, against 2.19% from
the VLMC tagger. That is, because the HMM tagger considers small contexts,
tagging the known words is little influenced by the tagging of the unknown words.
This shows that, at the same time that the VLMC tagger treats better unknown
words, since it uses bigger contexts as aid, it is also more sensible to eventual
tagging mistakes, and may wrongly tag a word by influence of the context.

Figure 3 shows the curves of the average training and tagging times taken
by the taggers with respect to the number of words used to train them. Both
training and tagging times for the HMM tagger are slightly smaller than the
ones for the VLMC tagger. But in fact, considering the total execution time of a
tagger as the sum of its training and tagging times (and some constant overhead
time for system operations), the curve of the HMM tagger’s execution time has
a correlation of 0.9956, and the VLMC tagger’s one of 0.9969. This means that
both taggers have linear complexity over time, and so both are equally efficient
with respect to execution time.

100

T T
Average Time 7Y

VLM((:) fraining time —4A— v

90 } VLMC tagging time —w— oYY)

HMM fraining time —&=— P /._./Irf s
HMM tagging time —@&— -

80 —s

l‘P R

70 v

oy
p

60

oo

40

Time (s)

30

20

b

/A/A/ ,E\/E)/B"B/E
10 E/E—/E' EKM
0 éﬁé{—a/B/E’/B/B/
0 100000 200000 300000 400000 500000 600000 700000 800000

Number of Training Words

Fig. 3. HMM tagger’s and VLMC tagger’s average training and tagging times.

However, note that the HMM tagger’s training time is relatively low. The
explanation is that we did not make any training iteration for it, as normally
is done. On the contrary, we just learned the probabilities through the training
corpus. This was done because the time needed for the training process was too
great, around 4622 seconds (37 times greater than without training), and the
accuracy did not improve as much as expected. Moreover, works like the ones
of Church [6] and DeRose [7] also collect statistical information from a tagged
corpus instead of using the process of training for HMM.

Figure 4 shows the number of states of two tags built by the HMM tagger
during training. Figure 5 shows the growth of the number of nodes in the VLMC
tagger’s context tree. Comparing both figures, it can be seen that the number
of states in the HMM tagger is more than three times larger than the number of
nodes in the VLMC tagger, showing that many sequences of two tags from the
training corpus are consequence of sparse data, and do not add much knowledge
relevant for the tagging.

Other results were also generated, but these are omitted due to space restric-
tions. The interested reader can consult [reference withold].

5 Related Works

A currently well known tagger is the one of Brill [8], which is based on transfor-
mation rules and achieves around 95.4% of accuracy in the Wall Street Journal
(WSJ) [9] English corpus. For the Portuguese, Chacur and Finger [10] proposed

10000 T T

o®°
9000 -2
//]
@/O
8 8000 ﬁ/ CTrctininsg T
= - orpus Size
2 ;@(A 5% +
- 10%
2 7000 15% X 4
= 20% [
9 25%
e 30%
O 6000 383’2 g 1
2 45% A
€ 50% 7
3 55%
5000 0% O 4
5% &
70%
2 o
%
4000 85% (® 7
90% 8
[ean —— 95%
% 100%
3000 L L
0 100000 200000 300000 400000 500000 600000 700000 800000

Number of Training Words

Fig. 4. Number of states of two tags obtained by the HMM tagger with respect to the
number of words in training.

3000

2500 //
2000 /

e

1500 =

1000 /

Number of Nodes in the Context Tree

500 /

0
0 100000 200000 300000 400000 500000 600000 700000 800000
Number of Training Words

Fig. 5. Growth of the number of nodes in the VLMC tagger’s context tree.

and implemented a variant of the Brill’s method, and obtained reasonable re-
sults. After that Finger [11] used some optimization techniques and obtained
better results, around 95.43% of accuracy on the Tycho Brahe [5] corpus.

Among the taggers that use statistical models Ratnaparkhi [12] implements
one based on Maximum Entropy, which obtains 96.6% of accuracy on the WSJ
corpus. Brants [13] implements a tagger based on HMM that achieves an accu-
racy of 96.7%. Recently, Toutanova [14] showed a tagger based on Ciclic Depen-
dendy Network, which obtains 97.24% of accuracy, claiming this is the state of
the art for English. For Portuguese, Aires [15] adapts various English taggers
and shows their results for Portuguese. The best one achieves 90.25% of accu-
racy, and is obtained by the adaptation of the Ratnaparkhi’s Maximum Entropy
tagger.

6 Conclusions

We built two PoS taggers for Portuguese, one based on the traditionally used
HMM, and one based on VLMC, a recent theoretic statistical model.

With an accuracy of 95.51% with the VLMC tagger we obtained a result
very close to the best ones reported for Portuguese [10,15,11]. Also, the time
spent in training with more than 775,000 words and in tagging almost 260, 000
(1,035,593 in total) is very fast, though we cannot compare it to other taggers
in literature since this result is normally not presented (even so, we report that
the VLMC tagger tooks only 157 seconds to train and tag with the million words
stated above, running on cheap machine).

When instructing the VLMC tagger to consider longer contexts, it was not
able to detect many long distance dependencies. Moreover, instructing it to con-
sider not so long contexts have improved the performance (in terms of accuracy).
So we conclude that, when having less long contexts available, the tagger chooses
short and recent contexts, what improves the performance and shows that there
are long contexts that decay it.

Though Variable Length Markov Chains do not capture very long contexts,
they perform consistently better for part-of-speech analysis than the classicaly
applied theory of fixed order Markov Chains. We give results that allow us to
observe limitations and advantages of the application of statistical models based
on VLMC: they learn various short and average distance fixed contexts (d <
6), but they do not have generalizating capacity to learn linguistic phenomena
occuring in variable contexts and of longer distance. Future research in statistical
linguistics regarding long range dependencies should concentrate in other ways
of solving this limitation.

References

1. Rabiner, L.R.: A tutorial on hidden markov models and selected applications
in speech recognition. In: Proceedings of the IEEE. Volume 77 of no. 2. (1989)
257285

10.

11.

12.

13.

14.

15.

Biihlmann, P., Wyner, A.J.: Variable length markov chains. Annals of Statistics
27(2) (1999) 480-513

Maéchler, M., Biihlmann, P.: Variable length markov chains: Methodology, com-
puting and software. Research Report 104, Eidgenossische Technische Hochschule
(ETH), CH-8091 Ziirich, Switzerland (2002) Seminar fur Statistik.

Rissanen, J.: A universal data compression system. IEEE Trans. Inform. Theory
IT-29 (1983) 656 — 664

IEL-UNICAMP and IME-USP: Corpus Anotado do Portugués Histérico Tycho
Brahe. (2005) Acessado em 2005.

Church, K.W.: A stochastic parts program and noun phrase parser for unrestricted
text. In: Proceedings of the second conference on Applied natural language pro-
cessing, Austin, Texas, Association for Computational Linguistics (1988) 136-143
DeRose, S.J.: Grammatical category disambiguation by statistical optimization.
Computational Linguistics 14 (1988) 31-39

Brill, E.: Unsupervised learning of disambiguation rules for part of speech tagging.
In Yarovsky, D., Church, K., eds.: Proceedings of the Third Workshop on Very
Large Corpora, Somerset, New Jersey, Association for Computational Linguistics
(1995) 1-13

Marcus, M.P.; Santorini, B., Marcinkiewicz, M.A.: Building a large annotated
corpus of english: The penn treebank. Computational Linguistics 19(2) (1994)
313-330

Alves, C.D.C., Finger, M.: Etiquetagem do portugués classico baseada em corpora.
In: Proceedings of IV Encontro para o Processamento Computacional da Lingua
Portuguesa Escrita e Falada (PROPOR99), Evora, Portugal (1999) 21-22

Finger, M.: Técnicas de otimizacdo da precisdo empregadas no etiquetador Tycho
Brahe. In: Proceedings of V Encontro para o Processamento Computacional da
Lingua Portuguesa Escrita e Falada (PROPOR2000), Atibaia, Brazil (2000) 19-22
Ratnaparkhi, A.: A maximum entropy model for part-of-speech tagging. In: Pro-
ceedings of the Empirical Methods in Natural Language Processing Conference,
University of Pennsylvania (1996)

Brants, T.: Tnt — a statistical part-of-speech tagger. In: Proceedings of the
Sixth Applied Natural Language Processing Conference (ANLP-2000), Seattle, WA
(2000)

Toutanova, K., Klein, D.;, Manning, C.D., Singer, Y.: Feature-rich part-of-speech
tagging with a cyclic dependency network. In: Proceedings of HLT-NAACL 2003.
(2003) 252-259

Ajres, R.V.X.: Implementacdo, adaptagio, combinacdo e avaliagdo de etiqueta-
dores para o portugués do brasil. Dissertacdo de mestrado, Instituto de Ciéncias
Matematicas e Computagdo, Universidade de Sdo Paulo - Campus Sao Carlos
(2000)

