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Abstract

Grid computing technology improves the computing experiences at organizations by effectively in-
tegrating distributed computing resources. However, just a small fraction of currently available Grid
infrastructures focuses on reutilization of existing commodity computing resources. This paper intro-
duces InteGrade, a novel object-oriented middleware Grid infrastructure that focuses on leveraging the
idle computing power of shared desktop machines. Its features include support for a broad range of
parallel applications and mechanisms to assure that the owners of shared resources do not perceive any
loss in the quality of service. A prototype implementation is under construction and the current version
is available for download.

1 Introduction

In recent years we have witnessed an impressive growth in the use of computers in various fields of
research, including physics, chemistry, biology, and economics. Even corporations rely on the intensive
use of computing power to solve problems such as financial market simulations and studies for accurate oil
well drilling. The movie industry makes intensive use of computers to render movies using an increasing
number of special effects.

The recent introduction of clusters of commodity computers brought down the costs of the hardware
needed to perform intensive computations. However, this solution has major drawbacks. First, traditional
clusters are composed of dedicated machines. This means that when no computation is being carried
out, machines remain idle, normally inaccessible to other users. Second, the whole cluster infrastructure
demands a lot of physical space, a temperature controlled environment, and measures to deal with the
noise produced by cluster nodes. These problems may seem negligible when we consider a 16 node cluster,
but when the cluster grows in size, they have to be considered carefully.

Meanwhile, when we consider the computing resources available at corporations and universities, we
see that they typically have hundreds or thousands of desktop machines, which are used by workers as
their personal workstations or by students in instructional and research laboratories. When analyzing
the usage of each of these machines we typically conclude that they sit idle for a significant amount of
time. Even when the computer is in use, it normally has a large portion of idle resources. When we
consider the night period, we conclude that most of the times they are not used at all. This situation
lives in contradiction with the huge demand for computational resources already described. The need
for and waste of resources often coexist in the same institution. The problem is that organizations lack
a software infrastructure to allow the efficient use of these idle resources.

This paper introduces InteGrade, a novel Grid middleware architecture to solve the contradiction
mentioned above. The architecture enables a wide range of parallel applications to execute in a distributed
environment, benefiting from the power of the hardware already available in organizations. This is
achieved by integrating user desktop machines and machines in shared laboratories in a intranet or
wide-area Computational Grid [FK99].

Differently from other grid approaches, InteGrade is based on state-of-the-art middleware technology
for distributed objects, namely, the CORBA [OMG02] industry standard for distributed object systems.
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This allows us to leverage existing services [OMG98], such as Naming, Trading, Transactions, and Persis-
tence, shortening development and maintenance time. InteGrade services are exported as CORBA IDL
interfaces being accessible from almost any programming language and operating system.

An important requirement for InteGrade is that users who decide to share their machines with the
Grid shall not perceive any drop in the quality of service provided by their applications. InteGrade’s
architecture was carefully designed with this requirement in mind. Thus, client machines use a very
lightweight CORBA implementation and the access to its hardware resources is carefully controlled by
a user-level scheduler.

Although many applications can benefit from this environment, it is clear that parallel applications
will benefit the most. Usually they have to be executed on dedicated resources, such as Beowulf clusters
[Beo03], but InteGrade allows them to execute over many shared resources, bringing the power of parallel
computing to institutions that cannot afford a multi-node dedicated cluster. Dedicated resources can
also be part of InteGrade grids, either remaining dedicated or converted to workstations and shared in
the grid.

In such a dynamic environment it is difficult to schedule the execution of applications, since an
idle resource may become busy again without further notice. To minimize this problem, InteGrade’s
architecture includes a component for collecting and analyzing usage patterns, a mechanism that based
on usage information and statistics, can determine the probabilities of an idle node to become busy again.
When tuned properly, this mechanism can help schedulers to forecast if an idle machine will stay idle for
a significant amount of time or if it is going to be busy again in a few seconds.

The InteGrade project is a multi-university, 3-year initiative that started in August 2002. Section
2 discusses InteGrade’s related work and Section 3 explains the major requirements and challenges the
project will face. In Section 4 we present the proposed architecture and in Section 5 we describe which
parts of the architecture have already been implemented, which parts are still under development, and
on what technologies the implementation is based. Finally, we present our conclusions in Section 6.

2 Related Work

In recent years, many Grid related projects surfaced, enabling new ways of resource sharing and integra-
tion.

The Globus Project [Glo03, FK97] provides an infrastructure for the integration of several computers,
spanning different geographical locations into a single grid system. It provides a toolkit that allows the
construction of grid-enabled applications in an incremental fashion. While Globus focuses on building
the software infrastructure for a broad range of machines, including high-end ones, InteGrade focuses on
leveraging the idle processing power from commodity workstations, taking appropriate measures to ensure
that their users do not feel any drop in the quality of service. Another difference is that InteGrade is
being built using the CORBA industry standard, which facilitates the interaction between the middleware
system and applications through the use of well defined IDL interfaces. The use of CORBA also allows
the middleware platform to be based on a distributed object model leveraging existing CORBA services,
such as Trading, Naming, and others.

Legion [Leg03, GW96] provides a middleware infrastructure that enables applications to benefit from
execution in a distributed and parallel environment. It provides its own specific runtime library and
builds its services on top of a unified object model [LG96]. InteGrade differs from Legion in its use of
CORBA instead of a proprietary distributed object model. InteGrade also has a deeper focus on idle
resource management and commodity hardware.

Condor [Con03] may be considered the pioneer [LLM88] of Grid systems. As InteGrade does, it focuses
on harvesting idle computing power from workstations in order to perform useful computation, such as
High Throughput Computing [LBRT97] tasks. It provides scheduling and monitoring to applications
without the need of modifying them. It also provides checkpointing but this requires the application to
be re-linked with a specific library. However, support for parallel applications is currently quite limited,
since some computers in the system should be configured [Wri01] as partially-reserved nodes, like nodes
on a Beowulf cluster. The reservation might not be feasible, for example, if the node is used by an
employee. Checkpointing of parallel applications is currently under development, and can address this
issue. Differently from Condor, InteGrade is being built with parallel applications in mind from the
beginning. We also plan on featuring mechanisms for collecting and analyzing usage patterns, which can
be used to forecast the behavior of grid nodes to improve scheduling. Finally, InteGrade uses CORBA
as its communication protocol rather than a specific one used in Condor.

The SETI@home project [SET03] built an infrastructure to solve a single problem, SETI (Search
for Extraterrestrial Intelligence), and obtained support from thousands of users, leveraging the power of
hundreds of thousands of commodity workstations throughout the world. It is accredited as the problem
that has received the largest amount of computing time in history. Despite its tremendous success, this
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project has several limitations when compared to InteGrade, the most notable being the impossibility
of solving different problems. Other limitations include the lack of support for parallel applications that
demands communication between computing nodes, the necessary intervention of the client machines to
specify when the application can run and the impossibility of using resources of a partially idle node.

BOINC (Berkeley Open Infrastructure for Network Computing) [Boi03] is considered SETI@home’s
successor. It introduces many features that were missing in SETI@home, such as the possibility of using
the grid to solve different problems, limited support for communication between parallel application
nodes and checkpointing. Although development is in its beginning, the features planned for the full
version lack usage pattern collection and analysis, one of InteGrade features which will help to choose
where applications should run. Differently from InteGrade, BOINC lacks general support for parallel
applications, being more suitable for applications with negligible data dependencies between its nodes.

3 Architectural Requirements

One of InteGrade’s most important requirements is to leverage idle resources of commodity computers.
That requisite demands that the middleware have the means for determining the activity status in each
of the grid nodes. To address that requisite, we need an information service that gathers all relevant
information from each node. We also need the definition of what should be considered a candidate node
to run a grid application. One could argue that a candidate node is any node that has any amount of
free resources at a certain moment. This could be the basic definition used by the system, but to obtain
the collaboration of a large number of users, we need to empower users with the means to determine
when their machine resources will be exported to the grid and what portion of its resources can be used
by grid applications. Thus, the system must provide a flexible and user-friendly way of letting resource
providers share their machines as they want. On the other hand, we must also keep in mind that the
vast majority of resource providers will not be knowledgeable users, so the system must provide sensible
default values for its parameters to protect providers from degradation in the quality of service.

Another important requirement related to leveraging idle resources is ensuring that an application
does make progress in its execution. We need the means to ensure that application execution evolves even
in a dynamic environment in which nodes can turn from idle to busy without further notice. This can be
solved in at least two ways, or using a combination of these. The first solution is to use a checkpointing
mechanism to ensure progress by periodically saving the application execution state. Since the grid can
encompass different platforms and operating systems, this checkpointing must be machine and operating
system independent to permit migration of computation across grid nodes. The second solution is to
make use of usage pattern collection and analysis. This procedure is based on information gathered by
resource managers. Node usage information for short time intervals (e.g., 5 minutes) is grouped in larger
intervals called periods. After that, the system shall apply clustering algorithms [JW83] to this data in
order to extract behavioral categories. It is expected that these categories will map to common usage
periods such as lunch-breaks, nights, holidays, working periods, and so on. From that mapping it will
be possible to predict the time-span in which a machine will be idle. This is an evolutionary process: as
data is being collected and analyzed new categories can appear, others can disappear.

Another major requirement is to provide support for a wide range of parallel computation models,
which is not the case in existing grid systems. Most grid initiatives provide support for parallel applica-
tions with little or no communication among application nodes. Some parallel applications demand more
in terms of inter-process communication than others. The different demands in terms of communication
suggest that different applications should be scheduled to different computers, respecting the differences
regarding the network connectivity associated to each grid node. So, the distributed resource manage-
ment service must also provide information on the kind of network connection available in each part of
the grid. That kind of information will help schedulers to create virtual topologies based on the needs
of parallel applications. With this kind of support, a grid user may, for example, submit the following
request to InteGrade: execute application X in two groups of 50 nodes, each group connected internally
by a 100 Mbps network and the two groups connected by a 10 Mbps network; each node should have at
least 16 MB of RAM and a CPU of at least 500 MIPS.

The need to ensure application progress is even more challenging when parallel applications are con-
sidered. Measures that are adequate when sequential programs are considered are not directly applicable
in parallel execution environments. Consider checkpointing, for example. If the system has to checkpoint
a parallel application, what should it do with ongoing communications? How to determine that a process
migrated to another machine, thus requiring all pending communications to be redirected? This kind of
issue can render parallel checkpointing prohibitive, due to large overheads. Usage pattern analysis plays
an important role since the scheduler can place parallel applications on idle nodes with lower probability
of becoming busy before the computation is completed. Although usage patterns attenuate the problem,
it does not solve it entirely since it can only provide a hint of what is going to happen and cannot
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guarantee the future availability of resources. We still need a model that saves the state of computation
periodically, providing milestones that can be used to resume the application in case of crashes or when
there is need for migration. To ensure that, InteGrade adopts BSP [Val90] as the model for parallel
computation; imposing frequent synchronizations among application nodes.

Finally, security should be considered through the whole architecture. The most important require-
ment is to ensure that users who decide to export its resources to the grid do not have its personal files
and overall private information exposed or damaged in any way. To ensure that, we are investigating the
use of Java and general sandboxing [GWTB96] to protect from malicious code execution; authentication,
and cryptography.

4 Architecture

InteGrade grids are structured in clusters, each consisting of groups from one to approximately one
hundred computers, which can be shared workstations or machines dedicated to the grid. Clusters are
then arranged in a hierarchy, allowing a single InteGrade grid to encompass millions of machines. The
hierarchy can be arranged in any convenient manner. Figure 1 depicts the major kinds of components
in a InteGrade cluster. The Cluster Manager node represents one or more nodes that are responsible for
managing that cluster and communicating with managers in other clusters. A User Node is one belonging
to a grid user who submits applications to the cluster. A Resource Provider Node, typically a workstation,
is one that exports part of its resources making them available to the grid users. A Dedicated Node is
one reserved for grid computation. This kind of node is shown to stress that, if desired, InteGrade can
also encompass dedicated resources. Note that those categories can overlap; for example, a node can be
a User Node and a Resource Provider node at the same time.

Figure 1: InteGrade’s Intra-Cluster Architecture

The Local Resource Manager (LRM) and the Global Resource Manager (GRM) cooperatively handle
intra-cluster resource management. The LRM is executed in each cluster node, collecting information
about the node status, such as memory, CPU, disk, and network usage. LRMs send this information
periodically to the GRM, which uses it for scheduling within the cluster. This process is called the
Information Update Protocol.

The GRM and LRMs also collaborate in the Resource Reservation and Execution Protocol, which
works as follows. When a user submits an application for execution, the GRM selects an candidate node
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for execution, based on resource availability and application requirements. For that the GRM uses its
local information about the cluster state as a hint for locating the best nodes to execute an application.
After that, the GRM engages in a direct negotiation with the selected nodes to ensure that they actually
have the sufficient resources to execute the application at that moment and, if possible, reserves the
resources in the target nodes. In case the resources are not available in a certain node, the GRM selects
another candidate node and repeats the process. The information, execution and reservation protocols
are based on previous work in the 2K Resource Management Subsystem [KYH+01]. A recent extension
of this protocol [MK02] implemented by our group allows the GRM to engage in information updates,
resource negotiation, and reservation across a collection of clusters organized in a wide-area hierarchy.

Similar to the LRM/GRM cooperation, the Local Usage Pattern Analyzer (LUPA) and the Global
Usage Pattern Analyzer (GUPA) handle intra-cluster usage pattern collection and analysis. The LUPA
executes in each cluster node that is a user workstation 1 and collects data about its user usage patterns.
Based on long series of data, it derives usage patterns for that node throughout the week. Each node’s
usage pattern is periodically uploaded to the GUPA. This information is made available to the GRM,
which can make better scheduling decisions due to the possibility of predicting a node’s idle periods
based on its usage patterns.

The Node Control Center (NCC) allows the owners of resource providing machines to set the con-
ditions for resource sharing, if they so wish. Parameters such as periods in which they do not want their
resources to be shared, the portion of resources that can be used by grid applications (e.g., 30% of the
CPU and 50% of its physical memory), or definitions as to when to consider their machine idle can be
set using this tool.

The Application Submission and Control Tool (ASCT) allows InteGrade users to submit applications
for execution in the grid. The user can specify execution prerequisites, such as hardware and software
platforms, resource requirements such as minimum memory requirements, and preferences, like rather
executing on a faster CPU than on a slower one. The user can also use the tool to monitor application
progress.

5 Implementation Status and Ongoing Work

Although we had implemented the intra- and inter-cluster protocols for information updates, resource
reservation, and execution in the 2K system, we are currently re-implementing these protocols from
scratch in the new InteGrade middleware platform. This was necessary due to InteGrade’s strict require-
ments with respect to ensuring that the quality of service perceived by users sharing their machines with
the grid would not be affected.

The new middleware platform is based on UIC-CORBA [RKC01], a very small memory footprint
CORBA-compatible implementation (90 KB for a Client/Server ORB). In this new middleware platform,
we have implemented the intra-cluster information protocol that allows LRMs to send node status to
GRMs. The LRM is currently implemented in C++ using UIC-CORBA. The GRM, which runs on a
server node, is implemented in Java on top of JacORB [Jac03]. The GRM uses the JacORB Trader to
store the information it receives from the LRMs. We are also investigating the use of other small-footprint
ORBs such as LORB [Cer03] and Orbix/E [Orb03].

Ongoing work includes the implementation of the intra-cluster execution protocol, that will allow
applications to be remotely executed in an InteGrade cluster. We also started to collect information
about node’s usage in order to develop node usage patterns that will be used on LUPA and GUPA. We
expect to have a first working version of InteGrade by the end of the first semester of 2003. Source-code
and documentation of the latest version is available at the InteGrade Web site.

6 Conclusion

InteGrade will provide a middleware infrastructure to enable applications to leverage the idle computing
power from commodity computers. Its key features are support for a broad range of parallel applications,
use of advanced object-oriented techniques on architectural design and development, and node usage
pattern collection, analysis and prediction. This infrastructure will unlock the power of distributed
parallel computing in organizations that cannot afford to have dedicated resources. It has also a great
potential for lowering the level of waste of computational resources in today’s computing infrastructure.
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