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1 The Expressive Power of Temporal Conne
tivesThe expressivity of a language is always measured with respe
t to someother language. That is, when talking about expressivity, we are always
omparing two or more languages. When measuring the expressivity of alarge number of languages, it is usually more 
onvenient to have a singlelanguage with respe
t to whi
h all other languages 
an be 
ompared, if su
ha language is known to exist.In the 
ase of propositional one-dimensional temporal languages de�nedby the presen
e of a �xed number of temporal 
onne
tives (also 
alled tem-poral modalities), the expressivity of those languages 
an be all measuredagainst a fragment of �rst-order logi
, namely the monadi
 �rst-order lan-guage. This is the fragment that 
ontains a binary < (to represent theunderlying temporal order), = (whi
h we assume is always in the language)and a set of unary predi
ates Q1(x); Q2(x); : : : (whi
h a

ount for the in-terpretation of the propositional letters, that are interpreted as a subset ofthe temporal domain T ). Indeed, any one-dimensional temporal 
onne
tive
an be de�ned as a well-formed formula in su
h a fragment, known as the
onne
tive's truth table; one-dimensionality for
es su
h truth tables to havea single free variable.In the 
ase of 
omparing the expressivity of temporal 
onne
tives, an-other parameter must be taken into a

ount, namely the underlying 
ow oftime. Two temporal languages may have the same expressivity over one 
owof time (say, the integers) but may di�er in expressivity over another (e.g.the rationals); see the dis
ussion on the expressivity of the US 
onne
tivesbelow.Let us exemplify what we mean by those terms. Consider the 
onne
tivessin
e(S), until(U), future(F ), and past(P ). Given a 
ow of time (T;<; h),the truth value of ea
h of the above 
onne
tives at a point t 2 T is deter-mined as follows:(T;<; h); t j= Fp i� (9s > t)(T;<; h); s j= p;(T;<; h); t j= Pp i� (9s < t)(T;<; h); s j= p;(T;<; h); t j= U(p; q) i� (9s > t)((T;<; h); s j= p^8y(t < y < s! (T;<; h); y j= q));(T;<; h); t j= S(p; q) i� (9s < t)((T;<; h); s j= p^8y(s < y < t! (T;<; h); y j= q))If we assume that h(p) represents a �rst-order unary predi
ate that isinterpreted as h(p) � T , then these truth values above 
an be expressed as�rst-order formulas. Thus: 2



(a) (T;<; h); t j= Fq i� �F (t; h(q)) holds in (T;<),(b) (T;<; h); t j= Pq i� �P (t; h(q)) holds in (T;<),(
) (T;<; h); t j= U(q1; q2) i� �U (t; h(q1); h(q2)) holds in (T;<), and(d) (T;<; h); t j= S(q1; q2) i� �S(t; h(q1); h(q2)) holds in (T;<).where(a) �F (t;Q) = (9s > t)Q(s);(b) �P (t;Q) = (9s < t)Q(s);(
) �U(t;Q1; Q2) = (9s > t)(Q1(s) ^ 8y(t < y < s! Q2(y)));(d) �S(t;Q1; Q2) = (9s < t)(Q1(s) ^ 8y(s < y < t! Q2(y))):�#(t;Q1; : : : ; Qn) is 
alled the truth table for the 
onne
tive #. Thenumber n of parameters in the truth table will be the number of pla
esin the 
onne
tive, e.g. F and P are one pla
e 
onne
tive, and their truthtables have a single parameter; S and U are two-pla
e 
onne
tives, withtruth tables having two parameters.It is 
lear that in su
h a way, we start de�ning any number of 
onne
tives.For example 
onsider �(t;Q) = 9xy(t < x < y ^ 8s(x < s < y ! Q(s)));then �(t;Q) means `There is an interval in the future of t inside whi
h P istrue.' This is a table for a 
onne
tive Fint: (T;<; h); t j= Fint(p) i� �(t; h(p))holds in (T;<):We are in 
ondition of presenting a general de�nition of what a temporal
onne
tive is:De�nition 1.11. Any formula �(t;Q1; :::; Qm) with one free variable t, in the monadi
�rst-order language with predi
ate variable symbols Qi, is 
alled anm-pla
e truth table (in one dimension).2. Given a synta
ti
 symbol # for an m-pla
e 
onne
tive, we say it hasa truth table �(t;Q1; :::; Qm) i� for any T; h and t, (�) holds:(�) : (T;<; h); t j= #(q1; :::; qm) i� (T;<) j= �(t; h(q1); :::; h(qm)):
3



This way we 
an de�ne as many 
onne
tives as we want. Usually, some
onne
tives are de�nable using other 
onne
tives. For example, it is wellknown that F is de�nable using U as Fp � U(p;>). As another example,
onsider a 
onne
tive that states the existen
e of a \next" time point: Æ �U(>;?).The 
onne
tive Æ is a ni
e example on how the de�nability of a 
onne
-tive by others depends on the 
lass of 
ows of time being 
onsidered. Forexample, in a dense 
ow of time, Æ 
an be de�ned in terms of F and P |a
tually, sin
e there are no \next" time points anywhere, Æ � ?. Similarly,in an integer-like 
ow of time, Æ is equivalent to >.On the other hand, 
onsider the 
ow (T;<) of time with a single pointwithout a \next time": T = f::: � 2;�1; 0; 1; 2; :::g [ f(1=n) j n = 1; 2; 3:::g,with < being the usual order; then Æ is not de�nable using P and F . To seethat, suppose for 
ontradi
tion that Æ is equivalent to A where A is writtenwith P and F and, maybe, atoms. Repla
e all appearan
es of atoms by ?to obtain A0. Sin
e Æ $ A holds in the stru
ture (T;<; h0) with all atomsalways false, in this stru
ture Æ $ A0 holds. As neither Æ nor A0 
ontainatoms, Æ $ A0 holds in all other (T;<; h) as well. Now A0 
ontains onlyP and F , >, and ? and the 
lassi
al 
onne
tives. Sin
e F> � P> � >and F? � P? � ?, at every point, A0 must be equivalent (in (T;<)) toeither > or ? and so 
annot equal Æ whi
h is true at 1 and false at 0. As a
onsequen
e, Æ is not de�nable using P and F over linear time.In general, given a family of 
onne
tives, e.g. fF; Pg or fU; Sg, we 
anbuild new 
onne
tives using the given ones. That these new 
onne
tives are
onne
tives in the sense of De�nition 1 follows from the following.Lemma 1.2 Let #1(q1; :::; qm1); :::;#n(q1; :::; qmn ) be n temporal 
onne
-tives with tables �1; :::; �n. Let A be any formula built up from atomsq1; :::; qm, the 
lassi
al 
onne
tives, and these 
onne
tives. Then there existsa monadi
  A(t;Q1; :::; Qm) su
h that for all T and h,(T;<; h); t j= A i� (T;<) j=  A(t; h(q1); :::; h(qm)):Proof. We 
onstru
t  A by indu
tion on A. The simple 
ases are:  qj =Qj(t),  :A = : A and  A^B =  A ^  B .For the temporal 
onne
tive 
ase, we 
onstru
t the formula  #i(A1;:::;Ami)= �i(t;  A1 ; :::;  Ami ); the right-hand side is a notation for the formula ob-tained by substituting  Aj (x) in �i wherever Qj(x) appears, with the ap-propriate renaming of bound variables to avoid 
lashes. The indu
tion hy-pothesis is applied over  A1 ; :::;  Ami and the result is simply obtained bytruth table of the 
onne
tive #i. �4



The formula  A built above is 
alled the �rst-order translation of a tem-poral formula A. An m-pal
e 
onne
tive # with truth table �(t;Q1; :::; Qm)is said to be de�nable from 
onne
tives #1; : : : ;#n in a 
ow of time (T;<)if there exists a temporal formula A built from those 
onne
tives whose �rstorder translation is  A su
h that(T;<) j=  A $ �:The expressive power of a family of 
onne
tives over a 
ow of time ismeasured by how many 
onne
tives it 
an express over the 
ow of time. If it
an express any 
on
eivable 
onne
tive (given by a monadi
 formula), thenthat family of 
onne
tives is expressively 
omplete.De�nition 1.3 A temporal language with one-dimensional 
onne
tives issaid to be expressively 
omplete or, equivalently, fun
tionally 
omplete, inone dimension over a 
lass T of partial orders i� for any monadi
 formula (t;Q1; :::; Qm), there exists an A of the language su
h that for any (T;<)in T , for any interpretation h for q1; :::; qm,(T;<) j= 8t( $  A)(t; h(q1); :::; h(qm)):In the 
ases where T = f(T;<)g we talk of expressive 
ompletenessover (T;<). For example, the language of Sin
e and Until is expressively
omplete over integer time and real number 
ow of time, as we are goingto see in Se
tion 1.2; but they are not expressively 
omplete over rationalnumbers time [GPSS80℄.De�nition 1.4 A 
ow of time (T;<) is said to be expressively 
omplete(or fun
tionally 
omplete) (in one dimension) i� there exists a �nite set of(one-dimensional) 
onne
tives whi
h is expressively 
omplete over (T;<), inone dimension.The quali�
ation of one-dimensionality in the de�nitions above will beexplained when we introdu
e the notion of H-dimension below.These notions parallel the de�nability and expressive 
ompleteness of
lassi
al logi
. We know that in 
lassi
al logi
 f:;!g is suÆ
ient to de�neall other 
onne
tives. Furthermore, for any n-pla
e truth table  : 2n ! 2there exists an A(q1; :::; qn) of 
lassi
al logi
 su
h that for any h,h(A) =  (h(q1); :::; h(qn)):This is the expressive 
ompleteness of f:;!g in 
lassi
al logi
.5



The notion of expressive 
ompleteness leads us to formulate two ques-tions:(a) Given a �nite set of 
onne
tives and a 
lass of 
ows of time, are these
onne
tives expressively 
omplete?(b) In 
ase the answer to (a) is no, we would like to ask: given a 
lass of
ows, does there exist a �nite set of one-dimensional 
onne
tives thatis expressively 
omplete?These questions o

upy us to the rest of this se
tion. We show thatthe notion of expressive 
ompleteness is intimately related to the separationproperty , whi
h we investigate in Se
tion.The answer to question (b) is related to the notion of H-dimension,dis
ussed in Se
tion 1.3.1.1 Separation and Expressive CompletenessThe notion of separation involves partitioning a 
ow of time in disjointparts (typi
ally: present, past and future). A formula is separable if it isequivalent to another formula whose temporal 
onne
tives refer only to oneof the partitions.If every formula in a language is separable, that means that we have atleast one 
onne
tive that has enough expressivity over ea
h of the partitions.So we might expe
t that that set of 
onne
tives is expressively 
omplete overa 
lass of 
ows that admits su
h partitioning, provided the partitioning isalso expressible by the 
onne
tives.The notion of separation was initially analysed in terms of linear 
ows,where the notion of present, past and future most naturally applies. Sowe start our dis
ussion with separation over linear time. We later extendseparation to generi
 
ows.1.1.1 Separation over linear timeConsider a linear 
ow of time (T;<). Let h; h0 be two assignments andt 2 T . We say that h; h0 agree on the past of t, h =<t h0, i� for any atom qand any s < t, s 2 h(q) i� s 2 h0(q):We de�ne h0 ==t h for agreement of the present , i� for any atom qt 2 h(q) i� t 2 h0(q):6



and h0 =>t h, for agreement on the future, i� for any atom q and any s > t,s 2 h(q) i� s 2 h0(q):Let T be a 
lass of linear 
ows of time and A be a formula in a temporallanguage over (T;<). We say that A is a pure past formula over T , i� forall (T;<) in T , for all t 2 T ,8h; h0; (h =<t h0) implies that (T;<; h); t j= A i� (T;<; h0); t j= A:Similarly, we de�ne pure future and pure present formulas.Su
h a de�nition of purity is a semanti
 one. In a temporal language
ontaining only S and U there is also have a notion of synta
ti
 purity asfollows. A formula is a boolean 
ombination of �1, . . . , �n if it is built from�1, . . . , �n using only boolean 
onne
tives. A synta
ti
ally pure presentformula is a boolean 
ombination of atoms only. A synta
ti
ally pure pastformula is a boolean 
ombination of formulas of the form S(A;B) where Aand B are either pure present or pure past. Similarly, a synta
ti
ally purefuture formula is a boolean 
ombination of formulas of the form U(A;B)where A and B are either pure present or pure future.It is 
lear that if A is a synta
ti
ally pure past formula, then A is apure past formula; similarly for pure present and pure future formulas. The
onverse, however, is not true. For example, from the semanti
al de�nition,all temporal temporally valid formulas are pure future (and pure past, andpure present), in
luding those involving S.We are now in a position to de�ne the separation property.De�nition 1.5 Let T be a 
lass of linear 
ows of time and A be a formulain a temporal language L. We say A is separable in L over T i� there existsa formula in L whi
h is a boolean 
ombination of pure past, pure future,and atomi
 formulas and is equivalent to A everywhere in any (T;<) fromT . A set of temporal 
onne
tives is said to have the separation propertyover T i� every formula in the temporal language of these 
onne
tives isseparable in the language (over T ).We now show that separation implies expressive 
ompleteness.Theorem 1.6 Let L be a temporal language built from any number (�niteor in�nite) of 
onne
tives in whi
h P and F are de�nable over a 
lass Tof linear 
ows of time. If L has the separation property over T then L isexpressively 
omplete over T . 7



Proof. If T is empty, L is trivially expressively 
omplete, so suppose not.We have to show that for any '(t;Q) in the monadi
 theory of linear orderwith predi
ate variable symbols Q = (Q1; :::; Qn), there exists a formulaA = A(q1; :::; qn) in the temporal language su
h that for all 
ows of time(T;<) from T , for all h; t, (T;<; h); t j= A i� (T;<) j= '(t; h(q1); :::; h(qn)).We denote this formula by A['℄ and pro
eed by indu
tion on the depthm of nested quanti�ers in '. For m = 0, '(t) is quanti�er free. Just repla
eea
h appearan
e of t = t by >, t < t by ?, and ea
h Qj(t) by qj to obtainA['℄.For m > 0, we 
an assume ' = 9x (t; x;Q) where  has quanti�er depth� m (the 8 quanti�er is treated as derived).Assuming that we do not use t as a bound variable symbol in  andthat we have repla
ed all appearan
es of t = t by > and t < t by ? thenthe atomi
 formulas in  whi
h involve t have one of the following forms:Qi(t), t < y, t = y, or y < t, where y 
ould be x or any other variable lettero

urring in  .If we regard t as �xed, the relations t < y; t = y; t > y be
ome unaryand 
an rewritten, respe
tively, as R<(y), R=(y) and R>(y), where R<, R=and R> are new unary predi
ate symbols.Then  
an be rewritten equivalently as t0(x;Q;R=; R>; R<);in whi
h t appears only in the form Qi(t). Sin
e t is free in  , we 
an gofurther and prove (by indu
tion on the quanti�er depth of  ) that  t0 
anbe equivalently rewritten as t =_j [�j(t) ^  tj(x;Q;R=; R>; R<)℄;where� �j(t) is quanti�er free,� Qi(t) appear only in �j(t) and not at all in  tj ,� and ea
h  tj has quanti�er depth � m.By the indu
tion hypothesis, there is a formula Aj = Aj(q; r=; r>; r<) inthe temporal language su
h that, for any h; x,(T;<; h); x j= Aj i� (T;<) j=  tj(x; h(q1); :::; h(qn); h(r=); h(r>); h(r<)):8



Now let 3q be an abbreviation for a temporal formula equivalent (overT ) to Pq _ q _ Fq whose existen
e in L is guaranteed by hypothesis. Thenlet B(q; r=; r>; r<) = Wj(A[�j ℄ ^ 3Aj). A[�j ℄ 
an be obtained from thequanti�er free 
ase.In any stru
ture (T;<) from T for any h interpreting the atoms q, r=; r>and r<, the following are straightforward equivalen
es(T;<; h); t j= B(T;<; h); t j= Wj(A[�j ℄ ^3Aj)Wj((T;<; h); t j= A[�j ℄ ^ (T;<; h); t j= 3Aj)Wj(�j(t) ^ 9x((T;<; h); x j= Aj))Wj(�j(t) ^ 9x tj(x; h(q1); :::; h(qn); h(r=); h(r>); h(r<)))9xWj(�j(t) ^  tj(x; h(q1); :::; h(qn); h(r=); h(r>); h(r<)))9x t0(x; h(q1); :::; h(qn); h(r=); h(r>); h(r<)):Now provided we interpret the r atoms as the appropriate R predi
ates,i.e.:� h�(r=) = ftg,� h�(r<) = fs j t < sg, and� h�(r>) = fs j s < tg,we obtain(T;<; h�); t j= B i� 9x (t; x; h�(q1); :::; h�(qn)) i� '(t; h�(q1); :::; h�(qn)):B is almost the A['℄ we need ex
ept for one problem. B 
ontains,besides the qi, also three other atoms, r=; r>, and r<, and equation (�)from De�nition 9.1.1 above is valid for any h� whi
h is arbitrary on theqi but very spe
ial on r=; r>; r<. We are now ready to use the separationproperty (whi
h we haven't used so far in the proof). We use separationto eliminate r=; r>; r< from B. Sin
e we have separation B is equivalentto a boolean 
ombination of atoms, pure past formulas, and pure futureformulas.So there is a boolean 
ombination � = �(p+; p�; p0) su
h thatB $ �(B+; B�; B0);where B0(q; r>; r=; r<) is a 
ombination of atoms, B+(q; r>; r=; r<) are purefuture, and B�(q; r>; r=; r<) are pure past formulas.Finally, B� = �(B�+; B��; B�0) where9



� B�0 = B0(q;?;>;?);� B�+ = B+(q;>;?;?);� B�� = B�(q;?;?;>).Then we obtain for any h�,(T;<; h�); t j= B i�(T;<; h�); t j= �(B+; B�; B0)i�(T;<; h�); t j= �(B�+; B��; B�0)i�(T;<; h�); t j= B�:Hen
e (T;<; h�); t j= B� i� (T;<) j= '(t; h�(q)):This equation holds for any h� arbitrary on q, but restri
ted on r<; r>; r=.But r<; r>; r= do not appear in it at all and hen
e we obtain that for anyh, (T;<; h); t j= B� i� (T;<) j= '(t; h�(q)). So make A['℄ = B� and we aredone. �The 
onverse is also true: expressive 
ompleteness implies separationover linear time. The proof involves using the �rst-order theory of lin-ear time to �rst separate a �rst-order formula over linear time; a temporalformula is translated into the �rst-order language, where it is separated; ex-pressive 
ompleteness is needed then to translate ea
h separated �rst-ordersubformula into a temporal formula. Details are omitted, but 
an be foundin [GHR94℄.1.1.2 Generalized SeparationThe separation property is not restri
ted to linear 
ows of time. In thisse
tion we generalize the separation property over any 
lass of 
ows of timeand see that Theorem 1.6 has a generalised version.The basi
 idea is to have some relations that will partition every 
ow oftime in T , playing the role of <, > and = in the linear 
ase.De�nition 1.7 Let 'i(x; y); i = 1; :::; n be n given formulas in the monadi
language with < and let T be a 
lass of 
ows of time. Suppose 'i(x; y)partition T , that is, for every t in ea
h (T;<) in T the sets T (i; t) = fs 2T j 'i(s; t)g for i = 1; :::; n are mutually ex
lusive and Si T (i; t) = T .In analogy to the way that F and P represented < and >, we assumethat for ea
h i there is a formula �i(t; x) su
h that 'i(t; x) and �i(t; x) areequivalent over T and �i is a boolean 
ombination of some 'j(x; t). Also10



assume that < and = 
an be expressed (over T ) as boolean 
ombinationsof the 'i:Then we have the following series of de�nitions:� For any t from any (T;<) in T , for any i = 1; :::; n, we say that truthfun
tions h and h0 agree on T (i; t) if and only if h(q)(s) = h0(q)(s) forall s in T (i; t) and all atoms q.� We say that a formula A is pure 'i over T if for any (T;<) in T , anyt 2 T and any two truth fun
tions h and h0 whi
h agree on T (i; t), wehave (T;<; h); t j= A i� (T;<; h0); t j= A:� The logi
 L has the generalized separation property over T i� everyformula A of L is equivalent over T to a boolean 
ombination of pureformula.Theorem 1.8 (generalized separation theorem) Suppose the languageL 
an express over T the 1-pla
e 
onne
tives #i, i = 1; :::; n, de�ned by:(T;<; h); t j= #i(p) i� 9s 'i(s; t) holds in (T;<)and (T;<; h); s j= p:If has the generalized separation property over a 
lass T of 
ows of timethen L is expressively 
omplete over T .A proof of this result appears in [Ami85℄. See also [GHR94℄.The 
onverse does not always hold in the general 
ase, for it depends onthe theory of the underlying 
lass T .A simple appli
ation of the generalised separation theorem is the follow-ing. Suppose we have a �rst order language with the binary order predi
ates<, >, = with their usual interpretation, and suppose it also 
ontains a par-allel operator j de�ned by:xjy =def :[(x = y) _ (x < y) _ (y < x)℄:Suppose we have a new temporal 
onne
tive D, de�ned by(T;<; h); t j= Dq i� 9xjtsu
hthat(T;<; h); x j= q:Finally, A is said to be pure parallel over a 
lass T of 
ows of time i� for allt from any (T;<) from T , for all h =jt h0,(T;<; h); t j= Ai�(T;<; h0); t j= A;11



where h =jt h0 i� 8xjt8q(x 2 h(q)$ x 2 h0(q)):It is 
lear what separation means in the 
ontext of pure present, past,future, and parallel. It is simple to 
he
k that the <;>;=; j satisfy thegeneral separation property and other pre
onditions for using the generalizedseparation theorem. Thus that theorem gives immediately the following.Corollary 1.9 Let L be a language with F; P;D over any 
lass of 
ows oftime. If L has a separation then L is expressively 
omplete.1.2 Expressive Completeness of Sin
e and Until over IntegerTimeAs an example of the appli
ations of separation to the expressive 
omplete-ness of temporal language, we are going to sket
h the proof of separationof the Sin
e and Until-temporal logi
 
ontaining over linear time. The fullproof 
an be found in [Gab89, GHR94℄. With separation and Theorem 1.6we immediately obtain that the 
onne
tives S and U are expressively 
om-plete over the integers; the original proof of the expressive 
ompleteness ofS and U over the integers is due to Kamp [Kam68℄.The basi
 idea of the separation pro
ess is to start with a formula inwhi
h S and U may be nested inside ea
h other and through several trans-formation steps we are going to systemati
ally remove U from inside S andvi
e-versa. This gives us a synta
ti
al separation whi
h, obviously, impliesseparation.As we shall see there are eight 
ases of nested o

urren
es of U withinan S to worry about. It should be noted that all the results in the rest ofthis se
tion have dual results for the mirror images of the formulas. Themirror image of a formula is the formula obtained by inter
hanging U andS; for example, the mirror image of U(p ^ S(q; r); u) is S(p ^ U(q; r); u).We start dealing with boolean 
onne
tives inside the s
ope of temporaloperators, with some equivalen
es over integer 
ows of time. We say thata formula A is valid over a 
ow of time (T;<) if it is true at all t 2 T ;notation: (T;<) j= ALemma 1.10 The following formulas (and their mirror images) are validover integer time:� U(A _B;C)$ U(A;C) _ U(B;C);� U(A;B ^ C)$ U(A;B) ^ U(A;C);� :U(A;B)$ G(:A) _ U(:A ^ :B;:A);12



� :U(A;B)$ G(:A) _ U(:A ^ :B;B ^ :A).Proof. Simply apply the semanti
al de�nitions. �We now show the eight separation 
ases involving simple nesting andatomi
 formulas only.Lemma 1.11 Let p; q; A, and B be atoms. Then ea
h of the formulas belowis equivalent, over integer time, to another formula in whi
h the only appear-an
es of the until 
onne
tive are as the formula U(A;B) and no appearan
eof that formula is in the s
ope of an S:1. S(p ^ U(A;B); q),2. S(p ^ :U(A;B); q),3. S(p; q _ U(A;B)),4. S(p; q _ :U(A;B)),5. S(p ^ U(A;B); q _ U(A;B)),6. S(p ^ :U(A;B); q _ U(A;B)),7. S(p ^ U(A;B); q _ :U(A;B)), and8. S(p ^ :U(A;B); q _ :U(A;B)):Proof. We prove the �rst 
ase only; omitting the others. Note that S(p ^U(A;B); q) is equivalent toS(p; q) ^ S(p;B) ^B ^ U(A;B)_ [A ^ S(p;B) ^ S(p; q)℄_ S(A ^ q ^ S(p;B) ^ S(p; q); q):Indeed, the original formula holds at t i� there is s < t and u > s su
hthat p holds at s, A at u, B everywhere between s and u, and q everywherebetween s and t. The three disjun
ts 
orrespond to the 
ases u > t,u = t,and u < t respe
tively. Note that we make essential use of the linearity oftime. �We now know the basi
 steps in our proof of separation. We simply keeppulling out Us from under the s
opes of Ss and vi
e versa until there areno more. Given a formula A, this pro
ess will eventually leave us with a13



synta
ti
ally separated formula, i.e. a formula B whi
h is a boolean 
ombi-nation of atoms, formulas U(E;F ) with E and F built without using S andformulas S(E;F ) with E and F built without using U . Clearly, su
h a B isseparated.We start dealing with more than one U inside an S. In this 
ontext, we
all a formula in whi
h U and S do not appear pure.Lemma 1.12 Suppose that A and B are pure formulas and that C and Dare su
h that any appearan
e of U is as U(A;B) and is not nested underany Ss. Then S(C;D) is equivalent to a synta
ti
ally separated formula inwhi
h U only appears as the formula U(A;B).Proof. If U(A;B) does not appear then we are done. Otherwise, by rear-rangement of C and D into disjun
tive and 
onjun
tive normal form, respe
-tively, and repeated use of Lemma 1.10 we 
an rewrite S(C;D) equivalentlyas a boolean 
ombination of formulas S(C1;D1) with no U appearing. Thenthe pre
eding lemma shows that ea
h su
h boolean 
onstituent is equivalentto a boolean 
ombination of separated formulas. Thus we have a separatedequivalent. �Next let us begin the indu
tive pro
ess of removing Us from more thanone S. We present the separation in a 
res
endo. Ea
h step introdu
es extra
omplexity in the formula being separated and uses the previous 
ase as astarting point.Lemma 1.13 Suppose that A;B, possibly subs
ripted, are pure formulas.Suppose C;D, possibly subs
ripted, 
ontain no S. Then E has a synta
ti
allyseparated equivalent if:� the only appearan
e of U in E is as U(A;B);� the only appearan
es of U in E are as U(Ai; Bi);� the only appearan
es of U in E are as U(Ci;Di);� E is any U; S formula.We omit the proof, referring to [GHR94, Chapter 10℄ for a detailed a
-
ount. But note that sin
e ea
h 
ase above uses the previous one as anindu
tion basis, this pro
ess of separation tends to be highly exponential.Indeed, the separated version of a formula 
an be many times larger thanthe initial one. We �nally have the main results.14



Theorem 1.14 (separation theorem) Over the integer 
ow of time, anyformula in the fU; Sg-language is equivalent to a separated formula.Proof. This follows dire
tly from the pre
eding lemma be
ause, as we havealready noted, synta
ti
 separation implies separation. �Theorem 1.15 The language fU; Sg is expressively 
omplete over integertime.Proof. This follows from the separation theorem and Theorem 1.6. �Other known separation and expressive 
ompleteness results over lineartime are [GHR94℄:� The language fU; Sg is separable over real time. Indeed, it is separableover any Dedekind 
omplete linear 
ow of time. As a 
onsequen
e, itis also expressively 
omplete over su
h 
ows.� The language fU; Sg is not separable over the rationals; as a result, it isnot separable over the 
lass of linear 
ows of time, nor is it expressively
omplete over su
h 
ows.The problem of fU; Sg over generi
 linear 
ows of time is that theymay 
ontain gaps. It is possible to de�ne a �rst order formula that makes aproposition true up until a gap and false afterwards. Su
h formula, however,
annot be expressed in terms of fU; Sg. So is there an extra set of 
onne
tivesthat is expressively 
omplete over the rationals? The answer in this 
ase isyes, and they are 
alled the Stavi 
onne
tives. These are 
onne
tives whosetruth value depends on the existen
e of gaps in the 
ow of time, and thereforeare always false over integers or reals. For a detailed dis
ussion on separationin the presen
e of gaps, please refer to [GHR94, Chapters 11 and 12℄.We remain with the following generi
 question: given a 
ow of time, 
anwe �nd a set of 
onne
tives that is expressively 
omplete over it? This isthe question that we investigate next.1.3 H-dimensionThe notion of Henkin- or H-dimension involves limiting the number of boundvariables employed in �rst-order formulas. We will see that a ne
essary
ondition for there to exist a �nite set of 
onne
tives whi
h is expressively
omplete over a 
ow of time is that su
h 
ow of time have a �nite H-dimension. 15



As for a suÆ
ient 
ondition for a �nite expressively 
omplete set of
onne
tives, we will see that if many-dimensional 
onne
tives are allowed,than �nite H-dimension implies the existen
e of su
h �nite set of 
onne
tives.However, when we 
onsider one-dimensional 
onne
tives su
h as Sin
e andUntil, �nite H-dimension is no longer a suÆ
ient 
ondition.In fa
t our approa
h in this dis
ussion will be based on a weak many-dimensional logi
. It is many dimensional be
ause the truth value of aformula is evaluates at more than one time-point. It is weak be
ause atomi
formulas are evaluated only at a single time point (
alled the evaluationpoint), while all the other points are the referen
e points). Su
h weak manydimensionality allows us to de�ne the truth table of many dimensional sys-tems as formulas in the monadi
 �rst-order language, as opposed to a fullm-dimensional system (in whi
h atoms are evaluated at m time points)whi
h would require an m-adi
 language.Anm-dimensional table for an n-pla
e 
onne
tive is a formula of the form�(x1; : : : ; xm;R1; : : : ; Rn), where � is a formula of the �rst-order predi
atelanguage, written with symbols from f<g[ fR1; : : : ; Rng, where R1; : : : ; Rnare spe
ial m-pla
e relation symbols. Without loss of expressivity, we willfurther assume that ea
h term yj o
urring in Ri(y1; : : : ; ym) is a always avariable.Fix a temporal system T whose language 
ontains atoms q1; q2; : : : ; the
lassi
al 
onne
tives, and the spe
ial symbols #1; : : : ;#j, standing for n1-,: : : ; nj-pla
e 
onne
tives respe
tively. Let �1; : : : ; �j be theirm-dimensionaln1-,: : : ; nj-pla
e tables respe
tively.Remark 1.16 Sin
e there are �nitely many �i to 
onsider, we 
an furtherassume that there is b � m su
h that ea
h �i is written with variablesx1; : : : ; xb only.The semanti
s of m-dimensional formulas is given by:De�nition 1.17 Let (T;<) be a 
ow of time. Let h be an assignment intoT , i.e. for any atom q, h(q) � T . We de�ne the truth value of ea
h formulaA of the language of T at m indi
es a1; : : : ; am�1; t 2 T under h, as follows:1. (T;<; h); a1; : : : ; am�1; t j= q i� t 2 h(q), q atomi
.2. (T;<; h); a1; : : : ; am�1; t j= A ^B i� (T;<; h); a1; : : : ; am�1; t j= A and(T;<; h); a1; : : : ; am�1; t j= B.3. (T;<; h); a1; : : : ; am�1; t j= :A i� (T;<; h); a1; : : : ; am�1; t 6 j= A.4. For ea
h i (1 � i � j), (T;<; h); a1; : : : ; am�1; t j= #i(A1; : : : ; Ani) i�16



T j= �i(a1; : : : ; am�1; t; h(A1); : : : ; h(Ani)), whereh(Ak) =def: f(t1; : : : ; tm) 2 Tm j (T;<; h); t1; : : : ; tm j= Akg:Let LM denote the monadi
 language with <, �rst-order quanti�ers overelements, and an arbitrary number of monadi
 predi
ate symbols Qi forsubsets of T . We will regard the Qi as predi
ate (subset) variables, impli
itlyasso
iated with the atoms qi. We de�ne the translation of an m-dimensionaltemporal formula A into a monadi
 formula ÆA:1. If A is an atom qi, we set ÆA = (x1 = x1) ^ : : : ^ (xm�1 = xm�1) ^Qi(xm).2. Æ(A ^B) = ÆA ^ ÆB, and Æ(:A) = :ÆA.3. Let A = #i(A1; : : : ; Ani), where �i(x1; : : : ; xm;R1; : : : ; Rni) is the ta-ble of #i. Sin
e we 
an always rewrite � su
h that all o

urren
es ofRk(y1; : : : ; ym) in � are su
h that the terms yi are variables, after asuitable variable repla
ement we 
an write ÆA using only the variablesx1; : : : ; xb as: ÆA = �i(x1; : : : ; xm; ÆA1; : : : ; ÆAni):Clearly, a simple indu
tion gives us that:(T;<; h); a1; :::; am j= B i� T j= ÆB(a1; :::; am; h(q1); : : : ; h(qk)):su
h that ÆB(a1; :::; am; h(q1); : : : ; h(qk)) uses only the variables x1; : : : ; xb.Suppose that K is a 
lass of 
ows of time, �x = x1; : : : ; xm are variables,and �Q = Q1; : : : ; Qr are monadi
 predi
ates. If �(�x; �Q), �(�x; �Q) are formulasin LM with free variables �x and free monadi
 predi
ates �Q, we say that �and � are K-equivalent if for all T 2 K and all subsets S1; : : : ; Sr � T ,T j= 8�x��(�x; S1; : : : Sr)$ �(�x; S1; : : : ; Sr)�:We say the temporal system T is expressively 
omplete over K in ndimensions (1 � n � m) if for any �(x1; : : : ; xn; �Q) of LM with free variablesx1; : : : ; xn, there exists a temporal formula B(�q) of T built up from theatoms �q = q1; : : : ; qr, su
h that � ^Vn<i�m xi = xi and ÆB are equivalentin K. In this 
ase, K is said to be m-fun
tionally 
omplete in n dimensions(symboli
ally, FCmn ); K is fun
tionally 
omplete if it is FCm1 for some m.Finally, we de�ne the Henkin or H-dimension d of a 
lass K of 
ows asthe smallest d su
h that: 17



� For any monadi
 formula �(x1; : : : ; xn; Q1; : : : ; Qr) in LM with freevariables among x1; : : : ; xn and monadi
 predi
ates Q1; : : : ; Qr (withn; r arbitrary), there exists an LM -formula �0(x1; : : :, xn, Q1; : : : ; Qr)that is K-equivalent to � and uses no more than d di�erent boundvariable letters.We now show that for any 
lass of 
ows, �nite Henkin dimension isequivalent to fun
tional 
ompleteness (FCm1 for some m).Theorem 1.18 For any 
lass K of 
ows of time, if K is fun
tionally 
om-plete then K has �nite H-dimension.Proof. Let �( �Q) be any senten
e of LM . By fun
tional 
ompleteness, thereexists a B(�q) of T su
h that the formulas x1 = x1 ^ ::: ^ xm = xm ^ �( �Q)and ÆB(x1; : : : ; xm; �Q) are K-equivalent. We know that ÆB is written usingvariables x1; : : : ; xb only. Hen
e the senten
e �� = 9x1:::9xmÆB(x1; : : : ;xm; �Q) has at most b variables, and is 
learly K-equivalent to �. So everysenten
e of LM is K-equivalent to one with at most b variables. This meansthat K has H-dimension at most b, so it is �nite. �We now show the 
onverse. That is, we assume that the 
lass K of
ows of time has �nite H-dimension m. Then we are going to 
onstru
t atemporal logi
 that is expressively 
omplete over K and that is weaklym+1-dimensional (and that is why su
h proof does not work for 1-dimensionalsystems: it always 
onstru
ts a logi
 of dimension at least 2).Let us 
all this logi
 system d. Besides atomi
 propositions q1; q2; : : :and the usual boolean operators, this system has a set of 
onstants (0-pla
eoperators) C<i;j and C=i;j and unary temporal 
onne
tives �i and �i, for0 � i; j � m. If h is an assignment su
h that (h(q) � T for atomi
 q, thesemanti
s of d-formulas is given by:1. (T;<; h); x0; :::; xm j= q i� x0 2 h(q) for q atomi
.2. The tables for :;^ are the usual ones.3. (T;<; h); x0; : : : ; xm j= C<i;j i� xi < xj . Similarly we de�ne the seman-ti
s of C=i;j. C=i;j are thus 
alled diagonal 
onstants.4. (T;<; h); x0; :::; xm j= �iA i� (T;<; h); xi; : : : ; xi j= A. So �i \proje
ts"the truth value on the i-th dimension.5. (T;<; h); x0; :::; xm j= �iA i� (T;<; h); x0; : : : ; xi�1; y; xi+1; : : : ; xm j=A for all y 2 T . So �i is an \always" operator for the i-th dimension.18



Lemma 1.19 Let � be a formula of LM written only using the variableletters u0; : : : ; um, and having ui1 ; ::; uik free for arbitrary k � m. Thenthere exists a temporal formula A of d su
h that for all h; t0; : : : ; tm 2 T ,(T;<; h); t0; :::; tm j= A i� K; h j= �(ti1 ; : : : ; tik):Proof. By indu
tion on �. Assume �rst that � is atomi
. If � is ui < ujlet A = C<i;j if i 6= j, and ? otherwise. Similarly for ui = uj. If � is Q(ui),let A be �i(q).The 
lassi
al 
onne
tives present no diÆ
ulties. We turn to the 
asewhere � is 8ui�(ui1 ; ::; uik ). By indu
tion hypothesis, let A be the formula
orresponding �; then �iA is the formula suitable for �. �We are now in a position to prove the 
onverse of Theorem 1.18.Theorem 1.20 For any 
lass K of 
ows of time, if K has �nite H-dimen-sion then K is fun
tionally 
omplete.Proof. Let �(u0) be any formula of LM with one free variable u0. As K hasH-dimension m, we 
an suppose that � is written with variables u0; :::; um.By Lemma 1.19 there exists an A of T su
h that for any T 2 K, t 2 T , andassignment h into T; (T;<; h); t; :::; t j= A i� K; h j= �(t). �As an appli
ation of the results above, we show that the 
lass of partialorders is not fun
tionally 
omplete. For 
onsider the formula 
orrespondingto the statement there are at least n elements in the order :�n = 9x1; : : : ; xn î 6=j[(xi 6= xj) ^ :(xi < xj)℄:It 
an be shown that su
h formula 
annot be written with less then n vari-ables (e.g. [GHR94℄). Sin
e we are able to say that there are at least nelements in the order for any �nite n, the 
lass partial orders have in�niteH-dimension and by Theorem 1.18 it is not fun
tionally 
omplete.On the other hand, the reals and the integers must have �nite H-dimen-sion, for the fU; Sg temporal logi
 is expressively 
omplete over both. In-deed, [GHR94℄ shows that it has H-dimension at most 3, and so does thetheory of linear order.
19



2 Combining Temporal Logi
sThere is a profusion of logi
s proposed in the literature for the modellingof a variety of phenomena, and many more will surely be proposed in thefuture. A great part of those logi
s deal only with \stati
" aspe
ts, and thetemporal evolution is left out. But eventually, the need to deal with thetemporal evolution of a model appears. What we want to avoid is the so
alled reinvention of the wheel, that is, reworking from s
rat
h the wholelogi
, its language, inferen
e system and models, and reproving all its basi
properties, when the temporal dimension is added.We therefore show here several methods for 
ombining logi
 systemsand we study if the properties of the 
omponent systems are transferred totheir 
ombination. We understand a logi
 system LL as 
omposed of threeelements:(a) a language LL , normally given by a set of formation rules generatingwell formed formulas over a signature and a set of logi
al 
onne
tives.(b) An inferen
e system, i.e. a relation, `L, between sets of formulas, rep-resented by � `L A. As usual, `L A indi
ates that ? `L A.(
) The semanti
s of formulas over a 
lass K of model stru
tures. The fa
tthat a formulas A is true of or holds at a model M 2 K is indi
atedby M j= A.Ea
h method for 
ombining logi
 systems proposes a way of generat-ing the language, inferen
e system and model stru
tures from those of the
omponent system.The �rst method presented here adds a temporal dimension T to a logi
system L, 
alled the temporalisation of a logi
 system T(L), with an auto-mati
 way of 
onstru
ting:� the language of T(L);� the inferen
e system of T(L); and� the 
lass of temporal models of T(L).We do that in a way that the basi
 properties of soundness, 
ompletenessand de
idability are transfered from the 
omponent logi
s T and L to the
ombined system T(L).If the temporalised logi
 is itself a temporal logi
, we have a two dimen-sional temporal logi
 T(T0). Su
h a logi
 is too weak, however, be
ause, by
onstru
tion, the temporal logi
 T0 
annot refer to the the logi
 system T.20



We therefore present the independent 
ombination T� T0 in whi
h two tem-poral logi
s are symmetri
ally 
ombined. As before, the language, inferen
esystems and models of T� T0, and show that the properties of soundness,
ompleteness and de
idability are transferred form T and T0 to T� T0.The independent 
ombination is not the strongest way to 
ombine logi
s;in parti
ular, the independent 
ombination of two linear temporal logi
 doesnot ne
essarily produ
e a two-dimensional grid model. So we show howto produ
e the full join of two linear temporal logi
s T� T0, su
h thatall models will be two-dimensional grids. However, in this 
ase we 
annotguarantee that the basi
 properties of T and T0 are transferred to T� T0.In this sense, the independent 
ombination T� T0 is a minimal symmetri
al
ombination of logi
s that automati
ally transfers the basi
 properties. Anyfurther intera
tion between the logi
s has to be separately investigated.As a �nal way of 
ombining logi
s, we present methods of 
ombinationthat are motivated by the study of Labelled Dedu
tive Systems (LDS) [Gab96℄.All temporal logi
s 
onsidered for 
ombination here are assumed to belinear.2.1 Temporalising a Logi
The �rst of the 
ombination methods, known as \adding a temporal dimen-sion to a logi
 system" or simply \temporalising a logi
 system", has beeninitially presented in [FG92℄.Temporalisation is a methodology whereby an arbitrary logi
 system L
an be enri
hed with temporal features from a linear temporal logi
 T to
reate a new, temporalised system T(L).We assume that the language of temporal system T is the US languageand its inferen
e system is an extensions of that of US=Klin, with its 
orre-sponding 
lass of temporal linear models K � Klin.With respe
t to the logi
 L we assume it is an extension of 
lassi
al logi
,that is, all propositional tautologies are valid in it. The set LL is partitionedin two sets, BCL and MLL. A formula A 2 LL belongs to the set of boolean
ombinations, BCL, i� it is built up from other formulas by the use of oneof the boolean 
onne
tives : or ^ or any other 
onne
tive de�ned only interms of those; it belongs to the set of monolithi
 formula MLL otherwise.If L is not an extension of 
lassi
al logi
, we 
an simply \en
apsulate" itin L0 with a one-pla
e symbol # not o

urring in either L or T, su
h that forea
h formula A 2 LL, #A 2 LL0 , `L Ai� `L0 #A and the model stru
turesof #A are those of A. Note that MLL0 = LL0 , BCL0 = ?.The alphabet of the temporalised language uses the alphabet of L plus21



the two-pla
e operators S and U , if they are not part of the alphabet of L;otherwise, we use S and U or any other proper renaming.De�nition 2.1 Temporalised formulas The set LT(L) of formulas of thelogi
 system L is the smallest set su
h that:1. If A 2MLL, then A 2 LT(L);2. If A;B 2 LT(L) then :A 2 LT(L) and (A ^B) 2 LT(L);3. If A;B 2 LT(L) then S(A;B) 2 LT(L) and U(A;B) 2 LT(L).Note that, for instan
e, if 2 is an operator of the alphabet of L and Aand B are two formulas in LL, the formula 2U(A;B) is not in LT(L). Thelanguage of T(L) is independent of the underlying 
ow of time, but not itssemanti
s and inferen
e system, so we must �x a 
lass K of 
ows of timeover whi
h the temporalisation is de�ned; if ML is a model in the 
lass ofmodels of L, KL, for every formula A 2 LL we must have either ML j= Aor ML j= :A. In the 
ase that L is a temporal logi
 we must 
onsider a\
urrent time" o as part of its model to a
hieve that 
ondition.De�nition 2.2 Semanti
s of the temporalised logi
. 1 Let (T;<) 2 K bea 
ow of time and let g : T ! KL be a fun
tion mapping every time pointin T to a model in the 
lass of models of L. A model of T(L) is a tripleMT(L) = (T;<; g) and the fa
t that A is true in MT(L) at time t is writtenas MT(L); t j= A and de�ned as:MT(L); t j= A, A 2MLL i� g(t) =ML and ML j= A.MT(L); t j= :A i� it is not the 
ase that MT(L); t j= A.MT(L); t j= (A ^B) i� MT(L); t j= A and MT(L); t j= B.MT(L); t j= S(A;B) i� there exists s 2 T su
h that s < t andMT(L); s j= A and for every u 2 T , ifs < u < t then MT(L); u j= B.MT(L); t j= U(A;B) i� there exists s 2 T su
h that t < s andMT(L); s j= A and for every u 2 T , ift < u < s then MT(L); u j= B.The inferen
e system of T(L)=K is given by the following:De�nition 2.3 Axiomatisation for T(L) An axiomatisation for the tem-poralised logi
 T(L) is 
omposed of:1We assume that the a model of T is given by (T;<; h) where h maps time points intosets of propositions (instead of the more 
ommon, but equivalent, mapping of propositionsinto sets of time points); su
h notation highlights that in the temporalised model ea
h timepoint is asso
iated to a model of L. 22



� The axioms of T=K;� The inferen
e rules of T=K;� For every formula A in LL, if `L A then `T(L) A, i.e. all theorems of Lare theorems of T(L). This inferen
e rule is 
alled Persist.Example 2.4 Consider 
lassi
al propositional logi
 PL = hLPL;`PL; j=PLi. Its temporalisation generates the logi
 system T(PL) = hLT(PL);`T(PL); j=T(PL)i. It is not diÆ
ult to see that the temporalised version of PL overany K is a
tually the temporal logi
 T = US=K.If we temporalise over K the one-dimensional logi
 system US=K weobtain the two-dimensional logi
 system T(US) = hLT(US);`T(US); j=T(US)i= T2(PL)=K. In this 
ase we have to rename the two-pla
e operators S andU of the temporalised alphabet to, say, S and U . Note, however, how weakthis logi
 is, for S and U 
annot o

ur within the s
ope of U and S.In order to obtain a model for T(US), we must �x a \
urrent time",o1, in MUS = (T1; <1; g1) , so that we 
an 
onstru
t the model MT(US) =(T2; <2; g2) as previously des
ribed. Note that, in this 
ase, the 
ows of time(T1; <1) and (T2; <2) need not to be the same. (T2; <2) is the 
ow of time ofthe upper-level temporal system whereas (T1; <1) is the 
ow of time of theunderlying logi
 whi
h, in this 
ase, happens to be a temporal logi
. Thesatis�ability of a formula in a model of T(US) needs two evaluation points,o1 and o2; therefore it is a two-dimensional temporal logi
.The logi
 system we obtain by temporalising US-temporal logi
 is thetwo-dimensional temporal logi
 des
ribed in [Fin92℄.This temporalisation pro
ess 
an be repeated n times, generating an ndimensional temporal logi
 with 
onne
tives Ui; Si, 1 � i � n, su
h that fori < j Uj; Sj 
annot o

ur within the s
ope of Ui; Si.We analyse now the transfer of soundness, 
ompleteness and de
idabilityfrom T and L to T(L); that is, we are asuming the logi
s T and L have sound,
omplete and de
idable axiomatisations with respe
t to their semanti
s, andwe will analyse how su
h properties transfer to the 
ombined system T(L). Itis a routine task to analyse that if the inferen
e systems of T and L are sound,so is T(L). So we 
on
entrate on the proof of transferen
e of 
ompleteness.CompletenessWe prove the 
ompleteness of T(L)=K indire
tly by transforming a 
onsistentformula A of T(L) into "(A) and then mapping it into a 
onsistent formula23



of T. Completeness of T=K is used to �nd a T-model for A� that is used to
onstru
t a model for the original T(L) formula A.We �rst de�ne the transformation and mapping. Given a formula A 2LT(L), 
onsider the following sets:Lit(A) = Mon(A) [ f:B j B 2Mon(A)gIn
(A) = f^� j � � Lit(A) and � `L ?gwhere Mon(A) is the set of maximal monolithi
 subformulae of A. Lit(A)is the set of literals o

urring in A and In
(A) is the set of in
onsistentformulas that 
an be built with those. We transform A into A as: "(A):"(A) = A ^VB2In
(A)(:B ^ G:B ^ H:B)The big 
onjun
tion in"(A) is a theorem of T(L), so we have the followinglemma.Lemma 2.5 `T(L) "(A)$ AIf K is a sub
lass of linear 
ows of time, we also have the followingproperty (this is where linearity is used in the proof).Lemma 2.6 Let MT be a temporal model over K � Klin su
h that for someo 2 T , MT; o j= �(�A). Then, for every t 2 T , MT; t j= �(�A).Therefore, if some subset of Lit(A) is in
onsistent, the transformed for-mula "(A) puts that fa
t in eviden
e so that, when it id mapped into T,in
onsistent subformulae will be mapped into falsity.Now we want to map a T(L)-formula into a T-formula. For that, 
onsideran enumeration p1, p2, : : :, of elements of P and 
onsider an enumeration A1,A2, : : :, of formulae in MLL. The 
orresponden
e mapping � : LT(L) ! LTis given by: �(Ai) = pi for every Ai 2MLL; i = 1; 2 : : :�(:A) = :�(A)�(A ^B) = �(A) ^ �(B)�(S(A;B)) = S(�(A); �(B))�(U(A;B)) = U(�(A); �(B))The following is the 
orresponden
e lemma.Lemma 2.7 The 
orresponden
e mapping is a bije
tion. Furthermore if Ais T(L)-
onsistent then �(A) is T-
onsistent.24



Lemma 2.8 If A is T(L)-
onsistent, then for every t 2 T , GA(t) = fB 2Lit(A) j MT; t j= �(B)g is �nite and L-
onsistent.Proof. Sin
e Lit(A) is �nite, GA(t) is �nite for every t. Suppose GA(t)is in
onsistent for some t, then there exist fB1; : : : ; Bng � GA(t) su
h that`L VBi ! ?. So VBi 2 In
(A) and �:(VBi) is one of the 
onjun
ts of"(A). Applying Lemma 2.6 toMT; o j= �("(A)) we get that for every t 2 T ,MT; t j= :(V�(Bi)) but by, the de�nition of GA, MT; t j= V�(Bi), whi
his a 
ontradi
tion. �We are �nally ready to prove the 
ompleteness of T(L)=K.Theorem 2.9 (Completeness transfer for T(L)) If the logi
al system Lis 
omplete and T is 
omplete over a sub
lass of linear 
ows of time K �Klin, then the logi
al system T(L) is 
omplete over K.Proof. Assume that A is T(L)-
onsistent. By Lemma 2.8, we have (T;<) 2K and asso
iated to every time point in T we have a �nite and L-
onsistentset GA(t). By (weak) 
ompleteness of L, every GA(t) has a model, so wede�ne the temporalised valuation fun
tion g:g(t) = fMtL j MtL is a model of GA(t)gConsider the model MT(L) = (T;<; g) over K. By stru
tural indu
tionover B, we show that for every B that is a subformula of A and for everytime point t, MT; t j= �(B) i� MT(L); t j= BWe show only the basi
 
ase, B 2 Mon(A). Suppose MT; t j= �(B); thenB 2 GA(t) and MtL j= B, and hen
e MT(L); t j= B. Suppose MT(L); t j= Band assume MT; t j= :�(B); then :B 2 GA(t) and MtL j= :B, whi
h
ontradi
ts MT(L); t j= B; hen
e MT; t j= �(B). The indu
tive 
ases arestraightforward and omitted.So, MT(L) is a model for A over K and the proof is �nished. �Theorem 2.9 gives us sound and 
omplete axiomatisations for T(L) overmany interesting 
lasses of 
ows of time, su
h as the 
lass of all linear 
owsof time, Klin, the integers, Z, and the reals, R. These 
lasses are, in their Tversions, de
idable and the 
orresponding de
idability of T(L) is dealt next.Note that the 
onstru
tion above is �nitisti
, and therefore does not itselfguarantee that 
ompa
tness is transferred. However, an important 
orollaryof the 
onstru
tion above is that the temporalised system is a 
onservative25



extension of both original systems, that is, no new theorem in the languageof an original system is provable in the 
ombined system. Formally, L1 is a
onservative extension of L2 if it is an extension of L2 su
h that if A 2 LL2 ,then `L1 A only if `L2 A.Corollary 2.10 Let L be a sound and 
omplete logi
 system and T be soundand 
omplete over K � Klin. The logi
 system T(L) is a 
onservative ex-tension of both L and T.Proof. Let A 2 LL su
h that `T(L) A. Suppose by 
ontradi
tion that 6`logi
LA, so by 
ompleteness of L, there exists a model ML su
h that ML j=:A. We 
onstru
t a temporalised model MT(L) = (T;<; g) by makingg(t) = ML for all t 2 T . MT(L) 
learly 
ontradi
ts the soundness of T(L)and therefore that of T, so `L A. This shows that T(L) is a 
onservativeextension of L; the proof of extension of T is similar. �De
idabilityThe transfer of de
idability is also done using the 
orresponden
e mapping� and the transformation �. Su
h a transformation is a
tually 
omputable,as the following two lemmas state.Lemma 2.11 For any A 2 LT(L), if the logi
 system L is de
idable thenthere exists an algorithm for 
onstru
ting "(A).Lemma 2.12 Over a linear 
ow of time, for every A 2 LT(L),`T(L) A i� `T �("(A)):De
idability is a dire
t 
onsequen
e of these two lemmas.Theorem 2.13 If L is a de
idable logi
 system, and T is de
idable overK � Klin, then the logi
 system T(L) is also de
idable over K.Proof. Consider A 2 LT(L). Sin
e L is de
idable, by Lemma 2.11 there is analgorithmi
 pro
edure to build "(A). Sin
e � is a re
ursive fun
tion, we havean algorithm to 
onstru
t �("(A)), and due to the de
idability of T over K,we have an e�e
tive pro
edure to de
ide if it is a theorem or not. Sin
e Kis linear, by Lemma 2.12 this is also a pro
edure for de
iding whether A isa theorem or not. �26



2.2 Independent CombinationWe now deal with the 
ombination of two temporal logi
 systems. One ofthe will be 
alled the horizontal temporal logi
 US, while the other willbe the verti
al temporal logi
 �U�S. If we temporalise the horizontal logi
with the verti
al logi
, we obtain a very weakly expressive system; if US isthe internal (horizontal) temporal logi
 in the temporalisation pro
ess (F isderived in US), and �U�S is the external (verti
al) one (F is de�ned in �U�S),we 
annot express that verti
al and horizontal future operators 
ommute,FF A$ F FA:In fa
t, the subformula FF A is not even in the temporalised language of�U�S(US), nor is the whole formula. In other words, the interplay betweenthe two-dimensions is not expressible in the language of the temporalised�U�S(US).The idea is then to de�ne a method for 
ombining temporal logi
s thatis symmetri
al. As usual, we 
ombine the languages, inferen
e systems and
lasses of models.De�nition 2.14 Let Op(L) be the set of non-boolean operators of a generi
logi
 L. Let T and T be logi
 systems su
h that Op(T) \Op(T) = ?. Thefully 
ombined language of logi
 systems T and T over the set of atomi
propositions P, is obtained by the union of the respe
tive set of 
onne
tivesand the union of the formation rules of the languages of both logi
 systems.Let the operators U and S be in the language of US and U and S be inthat of �U�S. Their fully 
ombined language over a set of atomi
 propositionsP is given by� every atomi
 proposition is in it;� if A;B are in it, so are :A and A ^B;� if A;B are in it, so are U(A;B) and S(A;B).� if A;B are in it, so are U(A;B) and S (A;B).Not only are the two languages taken to be independent of ea
h other,but the set of axioms of the two systems are supposed to be disjoint; so we
all the following 
ombination method the independent 
ombination of twotemporal logi
s. 27



De�nition 2.15 Let US and �U�S be two US-temporal logi
 systems de-�ned over the same set P of propositional atoms su
h that their languagesare independent. The independent 
ombination US � �U�S is given by thefollowing:� The fully 
ombined language of US and �U�S.� If (�;I) is an axiomatisation for US and (�; I) is an axiomatisationfor �U�S, then (� [ �;I [ I) is an axiomatisation for US � �U�S. Notethat, apart from the 
lassi
al tautologies, the set of axioms � and �are supposed to be disjoint, but not the inferen
e rules.� The 
lass of independently 
ombined 
ows of time isK�K 
omposed ofbiordered 
ows of the form ( ~T ;<; < ) where the 
onne
ted 
omponentsof ( ~T ;<) are in K and the 
onne
ted 
omponents of ( ~T ; < ) are in K,and ~T is the (not ne
essarily disjoint) union of the sets of time pointsT and T that 
onstitute ea
h 
onne
ted 
omponent.A model stru
ture for US � �U�S over K � K is a 4-tuple ( ~T ;<;<; g),where ( ~T ;<; < ) 2 K�K and g is an assignment fun
tion g : ~T ! 2{.The semanti
s of a formula A in a model M = ( ~T ;<; < ; g) is de�nedas the union of the rules de�ning the semanti
s of US=K and �U�S=K.The expression M; t j= A reads that the formula A is true in the(
ombined) model M at the point t 2 ~T . The semanti
s of formulasis given by indu
tion in the standard way:M; t j= p i� p 2 g(t) and p 2 P:M; t j= :A i� it is not the 
ase that M; t j= A.M; t j= A ^B i� M; t j= A and M; t j= B.M; t j= S(A;B) i� there exists an s 2 ~T with s < t and M; s j= Aand for every u 2 ~T , if s < u < t thenM; u j= B.M; t j= U(A;B) i� there exists an s 2 ~T with t < s and M; s j= Aand for every u 2 ~T , if t < u < s thenM; u j= B.M; t j= S (A;B) i� there exists an s 2 ~T with s< t and M; s j= Aand for every u 2 ~T , if s<u< t thenM; u j= B.M; t j= U (A;B) i� there exists an s 2 ~T with t< s and M; s j= Aand for every u 2 ~T , if t<u<s thenM; u j= B.The also independent 
ombination of two logi
s appears in the literatureunder the names of fusion or join. 28



As usual, we will assume that K;K � Klin, so < and < are transitive,irre
exive and total orders; similarly, we assume that the axiomatisationsare extensions of US/Klin.The temporalisation pro
ess will be used as an indu
tive step to provethe transferen
e of soundness, 
ompleteness and de
idability for US � �U�Sover K�K. We de�ne the degree alternation of a (US � �U�S)-formula A forUS, dg(A):dg(p) = 0dg(:A) = dg(A)dg(A ^B) = dg(S(A;B)) = dg(U (A;B)) = maxfdg(A); dg(B)gdg(U (A;B)) = dg(S (A;B)) = 1 +maxf dg(A); dg(B)gand similarly de�ne dg(A) for �U�S.Any formula of the fully 
ombined language 
an be seen as a formula ofsome �nite number of alternating temporalisations of the form US(�U�S(US(: : :)));more pre
isely, A 
an be seen as a formula of US(Ln), where dg(A) = n,US(L0) = US, �U�S(L0) = �U�S, and Ln�2i = �U�S(Ln�2i�1), Ln�2i�1 = US(Ln�2i�2),for i = 0; 1; : : : ; dn2 e � 1.Indeed, not only the language of US � �U�S is de
omposable in a �nitenumber of temporalisation, but also its inferen
es, as the following importantlemma indi
ates.Lemma 2.16 Let US and �U�S be two 
omplete logi
 systems. Then, A is atheorem of US � �U�S i� it is a theorem of US(Ln), where dg(A) = n.Proof. If A is a theorem of US(Ln), all the inferen
es in its dedu
tion 
anbe repeated in US � �U�S, so it is a theorem of US � �U�S.Suppose A is a theorem of US� �U�S; let B1; : : : ; Bm = A be a dedu
tionof A in US � �U�S and let n0 = maxfdg(Bi)g, n0 � n. We 
laim that ea
hBi is a theorem of US(Ln0). In fa
t, by indu
tion on m, if Bi is obtainedin the dedu
tion by substituting into an axiom, the same substitution 
anbe done in US(Ln0); if Bi is obtained by Temporal Generalisation from Bj ,j < i, then by the indu
tion hypothesis, Bj is a theorem of US(Ln0) and sois Bi; if Bi is obtained by Modus Ponens from Bj and Bk, j; k < i, then bythe indu
tion hypothesis, Bj and Bk are theorems of US(Ln0) and so is Bi.So A is a theorem of US(Ln0) and, sin
e US and �U�S are two 
ompletelogi
 systems, by Theorem 2.9, ea
h of the alternating temporalisations inUS(Ln0) is a 
onservative extension of the underlying logi
; it follows that Ais a theorem of US(Ln), as desired. �29



Note that the proof above gives 
onservativeness as a 
orollary. Thetransferen
e of soundness, 
ompleteness and de
idability also follows dire
tlyfrom this result.Theorem 2.17 (Independent Combination) Let US and �U�S be two soundand 
omplete logi
 systems over the 
lasses K and K, respe
tively. Thentheir independent 
ombination US � �U�S is sound and 
omplete over the
lass K�K. If US and �U�S are 
omplete and de
idable, so is US � �U�S.Proof. Soundness follows immediately from the validity of axioms andinferen
e rules.We only sket
h the proof of 
ompletess here. Given a US� �U�S-
onsistentformula A, Lemma 2.16 is used to see that it is also 
onsistent in US(Ln),so a temporalised US(Ln)-model is built for it. Then, by indu
tion on thedegree of alternation of A, this US(Ln) is used to 
onstru
t a US� �U�S-model;ea
h step of su
h 
onstru
tion preserves the satisfatibility of formulas of alimited degree of alternation, so in the �nal model, A, is satis�able; and
ompleteness is proved. For details, see [FG96℄.For de
idability, suppose we want to de
ide whether a formula A 2US��U�S is a theorem. By Lemma 2.16, this is equivalent to de
iding whetherA 2 US(Ln) is a theorem, where n = dg(A). Sin
e US/K and �U�S/K are both
omplete and de
idable, by su

essive appli
ations of Theorems 2.9 and 2.13,it follows that the following logi
s are de
idable: US(�U�S), �U�S(US(�U�S)) =�U�S(L2), : : :, �U�S(Ln�1)= Ln; so a the last appli
ation of Theorems 2.9 and 2.13yields that US(Ln) is de
idable. �2.2.1 The minimality of the independent 
ombinationThe logi
 US � �U�S is the minimal logi
 that 
onservatively extends bothUS and �U�S. This result was �rst shown for the independent 
ombination ofmonomodal logi
s independently by [KW91℄ and [FS91℄.Indeed, suppose there is another logi
 T1 that 
onservatively extendsboth US and �U�S but some theorem A of US � �U�S is not a theorem of T1.But A 
an be obtained by a �nite number of inferen
es A1; : : : ; An = Ausing only the axioms of US and �U�S. But any 
onservative extension ofUS and �U�S must be able to derive Ai, 1 � i � n, from A1; : : : ; Ai�1, andtherefore it must be able to derive A; 
ontradi
tion.On
e we have this minimal 
ombination between two logi
 systems, anyother intera
tion between the logi
s must be 
onsidered on its own. Asan example, 
onsider the following formulas expressing the 
ommutativity30



of future and past operators between the two dimensions are not generallyvalid over a model ofUS � �U�S:I1 FF A$F FAI2 FPA$ PFAI3 PF A$ F PAI4 PPA$ PPANow 
onsider the produ
t of two linear temporal models, given as follows.De�nition 2.18 Let (T;<) 2 K and (T ;<) 2 K be two linear 
ows oftime. The produ
t of those 
ows of time is (T � T ;<;<). A produ
t modelover K � K is a 4-tuple M = (T � T ;<;<; g), where g : T � T ! 2{ is atwo-dimensional assignment. The semanti
s of the horizontal and verti
aloperators are independent of ea
h other:M; t; x j= S(A;B) i� there exists s < t su
h that M; s; x j= A andfor all u, s < u < t, M; u; x j= B.M; t; x j= S (A;B) i� there exists y<x su
h that M; t; y j= A andfor all z, y<z<x, M; t; z j= B.Similarly for U and U , the semanti
s of atoms and boolean 
onne
tivesremaining the standard one. A formula A is valid over K�K if for all modelsM = (T;<; T ;<; g), for all t 2 T and x 2 T we have M; t; x j= A.It is easy to verify that the formulas I1{I4 are valid over produ
t mod-els. We wonder if su
h produ
t of logi
s transfers the properties we haveinvestigated for the previous logi
s. The answer is: it depends. We have thefollowing results.Proposition 2.19 (a) There is a sound and 
omplete axiomatisation forUS � �U�S over the 
lasses of produ
t models Klin � Klin, Kdis � Kdis,Q � Q , Klin �Kdis, Klin � Q and Q �Kdis [Fin94℄.(b) There are no �nite axiomatisations for the valid two-dimensional for-mulas over the 
lasses Z� Z, N � N and R � R [Ven90℄.Note that the all the 
omponent one-dimensional mentioned above logi
systems are 
omplete and de
idable, but their produ
t sometimes is 
om-plete, sometimes not. Also, the logi
s in (a) are all de
idable and those in(b) are unde
idable.This is to illustrate the following idea: given an independent 
ombinationof two temporal logi
s, the addition of extra axioms, inferen
e rules or an31



extra 
ondition on its models has to be studied on its own, just as adding anew axiom to a modal logi
 or imposing a new property on its a

essibilityrelation has to be analysed on its own.Combinations of logi
s in the literatureThe work on 
ombining temporal logi
s presented here has �rst appeared inthe literature in [FG92, FG96℄.General 
ombinations of logi
s have been addressed in the literaturein various forms. Combinations of tense and modality were dis
ussed in[Tho84℄, without expli
itly providing a general methodology for doing so. Amethodology for 
onstru
ting logi
s of belief based on existing dedu
tive sys-tems is the dedu
tive model of Konolige [Kon86℄; in this 
ase, the languageof the original system was the base for the 
onstru
tion of a new modal lan-guage, and the modal logi
 system thus generated had its semanti
s de�nedin terms of the inferen
es of the original system. This is a methodologyquite di�erent from the one adopted here, in whi
h we separately 
ombinelanguage, inferen
e systems and 
lass of models.Combination of two monomodal logi
s and the transferen
e of propertieshave been studied by Kra
ht andWolter [KW91℄ and Fine and S
hurz [FS91℄;the latter even 
onsiders the transferen
e of properties through the 
ombi-nation of n-monomodal logi
s. These works di�er from the 
ombination oftemporal logi
s in several ways: their modalities have no intera
tion what-soever (unlike S and U , whi
h a
tually intera
t with ea
h other); they only
onsider one-pla
e modalities (�); and their 
onstru
tions are not a re
ur-sive appli
ation of the temporalisation (or any similar external appli
ationof one logi
 to another).A stronger 
ombination of logi
s have been investigated by Gabbay andShehtman [GS98℄, where the starting point is the produ
t of two Kripkeframes, generating the produ
t of the two monomodal logi
s. It shows thatthe transferen
e of 
ompleteness and de
idability 
an either su

eed or failfor the produ
t, depending on the properties of the 
omponent logi
s. Thefailure of transferen
e of de
idability for temporal produ
ts in FP=Klin �FP=Klin has been shown in [MR99℄, and fresh results on the produ
ts oflogi
s 
an be foun din [RZar℄.The transferen
e of soundness, 
ompleteness and de
idability are by nomeans the only properties to study. Kra
ht and Wolter [KW91℄ study thetransferen
e of interpolation between two monomodal logi
s. The 
om-plexity of the 
ombination of two monomodal logi
s is studied in [Spa93℄;the 
omplexity of produ
ts are studied in [Marar℄. Gabbay and Sheht-32



man [GS98℄ report the failure of transferen
e of the �nite model propertyfor their produ
t of modal logi
s. With respe
t to spe
i�
 temporal proper-ties, the transferen
e of the separation property is studied in [FG92℄.2.3 FiberingDov to write
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