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1 The Expressive Power of Temporal Connectives

The expressivity of a language is always measured with respect to some
other language. That is, when talking about expressivity, we are always
comparing two or more languages. When measuring the expressivity of a
large number of languages, it is usually more convenient to have a single
language with respect to which all other languages can be compared, if such
a language is known to exist.

In the case of propositional one-dimensional temporal languages defined
by the presence of a fixed number of temporal connectives (also called tem-
poral modalities), the expressivity of those languages can be all measured
against a fragment of first-order logic, namely the monadic first-order lan-
guage. This is the fragment that contains a binary < (to represent the
underlying temporal order), = (which we assume is always in the language)
and a set of unary predicates Q1(x),Q2(x),... (which account for the in-
terpretation of the propositional letters, that are interpreted as a subset of
the temporal domain 7). Indeed, any one-dimensional temporal connective
can be defined as a well-formed formula in such a fragment, known as the
connective’s truth table; one-dimensionality forces such truth tables to have
a single free variable.

In the case of comparing the expressivity of temporal connectives, an-
other parameter must be taken into account, namely the underlying flow of
time. T'wo temporal languages may have the same expressivity over one flow
of time (say, the integers) but may differ in expressivity over another (e.g.
the rationals); see the discussion on the expressivity of the US connectives
below.

Let us exemplify what we mean by those terms. Consider the connectives
since(S), until(U), future(F'), and past(P). Given a flow of time (7', <, h),
the truth value of each of the above connectives at a point ¢ € T is deter-
mined as follows:

(T, <,h),t = Fp iff  (3s>¢)(T,<,h),s Ep,
(T, <,h),t = Pp it (3s <t)(T,<,h),s Ep,
(T,<,h),t =EU(p,q) iff ( A

(T,<,h),t = S(p,q) iff (s <t)((T,<,h),s EpA
<

If we assume that h(p) represents a first-order unary predicate that is
interpreted as h(p) C T, then these truth values above can be expressed as
first-order formulas. Thus:



(a) (T, <,h),t l= Fq iff xr(t,h(g)) holds in (T, <),

(b) (T,<,h),t = Pqiff xp(t,h(g)) holds in (T, <),

(c) (T,<,h),t = U(q1,q2) iff xu(t,h(q1),h(g2)) holds in (T, <), and

(d) (T.<,h),t = S(q1,q2) iff xs(t,h(q1), h(g2)) holds in (T, <).
where

(a) xr(t,Q) = (3s > 1)Q(s),

(b) xp(t,Q) = (3s <t)Q(s),

(c) xu(t,Q1,Q2) = (3s > 1)(Qu(s) AVy(t <y <s— Q2(y))),

(d) xs(t,Q1,Q2) = (3s <)(Qu(s) AVy(s <y <t —= Qa(y)))-

X#(t,Q1,...,Qp) is called the truth table for the connective #. The
number n of parameters in the truth table will be the number of places
in the connective, e.g. F' and P are one place connective, and their truth
tables have a single parameter; S and U are two-place connectives, with
truth tables having two parameters.

It is clear that in such a way, we start defining any number of connectives.
For example consider x(¢,Q) = Jzy(t < z < y AVs(z < s <y — Q(9)));
then x(¢, Q) means ‘There is an interval in the future of ¢ inside which P is
true.” This is a table for a connective Fip: (T, <,h),t = Fint(p) iff x(¢, h(p))
holds in (T, <).

We are in condition of presenting a general definition of what a temporal
connective is:

Definition 1.1

1. Any formula x(¢,Q1, ..., Q) with one free variable ¢, in the monadic
first-order language with predicate variable symbols @Q);, is called an
m-place truth table (in one dimension).

2. Given a syntactic symbol # for an m-place connective, we say it has
a truth table x (¢, Q1, ..., Qn) iff for any T, h and ¢, (*) holds:

(*) : (Tv <7h)7t |: #(QIa---an) iff (T7<) ): X(tvh(QI)a'“vh(Qm))'



This way we can define as many connectives as we want. Usually, some
connectives are definable using other connectives. For example, it is well
known that F' is definable using U as Fp = U(p, T). As another example,
consider a connective that states the existence of a “next” time point: § =
U(T,1).

The connective ¢ is a nice example on how the definability of a connec-
tive by others depends on the class of flows of time being considered. For
example, in a dense flow of time, § can be defined in terms of F' and P —
actually, since there are no “next” time points anywhere, 6 = 1. Similarly,
in an integer-like flow of time, ¢ is equivalent to T.

On the other hand, consider the flow (7, <) of time with a single point
without a “next time”: T'={... —2,-1,0,1,2,..} U{(1/n) | n =1,2,3...},
with < being the usual order; then J is not definable using P and F. To see
that, suppose for contradiction that ¢ is equivalent to A where A is written
with P and F' and, maybe, atoms. Replace all appearances of atoms by L
to obtain A’. Since § <+ A holds in the structure (T, <,h’) with all atoms
always false, in this structure 0 <> A’ holds. As neither § nor A’ contain
atoms, § <» A’ holds in all other (T, <,h) as well. Now A’ contains only
P and F, T, and L and the classical connectives. Since FT = PT =T
and F1 = Pl = 1, at every point, A" must be equivalent (in (7, <)) to
either T or L and so cannot equal § which is true at 1 and false at 0. As a
consequence, 0 is not definable using P and F' over linear time.

In general, given a family of connectives, e.g. {F, P} or {U, S}, we can
build new connectives using the given ones. That these new connectives are
connectives in the sense of Definition 1 follows from the following.

Lemma 1.2 Let #1(q1,--,qmy )y - #n(q1y -y qm,,) be n temporal connec-
tives with tables x1,...,xn. Let A be any formula built up from atoms
q1, .-, Gm, the classical connectives, and these connectives. Then there exists
a monadic Pa(t,Q1, ..., Qm) such that for all T and h,

(T7 < h)vt |: A iff (T7 <) |: zle(t’ h(Ql)a i) h(Qm))

Proof. We construct ¢4 by induction on A. The simple cases are: 1, =
Qj(t); P-4 = a4 and PYarp = Ya N Pp.

For the temporal connective case, we construct the formula ¢y, (4, ..., Am;)
= Xi(t, %4, -4, ); the right-hand side is a notation for the formula ob-
tained by substituting 14, (z) in x; wherever Q;(z) appears, with the ap-
propriate renaming of bound variables to avoid clashes. The induction hy-
pothesis is applied over ¢4, ...,szmi and the result is simply obtained by
truth table of the connective #;. |



The formula v 4 built above is called the first-order translation of a tem-
poral formula A. An m-palce connective # with truth table x(¢, Q1, ..., Qm)
is said to be definable from connectives #1,...,#, in a flow of time (7', <)
if there exists a temporal formula A built from those connectives whose first
order translation is ¥4 such that

(T, <) = a < x.

The expressive power of a family of connectives over a flow of time is
measured by how many connectives it can express over the flow of time. If it
can express any conceivable connective (given by a monadic formula), then
that family of connectives is expressively complete.

Definition 1.3 A temporal language with one-dimensional connectives is
said to be expressively complete or, equivalently, functionally complete, in
one dimension over a class T of partial orders iff for any monadic formula
P(t, Q1, ..., Qm), there exists an A of the language such that for any (T, <)
in 7, for any interpretation h for qy, ..., gm,

(T’ <) ): Vt(¢ A wA)(t’ h(Ql)a ) h(Qm))

In the cases where 7 = {(T,<)} we talk of expressive completeness
over (T,<). For example, the language of Since and Until is expressively
complete over integer time and real number flow of time, as we are going
to see in Section 1.2; but they are not expressively complete over rational
numbers time [GPSS80].

Definition 1.4 A flow of time (7, <) is said to be expressively complete
(or functionally complete) (in one dimension) iff there exists a finite set of
(one-dimensional) connectives which is expressively complete over (7', <), in
one dimension.

The qualification of one-dimensionality in the definitions above will be
explained when we introduce the notion of H-dimension below.

These notions parallel the definability and expressive completeness of
classical logic. We know that in classical logic {—, —} is sufficient to define
all other connectives. Furthermore, for any n-place truth table ¢ : 2" — 2
there exists an A(qi, ..., ¢n) of classical logic such that for any h,

h(A) = ¢(h(q1), .-, h(qn))-

This is the expressive completeness of {—, —} in classical logic.



The notion of expressive completeness leads us to formulate two ques-
tions:

(a) Given a finite set of connectives and a class of flows of time, are these
connectives expressively complete?

(b) In case the answer to (a) is no, we would like to ask: given a class of
flows, does there exist a finite set of one-dimensional connectives that
is expressively complete?

These questions occupy us to the rest of this section. We show that
the notion of expressive completeness is intimately related to the separation
property, which we investigate in Section.

The answer to question (b) is related to the notion of H-dimension,
discussed in Section 1.3.

1.1 Separation and Expressive Completeness

The notion of separation involves partitioning a flow of time in disjoint
parts (typically: present, past and future). A formula is separable if it is
equivalent to another formula whose temporal connectives refer only to one
of the partitions.

If every formula in a language is separable, that means that we have at
least one connective that has enough expressivity over each of the partitions.
So we might expect that that set of connectives is expressively complete over
a class of flows that admits such partitioning, provided the partitioning is
also expressible by the connectives.

The notion of separation was initially analysed in terms of linear flows,
where the notion of present, past and future most naturally applies. So
we start our discussion with separation over linear time. We later extend
separation to generic flows.

1.1.1 Separation over linear time

Consider a linear flow of time (7,<). Let h,h' be two assignments and
t € T. We say that h,h' agree on the past of t, h =4 b/, iff for any atom ¢
and any s < t,

s € h(q) iff s € h'(q).

We define b’ =_; h for agreement of the present, iff for any atom ¢

t € h(q) iff t € W' (q).



and h' =<, h, for agreement on the future, iff for any atom ¢ and any s > t,
s € h(q) iff s € h'(q).

Let 7 be a class of linear flows of time and A be a formula in a temporal
language over (T, <). We say that A is a pure past formula over T, iff for
all (T,<)in T, forallteT,

Vh, W, (h =<; h') implies that (T, <,h),t = A iff (T, <,h'),t = A.

Similarly, we define pure future and pure present formulas.

Such a definition of purity is a semantic one. In a temporal language
containing only S and U there is also have a notion of syntactic purity as
follows. A formula is a boolean combination of ¢1, ..., ¢, if it is built from
¢1, ..., ¢, using only boolean connectives. A syntactically pure present
formula is a boolean combination of atoms only. A syntactically pure past
formula is a boolean combination of formulas of the form S(A, B) where A
and B are either pure present or pure past. Similarly, a syntactically pure
future formula is a boolean combination of formulas of the form U(A, B)
where A and B are either pure present or pure future.

It is clear that if A is a syntactically pure past formula, then A is a
pure past formula; similarly for pure present and pure future formulas. The
converse, however, is not true. For example, from the semantical definition,
all temporal temporally valid formulas are pure future (and pure past, and
pure present), including those involving S.

We are now in a position to define the separation property.

Definition 1.5 Let 7 be a class of linear flows of time and A be a formula
in a temporal language L. We say A is separable in L over T iff there exists
a formula in L which is a boolean combination of pure past, pure future,
and atomic formulas and is equivalent to A everywhere in any (7, <) from
T.

A set of temporal connectives is said to have the separation property
over T iff every formula in the temporal language of these connectives is
separable in the language (over 7).

We now show that separation implies expressive completeness.

Theorem 1.6 Let L be a temporal language built from any number (finite
or infinite) of connectives in which P and F are definable over a class T
of linear flows of time. If L has the separation property over T then L is
expressively complete over T .



Proof. If 7 is empty, L is trivially expressively complete, so suppose not.
We have to show that for any (¢, Q) in the monadic theory of linear order
with predicate variable symbols Q@ = (Q1,...,@,), there exists a formula
A = A(q1, ..., qn) in the temporal language such that for all flows of time
(T, <) from T, for all h,t, (T, <,h),t = Aiff (T, <) = ¢(t,h(q1), ..., h(qn))-

We denote this formula by A[yp| and proceed by induction on the depth
m of nested quantifiers in . For m = 0, ¢(t) is quantifier free. Just replace
each appearance of t =¢ by T, ¢ <t by L, and each Q;(t) by ¢; to obtain
Alg]. _

For m > 0, we can assume @ = Jz1)(t, z, Q) where ¢ has quantifier depth
< m (the V quantifier is treated as derived).

Assuming that we do not use ¢ as a bound variable symbol in v and
that we have replaced all appearances of t = ¢t by T and ¢ < ¢ by L then
the atomic formulas in 1 which involve ¢ have one of the following forms:
Qi(t), t <y, t =y, ory <t, where y could be z or any other variable letter
occurring in .

If we regard t as fixed, the relations ¢ < y,t = y,t > y become unary
and can rewritten, respectively, as R<(y), R—(y) and R~ (y), where R, R
and R~ are new unary predicate symbols.

Then ¢ can be rewritten equivalently as

¢3($’@’ R=7R>a R<)7

in which ¢ appears only in the form @Q;(¢). Since ¢ is free in 1, we can go
further and prove (by induction on the quantifier depth of ) that 1§ can
be equivalently rewritten as

zlbt = \/[Oé](t) A ’l/);(.’E,@, R:aR>aR<)]7

J
where
e «j(t) is quantifier free,
e (Q;(t) appear only in «;(t) and not at all in ¢§.,
e and each ¢§- has quantifier depth < m.

By the induction hypothesis, there is a formula A; = A;(q,r=,r>,r<) in
the temporal language such that, for any h, z,

(T7 <,h),$ ): Aj iff (T’ <) |: zib;'(x’h((h)a ...,h(qn),h(?":),h(’l“>),h(’l“<)).



Now let &g be an abbreviation for a temporal formula equivalent (over
T) to PqV qV Fq whose existence in L is guaranteed by hypothesis. Then
let B(q,r=,7>,7<) = V;(Aley] A ©4j). Alay] can be obtained from the
quantifier free case.

In any structure (7', <) from 7T for any h interpreting the atoms g, r—, rs
and r., the following are straightforward equivalences

(T,<,h),t =B
(Tv < h)vt |: Vj(A[aj] A <>Aj)
\/j((T, < h),t = Ala;] A (T, <, h),t = OAj)
Vj(aj(t) N Hx((Tv <7h)7$ ): AJ))
V(e () A3zl (z, h(qr), - h(gn), h(r=), h(r>)
Jz Vj(aj(t) A ¢;(xa h(q1)s s hign), h(r=), h(rs),
zpl(z, h(q1)y s h(gn), h(r=), h(rs), h(r<)

Now provided we interpret the r atoms as the appropriate R predicates,
ie.:

o h*(ro) = {1},
o h*(r<) ={s|t<s},and

o« () = {s|s <1},

yh(r<)))
;L(T<)))

we obtain

(T, <,h™),t = B iff 3zp(t, z,h*(q1), ..., h" (qn)) iff ©(t,h*(q1), ..., A" (qn))-

B is almost the A[g] we need except for one problem. B contains,
besides the g¢;, also three other atoms, r—,r-, and r., and equation (x)
from Definition 9.1.1 above is valid for any hA* which is arbitrary on the
q; but very special on r—,r>,r~. We are now ready to use the separation
property (which we haven’t used so far in the proof). We use separation
to eliminate r—,rs,r. from B. Since we have separation B is equivalent
to a boolean combination of atoms, pure past formulas, and pure future
formulas.

So there is a boolean combination § = (p,,P_,po) such that

B < /B(E‘HE*%BU)’

where By(q,r>,7—,7<) is a combination of atoms, B (g, rs,7—,T<) are pure
future, and B_(q,r~,r—,r<) are pure past formulas.
Finally, B* = §(B%, B*, B;) where



hd Bngo(q,J_,T,J_),
i Bi:B-I-(anaJ—aJ—);
L4 Bi:B—(an—aJ—aT)

Then we obtain for any h*,

(T,<,h*),t = B ifi(T,<,h*),¢ = B(By, B_, Bo)
(T, <, h"), ¢ = B(BL, B, By)
iff (T, <, h*),t = B*.

Hence
(T,<,h*),t = B* iff (T,<) = o(t,h*(q)).

This equation holds for any h* arbitrary on g, but restricted on r-,r~,r—.
But r—,r~,7— do not appear in it at all and hence we obtain that for any
h, (T,<,h),t = B* iff (T, <) = ¢(t,h*(q)). So make A[p] = B* and we are
done. ]

The converse is also true: expressive completeness implies separation
over linear time. The proof involves using the first-order theory of lin-
ear time to first separate a first-order formula over linear time; a temporal
formula is translated into the first-order language, where it is separated; ex-
pressive completeness is needed then to translate each separated first-order
subformula into a temporal formula. Details are omitted, but can be found
in [GHRY94].

1.1.2 Generalized Separation

The separation property is not restricted to linear flows of time. In this
section we generalize the separation property over any class of flows of time
and see that Theorem 1.6 has a generalised version.

The basic idea is to have some relations that will partition every flow of
time in 7T, playing the role of <, > and = in the linear case.

Definition 1.7 Let ¢;(z,y),i = 1,...,n be n given formulas in the monadic
language with < and let 7 be a class of flows of time. Suppose @;(z,y)
partition 7, that is, for every ¢ in each (7', <) in T the sets T'(i,t) = {s €
T | pi(s,t)} for i = 1,...,n are mutually exclusive and |J, T'(7,t) = T.

In analogy to the way that F' and P represented < and >, we assume
that for each ¢ there is a formula S;(¢,z) such that ¢;(¢,z) and g;(t,x) are
equivalent over 7 and f; is a boolean combination of some ¢;(z,t). Also

10



assume that < and = can be expressed (over 7) as boolean combinations
of the ¢;.
Then we have the following series of definitions:

e For any ¢ from any (7,<) in 7, for any ¢ = 1,...,n, we say that truth
functions h and b’ agree on T'(i,t) if and only if h(q)(s) = h'(q)(s) for
all s in T'(4,t) and all atoms q.

e We say that a formula A is pure ¢; over T if for any (7, <) in T, any
t € T and any two truth functions h and h’ which agree on T'(i,t), we
have

(T,<,h),t = Aiff (T,<,h),t E A.

e The logic L has the generalized separation property over T iff every
formula A of L is equivalent over T to a boolean combination of pure
formula.

Theorem 1.8 (generalized separation theorem) Suppose the language
L can express over T the 1-place connectives #;, 1 = 1,...,n, defined by:

(Ta < h)at |: #l(p) Zﬁ Js ‘pi(sat) holds in (Ta <)
and (T, <,h),s = p.

If has the generalized separation property over a class T of flows of time
then L is expressively complete over T .

A proof of this result appears in [Ami85]. See also [GHR94].

The converse does not always hold in the general case, for it depends on
the theory of the underlying class 7.

A simple application of the generalised separation theorem is the follow-
ing. Suppose we have a first order language with the binary order predicates
<, >, = with their usual interpretation, and suppose it also contains a par-
allel operator | defined by:

Ty =aer [z =y)V(z <y V(y <z
Suppose we have a new temporal connective D, defined by
(T, <,h),t = Dq iff 3z|tsuchthat(T, <,h),z = q.

Finally, A is said to be pure parallel over a class T of flows of time iff for all
t from any (7, <) from T, for all h =, ',

(T, <,h),t = Aff(T, <, ), t = A,

11



where h =, b’ iff Vz[tVq(x € h(q) < = € W' (q)).

It is clear what separation means in the context of pure present, past,
future, and parallel. It is simple to check that the <, > =, | satisfy the
general separation property and other preconditions for using the generalized
separation theorem. Thus that theorem gives immediately the following.

Corollary 1.9 Let L be a language with F, P, D over any class of flows of
time. If L has a separation then L is expressively complete.

1.2 Expressive Completeness of Since and Until over Integer
Time

As an example of the applications of separation to the expressive complete-
ness of temporal language, we are going to sketch the proof of separation
of the Since and Until-temporal logic containing over linear time. The full
proof can be found in [Gab89, GHR94]. With separation and Theorem 1.6
we immediately obtain that the connectives S and U are expressively com-
plete over the integers; the original proof of the expressive completeness of
S and U over the integers is due to Kamp [Kam68].

The basic idea of the separation process is to start with a formula in
which S and U may be nested inside each other and through several trans-
formation steps we are going to systematically remove U from inside S and
vice-versa. This gives us a syntactical separation which, obviously, implies
separation.

As we shall see there are eight cases of nested occurrences of U within
an S to worry about. It should be noted that all the results in the rest of
this section have dual results for the mirror images of the formulas. The
marror image of a formula is the formula obtained by interchanging U and
S; for example, the mirror image of U(p A S(q,r),u) is S(p AU(q,r),u).

We start dealing with boolean connectives inside the scope of temporal
operators, with some equivalences over integer flows of time. We say that
a formula A is walid over a flow of time (7,<) if it is true at all ¢t € T
notation: (7,<) = A

Lemma 1.10 The following formulas (and their mirror images) are valid
over integer time:

e U(AVB,C)«< U(AC)VU(B,C);
e ULALBANC)«+— UA,B)NU(A,C);
e -U(A,B) < G(—wA)VU(-AN-B,-A);

12



e U(A,B) < G(—wA)VU(-AN-B,BA-A).
Proof. Simply apply the semantical definitions. |

We now show the eight separation cases involving simple nesting and
atomic formulas only.

Lemma 1.11 Let p,q, A, and B be atoms. Then each of the formulas below
s equivalent, over integer time, to another formula in which the only appear-
ances of the until connective are as the formula U (A, B) and no appearance
of that formula is in the scope of an S':

1. S(p ANU(A, B),q),
S(pA-U(4, B),q),
S(p,qVU(A,B)),

S(p,qV ~U(4, B)),

S pA _'U(AaB)aq \ U(AaB))7
S(pAU(A,B),qV-U(A,B)), and

® RS = e

(

(

(
S(pAU(A,B),qVU(A,B)),

(

(

(

S(p A ﬁU(A,B),q\/ _'U(AaB))

Proof. We prove the first case only; omitting the others. Note that S(p A
U(A, B),q) is equivalent to

S(p,q) NS(p,B) N\BANU(A,B)
v [ANS(p, B) AS(p,q)]
V. S(ANgAS(p,B)AS(p,q),q9)-

Indeed, the original formula holds at ¢ iff there is s < ¢ and w > s such
that p holds at s, A at u, B everywhere between s and u, and ¢ everywhere
between s and ¢. The three disjuncts correspond to the cases u > t,u = t,
and u < t respectively. Note that we make essential use of the linearity of
time. |

We now know the basic steps in our proof of separation. We simply keep

pulling out Us from under the scopes of Ss and vice versa until there are
no more. Given a formula A, this process will eventually leave us with a

13



syntactically separated formula, i.e. a formula B which is a boolean combi-
nation of atoms, formulas U(F, F') with E and F built without using S and
formulas S(E, F') with E and F built without using U. Clearly, such a B is
separated.

We start dealing with more than one U inside an S. In this context, we
call a formula in which U and S do not appear pure.

Lemma 1.12 Suppose that A and B are pure formulas and that C and D
are such that any appearance of U is as U(A, B) and is not nested under
any Ss. Then S(C, D) is equivalent to a syntactically separated formula in
which U only appears as the formula U(A, B).

Proof. If U(A, B) does not appear then we are done. Otherwise, by rear-
rangement of C' and D into disjunctive and conjunctive normal form, respec-
tively, and repeated use of Lemma 1.10 we can rewrite S(C, D) equivalently
as a boolean combination of formulas S(C1, D1) with no U appearing. Then
the preceding lemma shows that each such boolean constituent is equivalent
to a boolean combination of separated formulas. Thus we have a separated
equivalent. |

Next let us begin the inductive process of removing Us from more than
one S. We present the separation in a crescendo. Each step introduces extra
complexity in the formula being separated and uses the previous case as a
starting point.

Lemma 1.13 Suppose that A, B, possibly subscripted, are pure formulas.
Suppose C, D, possibly subscripted, contain no S. Then E has a syntactically
separated equivalent if:

e the only appearance of U in E is as U(A, B);
e the only appearances of U in E are as U(A;, B;);
e the only appearances of U in E are as U(Cj, D;);

e Eisany U,S formula.

We omit the proof, referring to [GHR94, Chapter 10] for a detailed ac-
count. But note that since each case above uses the previous one as an
induction basis, this process of separation tends to be highly exponential.
Indeed, the separated version of a formula can be many times larger than
the initial one. We finally have the main results.
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Theorem 1.14 (separation theorem) Over the integer flow of time, any
formula in the {U, S}-language is equivalent to a separated formula.

Proof. This follows directly from the preceding lemma because, as we have
already noted, syntactic separation implies separation. |

Theorem 1.15 The language {U, S} is expressively complete over integer
time.

Proof. This follows from the separation theorem and Theorem 1.6. |

Other known separation and expressive completeness results over linear
time are [GHR94]:

e The language {U, S} is separable over real time. Indeed, it is separable
over any Dedekind complete linear flow of time. As a consequence, it
is also expressively complete over such flows.

e The language {U, S} is not separable over the rationals; as a result, it is
not separable over the class of linear flows of time, nor is it expressively
complete over such flows.

The problem of {U, S} over generic linear flows of time is that they
may contain gaps. It is possible to define a first order formula that makes a
proposition true up until a gap and false afterwards. Such formula, however,
cannot be expressed in terms of {U, S}. So is there an extra set of connectives
that is expressively complete over the rationals? The answer in this case is
yes, and they are called the Stavi connectives. These are connectives whose
truth value depends on the existence of gaps in the flow of time, and therefore
are always false over integers or reals. For a detailed discussion on separation
in the presence of gaps, please refer to [GHR94, Chapters 11 and 12].

We remain with the following generic question: given a flow of time, can
we find a set of connectives that is expressively complete over it? This is
the question that we investigate next.

1.3 H-dimension

The notion of Henkin- or H-dimension involves limiting the number of bound
variables employed in first-order formulas. We will see that a necessary
condition for there to exist a finite set of connectives which is expressively
complete over a flow of time is that such flow of time have a finite H-
dimension.
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As for a sufficient condition for a finite expressively complete set of
connectives, we will see that if many-dimensional connectives are allowed,
than finite H-dimension implies the existence of such finite set of connectives.
However, when we consider one-dimensional connectives such as Since and
Until, finite H-dimension is no longer a sufficient condition.

In fact our approach in this discussion will be based on a weak many-
dimensional logic. It is many dimensional because the truth value of a
formula is evaluates at more than one time-point. It is weak because atomic
formulas are evaluated only at a single time point (called the evaluation
point), while all the other points are the reference points). Such weak many
dimensionality allows us to define the truth table of many dimensional sys-
tems as formulas in the monadic first-order language, as opposed to a full
m-dimensional system (in which atoms are evaluated at m time points)
which would require an m-adic language.

An m-dimensional table for an n-place connective is a formula of the form
Xx(z1,...,@Tm; Ry,...,Ry,), where x is a formula of the first-order predicate
language, written with symbols from {<} U{Ry,...,R,}, where R;,..., R,
are special m-place relation symbols. Without loss of expressivity, we will
further assume that each term y; ocurring in R;(yi,...,ym) is a always a
variable.

Fix a temporal system 7 whose language contains atoms q1, qo, .. ., the
classical connectives, and the special symbols #1,...,#;, standing for n-
,- - - ynj-place connectives respectively. Let x1,...,x; be their m-dimensional
ni-,...,nj-place tables respectively.

Remark 1.16 Since there are finitely many x; to consider, we can further
assume that there is b > m such that each y; is written with variables
T1,...,Zp only.

The semantics of m-dimensional formulas is given by:

Definition 1.17 Let (7, <) be a flow of time. Let h be an assignment into
T, i.e. for any atom g, h(q) C T. We define the truth value of each formula
A of the language of T at m indices a1,...,ay,—_1,t € T under h, as follows:

1. (T,<,h),a1,...,am—1,t |= q iff t € h(q), ¢ atomic.

- ( )
2. (T,<,h),a1,...,04pm—1,t EAANBIift (T,<,h),a1,...,apy,_1,t = A and
(T, <,h),a1,...,Qm-1,1 |: B.

3. (T,<,h),a1,... y Am—1,1 |: —A iff (T,<,h),a1,... yOm—1,1 }75 A.

4. For each i (1 <i<j), (T,<,h),a1,...,am—1,t = #i(A1,..., Ap,) iff
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T E xi(a1,...,am—1,t,h(A1),...,h(Ay,)), where

h(Ak) =def. {(tl,... ,tm) erm™ | (T,<,h),t1,...,tm ): Ak}.

Let L™ denote the monadic language with <, first-order quantifiers over
elements, and an arbitrary number of monadic predicate symbols @; for
subsets of T'. We will regard the Q; as predicate (subset) variables, implicitly
associated with the atoms ¢;. We define the translation of an m-dimensional
temporal formula A into a monadic formula JA:

1. If A is an atom g;, we set 0A = (z1 = 1) A ... A (Tm—1 = Tim—1) A

2. §(AAB)=06AAGSB, and §(—~A) = ~0A.

3. Let A =#;(A1,...,Ay,), where xi(%1,...,%Zm; R1,...,Ry,;) is the ta-
ble of #;. Since we can always rewrite y such that all occurrences of
Ri(y1,...,Ym) in x are such that the terms y; are variables, after a
suitable variable replacement we can write d A using only the variables
T1ye..,Tp aS:

0A = Xi(xl,. .. ,wm,5A1,. .. 76Anz)

Clearly, a simple induction gives us that:
(T,<,h),a1,....am =B it T = dB(ay, ..., am, h(q1),. .., h(qx)).

such that 0B(a1, ..., am, h(q1),--.,h(qx)) uses only the variables z1, ..., .

Suppose that K is a class of flows of time, z = z1,...,z,, are variables,
and Q = Q1,. .., Q, are monadic predicates. If a(Z, Q), B(Z, Q) are formulas
in LM with free variables z and free monadic predicates ), we say that «
and 8 are K-equivalent if for all T' € I and all subsets S1,...,S, CT,

Tk Vi(a(i,Sl,...Sr) o 5(56,51,...,&)).

We say the temporal system 7T is exzpressively complete over K in n
dimensions (1 < n < m) if for any a(xy,...,z,, Q) of LM with free variables
Z1,...,Zn, there exists a temporal formula B(g) of 7 built up from the
atoms ¢ = qi,..., ¢, such that « A A ;. z; = z; and B are equivalent
in /. In this case, K is said to be m-functionally complete in n dimensions
(symbolically, FCJ"'); K is functionally complete if it is FCJ" for some m.

Finally, we define the Henkin or H-dimension d of a class K of flows as
the smallest d such that:
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e For any monadic formula a(zi,...,2,,Q1,...,Q,) in LM with free
variables among 1, ..., %, and monadic predicates Q1,...,Q, (with
n,r arbitrary), there exists an L™ -formula o/ (z1,..., z,, Q1,..., Q)
that is K-equivalent to a and uses no more than d different bound
variable letters.

We now show that for any class of flows, finite Henkin dimension is
equivalent to functional completeness (F'C7" for some m).

Theorem 1.18 For any class K of flows of time, if K is functionally com-
plete then K has finite H-dimension.

Proof. Let o(Q) be any sentence of L. By functional completeness, there
exists a B(q) of T such that the formulas 71 = 71 A ... A T, = 71, A 0(Q)
and 6B(z1,...,Tm,Q) are K-equivalent. We know that 0B is written using
variables z1,...,z, only. Hence the sentence o* = Jz;...3z,0B(x1,...,
Tm, Q) has at most b variables, and is clearly K-equivalent to o. So every
sentence of LM is K-equivalent to one with at most b variables. This means

that C has H-dimension at most b, so it is finite. |

We now show the converse. That is, we assume that the class K of
flows of time has finite H-dimension m. Then we are going to construct a
temporal logic that is expressively complete over X and that is weakly m+1-
dimensional (and that is why such proof does not work for 1-dimensional
systems: it always constructs a logic of dimension at least 2).

Let us call this logic system d. Besides atomic propositions qi, go, ...
and the usual boolean operators, this system has a set of constants (0-place
operators) Cifj and Cj- and unary temporal connectives II; and U;, for
0 <i,7 <m. If h is an assignment such that (h(q) C T for atomic ¢, the
semantics of d-formulas is given by:

1. (T, <,h),zg,...,xm = q iff 29 € h(q) for ¢ atomic.
2. The tables for —, A are the usual ones.

3. (T, <,h),0,...,2m | CF iff z; < z;. Similarly we define the seman-

tics of Cf] C’ij are thus called diagonal constants.

4. (T,<,h),z0,....,xm E AWM (T, <,h),z;,...,z; = A. SoIl; “projects”
the truth value on the i-th dimension.

5. (T, <,h),xpy..c,xm E A M (T, <,h),Z0y -, Ti1,Yy Tit1y- -, Tm =
A for all y € T. So [J; is an “always” operator for the i-th dimension.
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Lemma 1.19 Let B be a formula of L™ written only using the variable
letters ug, ..., Um, and having w;,,..,u;, free for arbitrary k < m. Then
there exists a temporal formula A of d such that for all h,ty,...,t, €T,

(T, <,h),to, .t = A ff IC,h = B(tiy, - .-, iy

Proof. By induction on 3. Assume first that § is atomic. If § is u; < u;
let A= Cifj if i # j, and L otherwise. Similarly for u; = u;. If 8 is Q(u;),
let A be IL;(q).

The classical connectives present no difficulties. We turn to the case
where 3 is Yu;a(u;,, .., u;, ). By induction hypothesis, let A be the formula
corresponding «; then [; A is the formula suitable for 5. |

We are now in a position to prove the converse of Theorem 1.18.

Theorem 1.20 For any class K of flows of time, if K has finite H-dimen-
sion then K is functionally complete.

Proof. Let B(ug) be any formula of LM with one free variable up. As K has
H-dimension m, we can suppose that § is written with variables ug, ..., Uy,.
By Lemma 1.19 there exists an A of 7 such that for any T € K, t € T', and
assignment h into T, (T, <, h),t,....t | A iff K, h = B(1). |

As an application of the results above, we show that the class of partial
orders is not functionally complete. For consider the formula corresponding
to the statement there are at least n elements in the order:

o =3m1,. . 1 \[(zi # 2j) A (2 < 35)]-
i#]
It can be shown that such formula cannot be written with less then n vari-
ables (e.g. [GHRY4]). Since we are able to say that there are at least n
elements in the order for any finite n, the class partial orders have infinite
H-dimension and by Theorem 1.18 it is not functionally complete.

On the other hand, the reals and the integers must have finite H-dimen-
sion, for the {U, S} temporal logic is expressively complete over both. In-
deed, [GHR94] shows that it has H-dimension at most 3, and so does the
theory of linear order.
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2 Combining Temporal Logics

There is a profusion of logics proposed in the literature for the modelling
of a variety of phenomena, and many more will surely be proposed in the
future. A great part of those logics deal only with “static” aspects, and the
temporal evolution is left out. But eventually, the need to deal with the
temporal evolution of a model appears. What we want to avoid is the so
called reinvention of the wheel, that is, reworking from scratch the whole
logic, its language, inference system and models, and reproving all its basic
properties, when the temporal dimension is added.

We therefore show here several methods for combining logic systems
and we study if the properties of the component systems are transferred to
their combination. We understand a logic system £ as composed of three
elements:

(a) a language £ , normally given by a set of formation rules generating
well formed formulas over a signature and a set of logical connectives.

(b) An inference system, i.e. a relation, |, between sets of formulas, rep-
resented by A | A. As usual, F A indicates that @ - A.

(c) The semantics of formulas over a class IC of model structures. The fact
that a formulas A is true of or holds at a model M € K is indicated
by M = A.

Each method for combining logic systems proposes a way of generat-
ing the language, inference system and model structures from those of the
component system.

The first method presented here adds a temporal dimension T to a logic
system L, called the temporalisation of a logic system T(L), with an auto-
matic way of constructing:

e the language of T(L);
e the inference system of T(L); and
e the class of temporal models of T(L).

We do that in a way that the basic properties of soundness, completeness
and decidability are transfered from the component logics T and L to the
combined system T(L).

If the temporalised logic is itself a temporal logic, we have a two dimen-
sional temporal logic T(T’). Such a logic is too weak, however, because, by
construction, the temporal logic T’ cannot refer to the the logic system T.
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We therefore present the independent combination T & T’ in which two tem-
poral logics are symmetrically combined. As before, the language, inference
systems and models of T & T', and show that the properties of soundness,
completeness and decidability are transferred form T and T' to T T'.

The independent combination is not the strongest way to combine logics;
in particular, the independent combination of two linear temporal logic does
not necessarily produce a two-dimensional grid model. So we show how
to produce the full join of two linear temporal logics T x T’, such that
all models will be two-dimensional grids. However, in this case we cannot
guarantee that the basic properties of T and T’ are transferred to T x T'.
In this sense, the independent combination T & T’ is a minimal symmetrical
combination of logics that automatically transfers the basic properties. Any
further interaction between the logics has to be separately investigated.

As a final way of combining logics, we present methods of combination
that are motivated by the study of Labelled Deductive Systems (LDS) [Gab96].

All temporal logics considered for combination here are assumed to be
linear.

2.1 Temporalising a Logic

The first of the combination methods, known as “adding a temporal dimen-
sion to a logic system” or simply “temporalising a logic system”, has been
initially presented in [FG92].

Temporalisation is a methodology whereby an arbitrary logic system L
can be enriched with temporal features from a linear temporal logic T to
create a new, temporalised system T(L).

We assume that the language of temporal system T is the US' language
and its inference system is an extensions of that of US/K;,, with its corre-
sponding class of temporal linear models K C Kyy,.

With respect to the logic L we assume it is an extension of classical logic,
that is, all propositional tautologies are valid in it. The set £ is partitioned
in two sets, BC| and M L. A formula A € £, belongs to the set of boolean
combinations, BC|, iff it is built up from other formulas by the use of one
of the boolean connectives — or A or any other connective defined only in
terms of those; it belongs to the set of monolithic formula M L otherwise.

If L is not an extension of classical logic, we can simply “encapsulate” it
in L' with a one-place symbol # not occurring in either L or T, such that for
each formula A € L, #A € Ly, b Aiff =/ #A and the model structures
of #A are those of A. Note that ML, = L,/ , BCp» = @.

The alphabet of the temporalised language uses the alphabet of L plus
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the two-place operators S and U, if they are not part of the alphabet of L;
otherwise, we use S and U or any other proper renaming.

Definition 2.1 Temporalised formulas The set Lt of formulas of the
logic system L is the smallest set such that:

1. f Ae ML, then A € ET(L);
2. If A,B € ET(L) then —A € ‘CT(L) and (A A B) S ‘CT(L);
3. If A,B € 'CT(L) then S(A,B) € 'CT(L) and U(A,B) € 'CT(L)-

Note that, for instance, if O is an operator of the alphabet of L and A
and B are two formulas in £, the formula OU (A, B) is not in Ly(). The
language of T(L) is independent of the underlying flow of time, but not its
semantics and inference system, so we must fix a class K of flows of time
over which the temporalisation is defined; if M| is a model in the class of
models of L, K, for every formula A € £, we must have either M| = A
or M| = —A. In the case that L is a temporal logic we must consider a
“current time” o as part of its model to achieve that condition.

Definition 2.2 Semantics of the temporalised logic. ' Let (T,<) € K be
a flow of time and let g : 7' — K| be a function mapping every time point
in T to a model in the class of models of L. A model of T(L) is a triple
M) = (T, <,g) and the fact that A is true in M) at time ¢ is written
as M), t = A and defined as:

My, t |: A, Ae ML lﬂg(t) = M| and M |: A.

L
M)t |E-A iff it is not the case that M), t = A.
MT(L),t = (AAB) iff MT(L),t = A and MT(L),t = B.
Mty t = S(A, B) iff there exists s € T such that s < ¢t and

M), s = A and for every u € T, if
s <wu <t then Myq,u = B.
M)t E U(A, B) iff there exists s € T such that ¢ < s and
M), s F A and for every u € T, if
t <wu < s then My(),u F B.
The inference system of T(L)/K is given by the following:
Definition 2.3 Axiomatisation for T(L) An axiomatisation for the tem-
poralised logic T(L) is composed of:

!We assume that the a model of T is given by (T, <, h) where h maps time points into
sets of propositions (instead of the more common, but equivalent, mapping of propositions
into sets of time points); such notation highlights that in the temporalised model each time
point is associated to a model of L.
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e The axioms of T/K;
e The inference rules of T/K;

e For every formula A in £, if b A then Fy( A, i.e. all theorems of L
are theorems of T(L). This inference rule is called Persist.

Example 2.4 Consider classical propositional logic PL = (Lpy,Fpr, FEpL
). Its temporalisation generates the logic system T(PL) = (Ly(py), Fr(pL)
, E1(PL))- It is not difficult to see that the temporalised version of PL over
any K is actually the temporal logic T = US/K.

If we temporalise over K the one-dimensional logic system US/K we
obtain the two-dimensional logic system T(US) = (Ltus),FT(us) FT(Us))
= T2?(PL)/K. In this case we have to rename the two-place operators S and
U of the temporalised alphabet to, say, S and U. Note, however, how weak
this logic is, for S and U cannot occur within the scope of U and S.

In order to obtain a model for T(US), we must fix a “current time”,
o1, in Mys = (T1,<1,91) , so that we can construct the model Myys) =
(T3, <2,92) as previously described. Note that, in this case, the flows of time
(T1,<1) and (T, <2) need not to be the same. (75, <3) is the flow of time of
the upper-level temporal system whereas (77, <;) is the flow of time of the
underlying logic which, in this case, happens to be a temporal logic. The
satisfiability of a formula in a model of T(US) needs two evaluation points,
01 and o9; therefore it is a two-dimensional temporal logic.

The logic system we obtain by temporalising US-temporal logic is the
two-dimensional temporal logic described in [Fin92].

This temporalisation process can be repeated n times, generating an n
dimensional temporal logic with connectives U;, S;, 1 < ¢ < n, such that for
i < j Uj,Sj cannot occur within the scope of U;, S;.

We analyse now the transfer of soundness, completeness and decidability
from T and L to T(L); that is, we are asuming the logics T and L have sound,
complete and decidable axiomatisations with respect to their semantics, and
we will analyse how such properties transfer to the combined system T(L). It
is a routine task to analyse that if the inference systems of T and L are sound,
so is T(L). So we concentrate on the proof of transference of completeness.

Completeness

We prove the completeness of T(L)/K indirectly by transforming a consistent
formula A of T(L) into £(A) and then mapping it into a consistent formula
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of T. Completeness of T/K is used to find a T-model for A* that is used to
construct a model for the original T(L) formula A.

We first define the transformation and mapping. Given a formula A €
Lt(L), consider the following sets:

Lit(A) = Mon(A)U{-B| B € Mon(A)}
Inc(A) = {/\I'|IC Lit(A) and I' - L}
where Mon(A) is the set of maximal monolithic subformulae of A. Lit(A)

is the set of literals occurring in A and Inc(A) is the set of inconsistent
formulas that can be built with those. We transform A into A as: e(A):

The big conjunction ine(A) is a theorem of T(L), so we have the following
lemma.

Lemma 2.5 Fy() e(A4) < A

If K is a subclass of linear flows of time, we also have the following
property (this is where linearity is used in the proof).

Lemma 2.6 Let Mt be a temporal model over KK C Ky, such that for some
o0€T, Mt,0=0(dA). Then, for everyt € T, M,t |=o(0A).

Therefore, if some subset of Lit(A) is inconsistent, the transformed for-
mula €(A) puts that fact in evidence so that, when it id mapped into T,
inconsistent subformulae will be mapped into falsity.

Now we want to map a T(L)-formula into a T-formula. For that, consider

an enumeration pq, pa, ..., of elements of P and consider an enumeration A1,
A, ..., of formulae in M L,. The correspondence mapping o : Lty — LT
is given by:

o(A; = p; forevery A; € ML ,i=1,2...

o(-4) = -0(A)

Q

(

(

(ANB) = o(A)ANo(B)

o(5(A,B)) = S(o(A4),0(B))
o(U(A,B)) = U(a(4),0(B))

A
S

The following is the correspondence lemma.

Lemma 2.7 The correspondence mapping is a bijection. Furthermore if A
is T(L)-consistent then o(A) is T-consistent.
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Lemma 2.8 If A is T(L)-consistent, then for every t € T, Ga(t) = {B €
Lit(A) | Mt,t = o(B)} is finite and L-consistent.

Proof. Since Lit(A) is finite, G 4(t) is finite for every ¢. Suppose G 4(t)
is inconsistent for some ¢, then there exist {By,...,Bp} C Ga(t) such that
FL AB; — L. So A B; € Inc(A) and O-(A B;) is one of the conjuncts of
£(A). Applying Lemma 2.6 to MT,0 |= o(e(A)) we get that for every ¢ € T,
Mr,t = =(A\o(B;)) but by, the definition of G4, Mt,t = A\ o(B;), which
is a contradiction. |

We are finally ready to prove the completeness of T(L)/K.

Theorem 2.9 (Completeness transfer for T(L)) If the logical system L
is complete and T is complete over a subclass of linear flows of time I C
Kiin, then the logical system T(L) is complete over K.

Proof. Assume that A is T(L)-consistent. By Lemma 2.8, we have (T, <) €
K and associated to every time point in 7" we have a finite and L-consistent
set Ga(t). By (weak) completeness of L, every G 4(t) has a model, so we
define the temporalised valuation function g:

g(t) = {M!| Ml isa model of G4(t)}

Consider the model M) = (7, <,g) over K. By structural induction
over B, we show that for every B that is a subformula of A and for every
time point ¢,

M.t |=o(B) iff MT(L),t =B

We show only the basic case, B € Mon(A). Suppose MT,t |= o(B); then
B € G4(t) and M! = B, and hence M)t E B. Suppose Mr(),t = B
and assume Mrt,t = —o(B); then =B € G4(t) and M} | —B, which
contradicts Mr,t = B; hence Mt,t = o(B). The inductive cases are
straightforward and omitted.

So, ML) is a model for A over K and the proof is finished. ]

Theorem 2.9 gives us sound and complete axiomatisations for T(L) over
many interesting classes of flows of time, such as the class of all linear flows
of time, K, the integers, Z, and the reals, R. These classes are, in their T
versions, decidable and the corresponding decidability of T(L) is dealt next.

Note that the construction above is finitistic, and therefore does not itself
guarantee that compactness is transferred. However, an important corollary
of the construction above is that the temporalised system is a conservative
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extension of both original systems, that is, no new theorem in the language
of an original system is provable in the combined system. Formally, L; is a
conservative extension of Ly if it is an extension of Ly such that if A € £,
then -, A only if -, A.

Corollary 2.10 LetL be a sound and complete logic system and T be sound
and complete over KK C Kyin. The logic system T(L) is a conservative ex-
tension of both L and T.

Proof. Let A € £ such that Fy) A. Suppose by contradiction that I
ogicL A, so by completeness of L, there exists a model M, such that M| =
—A. We construct a temporalised model M) = (T, <,g) by making
g(t) = My for all t € T. M clearly contradicts the soundness of T(L)
and therefore that of T, so k. A. This shows that T(L) is a conservative
extension of L; the proof of extension of T is similar. |

Decidability

The transfer of decidability is also done using the correspondence mapping
o and the transformation 7. Such a transformation is actually computable,
as the following two lemmas state.

Lemma 2.11 For any A € Ly, if the logic system L is decidable then
there exists an algorithm for constructing e(A).

Lemma 2.12 Qver a linear flow of time, for every A € L),
Fry A if Fro(e(4)).
Decidability is a direct consequence of these two lemmas.

Theorem 2.13 If L is o decidable logic system, and T is decidable over
K C Kiin, then the logic system T(L) is also decidable over K.

Proof. Consider A € L. Since L is decidable, by Lemma 2.11 there is an
algorithmic procedure to build €(A). Since o is a recursive function, we have
an algorithm to construct o(¢(A4)), and due to the decidability of T over K,
we have an effective procedure to decide if it is a theorem or not. Since IC
is linear, by Lemma 2.12 this is also a procedure for deciding whether A is
a theorem or not. [ |
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2.2 Independent Combination

We now deal with the combination of two temporal logic systems. One of
the will be called the horizontal temporal logic US, while the other will
be the wvertical temporal logic US. If we temporalise the horizontal logic
with the vertical logic, we obtain a very weakly expressive system; if US is
the internal (horizontal) temporal logic in the temporalisation process (F is
derived in US), and US is the external (vertical) one (F is defined in US),
we cannot express that vertical and horizontal future operators commute,

FF A « FFA.

In fact, the subformula FF A is not even in the temporalised language of
US(US), nor is the whole formula. In other words, the interplay between
the two-dimensions is not expressible in the language of the temporalised
0S(US).

The idea is then to define a method for combining temporal logics that
is symmetrical. As usual, we combine the languages, inference systems and
classes of models.

Definition 2.14 Let Op(L) be the set of non-boolean operators of a generic
logic L. Let T and T be logic systems such that Op(T) N Op(T) = @. The
fully combined language of logic systems T and T over the set of atomic
propositions P, is obtained by the union of the respective set of connectives
and the union of the formation rules of the languages of both logic systems.

Let the operators U and S be in the language of US and U and S be in
that of US. Their fully combined language over a set of atomic propositions
P is given by

e every atomic proposition is in it;

e if A, B are in it, so are =A and A A B;

e if A, B are in it, so are U(A, B) and S(4, B).
e if A, B are in it, so are U(A, B) and S (A, B).

Not only are the two languages taken to be independent of each other,
but the set of axioms of the two systems are supposed to be disjoint; so we
call the following combination method the independent combination of two
temporal logics.
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Definition 2.15 Let US and US be two US-temporal logic systems de-
fined over the same set P of propositional atoms such that their languages
are independent. The independent combination US @ US is given by the
following;:

e The fully combined language of US and US.

e If (X,7) is an axiomatisation for US and (3, 7) is an axiomatisation
for US, then (X UX,Z UZ) is an axiomatisation for US & US. Note
that, apart from the classical tautologies, the set of axioms ¥ and ¥
are supposed to be disjoint, but not the inference rules.

e The class of independently combined flows of time is K@K composed of
biordered flows of the form (T', <, <) where the connected components
of (T, <) are in K and the connected components of (T, <) are in K,
and T is the (not necessarily disjoint) union of the sets of time points
T and T that constitute each connected component.

A model structure for US @ US over K & K is a 4-tuple (T, <,<,9),
where (T, <, <) € K@K and g is an assignment function g : T — 29.
The semantics of a formula A in a model M = (T, <, <, g) is defined
as the union of the rules defining the semantics of US/K and US/K.
The expression M,t = A reads that the formula A is true in the
(combined) model M at the point ¢ € 7. The semantics of formulas
is given by induction in the standard way:

Mt E=p iff p € g(t) and p € P.

M, tl=-A iff it is not the case that M,t = A.

M,t=EANB iff M,t = A and M,t |= B.

M.t }= S(A, B) iff there exists an s € T with s < t and M, s |= A
and for every w € T, if s < u < t then
M,u = B.

M, t = U(A, B) iff there exists an s € T with ¢ < s and M, s |= A
and for every w € T, if t < u < s then
M, u = B.

M, t = S (A, B) iff there exists an s € T with s<t and M,s = A
and for every u € T', if s Tu< t then M, u |= B.

M, t = U(A, B) iff there exists an s € T with t<s and M,s = A
and for every u € T, if t<u< s then M, u |= B.

The also independent combination of two logics appears in the literature
under the names of fusion or join.
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As usual, we will assume that IC, X C Ky, so < and < are transitive,
irreflexive and total orders; similarly, we assume that the axiomatisations
are extensions of US/Ky;,.

The temporalisation process will be used as an inductive step to prove
the transference of soundness, completeness and decidability for US @ US
over K @ K. We define the degree alternation of a (US @ US)-formula A for
US, dg(A):

dg(p) =0

dg(—A) = dg(A)

dg(A A B) = dg(S(A, B)) = dg(U(A, B)) = maz{dg(A),dg(B)}
dg(U(A, B)) = dg(S ( B)) =1+ maw{dg( ), dg(B)}

and similarly define dg(A) for US.

Any formula of the fully combined language can be seen as a formula of
some finite number of alternating temporalisations of the form US(US(US(. . .)));
more precisely, A can be seen as a formula of US(L,), where dg(A4) = n,
US(L()) = US, US(L()) = Ug, and Lnfgi = Ug(Lnfgifl), Lnfgifl = US(Ln,QZ',g),
for i =0,1,...,[2] — 1.

Indeed, not only the language of US @ US is decomposable in a finite
number of temporalisation, but also its inferences, as the following important
lemma indicates.

Lemma 2.16 Let US and US be two complete logic systems. Then, A is a
theorem of US @ US iff it is a theorem of US(L,), where dg(A) = n.

Proof. If A is a theorem of US(L,), all the inferences in its deduction can
be repeated in US @ US, so it is a theorem of US & US.

Suppose A is a theorem of US ® US; let By, ..., B,, = A be a deduction
of Ain US ® US and let n' = maz{dg(B;)}, n' > n. We claim that each
B; is a theorem of US(L,/). In fact, by induction on m, if B; is obtained
in the deduction by substituting into an axiom, the same substitution can
be done in US(L,); if B; is obtained by Temporal Generalisation from Bj,
j < 1, then by the induction hypothesis, B; is a theorem of US(Ly) and so
is B;; if B; is obtained by Modus Ponens from B; and By, j,k < i, then by
the induction hypothesis, B; and By, are theorems of US(Ly) and so is B;.

So A is a theorem of US(L,) and, since US and US are two complete
logic systems, by Theorem 2.9, each of the alternating temporalisations in
US(Ly) is a conservative extension of the underlying logic; it follows that A
is a theorem of US(L,), as desired. [ |
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Note that the proof above gives conservativeness as a corollary. The
transference of soundness, completeness and decidability also follows directly
from this result.

Theorem 2.17 (Independent Combination) Let US and US be two sound
and complete logic systems over the classes K and K, respectively. Then
their independent combination US @ US is sound and complete over the

class K@ K. IfUS and US are complete and decidable, so is US & US.

Proof. Soundness follows immediately from the validity of axioms and
inference rules.

We only sketch the proof of completess here. Given a US @ US-consistent
formula A, Lemma 2.16 is used to see that it is also consistent in US(L,),
so a temporalised US(L,)-model is built for it. Then, by induction on the
degree of alternation of A, this US(L,) is used to construct a US @ US-model;
each step of such construction preserves the satisfatibility of formulas of a
limited degree of alternation, so in the final model, A, is satisfiable; and
completeness is proved. For details, see [FG96].

For decidability, suppose we want to decide whether a formula A €
US®US is a theorem. By Lemma 2.16, this is equivalent to deciding whether
A € US(L,) is a theorem, where n = dg(A). Since US/K and US/K are both
complete and decidable, by successive applications of Theorems 2.9 and 2.13,
it follows that the following logics are decidable: US(US), US(US(US)) =
US(La), ..., US(Ly_1)= Ln; 50 a the last application of Theorems 2.9 and 2.13
yields that US(L,) is decidable. [ |

2.2.1 The minimality of the independent combination

The logic US @ US is the minimal logic that conservatively extends both
US and US. This result was first shown for the independent combination of
monomodal logics independently by [KW91] and [FS91].

Indeed, suppose there is another logic T; that conservatively extends
both US and US but some theorem A of US @ US is not a theorem of Tj.
But A can be obtained by a finite number of inferences A,..., A4, = A
using only the axioms of US and US. But any conservative extension of
US and US must be able to derive 4;, 1 < i < n, from Ay,...,A;_1, and
therefore it must be able to derive A; contradiction.

Once we have this minimal combination between two logic systems, any
other interaction between the logics must be considered on its own. As
an example, consider the following formulas expressing the commutativity
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of future and past operators between the two dimensions are not generally
valid over a model ofU S & US:

l}, FFA~ FFA
l, FPA+ PFA
I3 PFA+ FPA
ls PPA+ PPA

Now consider the product of two linear temporal models, given as follows.

Definition 2.18 Let (7,<) € K and (T,<) € K be two linear flows of
time. The product of those flows of time is (T x T, <,<). A product model
over K x K is a 4-tuple M = (T' x T, <,<,g), where g : T xT — 2Yis a
two-dimensional assignment. The semantics of the horizontal and vertical
operators are independent of each other:

M, t,z |=S(A,B) iff there exists s < ¢ such that M, s,z = A and
for all u, s < u < t, M,u,z = B.

M, t,z =S (A,B) iff there exists y<z such that M,t,y = A and
for all z, y<z<z, M,t, z = B.

Similarly for U and U, the semantics of atoms and boolean connectives
remaining the standard one. A formula A is valid over K x K if for all models
M = (T,<,T,<,g), for all t € T and x € T we have M, t,z = A.

It is easy to verify that the formulas l;—ls are valid over product mod-
els. We wonder if such product of logics transfers the properties we have
investigated for the previous logics. The answer is: it depends. We have the
following results.

Proposition 2.19 (a) There is a sound and complete axiomatisation for
US x US owver the classes of product models Kiip X Kiin, Kais X Kdis,

Q x Q, Kiin % Kais, Kiin x Q and Q x Kgis [Fin94].

(b) There are no finite axiomatisations for the valid two-dimensional for-
mulas over the classes Z x Z, N x N and R x R [Ven90].

Note that the all the component one-dimensional mentioned above logic
systems are complete and decidable, but their product sometimes is com-
plete, sometimes not. Also, the logics in (a) are all decidable and those in
(b) are undecidable.

This is to illustrate the following idea: given an independent combination
of two temporal logics, the addition of extra axioms, inference rules or an
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extra condition on its models has to be studied on its own, just as adding a
new axiom to a modal logic or imposing a new property on its accessibility
relation has to be analysed on its own.

Combinations of logics in the literature

The work on combining temporal logics presented here has first appeared in
the literature in [FG92, FG96].

General combinations of logics have been addressed in the literature
in various forms. Combinations of tense and modality were discussed in
[Tho84], without explicitly providing a general methodology for doing so. A
methodology for constructing logics of belief based on existing deductive sys-
tems is the deductive model of Konolige [Kon86]; in this case, the language
of the original system was the base for the construction of a new modal lan-
guage, and the modal logic system thus generated had its semantics defined
in terms of the inferences of the original system. This is a methodology
quite different from the one adopted here, in which we separately combine
language, inference systems and class of models.

Combination of two monomodal logics and the transference of properties
have been studied by Kracht and Wolter [KW91] and Fine and Schurz [FS91];
the latter even considers the transference of properties through the combi-
nation of n-monomodal logics. These works differ from the combination of
temporal logics in several ways: their modalities have no interaction what-
soever (unlike S and U, which actually interact with each other); they only
consider one-place modalities ((0); and their constructions are not a recur-
sive application of the temporalisation (or any similar external application
of one logic to another).

A stronger combination of logics have been investigated by Gabbay and
Shehtman [GS98], where the starting point is the product of two Kripke
frames, generating the product of the two monomodal logics. It shows that
the transference of completeness and decidability can either succeed or fail
for the product, depending on the properties of the component logics. The
failure of transference of decidability for temporal products in FP/IC;;, X
FP/Ki has been shown in [MR99], and fresh results on the products of
logics can be foun din [RZar].

The transference of soundness, completeness and decidability are by no
means the only properties to study. Kracht and Wolter [KW91] study the
transference of interpolation between two monomodal logics. The com-
plexity of the combination of two monomodal logics is studied in [Spa93];
the complexity of products are studied in [Marar]. Gabbay and Sheht-
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man [GS98] report the failure of transference of the finite model property
for their product of modal logics. With respect to specific temporal proper-
ties, the transference of the separation property is studied in [FG92].

2.3 Fibering

Dov TO WRITE
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