Notes on Several Methods for Combining Temporal Logic
Systems

Marcelo Finger *

Imperial College, Department of Computing
180 Queen’s Gate
London SWT7 2BZ, UK

mf3@doc.ic.ac.uk !

ESSLLI 94

Abstract

This paper is a continuation of the work started in [FG92] on combining temporal
logics. In this work, four combination methods are described and studied with respect
to the transference of logical properties from the component one-dimensional temporal
logics to the resulting two-dimensional temporal logic. Three basic logical properties
are analysed, namely soundness, completeness and decidability.

Each combination method is composed of three submethods that combine the lan-
guages, the inference systems and the semantics of two one-dimensional temporal logic
systems, generating families of two-dimensional temporal languages with varying ex-
pressivity and varying degree of transference of logical properties. The temporalisation
method and the independent combination method are shown to transfer all three basic
logical properties. The method of full interlacing of logic systems generates a consid-
erably more expressive language but fails to transfer completeness and decidability in
several cases. So a weaker method of restricted interlacing is proposed and shown to
transfer all three basic logical properties.

The connections of our work with more generic works on combininbg (any) logic
systems are unfortunately absent from the current version of this paper but will be
present in its final version.

1 Introduction

We are interested in describing systems in which two distinct temporal “points of view”
coexist. Descriptions of temporal systems under a single point of view, i.e. one-dimensional
temporal systems, abound in the literature. These one-dimensional temporal logics differ
from each other in several ways. They differ on the form of the logic is presented, whether
proof theoretical, model theoretical or algebraic presentation. They differ on the ontology
of time adopted, whether time is to be represented as a set of points, intervals or events.
They can also differ on the properties assigned to flows of time, whether or branching
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time, discrete or dense, continuous or allowing for gaps. We want to take advantage of
this existing literature on temporal systems to study temporal systems with two coexisting
temporal references, i.e. two dimensions.

The idea is to systematically combine two one-dimensional temporal systems into a
new logical system, which we call a two-dimensional temporal logic, and we study if the
properties of the original systems are transferred to the combined one.

It turns out that there are several possible combination methods, in the same way
that there are several levels at which two temporal “points of views” can coexist. We
discuss next a few of those levels of coexistence, and show how each of them can lead
to a method for combining one-dimensional temporal logic. Fach of these methods will
have then to be studied on its own to establish whether the properties of the original
systems are transferred to their combination via this particular method. With respect
to the choices of presentation of logic systems, we contemplate both proof- and model-
thoeretical presentations of temporal logics on a point-based ontology. Most of the results
presented assume that the flow of time is linear.

First case: External time

One temporal point of view can external to the other. The external point of view is
describing the temporal evolution of a system &, when system § is itself a temporal
description. Suppose § is described using a temporal logic T and suppose that the external
point of view is given in a possibly distinct logic T. For example, consider an agent A,
whose temporal beliefs are expressed in T trying to represent the temporal beliefs of an

agent B, expressed in T, this is illustrated in Figure 1.
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Figure 1 One agent externally observing the other

Agent A’s beliefs are external to agents B’s beliefs, so that T is externally describing
the evolution of T. Figure 2 illustrates the two coexistent temporal points of view.
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Figure 2 Coexistent temporal systems T and T

The external temporal point of view T is then applied to the internal system T, in a
process called temporalisation or adding a temporal dimension to a logic system, [FG92].
The resulting combined logic system T(T) is illustrated in Figure 3.

The temporalisation associates every time point in Twith a temporal description in
T, where those T-descriptions need not be all identical. Given the logical properties of T
and T, what can be said about the logical properties of T(T)?
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Figure 3 The combined flow of time T(T)

Second case: Independent agents

Suppose now that agent A has the ability of referring to agent B’s temporal beliefs and
vice versa. The agents are therefore obseving each other, as illustrated in figure 4.
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Figure 4 Independent interaction of agents

The agents’ beliefs are then capable of interacting with each other through several levels
of cross-reference, as in the sentence “A believes that B believes that A believes that ...”.
A new combination method for T and T is needed in order to represent such sentence as
a formula; which is called the independent combination, T & T. Since a formula of T T
has a finite nature, it can be unravalled in a finite number of alternating temporalisation,
as illustrated in Figure 5.

Figure 5 Unravelling T @ T

Figure 5 suggests a way of analysing the properties id the independence combination
method using the temporalisation method as an intermediary step. It will turn out that
the independence combination method is the (infinite) union of all finite alternated tempo-
ralisations. An illustration of a possible independently combined flow of time is presented
in Figure 6.

Third case: Two-dimensional plane

Yet another distinct situation can be found where we have the coexistence of two distinct
temporal “points of view”. This time a single agent with temporal reasoning capabilites
is considered, and we want to be able to describe the evolution of his own beliefs. This
is perhaps better illustrated by considering the agent as a temporal database where each
piece of information is associated to a validity time (or interval). For example, consider the
traditional database relation employee(Name, Salary, Manager). Suppose the following
is in the database at March 94

Name  Salary Dept  Start End
Peter 1000 R&D Apr 93 Mar 94

where the attributes start and end represent the end points of the validity interval associ-
ated with the information. We assume that Peter’s salary has not changed since Apr 93.
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Figure 6 Independently combined flow of time

Suppose in Apr 94 Peter receives a retroactive promotion dating back to the beginning
of the year, increasing his salary to 2000. The whole database evolution is illustrated at
Figure 7, where only the value of Peter’s salary is indicated at each point.
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Figure 7 Two-dimensional temporal database evolution

If T represents valid-time and T represents transaction-time, we have guaranteed a
two-dimensional plane T x T in order to represent the database evolution.

Another application of the two-dimensional plane (or its NW-semi-plane) is in the
representation of intervals on a line [Ven90].
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Figure 8 Two-dimensional representation of intervals

In Figure 8 we can see a line considered the diagonal of a two-dimensional plane and
that ainterval [¢1, f3] on that line is represented by the point (¢1,%2) on the NW-semi-plane.
The combination between two temporal systems leading to a two-dimensional plane
flow of time is stronger than the simple independent combination and will be studied on

its on.



Aims

In this paper we study those three situations of coexistence of “two temporal points of
view”, as the result of a combination of two linear, one-dimensional temporal logics.

In this sense this paper is a continuation on the work started in [IFG92] on the com-
bination of temporal logics. There, a process for adding a temporal dimension to a logic
system was described, in which a temporal logic T is externally applied to a generic logic
system L, generating a combined logic T(L).

We now set to explore several methods for systematically combining two temporal
logics, T and T, thus generating several new families of two-dimensional temporal logics.

A great number of (one-dimensional) temporal logics exist in the literature to deal
with the great variety of properties one may wish to express about flows of time. When
building two-dimensional temporal logics, the combination of two classes of flows of time
generates an even greater number of possible systems to be studied. Furthermore, as we
will see, there are several distinct classes of temporal logics, that may be considered two-
dimensional, each generated by distinct combination method. It is, therefore, desirable to
study if it is possible to transfer the properties of long known and studied (one-dimensional)
temporal logic system to the two-dimensional case.

So the main goal of this paper is to study, for each combination method, the transfer-
ence of logical properties from component one-dimensional temporal systems to a combined
two-dimensional one.

In this work, we concentrate on the transference of three basic properties of logic
systems, namely soundness, completeness and decidability. This by no means implies that
those are the only properties whose transference deserve to be studied, but, as has already
been noted in [FG92] for the temporal case, and in [KW91, F'S91] for the monomodal
case, the transference of completeness serves as a basis for the transference of several
other properties of logical systems.

As for the methods for combining two temporal logics, we consider the following:

(a) The temporalisation method, ie the external application of a temporal logic to an-
other temporal system, also known as adding a temporal dimension to a logic system;

(b) the independent combination of two temporal systems;

(c) the full interlacing of two temporal systems, where flows of time are considered over
a two-dimensional plane;

(d) the restricted interlacing of two temporal system, a combination method that re-
stricts the previous one but generates nice transference results.

We proceed as follows. Section 2 presents the basic notions of one- and two-dimensional
temporal logics. Section 3 discusses combinations of logics in general terms, so that in the
rest of the paper we can present special cases of combination methods. Section 4 briefly
examines the transference results obtained for the temporalisation method in [FG92].
Section 5 studies the method of independent combination. Section 6 deals with the full
interlacing method and Section 7 with its restricted version. Section 8 analyses the prop-
erties of a two-dimensional diagonal on the model generated by the full and restricted
interlacing methods. In Section 9 we discuss the results of this work.

The current version of this paper is still missning a section that relates the combination
methods described here with more general works on combining any (not only temporal)
logical systems, such as [Gab92]. This connection should be presented in a later version
of the paper.



2 Preliminaries

For the purposes of this paper, a logic system is composed of three elements:

(a) alanguage, normally given by a set of formation rules generating well found formulae
over a signature and a set of logical connectives.

(b) An inference system, ie a relation, I, between sets of formulae, normally represented
by upper case Greek letters A, I, X, W, ® and a single formula, normally represented
by upper case letters A, B, C,...; the fact that A is inferred from a set A is indicated
by A F A. When A is a singleton, A = {B}, the notation is abused and we write
BFA.

(c) The semantics of formulae over a class K of model structures. The fact that a
formulae A is true of or holds at a model M € K is indicated by M |= A.

In providing a method for combining two logics into a third one, it will be necessary to
provide three sub-methods that combine the languages, inference systems and semantics of
the component logic systems. The component systems considered in this paper will be one-
dimensional linear us-temporal logics. Their language is built from a countable signature
of propositional letters P = {p1, p2,...}, the Boolean connectives A (conjunction) and -
(negation), the two-place temporal operation U (until) and S (since), possibly renamed,
and the following formation rules:

e every propositional letters is a formulae
o if A and B are formulae, so are =4 and AA B

o if A and B are formulae, so are U(A, B) (reads “until A is time in the future, B will
be time”) and S(A, B) (reads “since A was time in the past, B has been time”).

e nothing else is a formula.

The mirror image of a formula is another temporal formula obtained by swapping all
occurrences of U and 5, e.g. the mirror image of U(A, S(B,(C))is S(A,U(B,C)).

The other Boolean connectives V (disjunction), — (material implication), < (material
bi-implication) and the constants L (false) and T (true) can be derived in the standard way.
Similarly, the one-place temporal operates I' (“sometime in the future”), P (“sometime
in the past”), G (“always in the future”) and H (“always in the past”) can be defined in
terms of U and 5.

For the semantics of temporal formulae we have to consider a (one-dimensional) flow
of time, F = (T <), where T is a set of time points and < is an order over 7. A
temporal valuation h : T — 27 associates every time point with a set of propositional
letters, i.e. k() is the set of propositions that are true at time t'. A model structure
M = (T, <, h) consists of flow of time (7, <) and a temporal assignment i and, for the
purposes of combination of logics, we consider a “current world” ¢ € T as part of the
model. M.t |= A reads “A is true at ¢ over model M”. Classes of models are normally
defined by restrictions over the order relation < of the flow of time.

The semantics of temporal formulae is given by:

!Equivalently, and perhaps more usually, a valuation could be defined as a function h : P — 27T,
associating every propositional letter to a set of time points in which it holds true [Bur84, GHR94].



M,tE=p iff p € P such that p € h(?).

M, tl=-A iff it is not the case that M,t = A.

MtEAANB iff M tl= A and M.t = B.

M.t = S(A, B) iff there exists an s € T with s <t and M,s = A
and for every w € T, if s < w < t then
M,u = B.

M.t = U(A, B) iff there exists an s € T with ¢t < s and M,s = A
and for every w € T, if t < uw < s then
M,u = B.

The following restriction will be applied throughout this presentation. Flows of time

will always be considered to have the properties:
(a) irreflexivity: Vi-(t < t)
(b) transitivity: Vi, s,u(t < sAs<u—1t < u)
(c) totality: Vt,s(t =sVit<sVs<t)

The class of all flows respecting the restrictions above is the class Ky, of linear flows
of time. We also represent the class of all models based on linear flows as Kj;,,. Further
restrictions can be applied to the nature of flows of time so that several other linear
subclasses can be formed, e.g. the classes of dense (Kgense ), discrete (Kgy;s), Z-like, Q-like

and R-like flows of time. The linearity property allows for the definition of the “at all
times” temporal connective O

OA=ANGANHA

In case of discrete flows of time, the operator “next time”, O, and “previous time”, @
are also defined.

OA=U(A, 1)
@A=5(A1)
The inference systems will be considered to be finite axiomatisations, i.e. a pair (X,7)

where ¥ is a finite set of formulae called axioms and 7 is a set of inference rules. Consider
the Burgess-Xu axiomatisation for Ky, [Bur82, Xu88] consisting of the following axioms:

A0 all classical tautologies

A2a G(p— q) — (U(r,p) — U(r,q))

A3a (pAU(q,7))— U(gAS(p,r),7)

Ada U(p,q) — U(p,qNU(p,q))

Asa U(gAU(p,q),q)— U(p.q)

A6a (U(p,q) ANU(r,s)) —
(U(pAr,ghs)NVU(pAs,gAs)VU(gAT,qAs))

plus their mirror images (b axioms). The inference rules are:

Subst Uniform Substitution, i.e. let A(q) be an axiom containing the proposi-
tional letter ¢ and let B be any formula, then from F A(q) infer - A(¢\ B)
by substituting all appearances of ¢ in A by B.

7



MP Modus Ponens: from - A and - A — B infer - B.
TG Temporal Generalisation: from + A infer F H A and F G'A.

A formula A is deducible from the set of formulae A, A F A, if there exist a finite
sequence of formulae By,..., B, = A such that every B, is either

(a) a formula in A; or

(b) an axiom; or

(c) obtained from previous formulae in the sequence through the use of an inference
rule.

We write - A for ) = A, i.e. only items (b) and (c) above are used the deduction of A,
in which case A is said to be a theorem. A set of formulae A is inconsistent if A F 1,
otherwise it is inconsistent. A formulae A is consistent if {A} is consistent.

On the semantical side, a set of formulae A is satisfiable over a class of models K if
there exist a model M € K (and a ¢t € T') such that, for every B; € A, M,t |= B;. A
formula A is valid over K, K = A if, for every model M = (T,<,h) € K (and t € T),
M.t = A. The expression A |= A represents that every model satisfying A also satisfies
A.

An inference system is sound with respect to a class of models K iff every theorem is a
valid formula, i.e. F A implies £ = A. An inference system is (weakly) complete over K, if
every theorem F A is valid, K |= A, or equivalently, if every consistent formula is satisfied
over K. Let L = (£,F,|=) be a logic system with language L, inference system F and
semantics [=. We say that L is decidable if there exists an algorithm (decision procedure)
that determines, for every A € L, whether A is a theorem or not. The validity problem
for L is to determine whether some A € £ is a valid formula or not.

We have the following results

Theorem 2.1 ([Bur82, Xu88]) The Burgess-Xu axiomatisation is sound and complete
over K.

Theorem 2.2 ([BG85]) The logic US = (Lys,Fys, Fus) is decidable over Kij,.

3 Combining Logics

As we have mentioned earlier, the combination of two one-dimensional temporal logics
will generate a two-dimensional temporal logic. Throughout this presentation, we refer
to one of the temporal dimensions as the horizontal dimension and the other one as the
vertical dimension; the symbols related to the vertical dimension are normally obtained
by putting a bar on top of the corresponding horizontal ones, e.g. T and T, Fand F, <
and <.

There are two distinct criteria for defining a modal/temporal logic system as two-
dimensional:

(i) If the alphabet of the language contains two non-empty, disjoint sets of corresponding
modal or temporal operators, ® and ®, each set associated to a distinct flow of time,
(T,<) and (T, <), then the system is two-dimensional.



(ii) If the truth value of a formula is evaluated with respect to two time points, then
the system is two-dimensional. In this case, we even have the distinction between
strong and weak interpretation of formulae that, as a consequence, generates different
notions of valid formulae (a formulae is valid if it holds in all models for all pair of
time points). Under the strong interpretation, the truth value of atoms depends
on both dimensions, giving origin to strongly valid formulae when the evaluation
of formulae is inductively extended to all connectives. In the weak interpretation,
the truth value of atoms depends only on the one dimension, e.g. the horizontal
dimension, giving origin to weakly valid formulae. Usually for this notion of two-
dimensionality, both time points refer to the same flow of time, so we may also have
the notion of (weak/strong) diagonally valid formulae by restricting validity to the
case where both dimensions refer to the same point, i.e. A is diagonally valid iff

M, t,t = A for all M and t; see [GHR94] for more details.

Criterion (i) above will be called the syntactic criterion for two-dimensionality, al-
though it is not completely syntactic, i.e. it depends on the semantic notion of flows of
time; criterion (ii) will be called the semantic criterion for two-dimensionality.

Note that both cases can yield, as an extreme case, one-dimensional temporal logic.
In (i), by making 7 =T and < = (<)~! = (>), i.e. by taking two flows with the same
set of time points such that one order is the inverse of the other; in this case, the future
operators ® = {F, G, U} are associated with (7, <) and the past operators ® = {P, H, S}
are associated with (7', >). In (ii), by fixing one dimension to a single time point so that
the second dimension becomes redundant.

These two distinct approaches to the two-dimensionality of a system are independent.
In fact, we will see in Section 5 a system that contains two distinct sets of operators over
two classes of flows of time, but its formulae are evaluated at a single point. On the
other hand, there are several temporal logics in the literature satisfying (ii) but not (i),
containing a single set of temporal operators in which formulae are evaluated according
to two or more time points in the same flow [Aqv79, Kam71, GHR94].

A logic system that respects both the syntactic and the semantic criteria for two-
dimensionality is called broadly two-dimensional, and this will be the kind of system we will
be aiming to achieve through combination methods; we consider in this work only strong
evaluation and validity; the weak interpretation generates systems with the expressivity
of only monadic first-order language [GHR94], but for broadly two-dimensional systems
we are interested in the expressivity of dyadic first-order language, although it is known
that no set of temporal operators can be expressively complete? over dyadic first-order
language [Ven90]. Venema’s [Ven90] two-dimensional temporal logic, Segerberg’s [Seg73]
two-dimensional modal logic and the temporalisation of a temporal logic are all broadly
two-dimensional; so are the combined logics in Sections 6 and 7.

In the study of one-dimensional temporal logics (1DTLs) several classes of flows of time
are taken into account. When we move to 2DTLs, the number of such classes increases
considerably, and every pair of one-dimensional classes can be seen as generating a different
two-dimensional class. The study of 2DTLs would benefit much if the properties known
to hold for 1DTLs could be systematically transferred to 2DTLs, avoiding the repetition
of much of the work that has been published in the literature. This is a strong motivation

2A modal/temporal language is ezpressively complete over a class of first-order formulae if, for any
first-order formula A in that class, there exists a modal/temporal formula B such that A is first-order
equivalent to B*, where B* is the standard first-order translation of B [GHR94].



to consider methods of combination of 1DTLs into 2DTLs and studying the transference
of logical properties through each method. Also in favour of such an approach is the fact
that the results concerning 2DTLs are then presented in a general, compact and elegant
form.

In providing a method to combine two 1DTLs T and T we have to pay attention to
the following points:

(a) A method for combining logics T and T is composed of three sub-methods, namely
a method for combining the languages of T and T, a method for combining their
inference systems and a method for combining their semantics.

(b) We study the combined logic system with respect to the way certain logical properties
of T and T are transferred to the two-dimensional combination. We focus here on
the properties of soundness, completeness and decidability of the combined system
given those of the component ones.

(¢) The combined language should be able to express some properties of the interaction
between the two-dimensions; otherwise the combination is just a partial one, and the
two systems are not fully combined. For example, it is desirable to express formulae
like FFA—~FFA and PF A—~F PA that are not in the temporalised language of
T(T).

(d) If we want to strengthen the interaction between the two systems, some properties
of the interaction between the two-dimensions are expected to be theorems of the
combining system, e.g. the commutativity of horizontal and vertical future operators

such as FFA—FFA and PFA<F PA.

(e) We want the combination method to be as independent as possible from the under-
lying flows of time.

All methods of combination must comply with item (a). The method for combining
the languages of T and T includes the choice of which sublanguage of T and T is going
to be part of the combined two-dimensional language, as well as the way in which this
combination is done; in this presentation we will work, in the most general case, with
the standard languages of S and U, S and U, but we also consider some sublanguages,
e.g. the sublanguage generated by a set of derived operators, as the vertical “previous”
(@) and “next” (O) in Section 7. In combining the inference systems of T and T, we
will assume that they are both an extension of classical logic and that they are presented
in the form of a regular, normal axiomatic system (X,7), where ¥ is a set of axioms and
7 is a set of inference rules; one important requirement is that the combined system be
a conservative extension of the two components. The conservativeness property states
that if A is a formula in the language of T and T* is a logic system extending T (i.e. the
language of T is a sublanguage of the language of T*) then A will be a theorem of T* only
if it is a theorem of T already; conservativeness guarantees that no new information about
the original system T is present in the extended one T*.

The combined semantics has to deal with the structure of the combined model, the
evaluation of two-dimensional formulae over those structures and also with the combina-
tions of classes of flows of time.

Items (b), (¢), (d) and (e) may conflict with each other. In fact, the rest of this paper
shows that this is the case, as we try to compromise between expressivity, independence
of the underlying flow of time and the transference of logical properties.
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4 Temporalising a Logic

The first of the combination methods, known as “adding a temporal dimension to a logic
system” or simply “temporalising a logic system”, has been extensively discussed in [FG92].

Temporalisation is a methodology whereby an arbitrary logic system L can be enriched
with temporal features to create a new system T(L). The new system is constructed by
combining L with a pure propositional temporal logic T (such as linear temporal logic with
“Since” and “Until”) in a special way.

Although we are only interested here in temporalising an already temporal system,
so as to generate a 2DTL, the original method is more general and is applicable to a
generic logic L; L is to actually constrained to be an extension of classical logic, i.e. all
propositional tautologies must be valid in it, but such a constraint does not affect us, for we
are assuming that both temporal systems 7" and L are extensions of U.S/K};, The language
of a temporalised system is based on the US language and is a subset of the language of
L, £7. The set £| is partitioned in two sets, BC| and M L|. A formula A € £| belongs
to the set of boolean combinations, BC| , iff it is built up from other formulae by the use
of one of the boolean connectives = or A or any other connective defined only in terms of
those; it belongs to the set of monolithic formula M L| otherwise.

The result of temporalising over K the logic system L is the logic system T(L)/K. The
alphabet of the temporalised language uses the alphabet of L plus the two-place operators
S and U, if they are not part of the alphabet of L; otherwise, we use S and U or any other
proper renaming.

Definition 4.1 Temporalised formulae The set 'CT(L) of formulae of the logic system
L is the smallest set such that:

2. f A, B € 'CT(L) then —A € 'CT(L) and (AN B) € 'CT(L);

O

Note that, for instance, if O is an operator of the alphabet of L and A and B are
two formulae in £, the formula OU(A, B) is not in Ly(. The language of T(L) is
independent of the underlying flow of time, but not its semantics and inference system,
so we must fix a class K of flows of time over which the temporalisation is defined; if M
is a model in the class of models of L, K|, for every formula A € £| we must have either
M| E Aor M| = -A. In the case that L is a temporal logic we must consider a “current
time” o as part of its model to achieve that condition.

Definition 4.2 Semantics of the temporalised logic Let (7,<) € K be a flow of

time and let g : 7" — K| be a function mapping every time point in 7" to a model in the
class of models of L. A model of T(L) is a triple M, = (T, <,g) and the fact that A is
true in M) at time ¢ is written as M), ? = A and defined as:

11



Myt E A Ae ML iff g(t) = M and M |= A

-MT(L)at = -A iff it is not the case that -MT( ,t |:
M)t (AN B) iff M.t = A and M)t |_
Myt E S(A, B) iff there eX1sts seT such that s < tand

My s = A and for every u € T, if
5<u<tthen./\/l-|-( ,ulE B

Myt E U(A, B) iff there exists s € T' such that t < s and
Mr),s |E A and for every u € T, if

t<u<5then./\/l-|-( ,ulE= B -

Figure 3 illustrates a temporalised model. The inference system of T(L)/K is given by
the following;:

Definition 4.3 Axiomatisation for T(L) An axiomatisation for the temporalised logic
T(L) is composed of:

¢ The axioms of T/K;
e The inference rules of T/K;

o lor every formula A in £ ,if - A then l_T(L) A, i.e. all theorems of L are theorems
of T(L). This inference rule is called Persist.

O

Example 4.1 Temporalising propositional logic Consider classical propositional
logic PL = (Lp|,FpL,=pL). Its temporalisation generates the logic system T(PL) =
(L1 FT(PLY: FTPL))-

It is not difficult to see that 'CT(PL) = Lyg and '_T(PL):l_USv i.e. the temporalised
version of PL over any K is actually the temporal logic T = US/K. With respect to MT(L)v
the function g actually assigns, for every time point, a PL model. O

Example 4.2 Temporalising US-temporal logic If we temporalise over K the one-
dimensional logic system US/K we obtain the two-dimensional logic system T(US) =
(L1us). FTUs) ETUS)) = T2(PL)/K. In this case we have to rename the two-place

operators S and U of the temporalised alphabet to, say, S and U.

In order to obtain a model for T(US), we must fix a “current time”, o, in Myg =
(Th,<1,91) , so that we can construct the model MT(US) = (T3,<32,92) as previously
described. Note that, in this case, the flows of time (73, <1) and (73, <2) need not to be
the same. (T3, <z) is the flow of time of the upper-level temporal system whereas (17, <1)
is the flow of time of the underlying logic which, in this case, happens to be a temporal
logic.

The logic system we obtain by temporalising U S-temporal logic is the two-dimensional
temporal logic described in [Fin92]. a

Example 4.3 N-dimensional temporal logic If we repeat the process started in the
last two examples, we can construct an n-dimensional temporal logic T"(PL)/K (its al-
phabet including S, and U, ) by temporalising a (n — 1)-dimensional temporal logic.
Every time we add a temporal dimension, we are able to describe changes in the
underlying system. Temporalising the system L once, we are creating a way of describing
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the history of L; temporalising for the second time, we are describing how the history of L
is viewed in different moments of time. We can go on indefinitely, although it is not clear
what is the purpose of doing so. O

From now on we restrict the logic systems to L = US/K and T = US/K, where K, K C
Kiin. We write US(US) instead of T(L) and the generated class of models is referred to as
K(K). For this system, we enumerate a series of results that are proved in [FG92]. Those
results will be useful for the discussion of the independent combination method.

Theorem 4.1 (Transference via temporalisation) Consider the logic systems US /K

and US/K, K,/C C Kiin.

(a) If US is sound with respect to K and US is sound with respect to K, then US(US)
is sound w.r.t. K(K).

(b) If US is complete w.r.t. K and US is complete w.r.t. K then US(US) is complete
w.r.t. K(K).

(¢c) If US is complete w.r.t. K, then US(US) is a conservative extension of both US
and US.

(d) If US is complete and is decidable over K and US is complete and decidable over
K then US(US) is decidable over K(K).

5 Independent Combination

We have seen in the previous Section how to add a temporal dimension to a logic system.
In particular, if a temporal logic is itself temporalised we obtain a two-dimensional tem-
poral logic. Such a logic system is, however, very weakly expressive; if US is the internal
(horizontal) temporal logic in the temporalisation process (F is derived in US), and US
is the external (vertical) one (F is defined in US), we cannot express that vertical and
horizontal future operators commute,

FFA<FFA.

In fact, the subformula F'F A is not even in the temporalised language of US(US), nor
is the whole formula. In other words, the interplay between the two-dimensions is not
expressible in the language of the temporalised US(US).

The idea is then to define a new method of combination of logic systems that puts
together all the expressivity of the two component logic systems in an independent way;
for that we assume that the language of a system is given by a set of formation rules.

Definition 5.1 Let Op(L) be the set of non-boolean operators of a generic logic L. Let
T and T be logic systems such that Op(T)NOp(T) = 0. The fully combined language of
logic systems T and T over the set of atomic propositions P, is obtained by the union of
the respective set of connectives and the union of the formation rules of the languages of

both logic systems. O

Let the operators U and S be in the language of US and U and S be in that of
US. Note that the renaming of the temporal operator is done prior to the combination,
so that the combined systems contains the set of boolean operators {—, A} coming from
both components, plus the set of temporal operators {U, S, U,5}. Their fully combined
language over a set of atomic propositions P is given by
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e every atomic proposition is in it;

o if A, B arein it, so are = A and AAB;

o if A, B arein it, so are U(A, B) and S(A, B).
o if A, B arein it, so are U(A, B) and 5 (4, B).

In general, we do not want any non-boolean operator to be shared between the two lan-
guages, for this may cause problems when combining their axiomatisations. For example®,
if a generic operator O belongs to both temporal logic system such that T contains axiom
q—0Oq and system T contains axiom —g«< g, the union of their axiomatisations will re-
sult in an inconsistent systems even though each system might have been itself consistent.
To avoid such a behaviour the restriction Op(T) N Op(T) = ) was imposed on the fully
combined language of T and T. Not only are the two languages taken to be independent
of each other, but the set of axioms of the two systems are supposed to be disjoint; so
we call the following combination method the independent combination of two temporal
logics.

This new method of combination is called independent because it takes the independent
union of the axiomatisation of its two component systems, and it is based on their fully
combined language.

Definition 5.2 Let US and US be two U S-temporal logic systems defined over the same
set P of propositional atoms such that their languages are independent. The independent
combination US & US is given by the following:

e The fully combined language of US and US.

o If (X,7) is an axiomatisation for US and (¥,7) is an axiomatisation for US, then
(XU, ZUT)is an axiomatisation for US @ US. Note that, apart from the classical
tautologies, the set of axioms ¥ and ¥ are supposed to be disjoint, but not the

inference rules.

o The class of independently combined flows of time is K @& K composed of biordered
flows of the form (7', <, <) where the connected components of (T, <) are in K
and the connected components of (T, <) are in K, and T is the (not necessarily
disjoint) union of the sets of time points T and T that constitute each connected
component; such a biordered flow of time has been discussed in [KW91] for the case
of the independent combination of two mono-modal systems.

A model structure for US@US over K@K is a 4-tuple (T, <, <, g), where (T, <, <) €
K @ K and g is an assignment function g : T — 2P An independently combined
model is illustrated in Figure 6.

The semantics of a formula A in a model M = (T, <, <,g)is defined as the union
of the rules defining the semantics of US/K and US/K. The expression M,t = A
reads that the formula A is true in the (combined) model M at the point ¢ € T.
The semantics of formulae is given by induction in the standard way:

M,tl=p iff p € g(t) and p € P.

M,t|=—-A iff it is not the case that M, | A.

Mt ANBiff Mt = A and M,t = B.

®this example is due to Ian Hodkinson
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M.t = S(A, B) iff there exists an s € T with s < ¢ and M, s |= A
and for every w € T, if s < u < ¢ then
M,ul= B

M.t |= U(A, B) iff there exists an s € T with ¢ < s and M, s |= A
and for every w € T, if { < u < s then
M,ul= B

M.t = §(A, B) iff there exists an s € T with s<t and M,s = A
and for every u € T,if s Tu <t then M,u |= B

M.t |= U(A, B) iff there exists an s € T with t<s and M, s |_
and for every u € T,if t Tu< s then M,u |= B

g

Note that, despite the combination of two flows of time, formulae are evaluated ac-
cording to a single point. The independent combination generates a system that is two-
dimensional according to the first criterion but fails the second one, so it is not broadly
two-dimensional.

The following result is due to [Tho80] and is more general than the independent com-
bination of two US-logics.

Proposition 5.1 With respect to the validity of formulae, the independent combination
of two modal logics is a conservative extension of the original ones.

Note that we have previously defined conservative extension in proof theoretical terms;
completeness for the independently combined case will lead to the conservativeness with
respect to derivable theorems.

As usual, we will assume that K, K C K, so < and < are transitive, irreflexive and
total orders; similarly, we assume that the axiomatisations are extensions of US/K;,.

The temporalisation process will be used as an inductive step to prove the transference
of soundness, completeness and decidability for US @ US over K @ K. Let us first consider
the degree of alternation of a (US @ US)-formula A for US, dg(A), and US, dg(A).

dg(p) =0 dg(p)=0

dg(=A) = dg(A) dg(—A) = dg(A)

dg(ANB) = max{dg(A),dg(B)} dg(ANB) = maz{dg(A), dg(B)}
dg(5(A, B)) = max{dg(A),dg(B)} dg(S (A, B)) = max{ dg(A), dg(B)}
dg(U(A, B)) = max{dg(A),dg(B)} dg(U(A, B)) = maz{ dg(A), dg(B)}
dg(5(A, B)) = 1+ maz{dg(A), dg(B)} | dg(5(A, B)) = 1+ max{dg(A),dg(B)}
dg(U(A, B)) = 1+ maz{dg(A), dg(B)} | dg(U(A, B)) = 1 + max{dg(A),dg(B)}

Any formula A of US & US can be seen as a formula of some finite number of alternating
temporalisations of the form US(US(US( ... ))); more precisely, A can be seen as a formula
of US(L,), where dg(A) = n, US(Lo) = US, US(Ly) = US, and L,_9; = US(L,_2;_1),
Lp—2i-1 = US(Ln_gi—2), for i = 0,1,...,[5] — 1. This fact is illustrated in Figure 5. The
following Lemma actually allows us to see the independent combination as the (infinite)
union of finite number of alternating temporalisations of US and US; it will also be used
in the proof of transferrence of completeness and decidability (given completeness) for
US & US.

Lemma 5.1 Let US and US be two complete logic systems. Then, A is a theorem of
US @ US iff it is a theorem of US(L,,), where dg(A) = n
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Proof If Ais a theorem of US(L,), all the inferences in its deduction can be repeated in
Us @ Ug, so it is a theorem of US & US.

Suppose A is a theorem of US @ US; let By, ..., B,, = A be adeduction of Ain US @ US
and let n’ = maxz{dg(B;)}, n’ > n. We claim that each B; is a theorem of US(L,). In fact,
by induction on m, if B; is obtained in the deduction by substituting into an axiom, the
same substitution can be done in US(L,); if B; is obtained by Temporal Generalisation
from Bj, j < i, then by the induction hypothesis, B; is a theorem of US(L,) and so is
B;; if B; is obtained by Modus Ponens from B; and By, j,k < 4, then by the induction
hypothesis, B; and By are theorems of US(L, ) and so is B;.

So A is a theorem of US(L,/) and, since US and US are two complete logic systems,
by Theorem 4.1, each of the alternating temporalisations in US(L,s) is a conservative
extension of the underlying logic; it follows that A is a theorem of US(L,), as desired. O

The transference of soundness, completeness and decidability follows directly from this
result.

Theorem 5.1 (Independent Combination) Let US and US be two sound and com-
plete logic systems over the classes K and K, respectively. Then their independent combi-
nation US @ US is sound and complete over the class K @ K. If US and US are complete
and decidable, so is US G us.

Proof Soundness follows immediately from the validity of axioms and inference rules.
For completeness, suppose that A is a consistent formula in US @ US; by Lemma 5.1, A
is consistent in US(L,), so we construct a temporalised model for it, and we obtain a
model (71, <1, g1,01) over K(K(K(...))), where oy is the “current time” necessary for the
successive temporalisations. We show now how it can be transformed into a model over
KaK.

Without loss of generality, suppose that US is the outermost logic system in the multi-
layered temporalised system US(US(US( ...))), and let n be the number of alternations.
The construction is recursive, starting with the outermost logic. Let i < n denote the
step of the construction; if ¢ is odd, it is a US-temporalisation, otherwise it is a US-
temporalisation. At every step ¢ we construct the sets Tz’+1, <41 and <;41 and the
function g;41.

We start the construction of the model at step ¢ = 0 with the temporalised model
(Tl, <1,91,01) such that (Tl, <1) € K, and we take <1 = (). At step i < n, consider the
current set of time points T}; according to the construction, each ¢ € T} is associated to:

o a temporalised model g;(t) = (T}, ;,<!,1,0f,1.011) € K and take T,y = 0, if i is
even; or

o a temporalised model g;(t) = (T}, <ty1, gi41.04,) € K and take <l ;= 0, if i is
odd.

The point ¢ is made identical to o}, € Tf_l_l, so as to add the new model to the current
structure; note that this preserves the satisfiability of all formulae at ¢. Let Ti—l—l be the
(possibly infinite) union of all Tf_l_l for ¢t € Tj; similarly, <41 and < ;47 are generated.
And finally, for every t € Tz’+1, the function g;11 is constructed as the union of all gf_l_l for
t e TZ

Repeating this construction n times, we obtain a combined model over K & K, M =
(Tn, <nys<nyGn), such that for all ¢ € T, gn(t) € P. Since satisfiability of formulae is
preserved at each step, it follows that M is a model for A, and completeness is proved.
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For decidability, again by Lemma 5.1, we can recursively apply the decision procedure
of US(L,) and US(L,_1), starting with n = dg(A), thus obtaining a decision procedure
for US @ US. O

6 Full Interlacing

With respect to the generation of two-dimensional systems, the method of independent
combination has two main drawbacks. First, it generates logic systems whose formulae
are evaluated at one single time point, not generating a broadly two-dimensional logic.
Second, since the method independently combines the two component logic systems, no
interaction between the dimension is provided by it. As a consequence, although a formula
like FF A—~F F A is expressible in its language, it will not be valid, as can easily be verified,
for it expresses an interplay between the dimensions. We therefore introduce the notion
of a two-dimensional plane model.

Definition 6.1 Let K and K be two classes of flow of time. A two-dimensional plane model
over the fully combined class K x K is a 5-tuple M = (T,<,T,<, g), where (T, <) € K,
(T,<) € K and g : TxT — 27 is a two-dimensional assignment. The semantics of the
horizontal and vertical operators are independent of each other.

Mtz |= 5(A,B) iff there exists s < ¢ such that M,s,z = A and
for all u, s < u <t, M,u,z = B.

Mtz = S(A,B) iff  there exists y<a such that M,t,y = A and
for all z, y<z<z, M, t,z = B.

Similarly for U and U, the semantics of atoms and boolean connectives remaining the
standard one. A formula A is (strongly) valid over K x K if for all models M = (T, <
,T,<,g),forall t € T and @ € T we have M, 1,z = A. O

With respect to the expressivity of fully combined two-dimensional languages, Ven-
ema [Ven90] has shown that no finite set of two-dimensional temporal operators is expres-
sively complete over the class of linear flows with respect to dyadic first-order logic —
despite the fact that US-temporal logic is expressively complete with respect to monadic
first-order logic over N and over R, and that, with additional operators (the Stavi op-
erators), we can get expressive completeness over Q and Ky, [Gab81b]. So expressive
completeness is not transferred by full interlacing.

It is easy to verify that the following formulae expressing the commutativity of future
and past operators between the two dimensions are valid formulae in two-dimensional
plane models.

I1 FFA—~FFA
I2 FPA—~PFA
I3 PFA—FPA
I4 PPA—~PPA

Therefore, if we want to satisfy both the syntactic and the semantic criteria for two-
dimensionality, we may define the method of full interlacing containing the fully combined
language of US and US and their fully combined class of models. The question is whether
there is a method for combining their axiomatisations so as to generate a fully interlaced
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azxiomatisation that transfers the properties of soundness, completeness and decidability.
The answer, however, is no, not in general. In some cases we can obtain the transference
of completeness, in some other cases the transference fails. To illustrate that, we consider
completeness results over classes of the form KxK.

We start by defining some useful abbreviations. Let p be a propositional atom; define:

hor(p) = O(pAH~pAG=p)
ver(p) = O(pAH-pAG-p)

It is clear that hor(p) makes p true along the horizontal line and false elsewhere; similarly
for ver(p) with respect to the vertical.

The axiomatisation of USxUS over Ky, X K, extends that of US & US over Ky & K,
by including the interlacing axioms I1-I4 and the following inference rules:

IR1 if - hor(p)—A and p does not occur in A, then - A
IR2 if - ver(p)—A and p does not occur in A, then - A

IR1 and IR2 are two-dimensional extensions of the irreflexivity inferrence rule (IRR)
defined in [Gab8la] for the one-dimensional case: if - pAH-p—A and p does not occur
in A, then - A.

Theorem 6.1 (2D-completeness) There is a sound and complete axiomatisation over
the class of full two-dimensional temporal models over Ky X Ky

A proof can be found in [Fin94] showing that the axiomatisation above is sound and
complete over Ky, X K. If Kygis is the class of all linear and discrete flows, [Fin94] also
shows completeness results for the classes Kygis X Kgis, Q X Q, Kpin X Kgis, Kiin X Q and
Q X K-

The negative result is the following.

Proposition 6.1 (2D-unaxiomatisability) There are no finite axiomatisations for the
(strongly) valid two-dimensional formulae over the classes Z X Z, N x N and R x R.

This proposition follows directly from Venema’s proof that the valid formulae over the
upper half two-dimensional plane are not enumerable for Z x Z, N x N and R xR, which in
its turn was based on [HS86]. Since there are sound, complete and decidable US-temporal
logics over Z, N and R [Rey92], the general conclusion on full interlacing is the following.

Theorem 6.2 (Full Interlacing) Completeness and decidability do not transfer in gen-
eral through full interlacing.

It has to be noted that two-dimensional temporal logics seem to behave like modal
logics in the following sense. We can see the result of the independent combination of
US and US as generating a “minimal” combination of the logics, i.e. one without any
interference between the dimensions. The addition of extra axioms, inference rules or an
extra condition on its models has to be studied on its own, just as adding a new axiom to
a modal logic or imposing a new property on its accessibility relation has to be analysed
on its own.

The full interlacing method illustrates the conflict between the generality of a method
and its ability to achieve the transference of logical properties. We next restrict the
interlacing method so as to recover the transference of logical properties.
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7 Restricted Interlacing

The fact that the transference of logical properties fails for the interlacing of two US-
temporal logics does not mean that the interlacing of any two temporal logic systems fails
to achieve this transference. We restrict the vertical logic system to a temporal logic NP
with operators O for Next time and @ for Previous time; the formation rules for the
formulae of NP are the standard ones. This is a restriction of the US-language for O and
@ can be defined in terms of U and S, namely by

OA =4y U(A, L)
oA =def S(A, J_)

Not only is the expressivity of the language reduced this way, but also the underlying
flow of time is now restricted to a discrete one; in fact, we concentrate our attention on
integer-like flows of time.

Let h : Z — P be a temporal assignment over the integers so that the semantics of NP
over the integers is the usual for atoms and boolean operators and

(Z,<,h),tE OA iff (Z,<,h),t+1E A
(Z,<,h),t = @A iff (Z,<,h),t—1E A

An axiomatisation for NP/Z is given by the classical tautologies plus

NP1 O@p—p

NP2 O-p—-0Op

NP3 O(prg)—OprOq

NP4 The mirror image of NP1-3 obtained by interchanging O with @

The rules of inference are the usual Substitution, Modus Ponens and Temporal Gen-
eralisation (from A infer OA and @A).

The converse of each axiom can be straightforwardly derived, so the formulae on both
sides of the —-connective are actually equivalent. It follows that every NP-formula can
be transformed into an equivalent one by “pushing in” the temporal operators, e.g. by
following the arrows the axioms, and by “cancelling” the occurrences of O and @ in
a string of temporal operators, e.g. O@ @O @p is equivalent to @p; the resulting NP-
normal form formula is a boolean combination of formulae of the form C_)kp and 51(], where
pand ¢ are atoms, k,! € Nand C_)k is a sequence of O-symbols of size k, similarly for 61; it
is useful sometimes to consider k negative or 0, so we define C_)_kA = 5kA and O%A = A.
As an example, the formula OO(@ @ @ (pAg)Vp) has normal form (@pA@q)vOOp. The
existence of such normal form gives us very simple proofs for completeness and decidability
of NP/Z that we outline next.

For completeness, let ¥ be a possibly infinite consistent set of NP-formulae and assume
all formulae in the set is in the normal form. ¥ can be seen as a consistent set of proposi-
tional formulae where each maximal subformulae of the form C_)kp is understood as a new
propositional atom, so let hg be a propositional valuation assigning every extended atom
into {true, false}. For n € Z, let h(n) = {p € P | ho(O"p) = true}. Clearly (Z, <, h) is
a model for the original set.

For decidability, let A be a formula of NP and let A* be its normal form; clearly there
exists an algorithm to transform A into A*. By considering subformulae of the form C_)kp
as new atoms, k possibly negative, we apply any decision procedure for propositional logic
to A*. Ais a NP-valid formula iff A* is a propositional tautology.
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Definition 7.1 The restricted interlacing of temporal logic systems US/K and NP/Z is
the two-dimensional temporal logic system US x NP given by:

e the fully combined language of US and NP;

o the two-dimensional plane model over K X Z, equipped with the broadly two-dimen-
sional semantics;

e the union of the axioms of US/K and NP/Z plus the interlacing axioms

OU(p,q9)—U(Op, Oq)
OS(p, 9)—5(0Op, Og)

plus their duals obtained by swapping O with @; the inference rules are just the
union of the inference rules of both component systems. O

The following gives us a normal form for US x NP.

Lemma 7.1 Let A be a formula of US x NP. There exists a normal form formula A*
equivalent to A, such that all the occurrences of O and @ in it are in the form C_)kp and
51(], where p and q are atoms.

Proof First we show that converse of the interlacing axioms are theorem too. For
that, note that U and 5 respect the congruence property, i.e. if A—~C and B~ D then
U(A,B)~U(C,D)and S(A, B)—=S(C,D). Also note that

equiv (p—~O@p)A(p—@Op)

The transitivity of — connects the steps in the proof of U(Op, Oq)—OU(p, q) below:

U(Op,Oq)—O@U(Op,Oq) by equiv
—QOU(@Op, ®Oq) by interlacing axiom
—QOU(p,q) by equiv and congruence

It follows that U(Op, Oq)—OU(p, q). It is completely analogous to show the converse
of other interlacing axioms, so we omit the details.

Given A in the language of US x NP, the equivalence between both sides of the interlac-
ing axioms allows for “pushing in” the vertical operators O and @, so a simple induction
on the number of nested temporal operators in A shows an algorithmic way to generate
an equivalent formula A* in the desired normal form. O

Theorem 7.1 (Completeness via restricted interlacing) Let US be a logic system
complete over the class K C Ky,,. Then the two-dimensional system US x NP is complete
over K X Z.

Proof Consider a US x NP-consistent formula A and assume it is in the normal form. So
we can see A as a US-formulae over the extended set of atoms C_)k, k possibly negative or
0. From the completeness of US/K there exist a one-dimensional model (T, <, hyrg) for A
at a point o € T, where (T, <) € K. Define the two-dimensional assignment

h(k,t)={pe P | O"p € hus(t)}.
Clearly, (T, <,Z,<z,h) is a two-dimensional plane USxNP-model for A at (0,0). O
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Corollary 7.1 If US/K is strongly complete, so is US x NP/ K x Z.

Theorem 7.2 (Decidability via restricted interlacing) If the logic system US is de-
cidable over K, so is USxXNP over KxZ.

Proof The argument of the proofis the same as that of the decidability of NP, all we have
to do is note that there exists an algorithmic way to convert a combined two-dimensional
formula into its normal form, so it can be seen as a US-formula and we can apply the
US-decision procedure to it. O

So by restricting the expressivity and the underlying class of flows of time, we can
obtain the transference of the basic logical properties via restricted interlacing. It should
not be difficult to extend these results to N instead of Z, although we do not explore this
possibility here.

It is also worth noting that the restricted interlacing method answers a conjecture
posed by Venema [1990] on the distance of some expressively limited two-dimensional
temporal logic over ZxZ that was “well behaved” in the sense of having the completeness
and decidability properties.

8 The Two-dimensional Diagonal

We now study some properties of the diagonal in two-dimensional plane models. The
diagonal is a privileged line in the two-dimensional model intended to represent the se-
quence of time points we call “now”, i.e. the time points on which an historical observer
is expected to be traverse . The observer is, therefore, on the diagonal when he or she
poses a query (i.e. evaluates the truth value of a formula) on a two-dimensional model.
The diagonal is illustrated in Figure 9.

So let 6 be a special atom and consider the formulae:

D1 (6AQS
D2 §—(G-6AH-6NG-6NH —6)
D3 §—(HG-6NGH=8)

F$
Ps

3
Al

Pé

(1,<)
Figure 9 The two-dimensional diagonal

Let Diag = OO(D1AD2AD3). The intuition behind Diag is the following. D1 implies
that the two-dimensional diagonal can always be reached in both vertical and horizontal
directions; D2 implies that there are no two diagonal points on the same horizontal line
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and on the same vertical line and D3 implies that the diagonal goes in the direction SW—
NE. We say that Diag characterises a two-dimensional diagonal in the following sense.

Lemma 8.1 Let M = (T,<,T, <,g) be a full two-dimensional model over KxK, K, K C
Kiin, and let & be a propositional letter. Then the following are equivalent.

(a) M,t,x = Diag, for somet € T andx €T.

(b) M,t,z |= Diag, for allt € T andx € T.

(¢) There exists an isomorphism i : T — T such that M,t,z |= § iff v = i(1).
Proof It is straightforward to show that (a) <= (b) and (¢) = (a); we show only (b)
= (c¢). So assume that M, ¢,z |= Diag, for all t € T and x € T. Define

i={(t,2) e TxT | M,t,z |= é}.

All we have to show is that ¢ is an isomorphism.

e i,77! are functions such that dom(i) = T and dom(i~') = T. Suppose that both
(t,21) and ({,23) are in i; then M, ¢, 21 = § and M, {,25 | 6. By linearity of T,
r1 = Xg, 1< Xy Or Tz < a1, but D2 eliminates the latter two; D1 gives us that
dom(i) = T. Similarly, the linearity of 7" and D2 gives us that ¢~! is a function and
D1 gives us that dom(i71) = T.

o i(t)=a iff i~!(z)=1t follows directly from the definition. So i is a bijection.

e i preserves ordering. Suppose t; < ty; by the linearity of 7' we have three possibilities:

— i(t1) = i(t2) contradicts 7 is a bijection.
i(t2) <i(t1) contradicts D3.
i(t1)

Therefore 7 is an isomorphism, which proves the result. O

<1
<1

(
(

t2) is the only possible option.

This result shows that by adding D1-D3 to the axiomatisation over Ky, XK, of
Section 6 gives us completeness over the class of models of the form (7', <, T, <,¢), where
(T, <) € Kiin. 1t follows from [HS86], however, that such logic system is undecidable.

The diagonal is interpreted as the sequence of time points we call “now”. The diagonal
divides the two-dimensional plane in two semi-planes. The semi-plane that is to the
(horizontal) left of the diagonal is “the past”, and the formula F'§ holds over all points of
this semi- plane. Similarly, the semi-plane that is to the (horizontal) right of the diagonal
is “the future”, and the formula Pé holds over all points of this semi-plane. Figure 9 puts
this fact in evidence. If we assume that Diag holds over M such that ¢ is the isomorphism
defined in Lemma 8.1, ¢t < s iff i(¢) <i(s), then

M.tz |= Fé iff exists s > t such that M,s,z |= 6 and i(s) =z
iff exists y = i(t) < such that M, ¢,y =6
iff M, t,z = P§.

Similarly, it can be shown that:
Mtz |= P§iff M, t,x = Fé.
It follows that the following formula is valid for US x US over Kpip X Kiin:
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Diag—( (F§=P8) N (P6—Fs)).

As a consequence, Pé holds over all points of the “past” semi-plane and F'é holds over all
points of the “future” semi-plane, as is indicated in Figure 9.

The formula Diag is in the language of US x USbut not in the language of USxNP,
for Diag contains the vertical temporal operators &, H, O and {. To characterise a two-
dimensional diagonal in USxNP we do the following. We say that a formula A holds over
or is valid over a two-dimensional model M if for every t € T and every x € T, it is the
case that M, t,z = A. Consider the formulae

dl ¢8
d2 6—(G-6NH=E)
d3 6=006

where ¢ is a proposition. Those formulae are all in the language of USx NP, for Diag (so
also in the language of US x US and they can characterize the two-dimensional diagonal
due to the following property.

Proposition 8.1 Let M be a two-dimensional plane model over Zx7Z. Then the formula
D1AD2AD3 holds over M iff d1Ad2Ad3 holds over M.

Proof By Lemma 8.1 we know that D1AD2AD3 holds over M iff the relation ¢ defined
as below

i={(t,2) € ZXZ | M, 1,2 |= 8},

is an isomorphism in Z. So all we have to do is to prove that ¢ as defined above is an
isomorphism iff d1Ad2Ad3 holds over M. The only if is a straightforward verification
that for all  and ¢ in Z, M, t,z = d1Ad2Ad3.

Assume d1Ad2Ad3 holds over M. Then:

1. d1 gives us that for every x there exists a ¢ such that M, t, 2 |= §;
2. d2 gives us that for every x,t,¢', t 21, M,t,z = ¢ implies M, t', 2 [£ ¢;

3. d3 give us that for every z,t, M, t,x = 6 iff M,t+ 1,2+ 1 |= ¢ iff for every n € Z,
Mit+nx4+nk=d

The first two items give us that i~! : Z — Z is a function. To show that i is also a
function, suppose that (¢,21), (¢, 22) € i. By linearity of Z, it follows that either 21 < 23 or
Tg < xp0r Ty = xg. Let 31—z = m; then, by the third item above, (t+m, z2+m = 1) € ¢,
sot=(t+ m)and m = 0. It follows that 1 = 2, s0 ¢ : Z — Z is a function. Directly by
the definition of ¢, it follows that ¢ is a bijection.

Again by the third item above, if i(t1) = 1 and i(t2) = @9, then t; —t3 = @1 — 2. It
follows that ¢ is order preserving and hence an isomorphism, which finishes the proof. O
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It would be desirable to generalise the idea of a diagonal as the sequence of “now”
moments to any pair of flows of time that are not necessarily isomorphic. For that, we
would have to create an order between the points of the two flows, 7.e. we would have to
merge the flows.

So let (T, <) and (T, <) be two flows of time such that 7 and T are disjoint. Then
there always exists a flow (77, <) and a mapping f: TUT — T’ such that f is one-to-one
and order preserving. The f-merge of (T,<) and (T, <) is the flow of time consisting
of the image of f ordered by the restriction of <’ to the image of f. An example of an
f-merge is shown in Figure 10, where f(y) is made equal, via merge, to f(z) and on the
merged flow the order is preserved, i.e. originally @ < y and # <y and on the f-merged

flow f(a) <’ f(y) = f(z) <" f(y).

(Tr<) 7 i (

=~
Al
- 8l
s

Figure 10 The f-merge

We can then construct a two dimensional model with two copies of the f-merge, in
which we can define a diagonal over (77, <")x(1",<") as shown in Figure 11.

(T7 Z) (T', </) T ....5
....... froein |
S (7', <"y

Figure 11 The diagonal of two distinct flows

This construction motivates a method of combining two one-dimensional temporal
logics into another one-dimensional logic, namely that over the class of all f-merges of its
two-component flows of time. We could then study the transference of logical properties in
the same way as we have done in this and the previous section, but we do not investigate
those matters here.

9 Conclusion

This paper dealt with the combination of two logic systems in order to obtain a new logic
system. The issues were:

e Several methods of combination of two logic systems were presented. Fach combi-
nation involved at least one temporal logic system. Each method had a particular
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discipline for combining the language, the semantics and the inference system of two
logic systems. Fach combination generated a single logic system.

e The study of transference of logical properties from the component systems into
their combined form has been the major point in the analysis of combination meth-
ods. The basic logical properties whose transference was analysed were soundness,
completeness and decidability; for some combination methods, the transference of
other properties was also investigated such as conservativeness and the compactness
property (in the form of strong completeness).

e The investigation of four basic methods has been accomplished. The temporali-
sation method and the independent combination method were shown to transfer
all basic properties, although they do not generate an expressive enough system to
be called fully two-dimensional. The full interlacing method does generate a fully
two-dimensional temporal system, but in many cases it failed to transfer even the
completeness property. As a compromise, it was shown that a restricted interlacing
method, although generating two-dimensional temporal logic systems that were not
as expressive and generic as the fully interlaced one, accomplishes the transference
of all basic logical properties.

Another contribution of our analysis was to answer a question raised by Venema [Ven90]
on the existence of a fragment of the two-dimensional plane temporal logic that, in his
own words, was ‘better behaved’ than the two-dimensional plane system with respect
to completeness and decidability properties. We have shown that the two-dimensional
temporal logic systems obtained by restricted interlacing are an example of such fragments.

Another question raised by Venema in that same work remains open, namely, whether
it is possible to have a complete axiomatisation over the two-dimensional model using only
canonical inference rules, i.e. without using the special inference rules IR1 and ITR2. This
problem seems to be a very hard one. Nevertheless we succeeded in extending Venema’s
completeness result, that originally holds for only two-dimensional flows built from two
identical one-dimensional flows, to any two-dimensional flow built from any flow in the
classes Kpn, Kais, Kgense and Q.

Comparisons, Extensions and Further Work

With respect to combination of logics, the works in the literature that most closely ap-
proximate ours in spirit and aims, are those of Kracht and Wolter [KW91] and of Fine
and Schurz [I'S91]. Both works concentrated on monomodal logics, and investigated the
transference of logical properties for only the method we called here independent combina-
tion. However, their work investigated several paths that suggest that further work may
be done in our studies. First, they analysed the transference of many other properties
from two logic systems to its combined form, e.g. finite model property and interpolation.
Second, both works did not concentrate only in linear systems and they were able to ex-
tend their results to any class of underlying Kripke frames. Third, Fine and Schurz’s work
generalised the independent combination method to more than two monomodal logics.
Those two papers cited above therefore suggest several extensions to our work. Note,
however, that the temporalisation method was easily shown to be extensible to many
temporal logic systems in FExample 2.4. The focus on linear flows of time was due to
database applications of two-dimensional temporal logics as in [FG92, Fin94], but we
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believe that this restriction may be lifted without damaging the transference results of
the temporalisation and independent combination methods. These have to be further
investigated and the transference of any other logical property has to be analysed on its
own.

The generalisation of combination methods other than the independent combination
method to modal logics is another area for further work. As noted in [FG92], the tempo-
ralisation process is directly extensible to monomodal logics. It may even be the case that,
for monomodal logics, the full interlacing method achieves transference of completeness
over several classes of fully two-dimensional Kripke frames using only canonical inference
rules, as it is suggested by the results in [Seg73].

The complexity class of the decision problem for the combined logic is another inter-
esting subject for study. For the independent combination of monomodal logics, such a
study was done by Spaan [Spa93] and the conclusion was that the satisfiability problem
of an independently combined logic is either reducible to that of one of the component
logics, or it is PSPACIE-hard or it is in NP. We believe a similar result can be obtained
for the temporalisation and the independent combination of temporal logics, although the
details have not yet been worked out. The complexity of the full and restricted interlacing
methods still have to be studied.

All the systems dealt with in this paper were extensions of classical logic. It is possible
that the temporalisation process preserves its transference properties even in the case the
underlying system is not an extension of classical logic. What if the external temporal
logic is non-classical itself? The same question applies to other combination methods. Do
they achieve transference of logical properties when one or both of the combined temporal
of modal logics is not classical? Gabbay [Gab92] has recently posed that question in a
very generic framework involving Labelled Deductive Systems (LDS) and found that in
order to obtain the transference of completeness we do not need the full power of classical
logic but only some weaker form of monotonicity. He has also developed other methods
of combination called fibring that depends on the choice of a fibring function. A fibring
function maps the truth value of atoms in one logic’s semantics with the semantics of
formulae in other logic’s semantics. Gabbay’s dovetailing process, obtained with a certain
class of fibring functions, is similar to the independent combination method extended
to logics respecting those weaker conditions of monotonicity. More work on this area is
needed to clarify exactly how fibring is related to existing combination methods.

There are also other possible types of combinations of one-dimensional temporal logics
that may be explored. As pointed out in Section 8, two linear flows of time can be merged
into another one; the question is then how to combine two one-dimensional temporal logics
into another one-dimensional temporal logic over the merged flow.
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