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time, discrete or dense, continuous or allowing for gaps. We want to take advantage ofthis existing literature on temporal systems to study temporal systems with two coexistingtemporal references, i.e. two dimensions.The idea is to systematically combine two one-dimensional temporal systems into anew logical system, which we call a two-dimensional temporal logic, and we study if theproperties of the original systems are transferred to the combined one.It turns out that there are several possible combination methods, in the same waythat there are several levels at which two temporal \points of views" can coexist. Wediscuss next a few of those levels of coexistence, and show how each of them can leadto a method for combining one-dimensional temporal logic. Each of these methods willhave then to be studied on its own to establish whether the properties of the originalsystems are transferred to their combination via this particular method. With respectto the choices of presentation of logic systems, we contemplate both proof- and model-thoeretical presentations of temporal logics on a point-based ontology. Most of the resultspresented assume that the ow of time is linear.First case: External timeOne temporal point of view can external to the other. The external point of view isdescribing the temporal evolution of a system S, when system S is itself a temporaldescription. Suppose S is described using a temporal logic T and suppose that the externalpoint of view is given in a possibly distinct logic T. For example, consider an agent A,whose temporal beliefs are expressed in T trying to represent the temporal beliefs of anagent B, expressed in T, this is illustrated in Figure 1.n ~- BA observesFigure 1 One agent externally observing the otherAgent A's beliefs are external to agents B's beliefs, so that T is externally describingthe evolution of T. Figure 2 illustrates the two coexistent temporal points of view.*. . . . . . . . . . . . . . .- + TTFigure 2 Coexistent temporal systems �T and TThe external temporal point of view T is then applied to the internal system T, in aprocess called temporalisation or adding a temporal dimension to a logic system, [FG92].The resulting combined logic system T(T) is illustrated in Figure 3.The temporalisation associates every time point in Twith a temporal description inT, where those T-descriptions need not be all identical. Given the logical properties of Tand T, what can be said about the logical properties of T(T)?2



*. . . . . . . . . . .*. . . . . . . . . .*. . . . . . . . . . . . . . . -TTTTFigure 3 The combined ow of time �T(T)Second case: Independent agentsSuppose now that agent A has the ability of referring to agent B's temporal beliefs andvice versa. The agents are therefore obseving each other, as illustrated in �gure 4.n ~�� HHj.............................Y ....... observes BA observesFigure 4 Independent interaction of agentsThe agents' beliefs are then capable of interacting with each other through several levelsof cross-reference, as in the sentence \A believes that B believes that A believes that ...".A new combination method for T and T is needed in order to represent such sentence asa formula; which is called the independent combination, T �T. Since a formula of T � Thas a �nite nature, it can be unravalled in a �nite number of alternating temporalisation,as illustrated in Figure 5. nn ~n ~n -.............-............. -- � � �Figure 5 Unravelling �T � TFigure 5 suggests a way of analysing the properties id the independence combinationmethod using the temporalisation method as an intermediary step. It will turn out thatthe independence combination method is the (in�nite) union of all �nite alternated tempo-ralisations. An illustration of a possible independently combined ow of time is presentedin Figure 6.Third case: Two-dimensional planeYet another distinct situation can be found where we have the coexistence of two distincttemporal \points of view". This time a single agent with temporal reasoning capabilitesis considered, and we want to be able to describe the evolution of his own beliefs. Thisis perhaps better illustrated by considering the agent as a temporal database where eachpiece of information is associated to a validity time (or interval). For example, consider thetraditional database relation employee(Name; Salary;Manager). Suppose the followingis in the database at March 94Name Salary Dept Start EndPeter 1000 R&D Apr 93 Mar 94where the attributes start and end represent the end points of the validity interval associ-ated with the information. We assume that Peter's salary has not changed since Apr 93.3



rrr rrrrrr -........*.....................................*..............................*.............................................*..................................- - --- - - 2 T2 TFigure 6 Independently combined ow of timeSuppose in Apr 94 Peter receives a retroactive promotion dating back to the beginningof the year, increasing his salary to 2000. The whole database evolution is illustrated atFigure 7, where only the value of Peter's salary is indicated at each point.rr rrr rr rr rr rrrrr . . . -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 6 6 66
� � �Apr94Mar94May93Apr93 94949494939393 AprMarFebJanDecMayApr... � � �� � �1K1K 1K 2K 2K 2K 2K1K 1K 1K 1K 1K 1K1K1K 1KFigure 7 Two-dimensional temporal database evolutionIf T represents valid-time and T represents transaction-time, we have guaranteed atwo-dimensional plane T � T in order to represent the database evolution.Another application of the two-dimensional plane (or its NW-semi-plane) is in therepresentation of intervals on a line [Ven90].rq rr -����������������6 SENWt2t1(t1; t2)Figure 8 Two-dimensional representation of intervalsIn Figure 8 we can see a line considered the diagonal of a two-dimensional plane andthat a interval [t1; t2] on that line is represented by the point (t1; t2) on the NW-semi-plane.The combination between two temporal systems leading to a two-dimensional planeow of time is stronger than the simple independent combination and will be studied onits on. 4



AimsIn this paper we study those three situations of coexistence of \two temporal points ofview", as the result of a combination of two linear, one-dimensional temporal logics.In this sense this paper is a continuation on the work started in [FG92] on the com-bination of temporal logics. There, a process for adding a temporal dimension to a logicsystem was described, in which a temporal logic T is externally applied to a generic logicsystem L, generating a combined logic T(L).We now set to explore several methods for systematically combining two temporallogics, T and T, thus generating several new families of two-dimensional temporal logics .A great number of (one-dimensional) temporal logics exist in the literature to dealwith the great variety of properties one may wish to express about ows of time. Whenbuilding two-dimensional temporal logics, the combination of two classes of ows of timegenerates an even greater number of possible systems to be studied. Furthermore, as wewill see, there are several distinct classes of temporal logics, that may be considered two-dimensional, each generated by distinct combination method. It is, therefore, desirable tostudy if it is possible to transfer the properties of long known and studied (one-dimensional)temporal logic system to the two-dimensional case.So the main goal of this paper is to study, for each combination method, the transfer-ence of logical properties from component one-dimensional temporal systems to a combinedtwo-dimensional one.In this work, we concentrate on the transference of three basic properties of logicsystems, namely soundness, completeness and decidability. This by no means implies thatthose are the only properties whose transference deserve to be studied, but, as has alreadybeen noted in [FG92] for the temporal case, and in [KW91, FS91] for the monomodalcase, the transference of completeness serves as a basis for the transference of severalother properties of logical systems.As for the methods for combining two temporal logics, we consider the following:(a) The temporalisation method, ie the external application of a temporal logic to an-other temporal system, also known as adding a temporal dimension to a logic system;(b) the independent combination of two temporal systems;(c) the full interlacing of two temporal systems, where ows of time are considered overa two-dimensional plane;(d) the restricted interlacing of two temporal system, a combination method that re-stricts the previous one but generates nice transference results.We proceed as follows. Section 2 presents the basic notions of one- and two-dimensionaltemporal logics. Section 3 discusses combinations of logics in general terms, so that in therest of the paper we can present special cases of combination methods. Section 4 brieyexamines the transference results obtained for the temporalisation method in [FG92].Section 5 studies the method of independent combination. Section 6 deals with the fullinterlacing method and Section 7 with its restricted version. Section 8 analyses the prop-erties of a two-dimensional diagonal on the model generated by the full and restrictedinterlacing methods. In Section 9 we discuss the results of this work.The current version of this paper is still missning a section that relates the combinationmethods described here with more general works on combining any (not only temporal)logical systems, such as [Gab92]. This connection should be presented in a later versionof the paper. 5



2 PreliminariesFor the purposes of this paper, a logic system is composed of three elements:(a) a language, normally given by a set of formation rules generating well found formulaeover a signature and a set of logical connectives.(b) An inference system, ie a relation, `, between sets of formulae, normally representedby upper case Greek letters �;�;�;	;� and a single formula, normally representedby upper case letters A;B;C; :::; the fact that A is inferred from a set � is indicatedby � ` A. When � is a singleton, � = fBg, the notation is abused and we writeB ` A.(c) The semantics of formulae over a class K of model structures. The fact that aformulae A is true of or holds at a model M2 K is indicated by M j= A.In providing a method for combining two logics into a third one, it will be necessary toprovide three sub-methods that combine the languages, inference systems and semantics ofthe component logic systems. The component systems considered in this paper will be one-dimensional linear us-temporal logics. Their language is built from a countable signatureof propositional letters P = fp1; p2; : : :g, the Boolean connectives ^ (conjunction) and :(negation), the two-place temporal operation U (until) and S (since), possibly renamed,and the following formation rules:� every propositional letters is a formulae� if A and B are formulae, so are :A and A ^ B� if A and B are formulae, so are U(A;B) (reads \until A is time in the future, B willbe time") and S(A;B) (reads \since A was time in the past, B has been time").� nothing else is a formula.The mirror image of a formula is another temporal formula obtained by swapping alloccurrences of U and S, e.g. the mirror image of U(A; S(B;C)) is S(A;U(B;C)).The other Boolean connectives _ (disjunction), ! (material implication), $ (materialbi-implication) and the constants? (false) and> (true) can be derived in the standard way.Similarly, the one-place temporal operates F (\sometime in the future"), P (\sometimein the past"), G (\always in the future") and H (\always in the past") can be de�ned interms of U and S.For the semantics of temporal formulae we have to consider a (one-dimensional) owof time, F = (T <), where T is a set of time points and < is an order over T . Atemporal valuation h : T ! 2P associates every time point with a set of propositionalletters, i.e. h(t) is the set of propositions that are true at time t1. A model structureM = (T;<; h) consists of ow of time (T;<) and a temporal assignment h and, for thepurposes of combination of logics, we consider a \current world" t 2 T as part of themodel. M; t j= A reads \A is true at t over model M". Classes of models are normallyde�ned by restrictions over the order relation < of the ow of time.The semantics of temporal formulae is given by:1Equivalently, and perhaps more usually, a valuation could be de�ned as a function h : P ! 2T ,associating every propositional letter to a set of time points in which it holds true [Bur84, GHR94].6



M; t j= p i� p 2 P such that p 2 h(t):M; t j= :A i� it is not the case thatM; t j= A.M; t j= A ^B i� M; t j= A and M; t j= B.M; t j= S(A;B) i� there exists an s 2 T with s < t and M; s j= Aand for every u 2 T , if s < u < t thenM; u j= B.M; t j= U(A;B) i� there exists an s 2 T with t < s and M; s j= Aand for every u 2 T , if t < u < s thenM; u j= B.The following restriction will be applied throughout this presentation. Flows of timewill always be considered to have the properties:(a) irreexivity: 8t:(t < t)(b) transitivity: 8t; s; u(t < s ^ s < u! t < u)(c) totality: 8t; s(t = s _ t < s _ s < t)The class of all ows respecting the restrictions above is the class Klin of linear owsof time. We also represent the class of all models based on linear ows as Klin. Furtherrestrictions can be applied to the nature of ows of time so that several other linearsubclasses can be formed, e.g. the classes of dense (Kdense), discrete (Kdis), Z-like, Q-likeand R-like ows of time. The linearity property allows for the de�nition of the \at alltimes" temporal connective � �A = A ^GA ^HAIn case of discrete ows of time, the operator \next time", g, and \previous time", ware also de�ned. gA = U(A;?)wA = S(A;?)The inference systems will be considered to be �nite axiomatisations, i.e. a pair (�; I)where � is a �nite set of formulae called axioms and I is a set of inference rules. Considerthe Burgess-Xu axiomatisation for Klin [Bur82, Xu88] consisting of the following axioms:A0 all classical tautologiesA1a G(p! q)! (U(p; r)! U(q; r))A2a G(p! q)! (U(r; p)! U(r; q))A3a (p ^ U(q; r))! U(q ^ S(p; r); r)A4a U(p; q)! U(p; q ^ U(p; q))A5a U(q ^ U(p; q); q)! U(p; q)A6a (U(p; q) ^ U(r; s))!(U(p ^ r; q ^ s) _ U(p ^ s; q ^ s) _ U(q ^ r; q ^ s))plus their mirror images (b axioms). The inference rules are:Subst Uniform Substitution, i.e. let A(q) be an axiom containing the proposi-tional letter q and let B be any formula, then from ` A(q) infer ` A(qnB)by substituting all appearances of q in A by B.7



MP Modus Ponens: from ` A and ` A! B infer ` B.TG Temporal Generalisation: from ` A infer ` HA and ` GA.A formula A is deducible from the set of formulae �;� ` A, if there exist a �nitesequence of formulae B1; : : : ; Bn = A such that every Bi is either(a) a formula in �; or(b) an axiom; or(c) obtained from previous formulae in the sequence through the use of an inferencerule.We write ` A for ; ` A, i.e. only items (b) and (c) above are used the deduction of A,in which case A is said to be a theorem. A set of formulae � is inconsistent if � ` ?,otherwise it is inconsistent. A formulae A is consistent if fAg is consistent.On the semantical side, a set of formulae � is satis�able over a class of models K ifthere exist a model M 2 K (and a t 2 T ) such that, for every Bi 2 �, M; t j= Bi. Aformula A is valid over K, K j= A if, for every model M = (T;<; h) 2 K (and t 2 T ),M; t j= A. The expression � j= A represents that every model satisfying � also satis�esA. An inference system is sound with respect to a class of models K i� every theorem is avalid formula, i.e. ` A implies K j= A. An inference system is (weakly) complete over K, ifevery theorem ` A is valid, K j= A, or equivalently, if every consistent formula is satis�edover K. Let L = hL;`; j=i be a logic system with language L, inference system ` andsemantics j=. We say that L is decidable if there exists an algorithm (decision procedure)that determines, for every A 2 L, whether A is a theorem or not. The validity problemfor L is to determine whether some A 2 L is a valid formula or not.We have the following resultsTheorem 2.1 ([Bur82, Xu88]) The Burgess-Xu axiomatisation is sound and completeover Klin.Theorem 2.2 ([BG85]) The logic US = hLUS;`US; j=USi is decidable over Klin.3 Combining LogicsAs we have mentioned earlier, the combination of two one-dimensional temporal logicswill generate a two-dimensional temporal logic. Throughout this presentation, we referto one of the temporal dimensions as the horizontal dimension and the other one as thevertical dimension; the symbols related to the vertical dimension are normally obtainedby putting a bar on top of the corresponding horizontal ones, e.g. T and T, Fand F , <and <.There are two distinct criteria for de�ning a modal/temporal logic system as two-dimensional:(i) If the alphabet of the language contains two non-empty, disjoint sets of correspondingmodal or temporal operators, � and �, each set associated to a distinct ow of time,(T;<) and (T; < ), then the system is two-dimensional.8



(ii) If the truth value of a formula is evaluated with respect to two time points, thenthe system is two-dimensional. In this case, we even have the distinction betweenstrong and weak interpretation of formulae that, as a consequence, generates di�erentnotions of valid formulae (a formulae is valid if it holds in all models for all pair oftime points). Under the strong interpretation, the truth value of atoms dependson both dimensions, giving origin to strongly valid formulae when the evaluationof formulae is inductively extended to all connectives. In the weak interpretation,the truth value of atoms depends only on the one dimension, e.g. the horizontaldimension, giving origin to weakly valid formulae. Usually for this notion of two-dimensionality, both time points refer to the same ow of time, so we may also havethe notion of (weak/strong) diagonally valid formulae by restricting validity to thecase where both dimensions refer to the same point, i.e. A is diagonally valid i�M; t; t j= A for all M and t; see [GHR94] for more details.Criterion (i) above will be called the syntactic criterion for two-dimensionality, al-though it is not completely syntactic, i.e. it depends on the semantic notion of ows oftime; criterion (ii) will be called the semantic criterion for two-dimensionality.Note that both cases can yield, as an extreme case, one-dimensional temporal logic.In (i), by making T = T and < = (<)�1 = (>), i.e. by taking two ows with the sameset of time points such that one order is the inverse of the other; in this case, the futureoperators � = fF;G; Ug are associated with (T;<) and the past operators � = fP ;H; Sgare associated with (T;>). In (ii), by �xing one dimension to a single time point so thatthe second dimension becomes redundant.These two distinct approaches to the two-dimensionality of a system are independent.In fact, we will see in Section 5 a system that contains two distinct sets of operators overtwo classes of ows of time, but its formulae are evaluated at a single point. On theother hand, there are several temporal logics in the literature satisfying (ii) but not (i),containing a single set of temporal operators in which formulae are evaluated accordingto two or more time points in the same ow [Aqv79, Kam71, GHR94].A logic system that respects both the syntactic and the semantic criteria for two-dimensionality is called broadly two-dimensional , and this will be the kind of system we willbe aiming to achieve through combination methods; we consider in this work only strongevaluation and validity; the weak interpretation generates systems with the expressivityof only monadic �rst-order language [GHR94], but for broadly two-dimensional systemswe are interested in the expressivity of dyadic �rst-order language, although it is knownthat no set of temporal operators can be expressively complete2 over dyadic �rst-orderlanguage [Ven90]. Venema's [Ven90] two-dimensional temporal logic, Segerberg's [Seg73]two-dimensional modal logic and the temporalisation of a temporal logic are all broadlytwo-dimensional; so are the combined logics in Sections 6 and 7.In the study of one-dimensional temporal logics (1DTLs) several classes of ows of timeare taken into account. When we move to 2DTLs, the number of such classes increasesconsiderably, and every pair of one-dimensional classes can be seen as generating a di�erenttwo-dimensional class. The study of 2DTLs would bene�t much if the properties knownto hold for 1DTLs could be systematically transferred to 2DTLs, avoiding the repetitionof much of the work that has been published in the literature. This is a strong motivation2A modal/temporal language is expressively complete over a class of �rst-order formulae if, for any�rst-order formula A in that class, there exists a modal/temporal formula B such that A is �rst-orderequivalent to B�, where B� is the standard �rst-order translation of B [GHR94].9



to consider methods of combination of 1DTLs into 2DTLs and studying the transferenceof logical properties through each method. Also in favour of such an approach is the factthat the results concerning 2DTLs are then presented in a general, compact and elegantform.In providing a method to combine two 1DTLs T and T we have to pay attention tothe following points:(a) A method for combining logics T and T is composed of three sub-methods, namelya method for combining the languages of T and T, a method for combining theirinference systems and a method for combining their semantics.(b) We study the combined logic system with respect to the way certain logical propertiesof T and T are transferred to the two-dimensional combination. We focus here onthe properties of soundness, completeness and decidability of the combined systemgiven those of the component ones.(c) The combined language should be able to express some properties of the interactionbetween the two-dimensions; otherwise the combination is just a partial one, and thetwo systems are not fully combined. For example, it is desirable to express formulaelike FF A$F FA and PF A$F PA that are not in the temporalised language ofT(T).(d) If we want to strengthen the interaction between the two systems, some propertiesof the interaction between the two-dimensions are expected to be theorems of thecombining system, e.g. the commutativity of horizontal and vertical future operatorssuch as FF A$F FA and PF A$F PA.(e) We want the combination method to be as independent as possible from the under-lying ows of time.All methods of combination must comply with item (a). The method for combiningthe languages of T and T includes the choice of which sublanguage of T and T is goingto be part of the combined two-dimensional language, as well as the way in which thiscombination is done; in this presentation we will work, in the most general case, withthe standard languages of S and U , S and U , but we also consider some sublanguages,e.g. the sublanguage generated by a set of derived operators, as the vertical \previous"( w) and \next" ( g) in Section 7. In combining the inference systems of T and T, wewill assume that they are both an extension of classical logic and that they are presentedin the form of a regular, normal axiomatic system (�; I), where � is a set of axioms andI is a set of inference rules; one important requirement is that the combined system bea conservative extension of the two components. The conservativeness property statesthat if A is a formula in the language of T and T� is a logic system extending T (i.e. thelanguage of T is a sublanguage of the language of T�) then A will be a theorem of T� onlyif it is a theorem of T already; conservativeness guarantees that no new information aboutthe original system T is present in the extended one T�.The combined semantics has to deal with the structure of the combined model, theevaluation of two-dimensional formulae over those structures and also with the combina-tions of classes of ows of time.Items (b), (c), (d) and (e) may conict with each other. In fact, the rest of this papershows that this is the case, as we try to compromise between expressivity, independenceof the underlying ow of time and the transference of logical properties.10



4 Temporalising a LogicThe �rst of the combination methods, known as \adding a temporal dimension to a logicsystem" or simply \temporalising a logic system", has been extensively discussed in [FG92].Temporalisation is a methodology whereby an arbitrary logic system L can be enrichedwith temporal features to create a new system T(L). The new system is constructed bycombining L with a pure propositional temporal logic T (such as linear temporal logic with\Since" and \Until") in a special way.Although we are only interested here in temporalising an already temporal system,so as to generate a 2DTL, the original method is more general and is applicable to ageneric logic L; L is to actually constrained to be an extension of classical logic, i.e. allpropositional tautologies must be valid in it, but such a constraint does not a�ect us, for weare assuming that both temporal systems T and L are extensions of US=Klin The languageof a temporalised system is based on the US language and is a subset of the language ofL, LL. The set LL is partitioned in two sets, BCL and MLL. A formula A 2 LL belongsto the set of boolean combinations , BCL, i� it is built up from other formulae by the useof one of the boolean connectives : or ^ or any other connective de�ned only in terms ofthose; it belongs to the set of monolithic formula MLL otherwise.The result of temporalising over K the logic system L is the logic system T(L)/K. Thealphabet of the temporalised language uses the alphabet of L plus the two-place operatorsS and U , if they are not part of the alphabet of L; otherwise, we use S and U or any otherproper renaming.De�nition 4.1 Temporalised formulae The set LT(L) of formulae of the logic systemL is the smallest set such that:1. If A 2MLL, then A 2 LT(L);2. If A;B 2 LT(L) then :A 2 LT(L) and (A ^B) 2 LT(L);3. If A;B 2 LT(L) then S(A;B) 2 LT(L) and U(A;B) 2 LT(L). �Note that, for instance, if 2 is an operator of the alphabet of L and A and B aretwo formulae in LL, the formula 2U(A;B) is not in LT(L). The language of T(L) isindependent of the underlying ow of time, but not its semantics and inference system,so we must �x a class K of ows of time over which the temporalisation is de�ned; if MLis a model in the class of models of L, KL, for every formula A 2 LL we must have eitherML j= A orML j= :A. In the case that L is a temporal logic we must consider a \currenttime" o as part of its model to achieve that condition.De�nition 4.2 Semantics of the temporalised logic Let (T;<) 2 K be a ow oftime and let g : T ! KL be a function mapping every time point in T to a model in theclass of models of L. A model of T(L) is a triple MT(L) = (T;<; g) and the fact that A istrue in MT(L) at time t is written as MT(L); t j= A and de�ned as:11



MT(L); t j= A, A 2MLL i� g(t) =ML and ML j= A.MT(L); t j= :A i� it is not the case that MT(L); t j= A.MT(L); t j= (A ^B) i� MT(L); t j= A and MT(L); t j= B.MT(L); t j= S(A;B) i� there exists s 2 T such that s < t andMT(L); s j= A and for every u 2 T , ifs < u < t then MT(L); u j= B.MT(L); t j= U(A;B) i� there exists s 2 T such that t < s andMT(L); s j= A and for every u 2 T , ift < u < s then MT(L); u j= B. �Figure 3 illustrates a temporalised model. The inference system of T(L)/K is given bythe following:De�nition 4.3 Axiomatisation for T(L) An axiomatisation for the temporalised logicT(L) is composed of:� The axioms of T/K;� The inference rules of T/K;� For every formula A in LL, if `L A then `T(L) A, i.e. all theorems of L are theoremsof T(L). This inference rule is called Persist. �Example 4.1 Temporalising propositional logic Consider classical propositionallogic PL = hLPL;`PL; j=PLi. Its temporalisation generates the logic system T(PL) =hLT(PL);`T(PL); j=T(PL)i.It is not di�cult to see that LT(PL) = LUS and `T(PL)=`US, i.e. the temporalisedversion of PL over any K is actually the temporal logic T = US/K. With respect toMT(L),the function g actually assigns, for every time point, a PL model. �Example 4.2 Temporalising US-temporal logic If we temporalise over K the one-dimensional logic system US/K we obtain the two-dimensional logic system T(US) =hLT(US);`T(US); j=T(US)i = T2(PL)=K. In this case we have to rename the two-placeoperators S and U of the temporalised alphabet to, say, S and U .In order to obtain a model for T(US), we must �x a \current time", o, in MUS =(T1; <1; g1) , so that we can construct the model MT(US) = (T2; <2; g2) as previouslydescribed. Note that, in this case, the ows of time (T1; <1) and (T2; <2) need not to bethe same. (T2; <2) is the ow of time of the upper-level temporal system whereas (T1; <1)is the ow of time of the underlying logic which, in this case, happens to be a temporallogic.The logic system we obtain by temporalising US-temporal logic is the two-dimensionaltemporal logic described in [Fin92]. �Example 4.3 N-dimensional temporal logic If we repeat the process started in thelast two examples, we can construct an n-dimensional temporal logic Tn(PL)=K (its al-phabet including Sn and Un) by temporalising a (n� 1)-dimensional temporal logic.Every time we add a temporal dimension, we are able to describe changes in theunderlying system. Temporalising the system L once, we are creating a way of describing12



the history of L; temporalising for the second time, we are describing how the history of Lis viewed in di�erent moments of time. We can go on inde�nitely, although it is not clearwhat is the purpose of doing so. �From now on we restrict the logic systems to L = US/K and T = �U�S/K, where K;K �Klin. We write �U�S(US) instead of T(L) and the generated class of models is referred to asK(K). For this system, we enumerate a series of results that are proved in [FG92]. Thoseresults will be useful for the discussion of the independent combination method.Theorem 4.1 (Transference via temporalisation) Consider the logic systems �U�S=Kand US=K, K;K � Klin.(a) If �U�S is sound with respect to K and US is sound with respect to K, then �U�S(US)is sound w.r.t. K(K).(b) If �U�S is complete w.r.t. K and US is complete w.r.t. K then �U�S(US) is completew.r.t. K(K).(c) If �U�S is complete w.r.t. K, then �U�S(US) is a conservative extension of both �U�Sand US.(d) If �U�S is complete and is decidable over K and US is complete and decidable overK then �U�S(US) is decidable over K(K).5 Independent CombinationWe have seen in the previous Section how to add a temporal dimension to a logic system.In particular, if a temporal logic is itself temporalised we obtain a two-dimensional tem-poral logic. Such a logic system is, however, very weakly expressive; if US is the internal(horizontal) temporal logic in the temporalisation process (F is derived in US), and �U�Sis the external (vertical) one (F is de�ned in �U�S), we cannot express that vertical andhorizontal future operators commute,FF A$F FA:In fact, the subformula FF A is not even in the temporalised language of �U�S(US), noris the whole formula. In other words, the interplay between the two-dimensions is notexpressible in the language of the temporalised �U�S(US).The idea is then to de�ne a new method of combination of logic systems that putstogether all the expressivity of the two component logic systems in an independent way;for that we assume that the language of a system is given by a set of formation rules.De�nition 5.1 Let Op(L) be the set of non-boolean operators of a generic logic L. LetT and T be logic systems such that Op(T) \Op(T) = ;. The fully combined language oflogic systems T and T over the set of atomic propositions P , is obtained by the union ofthe respective set of connectives and the union of the formation rules of the languages ofboth logic systems. �Let the operators U and S be in the language of US and U and S be in that of�U�S. Note that the renaming of the temporal operator is done prior to the combination,so that the combined systems contains the set of boolean operators f:;^g coming fromboth components, plus the set of temporal operators fU; S; U;S g. Their fully combinedlanguage over a set of atomic propositions P is given by13



� every atomic proposition is in it;� if A;B are in it, so are :A and A^B;� if A;B are in it, so are U(A;B) and S(A;B).� if A;B are in it, so are U(A;B) and S (A;B).In general, we do not want any non-boolean operator to be shared between the two lan-guages, for this may cause problems when combining their axiomatisations. For example3,if a generic operator � belongs to both temporal logic system such that T contains axiomq$�q and system T contains axiom :q$�q, the union of their axiomatisations will re-sult in an inconsistent systems even though each system might have been itself consistent.To avoid such a behaviour the restriction Op(T) \ Op(T) = ; was imposed on the fullycombined language of T and T. Not only are the two languages taken to be independentof each other, but the set of axioms of the two systems are supposed to be disjoint; sowe call the following combination method the independent combination of two temporallogics.This new method of combination is called independent because it takes the independentunion of the axiomatisation of its two component systems, and it is based on their fullycombined language.De�nition 5.2 Let US and �U�S be two US-temporal logic systems de�ned over the sameset P of propositional atoms such that their languages are independent. The independentcombination US � �U�S is given by the following:� The fully combined language of US and �U�S.� If (�; I) is an axiomatisation for US and (�; I) is an axiomatisation for �U�S, then(�[ �; I [ I) is an axiomatisation for US� �U�S. Note that, apart from the classicaltautologies, the set of axioms � and � are supposed to be disjoint, but not theinference rules.� The class of independently combined ows of time is K �K composed of biorderedows of the form ( ~T;<; < ) where the connected components of ( ~T;<) are in Kand the connected components of ( ~T; < ) are in K, and ~T is the (not necessarilydisjoint) union of the sets of time points T and T that constitute each connectedcomponent; such a biordered ow of time has been discussed in [KW91] for the caseof the independent combination of two mono-modal systems.A model structure for US� �U�S over K�K is a 4-tuple ( ~T;<;<; g), where ( ~T;<; < ) 2K � K and g is an assignment function g : ~T ! 2P . An independently combinedmodel is illustrated in Figure 6.The semantics of a formula A in a model M = ( ~T;<; < ; g) is de�ned as the unionof the rules de�ning the semantics of US=K and �U�S=K. The expression M; t j= Areads that the formula A is true in the (combined) model M at the point t 2 ~T .The semantics of formulae is given by induction in the standard way:M; t j= p i� p 2 g(t) and p 2 P:M; t j= :A i� it is not the case thatM; t j= A.M; t j= A ^B i� M; t j= A and M; t j= B.3this example is due to Ian Hodkinson 14



M; t j= S(A;B) i� there exists an s 2 ~T with s < t and M; s j= Aand for every u 2 ~T , if s < u < t thenM; u j= B.M; t j= U(A;B) i� there exists an s 2 ~T with t < s and M; s j= Aand for every u 2 ~T , if t < u < s thenM; u j= B.M; t j= S (A;B) i� there exists an s 2 ~T with s< t and M; s j= Aand for every u 2 ~T , if s<u< t thenM; u j= B.M; t j= U(A;B) i� there exists an s 2 ~T with t < s and M; s j= Aand for every u 2 ~T , if t < u< s thenM; u j= B. �Note that, despite the combination of two ows of time, formulae are evaluated ac-cording to a single point. The independent combination generates a system that is two-dimensional according to the �rst criterion but fails the second one, so it is not broadlytwo-dimensional.The following result is due to [Tho80] and is more general than the independent com-bination of two US-logics.Proposition 5.1 With respect to the validity of formulae, the independent combinationof two modal logics is a conservative extension of the original ones.Note that we have previously de�ned conservative extension in proof theoretical terms;completeness for the independently combined case will lead to the conservativeness withrespect to derivable theorems.As usual, we will assume that K;K � Klin, so < and < are transitive, irreexive andtotal orders; similarly, we assume that the axiomatisations are extensions of US/Klin.The temporalisation process will be used as an inductive step to prove the transferenceof soundness, completeness and decidability for US� �U�S over K�K. Let us �rst considerthe degree of alternation of a (US� �U�S)-formula A for US, dg(A), and �U�S, dg(A).dg(p) = 0 dg(p) = 0dg(:A) = dg(A) dg(:A) = dg(A)dg(A^B) = maxfdg(A); dg(B)g dg(A^B) = maxf dg(A); dg(B)gdg(S(A;B)) = maxfdg(A); dg(B)g dg(S (A;B)) = maxf dg(A); dg(B)gdg(U(A;B)) = maxfdg(A); dg(B)g dg(U(A;B)) = maxf dg(A); dg(B)gdg(S (A;B)) = 1 +maxf dg(A); dg(B)g dg(S(A;B)) = 1 +maxfdg(A); dg(B)gdg(U(A;B)) = 1 +maxf dg(A); dg(B)g dg(U(A;B)) = 1 +maxfdg(A); dg(B)gAny formulaA of US� �U�S can be seen as a formula of some �nite number of alternatingtemporalisations of the form US(�U�S(US( : : : ))); more precisely, A can be seen as a formulaof US(Ln), where dg(A) = n, US(L0) = US, �U�S(L0) = �U�S, and Ln�2i = �U�S(Ln�2i�1),Ln�2i�1 = US(Ln�2i�2), for i = 0; 1; : : : ; dn2e � 1. This fact is illustrated in Figure 5. Thefollowing Lemma actually allows us to see the independent combination as the (in�nite)union of �nite number of alternating temporalisations of US and �U�S; it will also be usedin the proof of transferrence of completeness and decidability (given completeness) forUS � �U�S.Lemma 5.1 Let US and �U�S be two complete logic systems. Then, A is a theorem ofUS � �U�S i� it is a theorem of US(Ln), where dg(A) = n.15



Proof If A is a theorem of US(Ln), all the inferences in its deduction can be repeated inUS � �U�S, so it is a theorem of US � �U�S.Suppose A is a theorem of US� �U�S; let B1; : : : ; Bm = A be a deduction of A in US � �U�Sand let n0 = maxfdg(Bi)g, n0 � n. We claim that each Bi is a theorem of US(Ln0). In fact,by induction on m, if Bi is obtained in the deduction by substituting into an axiom, thesame substitution can be done in US(Ln0); if Bi is obtained by Temporal Generalisationfrom Bj , j < i, then by the induction hypothesis, Bj is a theorem of US(Ln0) and so isBi; if Bi is obtained by Modus Ponens from Bj and Bk , j; k < i, then by the inductionhypothesis, Bj and Bk are theorems of US(Ln0) and so is Bi.So A is a theorem of US(Ln0) and, since US and �U�S are two complete logic systems,by Theorem 4.1, each of the alternating temporalisations in US(Ln0) is a conservativeextension of the underlying logic; it follows that A is a theorem of US(Ln), as desired. �The transference of soundness, completeness and decidability follows directly from thisresult.Theorem 5.1 (Independent Combination) Let US and �U�S be two sound and com-plete logic systems over the classes K and K, respectively. Then their independent combi-nation US � �U�S is sound and complete over the class K � K. If US and �U�S are completeand decidable, so is US � �U�S.Proof Soundness follows immediately from the validity of axioms and inference rules.For completeness, suppose that A is a consistent formula in US� �U�S; by Lemma 5.1, Ais consistent in US(Ln), so we construct a temporalised model for it, and we obtain amodel ( ~T1; <1; g1; o1) over K(K(K(: : :))), where o1 is the \current time" necessary for thesuccessive temporalisations. We show now how it can be transformed into a model overK� K.Without loss of generality, suppose that US is the outermost logic system in the multi-layered temporalised system US(�U�S(US( : : : ))), and let n be the number of alternations.The construction is recursive, starting with the outermost logic. Let i � n denote thestep of the construction; if i is odd, it is a US-temporalisation, otherwise it is a �U�S-temporalisation. At every step i we construct the sets ~Ti+1, <i+1 and < i+1 and thefunction gi+1.We start the construction of the model at step i = 0 with the temporalised model( ~T1; <1; g1; o1) such that ( ~T1; <1) 2 K, and we take < 1 = ;. At step i < n, consider thecurrent set of time points ~Ti; according to the construction, each t 2 ~Ti is associated to:� a temporalised model gi(t) = ( ~T ti+1; <ti+1; gti+1; oti+1) 2 K and take <ti+1 = ;, if i iseven; or� a temporalised model gi(t) = ( ~T ti+1; <ti+1; gi+1; oti+1) 2 K and take <ti+1= ;, if i isodd.The point t is made identical to oti+1 2 ~T ti+1, so as to add the new model to the currentstructure; note that this preserves the satis�ability of all formulae at t. Let ~Ti+1 be the(possibly in�nite) union of all ~T ti+1 for t 2 ~Ti; similarly, <i+1 and < i+1 are generated.And �nally, for every t 2 ~Ti+1, the function gi+1 is constructed as the union of all gti+1 fort 2 ~Ti.Repeating this construction n times, we obtain a combined model over K � K, M =( ~Tn; <n; < n; gn), such that for all t 2 ~Tn, gn(t) � P . Since satis�ability of formulae ispreserved at each step, it follows thatM is a model for A, and completeness is proved.16



For decidability, again by Lemma 5.1, we can recursively apply the decision procedureof US(Ln) and �U�S(Ln�1), starting with n = dg(A), thus obtaining a decision procedurefor US� �U�S. �6 Full InterlacingWith respect to the generation of two-dimensional systems, the method of independentcombination has two main drawbacks. First, it generates logic systems whose formulaeare evaluated at one single time point, not generating a broadly two-dimensional logic.Second, since the method independently combines the two component logic systems, nointeraction between the dimension is provided by it. As a consequence, although a formulalike FF A$F FA is expressible in its language, it will not be valid, as can easily be veri�ed,for it expresses an interplay between the dimensions. We therefore introduce the notionof a two-dimensional plane model .De�nition 6.1 LetK and K be two classes of ow of time. A two-dimensional plane modelover the fully combined class K � K is a 5-tuple M = (T;<; T; <; g), where (T;<) 2 K,(T;<) 2 K and g : T�T ! 2P is a two-dimensional assignment. The semantics of thehorizontal and vertical operators are independent of each other.M; t; x j= S(A;B) i� there exists s < t such that M; s; x j= A andfor all u, s < u < t, M; u; x j= B.M; t; x j= S (A;B) i� there exists y<x such that M; t; y j= A andfor all z, y<z<x, M; t; z j= B.Similarly for U and U , the semantics of atoms and boolean connectives remaining thestandard one. A formula A is (strongly) valid over K � K if for all models M = (T;<; T; <; g), for all t 2 T and x 2 T we have M; t; x j= A. �With respect to the expressivity of fully combined two-dimensional languages, Ven-ema [Ven90] has shown that no �nite set of two-dimensional temporal operators is expres-sively complete over the class of linear ows with respect to dyadic �rst-order logic |despite the fact that US-temporal logic is expressively complete with respect to monadic�rst-order logic over N and over R, and that, with additional operators (the Stavi op-erators), we can get expressive completeness over Q and Klin [Gab81b]. So expressivecompleteness is not transferred by full interlacing.It is easy to verify that the following formulae expressing the commutativity of futureand past operators between the two dimensions are valid formulae in two-dimensionalplane models.I1 FF A$F FAI2 FPA$PFAI3 PF A$F PAI4 PPA$PPATherefore, if we want to satisfy both the syntactic and the semantic criteria for two-dimensionality, we may de�ne the method of full interlacing containing the fully combinedlanguage of US and �U�S and their fully combined class of models. The question is whetherthere is a method for combining their axiomatisations so as to generate a fully interlaced17



axiomatisation that transfers the properties of soundness, completeness and decidability.The answer, however, is no, not in general. In some cases we can obtain the transferenceof completeness, in some other cases the transference fails. To illustrate that, we considercompleteness results over classes of the form K�K.We start by de�ning some useful abbreviations. Let p be a propositional atom; de�ne:hor(p) = �(p^H:p^G:p)ver(p) = �(p^H:p^G:p)It is clear that hor(p) makes p true along the horizontal line and false elsewhere; similarlyfor ver(p) with respect to the vertical.The axiomatisation of US��U�S over Klin�Klin extends that of US � �U�S over Klin�Klinby including the interlacing axioms I1{I4 and the following inference rules:IR1 if ` hor(p)!A and p does not occur in A, then ` AIR2 if ` ver(p)!A and p does not occur in A, then ` AIR1 and IR2 are two-dimensional extensions of the irreexivity inferrence rule (IRR)de�ned in [Gab81a] for the one-dimensional case: if ` p^H:p!A and p does not occurin A, then ` A.Theorem 6.1 (2D-completeness) There is a sound and complete axiomatisation overthe class of full two-dimensional temporal models over Klin �Klin.A proof can be found in [Fin94] showing that the axiomatisation above is sound andcomplete over Klin � Klin. If Kdis is the class of all linear and discrete ows, [Fin94] alsoshows completeness results for the classes Kdis � Kdis, Q�Q, Klin � Kdis, Klin �Q andQ�Kdis:The negative result is the following.Proposition 6.1 (2D-unaxiomatisability) There are no �nite axiomatisations for the(strongly) valid two-dimensional formulae over the classes Z�Z, N�N and R�R.This proposition follows directly from Venema's proof that the valid formulae over theupper half two-dimensional plane are not enumerable forZ�Z, N�N and R�R, which inits turn was based on [HS86]. Since there are sound, complete and decidable US-temporallogics over Z, N and R [Rey92], the general conclusion on full interlacing is the following.Theorem 6.2 (Full Interlacing) Completeness and decidability do not transfer in gen-eral through full interlacing.It has to be noted that two-dimensional temporal logics seem to behave like modallogics in the following sense. We can see the result of the independent combination ofUS and �U�S as generating a \minimal" combination of the logics, i.e. one without anyinterference between the dimensions. The addition of extra axioms, inference rules or anextra condition on its models has to be studied on its own, just as adding a new axiom toa modal logic or imposing a new property on its accessibility relation has to be analysedon its own.The full interlacing method illustrates the conict between the generality of a methodand its ability to achieve the transference of logical properties. We next restrict theinterlacing method so as to recover the transference of logical properties.18



7 Restricted InterlacingThe fact that the transference of logical properties fails for the interlacing of two US-temporal logics does not mean that the interlacing of any two temporal logic systems failsto achieve this transference. We restrict the vertical logic system to a temporal logic �N�Pwith operators g for Next time and w for Previous time; the formation rules for theformulae of �N�P are the standard ones. This is a restriction of the �U�S-language for gandwcan be de�ned in terms of U and S , namely bygA =def U(A;?)wA =def S (A;?)Not only is the expressivity of the language reduced this way, but also the underlyingow of time is now restricted to a discrete one; in fact, we concentrate our attention oninteger-like ows of time.Let h :Z! P be a temporal assignment over the integers so that the semantics of �N�Pover the integers is the usual for atoms and boolean operators and(Z; <; h); t j= gA i� (Z; <; h); t+ 1 j= A(Z; <; h); t j= wA i� (Z; <; h); t� 1 j= AAn axiomatisation for NP/Zis given by the classical tautologies plusNP1 g wp!pNP2 g:p$: gpNP3 g(p^q)! gp^ gqNP4 The mirror image of NP1{3 obtained by interchanging gwith wThe rules of inference are the usual Substitution, Modus Ponens and Temporal Gen-eralisation (from A infer gA and wA).The converse of each axiom can be straightforwardly derived, so the formulae on bothsides of the !-connective are actually equivalent. It follows that every �N�P-formula canbe transformed into an equivalent one by \pushing in" the temporal operators, e.g. byfollowing the arrows the axioms, and by \cancelling" the occurrences of g and w ina string of temporal operators, e.g. g w w g wp is equivalent to wp; the resulting �N�P-normal form formula is a boolean combination of formulae of the form gkp and wlq, wherep and q are atoms, k; l 2 N and gk is a sequence of g-symbols of size k, similarly for wl; itis useful sometimes to consider k negative or 0, so we de�ne g�kA = wkA and g0A = A.As an example, the formula g g( w w w(p^q)_p) has normal form ( wp^ wq)_ g gp. Theexistence of such normal form gives us very simple proofs for completeness and decidabilityof �N�P/Zthat we outline next.For completeness, let � be a possibly in�nite consistent set of �N�P-formulae and assumeall formulae in the set is in the normal form. � can be seen as a consistent set of proposi-tional formulae where each maximal subformulae of the form gkp is understood as a newpropositional atom, so let h0 be a propositional valuation assigning every extended atominto ftrue, falseg. For n 2 Z, let h(n) = fp 2 P j h0( gnp) = trueg. Clearly (Z; <; h) isa model for the original set.For decidability, let A be a formula of �N�P and let A� be its normal form; clearly thereexists an algorithm to transform A into A�. By considering subformulae of the form gkpas new atoms, k possibly negative, we apply any decision procedure for propositional logicto A�. A is a �N�P-valid formula i� A� is a propositional tautology.19



De�nition 7.1 The restricted interlacing of temporal logic systems US/K and �N�P/Zisthe two-dimensional temporal logic system US� �N�P given by:� the fully combined language of US and �N�P;� the two-dimensional plane model over K�Z, equipped with the broadly two-dimen-sional semantics;� the union of the axioms of US/K and �N�P/Zplus the interlacing axiomsgU(p; q)!U( gp; gq)gS(p; q)!S( gp; gq)plus their duals obtained by swapping gwith w; the inference rules are just theunion of the inference rules of both component systems. �The following gives us a normal form for US� �N�P.Lemma 7.1 Let A be a formula of US � �N�P. There exists a normal form formula A�equivalent to A, such that all the occurrences of gand w in it are in the form gkp andwlq, where p and q are atoms.Proof First we show that converse of the interlacing axioms are theorem too. Forthat, note that U and S respect the congruence property , i.e. if A$C and B$D thenU(A;B)$U(C;D) and S(A;B)$S(C;D). Also note thatequiv (p$ g wp)^(p$ w gp)The transitivity of ! connects the steps in the proof of U( gp; gq)! gU(p; q) below:U( gp; gq)! g wU( gp; gq) by equiv! gU( w gp; w gq) by interlacing axiom! gU(p; q) by equiv and congruenceIt follows that U( gp; gq)$ gU(p; q). It is completely analogous to show the converseof other interlacing axioms, so we omit the details.Given A in the language of US� �N�P, the equivalence between both sides of the interlac-ing axioms allows for \pushing in" the vertical operators gand w, so a simple inductionon the number of nested temporal operators in A shows an algorithmic way to generatean equivalent formula A� in the desired normal form. �Theorem 7.1 (Completeness via restricted interlacing) Let US be a logic systemcomplete over the class K � Klin. Then the two-dimensional system US� �N�P is completeover K�Z.Proof Consider a US� �N�P-consistent formula A and assume it is in the normal form. Sowe can see A as a US-formulae over the extended set of atoms gk, k possibly negative or0. From the completeness of US/K there exist a one-dimensional model (T;<; hUS) for Aat a point o 2 T , where (T;<) 2 K. De�ne the two-dimensional assignmenth(k; t) = fp 2 P j gkp 2 hUS(t)g:Clearly, (T;<;Z; <Z; h) is a two-dimensional plane US��N�P-model for A at (o; 0). �20



Corollary 7.1 If US/K is strongly complete, so is US � �N�P/ K�Z.Theorem 7.2 (Decidability via restricted interlacing) If the logic system US is de-cidable over K, so is US��N�P over K�Z.Proof The argument of the proof is the same as that of the decidability of NP, all we haveto do is note that there exists an algorithmic way to convert a combined two-dimensionalformula into its normal form, so it can be seen as a US-formula and we can apply theUS-decision procedure to it. �So by restricting the expressivity and the underlying class of ows of time, we canobtain the transference of the basic logical properties via restricted interlacing. It shouldnot be di�cult to extend these results to N instead of Z, although we do not explore thispossibility here.It is also worth noting that the restricted interlacing method answers a conjectureposed by Venema [1990] on the distance of some expressively limited two-dimensionaltemporal logic overZ�Zthat was \well behaved" in the sense of having the completenessand decidability properties.8 The Two-dimensional DiagonalWe now study some properties of the diagonal in two-dimensional plane models. Thediagonal is a privileged line in the two-dimensional model intended to represent the se-quence of time points we call \now", i.e. the time points on which an historical observeris expected to be traverse . The observer is, therefore, on the diagonal when he or sheposes a query (i.e. evaluates the truth value of a formula) on a two-dimensional model.The diagonal is illustrated in Figure 9.So let � be a special atom and consider the formulae:D1 ��^��D2 �!(G:�^H:�^G:�^H:�)D3 �!(HG:�^GH:�)
................................................................... -6( �T; < ) F � (T;<)P�P �F� �

Figure 9 The two-dimensional diagonalLetDiag = ��(D1^D2^D3). The intuition behind Diag is the following. D1 impliesthat the two-dimensional diagonal can always be reached in both vertical and horizontaldirections; D2 implies that there are no two diagonal points on the same horizontal line21



and on the same vertical line and D3 implies that the diagonal goes in the direction SW{NE. We say that Diag characterises a two-dimensional diagonal in the following sense.Lemma 8.1 LetM = (T;<; T; < ; g) be a full two-dimensional model over K�K, K;K �Klin, and let � be a propositional letter. Then the following are equivalent.(a) M; t; x j= Diag, for some t 2 T and x 2 T .(b) M; t; x j= Diag, for all t 2 T and x 2 T .(c) There exists an isomorphism i : T ! T such that M; t; x j= � i� x = i(t).Proof It is straightforward to show that (a) () (b) and (c) =) (a); we show only (b)=) (c). So assume that M; t; x j= Diag, for all t 2 T and x 2 T . De�nei = f(t; x) 2 T�T j M; t; x j= �g:All we have to show is that i is an isomorphism.� i; i�1 are functions such that dom(i) = T and dom(i�1) = T . Suppose that both(t; x1) and (t; x2) are in i; then M; t; x1 j= � and M; t; x2 j= �. By linearity of T ,x1 = x2, x1<x2 or x2<x1, but D2 eliminates the latter two; D1 gives us thatdom(i) = T . Similarly, the linearity of T and D2 gives us that i�1 is a function andD1 gives us that dom(i�1) = T .� i(t) = x i� i�1(x) = t follows directly from the de�nition. So i is a bijection.� i preserves ordering. Suppose t1 < t2; by the linearity of T we have three possibilities:{ i(t1) = i(t2) contradicts i is a bijection.{ i(t2)<i(t1) contradicts D3.{ i(t1)<i(t2) is the only possible option.Therefore i is an isomorphism, which proves the result. �This result shows that by adding D1{D3 to the axiomatisation over Klin�Klin ofSection 6 gives us completeness over the class of models of the form (T;<; T; <; g), where(T;<) 2 Klin. It follows from [HS86], however, that such logic system is undecidable.The diagonal is interpreted as the sequence of time points we call \now". The diagonaldivides the two-dimensional plane in two semi-planes. The semi-plane that is to the(horizontal) left of the diagonal is \the past", and the formula F� holds over all points ofthis semi- plane. Similarly, the semi-plane that is to the (horizontal) right of the diagonalis \the future", and the formula P� holds over all points of this semi-plane. Figure 9 putsthis fact in evidence. If we assume that Diag holds overM such that i is the isomorphismde�ned in Lemma 8.1, t < s i� i(t)<i(s), thenM; t; x j= F� i� exists s > t such that M; s; x j= � and i(s) = xi� exists y = i(t)<x such that M; t; y j= �i� M; t; x j= P�.Similarly, it can be shown that:M; t; x j= P� i� M; t; x j= F �.It follows that the following formula is valid for US��U�S over Klin�Klin:22



Diag!( (F�$P�) ^ (P�$F �) ):As a consequence, P� holds over all points of the \past" semi-plane and F � holds over allpoints of the \future" semi-plane, as is indicated in Figure 9.The formula Diag is in the language of US� �U�Sbut not in the language of US��N�P,for Diag contains the vertical temporal operators G, H, � and �. To characterise a two-dimensional diagonal in US��N�P we do the following. We say that a formula A holds overor is valid over a two-dimensional model M if for every t 2 T and every x 2 T , it is thecase that M; t; x j= A. Consider the formulaed1 ��d2 �!(G:�^H:�)d3 �$ g g�where � is a proposition. Those formulae are all in the language of US��N�P, for Diag (soalso in the language of US � �U�S and they can characterize the two-dimensional diagonaldue to the following property.Proposition 8.1 Let M be a two-dimensional plane model over Z�Z. Then the formulaD1^D2^D3 holds over M i� d1^d2^d3 holds over M.Proof By Lemma 8.1 we know that D1^D2^D3 holds overM i� the relation i de�nedas belowi = f(t; x) 2Z�Zj M; t; x j= �g:is an isomorphism in Z. So all we have to do is to prove that i as de�ned above is anisomorphism i� d1^d2^d3 holds over M. The only if is a straightforward veri�cationthat for all x and t in Z,M; t; x j= d1^d2^d3.Assume d1^d2^d3 holds over M. Then:1. d1 gives us that for every x there exists a t such thatM; t; x j= �;2. d2 gives us that for every x; t; t0, t 6= t0,M; t; x j= � implies M; t0; x 6j= �;3. d3 give us that for every x; t,M; t; x j= � i� M; t+ 1; x+ 1 j= � i� for every n 2Z,M; t+ n; x+ n j= �The �rst two items give us that i�1 : Z! Zis a function. To show that i is also afunction, suppose that (t; x1); (t; x2) 2 i. By linearity ofZ, it follows that either x1 < x2 orx2 < x1 or x1 = x2. Let x1�x2 = m; then, by the third item above, (t+m; x2+m = x1) 2 i,so t = (t+m) and m = 0. It follows that x1 = x2, so i :Z!Zis a function. Directly bythe de�nition of i, it follows that i is a bijection.Again by the third item above, if i(t1) = x1 and i(t2) = x2, then t1 � t2 = x1 � x2. Itfollows that i is order preserving and hence an isomorphism, which �nishes the proof. �23



It would be desirable to generalise the idea of a diagonal as the sequence of \now"moments to any pair of ows of time that are not necessarily isomorphic. For that, wewould have to create an order between the points of the two ows, i.e. we would have tomerge the ows.So let (T;<) and (T; < ) be two ows of time such that T and T are disjoint. Thenthere always exists a ow (T 0; <0) and a mapping f : T [T ! T 0 such that f is one-to-oneand order preserving. The f -merge of (T;<) and (T; < ) is the ow of time consistingof the image of f ordered by the restriction of <0 to the image of f . An example of anf -merge is shown in Figure 10, where f(y) is made equal, via merge, to f(�x) and on themerged ow the order is preserved, i.e. originally x < y and �x< �y and on the f -mergedow f(x) <0 f(y) = f(�x) <0 f(�y). 	 ...................	 ...................w.................w................. - --(T 0;<0) ( �T; < )(T;<) yx ffff �y�xFigure 10 The f -mergeWe can then construct a two dimensional model with two copies of the f -merge, inwhich we can de�ne a diagonal over (T 0; <0)�(T 0; <0) as shown in Figure 11............................................-. . . . . . . . . . . . . . . . . -6-6 f( �T ; < ) (T 0; <0)(T 0; <0) �(T;<)Figure 11 The diagonal of two distinct owsThis construction motivates a method of combining two one-dimensional temporallogics into another one-dimensional logic, namely that over the class of all f -merges of itstwo-component ows of time. We could then study the transference of logical properties inthe same way as we have done in this and the previous section, but we do not investigatethose matters here.9 ConclusionThis paper dealt with the combination of two logic systems in order to obtain a new logicsystem. The issues were:� Several methods of combination of two logic systems were presented. Each combi-nation involved at least one temporal logic system. Each method had a particular24



discipline for combining the language, the semantics and the inference system of twologic systems. Each combination generated a single logic system.� The study of transference of logical properties from the component systems intotheir combined form has been the major point in the analysis of combination meth-ods. The basic logical properties whose transference was analysed were soundness,completeness and decidability; for some combination methods, the transference ofother properties was also investigated such as conservativeness and the compactnessproperty (in the form of strong completeness).� The investigation of four basic methods has been accomplished. The temporali-sation method and the independent combination method were shown to transferall basic properties, although they do not generate an expressive enough system tobe called fully two-dimensional. The full interlacing method does generate a fullytwo-dimensional temporal system, but in many cases it failed to transfer even thecompleteness property. As a compromise, it was shown that a restricted interlacingmethod, although generating two-dimensional temporal logic systems that were notas expressive and generic as the fully interlaced one, accomplishes the transferenceof all basic logical properties.Another contribution of our analysis was to answer a question raised by Venema [Ven90]on the existence of a fragment of the two-dimensional plane temporal logic that, in hisown words, was `better behaved' than the two-dimensional plane system with respectto completeness and decidability properties. We have shown that the two-dimensionaltemporal logic systems obtained by restricted interlacing are an example of such fragments.Another question raised by Venema in that same work remains open, namely, whetherit is possible to have a complete axiomatisation over the two-dimensional model using onlycanonical inference rules, i.e. without using the special inference rules IR1 and IR2. Thisproblem seems to be a very hard one. Nevertheless we succeeded in extending Venema'scompleteness result, that originally holds for only two-dimensional ows built from twoidentical one-dimensional ows, to any two-dimensional ow built from any ow in theclasses Klin, Kdis, Kdense and Q.Comparisons, Extensions and Further WorkWith respect to combination of logics, the works in the literature that most closely ap-proximate ours in spirit and aims, are those of Kracht and Wolter [KW91] and of Fineand Schurz [FS91]. Both works concentrated on monomodal logics, and investigated thetransference of logical properties for only the method we called here independent combina-tion. However, their work investigated several paths that suggest that further work maybe done in our studies. First, they analysed the transference of many other propertiesfrom two logic systems to its combined form, e.g. �nite model property and interpolation.Second, both works did not concentrate only in linear systems and they were able to ex-tend their results to any class of underlying Kripke frames. Third, Fine and Schurz's workgeneralised the independent combination method to more than two monomodal logics.Those two papers cited above therefore suggest several extensions to our work. Note,however, that the temporalisation method was easily shown to be extensible to manytemporal logic systems in Example 2.4. The focus on linear ows of time was due todatabase applications of two-dimensional temporal logics as in [FG92, Fin94], but we25



believe that this restriction may be lifted without damaging the transference results ofthe temporalisation and independent combination methods. These have to be furtherinvestigated and the transference of any other logical property has to be analysed on itsown.The generalisation of combination methods other than the independent combinationmethod to modal logics is another area for further work. As noted in [FG92], the tempo-ralisation process is directly extensible to monomodal logics. It may even be the case that,for monomodal logics, the full interlacing method achieves transference of completenessover several classes of fully two-dimensional Kripke frames using only canonical inferencerules, as it is suggested by the results in [Seg73].The complexity class of the decision problem for the combined logic is another inter-esting subject for study. For the independent combination of monomodal logics, such astudy was done by Spaan [Spa93] and the conclusion was that the satis�ability problemof an independently combined logic is either reducible to that of one of the componentlogics, or it is PSPACE-hard or it is in NP. We believe a similar result can be obtainedfor the temporalisation and the independent combination of temporal logics, although thedetails have not yet been worked out. The complexity of the full and restricted interlacingmethods still have to be studied.All the systems dealt with in this paper were extensions of classical logic. It is possiblethat the temporalisation process preserves its transference properties even in the case theunderlying system is not an extension of classical logic. What if the external temporallogic is non-classical itself? The same question applies to other combination methods. Dothey achieve transference of logical properties when one or both of the combined temporalof modal logics is not classical? Gabbay [Gab92] has recently posed that question in avery generic framework involving Labelled Deductive Systems (LDS) and found that inorder to obtain the transference of completeness we do not need the full power of classicallogic but only some weaker form of monotonicity. He has also developed other methodsof combination called �bring that depends on the choice of a �bring function. A �bringfunction maps the truth value of atoms in one logic's semantics with the semantics offormulae in other logic's semantics. Gabbay's dovetailing process, obtained with a certainclass of �bring functions, is similar to the independent combination method extendedto logics respecting those weaker conditions of monotonicity. More work on this area isneeded to clarify exactly how �bring is related to existing combination methods.There are also other possible types of combinations of one-dimensional temporal logicsthat may be explored. As pointed out in Section 8, two linear ows of time can be mergedinto another one; the question is then how to combine two one-dimensional temporal logicsinto another one-dimensional temporal logic over the merged ow.References[Aqv79] L. Aqvist. A Conjectured Axiomatization of Two-dimensional ReichenbachianTense Logic. J. of Philosophical Logic, 8:1{45, 1979.[BG85] J. P. Burgess and Y. Gurevich. The Decision Problem for Linear Logic. NotreDame Journal of Formal Logic, 26(2):566{582, April 1985.[Bur82] J. P. Burgess. Axioms for Tense Logic I: \Since" and \Until". Notre DameJournal of Formal Logic, 23(4):367{374, October 1982.26
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