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abstract. In this paper we study an extension to classical sequent
calculus with a substitution rule, which is normally admissible in
classical logic. The structure of proofs is also extended to permit
DAG shaped proofs. We analyse several properties of this system,
such as the complexity of cut-elimination, and propose an extended
tableau proof system, called s-tableau, that corresponds to the DAG-
sequent calculus. We show how the pigeon hole principle can be solved
linearly solved in s-tableaux.

1 Introduction

In this paper, we investigate a sequent proof method known to have short
proofs even for the hardest known propositional formulas. We explore some
of the proof-theoretical properties of this inference system and investigate
how it can be transformed in a tableau-like decision procedure.

This work is in the spirit of recent work on efficient propositional inference
systems, by Dov Gabbay and the author, in which we studied several fami-
lies of tractable subclassical logics that are less complex than propositional
classical logic [Finger and Gabbay, 2005]. Each element of those families
has a polynomial time decision procedure. That investigation restricted
the use of the cut rule in a non cut-eliminable formulation of propositional
classical logic.

In this work, we investigate classical proof theory, especially the role of
admissible rules, in another direction. Here add the admissible substitution

rule (or s-rule) to the set of inference rules in a Gentzen sequent system.
Let a substitution σ be a formula transformation that maps atoms into
formulas, and is extended to all formulas in a homomorphic way. If A is
a formula let Aσ be the application of σ on A. Similarly, if Γ is a set of
formulas, then Γσ is the result of applying σ to every formula in Γ. In
this setting, the s-rule states that if Γ ⊢ ∆ is a derivable sequent and σ

is a substitution, then we can infer Γσ ⊢ ∆σ. Furthermore, this rule can
be defocusing, that is, the same source sequent Γ ⊢ ∆ can receive several
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substitutions, transforming the usual tree structure of a sequent proof into
a direct acyclic graph (DAG), as illustrated in Figure 1.

Γ ⊢ ∆

Γσ1 ⊢ ∆σ1 · · · Γσn ⊢ ∆σn

σ1 σn

Figure 1. The Defocusing Substitution Rule

premiss1 · · · premissk

conclusion

premiss

conclusion1 · · · conclusionk

(a) Focusing Rule (b) Defocusing Rule

Figure 2. Focusing and Defocusing Rules

In a usual tree-like sequent proofs, a rule may contain one premiss or
several premisses; in the latter case, the rule is called focusing according
to the terminology of [Carbone and Semmes, 2000] illustrated in Figure 2.
Usual rules (see Figures 3 and 4) are linear or focusing, that is, rules are
viewed as providing directed edges from the premisses to the conclusion,
such that there is only one conclusion but possibly one or more premisses;
the former is considered a linear rule, the latter a focusing one. With
usual rules, no defocusing is possible, so the proof necessarily has a tree-like
structure with a single directed path between any node and the deduced
sequent at the root of the tree.

In a DAG proof, due to the presence of defocusing substitution nodes
(or s-nodes) there may be more than one directed path from any sequent in
the proof to the root sequent. In this way, a DAG proof avoids repetition
of isomorphic branches and is thus more compact than a tree proof, so
proofs of the same sequent may be shorter with a DAG structure. As the
substitution σ may be the identity substitution, there is no need to have
any other defocusing rule.

Notation: The propositional connectives we consider here are ∧, ∨, →
and ¬. We measure the size of a formula A, |A|, as the number of symbols
it contains. There are basically two ways of measuring the size of a proof:

(a) The number of lines: this is the number of sequents (usually called in
the literature the number of lines) occurring in a proof Π, represented
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by |Π|.

(b) The number of symbols: this is the sum of the sizes of all formulas
occurring in a proof Π, represented by ||Π||.

We say that a proof system S1 p-simulates a proof system S2 if there
exists a polynomial p(x) such that for every proof Π2 of a theorem A in S2

there is a proof Π1 of A in S1 such that |Π1| ≤ p(|Π2|). We say that two
proof systems are equivalent if each one p-simulates the other.

1.1 Related Works

In their seminal work, Cook and Reckhow [1979] defined a generalisation
of the usual propositional proof system called Frege systems. A Frege sys-
tem is based on a finite and complete set of propositional connectives, and
has a finite set of schematically defined rules of inference with one or more
premisses, and one conclusion, such that the set of rules is sound and com-
plete. A proof is a direct acyclic graph, where each node is labelled with a
formula or a sequent. The class of Frege systems include inference systems
like Hilbert-style axiomatisations, Natural Deduction and Gentzen sequent
systems. Furthermore, Cook and Reckhow showed that any Frege system
F1 can p-simulate any other Frege system F2.

Cook and Reckhow [1979] also defined the notion of an extended Frege

system, which is a Frege proof system augmented with the introduction of
inferences of the form:

⊢ p ↔ A

where p is a propositional symbol that does not occur in A, nor in any
previous formula in that branch of the proof, nor in the final final formula at
the root of the proof. This inference allows the atom p to be an abbreviation
of the formula A, which has the potential of reducing the number of symbols
in the proof. Extended Frege systems were also shown to p-simulate each
other. It remains an open problem if Frege systems can p-simulate extended
Frege systems.

In a similar way, the notion of substitution Frege system consists of a
Frege system augmented with the substitution rule for formulas (or se-
quents), as in Figure 1. It was shown that substitution Frege systems
and extended Frege systems are equivalent, that is, any substitution Frege
system sF can p-simulate any extended Frege proof system eF and vice-
versa [Cook and Reckhow, 1979, Kraj́ıček and Pudlák, 1989]. It was also
shown that this result holds even if the substitution is restricted to the
mere renaming of propositional symbols [Buss, 1995].

Thus, if we extend a sequent system with a defocusing renaming rule as
a weaker version of the substitution rule, we are still guaranteed to have a
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proof system that can p-simulate any extended Frege system.

One thing that comes to mind when one is discussing extended Frege
systems, or any of its equivalent formulations, is if they can ever be used in
practice in a real prover. This paper tries to contribute to this question.

1.2 Organisation of this Paper

Most of the literature on substitution and renaming Frege system concen-
trated basically on the length of proofs. Here we take one particular sub-
stitution system and study its intrinsic logic properties.

We start by defining the DAG-sequent proof system and show its sound-
ness and completeness, and show how the substitution rule can be elimi-
nated (Section 2). We then study the complexity of cut elimination and
show that, unlike traditional sequent system, in the presence of the substi-
tution rule cut elimination does not provoke an exponential blow up in the
size of proofs.

This motivates us to examine how this technique can be brought to
semantic tableaux (Section 3). We thus present s-tableaux by extending
semantic tableaux with a substitution closure rule, and we prove that it
actually corresponds to the DAG-sequent proof system.

As an example of s-tableaux, we apply it to the family of formulas that
encode the pigeon hole principle (PHPn), and show that we have linear
s-tableau proofs for PHPn (Section 4).

2 DAG proofs

We start by formally defining the sequent proof system we will be studying.
A sequent is a pair of the form Γ ⊢ ∆, where Γ and ∆ are multisets ; Γ
is the antecedent and ∆ is the consequent of the sequent. We then have
schematic rules that apply to sequents in a rule, divided in the usual two
groups of logical and structural rules. The logical (connective) rules are
shown in Figure 3. The structural rules are shown in Figure 4.

Due to the definition of the antecedent and consequent as multisets, the
structural rules of associativity and commutativity are implicit in this for-
mulation. The structural rule of monotonicity or weakening is taken care
of by the Axiom Rule. The rules in Figures 3 and 4 are focusing rules and
thus generate only tree-like proofs.

The generalisation to DAGs comes when we introduce the defocusing
substitution Rule (s-rule); see Figure 1. A substitution σ is a set of pairs
of propositional atoms and formulas, that we represent as σ = [p1 :=
A1, . . . , pk := Ak]. If the pair 〈pi, Ai〉 is in σ we write (pi := Ai) ∈ σ.
For sets, multisets or sequents, the application of σ means the application
of substitution to each of its elements.
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A, Γ ⊢ ∆
(∧ ⊢)

A ∧ B, Γ ⊢ ∆

Γ ⊢ ∆, A Γ ⊢ ∆, B
(⊢ ∧)

Γ ⊢ ∆, A ∧ B

A, Γ ⊢ ∆ B, Γ ⊢ ∆
(∨ ⊢)

A ∨ B, Γ ⊢ ∆

Γ ⊢ ∆, A
(∧ ⊢)

Γ ⊢ ∆, A ∨ B

Γ1 ⊢ ∆1, A B, Γ2 ⊢ ∆2
(→⊢)

A → B, Γ1, Γ2 ⊢ ∆1, ∆2

Γ, A ⊢ ∆, B
(⊢→)

Γ ⊢ ∆, A → B

Γ ⊢ ∆, A
(¬ ⊢)

¬A, Γ ⊢ ∆

A, Γ ⊢ ∆
(⊢ ¬)

Γ ⊢ ∆,¬A

Figure 3. Logical Rules for the Sequent Calculus

(Axiom)
Γ, A ⊢ A, ∆

Γ1 ⊢ ∆1, A A, Γ2 ⊢ ∆2
(Cut)

Γ1, Γ2 ⊢ ∆1, ∆2

Γ1, A, A, Γ2 ⊢ ∆
(Contraction ⊢)

Γ1, A, Γ2 ⊢ ∆

Γ ⊢ ∆1, A, A, ∆2
(⊢ Contraction)

Γ ⊢ ∆1, A, ∆2

Figure 4. Usual Structural Rules
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There is nothing implicitly “defocusing” in the use of the s-rule, and
in principle any node that is used more than once in a proof could be
defocusing. We have decided to concentrate the defocusing effect only on
the s-rule to obtain a true extension of the usual tree-like sequent proofs.

We can then formally define a DAG-sequent proof Π as a direct acyclic
graph constructed inductively from the application of only the Axiom, Log-
ical, Structural and Substitution rules. A sequent Γ ⊢ ∆ is derivable or
provable if there is a DAG sequent proof Π having Γ ⊢ ∆ as the only node
without leaving arrows (a drain in the graph). Note that axioms are the only
source nodes in a proof, that is, the only nodes with no incoming arrows.

A prefix Π′ of a DAG Π at a node n is the subgraph containing n, such
that if all nodes and arcs pointing to to some node in Π′ are also in Π′.

LEMMA 1. Let S be a sequent in a proof Π. Let Π′ be the prefix of Π at

S. Then Π′ is a proof of S.

Proof. Directly from the definitions of DAG-sequent proofs and of prefix.
Just note that S must be a drain in Π′ since, by acyclicity of Π, no arc
coming out from S may point into Π′. �

The result above shows that any intermediate sequent generated in a
proof is indeed a derivable sequent, as in usual sequent proofs. We say that
a sequent proof is usual if it is a proof without the use of the substitution
rule, and hence it has a tree-like structure.

Consider the classical semantics for propositional formulas based on propo-
sitional valuations. We write Γ |= A if any valuation that satisfies all for-
mulas in Γ also satisfies A. Soundness means that Γ ⊢ A implies Γ |= A

and completeness means that Γ |= A and Γ ⊢ A.

THEOREM 2. The DAG-sequent calculus is sound and complete.

Proof. Completeness is trivial, since the usual sequent calculus is contained
in the DAG-sequent calculus. For soundness, given the soundness of the
usual calculus, all we have to do is show that the substitution rule takes
a valid sequent into a valid sequent, which follows directly from the fact
that the substitution has the effect of reducing the number of valuations
available to the valid sequent in the premiss of a substitution rule. �

We now consider the admissibility of the substitution and cut rules from
DAG proof, by showing their elimination. It must be obvious from the
soundness and completeness results that the substitution rule does not add
or remove any derivable sequents from classical ones. However, what we
are concerned here with the exponential explosion that occurs when we
eliminate it from the proof.



DAG Sequents with Substitution 7

LEMMA 3. If there is a DAG-sequent proof Π of sequent S then there is

a DAG-sequent proof Π′ of S without the use of the substitution rule, such

that |Π′| is bounded by an exponential function on |Π|.

Proof. (Sketch) The exponential explosion occurs when we eliminate a
convergence point generated by two or more distinct applications of the
substitution rule, to a single node, a illustrated below.

Π
Γ ⊢ ∆

Γσ1 ⊢ ∆σ1 Γσ2 ⊢ ∆σ2

σ1 σ2

Here we see that a proof Π leads to a sequent Γ ⊢ ∆ to which the substitution
rule is applied twice (or n-times, for n ≥ 2). When we eliminate this
application of the rule, two instances of the proof proof Π are created: Πσ1,
and Πσ2, where by Πσ we mean the application of the substitution σ to all
formulas in Π, thus generating:

Πσ1 Πσ2

Γσ1 ⊢ ∆σ1 Γσ2 ⊢ ∆σ2

The duplication of proof Π leads to the exponential growth both in number
of lines and in number of symbols when there is a chain of eliminations on
the same path in the proof �

The fact that the two substitutions σ1 and σ2 are distinct is fundamental
for the exponential growth, otherwise a simple use of the contraction rule
would have done the job without the duplication of Π.

This phenomenon of exponential growth is also known for usual cut elim-
ination, for there are known sequents whose cut-free traditional proofs can
only be exponentially larger than some versions with cuts [Statman, 1979,
Orevkov, 1982, Boolos, 1984]. Proofs can, of course, be free of substitution
and of cut, by first eliminating substitution as above and then eliminat-
ing the cuts by some traditional cut elimination process [Girard, 1987b,
Takeuti, 1987].

We now show that cut can be eliminated without exponential explosion
if the substitution rule is used.

THEOREM 4. If there is a usual tree-like sequent proof Π of sequent S,

possibly with the use of cuts, then there is a DAG-sequent proof Π′ of S

without the use of the cut-rule, such that |Π′| is linear with respect to |Π|
and ||Π′|| is linear with respect to ||Π||.
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Proof. The work of Carbone [Carbone, 1997, Carbone and Semmes, 2000]
has shown that the duplication of a chunk of a branch during cut elimination
occurs when that branch contains a contraction of a formula A followed by a
cut over A. The exponential explosion then occurs when a branch contains
several occurrences of contraction-cut sequences.

In fact, according to the usual cut elimination processes [Girard, 1987b,
Takeuti, 1987], when cut is eliminated from an axiom, the size of Π′ actually
decreases. When we eliminate a cut where the cut-formula was introduced
by a connective rule, the cut is pushed up towards the leaves. At each
such step, the number of lines may increase only in a constant way and the
number of symbols may increase only linearly, guaranteeing the final linear
bound on number of lines and quadratic bound in the number of symbols.

So all we have to do is focus in the case where cut is eliminated from a
contracted formula

Π1

Γ1, A, A ⊢ ∆1

Γ1, A ⊢ ∆1

Π2

Γ2 ⊢ A, ∆2
(Cut)

Γ1, Γ2 ⊢ ∆1, ∆2

generating the following configuration, with the duplication of branch Π2:

Π1

Γ1, A, A ⊢ ∆1

Π2

Γ2 ⊢ A, ∆2
(Cut)

Γ1, Γ2, A ⊢ ∆1, ∆2
Π2

Γ2 ⊢ A, ∆2
(Cut)

Γ1, Γ2, Γ2 ⊢ ∆1, ∆2, ∆2
(Contractions)

Γ1, Γ2 ⊢ ∆1, ∆2

However, with the application of a single substitution rule to Γ2 ⊢ A, ∆2,,
with two defocusing applications of identity substitution ι, we can avoid the
proof duplication that leads to the exponential explosion

Π1

Γ1, A, A ⊢ ∆1 Γ2 ⊢ A, ∆2
(Cut)

Γ1, Γ2, A ⊢ ∆1, ∆2

Π2

Γ2 ⊢ A, ∆2

Γ2 ⊢ A, ∆2
(Cut)

Γ1, Γ2, Γ2 ⊢ ∆1, ∆2, ∆2
(Contractions)

Γ1, Γ2 ⊢ ∆1, ∆2

ι

ι
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The proof chunk Π2 is not repeated, the number of added lines is a
constant and the number of added formulas is linearly bounded, just as in
the connective cases. �

Note that to replace cuts with substitution rules all we needed was the
employment of identity substitutions. It is not known how to eliminate the
use of substitution with the use of cuts. If this were possible, then it would
follow that Frege systems can p-simulate extended Frege systems.

3 Tableaux with Substitution

Theorem 4 motivates us to explore a possible adaptation of the substitution
rule to decision algorithms such as analytic tableaux. We follow Smullyan’s
presentation of tableaux dealing with signed formulas, in which formulas are
prefixed with an F or T sign [Smullyan, 1968]. The signed formulas F A and
T A are called conjugates. Any propositional valuation f is simply extended
to signed formulas by making f(T A) = 1 iff f(A) = 1 and f(F A) =
1 iff f(A) = 0.

A tableau for a sequent A1, . . . An ⊢ B1, . . . , Bm is an attempt to re-
fute it by asserting the antecedent with T -signed formulas T A1, . . . T An

while denying the consequent with F -signed formulas F B1, . . . , F Bm. The
tableau’s expansion rules will then expand the tableau into a tree of signed
formulas. If every branch of that tree closes, than the initial sequent has
been shown; otherwise, a falsifying valuation is obtained, which validates
the sequent’s antecedent and falsifies its consequent.

Signed formulas are classified into α, neg and β formulas, as indicated in
Figure 5; it must be noted that Smullyan splits neg-formulas arbitrarily into
α and β. The expansion of a branch consists in choosing a signed formula in
that branch and then proceeding as follows. If it is an α formula, then add
both conclusions α1 and α2 to the end of the branch. If it is a neg formula,
add the pos formula to the end of the branch. If it is a β formula, split
the branch by adding β1 to one branch and β2 to the other. The expansion
rules are illustrated in Figure 6.

α α1 α2

T A ∧ B T A T B

F A ∨ B F A F B

F A → B T A F B

neg pos

T ¬A F A

F ¬A T A

β β1 β2

F A ∧ B F A F B

T A ∨ B T A T B

T A → B F A T B

Figure 5. Smullyan’s Notation for Signed Formulas
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α

α1

α2

neg

pos

β

β1 β2

Figure 6. Tableau Expansion Rules

We consider a branch Θ as a set of formulas. A branch is partially ex-

panded if some of its signed formulas, but not necessarily all, have been
expanded. branch. In usual analytic tableaux, a branch closes if it contains
a pair of conjugate formulas, meaning that a contradiction was reached on
that branch. If all formulas in Θ have been expanded and the branch is not
closed, than it is an open. The tableau closes if all its branches are closed;
if a single branch is open the tableau is open.

Traditional analytic tableaux are always tree-like. By extending tableaux
with substitution rules, one could expect us to transform its tree-like struc-
ture into a DAG. However, we do not do it. Instead, we add a new branch
closure rule.

Substitution Closure Rule (s-closure): If a tableau has
partially expanded branches Θ1 and Θ2 such that there exists a
substitution σ satisfying

Θ1 ⊆ Θ2σ

where by Θ2σ we mean the set obtained by the application of σ

to every signed formula in Θ2. Then Θ2 is closed.

The usual closure of a branch with T A and F A is a simple closure.
We call a tableau extended with the substitution closure rule a substitution

tableau (or an s-tableau).
In order to facilitate the application of the condition Θ1 ⊆ Θ2σ, it would

be nice if we could increase the number of equivalent formulas that are also
identical in their representation. For example, the formula p1 ∧ (p2 ∧ p3) is
equivalent to (p1 ∧ p2)∧ p3 but not syntactically identical. The idea is thus
to introduce a connective

∧∧

that operate over a set of formulas, such that
both formulas can be represented as

∧∧

{p1, p2, p3}; similarly, we introduce
∨∨

. By convention,
∧∧

{A} =
∨∨

{A} = A,
∧∧

∅ = ⊤,
∨∨

∅ = ⊥. The
transformation of maximal conjunctions and disjunctions into, respectively,
∧∧

-conjunctions and
∨∨

-disjunctions is immediate. And the tableau rules
for F

∧∧

and T
∨∨

are, obviously, n-ary branching rules, and the tableau rules
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for T
∧∧

and F
∨∨

are linear with multiple consequences. In the following we
will assume that formulas are transformed into this set notation for large
conjunctions and disjunctions without mentioning it.

An example of s-tableaux for a family of “hard” propositional formulas
is given in Section 4. We now analyse some properties of s-tableaux. First,
we note that completeness is trivial for s-tableaux are an extension of usual
semantic tableaux and inherit its completeness. Soundness deserves more
care.

LEMMA 5. S-tableaux are sound and complete.

Proof. Completeness follows immediately from the completeness of usual
tableaux, as all usual tableau rules and closure conditions are present in
s-tableaux.

For soundness, the tableaux rules maintain their usual property, namely
if there is a valuation that satisfies α it also satisfies α1 and α2, if there is
a valuation that satisfies neg it also satisfies pos and if there is a valuation
that satisfies β it satisfies β1 of β2. In this case, if there is an open saturated
branch, a valuation can be constructed that falsifies the original sequent; if
there is a closed branch in the usual way containing T A and F A for some
A, then no valuation can satisfy all of the branches signed formulas, meaning
that the expansion taken on that branch do not lead to a counter-valuation.
It remains to be proved that closing a tableau with the substitution closure
rule keeps the soundness of the process, that is, we are not closing a branch
that has the possibility of becoming saturated open.

In fact, suppose there are partially expanded branches Θ1 and Θ2 such
that there exists a substitution σ satisfying Θ1 ⊆ Θ2σ, so that Θ2 is closed.
It is easy to see that, inductively, every expansion of a signed formula Xϕ

in Θ1 can be mimicked by an expansion of Xϕσ in Θ2. So if Θ1 closes due
to T A, F AΘ1 for some A, Θ2 will also close due to T Aσ, F Aσ ∈ Θ2. On
the other hand, if Θ1 becomes saturated open, the sequent is not provable
anyway. Thus, in both cases, the closure of Θ2 preserves the soundness of
the inference. �

We also have the direct correspondence between closed s-tableaux and
DAG sequent proofs with substitution. For a tableau T , we define |T | as
the total number of signed formulas (lines) occurring in it, and ||T || as the
total number symbols occurring in it.

LEMMA 6. For every closed s-tableau T there corresponds a DAG s-sequent

proof Π such that |Π| is linear with |T | and ||Π|| is quadratic with ||T ||.

Proof. (Sketch) We apply the usual transformation of tableau proofs into
sequent proofs, that is, we transform analytic tableaux into block tableau;
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see [Smullyan, 1968]. In case a branch Θ2 is closed due to the substitution
closing rule, there is a branch Θ′

1 whose prefix Θ1 is a partially expanded
branch verifying Θ1 ⊆ Θ2σ. Consider three sub branches: the partially
expanded “joint” branch Θ1 ∩ Θ2, the “left” expansion Θ1 \ Θ2 and the
“right” expansion that closes Θ2 \ Θ1. The corresponding last elements of
the left and right branches correspond to sequents S and Sσ, which become
the receiving ends of an application of an s-rule:

S

S Sσ

Sβ

ι σ

The formula over which a β-expansion was applied to generate Θ1 and Θ2

becomes the sequent Sβ , which is the point where the two branches rejoin.
The rest of the details can be easily filled in, so it is omitted. �

4 Example: The Pigeon Hole Problem

The Pigeon Hole Problem (PHP) is a notoriously famous hard case for the-
orem provers. An initial polynomial-size proof for extended Frege systems
for PHPn was given by [Cook and Reckhow, 1979], and the existence of a
polynomial size Frege proof for PHPn was shown by [Buss, 1987].

The Pigeon Hole Principle of size n (PHPn) states that if there are n+1
pigeons to be placed at n holes, at least one hole will get more than one
pigeon. Pigeons are numbered from 1 to n + 1, holes are numbered from 1
to n, and the fact that pigeon i is placed in hole j is coded by the atomic
symbol pij . These are the only atomic symbols employed, hence there are
n(n + 1) atomic symbols.

This situation is encoded with a sequent Γn ⊢ ∆n, where Γn expresses
that every pigeon goes to a hole, and ∆n expresses that there is a hole with
at least two pigeons. In this way, Γn encodes that, for each of the n + 1
pigeons, it is placed in one of the n holes, that is:

Γn =







n
∨

j=1

pij |1 ≤ i ≤ n + 1







and ∆n encodes that for some of the n holes, there are two distinct pigeons
placed at it, that is:

∆n = {pkj ∧ pij |1 ≤ j ≤ n, 1 ≤ k < i ≤ n + 1} .
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An initial tableau for PHPn is constructed by T -signing all formulas in Γn

and F -signing all formulas in ∆n. The size of Γn is O(n2) and the size of
∆n is O(n3), so the size of a PHPn sequent is O(n3).

The big symmetries fond in the PHP problems have been pointed as the
cause of its high complexity, for all pigeons and all holes “look the same”. It
is this very symmetry that is exploited to generate a small s-tableau proof.
Note that formulas in Γn look like a (n + 1) × n matrix, where each line
correspond to a pigeon i and each column correspond to a hole j:

Γn = p11 ∨ p12 ∨ . . . ∨ p1n,

...
...

pn+1,1 ∨ pn+1,2 ∨ . . . ∨ pn+1,n

which evidences that if we swap lines i′ and i′′ (that is, if we apply the
substitution σ = [i′ := i′′, i′′ := i′]) Γn remains the same, and similarly, if
we swap columns j′ and j′′ Γn also remains the same. It is perhaps harder
to see, but no less true, that the same holds for the formulas of ∆n, that is,
if we swap i′ with i′′, or j′ with j′′, in all formulas of ∆n, ∆n remains the
same. Thus, the symmetry of PHP can be expressed by the following.

LEMMA 7. Let σi = [i′ := i′′, i′′ := i′] and σj = [j′ := j′′, j′′ := j′]. Then

Γnσi = Γn, Γnσj = Γn, ∆nσi = ∆n and ∆nσj = ∆n.

We can then start expanding the tableau with an n-branch over the
(n + 1)st (ie, the last) line of Γn, as illustrated below.

T Γn

F ∆n

T pn+1,1 T pn+1,2 · · · T pn+1,n

×σ ×σ · · ·

By Lemma 7 there is a substitution that, for any pair of partially expanded
branches, transforms one branch into the other. We choose to map every
branch into the last one, so that all the first n − 1 branches are s-closed,
which is indicated above by the symbol ×σ. Let the branch containing
T pn+1,n be the main branch.

We then concentrate on all the n formulas in ∆n of the form F pi,n ∧
pn+1,n, 1 ≤ i ≤ n. We branch each of these formulas, so that the branch
containing F pn+1,n will simply close due to the presence of T pn+1,n, and
F pi,n is added to the main branch, for 1 ≤ i ≤ n. We next consider the
first n lines of Γn with a branch that generates T pi1 ∨ pi2 ∨ . . .∨ pi,n−1 and
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T pin. Clearly, the branch containing T pi,n will simply close due to the
presence of F pi,n in the main branch, so that we have added to the main
branch n formulas of the form, T pi1 ∨ pi2 ∨ . . . ∨ pi,n−1, 1 ≤ i ≤ n, which
consists of Γn−1. By noting that ∆n−1 ⊂ ∆n, we have shown how to reduce
Γn ⊢ ∆n into Γn−1 ⊢ ∆n−1. We illustrated below the main branch.

T Γn

F ∆n

T pn+1,n

F p1,n

...
F pn,n

T Γn−1

F ∆n−1 by copying from above

Note that in this process of reducing PHPn to PHPn−1, we have used
O(n) formulas (lines) and O(n2) symbols. If we repeat this process n times
we end up with Γ1 ⊢ ∆1, which clearly closes. We have thus shown the
following.

THEOREM 8. There is an s-tableau T for PHPn such that |T | = O(n2)
and ||T || = O(n3).

The number of atoms in PHPn is O(n2) and the number of symbols in
PHPn is O(n3), so we have a proof for PHPn whose size in number of
formulas is linear in the number of atoms of the input sequent, and whose
size in number of symbols is linear in the number of symbols of the input
sequent.1

There are two interesting points from the proof above we would like
to highlight. First, that all the substitutions used in the s-closure of the
branches are actually variable renamings. Second, that all the application
of s-closure starts with the identification of a set of substitutions in the

original problem that make the problem invariant, that is, that map the
problem into itself. It is the presence of this substitution invariance that
allows one to look for substitutions for the application of the s-closure rule.
This seems to indicate a way of applying s-closure in practice, that is, the
identification of the invariant substitution and the search for adequate sub-
stitutions after branching. The problem is that identifying the existence of
an initial substitution seems to be as hard as theorem proving itself.

1Without the use of the s-closure rule, the corresponding semantic tableau T ′ would
be such that |T ′| = O(n!) and ||T ′|| = O(n!).
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5 Conclusion

We have defined in this paper an extension of classical sequent proofs with
a substitution rule and a DAG proof structure, and we have shown how this
technique can be transposed to semantic tableaux. This technique can be
generalised in several directions.

First, with respect to tableaux, there is nothing particular to semantic
tableaux that we have used, and other forms of tableaux can be extended
with an s-closure rule, such as KE tableaux.

Second, with respect to sequent proofs, the techniques explored in this
paper are not restricted to classical propositional logic and can be directly
applied to extensions of propositional logic such as: modal logics, tempo-
ral logics, description logics and first-order logic. It may be even possi-
ble to apply those techniques to non-classical logics that possess the uni-
form substitution property, such as most substructural logics [Restall, 2000,
Bull and Segerberg, 1984, Dalen, 1984, Girard, 1987a].

It remains an open problem whether Frege proof systems can p-simulate
extended Frege proof systems. In the current setting, this problem can
be formulated as the search for a systematic way in which the use of the
substitution rule can be simulated in ordinary sequent calculus by means of
the cut rule.

BIBLIOGRAPHY
[Boolos, 1984] George Boolos. Don’t eliminate cut. Journal of Philosophical Logic,

13:373–378, 1984.
[Bull and Segerberg, 1984] R. Bull and K. Segerberg. Basic Modal Logic. In D. Gabbay

and F. Guenthner, editors, Handbook of Philosophical Logic, volume II, pages 1–88.
D. Reidel Publishing Company, 1984.

[Buss, 1987] Samuel Buss. Polynomial size proofs of the propositional pigeonhole prin-
ciple. Journal of Symbolic Logic, 52:916–927, 1987.

[Buss, 1995] Samuel R. Buss. Some remarks on lengths of propositional proofs. Archive
for Mathematic Logic, 34:377–394, 1995.

[Carbone and Semmes, 2000] Alessandra Carbone and Stephen Semmes. A Graphic
Apology for Symmetry and Implicitness. Oxford Mathematical Monographs. Oxford
University Press, 2000.

[Carbone, 1997] A. Carbone. Interpolants, cut elimination and flow graphs for the propo-
sitional calculus. Annals of Pure and Applied Logic, 83:249–299, 1997.

[Cook and Reckhow, 1979] S. A. Cook and R. A. Reckhow. The relative efficiency of
propositional proof systems. Journal of Symbolic Logic, 44:36–50, 1979.

[Dalen, 1984] Dirk Van Dalen. Intuitionistic logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, volume III, 1984.

[Finger and Gabbay, 2005] Marcelo Finger and Dov Gabbay. Cut and pay. Manuscript,
2005.

[Girard, 1987a] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[Girard, 1987b] J.-Y. Girard. Proof Theory and Logical Complexity, volume volume 1
of Studies in Proof Theory. Monographs. Bibliopolis, 1987.



16 Marcelo Finger

[Kraj́ıček and Pudlák, 1989] Jan Kraj́ıček and Pavel Pudlák. Propositional proof sys-
tems, the consistency of first order theories and the complexity of computations. Jour-
nal of Symbolic Logic, 54(3):1063–1079, 1989.

[Orevkov, 1982] V. Orevkov. Lower bounds for increasing complexity of derivations after
cut elimination. Journal of Soviet Mathematics, 20(4):2337–2350, 1982.

[Restall, 2000] G. Restall. An Introduction to Substructural Logics. Routledge, 2000.
[Smullyan, 1968] Raymond M. Smullyan. First-Order Logic. Springer-Verlag, 1968.
[Statman, 1979] R. Statman. Lower bounds on herbrand’s theorem. Proceedings of the

American Mathematical Society, 75(1):104–107, June 1979.
[Takeuti, 1987] G. Takeuti. Proof Theory. North Holland, second edition edition, 1987.


