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Abstract. The aim of this paper is to study an anytime family of logics
that approximates classical inference, in which every step in the approxi-
mation can be decided in polynomial time. For clausal logic, this task has
been shown to be possible by Dalal [Dal96a,Dal96b]. However, Dalal’s
approach cannot be applied to full classical logic.

In this paper we provide a family of logics, called Limited Bivalence
Logics, that approximates full classical logic. Our approach contains two
stages. In the first stage, a family of logics parameterised by a set of
formulas X' is presented. A lattice-based semantics is given and a sound
and complete tableau-based proof-theory is developed. In the second
stage, the first family is used to create another approximation family, in
which every approximation step is shown to be polynomially decidable.
Keywords: Approximated Reasoning, Polynomial Approxima-
tions.

1 Introduction

The computational costs associated with logical reasoning have always been a
limitation to its use in the modelling of intelligent agents. Even if we restrict our-
selves to classical propositional logic, deciding whether a set of formulas logically
implies a certain formula is a co-NP-complete problem [GJ79].

To address this problem, researchers have proposed several ways of approxi-
mating classical reasoning. Cadoli and Schaerf have proposed the use of approx-
imate entailment as a way of reaching at least partial results when solving a
problem completely would be too expensive [SC95]. Their influential method is
parametric, that is, a set S of atoms is the basis to define a logic. As we add more
atoms to S, we get “closer” to classical logic, and eventually, when S contains
all propositional symbols, we reach classical logic. This kind of approximation
has been called “approximating from below” [FWO04] and is useful for efficient
theorem proving.

The notion of approximation is also related with the notion of an anytime
decision procedure, that is an algorithm that, if stopped anytime during the
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computation, provides an approximate answer. Such an answer is of the form
“yes” or “up to logic L; in the family, the result is not provable”. To remain
inside a logic framework along the approximation process, it is necessary that
every approximate logic L; have a clear semantics, so that if the anytime process
is interrupted at L;, we know exactly where we are.

Dalal’s approximation method [Dal96a] was designed such that each rea-
soner in an approximation family can be decided in polynomial time. Dalal’s
initial approach was algebraic only. A model-theoretic semantics was provided
in [Dal96b]. However, this approach was restricted to clausal form logic only,
its semantics had an unusual format, an no proof-theoretical presentation was
given.

In this work, we generalise Dalal’s approach, obtaining a polynomial approx-
imation family for full propositional logic, with a lattice-based semantics and a
tableau-based proof theory. We do that in two steps. The first step develops a
family of logics of Limited Bivalence (LB), and provide a lattice-based semantics
for it. The entailment =5, is a parametric approximation on the set of formulas
27 that follows Cadoli and Schaerf’s approximation paradigm. We also provide a
tableau-based inference F5.-*, and prove it sound and complete with respect to

5. In the second step, we derive an inference ;™" based on 5" and an en-
tailment relation |=;” based on £, and obtain the soundness and completeness
of Hi™® in terms of |=|°. We then show that " is polynomially decidable.

This paper proceeds as follows. Section 2 presents Dalal’s approximation
strategy, its semantics and discuss its limitations. In Section 3 we present the
family LB(X); a semantics for full propositional LB(X) is provided and the para-
metric entailment =B is presented; we also give a proof-theoretical character-
isation based on KE-tableaux, k5, ". The soundness and completeness of -5
with respect to =52 is proven in Section 4. The family of inference systems
Fe " and its semantics |=) are presented in Section 5, and F};™® is shown to be
polynomially decidable.

Notation: Let P be a countable set of propositional letters. We concen-
trate on the classical propositional language Lo formed by the usual boolean
connectives — (implication), A (conjunction), V (disjunction) and — (negation).

Throughout the paper, we use lowercase Latin letters to denote proposi-
tional letters, a, 3,y denote formulas, ¢, denote clauses and A denote a lit-
eral. Uppercase Greek letters denote sets of formulas. By atoms(a) we mean
the set of all propositional letters in the formula «; if Y is a set of formulas,
atoms(Y) = |J, 5 atoms(a).

2 Dalal’s Polynomial Approximation Strategy

Dalal [Dal96a] specifies a family of anytime reasoners based on an equivalence
relation between formulas and on a restricted form of Cut Rule. The family is
composed of a sequence of reasoners Fo,t1,..., such that each F; is tractable,
each F; ;1 is at least as complete (with respect to classical logic) as F;, and for
each theory there is a complete F; to reason with it.



Dalal provides as an example a family of reasoners based on the classically
sound but incomplete inference rule known as BCP (Boolean Constraint Propa-
gation) [McA90], which is a variant of unit resolution [CL73]. Consider a theory
as a set of clauses, where a disjunction of zero literals is denoted by f. Let ~
be the complement of the formula 1) obtained by pushing the negation inside in
the usual way using De Morgan’s Laws until the atoms are reached, at which
point ~p = =p and ~—p = p. The equivalence relation = is then defined as:

{FHul =, {f}
D ~AVAY VAU =, I M V. VAU

BCP

where A, \; are literals. The inference +
¢} “Bcp {f}
Dalal [Dal96b] presents an example in which, for the theory Iy = {pV ¢,pV
—g,—pVsVt, -pVsV-t}, we both have Iy by, pand Iy, p by s but Ip . s
This example shows that 5, is unable to use a previously inferred clause
p to infer s. Based on this fact comes the proposal of an anytime family of

incomplete reasoners ko, F", ..., where each .7 is given by the following:

is defined as I' F,, ¢ iff U {~

BCP

BCP BCP
s, TR 0 DU 20 <k
e ¢ =" ¢
where 1], the size of a clause 1), is the number of literals it contains.

The first rule tells us that every b, -inference is also a -} -inference. The
second rule tells us that if ¢ was inferred from a theory and it can be used as a
further hypothesis to infer ¢, and the size of v is at most k, then ¢ is can also
be inferred from the theory.

Dalal shows that this is indeed an anytime family of reasoners, that is, for
each k, F." is tractable, (7] is as complete as F,“" and for each classically
inferable I' - ¢ there is a k such that I' F;" .

In [Dal96b], a semantics for F," is proposed based on the notion of k-
valuations. This semantics has a peculiar format: literals are evaluated to real
values over the interval [0, 1] but clauses are evaluated to real values over [0, +00).
A formula v is satisfied by valuation v if v(¢)) > 1. A k-model is a set V of k-
valuations, such that if ¢, |¢)| < k, has a non-model in V, ie v(¢)) < 1, then it
has a k-countermodel in V, ie v(1)) = 0. It then defines I'|ry, ¢ iff there is no
k-countermodel of ¥ in any k-model of I'. Here we simply state Dalal’s main
results.

Proposition 1 ([Dal96b]). For every theory I' and every clause v:

i, T Fyon ¥ iff Tho ¥ and T'F2 o iff They .
i. I'+3% 4 can be decided in polynomial time.

Thus the inference ;" is sound and complete with respect to k¢, for clausal
form formulas and, for a fixed value of k, it can be decided in polynomial time.



Dalal’s notion of a family of anytime reasoners has very nice properties.
First, every step in the approximation is sound and can be decided in polynomial
time. Second, the approximation is guaranteed to converge to classical inference.
Third, every step in the approximation has a sound and complete semantics,
enabling an anytime approximation process.

However, the method based on I} " -approximations also has its limitations:

1. Tt only applies to clausal form formulas. Although every propositional for-
mula is classically equivalent to a set of clauses, this equivalence may not
be preserved in any of the approximation step. The conversion of a formula
to clausal form is costly: one either has to add new propositional letters
(increasing the complexity of the problem) or the number of clauses can be
exponential in the size of the original formula. With regards to complexity,
BCP is a form of resolution, and it is known that there are theorems that
can be proven by resolution only in exponentially many steps [CS00].

2. Its non-standard semantics makes it hard to compare with other logics known
in the literature, specially other approaches to approximation. Also, the se-
mantics presented is impossible to generalise to non-clausal formulas.

3. The proof-theory for " is poor in computational terms. In fact, if we are
trying to prove that I' -} ¢, and we have shown that I' I/, ¢, then we
would have to guess a ¢ with || < k, so that I' F.°" ¢ and I ¢ .77 .
Since the BCP-approximations provides no method to guess the formula
1, this means that a computation would have to generate and test all the
O((2n)*) possible clauses, where n is the number of propositional symbols
occurring in I" and ¢.

In the following we present an approximation method that maintains all the
positive aspects of F, " and avoids some of the criticism above. That is, it is
applicable to all propositional formulas, whether clausal or not, and has a lattice-
based semantics. This will allow non-resolution proof methods to be used in the
approximation process. In particular, we present a tableaux based proof theory
that is sound and complete with respect to the semantics. A family of reasoners
is then built, each element of which is polynomially decidable.

3 The Family of Logics LB(X)

We present here the family of logics of Limited Bivalence, LB(X). This is a para-
metric family that approximates classical logic, in which every approximation
step can be decided in polynomial time. Unlike ", LB(X) is parameterised
by a set of formulas ..

The family LB(X) can be applied to the full language of propositional logic,
and not only to clausal form formulas, with an alphabet consisting of a countable
set of propositional letters (atoms) P = {po,p1,...}, and the connectives —, A,
V and —, and the usual definition of well-formed propositional formulas; the set
of all well-formed formulas is denoted by L. The presentation of LB is made in
terms of a model theoretic semantics.



We require the parameter set X to be closed under formula formation, that
is,if @ € ¥ then —a € X;if o, € ¥ then ao B € X, for o € {A,V,—}.

3.1 Semantics of LB(X)

The semantics of LB(X) is based of a three-level lattice, L = (L,M, 1,0, 1), where
L is a countable set of elements L = {0,1,¢&9,€1,€2,...} such that 0 C ¢; C 1 for
every i < w and g; £ €; for ¢ # j. The ¢;’s are called neutral truth values. This
three-level lattice is illustrated in Figure 1(a).

1 1
7N\ !
~ ~ 1V
E0 €1 ‘Eo) (61) :: ()
‘\\ / 1
W
0 0
(a) (b)

Fig. 1. The 3-Level Lattice (a) and its Converse Operation (b)

This lattice is enhanced with a converse operation, ~, defined as: ~0 = 1,
~1=0and ~¢g; = ¢; for all i < w. This is illustrated in Figure 1(b).

We next define the notion of an unlimited valuation, and then we limit it. An
unlimited propositional valuation is a function vy : P — L that maps atoms to
elements of the lattice. We extend vy to all propositional formulas, vy : £L — L,
in the following way:

vy (—a) =~vxg(a)

vx(aAB) =vs(a) Nus(B)

vx(aV p) =vg(a) Uvs(B) £ o(a) @
1 ifv(a) Cv

vs(a = f) = {Nvg(a) U vs(8) otherwise

A limited valuation is a valuation that satisfies the following requirements
with regards to whether a formula is or is not in the parameter set X

(a) if @ € X then vy (a) must be bivalent, that is, vy () must satisfy the rules
above for unlimited valuations and be such that vx(a) = 0 or vg(a) = 1;

(b) if @ ¢ X then either vy (a) obeys the rules of unlimited valuations or
vy (a) = g;, for some &;.

These conditions above are called the Limited Bivalence Restrictions. The
first conditions forces the elements of X' to be bivalent. The second condition tells
us that the truth value assigned to a formula a ¢ X' is not always compositional,
for a neutral value may be assigned to « independently of the truth value of



its components. This is the case so that the bivalence of oo € ¥ can always be
satisfied without forcing all a’s subformulas to be bivalent.

If o € ¥ it is always possible to have vy (a) € {0, 1} by making for every atom
p in a, vx(p) € {0,1}. However, this is not the only possibility. For example, if
B,v ¢ X then we can make vy (f) = ¢; # ¢; = vx(7), so that vz (B AYy) = 0;
similarly, we obtain vz (8Vy) =1 and vs(8 — 7) = 1.

In the case of clausal form formulas, restriction (b) is not necessary provided
we treat clauses as sets of literals [Fin04].

In the rest of this work, by a valuation vy we mean a limited valuation
subject to the conditions above.

A valuation vy satisfies o if vy (a) = 1, and « is called satisfiable; a set of
formulas I" is satisfied by vy if all its formulas are satisfied by vyx. A valuation
vy contradicts a if vs(a) = 0; if « is neither satisfied nor contradicted by vy,
we say that vy is neutral with respect to a. A valuation is classical if it assigns
only 0 or 1 to all proposition symbols, and hence to all formulas.

For example, consider the formula p — ¢, and X' = &. Then

— ifvx(p) =1, then vs(p — q) —Ug( );

— ifvx(p) =0, then vs(p — q) =

— if vx(q) =0, then vs(p — q) —’Uz(p)

— ifvx(q) =1, then vx(p = q) =

— if vs(p) =¢p and Ug(q)—sq,then ve(p—q) =1;

The first four cases coincide with a classical behaviour. The last one shows
that if p and ¢ are mapped to distinct neutral values, then p — g will be satisfi-
able. Note that, in this case, p V ¢ will also be satisfiable, and that p A g will be
contradicted.

3.2 LB-Entailment

The notion of a parameterised LB-Entailment, =, follows the spirit of Dalal’s
entailment relation, namely I' |F5 « if it is not possible to satisfy I" and con-
tradict a at the same time. More specifically, I =5, a if no valuation vyx such
that v (I") = 1 also makes vx(a) = 0. Note that since this logic is not classic, if
I' ES. a and vy (I') = 1 it is possible that « is either neutral or satisfied by vy.

For example, we reconsider Dalal’s example, where I'y = {pV ¢,pV —¢,—pV
sVt,—pVsV-t} and make ¥ = @. We want to show that Iy Ex p, [o,p Ey s
but Iy s s

To see that Iy 5, p, suppose there is a vs; such that vs(p) = 0. Then we
have vs(p V q) = vx(q) and vs(p V —q) =~ vx(qg). Since it is not possible to
satisfy both, we cannot have vx(Ip) = 1, so Ip =5 p.

To show that Iy, p E5 s, suppose there is a vy such that vs(s) = 0 and
vx(p) = 1. Then v (-pVsVt) =vxs(t) and vs(—-pV sV —t) =~vx(t). Again,
it is not possible to satisfy both, so Iy, p ES s.

Finally, to see that Iy £, s, take a valuation vy such that v (s) = 0,vx(p) =
€p,Ux(q) = €4,v5(t) = & Then vx(lp) =1.



However, if we enlarge X' and make p € X, then we have only two possibilities
for vs(p). If vs(p) = 1, we have already seen that no valuation that contradicts s
will satisfy Ig. If vs(p) = 0, we have also seen that no valuation that contradicts
s will satisfy Ig. So for p € X, we obtain Iy FYy. s.

This example indicates that =}, behave in a similar way to I, and that by
adding an atom to X we have a behaviour similar to ;" . As shown in [Fin04],
this is not a coincidence.

An Approximation Process. As defined in [FW04], a family of logics, pa-
rameterised with a set X' is said to be an approximation of classical logic “from
below” if, increasing size of the parameter set X', we get closer to classical logic.
That is, for @ C X' C X" C ... C L we have that,

LB __LB LB LB _
[} C |—21 C > g . g L = I:CL

where |=cr is classical entailment. It is clear that the family of logics LB(X) is
an approximation of classical logic from below.

Note that the approximation of I' |= « can be done in a finite number of
steps for finite X, because when X' contains all subformulas in I' U {a} we are
in classical logic.

3.3 Tableaux for LB(X)

We present a proof theory for LB(X) based on KE-tableaux [DM94,D°A99],
which we call KELB(X)-tableaux. This is a variation of Smullyan’s semantic
tableaux [Smu68] that is more suitable to our purposes, for it incorporates the
Cut rule in its expansion rules, unlike semantic tableaux which are based on
cut-free formulation of logics. In fact, both FECF and LB(X) are approximation
families based on the limited validity of the Cut inference rule. Furthermore, KE-
tableaux have better computational properties than semantic tableaux [D’A92].

KE-tableaux deal with 7- and F-signed formulas. So if « is a formula, T' «
and F' a are signed formulas. T « is the conjugate formula of F' «, and vice
versa.

Each connective is associated with a set of linear expansion rules. Linear
expansion rules always have a main premiss; two-premissed rules also have an
auziliary premiss. Figure 2 shows KE-tableau linear connective expansion rules
for classical logic, which are the same for KELB-tableaux.

The only branching rule in KE is the Principle of Bivalence, stating that a
formula @ must be either true or false. In KELB(X)-tableaux, this rule is limited
by a proviso stating that it can only occur over a formula a € X'. This limited
principle of bivalence, LPB(X) is illustrated in Figure 3.

We also require a few further linear rules which are redundant in classical
KE:

Faha TaVa

Fa (e Ta (Ve



Ta—p Ta—p Fa—=p
Ta (1o) _FB (15,) Ta (Fo)
T8 Fa Fp

FaAp Fanp TaNp
T a (Far) T B (Fng) Ta (Ta)
F R Fa T B

TaVvp Tavp Favp
Fa (Tvi) F B (Tvz) Fa (Fv)
Tps Ta Fp

T -« F -«

F o (T-) T o (F=)

Fig. 2. KE Expansion Rules

a€Xy
/ N\
Ta Fa

Fig. 3. Limited Principle of Bivalence LPB(X)

The premiss and consequence of each such rule are logically equivalent, but in
classical KE the consequent can only be derived with the use of the principle of
bivalence, which may not be available in KELB if o ¢ X.

An expansion of a tableau branch is allowed when the premisses of an ex-
pansion rule are present in the branch; the expansion consists of adding the
conclusions of the rule to the end of all branches passing through the set of all
premisses of that rule. The LPB(X) branching rule splits a branch into two.

A branch in a KELB-tableau is closed if it contains F' o and T' a.. The tableau
is closed if all its branches are closed. We define the inference 5" such that

ai,...,an F5 " Biff there is a closed KELB(X)-tableau for T a1, ...,T an, F 3.

As an example, reconsider Dalal’s example given above, presented using full
propositional logic. I'y = {pVgq,q = p,p = (sVt),(pAt) = s}. Figure 4 presents
three tableaux, one for Iy Fi™® p, the second for Iy, p g~ s and a third one,
which contains an incremental method to establish whether Iy F s.

The tableaux in Figure 4 for Iy Fg °p and Iy, p Fg s close without branch-
ing. The third tableau is actually a combination of the other two. In it we try to
establish whether Iy F ™ s; after a single expansion step, there are no expansion
rules to apply, and since X~ = &, no branching is possible according to LPB(X);
so we conclude that Iy /5" s. The set X is then expanded to X' = {p} D X so



TpVgqg TpVg TpVqg XY:=0
Tqg—p Tq—p Tq—p
Tp—(sVt) Tp—(sVt) Tp—(sVt)
T (pAt) = s T (pAt) = s T (pAt) = s
Fp Tp Fs
Tgq Fs T FpAt
Tp FpAt — ¥ = {p}
X T sVt 7/ \
Ft Fp Tp
Tt TqT sVt
X Tp Tt
x Ft
X
Fig. 4. An Example of KELB-Tableaux
as to unblock the tableau, and the proof continues in the logic I—?;L}B , in which

KELB
F s.

both branches close, so we conclude that I

This example indicates how KELB-tableaux present us with an incremental
method to prove theorems, in which one moves from proving theorems in one
logic to the next without having to start from square 0 at each move. It also
indicates that KELB-tableaux approximate classical logic “from below”, that is,
for g C X' C X" C...C L we have that

'_KQELB g l_l;l_B g Fgl_,B g g |_K[,ELB — |_KE

where Fkg is KE-tableau for classical logic. Note that this process is finite if only
subformulas of the original formulas are added to Y. This is indeed the case if we
follow the Branching Heuristics, that is a heuristic for branching which tells us
to branch on a formula « such that either T « or F' « is an auxiliary premiss to
an unexpanded main premiss in the branch; according to [DM94], this heuristics
preserves classical completeness. Next section shows that F'5™ is in fact correct
and complete with respect to [=5.. But before that, we comment on .

It is clear that I' ™ « if the tableau can close without ever branching.
That is, only linear inferences are allowed in 3 °. Note that b,,-inferences
are one of these linear inferences, and we have the following.

Lemma 1. Let I' U {¢} be a set of clauses. Then I' by, ¥ iff T Fg® 4.

4 Soundness and Completeness

Let © be a branch in a KELB-tableau. We say that O is open if it is not closed.
We say that O is saturated if the following conditions are met:

(a) If the premisses of a linear rule are in @, so are its consequences.



(b) If the main premiss of a two-premissed rule is in @, and the formula «
corresponding to the auxiliary premiss is in X', then T « or F' « is in 6.

In classical KE-tableaux, the second condition for saturation does not impose
the restriction @ € X¥. We extend the notion of valuations to signed formulas
in the obvious way: vs(Ta) = 1 iff vg(a) = 1, vg(Fa) = 1 iff vg(a) = 0
and vy (Xa) = € iff vp(a) = e. A valuation satisfy a branch in a tableau if it
simultaneously satisfy all the signed formulas in the branch.

Lemma 2. Consider the KELB-tableau expansion rules.

i. If the premisses of a linear rule are satisfied by vy, so are its consequences.
ii. If the conjugate of an auziliary premiss of a two-premissed linear rule is
satisfied by vy;, so is the main premiss.
111. If the consequences of a linear rule are satisfied by vy, so is the main pre-
Miss.
w. If a branch is satisfied by vs: prior to the application of LPB(X), then one
of the two generated branches is satisfied after the application of LPB(X).

Proof. (i)—(iii) are shown by a simple inspection on the linear rules in Figure 2
and (FAgq) and (T'Vag). As for (iv), suppose the branching occurs over the
formula a, so a € ¥. By the Limited Bivalence Restrictions, vs(T a) =1 or
vy (F a) = 1, so vy satisfies one of the two branches generated by the application
of LPB(X).

Lemma 3. Let © be an open saturated branch in a KELB(X)-tableau. Then ©
is satisfiable.

Proof. Consider the propositional valuation vy such that v(p;) = 1iff T p; € O,
v(g;) = 0 iff F ¢; € © and v(ry) = ¢ otherwise. Clearly vy is an LB(X)-
valuation such that no two atoms are assigned to the same neutral truth value
E.

We prove by structural induction on « that for every Xa € 0, vy (Xa) =1,
X € {T,F}. If a is atomic, vs(Xa) = 1 follows from the definition of vs;.

If X« is the main premiss of a one-premissed rule R, by saturation we have
both consequences of R in @. Then, by induction hypothesis, both such conse-
quences are satisfied by vy and by Lemma 2(iii) vy (Xa) = 1.

If X« is the main premiss of a two-premissed rule; we have to analyse two
cases. First, let Y8 be an auxiliary premiss for X« in a rule R, Y € {T, F},
such that Y8 € @, in which case R’s conclusion is in @ and, by Lemma 2(iii),
vy (Xa) = 1. Second, suppose no auxiliary premiss Y8 € ©, in which case there
are two possibilities. If Y3 € 6, where Y is Y’s conjugate, by Lemma 2(ii) we
obtain vy (X a) = 1; otherwise, by saturation, we know that all possible auxiliary
premisses for X« are not in X; by saturation and rules (FAyq) and (T'Vqg), we
know that a’s immediate subformulas are distinct, in which case vy can assign
distinct neutral values to them so as to satisfy a; that is, if Xa =TV v, make
vs(B) = ¢&;, vs(y) = €5 # €; so that v (T8 V y) = 1, and similarly for F§ Ay
and T B — ~. For the latter, the special case we where § = v is dealt by the
semantic definition of v (8 — 8) = 1. This finishes the proof.



KELB(X)-tableaux have the soundness property if whenever a tableau for
I'F5" a closes then I' =5, a. Conversely, the notion of completeness requires
KELB

that if I' =\, « then there is a closed tableau for I' F.* a.

KELB

Theorem 1 (Soundness and Completeness). I' =5 a iff I'F" a.

Proof. For soundness, we prove the contrapositive, that is, assume that I bég a,
so that there is a vy such that v (") = 1 and v (a) = 0. If there is a KELB(X)-
tableau for I' F'5*® a, we have that all initial signed formulas of the tableau
are satisfied by vy. By Lemma 2(i) each use of a linear expansion rule generate
formulas satisfied by vs;. By Lemma 2(iv), each application of LPB(X') generates
a branch satisfied by vy If this tableau closes, this means that no such vy could
exist, which is a contradiction, so I' /5" a.

For completeness we also prove the contrapositive, so suppose that there is a
KELB(X)-tableau for I' ;" a with an open saturated branch ©. By Lemma 3
there is a valuation vy, that satisfies ©, in particular vx(I") = 1 and vx(a) =0,
and hence I [£5 a.

Corollary 1. The restriction of applications of LPB(X') to the Branching Heuris-
tics preserves completeness of F5. .

Proof. The Branching Heuristics allows only the branching over subformulas of
formulas occurring in the tableau. This heuristics is actually suggested by the
definition of a saturated branch, and aims at saturating a branch. It suffices to
note that nowhere in the proofs of Lemma 3 and Theorem 1 was it required the
branching over a non-subformula of a formula existing in a branch. Therefore,
completeness holds for KELB-tableaux restricted to the Branching Heuristics.

The Branching Heuristics reduces the search space over which formula to
branch, at the price of ruling out some small proofs of complex formulas obtained
by clever branching.

The approximation family F§."* is not in the spirit of Dalal’s approximation,
but follows the paradigm of Cadoli and Schaerf [SC95,CS96], also applied by
Massacci [Mas98b,Mas98a] and Finger and Wassermann [FW04].

5 Polynomial Approximations

As mentioned before, the family of inference relation 5 ° does not follow Dalal’s
approach to approximation. We now present a family of logics based on %5
that is closer to that approach.

For that, let S C 27 be a set of sets of atoms and, for every IT € S, let ITt
be the closure of IT under formula formation. We define I F¢™° « iff there exists

a set IT € S such that I" ;7 a. We define

Sk ={I CP| || =k}



That is, S is a set of sets of atoms of size k. Note that if we restrict our attention
to n atoms, |Sk| = (Z) = O(nF) sets of k atoms. For a fixed k, we only have

to consider a polynomial number of sets of k atoms.

We then write F™° to mean ¢ °. In terms of theorem proving, the approx-
imation process using the F © family performs an iterative depth search over
KE-tableaux.

The entailment relation |=;° can be defined in a similar way: I' |=;° « iff
I' E. a for some IT € Si. By Theorem 1, H;™° is sound and complete with
respect to =’ .

Lemma 4. The family of inference systems ;" is an approzimation of clas-
sical logic “from below”.

Proof. Tt is obvious from the definition of Hj™° that if I' Fi™® o then I' 5] «,

for all possible inference in the former are also possible in the latter. And for a
given pair (I, a), we only need to consider the atoms occurring in them, so that
I—T;;st( )| is actually classical KE, so I—ZELB is an approximation of classical

logic “from below”.

It has been shown in [Fin04] that when I' is a set of clauses and a is a
clause, Dalal’s ;" inference is sound and complete with respect to |=;°. One
important property of F;" is that it can be decided in polynomial time. We
now prove the same result for F;"°.

Theorem 2. The inference I' by " o can be decided in time polynomial with
respect to n = |atoms(I, a)|.

Proof. For a fixed k, there are at most O(n*) subsets of atoms(I',a) with size
k, in order to decide I' F;"® a we have to test only a polynomial number
of inferences I I—;;f a. The size of each such inference under the Branching
Heuristics is a function of k, which is fixed, and does not depend on n, so the
whole process of deciding I' F;"" a can be done in time O(n¥).

The approximation t ~ performs an iterated depth search over the space of
proofs. Comparatively, the KES3 approximation process of [FWO04], which does
not guarantee polynomially decidable steps, performs a depth-first search.

6 Conclusion
We have created a family of tableau-based inferences systems ¢™° , F1*°, ... F™°
that approximates classical logic, such that each step has a sound and complete
lattice-based semantics and can be decided in polynomial time.

Future work involves the implementation of such an approximation system
and its practical application in areas such as Belief Revision and Planning. We
hope to see how well it performs in “real” situations.
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