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Abstract. The aim of this paper is to study a family of logics that ap-
proximates classical inference, in which every step in the approximation
can be decided in polynomial time. For clausal logic, this task has been
shown to be possible by Dalal [4, 5]. However, Dalal’s approach cannot be
applied to full classical logic. In this paper we provide a family of logics,
called Limited Bivaluation Logics, via a semantic approach to approx-
imation that applies to full classical logic. Two approximation families
are built on it. One is parametric and can be used in a depth-first ap-
proximation of classical logic. The other follows Dalal’s spirit, and with
a different technique we show that it performs at least as well as Dalal’s
polynomial approach over clausal logic.

1 Introduction

Logic has been used in several areas of Artificial Intelligence as a tool for mod-
elling an intelligent agent reasoning capabilities. However, the computational
costs associated with logical reasoning have always been a limitation. Even if
we restrict ourselves to classical propositional logic, deciding whether a set of
formulas logically implies a certain formula is a co-NP-complete problem [9].

To address this problem, researchers have proposed several ways of approx-
imating classical reasoning. Cadoli and Schaerf have proposed the use of ap-
proximate entailment as a way of reaching at least partial results when solving
a problem completely would be too expensive [13]. Their influential method is
parametric, that is, a set S of atoms is the basis to define a logic. As we add more
atoms to S, we get “closer” to classical logic, and eventually, when S contains all
propositional symbols, we reach classical logic. In fact, Schaerf and Cadoli pro-
posed two families of logic, intending to approximate classical entailment from
two ends. The S3 family approximates classical logic from below, in the follow-
ing sense. Let P be a set of propositions and ∅ ⊆ S ′ ⊆ S′′ ⊆ . . . ⊆ P ; let |=3

S

indicate the set of the entailment relation of a logic in the family. Then:

|=3
∅
⊆|=3

S′⊆|=3
S′′⊆ . . . ⊆|=3

P = |=CL

where CL is classical logic.
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Approximating a classical logic from below is useful for efficient theorem prov-
ing. Conversely, approximating classical logic from above is useful for disproving
theorems, which is the satisfiability (SAT) problem and has a similar formula-
tion. In this work we concentrate only in theorem proving and approximations
from below.

The notion of approximation is also related with the notion of an anytime
decision procedure, that is, an algorithm that, if stopped anytime during the
computation, provides an approximate answer, that is, an answer of the form
“up to logic Li in the family, the result is/is not provable”. This kind of anytime
algorithms have been suggested by the proponents of the Knowledge Compilation
approach [14, 15], in which a theory was transformed into a set of polynomially
decidable Horn-clause theories. However, the compilation process is itself NP-
complete.

Dalal’s approximation method [4] was the first one designed such that each
reasoner in an approximation family can be decided in polynomial time. Dalal’s
initial approach was algebraic only. A model-theoretic semantics was provided
in [5]. However, this approach was restricted to clausal form logic only.

In this work, we generalize Dalal’s approach. We create a family of logics
of Limited Bivalence (LB) that approximates full propositional logic. We pro-
vide a model-theoretic semantics and two entailment relations based on it. The
entailment |=LB

Σ is a parametric approximation on the set of formulas Σ and fol-
lows Cadoli and Schaerf’s approximation paradigm. The entailment |=LB

k follows
Dalal’s approach and we show that for clausal form theories, the inference |=LB

k

is polynomially decidable and serves as a semantics for Dalal’s inference `
BCP

k .

This family of approximations is useful in defining families of efficiently de-
cidable formulas with increasing complexity. In this way, we can define the set
Γk = {α| |=LB

k α and k} of tractable theorems, such that Γk ⊆ Γk+1.

This paper proceeds as follows. Next section briefly presents Dalal’s approxi-
mation strategy, its semantics and discuss its limitations. In Section 3 we present
the family LB(Σ) of Limited Bivaluation Logics; the semantics for full proposi-
tional LB(Σ) is provided in Section 3.1; a parametric entailment |=LB

Σ is presented
in Section 3.2. The entailment |=LB

k is presented in Section 3.4 and the soundness

and completeness of Dalal’s `
BCP

k with respect to |=LB

k is Shown in Sections 3.3
and 3.4.

Notation: Let P be a countable set of propositional letters. We concen-
trate on the classical propositional language LC formed by the usual boolean
connectives → (implication), ∧ (conjunction), ∨ (disjunction) and ¬ (negation).

Throughout the paper, we use lowercase Latin letters to denote proposi-
tional letters, α, β, γ denote formulas, ϕ, ψ denote clauses and λ denote a lit-
eral. Uppercase Greek letters denote sets of formulas. By atoms(α) we mean
the set of all propositional letters in the formula α; if Σ is a set of formulas,
atoms(Σ) =

⋃
α∈Σ atoms(α).

Due to space limitations, some proofs of lemmas have been omitted.



2 Dalal’s Polynomial Approximation Strategy

Dalal specifies a family of anytime reasoners based on an equivalence relation
between formulas [4]. The family is composed of a sequence of reasoners `0,`1

, . . ., such that each `i is tractable, each `i+1 is at least as complete (with respect
to classical logic) as `i, and for each theory there is a complete `i to reason with
it.

The equivalence relation that serves as a basis for the construction of a family
has to obey several restrictions to be admissible, namely it has to be sound,
modular, independent, irredundand and simplifying [4].

Dalal provides as an example a family of reasoners based on the classically
sound but incomplete inference rule known as BCP (Boolean Constraint Propa-
gation) [12], which is a variant of unit resolution [3]. For the initial presentation,
no proof-theoretic or model-theoretic semantics were provided for BCP, but an
algebraic presentation of an equivalence relation =

BCP
was provided. For that,

consider a theory as a set of clauses, where a disjunction of zero literals is de-
noted by f and the conjunction of zero clauses is denoted t. Let ¬p denote the
negation of the atom p, and let ∼ψ be the complement of the formula ψ obtained
by pushing the negation inside in the usual way using De Morgan’s Laws until
the atoms are reached, at which point ∼p = ¬p and ∼¬p = p.

The equivalence relation =
BCP

is then defined as:

{f} ∪ Γ =
BCP

{f}
{λ,∼λ ∨ λ1 ∨ . . . ∨ λn} ∪ Γ =

BCP
{λ, λ1 ∨ . . . ∨ λn} ∪ Γ

where λ, λi are literals.
The idea is to use an equivalence relation to generate an inference in which

ψ can be inferred from Γ if Γ ∪ {∼ψ} is equivalent to an inconsistency. In this
way, the inference `

BCP
is defined as Γ `

BCP
ψ iff Γ ∪ {∼ψ} =

BCP
{f}.

Dalal presents an example1 in which, for the theory Γ0 = {p∨ q, p∨¬q,¬p∨
s ∨ t,¬p ∨ s ∨ ¬t} we both have Γ0 `

BCP
p and Γ0, p `BCP

s but Γ0 6`
BCP

s.
This example shows that `

BCP
is unable to use a previously inferred clause

p to infer s. Based on this fact comes the proposal of an anytime family of
reasoners.

2.1 The Family of Reasoners

Dalal defines a family of incomplete reasoners `
BCP

0 ,`
BCP

1 , . . ., where each `
BCP

k

is given by the following:

1.
Γ `

BCP
ϕ

Γ `
BCP

k ϕ
2.
Γ `

BCP

k ψ Γ, ψ `
BCP

k ϕ

Γ `
BCP

k ϕ
for |ψ| ≤ k

where the size of a clause ψ, |ψ| is the number of literals it contains.

1 This example is extracted from [5].



The first rule tells us that every `
BCP

-inference is also a `
BCP

k -inference. The
second rule tells us that if ψ was inferred from a theory and it can be used as a
further hypothesis to infer ϕ, and the size of ψ is at most k, then ϕ is can also
be inferred from the theory.

Dalal shows that this is indeed an anytime family of reasoners, that is, for
each k, `

BCP

k is tractable, `
BCP

k+1 is as complete as `
BCP

k and if you remove the

restriction on the size of ψ in rule 2, then `
BCP

k becomes complete, that is, for

each classically inferable Γ ` ϕ there is a k such that Γ `
BCP

k ϕ.

2.2 Semantics

In [5], Dalal proposed a semantics for `
BCP

k based on the notion of k-valuations,
which we briefly present here.

Dalal’s semantics is defined for sets of clauses. Given a clause ψ, the support
set of ψ, S(ψ) is defined as the set of all literals occurring in ψ. Support sets
ignore multiple occurrences of the same literal and are used to extend valuations
from atoms to clauses. According to Dalal’s semantics, a propositional valuation
is a function v : P → [0, 1]; note that the valuation maps atoms to real numbers.
A valuation is then extended to literals and clauses in the following way:

1. v(¬p) = 1 − v(p) for any atom p ∈ P .
2. v(ψ) =

∑
λ∈S(ψ) v(λ), for any clause ψ.

Valuations of literals are real numbers in [0, 1], but valuations of clauses are
non-negative real numbers that can exceed 1. A valuation v is a model of ψ
if v(ψ) ≥ 1. A valuation is a countermodel of ψ if v(ψ) = 0. Therefore it is
possible for a formula to have neither a model nor a countermodel. For instance,
if v(p) = v(q) = 0.2, then p ∨ q has neither a model nor a countermodel. A
valuation is a model of a theory (set of clauses) if it is a model of all clauses in
it.

Define Γ |≈ ψ iff no model of the theory Γ is a countermodel of ψ.

Proposition 1 ([5]). For every theory Γ and every clause ψ, Γ `
BCP

ψ iff
Γ |≈ ψ.

So `
BCP

is sound and complete with respect to |≈. The next step is to gener-

alize this approach to obtain a semantics of `
BCP

k . For that, for any k ≥ 0, a set
V of valuations is a k-valuation iff for each clause ψ of size at most k, if V has
a non-model of ψ then V has a countermodel of ψ. V is a k-model of ψ if each
v ∈ V is a model of ψ; this notion extends to theories as usual.

It is then possible to define Γ |≈k ψ iff there is no countermodel of ψ in any
k-model of Γ .

Proposition 2 ([5]). For every theory Γ and every clause ψ, Γ `
BCP

k ψ iff
Γ |≈k ψ.

Thus the inference `
BCP

k is sound and complete with respect to |≈k.



2.3 Analysis of `
BCP

k

Dalal’s notion of a family of anytime reasoners has very nice properties. First,
every step in the approximation is sound and can be decided in polynomial
time. Second, the approximation is guaranteed to converge to classical inference.
Third, every step in the approximation has a sound and complete semantics,
enabling an anytime approximation process.

However, the method based on `
BCP

k -approximations also has its limitations:

1. It only applies to clausal form formulas. Although every propositional for-
mula is classically equivalent to a set of clauses, this equivalence may not
be preserved in any of the approximation steps. The conversion of a formula
to clausal form is costly: one either has to add new propositional letters
(increasing the complexity of the problem) or the number of clauses can be
exponential in the size of the original formula. With regards to complexity,
BCP is a form of resolution, and it is known that there are theorems that
can be proven by resolution only in exponentially many steps [2].

2. Its non-standard semantics makes it hard to compare with other logics known
in the literature, specially other approaches to approximation. Also, the se-
mantics presented is based on support sets, which makes it impossible to
generalize to non-clausal formulas.

3. The proof-theory for `
BCP

k is poor in computational terms. In fact, if we

are trying to prove that Γ `
BCP

k ϕ, and we have shown that Γ 6`
BCP

ϕ,

then we would have to guess a ψ with |ψ| ≤ k, so that Γ `
BCP

k ψ and

Γ, ψ `
BCP

k ϕ. Since the BCP-approximations provide no method to guess the
formula ψ, this means that a computation would have to generate and test
all the O((2n)k) possible clauses, where n is the number of propositional
symbols occurring in Γ and ϕ.

In the rest of this paper, we address problems 1 and 2 above. That is, we are
going to present a family of anytime reasoners for the full fragment of propo-
sitional logic, in which every approximation step has a semantics and can be
decided in polynomial time. Problem 3 will be treated in further work.

3 The Family of Logics LB(Σ)

We present here the family of logics of Limited Bivalence, LB(Σ). This is a para-
metric family that approximates classical logic, in which every approximation
step can be decided in polynomial time. Unlike `

BCP

k , LB(Σ) is parameterized
by a set of formulas Σ; when Σ contains all formulas of size at most k, LB(Σ)

can simulate an approximation step of `
BCP

k .
The family LB(Σ) can be applied to the full language of propositional logic,

and not only to clausal form formulas, with an alphabet consisting of a countable
set of propositional letters (atoms) P = {p0, p1, . . .}, and the connectives ¬, ∧,
∨ and →, and the usual definition of well-formed propositional formulas; the set
of all well-formed formulas is denoted by L. The presentation of LB is made in
terms of a model theoretic semantics.



3.1 Semantics of LB(Σ)

The semantics of LB(Σ) is based of a three-level lattice, (L,u,t, 0, 1), where L is
a countable set of elements L = {0, 1, ε0, ε1, ε2, . . .}, t is the least upper bound,
u is the gratest lower bound, and v is defined, as usual, as a v b iff at b = b iff
a u b = a; 1 is the v-top and 0 is the v-bottom. L is subject to the conditions:
(i) 0 v εi v 1, for every i < ω; and (ii) εi 6v εj for i 6= j. This three-level lattice
is illustrated in Figure 3.1(a).

1

ε0 ε1 . . .

0
(a) The 3-Level Lattice

1

ε0 ε1 . . .

0
(b) The Converse Operation ∼

This lattice is enhanced with a converse operation, ∼, defined as: ∼ 0 = 1,
∼1 = 0 and ∼εi = εi for all i < ω. This is illustrated in Figure 3.1(b).

We next define the notion of an unlimited valuation, and then we present
its limitations. An unlimited propositional valuation is a function vΣ : P → L

that maps atoms to elements of the lattice. We extend vΣ to all propositional
formulas, vΣ : L → L, in the following way:

vΣ(¬α) =∼vΣ(α)
vΣ(α ∧ β) = vΣ(α) u vΣ(β)
vΣ(α ∨ β) = vΣ(α) t vΣ(β)
vΣ(α→ β) = (∼vΣ(α)) t vΣ(β)

A formula can be mapped to any element of the lattice. However, the formulas
that belong to the set Σ are bivalent, that is, they can only be mapped to the
top or the bottom element of the lattice. Therefore, a limited valuation must
satisfy the restriction of Limited Bivalence given by, for every α ∈ L:

vΣ(α) = 0 or vΣ(α) = 1, if α ∈ Σ.

In the rest of this work, by a valuation vΣ we mean a limited valuation
subject to the condition above.

A valuation vΣ satisfies α if vΣ(α) = 1, and α is said satisfiable; a set of
formulas Γ is satisfied by vΣ if all its formulas are satisfied by vΣ . A valuation
vΣ contradicts α if vΣ(α) = 0; if α is neither satisfied nor contradicted by vΣ ,
we say that vΣ is neutral with respect to α. A valuation is classical if it assigns
only 0 or 1 to all proposition symbols, and hence to all formulas.

For example, consider the formula p→ q, and Σ = ∅. Then

– if vΣ(p) = 1, then vΣ(p→ q) = vΣ(q);



– if vΣ(p) = 0, then vΣ(p→ q) = 1;
– if vΣ(q) = 0, then vΣ(p→ q) = vΣ(p);
– if vΣ(q) = 1, then vΣ(p→ q) = 1;
– if vΣ(p) = εp and vΣ(q) = εq, then vΣ(p→ q) = 1;

The first four valuations coincide with a classical behavior. The last one
shows that if p and q are mapped to distinct neutral values, then p → q will be
satisfiable. Note that, in this case, p ∨ q will also be satisfiable, and that p ∧ q
will be contradicted.

3.2 LB-Entailment

The notion of a parameterized LB-Entailment, |=LB

Σ follows the spirit of Dalal’s
entailment relation, namely Γ |=LB

Σ α if it is not possible to satisfy Γ and con-
tradict α at the same time. More specifically, Γ |=LB

Σ α if no valuation vΣ such
that vΣ(Γ ) = 1 also makes vΣ(α) = 0. Note that since this logic is not classic, if
Γ |=LB

Σ α and vΣ(Γ ) = 1 it is possible that α is either neutral or satisfied by vΣ .
For example, we reconsider Dalal’s example, where Γ0 = {p ∨ q, p ∨ ¬q,¬p ∨

s∨ t,¬p∨s∨¬t} and make Σ = ∅. We want to show that Γ0 |=LB

Σ p, Γ0, p |=
LB

Σ s

but Γ0 6|=LB

Σ s.
To see that Γ0 |=LB

Σ p, suppose there is a vΣ such that vΣ(p) = 0. Then we
have vΣ(p ∨ q) = vΣ(q) and vΣ(p ∨ ¬q) =∼ vΣ(q). Since it is not possible to
satisfy both, we cannot have vΣ(Γ0) = 1, so Γ0 |=LB

Σ p.
To show that Γ0, p |=LB

Σ s, suppose there is a vΣ such that vΣ(s) = 0 and
vΣ(p) = 1. Then vΣ(¬p ∨ s ∨ t) = vΣ(t) and vΣ(¬p ∨ s ∨ ¬t) =∼ vΣ(t). Again,
it is not possible to satisfy both, so Γ0, p |=

LB

Σ s.
Finally, to see that Γ0 6|=LB

Σ s, take a valuation vΣ such that vΣ(s) =
0, vΣ(p) = εp, vΣ(q) = εq, vΣ(t) = εt. Then vΣ(Γ0) = 1. However, if we make
Σ = {p} then we have only two possibilities for vΣ(p). If vΣ(p) = 1, we have
already seen that no valuation that contradicts s will satisfy Γ0. If vΣ(p) = 0, we
have also seen that no valuation that contradicts s will satisfy Γ0. So for p ∈ Σ,
we obtain Γ0 |=LB

Σ s.
This example indicates that |=LB

∅
behave in a similar way to `

BCP
, and that

by adding an atom to Σ we have a behavior similar to `
BCP

1 . We now have to
demonstrate that this is not a mere coincidence.

An Approximation Process. As defined in [8], a family of logics, parameter-
ized with a set, Σ, is said to be an approximation of classical logic “from below”
if, for increasing size of the parameter set Σ we get closer to classical logic. That
is, for ∅ ⊆ Σ′ ⊆ Σ′′ ⊆ . . . ⊆ L we have that,

|=LB

∅
⊆ |=LB

Σ′ ⊆ |=LB

Σ′′ ⊆ . . . ⊆ |=LB

L = |=CL

Lemma 1. The family of logics LB(Σ) is an approximation of classical logic
from below.



Note that for a given pair (Γ, α) the approximation of Γ |= α can be done
in a finite number of steps. In fact, if β, γ ∈ Σ any formula made up of β and
γ has the property of bivalence. In particular, if all atoms of Γ and α are in Σ,
then only classical valuations are allowed.

An approximation method as above is not in the spirit of Dalal’s approxi-
mation, but follows the paradigm of Cadoli and Schaerf [13, 1], also applied by
Massacci [11, 10] and Finger and Wassermann [6, 7, 8].

We now show how Dalal’s approximations can be obtained using LB.

3.3 Soundness and Completeness of `
BCP

with respect to |=LB

∅

For the sake of this section and the following, let Γ be a set of clauses and let
ψ and ϕ denote clauses, and λ, λ1, λ2, . . . denote literals. We now show that, for
Σ = ∅, Γ `

BCP
ψ iff Γ |=LB

∅ ψ.

Lemma 2. Suppose BCP transforms a set of clauses Γ into a set of clauses ∆,
then vΣ(Γ ) = 1 iff vΣ(∆) = 1.

Lemma 3. Γ =BCP {f} iff for all valuations v∅, v∅(Γ ) 6= 1.

Theorem 1. Let Γ be a set of clauses and ψ a clause. Then Γ `
BCP

ψ iff
Γ |=LB

∅
ψ.

Proof. Γ |=LB

∅ ψ iff for no v∅, v∅(Γ ) = 1 and v∅(ψ) = 0 iff for no v∅, v∅(Γ ∪
¬ψ) = 1 iff, by Lemma 3, Γ ∪ ¬ψ =BCP {f} iff Γ `

BCP
ψ.

Lemma 4 (Deduction Theorem for `
BCP

). Let Γ be a set of clauses, λ a
literal and ψ a clause. Then the following are equivalent statements:

(a) Γ, λ `
BCP

ψ; (b) Γ `
BCP

¬λ ∨ ψ; (c) Γ `
BCP

λ→ ψ.

3.4 Soundness and Completeness of `
BCP

k

As mentioned before, the family of entailment relations |=LB

Σ does not follow
Dalal’s approach to approximation, so in order to obtain a sound and complete
semantics for `

BCP

k we need to provide another entailment relation based on |=LB

Σ ,
which we call |=LB

S
.

For that, let S be a set of sets of formulas and define Γ |=LB

S
ψ iff there

exists a set Σ ∈ S such that Γ |=LB

Σ ψ. We concentrate on the case where Γ
is a set of clauses, ψ is a clause and each Σ ∈ S is a set of atoms. We define
Sk = {Σ ⊆ P| |Σ| = k}.

That is, Sk is a set of sets of atoms of size k. Note that if we restrict our

attention to n atoms, |Sk| =
„

n

k

«

= O(nk) sets of k atoms. For a fixed k, we only

have to consider a polynomial number of sets of k atoms.
We then write |=LB

k to mean |=LB

Sk
.

Theorem 2. Let Γ be a set of clauses and ψ a clause. Then Γ `
BCP

k ψ iff
Γ |=LB

k ψ.



Proof. (⇒) By induction on the number of uses of rule 2 in the definition of

`
BCP

k . For the base case, Theorem 1 gives us the result. Assume that Γ `
BCP

k ψ

due to Γ `
BCP

k ϕ and Γ, ϕ `
BCP

k ϕ. Suppose for contradiction that Γ 6|=LB

k ψ, then
for all Σ ⊆ P , |Σ| ≤ k, there exists vΣ such that vΣ(Γ ) = 1 and vΣ(ψ) = 0. By
the induction hypothesis, Γ |=LB

k ϕ, which implies vΣ(ϕ) 6= 0, and Γ, ϕ |=LB

k ϕ,
which implies vΣ(ϕ) 6= 1. So vσ(ϕ) = εi, for some i < ω, which implies that
atoms(ϕ)∩Σ = ∅, but this cannot hold for all Σ, a contradiction. So Γ |=LB

k ψ.
(⇐) Suppose Γ |=LB

k ψ. Then for some Σ with |Σ| ≤ k, Γ |=LB

Σ ψ and
suppose that Σ is a smallest set with such property. Therefore, for all with vΣ
with vΣ(Γ ) = 1 we have vΣ(ψ) 6= 0. Choose one such vΣ and define the set of
literals Λ = {λ is a literal whose atom is in Σ|vΣ(λ) = 1}.

We first show that Γ |=LB

Σ λ for every λ ∈ Λ. Suppose for contradiction that
for some λ ∈ Λ, Γ 6|=LB

Σ λ, then there is a v′Σ with v′Σ(Γ ) = 1 and v′Σ(ψ) 6= 0
but v′Σ(λ) = 0. Let atoms(λ) = {p}. If p does not occur in ψ, then Γ |=LB

Σ−{p} ψ,

which contradicts the minimality of Σ. So ψ = p ∨ χ′ or ψ = ¬p ∨ χ′′. Consider
a vΣ−{p} such that vΣ−{p}(Γ ) = 1; if vΣ−{p} maps p to 0 or 1 it is a vΣ ,
so vΣ−{p}(ψ) 6= 0; if vΣ−{p}(p) = εi for some i, then clearly we have that

vΣ−{p}(ψ) 6= 0, so Γ |=LB

Σ−{p} ψ, which contradicts the minimality of Σ. It

follows that Γ |=LB

Σ Λ.
We now show that Γ∪Λ `

BCP
ψ. Suppose for contradiction that Γ∪Λ 6`

BCP
ψ.

Then, by Theorem 1, Γ∪Λ 6|=LB
∅ ψ, that is, there exists v∅ such that v∅(Γ∪Λ) = 1

and v∅(ψ) = 0. However, such v∅ maps all atoms of Σ to 0 or 1, so it is actually
a vΣ that contradicts Γ |=LB

Σ ψ. So Γ ∪ Λ `
BCP

ψ.

If Γ `
BCP

ψ then clearly Γ `
BCP

k ψ. So suppose Γ 6`
BCP

ψ. In this case, we

show that Γ `
BCP

k

∧
Λ. Let Λ = {λ1, . . . , λm}, we prove by induction that for

1 ≤ i ≤ m, Γ, λ1, . . . , λi−1 `
BCP

λi. From Γ 6`
BCP

ψ and Theorem 1 we know that
there is a valuation v∅ such that v∅(Γ ) = 1 and v∅(ψ) = 0. From Γ ∪Λ `

BCP
ψ

we infer that there must exist a λ ∈ Λ such that v∅(λ) 6= 1; without loss of
generality, let λ = λm. Suppose for contradiction that Γ, λ1, . . . , λm−1 6`

BCP

λm. Then there exists a valuation v′∅ such that v′∅(Γ, λ1, . . . , λm−1) = 1 but
v′∅(λm) = 0, which contradicts Γ |=LB

Σ Λ. So Γ, λ1, . . . , λm−1 `
BCP

λm.
Now note that for 1 < i ≤ m, Γ, λi, . . . , λm 6`

BCP
ψ, otherwise the minimality

of Σ would be violated. From Theorem 1 we know that there is a valuation v∅

such that v∅(Γ, λi, . . . , λm) = 1 and v∅(ψ) = 0. From Γ ∪ Λ `
BCP

ψ we infer
that there must exist a λ ∈ {λ1, . . . , λi−1} such that v∅(λ) 6= 1; without loss
of generality, let λ = λi−1. Suppose for contradiction that Γ, λ1, . . . , λi−2 6`

BCP

λi−1. Then there exists a valuation v′
∅

such that v′
∅

(Γ, λ1, . . . , λi−2) = 1 but
v′∅(λi−1) = 0, but this contradicts Γ |=LB

Σ Λ. So Γ, λ1, . . . , λi−2 `
BCP

λi−1.
Thus we have that Γ `

BCP
λ1; Γ, λ1 `

BCP
λ2; . . . ; Γ, λ1, . . . , λm−1 `

BCP
λm. It

follows that Γ `
BCP

k

∧
Λ as desired. Finally, from Γ ∪Λ `

BCP
ψ and Γ `

BCP

k

∧
Λ

we obtain that Γ `
BCP

k ψ, and the result is proved.

The technique above differs considerably from Dalal’s use of the notion of
vividness. It follows from Dalal’s result that each approximation step |=LB

k is
decidable in polynomial time.



4 Conclusions and Future Work

In this paper we presented the family of logics LB(Σ) and provided it with a
lattice-based semantics. We showed that it can be a basis for both a parametric
and a polynomial clausal approximation of classical logic. This semantics is sound
and complete with respect to Dalal’s polynomial approximations `

BCP

k .
Future work should extend polynomial approximations to non-clausal logics.

It should also provide a proof-theory for these approximations.
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