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1 Introdu
tionIn this work, we study stru
tural, model-theoreti
al 
onditions that support para-
onsisten
y [dC74℄ in Substru
tural Logi
s [Res00℄.. One of the initial motivationsfor the proposal of Relevant Logi
s was to avoid the 
lassi
al trivialization of theo-ries, where from a formula A and its negation one 
an infer a formula B, even if Ahas nothing in 
ommon with B [AB75℄. The way that Relevant and other Substru
-tural Logi
s followed to a
hieve that goal was to restri
t the set of 
lassi
al stru
turalrules in dedu
tions; hen
e the name of the family of logi
s. With the eliminationof stru
tural rules, 
lassi
al 
onne
tives unfolded into several others, so many newfragments were 
reated for Substru
tural Logi
s. A
tually, the family was uni�edas su
h only mu
h later [Do�s93℄, and for several years there were just several groupsof logi
s (Relevant, Linear, Lambek, Intuitionisti
, et
). A semanti
s for RelevantLogi
 based on ternary frames was proposed by Routley and Meyer [RM73℄, whi
hwas later extended to the whole family of Substru
tural Logi
s [Res00℄.The way Para
onsisten
y is treated in da Costa's approa
h is di�erent [dC74℄,and 
onsists of weakening the notion of 
lassi
al negation. Initial tentatives to 
reatea semanti
s for para
onsistent logi
s tried to provide set theoreti
al 
onstru
tions toa

ommodate the \in
onsistent elements" present in most para
onsistent systems,with partial su

ess [CA81℄. Re
ent approa
hes to a semanti
s of para
onsistentlogi
s have totally avoided the manipulation of the usual set theoreti
al stru
tures,preferring to give a semanti
s based on the translation of a para
onsistent logi
s intoa set of many-valued logi
s, plus some me
hanism for the 
ombination/intera
tionof these translations [Car98℄.We do not deny that there are interesting aspe
ts in these translation-based ap-proa
hes to semanti
s, but sin
e we are taking the substru
tural point of view, wewill study the model theoreti
al 
onditions present at the interse
tion between Sub-stru
tural and Para
onsistent Logi
s in the light of model theoreti
al 
onstru
tionsfor substru
tural para
onsisten
y.It is important to note that we do not mean that Para
onsistent Logi
s areSubstru
tural Logi
s. Quite the opposite, we simply note that some Substru
turalLogi
s display a para
onsistent behaviour, e.g. Relevant Logi
s as mentioned above.So some substru
tural logi
s do a

ept some para
onsistent theories, but some oth-ers do not. This does not rule out the possibility of existing other logi
s termedPara
onsistent that are not Substru
tural or vi
e versa.In this way, we pro
eed with our study of model theoreti
al 
onditions thatpermit a substru
tural logi
 to a

ept para
onsistent theories.1.1 Para
onsisten
y and Substru
tural Logi
sOur approa
h here does not start with the de�nition of a Para
onsistent Logi
, sothat we 
an put forward a sound and 
omplete semanti
s for it. We do not havea �nal de�nition for para
onsisten
y, nor do we think that one su
h de�nition isdesirable.In the literature, there are two basi
 notions related to para
onsisten
y, bothinvolving a formula A and its negation notA, both related to the violation of alogi
al prin
iple:� Non-
ontradi
tion: a

ording to this prin
iple, a theory should not derive a



formula and its negation. Therefore, a para
onsistent theory that violatesnon-
ontradi
tion 
annot validate an axiom of the form not(A and notA).� Trivialization: a

ording to this prin
iple, a theory 
ontaining both a formulaand its negation derives any formula. A para
onsistent theory that violatestriviality must not validate an axiom of the form (A and notA) impliesB.In this explanation above, we have used the 
onne
tives not; and; implies to re-main neutral as to their de�nition, for in substru
tural logi
s there may exist severalpossible 
onne
tives for negation, 
onjun
tion and impli
ation. The present workis also neutral towards su
h de�nitions and we analyse stru
tural 
onditions forseveral possible de�nitions of these 
onne
tives.As stated earlier, our approa
h is based on the semanti
s. We start with a puresemanti
al stru
ture for substru
tural logi
s, that is, a semanti
al stru
ture freefrom any stru
tural pressuposition. We then study what kind of properties shouldbe imposed on that stru
ture for ea
h alternative de�nition of para
onsisten
y.1.2 Para
onsisten
y and Corresponden
e TheoryThe idea is to follow the notion of Corresponden
e Theory fromModal Logi
s [vB84℄.In modal semanti
s we have the notion of a basi
 Kripke frame, F = (W;R), 
on-sisting of a setW of possible worlds with a binary relation R, 
alled the a

essibilityrelation, whi
h provides a sound and 
omplete semanti
 basis for the minimal modallogi
 K. We know that by adding some property to the system, e.g. re
exivity, someformulas be
ome valid in the 
lass of all Kripke models obeying that property;e.g. the axiom T, �p ! p, is valid in all re
exive Kripke frames. Conversely, if weadd an axiom to a modal axiomatization, we get 
ompleteness over some 
lass ofKripke frames; e.g. logi
 K + axiom �p ! p is 
omplete over the 
lass of re
exiveKripke frames [BS84, Che80℄.In this way, the relationship between modal axioms and 
lasses of Kripke frames
an be studied without the need to de�ne the modal logi
.We develop here a similar approa
h for substru
tural logi
s [Do�s93, Res00℄, thatis, the family of logi
s obtained by reje
ting some of the stru
tural rules used in
lassi
al logi
 dedu
tions. The works of Roorda [Roo91℄ and Kurtonina [Kur94℄ haveshown that, in the same way that monadi
 modalities are interpreted over binarya

essibility relationships, binary 
onne
tives 
an be seen as modalities interpretedover Kripke frames with a ternary a

essibility relationship. In parti
ular, we maystudy the usual 
onne
tives (impli
ation, 
onjun
tion, negation) as modalities.In su
h a setting we 
an start asking what sort of properties 
orresponds toa given axiom, as is done in modal 
orresponden
e theory. In parti
ular, someaxiom may be taken as the de�nition of 
onsisten
y in the system, so that we mayinvestigate what stru
tural properties 
orrespond to ea
h de�nition of 
onsisten
y.Note that it follows from the modal examples above that if we want to allow forthe falsity of modal axiom T at some worlds, we may not have all worlds re
exive;that is, 8xRxx must fail for some x. This is the way we are going to treat para-
onsisten
y 
onditions, namely by falsifying the stru
tural 
onditions imposed by
onsisten
y axioms on ternary frames.



1.3 Automated MethodsRe
ently, we have been able to �nd an automati
 way to 
ompute a �rst-order 
on-dition on ternary frames asso
iated to an axiom [Fin00℄, in a manner analogous tothe way that modal Sahlqvist formulas 
an 
omputationally generate a restri
tionon traditional (binary) Kripke frames [vB84℄. Su
h automati
 
omputation is per-formed on a substru
tural fragment known as Categorial Grammar [Car97, Moo97℄,
onsisting of the 
onne
tives! (right-impli
ation),  (left-impli
ation) and 
 (ten-sor produ
t, also 
alled multipli
ative 
onjun
tion or fusion).1We 
laim that su
h te
hniques 
an be applied for the study of �rst-order 
ondi-tion on ternary frames that allows a logi
 to support para
onsistent theories.The rest of the paper develops as follows. Ternary frames, and its relationship to�rst-order formulas are presented in Se
tion 2, with an example on how to 
omputethe �rst-order restri
tion asso
iated with an axiom. Then in Se
tion 3 we showthat di�erent de�nitions of what 
onstitutes a 
onsisten
y axiom lead to distin
tstru
tural 
onstraints; in parti
ular, we study 
onsisten
y 
onditions based on:� non-
ontradi
tion vs. trivialization prin
iples;� boolean vs. intuitionisti
 negation;� boolean vs. multipli
ative 
onjun
tion.Finally, we analyse in Se
tion 4, we apply those methods for relevant negation andin Se
tion 5 we dis
uss several other possible negations whi
h 
an be analysed byour method.2 Ternary FramesThe idea of using ternary frame for the semanti
s of substru
tural logi
s goes ba
kto [RM73℄, where it was used to provide a semanti
s for relevan
e logi
s. In a 
ontextfree of stru
tural pressuposition, that semanti
s has been used in, for example,[Kur94, DM97℄.A ternary frame is a pair F = (W;R), where R is a any ternary relation onW �W �W . The set W is a set of possible worlds. We normally represent thata triple ha; b; 
i 2 R by writing Rab
. The elements of R are seen as a binary tree,with a being the root node, b its left daughter, and 
 its right daughter. To reinfor
ethis point of view, Rab
 is sometimes written as Ra; b
.Every model has a distinguished world 0 2 W . Unlike modal Kripke models,a valid formula is not required to hold at all worlds of every model, but only atthe distinguished world of every model. The distinguished 0 has the followingproperties: Ra0a and Raa0The language fragment we work with in this se
tion 
onsists of a 
ountable setof propositions, P = fp1; p2; : : :g, and the binary 
onne
tives !; ;
. We useA;B;C as variables ranging over substru
tural formulas. The 
onne
tives ), ^and : are, respe
tively, the 
lassi
al impli
ation, 
onjun
tion and negation.1These 
onne
tives also appear in the literature as =, n and �.



A modelM = (W;R; V;0) 
onsists of a ternary frame plus a valuation V : P !2W that maps propositional variables into a set of possible worlds. Formulas areevaluated with respe
t to a possible world a 2W , so thatM; a j= A reads that theformula A holds at a in modelM. The semanti
s of the binary 
onne
tives over aternary model is given by:M; a j= p i� a 2 V (p)M; a j= A
B i� 9b9
(Rab
 ^M; b j= A ^M; 
 j= B)M; a j= A! B i� 8b8
(R
ab^M; b j= A)M; 
 j= B)M; a j= B  A i� 8b8
(R
ba^M; b j= A)M; 
 j= B)A formula is valid if it holds at 0 in all models. It is easy to see that a formulaof the form A! A or A A is valid at ternary formulas.A ternary model M = (W;R; V ) 
an be seen as a �rst-order model stru
tureover MFO = (W;R; P1; P2; : : :), where ea
h unary predi
ate Pi 
orresponds to apropositional letter pi 2 P . A substru
tural formula 
an thus be translated into a�rst-order one, with respe
t to a world a, in the following way:FOa(pi) = Pi(a)FOa(A
B) = 9b9
(Rab
 ^ FOb(A) ^ FO
(B))FOa(A! B) = 8b8
(R
ab^ FOb(A)) FO
(B))FOa(B  A) = 8b8
(R
ba^ FOb(A)) FO
(B))It is straightforward to see thatM; a j= A i�MFO j= FOa(A).Like in usual modal 
orresponden
e theory, if we want to make a formula A validover all models, this means that A should be true in all models, for all valuations;this translates into a se
ond-order formula, obtained by the universal 
losure ofFOa(A) over a and over all the predi
ate symbols o

urring in it, that is:8P1 : : :8Pn8aFOa(A):Su
h a formula provides a se
ond-order 
onstraint over the ternary relation R. It isparti
ularly interesting here (as in modal logi
) to know whether this se
ond-orderformula is equivalent to a �rst-order formula. However, it is not always possible to�nd su
h a �rst-order equivalent to a se
ond-order frame 
onstraint. We illustratenext a 
ase where it is possible.EXAMPLE 1 Consider the formula A = (p ! q) ! (q  p). We want to knowwhat restri
tions should be imposed on ternary frames for it to be a valid formula.For that, we 
ompute FOa(A):FOa((p! q)! (q  p)) == 8b
(R
ab ^ FOb(p! q)) FO
(q  p))= 8b
(R
ab ^ 8de(Rebd^ P (d)) Q(e))) 8fg(Rgf
^ P (f)) Q(g)))= 8b
fg9de(R
ab^ (Rebd ^ P (d)) Q(e)) ^ (Rgf
 ^ P (f)) Q(g)))At this point we know that for A to be a valid formula, the ternary frame has to obeythe se
ond-order restri
tion 8P8Q8a(FOa(A)). To obtain a �rst-order equivalentto this formula, an appropriated valuation for P and Q must be provided; this isequivalent to �nding a valuation for p and q in the modal 
ontext. Finding su
h a



valuation is the 
ru
ial point of this method. Although we have a way of 
omputingone [Fin00℄, if one exists, for the substru
tural fragment, here we just present one:V (p) = ffg =) 8x(P (x), x = f)V (q) =W � fgg =) 8x(Q(x), x 6= g)By substituting su
h a valuation in 8a(FOa)(A) we obtain:8ab
fg9de(R
ab^ (Rebd ^ d = f ) e 6= g)) (Rgf
 ^ > ) ?))()8
fg(9abR
ab^ 8de(d = f ^ e = g ) :Rebd)) :Rgf
)()8b
fg(9aR
ab^ :Rgbf ) :Rgf
)But sin
e we know that, 8
R
0
, it is always the 
ase that, for 
 = b, 9aR
ab, sowe end up with the �rst-order restri
tion:8
fg(Rgf
) Rg
f)That is, the restri
tion imposed on R is the 
ommutativity of its se
ond and thirdarguments. It remains to be shown that whenever we have the 
ommutativity ofR's se
ond and third arguments, the formula A is valid; su
h a proof 
an be foundin [Kur94℄. It follows that (p! q)! (q  p) 
orresponds to the restri
tion of 2,3-
ommutativity over ternary frames. Note that it is well known that (p! q)! (q  p) is a theorem of substru
tural logi
s that allow for 
ommutativity of premises ina sequent dedu
tion [Do�s93℄.The really interesting part of the pro
edure above is to know whether the se
ond-order formula generated is equivalent to a �rst-order one and what is the substitutionthat will lead to it. This is the basi
 task of our algorithm developed in [Fin00℄; asthere is no spa
e for a full presentation of the method, we only brie
y present itnext.2.1 The SLaKE-Tableaux MethodWe 
ompute a �rst order formula equivalent to a substru
tural sequent (or formula)by means of a 
onstru
tion of a tableau. This method is 
alled SLaKE-tableau(Substru
tural Labelled KE).Ea
h formula in a SLaKE-tableau is signed with T or F and re
eives a label;the signed labeled formulas T A : a and F A : b are 
alled opposites. The originalsequent A1; : : : ; An ` C is asso
iated with an initial SLaKE-tableau:T A1 : a1...T An : anF C : aand with a �rst-order formula: = :9aa1 : : : an[Va1(A1) ^ : : : ^ Van(An) ^ :Va(C) ^Ra(a1 : : : an�1)an ^ ℄1℄where Va(A) is the valuation of the formula A at label a and is de�ned as follows:



� Va(A) =def > if A is not atomi
� Va(p) =def (a 6= a1)^ : : :^ (a 6= an), where p : a1; : : : ; p : an o

ur in a bran
habove p : a with opposite sign. If no opposite formula o

urs above p : a,Va(p) =def >.Ea
h of the tableau linear expansion rules is asso
iated with an expansion ofthe 
orresponden
e formula of the form ℄i :=  (R;A1; : : : ; An; ℄i+1), where R is theternary a

essibility relation, A1; : : : ; An are the formulas generated in the expan-sion, and ℄ is the \substitution pla
e" for next expansion and 
an be read simplyas truth. The tableau rules for SLaKE-tableaux are illustrated in Figure 1.SLaKE Expansion Formula ExpansionT B ! A : aT B : bT A : 
 (new 
) ℄i := 8
(R
ab) (V
(A) ^ ℄i+1))F B ! A : aT B : b (new b)F A : 
 (new 
) ℄i := 9b9
(R
ab ^ Vb(B) ^ :V
(A) ^ ℄i+1)T A B : aT B : bT A : 
 (new 
) ℄i := 8
(R
ba) (V
(A) ^ ℄i+1))F A B : aT B : b (new b)F A : 
 (new 
) ℄i := 9b9
(R
ba ^ Vb(B) ^ :V
(A) ^ ℄i+1)T A � B : aT A : b (new b)T B : 
 (new 
) ℄i := 9b9
(Rab
 ^ Vb(A) ^ V
(B) ^ ℄i+1)F A �B : aT A : bF B : 
 (new 
) ℄i := 8
(Rab
) (:V
(B) ^ ℄i+1))T A : x F A : x ℄i := 8x((Vx(A) ^ ℄1i+1) _ (:Vx(A) ^ ℄2i+1))Figure 1: SLaKE rulesIn ea
h linear rule in Figure 1, the formulas above the horizontal line are thepremises of the rule, and those below it are the 
on
lusions of the rule. There areone-premised and two-premised rules, but ea
h rule has exa
tly one premise that isa 
ompound formula, whi
h is 
alled the main premise; other premises are 
alledauxiliary. Two-premised rules are 8-rules and one-premised rules are 9-rules. Ifeither of the 
on
lusions of an 9-rule is present on the 
urrent bran
h, it is notadded again with a new label. 8-rules always generate a new 
on
lusion.The last rule in Figure 1 is the Prin
iple of Bivalen
e (PB), the only bran
hingrule. It introdu
es two \substitution pla
es" in the 
orresponden
e formula, ℄1i+1



and ℄2i+1, one for ea
h new bran
h. A bran
h that 
an still be expanded is 
alleda
tive. Ea
h a
tive bran
h in a SLaKE tableau always has exa
tly one substitutionpla
e.The importan
e of substitution pla
es is that they guarantee that ea
h formulaintrodu
ed in the 
orresponden
e formula will \see the 
orre
t 
ontext", that is, itwill be in the s
ope of the 
orre
t quanti�ers.A full presentation of the method is beyond the s
ope of this paper. Here werepeat Example 1 using the SLaKE-tableau method.EXAMPLE 2 Consider the sequent q ! p ` p q. Its asso
iated SLaKE tableauis: 1: T q ! p : a2: F p q : a  = :9a(℄1)3: T q : b from 24: F p : 
 from 2 ℄1 := 9b9
(R
ba ^ > ^ > ^ ℄2)5: T p : d from 1, 3 ℄2 := 8d(Rdab) d 6= 
 ^ ℄3)By putting together all substitution pla
es we obtain the formula: = :9a9b9
(R
ba ^ 8d(Rdab) d 6= 
))whi
h is equivalent to 8a8b8
(R
ba) R
ab), the 
ommutativity of the se
ond andthird R-positions.A tableau as above is deterministi
, that is, at all expansions of a bran
h, thereis only a single expansion rule to be applied. In [Fin00℄ it has been shown that:PROPOSITION 3 If the SLaKE tableau generated by a sequent is �nite, satu-rated and deterministi
, then the asso
iated �rst-order formula  it 
omputes isthe sequent's 
orresponden
e formula.We note that SLaKE-tableaux may be in�nite, in whi
h 
ase no �rst-order for-mula is 
omputed. I may also be non-deterministi
, in whi
h 
ase we have to takethe 
onjun
tion of the formulas asso
iated to all possible SLaKE-tableaux.2.2 Extending the MethodAs the example above shows, the method is based on the semanti
s of the 
onne
-tives. We 
an in this way extend the method to other 
onne
tives, su
h as 
lassi
alnegation (:) and 
lassi
al 
onjun
tion (^) given by their semanti
al de�nitions:M; a j= :A i�M; a 6j= AM; a j= A ^ B i�M; a j= A andM; a j= BThese semanti
al rules translate generate the following tableau rules:T :A : aF A : a ℄i := :Va(A) ^ ℄i+1 F :A : aT A : a ℄i := :Va(A) ^ ℄i+1The 
omputational results in [Fin00℄ do not immediately apply to su
h exten-sions, so we 
annot aÆrm that it is a de
idable pro
ess. However, the method 
anstill be applied to parti
ular examples with su

ess.But the point we are going to make here is that su
h a method (even if not fullyautomated for larger fragments) 
an be applied to the study of stru
tural 
onditionsfor para
onsisten
y.



3 Consistent and Para
onsistent Restri
tionson Ternary FramesA 
onsisten
y 
ondition is a formula that one wants to see valid so that the systemis 
onsidered 
onsistent. As a 
onsequen
e, a system will be para
onsistent withrespe
t to a 
onsisten
y 
ondition if su
h a formula is invalidated.We want to apply the te
hniques des
ribed above to asso
iate a 
onstraint overternary frames with a 
onsisten
y formula. The reje
tion of su
h 
onstraint willtherefore 
hara
terize para
onsisten
y over ternary models.Usually, 
onsisten
y formulas have to deal with negation. So we introdu
e 
las-si
al negation (:) in our language with its usual semanti
s:M; a j= :A i�M; a 6j= AThe obvious extension of the �rst-order translation is: FOa(:A) = :FOa(A).We 
an thus explore the 
onstraint asso
iated with 
onsisten
y 
onditions relatedto the prin
iple of non-
ontradi
tion.Consisten
y Condition 1: :(p
 :p)We start by 
omputing the �rst order translation of :(p
 :p):1: F :(p
 :p) : 0  := :℄12: T (p
 :p) : 0 ℄1 := :V0(p
 :p) ^ ℄23: T p : b4: T :p : 
 ℄2 := 9b
(R0b
 ^ Vb(p) ^ V
(:p) ^ ℄3)5: Fp : 
 ℄3 := b 6= 
Putting everything together and doing some 
lassi
al equivalen
es, we get theformula 8b
(R0b
! b = 
)That is, for the 
onsisten
y 
ondition to be valid on ternary frames, the the spe-
ial world 0 is related only to pairs of identi
al worlds. A stru
tural 
ondition topara
onsisten
y in this 
ase would be:9b
(R0b
 ^ b 6= 
)Hen
e for a para
onsisten
y that reje
ts the 
onsisten
y 
ondition above, it suÆ
esthat in every model there is a triple h0; b; 
i 2 R with distin
t last two arguments.Consisten
y Condition 2: :(p ^ :p)Suppose now that we want to add boolean 
onjun
tion in our language so that we
an study the 
onstraint asso
iated with the usual boolean 
onsisten
y 
ondition:(p ^ :p).For that, �rst, we add the obvious semanti
 de�nitionM; a j= A ^ B i�M; a j= A and M; a j= B



together with its obvious �rst-order translationFOa(A ^ B) = FOa(A) ^ FOa(B)and the tableau rulesT A ^ B : aT A : aT B : a ℄i := Va(A) ^ Va(B) ^ ℄i+1F A ^B : aT A : aF B : a ℄i := Va(A) ^ :Va(B) ^ ℄i+1If we now apply our method to ` :(p^:p) we see that it is logi
ally equivalentto >; details omitted. This is not at all surprising, sin
e we are dealing withboth boolean negation and 
onjun
tion, whi
h are enough to de�ne all 
lassi
al
onne
tives, thus reje
ting in
onsisten
y.Intuitionisti
 NegationThe main idea of intuitionisti
 negation (whi
h we represent here as �) is to assertthe negation of a formula in a world provided that this formula is not asserted atany other world \above" it. In our ternary models, if Rab
 then a is above b and 
,whi
h we write a > b and a > 
. Formally:a > b i� 9
(Rab
)Su
h a de�nition is inspired on a similar one in [RM73℄2. We then have, for ternaryframes, the usual intuitionisti
 de�nition of negation over Kripke models [Fit69℄:M; a j=�A i� 8b(b > a)M; b 6j= A)This de�nition generates a �rst-order translation:FOa(�A) = 8b(b > a) :FOb(A))and SLaKE-tableau rulesT �A : aF A : b ℄i := 8b(b > a) :Vb(A) ^ ℄i+1)F �A : aT A : b ℄i := 9b(b > a ^ Vb(A) ^ ℄i+1)We then 
hoose as a 
onsisten
y 
ondition the formula � (p
 � p). For spa
ereasons we omit here the details, but when we develop the expansion we get that`�(p
 �p) 
orresponds to the �rst-order restri
tion:8ab
(Rab
) b > 
)2In fa
t, sin
e we do not assume any properties of R, we 
ould de�ne two orders, the other onebeing a >2 
 i� 9
(Rab
).



imposing the order > on all R-related worlds. The para
onsisten
y 
ondition herestates that in every model there must exist an R-related triple Rab
 su
h that b isnot above 
.Similarly, a 
onsisten
y 
ondition of the form � (� p 
 p) would generate arestri
tion of the form 8ab
(Rab
 ) 
 > b), leading to a di�erent imposition of>-ordering.If both 
onsisten
y 
onditions are required, a stru
tural 
ondition for para
on-sisten
y should be that in every model there must exist an R-related triple Rab
su
h that neither b nor 
 is above the other. This is expressed by the followingstru
tural 
ondition: 9ab
(Rab
 ^ :(b > 
) ^ :(
 > b)):Finally, we 
onsider the 
onsisten
y 
ondition � (p^ � p). The development ofa SLaKE-tableau for `�(p^ �p)) leads us to the �rst-order 
ondition8a(a > a)Thus the intuitionisti
 
onsisten
y 
ondition�(p
 �p) imposes>-re
exivity, whi
his a 
ondition normally expe
ted in intuitionisti
 models. Those models support thesemanti
 of ^ in exa
tly the terms de�ned here3; see e.g. [Fit69℄.So a para
onsistent 
ondition that reje
ts this intuitionisti
 view of 
onsisten
yrequires that every ternary model 
ontains a >-irre
exive world:9a:(a > a):Consisten
y as TrivializationAnother possible way of de�ning a 
onsisten
y 
ondition, perhaps more in 
onfor-mity with the original formulation of para
onsisten
y [dC74℄, is to state that anin
onsisten
y trivializes impli
ation, that is, from p and its negation we 
an deriveany q. If we fo
us only on boolean 
onjun
tion, two new 
onsisten
y 
onditionsarise, namely:1. (p ^ :p)! q;2. (p^ � p)! q.By applying our method, we get their 
orrespondent �rst-order restri
tion overternary frames, respe
tively as:1. >;2. 8a(a > a).Item 1 implies that the 
onsisten
y 
onditions for boolean negation based onnon-
ontradi
tion and triviality lead exa
tly to the same restri
tions over ternaryframes, and hen
e to the same para
onsistent 
ondition. Item 2 tells us that exa
tlythe same fa
t o

urs for intuitionisti
 negation, and the stru
tural restri
tion of >-re
exivity is the same for both non-
ontradi
tion and triviality 
onditions.3the transitivity of > found in intuitionisti
 Kripke models is imposed by intuitionisti
 impli-
ation.



3.1 Summary and AnalysisConsisten
y Condition Stru
tural Restri
tion:(p
 :p) 9b
(R0b
 ^ b 6= 
)(p
 :p)! q 9ab
(Rab
 ^ b 6= 
)� (p 
 � p) 9ab
(Rab
 ^ 8d:Rb
d)(p 
 � p)! q 9ab
(Rab
 ^ 8d:Rb
d)� (p^ � p) 9a8b:Raab(p^ � p)! q 9a8b:Raab:(p ^ :p) impossible to violate(p ^ :p)! q impossible to violateTable 1: Stru
tural 
onditions for para
onsisten
yTable 1 summarizes the results obtained by our method. Ea
h 
onsisten
y 
on-dition is asso
iated to the stru
tural restri
tion that violates it, and is expressed interms of the ternary R relation.What 
alls the attention in this result is that the pairs:� (p 
 � p) (p 
 � p)! q� (p^ � p) (p^ � p)! q:(p ^ :p) (p ^ :p)! qgenerate the same stru
tural 
onditions for para
onsisten
y. That is, non-
ontradi
tionand the 
orresponding trivialization 
ondition yield the same stru
tural 
ondition.The other pair examined here is� :(p
 :p)� (p
 :p)! qwhere the latter leads to a stru
tural restri
tion for para
onsisten
y that is impliedby the the stru
tural 
ondition of the former.But it is widely known that there are logi
s for whi
h the non-
ontradi
tion andtrivialization 
onditions are totally independent.The 
on
lusion is that su
h logi
s employ a kind of negation that is neither
lassi
al (in the sense of the semanti
 de�nition: M; a j= :A i�M; a 6j= A) norintuitionisti
, also semanti
ally de�ned. In fa
t, the semanti
s of negation maytake extra parameters in these logi
s; for example, in [Res00℄ we �nd semanti
s forsubstru
tural negations that depend not only on the ternary relation R but also ina partial order v of information re�nement where Rab
 does not ne
essarily implyb v a. Other kinds of semanti
al de�nitions for negation 
an be found in [Dun94℄.In the 
ases where intuitionisti
 or 
lassi
al negation is employed with its �xedsemanti
s, trivialization and non-
ontradi
tion always yield stru
tural 
onditionsthat are either identi
al or strongly 
onne
ted. As a last example of su
h 
onne
tion,we will examine the stru
tural 
onditions asso
iated with relevant negation.



4 Relevant NegationThere are a great range of relevant logi
s de�ned in the literature [AB75℄. In severalof the proposed systems, and in parti
ular in system R, a kind of negation is used,whi
h is represented as A, meaning that it is in
onsistent with the formula A.To provide a semanti
s for su
h a negation over ternary frames, Routley andMeyer [RM73℄ postulated the existen
e of a unary fun
tion � : W ! W su
h that,for every a; b; 
 2 W :1. a�� = a2. Rab
) (Ra�b
� ^Ra�b�
)With su
h a fun
tion, the System-R's relevant negation [AB75℄ is de�ned as:M; a j= A i�M; a� 6j= ANote that in su
h a system, it is possible not to have neither A nor A holding at apossible world a.With su
h semanti
s we apply our method to the following 
onsisten
y 
ondi-tions:� (A
A)� (A
A)! qBy applying our method to it, we see that the �rst one imposes on the modelthe 
ondition: 8b
(R0�b
) b = 
�)whose negation leads to the para
onsisten
y 
ondition:9b
(R0�b
 ^ b 6= 
�)On the other hand, by applying our method to the trivialization formula (A 
A)! q we obtain the frame 
ondition:8ab
(Rab
) b = 
�)whi
h is leads to the following stru
tural restri
tion:9ab
(b 6= 
� ^ Rab
)Again, we see that the latter para
onsisten
y 
ondition | asso
iated withtrivialization | is logi
ally implied by the former one | asso
iated with non-
ontradi
tion.



5 Con
lusionsWe have provided a method that allows us to �nd stru
tural 
onditions on ternaryKripke frames to support para
onsisten
y. Our method is not biased towards anyparti
ular de�nition of para
onsisten
y. The examples developed here were basedon possible de�nitions of 
onsisten
y 
onditions to be refuted by a para
onsistentmodel.Admittedly, the examples of 
onsisten
y 
ondition displayed here were quitesimple. For the 
ases of 
onsisten
y 
onditions based on the prin
iple of non-
ontradi
tion and involving boolean 
onjun
tion and the use of boolean and intu-itionisti
 negation, namely the formulas :(p ^ :q) and � (p^ � p), the resultsobtained were the expe
ted ones; the 
orresponding 
onditions based on the triv-ialization prin
iple provided 
oin
ident 
onditions. This represents a validation ofthe method presented here.More importantly, the examples presented show that the method, whether au-tomated or not, is really quite 
exible and may, in prin
iple, be appli
able to moredaring de�nitions of para
onsisten
y than those presented here. There are several
andidates for alternative negation, su
h as those in [Res00℄:� split negation;� simple negation;� De Morgan Negation;� ortho-negation; and� Stri
t De Morgan Negation;These negations need a more re�ned semanti
s, for whi
h the simple ternary se-manti
s used in this paper is a limit 
ase. We know that in su
h 
ases the formula
omputed by our SLaKE-tableau method is implied by the 
orresponden
e formula,but we do not know if the formula thus 
omputed is the 
orresponden
e formula(nor do we know whether the method 
an de
ide in the generi
 
ase, as it 
an inthe simple fragment of f
;!; g, whether the 
ondition does have a �rst-order
orresponden
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