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Abstract

In this work, we study structural, model-theoretical conditions that support paraconsis-
tency in Substructural Logics. The idea is to follow the notion of Correspondence Theory
from Modal Logics and apply it to Substructural Logics.

Several logics in the family of Substructural Logics were initially defined with goals similar
to those of Paraconsistent Logic. There are several possible ways of defining paraconsis-
tency, but this work takes a neutral way towards all such definitions. We note that the
formalization of such definitions vary according to the set of connectives present in the
logical language, and also according to whether we view paraconsistency as the possibility
to deny the principles of Non-contradiction or Trivialization. All this yields a number
of possible definitions of paraconsistency. We propose a method that allows us to com-
pute which effects a given definition may have upon the model theoretical structures of a
Substructural Logic that adopt one such definition.

It has been known since the work of Routley and Meyer [RM73] that binary logical con-
nectives can be seen as modalities interpreted over Kripke frames (W, R) with a ternary
accessibility relationship R C W x W x W. More recently, a correspondence theory was
developed for substructural logics in analogy to the usual modal correspondence theory.

In this a setting, we derive structural restrictions over ternary frames corresponding to
the violation of a consistency condition, that is, an axiom. Such a process is performed on
a fragment consisting of the connectives ® (tensor product, also called multiplicative con-
Jjunction), —(multiplicative implication), - (classical negation), ~ (intuitionistic negation)
and A (classical conjunction).

*Marcelo Finger was partly supported by the Brazilian Research Council (CNPq), grants PQ
300597/95-5 and APQ 468765/2000-0.



1 INTRODUCTION

In this work, we study structural, model-theoretical conditions that support para-
consistency [dC74] in Substructural Logics [Res00].. One of the initial motivations
for the proposal of Relevant Logics was to avoid the classical trivialization of theo-
ries, where from a formula A and its negation one can infer a formula B, even if A
has nothing in common with B [AB75]. The way that Relevant and other Substruc-
tural Logics followed to achieve that goal was to restrict the set of classical structural
rules in deductions; hence the name of the family of logics. With the elimination
of structural rules, classical connectives unfolded into several others, so many new
fragments were created for Substructural Logics. Actually, the family was unified
as such only much later [Dog93], and for several years there were just several groups
of logics (Relevant, Linear, Lambek, Intuitionistic, etc). A semantics for Relevant
Logic based on ternary frames was proposed by Routley and Meyer [RM73], which
was later extended to the whole family of Substructural Logics [Res00].

The way Paraconsistency is treated in da Costa’s approach is different [dC74],
and consists of weakening the notion of classical negation. Initial tentatives to create
a semantics for paraconsistent logics tried to provide set theoretical constructions to
accommodate the “inconsistent elements” present in most paraconsistent systems,
with partial success [CA81]. Recent approaches to a semantics of paraconsistent
logics have totally avoided the manipulation of the usual set theoretical structures,
preferring to give a semantics based on the translation of a paraconsistent logics into
a set of many-valued logics, plus some mechanism for the combination/interaction
of these translations [Car98].

We do not deny that there are interesting aspects in these translation-based ap-
proaches to semantics, but since we are taking the substructural point of view, we
will study the model theoretical conditions present at the intersection between Sub-
structural and Paraconsistent Logics in the light of model theoretical constructions
for substructural paraconsistency.

It is important to note that we do not mean that Paraconsistent Logics are
Substructural Logics. Quite the opposite, we simply note that some Substructural
Logics display a paraconsistent behaviour, e.g. Relevant Logics as mentioned above.
So some substructural logics do accept some paraconsistent theories, but some oth-
ers do not. This does not rule out the possibility of existing other logics termed
Paraconsistent that are not Substructural or vice versa.

In this way, we proceed with our study of model theoretical conditions that
permit a substructural logic to accept paraconsistent theories.

1.1 Paraconsistency and Substructural Logics

Our approach here does not start with the definition of a Paraconsistent Logic, so
that we can put forward a sound and complete semantics for it. We do not have
a final definition for paraconsistency, nor do we think that one such definition is
desirable.

In the literature, there are two basic notions related to paraconsistency, both
involving a formula A and its negation not A, both related to the violation of a
logical principle:

e Non-contradiction: according to this principle, a theory should not derive a



formula and its negation. Therefore, a paraconsistent theory that violates
non-contradiction cannot validate an axiom of the form not(A andnot A).

o Trivialization: according to this principle, a theory containing both a formula
and its negation derives any formula. A paraconsistent theory that violates
triviality must not validate an axiom of the form (A andnot A)implies B.

In this explanation above, we have used the connectives not, and, implies to re-
main neutral as to their definition, for in substructural logics there may exist several
possible connectives for negation, conjunction and implication. The present work
is also neutral towards such definitions and we analyse structural conditions for
several possible definitions of these connectives.

As stated earlier, our approach is based on the semantics. We start with a pure
semantical structure for substructural logics, that is, a semantical structure free
from any structural pressuposition. We then study what kind of properties should
be imposed on that structure for each alternative definition of paraconsistency.

1.2 Paraconsistency and Correspondence Theory

The idea is to follow the notion of Correspondence Theory from Modal Logics [vB84].
In modal semantics we have the notion of a basic Kripke frame, F = (W, R), con-
sisting of a set W of possible worlds with a binary relation R, called the accessibility
relation, which provides a sound and complete semantic basis for the minimal modal
logic K. We know that by adding some property to the system, e.g. reflexivity, some
formulas become valid in the class of all Kripke models obeying that property;
e.g. the axiom T, Op — p, is valid in all reflexive Kripke frames. Conversely, if we
add an axiom to a modal axiomatization, we get completeness over some class of
Kripke frames; e.g. logic K + axiom Op — p is complete over the class of reflexive
Kripke frames [BS84, Che80)].

In this way, the relationship between modal axioms and classes of Kripke frames
can be studied without the need to define the modal logic.

We develop here a similar approach for substructural logics [Dos93, Res00], that
is, the family of logics obtained by rejecting some of the structural rules used in
classical logic deductions. The works of Roorda [Roo91] and Kurtonina [Kur94] have
shown that, in the same way that monadic modalities are interpreted over binary
accessibility relationships, binary connectives can be seen as modalities interpreted
over Kripke frames with a ternary accessibility relationship. In particular, we may
study the usual connectives (implication, conjunction, negation) as modalities.

In such a setting we can start asking what sort of properties corresponds to
a given axiom, as is done in modal correspondence theory. In particular, some
axiom may be taken as the definition of consistency in the system, so that we may
investigate what structural properties correspond to each definition of consistency.

Note that it follows from the modal examples above that if we want to allow for
the falsity of modal axiom T at some worlds, we may not have all worlds reflexive;
that is, VxRzx must fail for some z. This is the way we are going to treat para-
consistency conditions, namely by falsifying the structural conditions imposed by
consistency azioms on ternary frames.



1.3 Automated Methods

Recently, we have been able to find an automatic way to compute a first-order con-
dition on ternary frames associated to an axiom [Fin00], in a manner analogous to
the way that modal Sahlqvist formulas can computationally generate a restriction
on traditional (binary) Kripke frames [vB84]. Such automatic computation is per-
formed on a substructural fragment known as Categorial Grammar [Car97, Moo97],
consisting of the connectives — (right-implication), < (left-implication) and ® (ten-
sor product, also called multiplicative conjunction or fusion).!

We claim that such techniques can be applied for the study of first-order condi-
tion on ternary frames that allows a logic to support paraconsistent theories.

The rest of the paper develops as follows. Ternary frames, and its relationship to
first-order formulas are presented in Section 2, with an example on how to compute
the first-order restriction associated with an axiom. Then in Section 3 we show
that different definitions of what constitutes a consistency axiom lead to distinct
structural constraints; in particular, we study consistency conditions based on:

e non-contradiction wvs. trivialization principles;
e boolean vs. intuitionistic negation;
e boolean vs. multiplicative conjunction.

Finally, we analyse in Section 4, we apply those methods for relevant negation and
in Section 5 we discuss several other possible negations which can be analysed by
our method.

2 TERNARY FRAMES

The idea of using ternary frame for the semantics of substructural logics goes back
to [RM73], where it was used to provide a semantics for relevance logics. In a context
free of structural pressuposition, that semantics has been used in, for example,
[Kur94, DM97].

A ternary frame is a pair F = (W, R), where R is a any ternary relation on
W x W x W. The set W is a set of possible worlds. We normally represent that
a triple (a,b,¢) € R by writing Rabc. The elements of R are seen as a binary tree,
with a being the root node, b its left daughter, and c its right daughter. To reinforce
this point of view, Rabc is sometimes written as Ra, bc.

Every model has a distinguished world 0 € W. Unlike modal Kripke models,
a valid formula is not required to hold at all worlds of every model, but only at
the distinguished world of every model. The distinguished 0 has the following
properties:

Ra0a and Raa0

The language fragment we work with in this section consists of a countable set
of propositions, P = {p1,ps,...}, and the binary connectives —,,®. We use
A, B,C as variables ranging over substructural formulas. The connectives =, A
and - are, respectively, the classical implication, conjunction and negation.

IThese connectives also appear in the literature as /, \ and e.



A model M = (W, R, V,0) consists of a ternary frame plus a valuation V : P —
2W that maps propositional variables into a set of possible worlds. Formulas are
evaluated with respect to a possible world a € W, so that M, a |= A reads that the
formula A holds at a in model M. The semantics of the binary connectives over a
ternary model is given by:

M,al=p iff a € V(p)

M,al=A® B iff 33c(Rabe A M,bl= AN M,c = B)
M,a = A B iff Vb¥e(ReabA M,b = A= M, c = B)
M,a = B « A iff Vb¥e(Reba A M,b = A= M,c = B)

—~~

A formula is walid if it holds at 0 in all models. It is easy to see that a formula
of the form A — A or A + A is valid at ternary formulas.

A ternary model M = (W, R, V) can be seen as a first-order model structure
over Mpo = (W, R, Py, P»,...), where each unary predicate P; corresponds to a
propositional letter p; € P. A substructural formula can thus be translated into a
first-order one, with respect to a world a, in the following way:

FOu(p:) = Pi(a)

FO.(A®B) = 3b3c(Rabe A FO,(A) A FO.(B))
FO.(A — B) = Vbe(Reab A FOy(A) = FO.(B))
FO.(B < A) = Vbe(Reba A FOy(A) = FO.(B))

It is straightforward to see that M,a |= A iff Mpo = FO,(A).

Like in usual modal correspondence theory, if we want to make a formula A valid
over all models, this means that A should be true in all models, for all valuations;
this translates into a second-order formula, obtained by the universal closure of
FO,(A) over a and over all the predicate symbols occurring in it, that is:

VP, ...VP,YaFO,(A).

Such a formula provides a second-order constraint over the ternary relation R. It is
particularly interesting here (as in modal logic) to know whether this second-order
formula is equivalent to a first-order formula. However, it is not always possible to
find such a first-order equivalent to a second-order frame constraint. We illustrate
next a case where it is possible.

EXAMPLE 1 Consider the formula A = (p = q) = (¢ « p). We want to know
what restrictions should be imposed on ternary frames for it to be a valid formula.
For that, we compute FO,(A):

FO.((p—=q) = (¢ p) =

= Vbe(Reab A FOy(p — q) = FO.(q < p))
Vbc(Rcab A Vde(Rebd A P(d) = Q(e)) = Yfg(RgfcA P(f) = Q(g)))
= VbefgIde(Reab A (Rebd A P(d) = Q(e)) A (RgfcA P(f) = Q(g)))

At this point we know that for A to be a valid formula, the ternary frame has to obey
the second-order restriction YVPYQVa(FO,(A)). To obtain a first-order equivalent
to this formula, an appropriated valuation for P and () must be provided; this is
equivalent to finding a valuation for p and ¢ in the modal context. Finding such a



valuation is the crucial point of this method. Although we have a way of computing
one [Fin00], if one exists, for the substructural fragment, here we just present one:

Vip) ={f} = Vz(P(z) & z = f)
Vig) =W —{g9} = Vz(Q(z) &z #yg)

By substituting such a valuation in Va(FO,)(A) we obtain:

Vabcfg3ide(Reab A (Rebd ANd = f = e # g) = (Rgfc AT = 1)) <
Vefg(JabReab AVde(d = f ANe = g = —Rebd) = —Rgfc) <
Vbefg(JaRcab A =Rgbf = —Rgfc)

But since we know that, YcRcOc, it is always the case that, for ¢ = b, daRcab, so
we end up with the first-order restriction:

Vefg(Rgfe= Rgcf)

That is, the restriction imposed on R is the commutativity of its second and third
arguments. It remains to be shown that whenever we have the commutativity of
R’s second and third arguments, the formula A is valid; such a proof can be found
in [Kur94]. It follows that (p — ¢) — (¢ < p) corresponds to the restriction of 2,3-
commutativity over ternary frames. Note that it is well known that (p — q) — (¢ <
p) is a theorem of substructural logics that allow for commutativity of premises in
a sequent deduction [Dos93].

The really interesting part of the procedure above is to know whether the second-
order formula generated is equivalent to a first-order one and what is the substitution
that will lead to it. This is the basic task of our algorithm developed in [Fin00]; as
there is no space for a full presentation of the method, we only briefly present it
next.

2.1 The SLaKE-Tableaux Method

We compute a first order formula equivalent to a substructural sequent (or formula)
by means of a construction of a tableau. This method is called SLaKE-tableau
(Substructural Labelled KE).

Each formula in a SLaKE-tableau is signed with 7" or F' and receives a label;
the signed labeled formulas T' A : @ and F' A : b are called opposites. The original
sequent Aj,..., A, F C is associated with an initial SLaKE-tableau:

T A1 L ap
T A, :a,
FC:a
and with a first-order formula:
1/1 = —aaal . an[Val (Al) VANAN Van (An) A ﬁVa(C) A Ra(a1 . an_l)an AN ﬂl]

where V,(A) is the valuation of the formula A at label a and is defined as follows:



o V,(A) =4ep T if A is not atomic

o Vo(p) =aes (@ # a1)N...A(a # ayp), where p: ai,...,p: a occur in a branch
above p : a with opposite sign. If no opposite formula occurs above p : a,
Va (p) =def T.

Each of the tableau linear expansion rules is associated with an expansion of
the correspondence formula of the form #; := ¢(R, A1, ..., Ay, Hi+1), where R is the
ternary accessibility relation, A;,..., A, are the formulas generated in the expan-
sion, and f is the “substitution place” for next expansion and can be read simply
as truth. The tableau rules for SLaKE-tableaux are illustrated in Figure 1.

SLaKE Ezpansion  Formula Ezpansion
TB—A:a
TB:b fi := Ve(Reab = (Ve (A) A Bigr))
T A:c (new c)

FB—A:a
T B :b (new b) fi := 3b3c(Rcab A Vo (B) A Ve (A) A tig1)
F A:c (new c)

TA«<B:a
TB:b fi :== Ve(Reba = (Ve(A) A iy1))
T A:c (new c)

FA+<B:a
T B:b (new b) #; := Jb3c(Reba A Vo (B) A Ve (A) A tit1)
F A:c (new c)

T AeB:a
T A:b (new d) #; := Jb3c(Rabc A Vp(A) A Ve(B) Afit1)
T B : c (new c)

F AeB:a
TA:b f; := Ve(Rabe = (=Ve(B) A tit1))
F B :c (new c)

e b= Ve ARV (Va(4) A E)

Figure 1: SLaKE rules

In each linear rule in Figure 1, the formulas above the horizontal line are the
premises of the rule, and those below it are the conclusions of the rule. There are
one-premised and two-premised rules, but each rule has exactly one premise that is
a compound formula, which is called the main premise; other premises are called
auziliary. Two-premised rules are V-rules and one-premised rules are 3-rules. If
either of the conclusions of an J-rule is present on the current branch, it is not
added again with a new label. V-rules always generate a new conclusion.

The last rule in Figure 1 is the Principle of Bivalence (PB), the only branching
rule. It introduces two “substitution places” in the correspondence formula, £} 11



and §7, |, one for each new branch. A branch that can still be expanded is called
active. Each active branch in a SLaKE tableau always has exactly one substitution
place.

The importance of substitution places is that they guarantee that each formula
introduced in the correspondence formula will “see the correct context”, that is, it
will be in the scope of the correct quantifiers.

A full presentation of the method is beyond the scope of this paper. Here we
repeat Example 1 using the SLaKE-tableau method.

EXAMPLE 2 Consider the sequent ¢ — p - p < ¢. Its associated SLaKE tableau
is:

1. Tg—p:a

2. Fp«gq:a Y = —3a(t)

3. Tq:b from 2

4. Fp:c from 2 f1 := 3b3c(Recba A T AT At)
5. T'p:d from 1,3 f2 :=Vd(Rdab=d # cN43)

By putting together all substitution places we obtain the formula:
¢ = =JaFbIe(Rcba A Vd(Rdab = d # c))

which is equivalent to YaVbVc(Rcba = Rcab), the commutativity of the second and
third R-positions.

A tableau as above is deterministic, that is, at all expansions of a branch, there
is only a single expansion rule to be applied. In [Fin00] it has been shown that:

PROPOSITION 3 If the SLaKE tableau generated by a sequent is finite, satu-
rated and deterministic, then the associated first-order formula v it computes is
the sequent’s correspondence formula.

We note that SLaKE-tableaux may be infinite, in which case no first-order for-
mula is computed. I may also be non-deterministic, in which case we have to take
the conjunction of the formulas associated to all possible SLaKE-tableaux.

2.2 Extending the Method

As the example above shows, the method is based on the semantics of the connec-
tives. We can in this way extend the method to other connectives, such as classical
negation () and classical congunction (A) given by their semantical definitions:

Mya=-A it MalEA
M,al=ANBiff M,a = A and M,a = B

These semantical rules translate generate the following tableau rules:

T-A:a F-A:a
Faa T Ve g k= oVl d) M

The computational results in [Fin00] do not immediately apply to such exten-
sions, so we cannot affirm that it is a decidable process. However, the method can
still be applied to particular examples with success.

But the point we are going to make here is that such a method (even if not fully
automated for larger fragments) can be applied to the study of structural conditions
for paraconsistency.



3 CONSISTENT AND PARACONSISTENT RESTRICTIONS
ON TERNARY FRAMES

A consistency condition is a formula that one wants to see valid so that the system
is considered consistent. As a consequence, a system will be paraconsistent with
respect to a consistency condition if such a formula is invalidated.

We want to apply the techniques described above to associate a constraint over
ternary frames with a consistency formula. The rejection of such constraint will
therefore characterize paraconsistency over ternary models.

Usually, consistency formulas have to deal with negation. So we introduce clas-
sical negation (—) in our language with its usual semantics:

M,aE-Aiff MyalE A

The obvious extension of the first-order translation is: FO,(—A) = =FO.(A).
We can thus explore the constraint associated with consistency conditions related
to the principle of non-contradiction.

Counsistency Condition 1: —(p ® —p)

We start by computing the first order translation of —(p ® —p):

I. Fo(p®-p):0 ¢:=-f

2. T(p®-p) :0 t :=-Vo(p®-p) At

3. Tp:d

4. T -p:c flo := Jbc(RObc A Viy(p) A Vo (—p) A t3)
5. Fp:c s :=b#c

Putting everything together and doing some classical equivalences, we get the
formula

Vbe(RObe — b = ¢)

That is, for the consistency condition to be valid on ternary frames, the the spe-
cial world 0 is related only to pairs of identical worlds. A structural condition to
paraconsistency in this case would be:

Abc(RObc A b # ¢)

Hence for a paraconsistency that rejects the consistency condition above, it suffices
that in every model there is a triple (0,b,c) € R with distinct last two arguments.

Counsistency Condition 2: —(p A —p)

Suppose now that we want to add boolean conjunction in our language so that we
can study the constraint associated with the usual boolean consistency condition
~(p A -p).

For that, first, we add the obvious semantic definition

M,al=AAB iff Myal= A and M,a = B



together with its obvious first-order translation
FO.,(AANB)=FO,(A) ANFO.(B)
and the tableau rules

TAANB:a
T A:a fi = Va(A4) AVo(B) At
T B:a

FAANB:a
TA:a ;= Va(A)/\—'Va(B)/\ﬂ,'+1
F B:a

If we now apply our method to F —=(p A —p) we see that it is logically equivalent
to T; details omitted. This is not at all surprising, since we are dealing with
both boolean negation and conjunction, which are enough to define all classical
connectives, thus rejecting inconsistency.

Intuitionistic Negation

The main idea of intuitionistic negation (which we represent here as ~) is to assert
the negation of a formula in a world provided that this formula is not asserted at
any other world “above” it. In our ternary models, if Rabc then a is above b and c,
which we write @ > b and a > c¢. Formally:

a > b iff Ie(Rabe)

Such a definition is inspired on a similar one in [RM73]%. We then have, for ternary
frames, the usual intuitionistic definition of negation over Kripke models [Fit69]:

Mial=~A iff Vbo(b>a = M,b £ A)
This definition generates a first-order translation:
FO,(~A) =Vb(b>a = —~FO,(A))

and SLaKE-tableau rules

T ~A:
F ~A:
Tba g :=3b(b>aAVp(A) Ait1)

We then choose as a consistency condition the formula ~ (p® ~p). For space
reasons we omit here the details, but when we develop the expansion we get that
F~(p® ~p) corresponds to the first-order restriction:

Vabce(Rabe = b > ¢)

2In fact, since we do not assume any properties of R, we could define two orders, the other one
being a >2 ¢ iff Ic(Rabe).




imposing the order > on all R-related worlds. The paraconsistency condition here
states that in every model there must exist an R-related triple Rabc such that b is
not above c.

Similarly, a consistency condition of the form ~ (~ p ® p) would generate a
restriction of the form Vabc(Rabe = ¢ > b), leading to a different imposition of
>-ordering.

If both consistency conditions are required, a structural condition for paracon-
sistency should be that in every model there must exist an R-related triple Rabc
such that neither b nor ¢ is above the other. This is expressed by the following
structural condition:

dabe(Rabe A =(b > ¢) A —(c > b)).

Finally, we consider the consistency condition ~ (pA ~p). The development of
a SLaKE-tableau for F~ (pA ~p)) leads us to the first-order condition

Ya(a > a)

Thus the intuitionistic consistency condition ~ (p® ~ p) imposes >-reflexivity, which
is a condition normally expected in intuitionistic models. Those models support the
semantic of A in exactly the terms defined here?; see e.g. [Fit69].

So a paraconsistent condition that rejects this intuitionistic view of consistency
requires that every ternary model contains a >-irreflexive world:

Jda—(a > a).

Consistency as Trivialization

Another possible way of defining a consistency condition, perhaps more in confor-
mity with the original formulation of paraconsistency [dC74], is to state that an
inconsistency trivializes implication, that is, from p and its negation we can derive
any ¢. If we focus only on boolean conjunction, two new consistency conditions
arise, namely:

L (pA-p) = ¢
2. (pA ~p) = q.

By applying our method, we get their correspondent first-order restriction over
ternary frames, respectively as:

1. T;
2. Va(a > a).

Item 1 implies that the consistency conditions for boolean negation based on
non-contradiction and triviality lead exactly to the same restrictions over ternary
frames, and hence to the same paraconsistent condition. Item 2 tells us that exactly
the same fact occurs for intuitionistic negation, and the structural restriction of >-
reflexivity is the same for both non-contradiction and triviality conditions.

3the transitivity of > found in intuitionistic Kripke models is imposed by intuitionistic impli-
cation.



3.1 Summary and Analysis

Consistency Condition

Structural Restriction

=(p ® —p) Abc(RObe A b # )
(p®-p)—q Jabe(Rabe A'b # c¢)
~(p®~p) Jdabc(Rabe A Yd—Rbed)
(p®~p) —q Jabc(Rabe A Yd—Rbed)
~ (pA ~ p) JaVb—-Raab
(pA ~p) = ¢ JaVb-Raab
=(p A —p) impossible to violate
(pA-p)—=q impossible to violate

Table 1: Structural conditions for paraconsistency

Table 1 summarizes the results obtained by our method. Each consistency con-
dition is associated to the structural restriction that violates it, and is expressed in
terms of the ternary R relation.

What calls the attention in this result is that the pairs:

~(pe~p) (P®~p) —q
~((PA~p) (PA~p)—q
=(pA-p)  (PA-DP)—q

generate the same structural conditions for paraconsistency. That is, non-contradiction
and the corresponding trivialization condition yield the same structural condition.
The other pair examined here is

e ~(p®-p)
e (p®-p) —=gq

where the latter leads to a structural restriction for paraconsistency that is implied
by the the structural condition of the former.

But it is widely known that there are logics for which the non-contradiction and
trivialization conditions are totally independent.

The conclusion is that such logics employ a kind of negation that is neither
classical (in the sense of the semantic definition: M,a = —A iff M,a £~ A) nor
intuitionistic, also semantically defined. In fact, the semantics of negation may
take extra parameters in these logics; for example, in [Res00] we find semantics for
substructural negations that depend not only on the ternary relation R but also in
a partial order C of information refinement where Rabc does not necessarily imply
b C a. Other kinds of semantical definitions for negation can be found in [Dun94].

In the cases where intuitionistic or classical negation is employed with its fixed
semantics, trivialization and non-contradiction always yield structural conditions
that are either identical or strongly connected. As a last example of such connection,
we will examine the structural conditions associated with relevant negation.



4 RELEVANT NEGATION

There are a great range of relevant logics defined in the literature [AB75]. In several
of the proposed systems, and in particular in system R, a kind of negation is used,
which is represented as A, meaning that it is inconsistent with the formula A.

To provide a semantics for such a negation over ternary frames, Routley and
Meyer [RM73] postulated the existence of a unary function * : W — W such that,
for every a,b,c € W:

1l.a""=a

2. Rabc = (Ra*bc* A Ra*b*c)

With such a function, the System-R’s relevant negation [AB75] is defined as:
M,a = Aiff M,a* £ A

Note that in such a system, it is possible not to have neither A nor A holding at a
possible world a.

With such semantics we apply our method to the following consistency condi-
tions:

e (A®A)

e (A®A) —gq

By applying our method to it, we see that the first one imposes on the model
the condition:

Vbe(RO be = b = ¢*)
whose negation leads to the paraconsistency condition:
Jbc(RO*be A b # ¢*)

_ On the other hand, by applying our method to the trivialization formula (A®
A) — ¢ we obtain the frame condition:

Vabc(Rabe = b= c*)
which is leads to the following structural restriction:
Jabe(b # ¢* A Rabe)
Again, we see that the latter paraconsistency condition — associated with

trivialization — 1is logically implied by the former one — associated with non-
contradiction.



5 CONCLUSIONS

We have provided a method that allows us to find structural conditions on ternary
Kripke frames to support paraconsistency. Our method is not biased towards any
particular definition of paraconsistency. The examples developed here were based
on possible definitions of consistency conditions to be refuted by a paraconsistent
model.

Admittedly, the examples of consistency condition displayed here were quite
simple. For the cases of consistency conditions based on the principle of non-
contradiction and involving boolean conjunction and the use of boolean and intu-
itionistic negation, namely the formulas —(p A =¢) and ~ (pA ~ p), the results
obtained were the expected ones; the corresponding conditions based on the triv-
ialization principle provided coincident conditions. This represents a validation of
the method presented here.

More importantly, the examples presented show that the method, whether au-
tomated or not, is really quite flexible and may, in principle, be applicable to more
daring definitions of paraconsistency than those presented here. There are several
candidates for alternative negation, such as those in [Res00]:

e split negation;

e simple negation;

De Morgan Negation;

ortho-negation; and

Strict De Morgan Negation;

These negations need a more refined semantics, for which the simple ternary se-
mantics used in this paper is a limit case. We know that in such cases the formula
computed by our SLaKE-tableau method is implied by the correspondence formula,
but we do not know if the formula thus computed is the correspondence formula
(nor do we know whether the method can decide in the generic case, as it can in
the simple fragment of {®, —, «}, whether the condition does have a first-order
correspondence formula.
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