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1Algorithmi
 Corresponden
e Theoryfor Substru
tural Categorial Logi
Mar
elo Fingerabstra
t. Substru
tural 
ategorial 
onne
tives 
an be treatedas modalities. Su
h binary 
onne
tives have a possible worlds se-manti
s based on ternary a

essibility relations. This modal treat-ment allows one to explore 
ategorial 
orresponden
e theory, inanalogy to the usual 
orresponden
e theory for modal logi
s. Itsaim is to �nd a �rst-order restri
tion over ternary frames 
orre-sponding to a 
ategorial sequent.This paper proposes an algorithmi
 method that deals with
ategorial 
orresponden
e theory. It proposes a proof theoreti
almethod based on SLaKE-tableaux that produ
es a se
ond-orderformula 
orresponding to a given 
ategorial sequent. When theSLaKE-tableau is �nite, a valuation for the propositional atoms isobtained from the tableau; a �rst-order formula equivalent to thegiven sequent over ternary frames is thus 
omputed. For in�nitetableaux, no �rst-order formula is 
omputed.1 Introdu
tionSin
e Kripke (Kripke 1963) has proposed a possible worlds semanti
sfor modal logi
s, it has been noted that the presen
e of 
ertain modalaxioms impose spe
i�
 restri
tions on the binary a

essibility relation ofKripke frames. For example, it is well known that the axiom �p! p istrue at any frame (W;<) whose binary a

essibility relation is re
exive,8x(x < x); 
onversely, models of any system that has su
h a formula asa theorem must have a re
exive a

essibility relation.In fa
t, any modal axiom 
an be translated to a se
ond-order for-mula. Some of these se
ond-order formulas are equivalent to �rst-order1Advan
es in Modal Logi
, Volume 3F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyas
hev, eds.Copyright 

 2001, CSLI Publi
ations.



2 / Mar
elo Fingerformulas over Kripke frames. At the heart of modal 
orresponden
e the-ory lies the identi�
ation of whi
h axioms 
orrespond to some �rst-orderrestri
tion over Kripke frames (van Benthem 1984). A spe
ial 
lass ofmodal axioms, known as the Sahlqvist formulas, is guaranteed to gener-ate �rst-order restri
tions over Kripke frames, and su
h restri
tions 
anbe obtained algorithmi
ally (Sahlqvist 1975).The work of Routley and Meyer (1973) has shown that relevan
elogi
s 
an be treated as a modal logi
 with a Kripke-style semanti
s.This was later extended to other logi
s in the family of substru
turallogi
s (Do�sen 1993, Restall 2000), and in her PhD thesis, Natasha Kur-tonina (1994) presented su
h semanti
s for a fragment of substru
turallogi
s, known as 
ategorial logi
s, without any stru
tural pressuposi-tion. In analogy to traditional modal logi
s, 
ategorial logi
s have threebinary 
onne
tives and their semanti
s is based on a ternary1 a

es-sibility relation R � W 3. The 
onne
tives generally found in 
atego-rial logi
s (Moortgat 1997, Carpenter 1997) are here2 represented as� (
alled produ
t, or fusion, or multipli
ative 
onjun
tion), = (slash orright-impli
ation) and n (ba
kslash or left-impli
ation).Categorial logi
s are just a fragment of substru
tural logi
s. In asequent presentation of substru
tural logi
s, it is also known that thepresen
e of 
ertain stru
tural rules 
orrespond to derivability of 
ertainsequents. For example, any system that allows for the stru
tural rule ofasso
iativity derives A=B ` (A=C)=(B=C).With a Kripke-style semanti
s for 
ategorial logi
s, a semanti
 
on-ne
tion between derivable sequents and semanti
 restri
tions 
ould beinvestigated. The idea of a 
orresponden
e theory for substru
tural log-i
s was proposed by Roorda (1991). Kurtonina (1994) later developedseveral methods to obtain �rst-order restri
tions over ternary Kripkeframes 
orresponding to 
ategorial formulas; ea
h method deals with adi�erent fragment of 
ategorial logi
s. One of these methods involvedtranslations of formulas into a suitable fragment; another method wasmore in the modal logi
 tradition, generating a se
ond-order formula anda valuation of se
ond-order variables that yields a �rst-order equivalentformula.This work pursues further the topi
 of 
orresponden
e theory for
ategorial logi
s started by Roorda (1991) and Kurtonina (1994). Ourapproa
h is algorithmi
, pursuing a unifying method for all 
ategorialformulas. We propose a tableaux-based method, 
alled SLaKE3-tableaux,1In general, an n-ary 
onne
tive is de�ned in terms of an (n+1)-ary a

essibilityrelation.2These 
onne
tives are also found in the literature as 
, !and  .3Substru
tural Labelled KE-tableaux



Categorial Corresponden
e Theory / 3to 
onstru
t a �rst-order formula 
orresponding to a 
ategorial sequent.SLaKE-tableaux are based on KE-tableaux (D'Agostino 1992) over T -and F -signed formulas. Furthermore, to deal with its substru
tural side,formulas are labelled following the Labelled Dedu
tive System dis
i-pline (Gabbay 1996, D'Agostino and Gabbay 1994, Broda et al. 1996a).We show that if a SLaKE-tableau is deterministi
 and �nitely saturates(ie, no bran
hes 
an be further expanded) a �rst-order formula 
orre-sponding to the input sequent 
an be 
omputed.The presentation of this tableau-based method for 
orresponden
etheory pro
eeds as follows. Se
tion 2 provides the ba
kground for ternaryframes and KE-tableaux. This enables the de�nition of SLaKE-tableauxin Se
tion 3 and the algorithm for 
onstru
ting a 
orresponden
e for-mula for 
ategorial sequents. We then show several examples of how to
onstru
t su
h a formula in Se
tion 4, followed by a demonstration of themethod's 
orre
tness in Se
tion 5. We 
on
lude in Se
tion 6 listing thework that still has to be done in substru
tural 
orresponden
e theory.2 Ba
kground2.1 Ternary FramesTernary frames are relational stru
tures that allow us to view the 
on-ne
tives of (substru
tural) 
ategorial logi
 as binary modalities. In our
ase, we will deal with the fragment 
ontaining the usual 
ategorial bi-nary 
onne
tives, = (slash), n (ba
kslash) and � (produ
t). The � 
on-ne
tive is assumed to be left-asso
iative, that is, A�B �C � (A�B)�C.A sequent 
al
ulus presentation for su
h fragment is shown in Figure 1.The ante
edents of sequents are binary trees, where �[A;B℄ indi
atesthat (A;B) is a subtree of �; ante
edents are also left asso
iative, thatis, �;�;� � (�;�);�. Consequents of sequents are simple formulas.Note that no stru
tural rules are being admitted a priori, and thereforewe are in the non-asso
iative Lambek Cal
ulus Lambek 1958.On the semanti
 side, we de�ne a ternary frame as a pair F = (W;R),where W is a non-empty set of possible worlds and R is a ternary a

es-sibility relation. A ternary model M = (W;R; V ) 
onsists of a ternaryframe plus a valuation V : P ! 2W , mapping propositional letters tosets of worlds.The semanti
 interpretation of 
ategorial formulas in the f=; n; �g-fragment over ternary frames is:
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elo Finger (Axiom)A ` A�[A℄ ` C � ` B (= `)�[A=B;�℄ ` C �; B ` A (` =)� ` A=B�[A℄ ` C � ` B (n `)�[�; BnA℄ ` C B;� ` A (` n)� ` BnA�[A;B℄ ` C (� `)�[A �B℄ ` C � ` A � ` B (` �)�;� ` A �BFIGURE 1 A sequent 
al
ulus presentation of the non-asso
iative LambekCal
ulus.F; V; a j= p i� a 2 V (p)F; V; a j= A=B i� 8b8
(R
ab^ F; V; b j= B ) F; V; 
 j= A)F; V; a j= BnA i� 8b8
(R
ba^ F; V; b j= B ) F; V; 
 j= A)F; V; a j= B �A i� 9b9
(Rab
 ^ F; V; b j= A ^ F; V; 
 j= B)We also use the abbreviations:Rab(
d) =def 9x(Rabx ^ Rx
d)Ra(b
)d =def 9y(Rayd ^ Ryb
)Su
h abbreviation asso
iates to the left: Ra(b
d)e =def Ra((b
)d)e, et
.As usual, we write F; a j= A when F; V; a j= A for any valuation V ; if ais omitted, this means that the 
ondition holds for any possible world.A sequent A1; : : : An ` C holds at a world a 2 W in ternary frameF (notation: F; a j= (A1; : : : An ` C) ) i� F; V; a j= A1 � : : : �An impliesF; V; a j= C. This is equivalent to saying that if for some a1; : : : ; an,Ra(a1 : : : an�1)an and, for 1 � i � n, F; V; ai j= Ai, this implies F; V; a j=C. Note that F 
an be seen as a �rst-order model for a language overR and P1; : : : ; Pn, where ea
h Pi is a predi
ate symbol 
orrespondingto the propositional letter pi. The notation (8P )' indi
ates the univer-sal 
losure of all se
ond-order variables in ', and (9P )' the existentialone. Following the modal logi
 tradition, the standard translation of a
ategorial formula A into se
ond-order logi
 formula is (8P )8aSTa(A),



Categorial Corresponden
e Theory / 5where: STa(pi) = Pi(a)STa(A �B) = 9b
(Rab
 ^ STb(A) ^ ST
(B))STa(B=A) = 8b
(R
ab^ STb(A)) ST
(B))STa(AnB) = 8b
(R
ba^ STb(A)) ST
(B))The se
ond-order quanti�
ation is over the relevant predi
ate sym-bols and re
e
ts all relevant valuations in a frame. So every 
ategorial(modal) sequent A ` C 
orresponds to a se
ond-order formula su
h that:F j= (A ` C) i� F j= (8P )8a (STa(A)) STa(C))The 
ru
ial point of 
orresponden
e theory is to know when su
h ase
ond-order formula de�nes a �rst-order frame property, that is, if thereis a �rst-order formula  su
h thatF j= (A ` C) i� F j=  It is the 
omputation of su
h a property, when it exists, that we inves-tigate next by means of KE- and SLaKE-tableaux.2.2 KE TableauxD'Agostino has shown in (D'Agostino 1992) that analyti
 tableaux, inthe style proposed by Smullyan (Smullyan 1968), 
annot polynomiallysimulate truth tables and in some 
ases perform exponentially worsethan them. To avoid su
h problems in a prin
ipled way, KE-tableauxwere introdu
ed.4As usual, KE-tableaux deal with signed formulas, where ea
h formulais signed with a T (truth) or an F (falsity). The signed formulas T Aand F A are 
alled opposite formulas. A tableau bran
h that 
ontains apair of opposite formulas is 
losed. A theorem is proved by refutation,trying to 
lose all bran
hes of the tableau. Ea
h 
onne
tive has a pairof expansion rules, that de
ompose a signed formula into smaller signedformulas.Unlike analyti
 tableaux, all de
omposition rules in a KE-tableauxare linear. Some of the rules are single premised, while others take twopremises. For instan
e, we present here the KE-rules for 
lassi
al impli
a-tion ()): a two-premised rule for positively signed formulas (T B ) A)with a single 
on
lusion, and one single premised rule for negatively4No one seems to know what KE stands for; apparently K stands for \klassis
h",used in analogy to Gentzen's LK system; E may stand for \elimination" (of what?).KE was supposed to be just an initial working name, but somehow it stu
k.



6 / Mar
elo Fingersigned ones (F B ) A) with a double 
on
lusion:T B ) AT BT A F B ) AT BF ASimilarly, a pair of linear rules 
an be given to any of the 
lassi
alboolean 
onne
tives. The only bran
hing rule in a KE-tableau is thePrin
iple of Bivalen
e (PB), that states that a formula 
an be eithertrue or not true5: T A F AUsually, the bran
hing formula A is 
hosen to generate a se
ond premiseto some linear rule, so it is always a subformula of some existing formulain the tableau. As a 
onsequen
e, KE-tableaux bran
h fewer times thana normal analyti
 tableau, and it 
an p-simulate a truth table.3 Substru
tural Labelled KE TableauxSubstru
tural Labelled KE (SLaKE) tableaux are the main proof theo-reti
al equipment we use in the generation of 
orresponden
e formulasfor substru
tural sequents.The use of KE tableaux for substru
tural logi
s have been pro-posed in (D'Agostino and Gabbay 1994), by atta
hing a label to thesigned formula, as in T A : a. We use this idea, but without follow-ing the labelling dis
ipline developed in (D'Agostino and Gabbay 1994,Broda and Finger 1995, Broda et al. 1996b). Instead, we simply add anew label at ea
h new node of the tableau. Formally, let L be a 
ount-able set of labels, let A be a 
ategorial formula; then for every a 2 L,the formulas T A : a and F A : a are signed labelled formulas.Furthermore, ea
h �nite SLaKE-tableau is asso
iated with a 
orre-sponden
e formula. The original sequent is asso
iated with an initialtableau and with a se
ond-order formula. Ea
h of the tableau linearexpansion rules is asso
iated with an expansion of the 
orresponden
eformula of the form ℄i := '(R;A1; : : : ; An; ℄i+1), where R is the ternarya

essibility relation, A1; : : : ; An are the formulas generated in the ex-pansion, and ℄ is the \substitution pla
e" for next expansion and 
anbe read simply as truth. The tableau rules for SLaKE-tableaux are illus-trated in Figure 2.In ea
h linear rule in Figure 2, the formulas above the horizontal lineare the premises of the rule, and those below it are the 
on
lusions of5Note that this is di�erent from true or false | the prin
iple of ex
luded middle| whi
h is not valid for all substru
tural logi
s.



Categorial Corresponden
e Theory / 7SLaKE Expansion Formula Expansion RxyzT A=B : aT B : bT A : 
 (new 
) ℄i := 8
(R
ab) (ST
(A) ^ ℄i+1)) R
abF A=B : aT B : b (new b)F A : 
 (new 
) ℄i := 9b9
(R
ab ^ STb(B) ^ :ST
(A) ^ ℄i+1)R
abT BnA : aT B : bT A : 
 (new 
) ℄i := 8
(R
ba) (ST
(A) ^ ℄i+1)) R
baF BnA : aT B : b (new b)F A : 
 (new 
) ℄i := 9b9
(R
ba ^ STb(B) ^ :ST
(A) ^ ℄i+1)R
baT A � B : aT A : b (new b)T B : 
 (new 
) ℄i := 9b9
(Rab
 ^ STb(A) ^ ST
(B) ^ ℄i+1) Rab
F A � B : aT A : bF B : 
 (new 
) ℄i := 8
(Rab
) (:ST
(B) ^ ℄i+1)) Rab
T A : x F A : x ℄i := 8x((STx(A) ^ ℄1i+1) _ (:STx(A) ^ ℄2i+1)) |FIGURE 2 SLaKE rulesthe rule. There are one-premised and two-premised rules, but ea
h rulehas exa
tly one premise that is a 
ompound formula, whi
h is 
alled themain premise; other premises are 
alled auxiliary. Two-premised rulesare 8-rules and one-premised rules are 9-rules. If either of the 
on
lusionsof an 9-rule is present on the 
urrent bran
h, it is not added again witha new label. 8-rules always generate a new 
on
lusion.The last rule in Figure 2 is the Prin
iple of Bivalen
e (PB) bran
hingrule. It is only applied for a formula A following the bran
hing heuristi
s :PB is used for a formula A that serves as an auxiliary premisefor a 8-rule; PB is only applied in a bran
h when no otherlinear expansion is possible.The main premises that trigger the appli
ation of PB for A are: F A�B,T AnB and T B=A. The 
orresponding 8-rule will be appli
able on the
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elo FingerT A bran
h. This heuristi
s guarantees that only subformulas of theoriginal sequent will be introdu
ed by PB. It introdu
es two \substitu-tion pla
es" in the 
orresponden
e formula, ℄1i+1 and ℄2i+1, one for ea
hnew bran
h. A bran
h that 
an still be expanded is 
alled a
tive. Ea
ha
tive bran
h in a SLaKE tableau always has exa
tly one substitutionpla
e.The importan
e of substitution pla
es is that they guarantee thatea
h formula introdu
ed in the 
orresponden
e formula will \see the
orre
t 
ontext", that is, it will be in the s
ope of the 
orre
t quanti�ers.A sequent of the form A1; : : : ; An ` C is transformed into the initialSLaKE-tableau: T A1 : a1...T An : anF C : aSin
e the tableau is a refutation method, this indu
es the 
orrespon-den
e formula::' = :9aa1 : : : an[ STa1(A1) ^ : : : ^ STan(An) ^ :STa(C)^Ra(a1 : : : an�1)an ^ ℄℄A single premised sequent A ` C generates the initial tableau 
ontainingT A : a and F C : a, with the initial 
orresponden
e formula :'1(℄1) =:9a(STa(A)^:STa(C)^ ℄1). We 
ould extend the method for sequentswith empty ante
edents, but we do not pursue this topi
 here.The aim of the SLaKE-tableau 
onstru
tion is not to 
lose everytableau bran
h, but to expand ea
h tableau bran
h until no more ex-pansions are possible. Ea
h expansion step will also give us a new ver-sion of the 
orresponden
e formula. If we 
an �nitely expand all tableaubran
hes, a valuation for the atomi
 formula is 
onstru
ted, so that weobtain a �rst-order formula by substituting in the �nal formula the eval-uated values. It is also possible that there will be some in�nite bran
hes(something that would not happen in simple propositional tableaux), inwhi
h 
ase the above method is not appli
able.A SLaKE-saturated set � is a set of labelled signed formulas and ofRxyz formulas su
h that, with respe
t to the rules of Figure 2:(a) If the premise of a rule is in �, ea
h of its 
onsequen
e is in � forsome label, and the Rxyz formula from the Rxyz-
olumn is alsoadded to �.(b) For ea
h 
ompound formula in � that is a main premise of a 8-rule,there must be in � either an auxiliary premise or the opposite of
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e Theory / 9it.The expansion of a tableau aims at 
onstru
ting bran
hes that areSLaKE-saturated sets. Item (a) 
orresponds to normal bran
h expan-sion. The fa
t that the 
onsequen
e of a 8-rule is always added to �with a new label rises the possibility of having in�nite SLaKE-saturatedsets. Item (b) guides the bran
hing heuristi
s. At the end of a �niteexpansion, a 
orresponden
e formula will be built from a suitable valu-ation. Let us show it through examples.Example 3.1 Consider the sequent p=q ` qnp. Its asso
iated SLaKEtableau is:1: T p=q : a2: F qnp : a :' = :9a(STa(p=q) ^ :STa(qnp) ^ ℄1)3: T q : b from 24: F p : 
 from 2 ℄1 := 9b9
(R
ba ^Q(b) ^ :P (
) ^ ℄2)5: T p : d from 1, 3 ℄2 := 8d(Rdab) P (d) ^ ℄3)Initially, we expand line 2, and simultaneously, using the semanti
s ofqnp, we expand the 
orresponden
e formula substituting ℄1 into it. Wethen use lines 1 and 3 for another expansion, obtaining ℄2. At this point,the tableau is saturated and 
losed (remember our main goal is not to
lose a tableau, but to saturate every bran
h of it). So we make ℄3 := >.We have thus built the se
ond-order formula::' = :9a( STa(p=q) ^ :STa(qnp)^9b9
(R
ba ^Q(b) ^ :P (
) ^ 8d(Rdab) P (d))))The formula :' is equivalent to the original sequent, so a suitable val-uation has to be 
onstru
ted to obtain a �rst-order formula. Su
h avaluation is impli
itly built in the following way. If T r : x o

urs in abran
h, then P (x) must hold i� x is di�erent from all worlds y su
h thatF r : y o

urs in the same bran
h above it. Similarly, if F r : x o

urs ina bran
h, then :P (x) must hold i� x is di�erent from all worlds y su
hthat the T r : y o

urs in the same bran
h above it. By applying thisrule to the tableau above, we get the impli
it 
anoni
al valuations of Pand Q: Q(b)$ >(:P (
)$ >) ^ (P (d)$ d 6= 
)Saturation guarantees that the 
ompound formulas in :' 
an besubstituted by >. By substituting ea
h se
ond-order variable in :' bytheir 
anoni
al valuation, we obtain the �rst-order formula:9a9b9
(> ^ > ^ R
ba ^ 8d(Rdab) d 6= 
))
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elo Fingerwhi
h is equivalent to 8a8b8
(R
ba ) R
ab), meaning that R musthave the 
ommutativity property for its se
ond and third positions. It iseasy to verify that any model satisfying this property also satis�es theoriginal sequent, and vi
e-versa. �We will prove the 
orre
tness of this method in Se
tion 5. First, letus present the method in detail.A valuation V 0, de�ned over the set of possible worlds W 0, is said toextend V over the set W �W 0 if the two valuations agree on the truthof all atoms at all worlds in W .The expansion of a tableau is the stepwise 
onstru
tion of a 
ounter-model for the input sequent. Ea
h step generates:� a valuation Vi+1 extending Vi over the set of labels in the tableauat step i; and� a se
ond-order formula :'i+1(℄i+1) that is equivalent to :'i(℄i).De�nition 3.2 Let X 2 fT; Fg; de�ne �X su
h that �T = F and �F = T .For ea
h SLaKE atomi
 formula X p : x in the tableau, de�ne:O(X p : x) = fy j �X p : y o

urs \above" X p : xgFor every atomi
 p, de�ne the 
anoni
al valuation of P (x) impli
itly as:X̂p:x((P (x)$ ^y2O(Tp:x)x 6= y) ^ (:P (x) $ ^y2O(Fp:x)x 6= y))The rationale of the 
anoni
al valuation is simply that an atom 
an-not be both true and false at the same world. This is the minimal 
ondi-tion that any model must verify. To obtain a �rst-order formula we needto substitute the 
anoni
al valuation into :'. The 
anoni
al valuationis de�ned su
h that no s
ope violation is possible, for the substitutionintrodu
es no free variables. If the tableau bran
hes, ea
h sub-bran
his developed independently and is not a�e
ted the labels introdu
ed atother bran
hes. This has the e�e
t of restri
ting the s
ope of quanti�ersin the 
onstru
tion of the 
orresponden
e formula.If the tableau saturates, su
h a valuation satis�es all 
ompound for-mulas (Lemma 5.3). The �rst-order formula : thus obtained is obvi-ously implied by :'.Let (9P )' be the se
ond order existential 
losure of '. If the tableausaturates in �nitely many steps, then a 
ountermodel F� must satisfyF� j= (9P )'. That is, the 
lass of models that validate the initial sequentdoes not 
ontain F�. If there are only �nitely many possible refutationsof the initial sequent, we obtain �nitely many (say m) se
ond-orderformulas :'j , one for ea
h refutation, that when substituted by the
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orrespondent 
anoni
al valuation ea
h generate : j (1 � j � m), allimplied by :'.Furthermore, due to saturation, any possible refutation must satisfyone of the 'j , so a 
ountermodel to the input sequent satis�es the se
ond-order formula (9P )W'j , whi
h is equivalent to (9P )'. But, with the
onstru
ted 
ounter valuations we have a witness for that existentialse
ond-order quanti�
ation, so ea
h 'j implies its 
orrespondent  j . Andtherefore : j implies :'j and Vmj=1 : j implies (and thus is equivalentto) :'j .As a 
onsequen
e, if there is a single way to �nitely refute a sequent,the �rst-order formula generated : is equivalent to the se
ond-orderformula :', whi
h is equivalent to the validity of the input sequent. Thismotivates the following de�nition.A SLaKE-tableau is deterministi
 if at every point of its extensionthere is only one appli
able rule. From what has just been explainedabove, �nitely-saturated deterministi
 tableaux generate a �rst-orderformula equivalent to its input sequent. If the tableau is �nite and non-deterministi
, one has to generate all the possible expansions, and forea
h one 
ompute its asso
iated formula : i; the �rst-order formulaequivalent to the validity of the input sequent is the 
onjun
tion of allsu
h formulas.We now present the full algorithm for 
omputing the 
orresponden
eformula.Algorithm 3.1Input: a sequent A1; : : : ; An ` C.Output: its �rst-order 
orresponden
e formula, if there are only �niterefutations.1. Initialize the tableau for T A1 : a1; : : : ; An : an and F C : a, withinitial 
orresponden
e formula :'(℄).2. Repeat while the tableau is not saturated nor an in�nite bran
hhas been dete
ted.(a) If there is an appli
able rule, expand the tableau and the
orresponden
e formula a

ording to the rules in Figure 2.(b) If there are no linear rules appli
able but the tableau is notsaturated, 
hoose a 
omplex formula over whi
h to apply thebran
hing rule PB and 
ontinue expanding both bran
hes.3. If the tableau has an in�nite bran
h, stop.4. Otherwise, a se
ond-order formula :' was generated. Constru
tthe 
anoni
al valuations for every atom p.
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elo Finger5. If the tableau is deterministi
, output the �rst-order formula : obtained by substituting all 
ompound formulas by > and all P (x)by its 
anoni
al valuation at the time of introdu
tion. Otherwise,repeat items 2, 3 and 4 for ea
h of the possible refutations, ea
hgenerating : j ; output V: j .Next we see a few more examples.4 ExamplesExample 4.1 [Finite Deterministi
 Non-Bran
hing Tableau℄Consider the sequent p=q ` (p=r)=(q=r); su
h sequent is not in theformat of the \Sahlqvist-van Benthem" Theorem in (Kurtonina 1994)and had to be dealt with by means of a translation method. A SLaKE-tableau 
onstru
ted for it looks like:1: T p=q : a :' = :9a(STa(p=q)^2: F (p=r)=(q=r) : a :STa((p=r)=(q=r)) ^ ℄1)3: T (q=r) : b from 2 ℄1 := 9b9
(R
ab^4: F (p=r) : 
 from 2 STb(q=r) ^ :ST
(p=r) ^ ℄2)5: T r : d from 46: F p : e from 4 ℄2 := 9d9e(Re
d^ R(d) ^ :P (e) ^ ℄3)7: T q : f from 3,5 ℄3 := 8f(Rfbd) (Q(f) ^ ℄4))8: T p : g from 1,7 ℄4 := 8g(Rgaf ) (P (g)^ ℄5))The 
anoni
al valuation for P (w) in :' is:(P (g)$ g 6= e) ^ (:P (e)$ >)Q(f)$ >R(d)$ >By substituting the 
anoni
al valuation to :', whi
h also makes all
ompound formulas true, we obtain::9a9b9
(R
ab ^ 9d9e(Re
d ^ 8f(Rfbd) 8g(Rgaf ) g 6= e)))whi
h is equivalent to8a8b8d8e( Re(ab)d) Rea(bd) ):That is, the sequent A=B ` (A=C)=(B=C) imposes a restri
tion of left-asso
iativity to the se
ond and third positions of the ternary relationR. Note that it is well know from substru
tural logi
s that the sequentA=B ` (A=C)=(B=C) is provable whenever the stru
tural rule of asso-
iativity is a

epted (Do�sen 1993). This shows a remarkable 
onne
tion
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e Theory / 13between proof-theoreti
al properties and ternary frame semanti
s, whi
hholds for other axioms too.Example 4.2 [Finite Deterministi
 Bran
hing Tableau℄Now let us see an example with bran
hing. For that, 
onsider Peir
e'sAxiom (pnq)np ` p. When the tableau is initialized, no linear rules areappli
able, so the bran
hing heuristi
s is applied to pnq, 
orrespondingto the valid disjun
tive statement 8b(STb(pnq) _ :STb(pnq)):1: T (pnq)np : a2: F p : a3(i): T pnq : b 3(ii): F pnq : b4(i): T p : 
5(i): T q : d 4(ii): T p : e5(ii): F q : fwhi
h has the 
orresponding se
ond-order expansion::' = :9a(STa((pnq)np) ^ :P (a) ^ ℄1)℄1 := 8b((STb(pnq) ^ ℄i2) _ (:STb(pnq) ^ ℄ii2 )))℄i2 = 8
(R
ba) (P (
) ^ ℄i3))℄i3 = 8d(Rd
b) (Q(d) ^ ℄i4)) ℄ii2 = 9e9f(Rfeb ^ P (e) ^ :Q(f)^℄ii3 )The bran
hes are independently developed. The left bran
h will 
ausesubstitutions in ℄i2 and the right bran
h will 
ause substitutions in ℄ii2 .Sin
e the substitution o

urs in a negative 
ontext, the bran
hing willimpose a 
onjun
tion of 
onstraints, ea
h of whi
h 
an be 
omputedseparately. New labels 
ould be repeated on both bran
hes, sin
e therewill never be a quanti�er s
ope 
onfusion, but for 
larity reasons we willalways use variables new to the entire tableau.If we were looking for a 
losed tableau, we 
ould stop the develop-ment of the left bran
h at 4(i); however, our aim here is to obtain aSLaKE-saturated set at ea
h bran
h, so we pro
eed to obtain 5(i). The
orresponden
e formula obtained after both bran
hes are saturated andnegation is pushed inside is:8a9b[ :(STa((pnq)np) ^ :P (a) ^ STb(pnq)^8
(R
ba) (P (
) ^ 8d(Rd
b) Q(d))))) ℄ ^8a9b[ :(STa((pnq)np) ^ :P (a) ^ :STb(pnq)^9e9f(Rfeb ^ P (e) ^ :Q(f))) ℄The �rst 
onjun
t 
orresponds to the left bran
h, and the se
ond
onjun
t 
orresponds to the right one. Sin
e ea
h bran
h is developedindependently, the 
anoni
al valuation is developed as before, that is:
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elo Finger(:P (a)$ >) ^ (P (
)$ 
 6= a) ^ (P (e)$ e 6= a)(Q(d)$ >) ^ (:Q(f)$ >)The �rst-order 
orresponden
e formula thus obtained is:8a9b[:(8
(R
ba) (
 6= a ^ 8d(Rd
b) >))))^:(9e9f(Rfeb ^ e 6= a ^ >))℄whi
h is equivalent to8a9b(Raba ^ 8ef(Rfeb) e = a))Kurtonina (Kurtonina 1994) has shown that this 
ondition plus asso-
iativity (Example 4.1) and 
ommutativity (Example 3.1) makes theternary model 
ollapse, that is, they imply 8ab
(Rab
) a = b = 
).Example 4.3 [Finite Non-Deterministi
 Tableau℄All SLaKE-tableaux seen so far have been deterministi
 in the sensethat, at every step, there was a single expansion rule to be applied toa bran
h. Consider now a sequent for whi
h we have more than oneappli
able expansion at the initial step:A=B;B;A=C;C ` A(1)whose initial expansion has two 
hoi
es: T A=B : a with T B : b, orT A=C : 
 with T C : d. If the �rst pair is 
hosen �rst, the 
orresponden
eformula obtained is8ab
de( Re(ab
)d) (Reab _ (Re
d ^ 9fRfab)) );(2)and if the se
ond pair is 
hosen �rst, a di�erent 
orresponden
e formulais obtained:8ab
de( Re(ab
)d) (Re
d _ (Reab ^ 9gRg
d)) ):(3)Sin
e both formulas 
onstrain the frame, we take the 
onjun
tion of (2)and (3), thus obtaining8ab
de( Re(ab
)d) (Reab _ Re
d) ):(4)That is, with non-deterministi
 SLaKE-tableaux, we have to take the
onjun
tion of the 
orresponden
e formulas generated by all possibletableaux. Sin
e we have exhausted all possible refutations, this meansthat a frame validates (1) i� it satis�es (4).
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e Theory / 154.1 In�nite Bran
hesIt is not always the 
ase that a tableau bran
h 
an be �nitely saturated.In those 
ases we 
annot apply the method above, so we do not get a �rst-order formula. We present next two 
ategorial formulas that generatein�nite tableaux. It is known from (Kurtonina 1994) that these formulashave no 
orrespondent �rst-order formula, so it is quite reassuring thatour method does not produ
e one.For example, 
onsider the tableau for A=A ` AnA:1: T A=A : a2: F AnA : a3: T A : b from 24: F A : 
 from 25: T A : d from 1 and 36: T A : e from 1 and 57: T A : f from 1 and 6...Another example is (AnA)nA ` A:1: T (AnA)nA : a2: F A : a3i: T AnA : b4i: T A : 
5i: T A : d from 3i and 4i6i: T A : e from 3i and 5i... 3ii: F AnA : b4ii: T A : e5i: F A : fNote that the in�nite bran
hes in the tableau above are 
hara
terizedby 
y
les of T -signed formulas T A=A or T AnA and T A. Su
h 
y
les
an be of larger size and involve more 
omplex formulas, but as longas a single element of the 
y
le is derived a se
ond time (with a newlabel), an in�nite bran
h is guaranteed, for this element will then beregenerated in�nitely often.5 Corre
tness of the MethodWe now prove the 
orre
tness of the method developed in this work. We�rst note the following property of SLaKE expansions.Lemma 5.1 Suppose a bran
h expansion step has transformed :'n(℄n)into :'n+1(℄n+1). Then :'n(℄n) and :'n+1(℄n+1) are logi
ally equiva-
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elo Fingerlent over the 
lass of all frames.Proof. Clearly, 'n+1(℄n+1) j= 'n(℄n) over the 
lass of all frames. Forthe other dire
tion, 
onsider �rst linear expansions. Note that ea
h ℄-expansion in Figure 2 is a logi
al 
onsequen
e of the semanti
 de�nitionof the rule premises. Sin
e the semanti
 de�nition of the premises alwayso

ur positively in 'n(℄n), it is the 
ase that 'n(℄n) j= 'n+1(℄n+1). Alsonote that the expansion for PB is logi
ally valid.So 'n+1(℄n+1) and 'n(℄n) are equivalent over the 
lass of all frames,and so is their negation. aAs a 
onsequen
e, a simple indu
tion on the expansion of :' givesus the following.Lemma 5.2 If :' is the se
ond-order formula 
omputed by the SLaKE-expansion of A1; : : : ; An ` C, then for every ternary frame F:F j= A1; : : : ; An ` C i� F j= :'So :' is equivalent to the input sequent. Any valuation of the se
ond-order variables in :' will generate a �rst-order formula implied by theoriginal sequent. All we need now is to show that the 
anoni
al valuationof De�nition 3.2 really satis�es all formulas in a bran
h.For that, we 
onsider a frame F, a SLaKE-saturated set � and a
anoni
al valuation built on �. Consider a mapping of the labels in � intothe worlds of F that respe
ts the restri
tions of the 
anoni
al valuation(ie the labels that V for
es to be di�erent are not mapped into the sameworld); we say that F; V j= T A : a i� F; V; a j= A and F; V j= F A : ai� F; V; a 6j= A.Lemma 5.3 Let � be a SLaKE saturated set and let F be a frame thatsatis�es all the R-formulas in �. Let V be the 
anoni
al valuation builtfrom �. Then for all signed formula S 2 �, F; V j= S.Proof. We prove the lemma by indu
tion on the stru
ture of the formulasin �. The 
anoni
al valuation satis�es all the atomi
 formulas, taking
are only that no atomi
 formula is true and false in the same world.For the 
ompound formulas, the single premises of 9-rules repla
e a
ompound formula by its de�nition, so if the 
on
lusions are satis�ed, sois the 
ompound premise. For the main premise of a 8-rule, saturationguarantees that every possible 
on
lusion is added to �, so if all su
h
on
lusions are satis�ed so is the main premise. As a 
onsequen
e, theframe F also satis�es the 
ompound main premise. aBy putting together Lemmas 5.2 and 5.3 we obtain the following.
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e Theory / 17Theorem 5.4 If T is a �nite saturated SLaKE-tableau for the sequentA1; : : : ; An ` C 
omputing a �rst-order formula : thenF j= (A1; : : : ; An ` C)) F j= : :For the 
onverse, we �rst 
onsider deterministi
 tableaux.Theorem 5.5 Let T be a �nite, saturated and deterministi
 SLaKE-tableau for sequent A1; : : : ; An ` C 
omputing a �rst-order formula : .Then F j= (A1; : : : ; An ` C)( F j= : :Proof. The 
onstru
tion of T is a refutation for the input sequent, su
hthat every F with F 6j= (A1; : : : An ` C) must satisfy the existential
losure of the se
ond-order formula ', that is, for every frame F refutingthe original sequent, F j= (9P )'.Sin
e T is deterministi
 and saturated, it is asso
iated to a SLaKEsaturated set �. Any refutation frame F must satisfy all the atomi
formulas and the R-formulas in �. The 
anoni
al valuation built from itis su
h that it satis�es all the atomi
 formulas.By Lemma 5.3, F with the 
anoni
al valuation satis�es all the for-mulas in T , that is F; V j= '. So when we apply the 
anoni
al valuationto ' obtaining  , it follows that:F 6j= (A1; : : : ; An ` C)) F j=  ;whi
h is equivalent to the desired result. aTo eliminate the restri
tion on deterministi
 tableaux, we have to
onsider all possible refutations. This yields the �nal result.Theorem 5.6 Given a sequent A1; : : : ; An ` C and all possible �niteSLaKE-tableaux refuting it, T1; : : : ; Tm generating, respe
tively, �rst-order formulas : 1; : : : ;: m. ThenF j= (A1; : : : ; An ` C)() F j= m̂j=1: j :Proof. ()) This is Theorem 5.4.(() Suppose there is a frame F that refutes the input sequent,su
h that there is a valuation V and a point a su
h that F; V; a 6j=(A1; : : : ; An ` C). The tableaux T1; : : : ; Tm are all the possible refuta-tions of the input sequent, when we 
onsider the se
ond-order formulas'1; : : : ; 'm generated by ea
h refutation, we get F; a j= Wmj=1(9P )'j .
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elo FingerWithout loss of generality, suppose F satis�es one su
h disjun
t, 'j :F j= (9P )'j . We 
laim that there is a �nite valuation Vf that satis�es'j built in the following way:Vf (p) = fajT p : a belongs to TjgIt is 
lear that Vf (p) is �nite for ea
h p, for there are only �nitely manyformulas in Tj .By indu
tion on the 
onstru
tion of Tj , we show that the satisfa
tionof 'j depends on �nitely many possible worlds. The base 
ase is theinitial tableau, whi
h 
learly relies on �nitely many possible worlds.If the expansion of Tj was done by a single-premised 9-rule, thenonly two new possible worlds have to be 
onsidered, and by indu
tionhypothesis the number of worlds remains �nite.If the expansion of Tj was done by PB, then no new world needs tobe 
onsidered (and one extra variable is introdu
ed), so the indu
tionhypothesis guarantees that the number of worlds remains �nite.If the expansion of Tj was done by a double-premised 8-rule, we needto examine ea
h 
ase, so 
onsider, for example, a main formula of theform T A=B : a; to satisfy su
h formula, we need to enfor
e that:8b
(R
ab^ T B : b) T A : 
)There may be in�nitely many valid formulas of the form R
ab, but byindu
tion hypothesis, only �nitely many worlds b where the truth of Bhas been enfor
ed, so the truth of A will be enfor
ed only at �nitelymany worlds 
. 6 The proof is analogous for the other main premises of8-rules. We have proved our 
laim.At the end of the tableau 
onstru
tion, all atomi
 formulas in thetableau are satis�ed by Vf . We have thus shown a �nite model propertyfor the sequents that have a �nitely saturated tableaux. This means thatif we have opposite signed formulas of the form T p : x and F p : y, weonly have to impose x 6= y for �nitely many points. Su
h a pro
eduregives us the same substitution as the 
anoni
al valuation; it follows thatF; Vf ; a j=  j .We have thus shown:F 6j= (A1; : : : ; An ` C)) F j= m_j=1 j ;whi
h is equivalent to the desired result. a6Note that su
h an argument fails if we had in our language a formula that is trueat all worlds; lu
kily, we do not, not even A=A, as 
an be veri�ed by its semanti
s.
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lusion and Further WorkWe have proposed an original method to 
onstru
t a �rst-order 
orre-sponden
e formula for substru
tural 
ategorial formulas. This 
onstru
-tion is based on the novel SLaKE-tableaux. Our method uni�es underan algorithmi
 approa
h the generation of �rst-order 
orresponden
eformulas initially treated by (Kurtonina 1994).We have the following 
onje
ture:Conje
ture 6.1 A sequent has a �rst-order equivalent i� it has a �niteSLaKE-tableaux.The if -part has already been proved, but for the only if -part all we
an say for the moment is that our method does not apply to in�nitetableaux. To prove the 
onje
ture, we have to show that it is not possibleto have a sequent with an in�nite SLaKE-tableau but with a �rst-orderequivalent.A
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