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Algorithmic Correspondence Theory
for Substructural Categorial Logic

MARCELO FINGER

ABSTRACT. Substructural categorial connectives can be treated
as modalities. Such binary connectives have a possible worlds se-
mantics based on ternary accessibility relations. This modal treat-
ment allows one to explore categorial correspondence theory, in
analogy to the usual correspondence theory for modal logics. Its
aim is to find a first-order restriction over ternary frames corre-
sponding to a categorial sequent.

This paper proposes an algorithmic method that deals with
categorial correspondence theory. It proposes a proof theoretical
method based on SLaKE-tableaur that produces a second-order
formula corresponding to a given categorial sequent. When the
SLaKE-tableau is finite, a valuation for the propositional atoms is
obtained from the tableau; a first-order formula equivalent to the
given sequent over ternary frames is thus computed. For infinite
tableaux, no first-order formula is computed.

1 Introduction

Since Kripke (Kripke 1963) has proposed a possible worlds semantics
for modal logics, it has been noted that the presence of certain modal
axioms impose specific restrictions on the binary accessibility relation of
Kripke frames. For example, it is well known that the axiom Op — p is
true at any frame (W, <) whose binary accessibility relation is reflexive,
Vz(z < x); conversely, models of any system that has such a formula as
a theorem must have a reflexive accessibility relation.

In fact, any modal axiom can be translated to a second-order for-
mula. Some of these second-order formulas are equivalent to first-order
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formulas over Kripke frames. At the heart of modal correspondence the-
ory lies the identification of which axioms correspond to some first-order
restriction over Kripke frames (van Benthem 1984). A special class of
modal axioms, known as the Sahlqvist formulas, is guaranteed to gener-
ate first-order restrictions over Kripke frames, and such restrictions can
be obtained algorithmically (Sahlqvist 1975).

The work of Routley and Meyer (1973) has shown that relevance
logics can be treated as a modal logic with a Kripke-style semantics.
This was later extended to other logics in the family of substructural
logics (Dosen 1993, Restall 2000), and in her PhD thesis, Natasha Kur-
tonina (1994) presented such semantics for a fragment of substructural
logics, known as categorial logics, without any structural pressuposi-
tion. In analogy to traditional modal logics, categorial logics have three
binary connectives and their semantics is based on a ternary' acces-
sibility relation R C W?3. The connectives generally found in catego-
rial logics (Moortgat 1997, Carpenter 1997) are here? represented as
e (called product, or fusion, or multiplicative conjunction), | (slash or
right-implication) and \ (backslash or left-implication).

Categorial logics are just a fragment of substructural logics. In a
sequent presentation of substructural logics, it is also known that the
presence of certain structural rules correspond to derivability of certain
sequents. For example, any system that allows for the structural rule of
associativity derives A/B - (4/C)/(B/C).

With a Kripke-style semantics for categorial logics, a semantic con-
nection between derivable sequents and semantic restrictions could be
investigated. The idea of a correspondence theory for substructural log-
ics was proposed by Roorda (1991). Kurtonina (1994) later developed
several methods to obtain first-order restrictions over ternary Kripke
frames corresponding to categorial formulas; each method deals with a
different fragment of categorial logics. One of these methods involved
translations of formulas into a suitable fragment; another method was
more in the modal logic tradition, generating a second-order formula and
a valuation of second-order variables that yields a first-order equivalent
formula.

This work pursues further the topic of correspondence theory for
categorial logics started by Roorda (1991) and Kurtonina (1994). Our
approach is algorithmic, pursuing a unifying method for all categorial
formulas. We propose a tableaux-based method, called SLaKE?-tableauz,

'In general, an n-ary connective is defined in terms of an (n + 1)-ary accessibility
relation.

2These connectives are also found in the literature as ®, —and <.

3Substructural Labelled KE-tableaux
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to construct a first-order formula corresponding to a categorial sequent.
SLaKE-tableaux are based on KE-tableaux (D’Agostino 1992) over T'-
and F-signed formulas. Furthermore, to deal with its substructural side,
formulas are labelled following the Labelled Deductive System disci-
pline (Gabbay 1996, D’Agostino and Gabbay 1994, Broda et al. 1996a).
We show that if a SLaKE-tableau is deterministic and finitely saturates
(ie, no branches can be further expanded) a first-order formula corre-
sponding to the input sequent can be computed.

The presentation of this tableau-based method for correspondence
theory proceeds as follows. Section 2 provides the background for ternary
frames and KE-tableaux. This enables the definition of SLaKE-tableaux
in Section 3 and the algorithm for constructing a correspondence for-
mula for categorial sequents. We then show several examples of how to
construct such a formula in Section 4, followed by a demonstration of the
method’s correctness in Section 5. We conclude in Section 6 listing the
work that still has to be done in substructural correspondence theory.

2 Background

2.1 Ternary Frames

Ternary frames are relational structures that allow us to view the con-
nectives of (substructural) categorial logic as binary modalities. In our
case, we will deal with the fragment containing the usual categorial bi-
nary connectives, / (slash), \ (backslash) and e (product). The e con-
nective is assumed to be left-associative, that is, Ae BeC' = (AeB)e (.
A sequent calculus presentation for such fragment is shown in Figure 1.
The antecedents of sequents are binary trees, where I'[4, B] indicates
that (A, B) is a subtree of I'; antecedents are also left associative, that
is, I';A,¥ = (I, A), 2. Consequents of sequents are simple formulas.
Note that no structural rules are being admitted a priori, and therefore
we are in the non-associative Lambek Calculus Lambek 1958.

On the semantic side, we define a ternary frame as a pair § = (W, R),
where W is a non-empty set of possible worlds and R is a ternary acces-
sibility relation. A ternary model M = (W, R,V) cousists of a ternary
frame plus a valuation V : P — 2% mapping propositional letters to
sets of worlds.

The semantic interpretation of categorial formulas in the {/,\,e}-
fragment over ternary frames is:
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—— (Aziom)
AFA
IAlFC AFRB IBFA
/v = )
I'[A/B,AlFC ' A/B
MA]FC AFB H B,THA )
[[A,B\A]FC ' B\A
TA,B]lFC 'rA AFRB
— (e —  (F o)
[[AeB]FFC ' AFAeB
FIGURE 1 A sequent calculus presentation of the non-associative Lambek
Calculus.
5, V,aEp iff a€V(p)

§V,aE A/B iff VYbVc(ReabAF,V,bl=B=F,V,cE A)
§,V,aE B\A iff VbVce(RcbaAF,V,bl=B=5F,V,cE A)
§,V,aEBeA iff Jbdc(RabcAF,V,bl= ANE,V,c = B)

We also use the abbreviations:

Rab(cd) = 4ef Jx(Rabx A Rxed)
Ra(be)d = gef Jy(Rayd A Rybe)

Such abbreviation associates to the left: Ra(bcd)e =45 Ra((bc)d)e, etc.
As usual, we write §,a = A when §,V,a E A for any valuation V; if a
is omitted, this means that the condition holds for any possible world.

A sequent A;,...A, F C holds at a world a € W in ternary frame
§ (notation: §,a = (41,... A, FC) ) iff §,V,a |E Ay e... e A, implies
%, V,a |= C. This is equivalent to saying that if for some aq,... ,an,
Ra(a; ...ap—1)ap and, for 1 < i <n,§,V,a; = A;, thisimplies §,V, a |=
C.

Note that § can be seen as a first-order model for a language over
R and Py,...,P,, where each P; is a predicate symbol corresponding
to the propositional letter p;. The notation (VP)¢p indicates the univer-
sal closure of all second-order variables in ¢, and (3P)y the existential
one. Following the modal logic tradition, the standard translation of a
categorial formula A into second-order logic formula is (VP)VaST,(A),
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where:
STu(pi) = Pi(a)
ST,(AeB) = 3bc(Rabe A STy(A) A ST.(B))
ST,(B/A) = VYbc(RcabA STy(A) = ST.(B))
ST,(A\B) = VYbc(Rcba A STy(A) = ST.(B))

The second-order quantification is over the relevant predicate sym-
bols and reflects all relevant valuations in a frame. So every categorial
(modal) sequent A F C corresponds to a second-order formula such that:

§ k(AR C) iff § = (VP)Va (STu(A) = STu(C))

The crucial point of correspondence theory is to know when such a
second-order formula defines a first-order frame property, that is, if there
is a first-order formula 1 such that

SEMAFC) ffSEy

It is the computation of such a property, when it exists, that we inves-
tigate next by means of KE- and SLaKE-tableaux.

2.2 KE Tableaux

D’Agostino has shown in (D’Agostino 1992) that analytic tableaux, in
the style proposed by Smullyan (Smullyan 1968), cannot polynomially
simulate truth tables and in some cases perform exponentially worse
than them. To avoid such problems in a principled way, KE-tableaux
were introduced.?

As usual, KE-tableaux deal with signed formulas, where each formula
is signed with a T (truth) or an F' (falsity). The signed formulas T' A
and F' A are called opposite formulas. A tableau branch that contains a
pair of opposite formulas is closed. A theorem is proved by refutation,
trying to close all branches of the tableau. Each connective has a pair
of expansion rules, that decompose a signed formula into smaller signed
formulas.

Unlike analytic tableaux, all decomposition rules in a KE-tableaux
are linear. Some of the rules are single premised, while others take two
premises. For instance, we present here the KE-rules for classical implica-
tion (=): a two-premised rule for positively signed formulas (' B = A)
with a single conclusion, and one single premised rule for negatively

4No one seems to know what KE stands for; apparently K stands for “klassisch”,
used in analogy to Gentzen’s LK system; E may stand for “elimination” (of what?).
KE was supposed to be just an initial working name, but somehow it stuck.
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signed ones (F' B = A) with a double conclusion:

TB= A FB=A
T B T B
T A F A

Similarly, a pair of linear rules can be given to any of the classical
boolean connectives. The only branching rule in a KE-tableau is the
Principle of Bivalence (PB), that states that a formula can be either
true or not true®:

T A F A

Usually, the branching formula A is chosen to generate a second premise
to some linear rule, so it is always a subformula of some existing formula
in the tableau. As a consequence, KE-tableaux branch fewer times than
a normal analytic tableau, and it can p-simulate a truth table.

3 Substructural Labelled KE Tableaux

Substructural Labelled KE (SLaKE) tableaux are the main proof theo-
retical equipment we use in the generation of correspondence formulas
for substructural sequents.

The use of KE tableaux for substructural logics have been pro-
posed in (D’Agostino and Gabbay 1994), by attaching a label to the
signed formula, as in T A : a. We use this idea, but without follow-
ing the labelling discipline developed in (D’Agostino and Gabbay 1994,
Broda and Finger 1995, Broda et al. 1996b). Instead, we simply add a
new label at each new node of the tableau. Formally, let £ be a count-
able set of labels, let A be a categorial formula; then for every a € L,
the formulas T' A : a and F' A : a are signed labelled formulas.

Furthermore, each finite SLaKE-tableau is associated with a corre-
spondence formula. The original sequent is associated with an initial
tableau and with a second-order formula. Each of the tableau linear
expansion rules is associated with an expansion of the correspondence
formula of the form §; := p(R, A1,...,A,,i+1), where R is the ternary
accessibility relation, Aj,..., A, are the formulas generated in the ex-
pansion, and { is the “substitution place” for next expansion and can
be read simply as truth. The tableau rules for SLaKE-tableaux are illus-
trated in Figure 2.

In each linear rule in Figure 2, the formulas above the horizontal line
are the premises of the rule, and those below it are the conclusions of

5Note that this is different from true or false — the principle of excluded middle
— which is not valid for all substructural logics.
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SLaKE Ezxpansion  Formula Ezpansion Rzxyz
T A/B:a
TB:b #; := Vc(Reab = (ST:(A) A fit1)) Rcab
T A:c (new c)

F A/B:a
T B:b (new b) #; := 3b3c(Rcab A STy(B) A =ST.(A) A #i+1) Rcab
F A:c (new c)

TB\A:a
TB:b #; := Vc(Reba = (ST:(A) A fit1)) Rcba
T A:c (new c)

FB\A:a

T B :b (new b) fi :== 3b3c(Rcba A STy (B) A =ST.(A) A Hi+1) Reba
F A:c (new c)

T AeB:a
T A:b (new d) #i :== 3b3c(Rabe A STy (A) A ST.(B) A ti+1) Rabe
T B : c (new c)

F AeB:a
TA:b fi := Ve(Rabe = (=ST.(B) A fi+1)) Rabc
F B :c (new c)

TA:-r FA:x fi 1= Va((STz(A4) A ﬁzl+1) V (=ST,(A) A ﬁz2+1)) —

FIGURE 2 SLaKE rules

the rule. There are one-premised and two-premised rules, but each rule
has exactly one premise that is a compound formula, which is called the
main premise; other premises are called auxiliary. Two-premised rules
are V-rules and one-premised rules are 3-rules. If either of the conclusions
of an 3-rule is present on the current branch, it is not added again with
a new label. V-rules always generate a new conclusion.

The last rule in Figure 2 is the Principle of Bivalence (PB) branching
rule. It is only applied for a formula A following the branching heuristics:

PB is used for a formula A that serves as an auxiliary premise
for a V-rule; PB is only applied in a branch when no other
linear expansion is possible.

The main premises that trigger the application of PB for A are: F' Ae B,
T A\B and T B/A. The corresponding V-rule will be applicable on the
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T A branch. This heuristics guarantees that only subformulas of the
original sequent will be introduced by PB. It introduces two “substitu-
tion places” in the correspondence formula, #;,, and £ ,, one for each
new branch. A branch that can still be expanded is called active. Each
active branch in a SLaKE tableau always has exactly one substitution
place.

The importance of substitution places is that they guarantee that
each formula introduced in the correspondence formula will “see the
correct context”, that is, it will be in the scope of the correct quantifiers.

A sequent of the form Aq,..., A, F C is transformed into the initial
SLaKE-tableau:

TA1:a1

T A, :a,
FC:a
Since the tableau is a refutation method, this induces the correspon-
dence formula:
—p=-3aay ...ay] STe (A1) A...AST,, (An) A=ST,(C)
ARa(ay ...an—1)a, At]

A single premised sequent A - C' generates the initial tableau containing
T A:aand F C : a, with the initial correspondence formula =1 (1) =
—3a(ST,(A) A=ST,(C) Af1). We could extend the method for sequents
with empty antecedents, but we do not pursue this topic here.

The aim of the SLaKE-tableau construction is not to close every
tableau branch, but to expand each tableau branch until no more ex-
pansions are possible. Each expansion step will also give us a new ver-
sion of the correspondence formula. If we can finitely expand all tableau
branches, a valuation for the atomic formula is constructed, so that we
obtain a first-order formula by substituting in the final formula the eval-
uated values. It is also possible that there will be some infinite branches
(something that would not happen in simple propositional tableaux), in
which case the above method is not applicable.

A SLaKE-saturated set T' is a set of labelled signed formulas and of
Rzyz formulas such that, with respect to the rules of Figure 2:

(a) If the premise of a rule is in I', each of its consequence is in I for
some label, and the Rxyz formula from the Rxyz-column is also
added to I'.

(b) For each compound formula in T that is a main premise of a V-rule,
there must be in I' either an auxiliary premise or the opposite of
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it.

The expansion of a tableau aims at constructing branches that are
SLaKE-saturated sets. Item (a) corresponds to normal branch expan-
sion. The fact that the consequence of a V-rule is always added to T’
with a new label rises the possibility of having infinite SLaKE-saturated
sets. Item (b) guides the branching heuristics. At the end of a finite

expansion, a correspondence formula will be built from a suitable valu-
ation. Let us show it through examples.

Example 3.1 Consider the sequent p/q  ¢\p. Its associated SLaKE
tableau is:

1. Tplg:a

2. Fq\p:a ~p = ~3a(STu(p/q) A ~STu(g\p) Ath)
3. Tq:b from 2

4. Fp:c from 2 f1 := Fb3c(Reba A Q(b) A =P(c) A 2)
5. T'p:d from 1,3 fs :=Vd(Rdab= P(d) A13)

Initially, we expand line 2, and simultaneously, using the semantics of
q\p, we expand the correspondence formula substituting f; into it. We
then use lines 1 and 3 for another expansion, obtaining fo. At this point,
the tableau is saturated and closed (remember our main goal is not to
close a tableau, but to saturate every branch of it). So we make §3 := T.
We have thus built the second-order formula:
- ==3a( STu(p/q) A =STu(q\P)A
Fb3c¢(Reba A Q(b) A —=P(c) AVd(Rdab = P(d))))

The formula —¢p is equivalent to the original sequent, so a suitable val-
uation has to be constructed to obtain a first-order formula. Such a
valuation is implicitly built in the following way. If T' r :  occurs in a
branch, then P(z) must hold iff z is different from all worlds y such that
F r: y occurs in the same branch above it. Similarly, if F' r :  occurs in
a branch, then —P(z) must hold iff z is different from all worlds y such
that the T r : y occurs in the same branch above it. By applying this
rule to the tableau above, we get the implicit canonical valuations of P
and Q:

Q)& T
(=P(c) & T)AN(P(d) < d#c)

Saturation guarantees that the compound formulas in —¢ can be
substituted by T. By substituting each second-order variable in =@ by
their canonical valuation, we obtain the first-order formula

=daAbAc(T A T A Reba A Vd(Rdab = d # ¢))
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which is equivalent to YaVbVc(Rcba = Rcab), meaning that R must
have the commutativity property for its second and third positions. It is
easy to verify that any model satisfying this property also satisfies the
original sequent, and vice-versa. O

We will prove the correctness of this method in Section 5. First, let
us present the method in detail.

A valuation V', defined over the set of possible worlds W', is said to
extend V over the set W C W' if the two valuations agree on the truth
of all atoms at all worlds in W.

The expansion of a tableau is the stepwise construction of a counter-
model for the input sequent. Each step generates:

e a valuation V;; extending V; over the set of labels in the tableau
at step 7; and
e a second-order formula —p;41(f;+1) that is equivalent to —;(4;).

Definition 3.2 Let X € {T, F}; define X such that T = F and F = T.
For each SLaKE atomic formula X p : z in the tableau, define:

OXp:z)={y| Xp:y occurs “above” Xp:x}

For every atomic p, define the canonical valuation of P(x) implicitly as:

A (P@ e N\ w#y)a@EPe) e N\ c#y)

Xp:x yeO(Tp:x) yeO(Fp:x)

The rationale of the canonical valuation is simply that an atom can-
not be both true and false at the same world. This is the minimal condi-
tion that any model must verify. To obtain a first-order formula we need
to substitute the canonical valuation into —¢. The canonical valuation
is defined such that no scope violation is possible, for the substitution
introduces no free variables. If the tableau branches, each sub-branch
is developed independently and is not affected the labels introduced at
other branches. This has the effect of restricting the scope of quantifiers
in the construction of the correspondence formula.

If the tableau saturates, such a valuation satisfies all compound for-
mulas (Lemma 5.3). The first-order formula —) thus obtained is obvi-
ously implied by —p.

Let (3P)¢p be the second order existential closure of ¢. If the tableau
saturates in finitely many steps, then a countermodel §* must satisfy
$* |E (3P)p. That is, the class of models that validate the initial sequent
does not contain §*. If there are only finitely many possible refutations
of the initial sequent, we obtain finitely many (say m) second-order
formulas —¢;, one for each refutation, that when substituted by the
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correspondent canonical valuation each generate —¢p; (1 < j < m), all
implied by —¢.

Furthermore, due to saturation, any possible refutation must satisfy
one of the ¢;, so a countermodel to the input sequent satisfies the second-
order formula (3P)\/ ¢;, which is equivalent to (3P)y. But, with the
constructed counter valuations we have a witness for that existential
second-order quantification, so each ¢; implies its correspondent ;. And
therefore —1); implies —p; and /\;n:1 —p; implies (and thus is equivalent
to) —p;.

As a consequence, if there is a single way to finitely refute a sequent,
the first-order formula generated —i) is equivalent to the second-order
formula —¢, which is equivalent to the validity of the input sequent. This
motivates the following definition.

A SLaKE-tableau is deterministic if at every point of its extension
there is only one applicable rule. From what has just been explained
above, finitely-saturated deterministic tableaux generate a first-order
formula equivalent to its input sequent. If the tableau is finite and non-
deterministic, one has to generate all the possible expansions, and for
each one compute its associated formula —;; the first-order formula
equivalent to the validity of the input sequent is the conjunction of all
such formulas.

We now present, the full algorithm for computing the correspondence
formula.

Algorithm 3.1

Input: a sequent Ay,... , A, FC.

Output: its first-order correspondence formula, if there are only finite
refutations.

1. Initialize the tableau for T' A4y : a1,... , A, : a, and F C : a, with
initial correspondence formula —(f).

2. Repeat while the tableau is not saturated nor an infinite branch
has been detected.
(a) If there is an applicable rule, expand the tableau and the
correspondence formula according to the rules in Figure 2.
(b) If there are no linear rules applicable but the tableau is not
saturated, choose a complex formula over which to apply the
branching rule PB and continue expanding both branches.
3. If the tableau has an infinite branch, stop.

4. Otherwise, a second-order formula —p was generated. Construct
the canonical valuations for every atom p.
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5. If the tableau is deterministic, output the first-order formula —)
obtained by substituting all compound formulas by T and all P(x)
by its canonical valuation at the time of introduction. Otherwise,
repeat items 2, 3 and 4 for each of the possible refutations, each

generating —);; output A —;.

Next we see a few more examples.

4 Examples

Example 4.1 [Finite Deterministic Non-Branching Tableau]

Counsider the sequent p/q - (p/r)/(q/r); such sequent is not in the
format of the “Sahlqvist-van Benthem” Theorem in (Kurtonina 1994)
and had to be dealt with by means of a translation method. A SLaKE-
tableau constructed for it looks like:

1. T p/q:a — = =Ja(ST.(p/g)N

2. F(p/r)/(g/r):a ~STa((p/r)/(g/r)) A )

3. T (g/r):b from 2 f1 := 3bIc(RcabA

4. F (p/r):c from 2 STy(q/r) AN =ST.(p/r) A f2)
5. Tr:d from 4

6. Fp:e from 4 fo := 3dIe(Recd A R(d) A —=P(e) A is)
7. Tq:f from 3,5 3 :=Vf(Rfbd = (Q(f) ANa))

8. Tp:g from 1,7 f4:=Vg(Rgaf = (P(g) Nts5))

The canonical valuation for P(w) in -y is:

(P(g) < g#e)AN(=P(e) & T)
QUf) < T
Rd) & T

By substituting the canonical valuation to =, which also makes all
compound formulas true, we obtain:

—JaIbIc(Rcab A FdIe(Recd AV f(Rfbd = Vg(Rgaf = g # €)))

which is equivalent to

VYaVbVdVe(  Re(ab)d = Rea(bd) ).

That is, the sequent A/B F (A/C)/(B/C) imposes a restriction of left-
associativity to the second and third positions of the ternary relation
R. Note that it is well know from substructural logics that the sequent
A/B I\ (A/C)/(B/C) is provable whenever the structural rule of asso-
ciativity is accepted (Dosen 1993). This shows a remarkable connection
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between proof-theoretical properties and ternary frame semantics, which
holds for other axioms too.

Example 4.2 [Finite Deterministic Branching Tableau]

Now let us see an example with branching. For that, consider Peirce’s
Axiom (p\g)\p F p. When the tableau is initialized, no linear rules are
applicable, so the branching heuristics is applied to p\g, corresponding
to the valid disjunctive statement Vb(STy(p\q) V ~STy(p\q)):

L T (p\g)\p:a

2. Fp:a
3(@). Tp\g:b 3(3ii). Fp\g:b
4(i). Tp:c 4(it). Tp:e
5(¢). Tq:d 5(i1). Fq:f

which has the corresponding second-order expansion:

—p = =3a(ST,((p\g)\p) A 7P(a) A1)
. g1 == V(ST (p\@) A 83) V (=STh(p\a) A 85)))
b =Ve(Reba = (P(c) AE)) )
£ = Vd(Rdcb = (Q(d) A f})) 5 = Jedf(RfebA Pe) A=Q(f)AE5)

The branches are independently developed. The left branch will cause
substitutions in #} and the right branch will cause substitutions in #.
Since the substitution occurs in a negative context, the branching will
impose a conjunction of constraints, each of which can be computed
separately. New labels could be repeated on both branches, since there
will never be a quantifier scope confusion, but for clarity reasons we will
always use variables new to the entire tableau.

If we were looking for a closed tableau, we could stop the develop-
ment of the left branch at 4(i); however, our aim here is to obtain a
SLaKE-saturated set at each branch, so we proceed to obtain 5(7). The
correspondence formula obtained after both branches are saturated and
negation is pushed inside is:

Vadb[ —(STa((p\a)\p) A =P(a) A STy(p\g)A
Ve(Reba = (P(c) AVd(Rdeh = Q(d))))) | A

Vadb[ —~(STa((p\a)\p) A =P(a) A =ST,(p\g)A
Jedf(Rfeb A P(e) A=Q(f))) |

The first conjunct corresponds to the left branch, and the second

conjunct corresponds to the right one. Since each branch is developed
independently, the canonical valuation is developed as before, that is:
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(=P(a) <> T)A(P(c) <> c#£a) N (P(e) <> e#a)
(Qd) & T)A(=Q(f) & T)

The first-order correspondence formula thus obtained is:

Va3b[=(Ve(Rceba = (¢ # a AVd(Rdcb = T))))
A
—(Jedf(RfebANe#aAnT))]

which is equivalent to
Va3b(Raba AVef(Rfeb= e = a))

Kurtonina (Kurtonina 1994) has shown that this condition plus asso-
ciativity (Example 4.1) and commutativity (Example 3.1) makes the
ternary model collapse, that is, they imply Yabc(Rabe = a = b = ¢).

Example 4.3 [Finite Non-Deterministic Tableau]

All SLaKE-tableaux seen so far have been deterministic in the sense
that, at every step, there was a single expansion rule to be applied to
a branch. Consider now a sequent for which we have more than one
applicable expansion at the initial step:

(1) A/B,B,AJC,C + A

whose initial expansion has two choices: T' A/B : a with T' B : b, or
T A/C :cwithT C : d. If the first pair is chosen first, the correspondence
formula obtained is

(2) Vabede( Re(abe)d = (ReabV (Recd A If Rfab)) ),

and if the second pair is chosen first, a different correspondence formula
is obtained:

(3) Vabcede( Re(abc)d = (Recd V (Reab A AgRgced)) ).

Since both formulas constrain the frame, we take the conjunction of (2)
and (3), thus obtaining

(4) Vabede( Re(abc)d = (ReabV Recd) ).

That is, with non-deterministic SLaKE-tableaux, we have to take the
conjunction of the correspondence formulas generated by all possible
tableaux. Since we have exhausted all possible refutations, this means
that a frame validates (1) iff it satisfies (4).
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4.1 Infinite Branches

It is not always the case that a tableau branch can be finitely saturated.
In those cases we cannot apply the method above, so we do not get a first-
order formula. We present next two categorial formulas that generate
infinite tableaux. It is known from (Kurtonina 1994) that these formulas
have no correspondent first-order formula, so it is quite reassuring that
our method does not produce one.

For example, consider the tableau for A/A F A\A:

1. TA/A:a

2. FA\A:a

3. TA:b from 2

4. FA:c from 2

5. T A:d from 1 and 3
6. T A:e from 1 and 5
7. TA:f from 1 and 6

Another example is (A\A)\A F A:

1. T(A\A\A:a
2. FA:a

3i. T A\A:b 3ii. F A\A:b
4i. T A:c 4ii. T A:e
5i. T A:d from 3i and 4i 5i.. FA:f
6i. T A:efrom 3i and 5i

Note that the infinite branches in the tableau above are characterized
by cycles of T-signed formulas " A/A or T' A\A and T' A. Such cycles
can be of larger size and involve more complex formulas, but as long
as a single element of the cycle is derived a second time (with a new
label), an infinite branch is guaranteed, for this element will then be
regenerated infinitely often.

5 Correctness of the Method

We now prove the correctness of the method developed in this work. We
first note the following property of SLaKE expansions.

Lemma 5.1 Suppose a branch expansion step has transformed —pp, (8,)
into = ppi1 (tnr1). Then =, (n) and —@pi1 (fre1) are logically equiva-
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lent over the class of all frames.

Proof. Clearly, ¢p+1(tnt+1) E @n(fn) over the class of all frames. For
the other direction, consider first linear expansions. Note that each f-
expansion in Figure 2 is a logical consequence of the semantic definition
of the rule premises. Since the semantic definition of the premises always
occur positively in ¢, (), it is the case that ¢, (§,.) E ©n+1(fnt1). Also
note that the expansion for PB is logically valid.

S0 @nt1(fnt1) and @, (f,) are equivalent over the class of all frames,
and so is their negation.

As a consequence, a simple induction on the expansion of - gives
us the following.

Lemma 5.2 If —p is the second-order formula computed by the SLaKE-
expansion of Ay, ..., A, = C, then for every ternary frame §:

SEA,. .., A FCif §E ¢

So ¢ is equivalent to the input sequent. Any valuation of the second-
order variables in —¢ will generate a first-order formula implied by the
original sequent. All we need now is to show that the canonical valuation
of Definition 3.2 really satisfies all formulas in a branch.

For that, we consider a frame §, a SLaKE-saturated set I' and a
canonical valuation built on I'. Consider a mapping of the labels in I into
the worlds of § that respects the restrictions of the canonical valuation
(ie the labels that V forces to be different are not mapped into the same
world); we say that §,V ET A:aiff §ViaE Aand F;VEF A:a
iff §,V,a £ A.

Lemma 5.3 Let I’ be a SLaKFE saturated set and let § be a frame that
satisfies all the R-formulas in T'. Let V be the canonical valuation built
from L. Then for all signed formula S €T, §,V = S.

Proof. We prove the lemma by induction on the structure of the formulas
in I'. The canonical valuation satisfies all the atomic formulas, taking
care only that no atomic formula is true and false in the same world.

For the compound formulas, the single premises of 3-rules replace a
compound formula by its definition, so if the conclusions are satisfied, so
is the compound premise. For the main premise of a V-rule, saturation
guarantees that every possible conclusion is added to I'; so if all such
conclusions are satisfied so is the main premise. As a consequence, the
frame § also satisfies the compound main premise. -

By putting together Lemmas 5.2 and 5.3 we obtain the following.
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Theorem 5.4 If T is a finite saturated SLaKE-tableau for the sequent
Ay, ..., A, F C computing a first-order formula —) then

SE(AL,..., A, FC)=>F E .

For the converse, we first consider deterministic tableaux.

Theorem 5.5 Let T be a finite, saturated and deterministic SLaKE-
tableau for sequent Ay, ..., A, = C computing a first-order formula —p.
Then

SE(AL,..., A, FC) < § E .

Proof. The construction of 7T is a refutation for the input sequent, such
that every § with § [~ (A41,... 4, F C) must satisfy the existential
closure of the second-order formula ¢, that is, for every frame § refuting
the original sequent, § = (3P)¢.

Since 7 is deterministic and saturated, it is associated to a SLaKE
saturated set I'. Any refutation frame §F must satisfy all the atomic
formulas and the R-formulas in I'. The canonical valuation built from it
is such that it satisfies all the atomic formulas.

By Lemma 5.3, § with the canonical valuation satisfies all the for-
mulas in T, that is §, V = . So when we apply the canonical valuation
to ¢ obtaining 1, it follows that:

Sl;é (Ala-" 7An|_c) =>S':1/)7
which is equivalent to the desired result. -

To eliminate the restriction on deterministic tableaux, we have to
consider all possible refutations. This yields the final result.

Theorem 5.6 Given a sequent Ay, ..., A, b C and all possible finite
SLaKE-tableaux refuting it, Ti,...,Tm generating, respectively, first-
order formulas —1,... ,~¢n,. Then

FEMAL..., A4, F0) =Tk N\ .

j=1

Proof. (=) This is Theorem 5.4.

(<) Suppose there is a frame § that refutes the input sequent,
such that there is a valuation V and a point a such that §,V,a &
(A1,..., A, F C). The tableaux Ti,..., 7T, are all the possible refuta-
tions of the input sequent, when we consider the second-order formulas
©1,- .- ,m generated by each refutation, we get §,a = \/?zl(EIP)goj.
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Without loss of generality, suppose § satisfies one such disjunct, ¢;:
§ = (3P)p;. We claim that there is a finite valuation V; that satisfies
; built in the following way:

Vi(p) = {a|T p : a belongs to T;}

It is clear that Vy(p) is finite for each p, for there are only finitely many
formulas in T7.

By induction on the construction of 7;, we show that the satisfaction
of ¢; depends on finitely many possible worlds. The base case is the
initial tableau, which clearly relies on finitely many possible worlds.

If the expansion of 7; was done by a single-premised 3-rule, then
only two new possible worlds have to be considered, and by induction
hypothesis the number of worlds remains finite.

If the expansion of 7; was done by PB, then no new world needs to
be considered (and one extra variable is introduced), so the induction
hypothesis guarantees that the number of worlds remains finite.

If the expansion of 7; was done by a double-premised V-rule, we need
to examine each case, so consider, for example, a main formula of the
form T' A/B : a; to satisfy such formula, we need to enforce that:

Vbe(ReabANT B :b=T A:c)

There may be infinitely many valid formulas of the form Rcab, but by
induction hypothesis, only finitely many worlds b where the truth of B
has been enforced, so the truth of A will be enforced only at finitely
many worlds c. ® The proof is analogous for the other main premises of
V-rules. We have proved our claim.

At the end of the tableau construction, all atomic formulas in the
tableau are satisfied by V;. We have thus shown a finite model property
for the sequents that have a finitely saturated tableaux. This means that
if we have opposite signed formulas of the form 7' p: x and F p : y, we
only have to impose x # y for finitely many points. Such a procedure
gives us the same substitution as the canonical valuation; it follows that
&7 Vf7 a ': ’l/}]

We have thus shown:

FHE(AL... A -0 =25 E \ ¥

j=1

which is equivalent to the desired result. -

6Note that such an argument fails if we had in our language a formula that is true
at all worlds; luckily, we do not, not even A/A, as can be verified by its semantics.
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6 Conclusion and Further Work

We have proposed an original method to construct a first-order corre-
spondence formula for substructural categorial formulas. This construc-
tion is based on the novel SLaKE-tableaux. Our method unifies under
an algorithmic approach the generation of first-order correspondence
formulas initially treated by (Kurtonina 1994).

We have the following conjecture:

Conjecture 6.1 A sequent has a first-order equivalent iff it has a finite
SLaKE-tableau.

The if-part has already been proved, but for the only if-part all we
can say for the moment is that our method does not apply to infinite
tableaux. To prove the conjecture, we have to show that it is not possible
to have a sequent with an infinite SLaKE-tableau but with a first-order
equivalent.
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