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1Algorithmi Correspondene Theoryfor Substrutural Categorial LogiMarelo Fingerabstrat. Substrutural ategorial onnetives an be treatedas modalities. Suh binary onnetives have a possible worlds se-mantis based on ternary aessibility relations. This modal treat-ment allows one to explore ategorial orrespondene theory, inanalogy to the usual orrespondene theory for modal logis. Itsaim is to �nd a �rst-order restrition over ternary frames orre-sponding to a ategorial sequent.This paper proposes an algorithmi method that deals withategorial orrespondene theory. It proposes a proof theoretialmethod based on SLaKE-tableaux that produes a seond-orderformula orresponding to a given ategorial sequent. When theSLaKE-tableau is �nite, a valuation for the propositional atoms isobtained from the tableau; a �rst-order formula equivalent to thegiven sequent over ternary frames is thus omputed. For in�nitetableaux, no �rst-order formula is omputed.1 IntrodutionSine Kripke (Kripke 1963) has proposed a possible worlds semantisfor modal logis, it has been noted that the presene of ertain modalaxioms impose spei� restritions on the binary aessibility relation ofKripke frames. For example, it is well known that the axiom �p! p istrue at any frame (W;<) whose binary aessibility relation is reexive,8x(x < x); onversely, models of any system that has suh a formula asa theorem must have a reexive aessibility relation.In fat, any modal axiom an be translated to a seond-order for-mula. Some of these seond-order formulas are equivalent to �rst-order1Advanes in Modal Logi, Volume 3F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyashev, eds.Copyright  2001, CSLI Publiations.



2 / Marelo Fingerformulas over Kripke frames. At the heart of modal orrespondene the-ory lies the identi�ation of whih axioms orrespond to some �rst-orderrestrition over Kripke frames (van Benthem 1984). A speial lass ofmodal axioms, known as the Sahlqvist formulas, is guaranteed to gener-ate �rst-order restritions over Kripke frames, and suh restritions anbe obtained algorithmially (Sahlqvist 1975).The work of Routley and Meyer (1973) has shown that relevanelogis an be treated as a modal logi with a Kripke-style semantis.This was later extended to other logis in the family of substruturallogis (Do�sen 1993, Restall 2000), and in her PhD thesis, Natasha Kur-tonina (1994) presented suh semantis for a fragment of substruturallogis, known as ategorial logis, without any strutural pressuposi-tion. In analogy to traditional modal logis, ategorial logis have threebinary onnetives and their semantis is based on a ternary1 aes-sibility relation R � W 3. The onnetives generally found in atego-rial logis (Moortgat 1997, Carpenter 1997) are here2 represented as� (alled produt, or fusion, or multipliative onjuntion), = (slash orright-impliation) and n (bakslash or left-impliation).Categorial logis are just a fragment of substrutural logis. In asequent presentation of substrutural logis, it is also known that thepresene of ertain strutural rules orrespond to derivability of ertainsequents. For example, any system that allows for the strutural rule ofassoiativity derives A=B ` (A=C)=(B=C).With a Kripke-style semantis for ategorial logis, a semanti on-netion between derivable sequents and semanti restritions ould beinvestigated. The idea of a orrespondene theory for substrutural log-is was proposed by Roorda (1991). Kurtonina (1994) later developedseveral methods to obtain �rst-order restritions over ternary Kripkeframes orresponding to ategorial formulas; eah method deals with adi�erent fragment of ategorial logis. One of these methods involvedtranslations of formulas into a suitable fragment; another method wasmore in the modal logi tradition, generating a seond-order formula anda valuation of seond-order variables that yields a �rst-order equivalentformula.This work pursues further the topi of orrespondene theory forategorial logis started by Roorda (1991) and Kurtonina (1994). Ourapproah is algorithmi, pursuing a unifying method for all ategorialformulas. We propose a tableaux-based method, alled SLaKE3-tableaux,1In general, an n-ary onnetive is de�ned in terms of an (n+1)-ary aessibilityrelation.2These onnetives are also found in the literature as 
, !and  .3Substrutural Labelled KE-tableaux



Categorial Correspondene Theory / 3to onstrut a �rst-order formula orresponding to a ategorial sequent.SLaKE-tableaux are based on KE-tableaux (D'Agostino 1992) over T -and F -signed formulas. Furthermore, to deal with its substrutural side,formulas are labelled following the Labelled Dedutive System disi-pline (Gabbay 1996, D'Agostino and Gabbay 1994, Broda et al. 1996a).We show that if a SLaKE-tableau is deterministi and �nitely saturates(ie, no branhes an be further expanded) a �rst-order formula orre-sponding to the input sequent an be omputed.The presentation of this tableau-based method for orrespondenetheory proeeds as follows. Setion 2 provides the bakground for ternaryframes and KE-tableaux. This enables the de�nition of SLaKE-tableauxin Setion 3 and the algorithm for onstruting a orrespondene for-mula for ategorial sequents. We then show several examples of how toonstrut suh a formula in Setion 4, followed by a demonstration of themethod's orretness in Setion 5. We onlude in Setion 6 listing thework that still has to be done in substrutural orrespondene theory.2 Bakground2.1 Ternary FramesTernary frames are relational strutures that allow us to view the on-netives of (substrutural) ategorial logi as binary modalities. In ourase, we will deal with the fragment ontaining the usual ategorial bi-nary onnetives, = (slash), n (bakslash) and � (produt). The � on-netive is assumed to be left-assoiative, that is, A�B �C � (A�B)�C.A sequent alulus presentation for suh fragment is shown in Figure 1.The anteedents of sequents are binary trees, where �[A;B℄ indiatesthat (A;B) is a subtree of �; anteedents are also left assoiative, thatis, �;�;� � (�;�);�. Consequents of sequents are simple formulas.Note that no strutural rules are being admitted a priori, and thereforewe are in the non-assoiative Lambek Calulus Lambek 1958.On the semanti side, we de�ne a ternary frame as a pair F = (W;R),where W is a non-empty set of possible worlds and R is a ternary aes-sibility relation. A ternary model M = (W;R; V ) onsists of a ternaryframe plus a valuation V : P ! 2W , mapping propositional letters tosets of worlds.The semanti interpretation of ategorial formulas in the f=; n; �g-fragment over ternary frames is:



4 / Marelo Finger (Axiom)A ` A�[A℄ ` C � ` B (= `)�[A=B;�℄ ` C �; B ` A (` =)� ` A=B�[A℄ ` C � ` B (n `)�[�; BnA℄ ` C B;� ` A (` n)� ` BnA�[A;B℄ ` C (� `)�[A �B℄ ` C � ` A � ` B (` �)�;� ` A �BFIGURE 1 A sequent alulus presentation of the non-assoiative LambekCalulus.F; V; a j= p i� a 2 V (p)F; V; a j= A=B i� 8b8(Rab^ F; V; b j= B ) F; V;  j= A)F; V; a j= BnA i� 8b8(Rba^ F; V; b j= B ) F; V;  j= A)F; V; a j= B �A i� 9b9(Rab ^ F; V; b j= A ^ F; V;  j= B)We also use the abbreviations:Rab(d) =def 9x(Rabx ^ Rxd)Ra(b)d =def 9y(Rayd ^ Ryb)Suh abbreviation assoiates to the left: Ra(bd)e =def Ra((b)d)e, et.As usual, we write F; a j= A when F; V; a j= A for any valuation V ; if ais omitted, this means that the ondition holds for any possible world.A sequent A1; : : : An ` C holds at a world a 2 W in ternary frameF (notation: F; a j= (A1; : : : An ` C) ) i� F; V; a j= A1 � : : : �An impliesF; V; a j= C. This is equivalent to saying that if for some a1; : : : ; an,Ra(a1 : : : an�1)an and, for 1 � i � n, F; V; ai j= Ai, this implies F; V; a j=C. Note that F an be seen as a �rst-order model for a language overR and P1; : : : ; Pn, where eah Pi is a prediate symbol orrespondingto the propositional letter pi. The notation (8P )' indiates the univer-sal losure of all seond-order variables in ', and (9P )' the existentialone. Following the modal logi tradition, the standard translation of aategorial formula A into seond-order logi formula is (8P )8aSTa(A),



Categorial Correspondene Theory / 5where: STa(pi) = Pi(a)STa(A �B) = 9b(Rab ^ STb(A) ^ ST(B))STa(B=A) = 8b(Rab^ STb(A)) ST(B))STa(AnB) = 8b(Rba^ STb(A)) ST(B))The seond-order quanti�ation is over the relevant prediate sym-bols and reets all relevant valuations in a frame. So every ategorial(modal) sequent A ` C orresponds to a seond-order formula suh that:F j= (A ` C) i� F j= (8P )8a (STa(A)) STa(C))The ruial point of orrespondene theory is to know when suh aseond-order formula de�nes a �rst-order frame property, that is, if thereis a �rst-order formula  suh thatF j= (A ` C) i� F j=  It is the omputation of suh a property, when it exists, that we inves-tigate next by means of KE- and SLaKE-tableaux.2.2 KE TableauxD'Agostino has shown in (D'Agostino 1992) that analyti tableaux, inthe style proposed by Smullyan (Smullyan 1968), annot polynomiallysimulate truth tables and in some ases perform exponentially worsethan them. To avoid suh problems in a prinipled way, KE-tableauxwere introdued.4As usual, KE-tableaux deal with signed formulas, where eah formulais signed with a T (truth) or an F (falsity). The signed formulas T Aand F A are alled opposite formulas. A tableau branh that ontains apair of opposite formulas is losed. A theorem is proved by refutation,trying to lose all branhes of the tableau. Eah onnetive has a pairof expansion rules, that deompose a signed formula into smaller signedformulas.Unlike analyti tableaux, all deomposition rules in a KE-tableauxare linear. Some of the rules are single premised, while others take twopremises. For instane, we present here the KE-rules for lassial implia-tion ()): a two-premised rule for positively signed formulas (T B ) A)with a single onlusion, and one single premised rule for negatively4No one seems to know what KE stands for; apparently K stands for \klassish",used in analogy to Gentzen's LK system; E may stand for \elimination" (of what?).KE was supposed to be just an initial working name, but somehow it stuk.



6 / Marelo Fingersigned ones (F B ) A) with a double onlusion:T B ) AT BT A F B ) AT BF ASimilarly, a pair of linear rules an be given to any of the lassialboolean onnetives. The only branhing rule in a KE-tableau is thePriniple of Bivalene (PB), that states that a formula an be eithertrue or not true5: T A F AUsually, the branhing formula A is hosen to generate a seond premiseto some linear rule, so it is always a subformula of some existing formulain the tableau. As a onsequene, KE-tableaux branh fewer times thana normal analyti tableau, and it an p-simulate a truth table.3 Substrutural Labelled KE TableauxSubstrutural Labelled KE (SLaKE) tableaux are the main proof theo-retial equipment we use in the generation of orrespondene formulasfor substrutural sequents.The use of KE tableaux for substrutural logis have been pro-posed in (D'Agostino and Gabbay 1994), by attahing a label to thesigned formula, as in T A : a. We use this idea, but without follow-ing the labelling disipline developed in (D'Agostino and Gabbay 1994,Broda and Finger 1995, Broda et al. 1996b). Instead, we simply add anew label at eah new node of the tableau. Formally, let L be a ount-able set of labels, let A be a ategorial formula; then for every a 2 L,the formulas T A : a and F A : a are signed labelled formulas.Furthermore, eah �nite SLaKE-tableau is assoiated with a orre-spondene formula. The original sequent is assoiated with an initialtableau and with a seond-order formula. Eah of the tableau linearexpansion rules is assoiated with an expansion of the orrespondeneformula of the form ℄i := '(R;A1; : : : ; An; ℄i+1), where R is the ternaryaessibility relation, A1; : : : ; An are the formulas generated in the ex-pansion, and ℄ is the \substitution plae" for next expansion and anbe read simply as truth. The tableau rules for SLaKE-tableaux are illus-trated in Figure 2.In eah linear rule in Figure 2, the formulas above the horizontal lineare the premises of the rule, and those below it are the onlusions of5Note that this is di�erent from true or false | the priniple of exluded middle| whih is not valid for all substrutural logis.



Categorial Correspondene Theory / 7SLaKE Expansion Formula Expansion RxyzT A=B : aT B : bT A :  (new ) ℄i := 8(Rab) (ST(A) ^ ℄i+1)) RabF A=B : aT B : b (new b)F A :  (new ) ℄i := 9b9(Rab ^ STb(B) ^ :ST(A) ^ ℄i+1)RabT BnA : aT B : bT A :  (new ) ℄i := 8(Rba) (ST(A) ^ ℄i+1)) RbaF BnA : aT B : b (new b)F A :  (new ) ℄i := 9b9(Rba ^ STb(B) ^ :ST(A) ^ ℄i+1)RbaT A � B : aT A : b (new b)T B :  (new ) ℄i := 9b9(Rab ^ STb(A) ^ ST(B) ^ ℄i+1) RabF A � B : aT A : bF B :  (new ) ℄i := 8(Rab) (:ST(B) ^ ℄i+1)) RabT A : x F A : x ℄i := 8x((STx(A) ^ ℄1i+1) _ (:STx(A) ^ ℄2i+1)) |FIGURE 2 SLaKE rulesthe rule. There are one-premised and two-premised rules, but eah rulehas exatly one premise that is a ompound formula, whih is alled themain premise; other premises are alled auxiliary. Two-premised rulesare 8-rules and one-premised rules are 9-rules. If either of the onlusionsof an 9-rule is present on the urrent branh, it is not added again witha new label. 8-rules always generate a new onlusion.The last rule in Figure 2 is the Priniple of Bivalene (PB) branhingrule. It is only applied for a formula A following the branhing heuristis :PB is used for a formula A that serves as an auxiliary premisefor a 8-rule; PB is only applied in a branh when no otherlinear expansion is possible.The main premises that trigger the appliation of PB for A are: F A�B,T AnB and T B=A. The orresponding 8-rule will be appliable on the



8 / Marelo FingerT A branh. This heuristis guarantees that only subformulas of theoriginal sequent will be introdued by PB. It introdues two \substitu-tion plaes" in the orrespondene formula, ℄1i+1 and ℄2i+1, one for eahnew branh. A branh that an still be expanded is alled ative. Eahative branh in a SLaKE tableau always has exatly one substitutionplae.The importane of substitution plaes is that they guarantee thateah formula introdued in the orrespondene formula will \see theorret ontext", that is, it will be in the sope of the orret quanti�ers.A sequent of the form A1; : : : ; An ` C is transformed into the initialSLaKE-tableau: T A1 : a1...T An : anF C : aSine the tableau is a refutation method, this indues the orrespon-dene formula::' = :9aa1 : : : an[ STa1(A1) ^ : : : ^ STan(An) ^ :STa(C)^Ra(a1 : : : an�1)an ^ ℄℄A single premised sequent A ` C generates the initial tableau ontainingT A : a and F C : a, with the initial orrespondene formula :'1(℄1) =:9a(STa(A)^:STa(C)^ ℄1). We ould extend the method for sequentswith empty anteedents, but we do not pursue this topi here.The aim of the SLaKE-tableau onstrution is not to lose everytableau branh, but to expand eah tableau branh until no more ex-pansions are possible. Eah expansion step will also give us a new ver-sion of the orrespondene formula. If we an �nitely expand all tableaubranhes, a valuation for the atomi formula is onstruted, so that weobtain a �rst-order formula by substituting in the �nal formula the eval-uated values. It is also possible that there will be some in�nite branhes(something that would not happen in simple propositional tableaux), inwhih ase the above method is not appliable.A SLaKE-saturated set � is a set of labelled signed formulas and ofRxyz formulas suh that, with respet to the rules of Figure 2:(a) If the premise of a rule is in �, eah of its onsequene is in � forsome label, and the Rxyz formula from the Rxyz-olumn is alsoadded to �.(b) For eah ompound formula in � that is a main premise of a 8-rule,there must be in � either an auxiliary premise or the opposite of



Categorial Correspondene Theory / 9it.The expansion of a tableau aims at onstruting branhes that areSLaKE-saturated sets. Item (a) orresponds to normal branh expan-sion. The fat that the onsequene of a 8-rule is always added to �with a new label rises the possibility of having in�nite SLaKE-saturatedsets. Item (b) guides the branhing heuristis. At the end of a �niteexpansion, a orrespondene formula will be built from a suitable valu-ation. Let us show it through examples.Example 3.1 Consider the sequent p=q ` qnp. Its assoiated SLaKEtableau is:1: T p=q : a2: F qnp : a :' = :9a(STa(p=q) ^ :STa(qnp) ^ ℄1)3: T q : b from 24: F p :  from 2 ℄1 := 9b9(Rba ^Q(b) ^ :P () ^ ℄2)5: T p : d from 1, 3 ℄2 := 8d(Rdab) P (d) ^ ℄3)Initially, we expand line 2, and simultaneously, using the semantis ofqnp, we expand the orrespondene formula substituting ℄1 into it. Wethen use lines 1 and 3 for another expansion, obtaining ℄2. At this point,the tableau is saturated and losed (remember our main goal is not tolose a tableau, but to saturate every branh of it). So we make ℄3 := >.We have thus built the seond-order formula::' = :9a( STa(p=q) ^ :STa(qnp)^9b9(Rba ^Q(b) ^ :P () ^ 8d(Rdab) P (d))))The formula :' is equivalent to the original sequent, so a suitable val-uation has to be onstruted to obtain a �rst-order formula. Suh avaluation is impliitly built in the following way. If T r : x ours in abranh, then P (x) must hold i� x is di�erent from all worlds y suh thatF r : y ours in the same branh above it. Similarly, if F r : x ours ina branh, then :P (x) must hold i� x is di�erent from all worlds y suhthat the T r : y ours in the same branh above it. By applying thisrule to the tableau above, we get the impliit anonial valuations of Pand Q: Q(b)$ >(:P ()$ >) ^ (P (d)$ d 6= )Saturation guarantees that the ompound formulas in :' an besubstituted by >. By substituting eah seond-order variable in :' bytheir anonial valuation, we obtain the �rst-order formula:9a9b9(> ^ > ^ Rba ^ 8d(Rdab) d 6= ))



10 / Marelo Fingerwhih is equivalent to 8a8b8(Rba ) Rab), meaning that R musthave the ommutativity property for its seond and third positions. It iseasy to verify that any model satisfying this property also satis�es theoriginal sequent, and vie-versa. �We will prove the orretness of this method in Setion 5. First, letus present the method in detail.A valuation V 0, de�ned over the set of possible worlds W 0, is said toextend V over the set W �W 0 if the two valuations agree on the truthof all atoms at all worlds in W .The expansion of a tableau is the stepwise onstrution of a ounter-model for the input sequent. Eah step generates:� a valuation Vi+1 extending Vi over the set of labels in the tableauat step i; and� a seond-order formula :'i+1(℄i+1) that is equivalent to :'i(℄i).De�nition 3.2 Let X 2 fT; Fg; de�ne �X suh that �T = F and �F = T .For eah SLaKE atomi formula X p : x in the tableau, de�ne:O(X p : x) = fy j �X p : y ours \above" X p : xgFor every atomi p, de�ne the anonial valuation of P (x) impliitly as:X̂p:x((P (x)$ ^y2O(Tp:x)x 6= y) ^ (:P (x) $ ^y2O(Fp:x)x 6= y))The rationale of the anonial valuation is simply that an atom an-not be both true and false at the same world. This is the minimal ondi-tion that any model must verify. To obtain a �rst-order formula we needto substitute the anonial valuation into :'. The anonial valuationis de�ned suh that no sope violation is possible, for the substitutionintrodues no free variables. If the tableau branhes, eah sub-branhis developed independently and is not a�eted the labels introdued atother branhes. This has the e�et of restriting the sope of quanti�ersin the onstrution of the orrespondene formula.If the tableau saturates, suh a valuation satis�es all ompound for-mulas (Lemma 5.3). The �rst-order formula : thus obtained is obvi-ously implied by :'.Let (9P )' be the seond order existential losure of '. If the tableausaturates in �nitely many steps, then a ountermodel F� must satisfyF� j= (9P )'. That is, the lass of models that validate the initial sequentdoes not ontain F�. If there are only �nitely many possible refutationsof the initial sequent, we obtain �nitely many (say m) seond-orderformulas :'j , one for eah refutation, that when substituted by the



Categorial Correspondene Theory / 11orrespondent anonial valuation eah generate : j (1 � j � m), allimplied by :'.Furthermore, due to saturation, any possible refutation must satisfyone of the 'j , so a ountermodel to the input sequent satis�es the seond-order formula (9P )W'j , whih is equivalent to (9P )'. But, with theonstruted ounter valuations we have a witness for that existentialseond-order quanti�ation, so eah 'j implies its orrespondent  j . Andtherefore : j implies :'j and Vmj=1 : j implies (and thus is equivalentto) :'j .As a onsequene, if there is a single way to �nitely refute a sequent,the �rst-order formula generated : is equivalent to the seond-orderformula :', whih is equivalent to the validity of the input sequent. Thismotivates the following de�nition.A SLaKE-tableau is deterministi if at every point of its extensionthere is only one appliable rule. From what has just been explainedabove, �nitely-saturated deterministi tableaux generate a �rst-orderformula equivalent to its input sequent. If the tableau is �nite and non-deterministi, one has to generate all the possible expansions, and foreah one ompute its assoiated formula : i; the �rst-order formulaequivalent to the validity of the input sequent is the onjuntion of allsuh formulas.We now present the full algorithm for omputing the orrespondeneformula.Algorithm 3.1Input: a sequent A1; : : : ; An ` C.Output: its �rst-order orrespondene formula, if there are only �niterefutations.1. Initialize the tableau for T A1 : a1; : : : ; An : an and F C : a, withinitial orrespondene formula :'(℄).2. Repeat while the tableau is not saturated nor an in�nite branhhas been deteted.(a) If there is an appliable rule, expand the tableau and theorrespondene formula aording to the rules in Figure 2.(b) If there are no linear rules appliable but the tableau is notsaturated, hoose a omplex formula over whih to apply thebranhing rule PB and ontinue expanding both branhes.3. If the tableau has an in�nite branh, stop.4. Otherwise, a seond-order formula :' was generated. Construtthe anonial valuations for every atom p.



12 / Marelo Finger5. If the tableau is deterministi, output the �rst-order formula : obtained by substituting all ompound formulas by > and all P (x)by its anonial valuation at the time of introdution. Otherwise,repeat items 2, 3 and 4 for eah of the possible refutations, eahgenerating : j ; output V: j .Next we see a few more examples.4 ExamplesExample 4.1 [Finite Deterministi Non-Branhing Tableau℄Consider the sequent p=q ` (p=r)=(q=r); suh sequent is not in theformat of the \Sahlqvist-van Benthem" Theorem in (Kurtonina 1994)and had to be dealt with by means of a translation method. A SLaKE-tableau onstruted for it looks like:1: T p=q : a :' = :9a(STa(p=q)^2: F (p=r)=(q=r) : a :STa((p=r)=(q=r)) ^ ℄1)3: T (q=r) : b from 2 ℄1 := 9b9(Rab^4: F (p=r) :  from 2 STb(q=r) ^ :ST(p=r) ^ ℄2)5: T r : d from 46: F p : e from 4 ℄2 := 9d9e(Red^ R(d) ^ :P (e) ^ ℄3)7: T q : f from 3,5 ℄3 := 8f(Rfbd) (Q(f) ^ ℄4))8: T p : g from 1,7 ℄4 := 8g(Rgaf ) (P (g)^ ℄5))The anonial valuation for P (w) in :' is:(P (g)$ g 6= e) ^ (:P (e)$ >)Q(f)$ >R(d)$ >By substituting the anonial valuation to :', whih also makes allompound formulas true, we obtain::9a9b9(Rab ^ 9d9e(Red ^ 8f(Rfbd) 8g(Rgaf ) g 6= e)))whih is equivalent to8a8b8d8e( Re(ab)d) Rea(bd) ):That is, the sequent A=B ` (A=C)=(B=C) imposes a restrition of left-assoiativity to the seond and third positions of the ternary relationR. Note that it is well know from substrutural logis that the sequentA=B ` (A=C)=(B=C) is provable whenever the strutural rule of asso-iativity is aepted (Do�sen 1993). This shows a remarkable onnetion



Categorial Correspondene Theory / 13between proof-theoretial properties and ternary frame semantis, whihholds for other axioms too.Example 4.2 [Finite Deterministi Branhing Tableau℄Now let us see an example with branhing. For that, onsider Peire'sAxiom (pnq)np ` p. When the tableau is initialized, no linear rules areappliable, so the branhing heuristis is applied to pnq, orrespondingto the valid disjuntive statement 8b(STb(pnq) _ :STb(pnq)):1: T (pnq)np : a2: F p : a3(i): T pnq : b 3(ii): F pnq : b4(i): T p : 5(i): T q : d 4(ii): T p : e5(ii): F q : fwhih has the orresponding seond-order expansion::' = :9a(STa((pnq)np) ^ :P (a) ^ ℄1)℄1 := 8b((STb(pnq) ^ ℄i2) _ (:STb(pnq) ^ ℄ii2 )))℄i2 = 8(Rba) (P () ^ ℄i3))℄i3 = 8d(Rdb) (Q(d) ^ ℄i4)) ℄ii2 = 9e9f(Rfeb ^ P (e) ^ :Q(f)^℄ii3 )The branhes are independently developed. The left branh will ausesubstitutions in ℄i2 and the right branh will ause substitutions in ℄ii2 .Sine the substitution ours in a negative ontext, the branhing willimpose a onjuntion of onstraints, eah of whih an be omputedseparately. New labels ould be repeated on both branhes, sine therewill never be a quanti�er sope onfusion, but for larity reasons we willalways use variables new to the entire tableau.If we were looking for a losed tableau, we ould stop the develop-ment of the left branh at 4(i); however, our aim here is to obtain aSLaKE-saturated set at eah branh, so we proeed to obtain 5(i). Theorrespondene formula obtained after both branhes are saturated andnegation is pushed inside is:8a9b[ :(STa((pnq)np) ^ :P (a) ^ STb(pnq)^8(Rba) (P () ^ 8d(Rdb) Q(d))))) ℄ ^8a9b[ :(STa((pnq)np) ^ :P (a) ^ :STb(pnq)^9e9f(Rfeb ^ P (e) ^ :Q(f))) ℄The �rst onjunt orresponds to the left branh, and the seondonjunt orresponds to the right one. Sine eah branh is developedindependently, the anonial valuation is developed as before, that is:



14 / Marelo Finger(:P (a)$ >) ^ (P ()$  6= a) ^ (P (e)$ e 6= a)(Q(d)$ >) ^ (:Q(f)$ >)The �rst-order orrespondene formula thus obtained is:8a9b[:(8(Rba) ( 6= a ^ 8d(Rdb) >))))^:(9e9f(Rfeb ^ e 6= a ^ >))℄whih is equivalent to8a9b(Raba ^ 8ef(Rfeb) e = a))Kurtonina (Kurtonina 1994) has shown that this ondition plus asso-iativity (Example 4.1) and ommutativity (Example 3.1) makes theternary model ollapse, that is, they imply 8ab(Rab) a = b = ).Example 4.3 [Finite Non-Deterministi Tableau℄All SLaKE-tableaux seen so far have been deterministi in the sensethat, at every step, there was a single expansion rule to be applied toa branh. Consider now a sequent for whih we have more than oneappliable expansion at the initial step:A=B;B;A=C;C ` A(1)whose initial expansion has two hoies: T A=B : a with T B : b, orT A=C :  with T C : d. If the �rst pair is hosen �rst, the orrespondeneformula obtained is8abde( Re(ab)d) (Reab _ (Red ^ 9fRfab)) );(2)and if the seond pair is hosen �rst, a di�erent orrespondene formulais obtained:8abde( Re(ab)d) (Red _ (Reab ^ 9gRgd)) ):(3)Sine both formulas onstrain the frame, we take the onjuntion of (2)and (3), thus obtaining8abde( Re(ab)d) (Reab _ Red) ):(4)That is, with non-deterministi SLaKE-tableaux, we have to take theonjuntion of the orrespondene formulas generated by all possibletableaux. Sine we have exhausted all possible refutations, this meansthat a frame validates (1) i� it satis�es (4).



Categorial Correspondene Theory / 154.1 In�nite BranhesIt is not always the ase that a tableau branh an be �nitely saturated.In those ases we annot apply the method above, so we do not get a �rst-order formula. We present next two ategorial formulas that generatein�nite tableaux. It is known from (Kurtonina 1994) that these formulashave no orrespondent �rst-order formula, so it is quite reassuring thatour method does not produe one.For example, onsider the tableau for A=A ` AnA:1: T A=A : a2: F AnA : a3: T A : b from 24: F A :  from 25: T A : d from 1 and 36: T A : e from 1 and 57: T A : f from 1 and 6...Another example is (AnA)nA ` A:1: T (AnA)nA : a2: F A : a3i: T AnA : b4i: T A : 5i: T A : d from 3i and 4i6i: T A : e from 3i and 5i... 3ii: F AnA : b4ii: T A : e5i: F A : fNote that the in�nite branhes in the tableau above are haraterizedby yles of T -signed formulas T A=A or T AnA and T A. Suh ylesan be of larger size and involve more omplex formulas, but as longas a single element of the yle is derived a seond time (with a newlabel), an in�nite branh is guaranteed, for this element will then beregenerated in�nitely often.5 Corretness of the MethodWe now prove the orretness of the method developed in this work. We�rst note the following property of SLaKE expansions.Lemma 5.1 Suppose a branh expansion step has transformed :'n(℄n)into :'n+1(℄n+1). Then :'n(℄n) and :'n+1(℄n+1) are logially equiva-



16 / Marelo Fingerlent over the lass of all frames.Proof. Clearly, 'n+1(℄n+1) j= 'n(℄n) over the lass of all frames. Forthe other diretion, onsider �rst linear expansions. Note that eah ℄-expansion in Figure 2 is a logial onsequene of the semanti de�nitionof the rule premises. Sine the semanti de�nition of the premises alwaysour positively in 'n(℄n), it is the ase that 'n(℄n) j= 'n+1(℄n+1). Alsonote that the expansion for PB is logially valid.So 'n+1(℄n+1) and 'n(℄n) are equivalent over the lass of all frames,and so is their negation. aAs a onsequene, a simple indution on the expansion of :' givesus the following.Lemma 5.2 If :' is the seond-order formula omputed by the SLaKE-expansion of A1; : : : ; An ` C, then for every ternary frame F:F j= A1; : : : ; An ` C i� F j= :'So :' is equivalent to the input sequent. Any valuation of the seond-order variables in :' will generate a �rst-order formula implied by theoriginal sequent. All we need now is to show that the anonial valuationof De�nition 3.2 really satis�es all formulas in a branh.For that, we onsider a frame F, a SLaKE-saturated set � and aanonial valuation built on �. Consider a mapping of the labels in � intothe worlds of F that respets the restritions of the anonial valuation(ie the labels that V fores to be di�erent are not mapped into the sameworld); we say that F; V j= T A : a i� F; V; a j= A and F; V j= F A : ai� F; V; a 6j= A.Lemma 5.3 Let � be a SLaKE saturated set and let F be a frame thatsatis�es all the R-formulas in �. Let V be the anonial valuation builtfrom �. Then for all signed formula S 2 �, F; V j= S.Proof. We prove the lemma by indution on the struture of the formulasin �. The anonial valuation satis�es all the atomi formulas, takingare only that no atomi formula is true and false in the same world.For the ompound formulas, the single premises of 9-rules replae aompound formula by its de�nition, so if the onlusions are satis�ed, sois the ompound premise. For the main premise of a 8-rule, saturationguarantees that every possible onlusion is added to �, so if all suhonlusions are satis�ed so is the main premise. As a onsequene, theframe F also satis�es the ompound main premise. aBy putting together Lemmas 5.2 and 5.3 we obtain the following.



Categorial Correspondene Theory / 17Theorem 5.4 If T is a �nite saturated SLaKE-tableau for the sequentA1; : : : ; An ` C omputing a �rst-order formula : thenF j= (A1; : : : ; An ` C)) F j= : :For the onverse, we �rst onsider deterministi tableaux.Theorem 5.5 Let T be a �nite, saturated and deterministi SLaKE-tableau for sequent A1; : : : ; An ` C omputing a �rst-order formula : .Then F j= (A1; : : : ; An ` C)( F j= : :Proof. The onstrution of T is a refutation for the input sequent, suhthat every F with F 6j= (A1; : : : An ` C) must satisfy the existentiallosure of the seond-order formula ', that is, for every frame F refutingthe original sequent, F j= (9P )'.Sine T is deterministi and saturated, it is assoiated to a SLaKEsaturated set �. Any refutation frame F must satisfy all the atomiformulas and the R-formulas in �. The anonial valuation built from itis suh that it satis�es all the atomi formulas.By Lemma 5.3, F with the anonial valuation satis�es all the for-mulas in T , that is F; V j= '. So when we apply the anonial valuationto ' obtaining  , it follows that:F 6j= (A1; : : : ; An ` C)) F j=  ;whih is equivalent to the desired result. aTo eliminate the restrition on deterministi tableaux, we have toonsider all possible refutations. This yields the �nal result.Theorem 5.6 Given a sequent A1; : : : ; An ` C and all possible �niteSLaKE-tableaux refuting it, T1; : : : ; Tm generating, respetively, �rst-order formulas : 1; : : : ;: m. ThenF j= (A1; : : : ; An ` C)() F j= m̂j=1: j :Proof. ()) This is Theorem 5.4.(() Suppose there is a frame F that refutes the input sequent,suh that there is a valuation V and a point a suh that F; V; a 6j=(A1; : : : ; An ` C). The tableaux T1; : : : ; Tm are all the possible refuta-tions of the input sequent, when we onsider the seond-order formulas'1; : : : ; 'm generated by eah refutation, we get F; a j= Wmj=1(9P )'j .



18 / Marelo FingerWithout loss of generality, suppose F satis�es one suh disjunt, 'j :F j= (9P )'j . We laim that there is a �nite valuation Vf that satis�es'j built in the following way:Vf (p) = fajT p : a belongs to TjgIt is lear that Vf (p) is �nite for eah p, for there are only �nitely manyformulas in Tj .By indution on the onstrution of Tj , we show that the satisfationof 'j depends on �nitely many possible worlds. The base ase is theinitial tableau, whih learly relies on �nitely many possible worlds.If the expansion of Tj was done by a single-premised 9-rule, thenonly two new possible worlds have to be onsidered, and by indutionhypothesis the number of worlds remains �nite.If the expansion of Tj was done by PB, then no new world needs tobe onsidered (and one extra variable is introdued), so the indutionhypothesis guarantees that the number of worlds remains �nite.If the expansion of Tj was done by a double-premised 8-rule, we needto examine eah ase, so onsider, for example, a main formula of theform T A=B : a; to satisfy suh formula, we need to enfore that:8b(Rab^ T B : b) T A : )There may be in�nitely many valid formulas of the form Rab, but byindution hypothesis, only �nitely many worlds b where the truth of Bhas been enfored, so the truth of A will be enfored only at �nitelymany worlds . 6 The proof is analogous for the other main premises of8-rules. We have proved our laim.At the end of the tableau onstrution, all atomi formulas in thetableau are satis�ed by Vf . We have thus shown a �nite model propertyfor the sequents that have a �nitely saturated tableaux. This means thatif we have opposite signed formulas of the form T p : x and F p : y, weonly have to impose x 6= y for �nitely many points. Suh a proeduregives us the same substitution as the anonial valuation; it follows thatF; Vf ; a j=  j .We have thus shown:F 6j= (A1; : : : ; An ` C)) F j= m_j=1 j ;whih is equivalent to the desired result. a6Note that suh an argument fails if we had in our language a formula that is trueat all worlds; lukily, we do not, not even A=A, as an be veri�ed by its semantis.
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