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1 IntrodutionIn this work, we study strutural, model-theoretial onditions that support para-onsisteny [dC74℄ in Substrutural Logis [Res00℄.. One of the initial motivationsfor the proposal of Relevant Logis was to avoid the lassial trivialization of theo-ries, where from a formula A and its negation one an infer a formula B, even if Ahas nothing in ommon with B [AB75℄. The way that Relevant and other Substru-tural Logis followed to ahieve that goal was to restrit the set of lassial struturalrules in dedutions; hene the name of the family of logis. With the eliminationof strutural rules, lassial onnetives unfolded into several others, so many newfragments were reated for Substrutural Logis. Atually, the family was uni�edas suh only muh later [Do�s93℄, and for several years there were just several groupsof logis (Relevant, Linear, Lambek, Intuitionisti, et). A semantis for RelevantLogi based on ternary frames was proposed by Routley and Meyer [RM73℄, whihwas later extended to the whole family of Substrutural Logis [Res00℄.The way Paraonsisteny is treated in da Costa's approah is di�erent [dC74℄,and onsists of weakening the notion of lassial negation. Initial tentatives to reatea semantis for paraonsistent logis tried to provide set theoretial onstrutions toaommodate the \inonsistent elements" present in most paraonsistent systems,with partial suess [CA81℄. Reent approahes to a semantis of paraonsistentlogis have totally avoided the manipulation of the usual set theoretial strutures,preferring to give a semantis based on the translation of a paraonsistent logis intoa set of many-valued logis, plus some mehanism for the ombination/interationof these translations [Car98℄.We do not deny that there are interesting aspets in these translation-based ap-proahes to semantis, but sine we are taking the substrutural point of view, wewill study the model theoretial onditions present at the intersetion between Sub-strutural and Paraonsistent Logis in the light of model theoretial onstrutionsfor substrutural paraonsisteny.It is important to note that we do not mean that Paraonsistent Logis areSubstrutural Logis. Quite the opposite, we simply note that some SubstruturalLogis display a paraonsistent behaviour, e.g. Relevant Logis as mentioned above.So some substrutural logis do aept some paraonsistent theories, but some oth-ers do not. This does not rule out the possibility of existing other logis termedParaonsistent that are not Substrutural or vie versa.In this way, we proeed with our study of model theoretial onditions thatpermit a substrutural logi to aept paraonsistent theories.1.1 Paraonsisteny and Substrutural LogisOur approah here does not start with the de�nition of a Paraonsistent Logi, sothat we an put forward a sound and omplete semantis for it. We do not havea �nal de�nition for paraonsisteny, nor do we think that one suh de�nition isdesirable.In the literature, there are two basi notions related to paraonsisteny, bothinvolving a formula A and its negation notA, both related to the violation of alogial priniple:� Non-ontradition: aording to this priniple, a theory should not derive a



formula and its negation. Therefore, a paraonsistent theory that violatesnon-ontradition annot validate an axiom of the form not(A and notA).� Trivialization: aording to this priniple, a theory ontaining both a formulaand its negation derives any formula. A paraonsistent theory that violatestriviality must not validate an axiom of the form (A and notA) impliesB.In this explanation above, we have used the onnetives not; and; implies to re-main neutral as to their de�nition, for in substrutural logis there may exist severalpossible onnetives for negation, onjuntion and impliation. The present workis also neutral towards suh de�nitions and we analyse strutural onditions forseveral possible de�nitions of these onnetives.As stated earlier, our approah is based on the semantis. We start with a puresemantial struture for substrutural logis, that is, a semantial struture freefrom any strutural pressuposition. We then study what kind of properties shouldbe imposed on that struture for eah alternative de�nition of paraonsisteny.1.2 Paraonsisteny and Correspondene TheoryThe idea is to follow the notion of Correspondene Theory fromModal Logis [vB84℄.In modal semantis we have the notion of a basi Kripke frame, F = (W;R), on-sisting of a setW of possible worlds with a binary relation R, alled the aessibilityrelation, whih provides a sound and omplete semanti basis for the minimal modallogi K. We know that by adding some property to the system, e.g. reexivity, someformulas beome valid in the lass of all Kripke models obeying that property;e.g. the axiom T, �p ! p, is valid in all reexive Kripke frames. Conversely, if weadd an axiom to a modal axiomatization, we get ompleteness over some lass ofKripke frames; e.g. logi K + axiom �p ! p is omplete over the lass of reexiveKripke frames [BS84, Che80℄.In this way, the relationship between modal axioms and lasses of Kripke framesan be studied without the need to de�ne the modal logi.We develop here a similar approah for substrutural logis [Do�s93, Res00℄, thatis, the family of logis obtained by rejeting some of the strutural rules used inlassial logi dedutions. The works of Roorda [Roo91℄ and Kurtonina [Kur94℄ haveshown that, in the same way that monadi modalities are interpreted over binaryaessibility relationships, binary onnetives an be seen as modalities interpretedover Kripke frames with a ternary aessibility relationship. In partiular, we maystudy the usual onnetives (impliation, onjuntion, negation) as modalities.In suh a setting we an start asking what sort of properties orresponds toa given axiom, as is done in modal orrespondene theory. In partiular, someaxiom may be taken as the de�nition of onsisteny in the system, so that we mayinvestigate what strutural properties orrespond to eah de�nition of onsisteny.Note that it follows from the modal examples above that if we want to allow forthe falsity of modal axiom T at some worlds, we may not have all worlds reexive;that is, 8xRxx must fail for some x. This is the way we are going to treat para-onsisteny onditions, namely by falsifying the strutural onditions imposed byonsisteny axioms on ternary frames.



1.3 Automated MethodsReently, we have been able to �nd an automati way to ompute a �rst-order on-dition on ternary frames assoiated to an axiom [Fin00℄, in a manner analogous tothe way that modal Sahlqvist formulas an omputationally generate a restritionon traditional (binary) Kripke frames [vB84℄. Suh automati omputation is per-formed on a substrutural fragment known as Categorial Grammar [Car97, Moo97℄,onsisting of the onnetives! (right-impliation),  (left-impliation) and 
 (ten-sor produt, also alled multipliative onjuntion or fusion).1We laim that suh tehniques an be applied for the study of �rst-order ondi-tion on ternary frames that allows a logi to support paraonsistent theories.The rest of the paper develops as follows. Ternary frames, and its relationship to�rst-order formulas are presented in Setion 2, with an example on how to omputethe �rst-order restrition assoiated with an axiom. Then in Setion 3 we showthat di�erent de�nitions of what onstitutes a onsisteny axiom lead to distintstrutural onstraints; in partiular, we study onsisteny onditions based on:� non-ontradition vs. trivialization priniples;� boolean vs. intuitionisti negation;� boolean vs. multipliative onjuntion.Finally, we analyse in Setion 4, we apply those methods for relevant negation andin Setion 5 we disuss several other possible negations whih an be analysed byour method.2 Ternary FramesThe idea of using ternary frame for the semantis of substrutural logis goes bakto [RM73℄, where it was used to provide a semantis for relevane logis. In a ontextfree of strutural pressuposition, that semantis has been used in, for example,[Kur94, DM97℄.A ternary frame is a pair F = (W;R), where R is a any ternary relation onW �W �W . The set W is a set of possible worlds. We normally represent thata triple ha; b; i 2 R by writing Rab. The elements of R are seen as a binary tree,with a being the root node, b its left daughter, and  its right daughter. To reinforethis point of view, Rab is sometimes written as Ra; b.Every model has a distinguished world 0 2 W . Unlike modal Kripke models,a valid formula is not required to hold at all worlds of every model, but only atthe distinguished world of every model. The distinguished 0 has the followingproperties: Ra0a and Raa0The language fragment we work with in this setion onsists of a ountable setof propositions, P = fp1; p2; : : :g, and the binary onnetives !; ;
. We useA;B;C as variables ranging over substrutural formulas. The onnetives ), ^and : are, respetively, the lassial impliation, onjuntion and negation.1These onnetives also appear in the literature as =, n and �.



A modelM = (W;R; V;0) onsists of a ternary frame plus a valuation V : P !2W that maps propositional variables into a set of possible worlds. Formulas areevaluated with respet to a possible world a 2W , so thatM; a j= A reads that theformula A holds at a in modelM. The semantis of the binary onnetives over aternary model is given by:M; a j= p i� a 2 V (p)M; a j= A
B i� 9b9(Rab ^M; b j= A ^M;  j= B)M; a j= A! B i� 8b8(Rab^M; b j= A)M;  j= B)M; a j= B  A i� 8b8(Rba^M; b j= A)M;  j= B)A formula is valid if it holds at 0 in all models. It is easy to see that a formulaof the form A! A or A A is valid at ternary formulas.A ternary model M = (W;R; V ) an be seen as a �rst-order model strutureover MFO = (W;R; P1; P2; : : :), where eah unary prediate Pi orresponds to apropositional letter pi 2 P . A substrutural formula an thus be translated into a�rst-order one, with respet to a world a, in the following way:FOa(pi) = Pi(a)FOa(A
B) = 9b9(Rab ^ FOb(A) ^ FO(B))FOa(A! B) = 8b8(Rab^ FOb(A)) FO(B))FOa(B  A) = 8b8(Rba^ FOb(A)) FO(B))It is straightforward to see thatM; a j= A i�MFO j= FOa(A).Like in usual modal orrespondene theory, if we want to make a formula A validover all models, this means that A should be true in all models, for all valuations;this translates into a seond-order formula, obtained by the universal losure ofFOa(A) over a and over all the prediate symbols ourring in it, that is:8P1 : : :8Pn8aFOa(A):Suh a formula provides a seond-order onstraint over the ternary relation R. It ispartiularly interesting here (as in modal logi) to know whether this seond-orderformula is equivalent to a �rst-order formula. However, it is not always possible to�nd suh a �rst-order equivalent to a seond-order frame onstraint. We illustratenext a ase where it is possible.EXAMPLE 1 Consider the formula A = (p ! q) ! (q  p). We want to knowwhat restritions should be imposed on ternary frames for it to be a valid formula.For that, we ompute FOa(A):FOa((p! q)! (q  p)) == 8b(Rab ^ FOb(p! q)) FO(q  p))= 8b(Rab ^ 8de(Rebd^ P (d)) Q(e))) 8fg(Rgf^ P (f)) Q(g)))= 8bfg9de(Rab^ (Rebd ^ P (d)) Q(e)) ^ (Rgf ^ P (f)) Q(g)))At this point we know that for A to be a valid formula, the ternary frame has to obeythe seond-order restrition 8P8Q8a(FOa(A)). To obtain a �rst-order equivalentto this formula, an appropriated valuation for P and Q must be provided; this isequivalent to �nding a valuation for p and q in the modal ontext. Finding suh a



valuation is the ruial point of this method. Although we have a way of omputingone [Fin00℄, if one exists, for the substrutural fragment, here we just present one:V (p) = ffg =) 8x(P (x), x = f)V (q) =W � fgg =) 8x(Q(x), x 6= g)By substituting suh a valuation in 8a(FOa)(A) we obtain:8abfg9de(Rab^ (Rebd ^ d = f ) e 6= g)) (Rgf ^ > ) ?))()8fg(9abRab^ 8de(d = f ^ e = g ) :Rebd)) :Rgf)()8bfg(9aRab^ :Rgbf ) :Rgf)But sine we know that, 8R0, it is always the ase that, for  = b, 9aRab, sowe end up with the �rst-order restrition:8fg(Rgf) Rgf)That is, the restrition imposed on R is the ommutativity of its seond and thirdarguments. It remains to be shown that whenever we have the ommutativity ofR's seond and third arguments, the formula A is valid; suh a proof an be foundin [Kur94℄. It follows that (p! q)! (q  p) orresponds to the restrition of 2,3-ommutativity over ternary frames. Note that it is well known that (p! q)! (q  p) is a theorem of substrutural logis that allow for ommutativity of premises ina sequent dedution [Do�s93℄.The really interesting part of the proedure above is to know whether the seond-order formula generated is equivalent to a �rst-order one and what is the substitutionthat will lead to it. This is the basi task of our algorithm developed in [Fin00℄; asthere is no spae for a full presentation of the method, we only briey present itnext.2.1 The SLaKE-Tableaux MethodWe ompute a �rst order formula equivalent to a substrutural sequent (or formula)by means of a onstrution of a tableau. This method is alled SLaKE-tableau(Substrutural Labelled KE).Eah formula in a SLaKE-tableau is signed with T or F and reeives a label;the signed labeled formulas T A : a and F A : b are alled opposites. The originalsequent A1; : : : ; An ` C is assoiated with an initial SLaKE-tableau:T A1 : a1...T An : anF C : aand with a �rst-order formula: = :9aa1 : : : an[Va1(A1) ^ : : : ^ Van(An) ^ :Va(C) ^Ra(a1 : : : an�1)an ^ ℄1℄where Va(A) is the valuation of the formula A at label a and is de�ned as follows:



� Va(A) =def > if A is not atomi� Va(p) =def (a 6= a1)^ : : :^ (a 6= an), where p : a1; : : : ; p : an our in a branhabove p : a with opposite sign. If no opposite formula ours above p : a,Va(p) =def >.Eah of the tableau linear expansion rules is assoiated with an expansion ofthe orrespondene formula of the form ℄i :=  (R;A1; : : : ; An; ℄i+1), where R is theternary aessibility relation, A1; : : : ; An are the formulas generated in the expan-sion, and ℄ is the \substitution plae" for next expansion and an be read simplyas truth. The tableau rules for SLaKE-tableaux are illustrated in Figure 1.SLaKE Expansion Formula ExpansionT B ! A : aT B : bT A :  (new ) ℄i := 8(Rab) (V(A) ^ ℄i+1))F B ! A : aT B : b (new b)F A :  (new ) ℄i := 9b9(Rab ^ Vb(B) ^ :V(A) ^ ℄i+1)T A B : aT B : bT A :  (new ) ℄i := 8(Rba) (V(A) ^ ℄i+1))F A B : aT B : b (new b)F A :  (new ) ℄i := 9b9(Rba ^ Vb(B) ^ :V(A) ^ ℄i+1)T A � B : aT A : b (new b)T B :  (new ) ℄i := 9b9(Rab ^ Vb(A) ^ V(B) ^ ℄i+1)F A �B : aT A : bF B :  (new ) ℄i := 8(Rab) (:V(B) ^ ℄i+1))T A : x F A : x ℄i := 8x((Vx(A) ^ ℄1i+1) _ (:Vx(A) ^ ℄2i+1))Figure 1: SLaKE rulesIn eah linear rule in Figure 1, the formulas above the horizontal line are thepremises of the rule, and those below it are the onlusions of the rule. There areone-premised and two-premised rules, but eah rule has exatly one premise that isa ompound formula, whih is alled the main premise; other premises are alledauxiliary. Two-premised rules are 8-rules and one-premised rules are 9-rules. Ifeither of the onlusions of an 9-rule is present on the urrent branh, it is notadded again with a new label. 8-rules always generate a new onlusion.The last rule in Figure 1 is the Priniple of Bivalene (PB), the only branhingrule. It introdues two \substitution plaes" in the orrespondene formula, ℄1i+1



and ℄2i+1, one for eah new branh. A branh that an still be expanded is alledative. Eah ative branh in a SLaKE tableau always has exatly one substitutionplae.The importane of substitution plaes is that they guarantee that eah formulaintrodued in the orrespondene formula will \see the orret ontext", that is, itwill be in the sope of the orret quanti�ers.A full presentation of the method is beyond the sope of this paper. Here werepeat Example 1 using the SLaKE-tableau method.EXAMPLE 2 Consider the sequent q ! p ` p q. Its assoiated SLaKE tableauis: 1: T q ! p : a2: F p q : a  = :9a(℄1)3: T q : b from 24: F p :  from 2 ℄1 := 9b9(Rba ^ > ^ > ^ ℄2)5: T p : d from 1, 3 ℄2 := 8d(Rdab) d 6=  ^ ℄3)By putting together all substitution plaes we obtain the formula: = :9a9b9(Rba ^ 8d(Rdab) d 6= ))whih is equivalent to 8a8b8(Rba) Rab), the ommutativity of the seond andthird R-positions.A tableau as above is deterministi, that is, at all expansions of a branh, thereis only a single expansion rule to be applied. In [Fin00℄ it has been shown that:PROPOSITION 3 If the SLaKE tableau generated by a sequent is �nite, satu-rated and deterministi, then the assoiated �rst-order formula  it omputes isthe sequent's orrespondene formula.We note that SLaKE-tableaux may be in�nite, in whih ase no �rst-order for-mula is omputed. I may also be non-deterministi, in whih ase we have to takethe onjuntion of the formulas assoiated to all possible SLaKE-tableaux.2.2 Extending the MethodAs the example above shows, the method is based on the semantis of the onne-tives. We an in this way extend the method to other onnetives, suh as lassialnegation (:) and lassial onjuntion (^) given by their semantial de�nitions:M; a j= :A i�M; a 6j= AM; a j= A ^ B i�M; a j= A andM; a j= BThese semantial rules translate generate the following tableau rules:T :A : aF A : a ℄i := :Va(A) ^ ℄i+1 F :A : aT A : a ℄i := :Va(A) ^ ℄i+1The omputational results in [Fin00℄ do not immediately apply to suh exten-sions, so we annot aÆrm that it is a deidable proess. However, the method anstill be applied to partiular examples with suess.But the point we are going to make here is that suh a method (even if not fullyautomated for larger fragments) an be applied to the study of strutural onditionsfor paraonsisteny.



3 Consistent and Paraonsistent Restritionson Ternary FramesA onsisteny ondition is a formula that one wants to see valid so that the systemis onsidered onsistent. As a onsequene, a system will be paraonsistent withrespet to a onsisteny ondition if suh a formula is invalidated.We want to apply the tehniques desribed above to assoiate a onstraint overternary frames with a onsisteny formula. The rejetion of suh onstraint willtherefore haraterize paraonsisteny over ternary models.Usually, onsisteny formulas have to deal with negation. So we introdue las-sial negation (:) in our language with its usual semantis:M; a j= :A i�M; a 6j= AThe obvious extension of the �rst-order translation is: FOa(:A) = :FOa(A).We an thus explore the onstraint assoiated with onsisteny onditions relatedto the priniple of non-ontradition.Consisteny Condition 1: :(p
 :p)We start by omputing the �rst order translation of :(p
 :p):1: F :(p
 :p) : 0  := :℄12: T (p
 :p) : 0 ℄1 := :V0(p
 :p) ^ ℄23: T p : b4: T :p :  ℄2 := 9b(R0b ^ Vb(p) ^ V(:p) ^ ℄3)5: Fp :  ℄3 := b 6= Putting everything together and doing some lassial equivalenes, we get theformula 8b(R0b! b = )That is, for the onsisteny ondition to be valid on ternary frames, the the spe-ial world 0 is related only to pairs of idential worlds. A strutural ondition toparaonsisteny in this ase would be:9b(R0b ^ b 6= )Hene for a paraonsisteny that rejets the onsisteny ondition above, it suÆesthat in every model there is a triple h0; b; i 2 R with distint last two arguments.Consisteny Condition 2: :(p ^ :p)Suppose now that we want to add boolean onjuntion in our language so that wean study the onstraint assoiated with the usual boolean onsisteny ondition:(p ^ :p).For that, �rst, we add the obvious semanti de�nitionM; a j= A ^ B i�M; a j= A and M; a j= B



together with its obvious �rst-order translationFOa(A ^ B) = FOa(A) ^ FOa(B)and the tableau rulesT A ^ B : aT A : aT B : a ℄i := Va(A) ^ Va(B) ^ ℄i+1F A ^B : aT A : aF B : a ℄i := Va(A) ^ :Va(B) ^ ℄i+1If we now apply our method to ` :(p^:p) we see that it is logially equivalentto >; details omitted. This is not at all surprising, sine we are dealing withboth boolean negation and onjuntion, whih are enough to de�ne all lassialonnetives, thus rejeting inonsisteny.Intuitionisti NegationThe main idea of intuitionisti negation (whih we represent here as �) is to assertthe negation of a formula in a world provided that this formula is not asserted atany other world \above" it. In our ternary models, if Rab then a is above b and ,whih we write a > b and a > . Formally:a > b i� 9(Rab)Suh a de�nition is inspired on a similar one in [RM73℄2. We then have, for ternaryframes, the usual intuitionisti de�nition of negation over Kripke models [Fit69℄:M; a j=�A i� 8b(b > a)M; b 6j= A)This de�nition generates a �rst-order translation:FOa(�A) = 8b(b > a) :FOb(A))and SLaKE-tableau rulesT �A : aF A : b ℄i := 8b(b > a) :Vb(A) ^ ℄i+1)F �A : aT A : b ℄i := 9b(b > a ^ Vb(A) ^ ℄i+1)We then hoose as a onsisteny ondition the formula � (p
 � p). For spaereasons we omit here the details, but when we develop the expansion we get that`�(p
 �p) orresponds to the �rst-order restrition:8ab(Rab) b > )2In fat, sine we do not assume any properties of R, we ould de�ne two orders, the other onebeing a >2  i� 9(Rab).



imposing the order > on all R-related worlds. The paraonsisteny ondition herestates that in every model there must exist an R-related triple Rab suh that b isnot above .Similarly, a onsisteny ondition of the form � (� p 
 p) would generate arestrition of the form 8ab(Rab )  > b), leading to a di�erent imposition of>-ordering.If both onsisteny onditions are required, a strutural ondition for paraon-sisteny should be that in every model there must exist an R-related triple Rabsuh that neither b nor  is above the other. This is expressed by the followingstrutural ondition: 9ab(Rab ^ :(b > ) ^ :( > b)):Finally, we onsider the onsisteny ondition � (p^ � p). The development ofa SLaKE-tableau for `�(p^ �p)) leads us to the �rst-order ondition8a(a > a)Thus the intuitionisti onsisteny ondition�(p
 �p) imposes>-reexivity, whihis a ondition normally expeted in intuitionisti models. Those models support thesemanti of ^ in exatly the terms de�ned here3; see e.g. [Fit69℄.So a paraonsistent ondition that rejets this intuitionisti view of onsistenyrequires that every ternary model ontains a >-irreexive world:9a:(a > a):Consisteny as TrivializationAnother possible way of de�ning a onsisteny ondition, perhaps more in onfor-mity with the original formulation of paraonsisteny [dC74℄, is to state that aninonsisteny trivializes impliation, that is, from p and its negation we an deriveany q. If we fous only on boolean onjuntion, two new onsisteny onditionsarise, namely:1. (p ^ :p)! q;2. (p^ � p)! q.By applying our method, we get their orrespondent �rst-order restrition overternary frames, respetively as:1. >;2. 8a(a > a).Item 1 implies that the onsisteny onditions for boolean negation based onnon-ontradition and triviality lead exatly to the same restritions over ternaryframes, and hene to the same paraonsistent ondition. Item 2 tells us that exatlythe same fat ours for intuitionisti negation, and the strutural restrition of >-reexivity is the same for both non-ontradition and triviality onditions.3the transitivity of > found in intuitionisti Kripke models is imposed by intuitionisti impli-ation.



3.1 Summary and AnalysisConsisteny Condition Strutural Restrition:(p
 :p) 9b(R0b ^ b 6= )(p
 :p)! q 9ab(Rab ^ b 6= )� (p 
 � p) 9ab(Rab ^ 8d:Rbd)(p 
 � p)! q 9ab(Rab ^ 8d:Rbd)� (p^ � p) 9a8b:Raab(p^ � p)! q 9a8b:Raab:(p ^ :p) impossible to violate(p ^ :p)! q impossible to violateTable 1: Strutural onditions for paraonsistenyTable 1 summarizes the results obtained by our method. Eah onsisteny on-dition is assoiated to the strutural restrition that violates it, and is expressed interms of the ternary R relation.What alls the attention in this result is that the pairs:� (p 
 � p) (p 
 � p)! q� (p^ � p) (p^ � p)! q:(p ^ :p) (p ^ :p)! qgenerate the same strutural onditions for paraonsisteny. That is, non-ontraditionand the orresponding trivialization ondition yield the same strutural ondition.The other pair examined here is� :(p
 :p)� (p
 :p)! qwhere the latter leads to a strutural restrition for paraonsisteny that is impliedby the the strutural ondition of the former.But it is widely known that there are logis for whih the non-ontradition andtrivialization onditions are totally independent.The onlusion is that suh logis employ a kind of negation that is neitherlassial (in the sense of the semanti de�nition: M; a j= :A i�M; a 6j= A) norintuitionisti, also semantially de�ned. In fat, the semantis of negation maytake extra parameters in these logis; for example, in [Res00℄ we �nd semantis forsubstrutural negations that depend not only on the ternary relation R but also ina partial order v of information re�nement where Rab does not neessarily implyb v a. Other kinds of semantial de�nitions for negation an be found in [Dun94℄.In the ases where intuitionisti or lassial negation is employed with its �xedsemantis, trivialization and non-ontradition always yield strutural onditionsthat are either idential or strongly onneted. As a last example of suh onnetion,we will examine the strutural onditions assoiated with relevant negation.



4 Relevant NegationThere are a great range of relevant logis de�ned in the literature [AB75℄. In severalof the proposed systems, and in partiular in system R, a kind of negation is used,whih is represented as A, meaning that it is inonsistent with the formula A.To provide a semantis for suh a negation over ternary frames, Routley andMeyer [RM73℄ postulated the existene of a unary funtion � : W ! W suh that,for every a; b;  2 W :1. a�� = a2. Rab) (Ra�b� ^Ra�b�)With suh a funtion, the System-R's relevant negation [AB75℄ is de�ned as:M; a j= A i�M; a� 6j= ANote that in suh a system, it is possible not to have neither A nor A holding at apossible world a.With suh semantis we apply our method to the following onsisteny ondi-tions:� (A
A)� (A
A)! qBy applying our method to it, we see that the �rst one imposes on the modelthe ondition: 8b(R0�b) b = �)whose negation leads to the paraonsisteny ondition:9b(R0�b ^ b 6= �)On the other hand, by applying our method to the trivialization formula (A 
A)! q we obtain the frame ondition:8ab(Rab) b = �)whih is leads to the following strutural restrition:9ab(b 6= � ^ Rab)Again, we see that the latter paraonsisteny ondition | assoiated withtrivialization | is logially implied by the former one | assoiated with non-ontradition.



5 ConlusionsWe have provided a method that allows us to �nd strutural onditions on ternaryKripke frames to support paraonsisteny. Our method is not biased towards anypartiular de�nition of paraonsisteny. The examples developed here were basedon possible de�nitions of onsisteny onditions to be refuted by a paraonsistentmodel.Admittedly, the examples of onsisteny ondition displayed here were quitesimple. For the ases of onsisteny onditions based on the priniple of non-ontradition and involving boolean onjuntion and the use of boolean and intu-itionisti negation, namely the formulas :(p ^ :q) and � (p^ � p), the resultsobtained were the expeted ones; the orresponding onditions based on the triv-ialization priniple provided oinident onditions. This represents a validation ofthe method presented here.More importantly, the examples presented show that the method, whether au-tomated or not, is really quite exible and may, in priniple, be appliable to moredaring de�nitions of paraonsisteny than those presented here. There are severalandidates for alternative negation, suh as those in [Res00℄:� split negation;� simple negation;� De Morgan Negation;� ortho-negation; and� Strit De Morgan Negation;These negations need a more re�ned semantis, for whih the simple ternary se-mantis used in this paper is a limit ase. We know that in suh ases the formulaomputed by our SLaKE-tableau method is implied by the orrespondene formula,but we do not know if the formula thus omputed is the orrespondene formula(nor do we know whether the method an deide in the generi ase, as it an inthe simple fragment of f
;!; g, whether the ondition does have a �rst-orderorrespondene formula.Referenes[AB75℄ A. R. Anderson and N. D. Belnap Jr. Entailment: The Logi of Relevaneand Neessity, volume 1. Prineton University Press, 1975.[BS84℄ R. Bull and K. Segerberg. Basi Modal Logi. In D. Gabbay and F. Guen-thner, editors, Handbook of Philosophial Logi, volume II, pages 1{88. D.Reidel Publishing Company, 1984.[CA81℄ W. A. Carnielli and L. P. Alantara. Paraonsistent algebras. TehnialReport IME-RT-I59-1981-v21-e1, Instituto de Matem�atia e Estat��stia,Universidade de S~a o Paulo, 1981.[Car97℄ Bob Carpenter. Type-Logial Semantis. MIT Press, 1997.
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