
In�nite SLaKE-TableauxMar
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ien
e, University of S~aoPaulo, Rua do Mat~ao 1010, 05508-900, S~ao Paulo, Brazil,m�nger�ime.usp.brAbstra
tIn this work, we explore an algorithm for the Corresponden
e Theory of Substru
tural Catego-rial Logi
, known as a SLaKE-tableau. Su
h algorithm allows us to 
ompute a �rst-order formulaequivalent to a sequent in substru
tural 
ategorial logi
 when su
h sequent generates a �nite SLaKE-tableau.Here we study the 
ases when su
h SLaKE-tableau is in�nite. We show that it is de
idable whethera sequent will generate a �nite tableau, presenting a graph-based algorithm for its dete
tion. Ourmain result is a proof that sequents generating in�nite SLaKE-tableaux are not equivalent to a�rst-order formula.Keywords: Corresponden
e Theory, KE-Tableaux, SLaKE-Tableaux, Substru
tural Logi
s.1 Introdu
tionSin
e Kripke has proposed a possible world semanti
s for modal logi
s [5℄, it has beennoted that the presen
e of 
ertain modal axioms impose spe
i�
 restri
tions on thebinary a

essibility relation of Kripke frames. Any modal axiom 
an be translatedto a se
ond-order formula and at the heart of modal 
orresponden
e theory lies theidenti�
ation of whi
h axioms 
orrespond to some �rst-order restri
tion over Kripkeframes [10℄.In her PhD thesis [6℄, Natasha Kurtonina has shown that a fragment of substru
-tural logi
s, known as Categorial Logi
s [7, 1℄, 
an be treated as a modal logi
 witha Kripke-style semanti
s based on a ternary a

essibility relation. Kurtonina showed,using several methods, that some sequents are equivalent to �rst-order restri
tionsover ternary frames, while others have no su
h �rst-order equivalen
e.In a re
ent work [4℄, we have proposed an algorithmi
 method for Categorial Cor-responden
e Theory. This method is based on SLaKE-tableaux, and we have showedthat a 
ategorial sequent that generates a �nite SLaKE-tableau is equivalent to a�rst-order formula that is obtainable by algorithmi
 methods.In this work we extend su
h result, showing that:� there is a graph-based algorithm that de
ides whether a 
ategorial sequent gener-ates an in�nite SLaKE-tableau; and� if a 
ategorial sequent generates an in�nite SLaKE-tableau, it is not equivalent toa �rst-order formula.Our work is inserted in the tradition of algorithmi
 
orresponden
e theory for ModalLogi
s. The most traditional result in this area is the Sahlqvist-van Benthem Algo-rithm that �nds a �rst-order formula 
orresponding to monomodal formula in theso-
alled Sahlqvist fragment of modal logi
 [8, 10℄. That algorithm works only forthat restri
ted modal fragment, for the problem of �nding whether a modal formula1L. J. of the IGPL, Vol. 0 No. 0, pp. 1{10 0000 
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2 In�nite SLaKE-Tableauxhas a �rst-order equivalent is unde
idable, a result due to Chagrova. We do notsu�er from this restri
tion be
ause our fragment involves ternary relations (and notbinary, as in the monomodal 
ase); also, the semanti
s of substru
tural logi
s furtherrestri
ts the format of the se
ond-order equivalents of substru
tural logi
s. As a resultthe problem of �nding a �rst-order equivalent is de
idable for the fragment dealt within this paper.The paper develops as follows. Se
tion 2 presents Substru
tural Categorial Logi
sand its semanti
s based on a ternary a

essibility relation. Se
tion 3 introdu
esSLaKE-tableaux. We 
on
entrate on showing the de
idability of �niteness for SLaKE-tableaux in Se
tion 4. Finally, Se
tion shows that sequents asso
iated with in�nitetableaux have no �rst-order equivalent.2 Substru
tural Categorial Logi
sIn this work we deal with the fragment of substru
tural 
ategorial logi
 
ontaining a
ountable set of propositional letters P = fp0; p1; : : :g and the usual 
ategorial binary
onne
tives: = (slash), n (ba
kslash) and � (produ
t). The � 
onne
tive is assumedto be left-asso
iative, that is, A � B � C � (A � B) � C. The =-
onne
tive is theright impli
ation 
onne
tive, su
h that from A=B and B (in this order), we infer A;similarly, the n-
onne
tive is the left impli
ation, so from B and BnA (in this order)infer A.A sequent is an expression of the form � ` C, where � is the ante
edent and C isthe single formula that is 
ontained in the 
onsequent. The ante
edents of sequents isa 
omma-separated binary trees, also left asso
iative, su
h that an ante
edent of theform A1; A2; A3 � ((A1; A2); A3). A sequent 
al
ulus presentation for su
h a logi
,known as the non-asso
iative Lambek Cal
ulus, has been de�ned in several pla
es inthe literature (e.g. in [7, 1℄). But here, we 
on
entrate purely on a modal-like semanti
presentation based on ternary frames.We de�ne a ternary frame as a pair F = (W;R), whereW is a non-empty set of pos-sible worlds and R is a ternary a

essibility relation. A ternary model M = (W;R; V )
onsists of ternary frame plus a valuation V : P ! 2W , sending propositional lettersto sets of worlds. The semanti
 interpretation of 
ategorial formulas in the f=; n; �g-fragment over ternary frames is given belowF; V; a j= p i� a 2 V (p)F; V; a j= A=B i� 8b8
(R
ab^ F; V; b j= B ) F; V; 
 j= A)F; V; a j= BnA i� 8b8
(R
ba^ F; V; b j= B ) F; V; 
 j= A)F; V; a j= B �A i� 9b9
(Rab
 ^ F; V; b j= A ^ F; V; 
 j= B)We also use the abbreviations:Rab(
d) =def 9x(Rabx ^Rx
d)Ra(b
)d =def 9y(Rayd ^Ryb
)Su
h abbreviation asso
iates to the left; that is, Ra(b
d)e =def Ra((b
)d)e, et
. Asusual, we write F; a j= A when F; V; a j= A for any valuation V ; if a is omitted, thismeans that the 
ondition holds for any possible world.A sequent A1; : : : An ` C is valid at a world a 2 W in ternary frame F (notation:F; a j= (A1; : : : An ` C) ) i� F; V; a j= A1 � : : : � An implies F; V; a j= C. This is



In�nite SLaKE-Tableaux 3equivalent to saying that if for some a1; : : : ; an, Ra(a1 : : : an�1)an and, for 1 � i � n,F; V; ai j= Ai, this implies F; V; a j= C.Note that F 
an be seen as a �rst-order model for a language over R and P1; : : : ; Pn,where ea
h Pi is a predi
ate symbol 
orresponding to the propositional letter pi.The notation (8P )' indi
ate the universal 
losure of all se
ond-order variables in', and (9P )' the existential one. Following the modal logi
 tradition, the standardtranslation of a 
ategorial formula A into se
ond-order logi
 formula is (8P )8aSTa(A),where: STa(pi) = Pi(a)STa(A �B) = 9b
(Rab
 ^ STb(A) ^ ST
(B))STa(B=A) = 8b
(R
ab ^ STb(A)) ST
(B))STa(AnB) = 8b
(R
ba ^ STb(A)) ST
(B))The se
ond-order quanti�
ation is over the relevant predi
ate symbols and re
e
tsall relevant valuation in a frame. So every 
ategorial sequent A ` C 
orresponds to ase
ond-order formula su
h that F j= (A1; : : : ; An ` C) i�F j= (8P )8a1 : : : ana (STa1(A1) ^ : : : ^ STan(An) ^ R(a1 : : : an)a) STa(C))The goal of 
orresponden
e theory is to know when su
h a se
ond-order formulade�nes a �rst-order frame property, that is, if there is a �rst-order formula  su
hthat F j= (A1; : : : ; An ` C) i� F j=  It is the 
omputation of su
h a property, when it exists, that we investigate nextby means of SLaKE-tableaux.3 Substru
tural Labelled KE TableauxSubstru
tural Labelled KE (SLaKE) tableaux are the main proof theoreti
al equip-ment we use in the generation of 
orresponden
e formulas for substru
tural sequents.D'Agostino has shown in [3℄ that analyti
 tableaux, in the style proposed bySmullyan [9℄, 
annot polynomially simulate truth tables and in some 
ases performmu
h worse than them. To avoid su
h problems in a prin
ipled way, KE-tableauxwere introdu
ed.The use of KE tableaux for substru
tural logi
s have been proposed in [2℄, byatta
hing a label to the signed formula, as in T A : a. We use this idea, but withoutfollowing its labelling dis
ipline. Instead, we simply add a new label at ea
h newnode of the tableau. Formally, let L be a 
ountable set of labels, let A be a 
ategorialformula; then for every a 2 L, the formulas T A : a and F A : a are signed labelledformulas.Ea
h �nite SLaKE-tableau is asso
iated with a 
orresponden
e formula. The orig-inal sequent is asso
iated with an initial tableau and with a se
ond-order formula.There are several linear expansion rules and a single bran
hing rule based on thePrin
iple of Bivalen
e. Ea
h of the tableau expansion rules is asso
iated with an ex-pansion of the 
orresponden
e formula of the form ℄i := '(R;B1; : : : ; Bn; ℄i+1), whereR is the ternary a

essibility relation, B1; : : : ; Bn are the formulas generated in theexpansion, and ℄ is the \substitution pla
e" for next expansion and 
an be read simplyas truth. The tableau rules for SLaKE-tableaux are illustrated in Figure 1.



4 In�nite SLaKE-TableauxName Type SLaKE Expansion Formula Expansion(T=) (linear-8) T A=B : aT B : bT A : 
 (new 
) ℄i := 8
(R
ab) (ST
(A) ^ ℄i+1))(F=) (linear-9) F A=B : aT B : b (new b)F A : 
 (new 
) ℄i := 9b9
(R
ab ^ STb(B) ^ :ST
(A) ^ ℄i+1)(Tn) (linear-8) T BnA : aT B : bT A : 
 (new 
) ℄i := 8
(R
ba) (ST
(A) ^ ℄i+1))(Fn) (linear-9) F BnA : aT B : b (new b)F A : 
 (new 
) ℄i := 9b9
(R
ba ^ STb(B) ^ :ST
(A) ^ ℄i+1)(T�) (linear-9) T A � B : aT A : b (new b)T B : 
 (new 
) ℄i := 9b9
(Rab
 ^ STb(A) ^ ST
(B) ^ ℄i+1)(F�) (linear-8) F A � B : aT A : bF B : 
 (new 
) ℄i := 8
(Rab
) (:ST
(B) ^ ℄i+1))(PB) (bran
h) T A : x F A : x ℄i := 8x((STx(A) ^ ℄1) _ (:STx(A) ^ ℄2))Fig. 1. SLaKE rulesIn ea
h linear rule in Figure 1, the formulas above the horizontal line are thepremises of the rule, and those below it are the 
on
lusions of the rule. There areone-premised and two-premised rules, but ea
h rule has exa
tly one premise that isa 
ompound formula, whi
h is 
alled the main premise; other premises are 
alledauxiliary. Two-premised rules are universal and one-premised rules are existential. Ifeither of the 
on
lusions of an existential rule is present on the 
urrent bran
h, it isnot added again with a new label. Universal rules always generate a new 
on
lusion.The last rule in Figure 1 is the Prin
iple of Bivalen
e (PB) bran
hing rule. It isonly applied for a formula A following the bran
hing heuristi
s :PB is used for a formula A that serves as an auxiliary premise for a 8-rule;PB is only applied if there is a unused 8-main premise but no other linearexpansion is possible.The main premises that trigger the appli
ation of PB for A are: F A � B, T AnBand T B=A. The 
orresponding 8-rule will be appli
able on the T A bran
h. Onlysubformulas of the original sequent will be introdu
ed by PB. It introdu
es two \sub-stitution pla
es" in the 
orresponden
e formula, ℄1 and ℄2, one for ea
h new bran
h.Ea
h a
tive bran
h in a SLaKE tableau always has exa
tly one substitution pla
e.Substitution pla
es guarantee that ea
h formula introdu
ed in the 
orresponden
eformula will be in the s
ope the 
orre
t quanti�ers.



In�nite SLaKE-Tableaux 5A sequent of the formA1; : : : ; An ` C is transformed into the initial SLaKE-tableau:T A1 : a1...T An : anF C : aSin
e the tableau is a refutation method, this indu
es the 
orresponden
e formula::' = :9aa1 : : : an[STa1(A1) ^ : : : ^ STan(An) ^ :STa(C) ^ Ra(a1 : : : an�1)an ^ ℄℄A single premised sequent A ` C generates the initial tableau 
ontaining T A : a andF C : a, with the initial 
orresponden
e formula :'(℄1) = :9a(STa(A) ^ :STa(C) ^℄1). We 
ould extend the method for sequents with empty ante
edents, but we do notpursue this topi
 here.The aim of the SLaKE-tableau 
onstru
tion is not to 
lose every tableau bran
h, butto expand ea
h tableau bran
h until no more expansions are possible. Ea
h expansionstep will also give us a new version of the 
orresponden
e formula. If we 
an �nitelyexpand all tableau bran
hes, a valuation for the atomi
 formula is 
onstru
ted, sothat we obtain a �rst-order formula by substituting in the �nal formula the evaluatedvalues. It is also possible that there will be some in�nite bran
hes (something thatwould not happen in simple propositional tableaux).Formally, let the 
ountable set of labels L be linearly ordered by <L. A SLaKE-saturated set � is a set of labelled signed formulas su
h that, with respe
t to the rulesof Figure 1:(a) If the premise of a 9-rule is in �, ea
h of its 
onsequen
e is in � for some label.(b) If the premises of a 8-rule are in �, its 
onsequen
e is in � with a label bigger thanthose of its premises, a

ording to <L.(
) For ea
h 
ompound formula in � that is a main premise of a 8-rule, there mustbe in � either a an auxiliary premise or the opposite of it.The expansion of a tableau aims at 
onstru
ting bran
hes that are SLaKE-saturatedsets. Items (a) and (b) 
orrespond to normal bran
h expansion. The restri
tion on theorder of the 
onsequen
e labels in (b) rises the possibility of having in�nite SLaKE-saturated sets. Item (
) is the bran
hing heuristi
s.The expansion of a tableau is thus the stepwise 
onstru
tion of a saturated 
ounter-model for the input sequent. Ea
h step generates a se
ond-order formula :'i+1(℄i+1)that is equivalent to :'i(℄i). At the end of a �nite expansion, a 
orresponden
eformula will be built from a suitable valuation, 
alled the 
anoni
al valuation.Definition 3.1Let X 2 fT; Fg; de�ne �X su
h that �T = F and �F = T . For ea
h SLaKE atomi
formula X p : x in the tableau, de�ne:O(X p : x) = fy j �X p : y pre
edes X p:xgFor every atomi
 p, de�ne the 
anoni
al valuation of P (x) impli
itly as:X̂p:x((P (x)$ ^y2O(Tp:x)x 6= y) ^ (:P (x)$ ^y2O(Fp:x)x 6= y))



6 In�nite SLaKE-TableauxThe 
anoni
al valuation is the minimal 
ondition a 
ountermodel must satisfy tofalsify the input sequent:� all the atomi
 
onditions determined by the tableau must hold (see Lemma 5.1);and� no formula 
an be both true and false at the same world.To obtain a �rst-order formula we need to substitute the 
anoni
al valuation into:'. If the tableau saturates, su
h a valuation/substitution satis�es all 
ompoundformulas. The �rst-order formula : thus obtained is obviously implied by :'. Weknow thatFa
t 3.2 ([4℄)If a sequent produ
es a �nite SLaKE-tableau, then it is equivalent to a �rst-orderrestri
tion over ternary frames. 1We want to show the 
onverse of su
h statement, namely that in�nite tableaux haveno �rst-order equivalent. Let us �rst see some examples of SLaKE tableaux.3.1 Finite SLaKE-TableauConsider the sequent A=B ` BnA. Its asso
iated SLaKE tableau is:1: T p=q : a2: F qnp : a :' = :9a(STa(p=q) ^ :STa(qnp) ^ ℄1)3: T q : b from 24: F p : 
 from 2 ℄1 := 9b9
(R
ba ^Q(b) ^ :P (
) ^ ℄2)5: T p : d from 1,4 ℄2 := 8d(Rdab) P (d) ^ ℄3)Initially, we expand line 2, and simultaneously, using the semanti
s of qnp, we expandthe 
orresponden
e formula substituting ℄1 into it. We then use lines 1 and 3 foranother expansion, obtaining ℄2. At this point, the tableau is saturated and 
losed(remember our main goal is not to 
lose a tableau, but to saturate every bran
h ofit). Make ℄3 := >. We have thus built the se
ond-order formula::' = :9a(STa(p=q) ^ :STa(qnp) ^ 9b9
(R
ba ^Q(b) ^ :P (
) ^ 8d(Rdab) P (d))))The formula :' is equivalent to the original sequent. We 
onstru
t the followingimpli
it 
anoni
al valuation for the atoms in :', by for
ing that no world both 
ontaina T - and an F -signed atom:Q(b)$ > (:P (
)$ >) ^ (P (d)$ d 6= 
)Saturation guarantees that the 
ompound formulas in :' 
an be substituted by>. By substituting ea
h se
ond-order variable in :' by their 
anoni
al valuation, weobtain the �rst-order formula:9a9b9
(> ^ > ^R
ba ^ 9b9
(R
ba ^ > ^ > ^ 8d(Rdab) d 6= 
)))1This result has not been published yet, the the results in this paper are not dependent on it but are intendedto 
omplement it.



In�nite SLaKE-Tableaux 7whi
h is equivalent to 8a8b8
(R
ba ) R
ab), meaning that R must have the 
om-mutativity property for its se
ond and third positions. It is easy to verify that anymodel satisfying su
h a property also satisfy the original sequent, and therefore it isequivalent to it.Now let us see an example with bran
hing. For that, 
onsider Peir
e's Axiom(pnq)np ` p.1: T (pnq)np : a2: F p : a3(i): T pnq : b 3(ii): F pnq : b4(i): T p : 
5(i): T q : d 4(ii): T p : e5(ii): F q : f :' = :9a(STa((pnq)np) ^ :P (a) ^ ℄1)℄1 := 8b((STb(pnq) ^ ℄i2) _ (:STb(pnq) ^ ℄ii2 )))℄i2 = 8
(R
ba) (P (
) ^ ℄i3))℄i3 = 8d(Rd
b) (Q(d) ^ ℄i4)) ℄ii2 = 9e9f(Rfeb ^ P (e) ^ :Q(f)^℄ii3 )The bran
hes are independently developed. The left bran
h will 
ause substitutionsin ℄i2 and the right bran
h will 
ause substitutions in ℄ii2 . If we were looking for a 
losedtableau, we 
ould stop the development of the left bran
h at 4(i); however, our aimhere is to obtain a SLaKE-saturated set at ea
h bran
h, so we pro
eed to obtain 5(i).The 
orresponden
e formula obtained after both bran
hes are saturated is:8a9b[ :(STa((pnq)np) ^ :P (a) ^ STb(pnq) ^ 8
(R
ba) (P (
) ^ 8d(Rd
b) Q(d)))))℄^8a9b[ :(STa((pnq)np) ^ :P (a) ^ :STb(pnq) ^ 9e9f(Rfeb ^ P (e) ^ :Q(f)))℄The 
anoni
al valuation is developed su
h that no atom is both false and true ata world; to guarantee the right s
oping of variables, a world is for
ed to be di�erentfrom those opposite ones pre
eding it in the tableau. This results in the valuation:(:P (a)$ >) ^ (P (
)$ 
 6= a) ^ (P (e)$ e 6= a)(Q(d)$ >) ^ (:Q(f)$ >)The �rst-order 
orresponden
e formula thus obtained is:8a9b(Raba^ 8ef(Rfeb) e = a))3.2 In�nite SLaKE-TableauIt is not always the 
ase that a tableau bran
h 
an be �nitely saturated. In those
ases we 
annot apply the method above, so we do not get a �rst-order formula. Forexample, 
onsider the tableau for p=p ` pnp:1: T p=p : a2: F pnp : a3: T p : b from 24: F p : 
 from 25: T p : d from 1 and 36: T p : e from 1 and 57: T p : f from 1 and 6...It is 
lear that the aim of 
onstru
ting a SLaKE-saturated leads in this 
ase toan in�nite tableau (with a single bran
h). Another example is (AnA)nA ` A, whi
h



8 In�nite SLaKE-Tableaux
ontains one �nite and one in�nite bran
h:1: T (pnp)np : a2: F p : a3i: T pnp : b4i: T p : 
5i: T p : d from 3i and 4i6i: T p : e from 3i and 5i... 3ii: F pnp : b4ii: T p : e5i: F p : fIt was shown in [6℄ that those sequents have no �rst-order 
orresponden
e.4 Dete
ting In�nite Bran
hesWe 
an dete
t in�nite bran
hes of SLaKE-tableaux in the 
ategorial fragment inthe following way. For ea
h bran
h B in a tableau, de�ne its dependen
y graph GB =(N;E), where a node in N is a set of signed unlabelled formulas used as joint premisesin an expansion step in B, that is:N = ffX1A1; : : : ; XnAngj Xi 2 fT; Fg and X1A1 : a1; : : : ; XnAn : an 2 B are used as jointpremises of the same derivation step in B's expansion gA

ording to the expansion rules in Figure 1, the nodes will be singletons or have twoelements. There is a dire
ted edge from n1 = fX1A1; : : : ; XnAng to n2 3 X A i� inB's 
onstru
tion there was an expansion rule with premises X1A1 : a1; : : : ; XnAn : anand 
onsequen
e X A : a.Theorem 4.1A bran
h B in a SLaKE tableau over the 
ategorial fragment is in�nite i� GB has a
y
le.A tableau is non-deterministi
 if at some point in its expansion two or more ruleswere appli
able.Corollary 4.2If one expansion of a non-deterministi
 bran
h is in�nite, then any other possibleexpansion will also be in�nite.Corollary 4.3It is de
idable whether the expansion of a �nite set of SLaKE-formulas will lead toan in�nite bran
h.5 The Se
ond-Orderness of In�nite SLaKE-TableauxThe aim of this se
tion is to show that if a SLaKE-tableau has an in�nite bran
h,then its 
orresponding se
ond-order formula :' 
annot be equivalent to a �rst-orderformula. For that we use an auxiliary 
onstru
tion.Parallel to the 
onstru
tion of a SLaKE-saturated set, we build a R-
on�guration�. The set � is initially empty and is built during the tableau's expansion:



In�nite SLaKE-Tableaux 9(a) If a 9-rule generates an expansion of the form 9xy(R(x; y; z)^ : : :), add R(x; y; z)to �.(b) If a 8-rule generates an expansion of the form 8xy(R(x; y; z) ^ : : : ) : : :), addR(x; y; z) to �.The 
on�guration � allows us to 
onstru
t a model for the SLaKE-saturated set,whi
h will be a 
ountermodel to the input sequent.Suppose we have a saturated bran
h B, that may be �nite or in�nite, with asso
iatedSLaKE-saturated set � and R-
on�guration �. A B-model is any model MB =(W;R; VB) su
h that: W � fx j x is a lable o
urring in �gR � fhx; y; zi j Rxyz 2 �gIf F p : x 2 � then x 62 VB(p)If T p : x 2 � then x 2 VB(p)Let X A : a 2 �, X 2 fT; Fg. We say that MB satis�es X A : a if MB; a j= A i�X = T .Lemma 5.1Let � be a SLaKE-saturated set 
orresponding to a bran
h B, and let MB be aB-model. For every X A : x 2 � then MB satis�es X A : x.Lemma 5.2Consider a sequent A1; : : : ; An ` C whose tableau 
ontains a saturated bran
h B.Let :' be the sequent's 
orresponding se
ond-order formula. Then, for any B-model,MB, MB 6j= :'.Now let us 
onsider a sequent A1; : : : ; An ` C whose saturated SLaKE-tableau
ontains an in�nite bran
h B and whose se
ond-order 
orresponding formula is :'.For ea
h step i in the 
onstru
tion of the in�nite bran
h B, let Bi be the set offormulas 
ontained in the tableau at step i. We de�ne a theory �i indu
tively as:Wi = fx j x is a lable o
urring in Big the world at i�i = Vfx 6= y j x; y 2 Wi;x 6= yg unique names for worlds�i = VfRxyz 2 � j x; y; x 2 Wig � restri
ted to WiVi = VfP (x) j T p : x 2 Big ^Vf:Q(x) j F q : x 2 Big V restri
ted to Wi�i = :' ^ Vi ^ �i ^ �iLemma 5.3At every step i there is a model for �i.Theorem 5.4If a 
ategorial sequent generates a SLaKE-tableau with an in�nite bran
h, than it isnot equivalent to a �rst-order formula.Proof. Assume that the tableau 
orresponding formula :' is equivalent to a �rst-order formula. By Corollary 4.2 any expansion of the input sequent will generate anin�nite bran
h. For any su
h in�nite bran
h B, generate the in�nite sequen
e f�igi2N,where ea
h �i is equivalent to a �rst-order formula. By Lemma 5.3, any �nite subsetof f�igi2N has a model (just take the model for the largest i). However, any model



10 In�nite SLaKE-Tableauxof f�igi2N is a B-model and by Lemma 5.2 it 
annot satisfy :', so f�igi2N has nomodels.This 
ontradi
ts the 
ompa
tness theorem for �rst-order logi
, so :' 
annot beequivalent to a �rst-order formula.A
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