
In�nite SLaKE-TableauxMarelo Finger, Department of Computer Siene, University of S~aoPaulo, Rua do Mat~ao 1010, 05508-900, S~ao Paulo, Brazil,m�nger�ime.usp.brAbstratIn this work, we explore an algorithm for the Correspondene Theory of Substrutural Catego-rial Logi, known as a SLaKE-tableau. Suh algorithm allows us to ompute a �rst-order formulaequivalent to a sequent in substrutural ategorial logi when suh sequent generates a �nite SLaKE-tableau.Here we study the ases when suh SLaKE-tableau is in�nite. We show that it is deidable whethera sequent will generate a �nite tableau, presenting a graph-based algorithm for its detetion. Ourmain result is a proof that sequents generating in�nite SLaKE-tableaux are not equivalent to a�rst-order formula.Keywords: Correspondene Theory, KE-Tableaux, SLaKE-Tableaux, Substrutural Logis.1 IntrodutionSine Kripke has proposed a possible world semantis for modal logis [5℄, it has beennoted that the presene of ertain modal axioms impose spei� restritions on thebinary aessibility relation of Kripke frames. Any modal axiom an be translatedto a seond-order formula and at the heart of modal orrespondene theory lies theidenti�ation of whih axioms orrespond to some �rst-order restrition over Kripkeframes [10℄.In her PhD thesis [6℄, Natasha Kurtonina has shown that a fragment of substru-tural logis, known as Categorial Logis [7, 1℄, an be treated as a modal logi witha Kripke-style semantis based on a ternary aessibility relation. Kurtonina showed,using several methods, that some sequents are equivalent to �rst-order restritionsover ternary frames, while others have no suh �rst-order equivalene.In a reent work [4℄, we have proposed an algorithmi method for Categorial Cor-respondene Theory. This method is based on SLaKE-tableaux, and we have showedthat a ategorial sequent that generates a �nite SLaKE-tableau is equivalent to a�rst-order formula that is obtainable by algorithmi methods.In this work we extend suh result, showing that:� there is a graph-based algorithm that deides whether a ategorial sequent gener-ates an in�nite SLaKE-tableau; and� if a ategorial sequent generates an in�nite SLaKE-tableau, it is not equivalent toa �rst-order formula.Our work is inserted in the tradition of algorithmi orrespondene theory for ModalLogis. The most traditional result in this area is the Sahlqvist-van Benthem Algo-rithm that �nds a �rst-order formula orresponding to monomodal formula in theso-alled Sahlqvist fragment of modal logi [8, 10℄. That algorithm works only forthat restrited modal fragment, for the problem of �nding whether a modal formula1L. J. of the IGPL, Vol. 0 No. 0, pp. 1{10 0000  Oxford University Press



2 In�nite SLaKE-Tableauxhas a �rst-order equivalent is undeidable, a result due to Chagrova. We do notsu�er from this restrition beause our fragment involves ternary relations (and notbinary, as in the monomodal ase); also, the semantis of substrutural logis furtherrestrits the format of the seond-order equivalents of substrutural logis. As a resultthe problem of �nding a �rst-order equivalent is deidable for the fragment dealt within this paper.The paper develops as follows. Setion 2 presents Substrutural Categorial Logisand its semantis based on a ternary aessibility relation. Setion 3 introduesSLaKE-tableaux. We onentrate on showing the deidability of �niteness for SLaKE-tableaux in Setion 4. Finally, Setion shows that sequents assoiated with in�nitetableaux have no �rst-order equivalent.2 Substrutural Categorial LogisIn this work we deal with the fragment of substrutural ategorial logi ontaining aountable set of propositional letters P = fp0; p1; : : :g and the usual ategorial binaryonnetives: = (slash), n (bakslash) and � (produt). The � onnetive is assumedto be left-assoiative, that is, A � B � C � (A � B) � C. The =-onnetive is theright impliation onnetive, suh that from A=B and B (in this order), we infer A;similarly, the n-onnetive is the left impliation, so from B and BnA (in this order)infer A.A sequent is an expression of the form � ` C, where � is the anteedent and C isthe single formula that is ontained in the onsequent. The anteedents of sequents isa omma-separated binary trees, also left assoiative, suh that an anteedent of theform A1; A2; A3 � ((A1; A2); A3). A sequent alulus presentation for suh a logi,known as the non-assoiative Lambek Calulus, has been de�ned in several plaes inthe literature (e.g. in [7, 1℄). But here, we onentrate purely on a modal-like semantipresentation based on ternary frames.We de�ne a ternary frame as a pair F = (W;R), whereW is a non-empty set of pos-sible worlds and R is a ternary aessibility relation. A ternary model M = (W;R; V )onsists of ternary frame plus a valuation V : P ! 2W , sending propositional lettersto sets of worlds. The semanti interpretation of ategorial formulas in the f=; n; �g-fragment over ternary frames is given belowF; V; a j= p i� a 2 V (p)F; V; a j= A=B i� 8b8(Rab^ F; V; b j= B ) F; V;  j= A)F; V; a j= BnA i� 8b8(Rba^ F; V; b j= B ) F; V;  j= A)F; V; a j= B �A i� 9b9(Rab ^ F; V; b j= A ^ F; V;  j= B)We also use the abbreviations:Rab(d) =def 9x(Rabx ^Rxd)Ra(b)d =def 9y(Rayd ^Ryb)Suh abbreviation assoiates to the left; that is, Ra(bd)e =def Ra((b)d)e, et. Asusual, we write F; a j= A when F; V; a j= A for any valuation V ; if a is omitted, thismeans that the ondition holds for any possible world.A sequent A1; : : : An ` C is valid at a world a 2 W in ternary frame F (notation:F; a j= (A1; : : : An ` C) ) i� F; V; a j= A1 � : : : � An implies F; V; a j= C. This is



In�nite SLaKE-Tableaux 3equivalent to saying that if for some a1; : : : ; an, Ra(a1 : : : an�1)an and, for 1 � i � n,F; V; ai j= Ai, this implies F; V; a j= C.Note that F an be seen as a �rst-order model for a language over R and P1; : : : ; Pn,where eah Pi is a prediate symbol orresponding to the propositional letter pi.The notation (8P )' indiate the universal losure of all seond-order variables in', and (9P )' the existential one. Following the modal logi tradition, the standardtranslation of a ategorial formula A into seond-order logi formula is (8P )8aSTa(A),where: STa(pi) = Pi(a)STa(A �B) = 9b(Rab ^ STb(A) ^ ST(B))STa(B=A) = 8b(Rab ^ STb(A)) ST(B))STa(AnB) = 8b(Rba ^ STb(A)) ST(B))The seond-order quanti�ation is over the relevant prediate symbols and reetsall relevant valuation in a frame. So every ategorial sequent A ` C orresponds to aseond-order formula suh that F j= (A1; : : : ; An ` C) i�F j= (8P )8a1 : : : ana (STa1(A1) ^ : : : ^ STan(An) ^ R(a1 : : : an)a) STa(C))The goal of orrespondene theory is to know when suh a seond-order formulade�nes a �rst-order frame property, that is, if there is a �rst-order formula  suhthat F j= (A1; : : : ; An ` C) i� F j=  It is the omputation of suh a property, when it exists, that we investigate nextby means of SLaKE-tableaux.3 Substrutural Labelled KE TableauxSubstrutural Labelled KE (SLaKE) tableaux are the main proof theoretial equip-ment we use in the generation of orrespondene formulas for substrutural sequents.D'Agostino has shown in [3℄ that analyti tableaux, in the style proposed bySmullyan [9℄, annot polynomially simulate truth tables and in some ases performmuh worse than them. To avoid suh problems in a prinipled way, KE-tableauxwere introdued.The use of KE tableaux for substrutural logis have been proposed in [2℄, byattahing a label to the signed formula, as in T A : a. We use this idea, but withoutfollowing its labelling disipline. Instead, we simply add a new label at eah newnode of the tableau. Formally, let L be a ountable set of labels, let A be a ategorialformula; then for every a 2 L, the formulas T A : a and F A : a are signed labelledformulas.Eah �nite SLaKE-tableau is assoiated with a orrespondene formula. The orig-inal sequent is assoiated with an initial tableau and with a seond-order formula.There are several linear expansion rules and a single branhing rule based on thePriniple of Bivalene. Eah of the tableau expansion rules is assoiated with an ex-pansion of the orrespondene formula of the form ℄i := '(R;B1; : : : ; Bn; ℄i+1), whereR is the ternary aessibility relation, B1; : : : ; Bn are the formulas generated in theexpansion, and ℄ is the \substitution plae" for next expansion and an be read simplyas truth. The tableau rules for SLaKE-tableaux are illustrated in Figure 1.



4 In�nite SLaKE-TableauxName Type SLaKE Expansion Formula Expansion(T=) (linear-8) T A=B : aT B : bT A :  (new ) ℄i := 8(Rab) (ST(A) ^ ℄i+1))(F=) (linear-9) F A=B : aT B : b (new b)F A :  (new ) ℄i := 9b9(Rab ^ STb(B) ^ :ST(A) ^ ℄i+1)(Tn) (linear-8) T BnA : aT B : bT A :  (new ) ℄i := 8(Rba) (ST(A) ^ ℄i+1))(Fn) (linear-9) F BnA : aT B : b (new b)F A :  (new ) ℄i := 9b9(Rba ^ STb(B) ^ :ST(A) ^ ℄i+1)(T�) (linear-9) T A � B : aT A : b (new b)T B :  (new ) ℄i := 9b9(Rab ^ STb(A) ^ ST(B) ^ ℄i+1)(F�) (linear-8) F A � B : aT A : bF B :  (new ) ℄i := 8(Rab) (:ST(B) ^ ℄i+1))(PB) (branh) T A : x F A : x ℄i := 8x((STx(A) ^ ℄1) _ (:STx(A) ^ ℄2))Fig. 1. SLaKE rulesIn eah linear rule in Figure 1, the formulas above the horizontal line are thepremises of the rule, and those below it are the onlusions of the rule. There areone-premised and two-premised rules, but eah rule has exatly one premise that isa ompound formula, whih is alled the main premise; other premises are alledauxiliary. Two-premised rules are universal and one-premised rules are existential. Ifeither of the onlusions of an existential rule is present on the urrent branh, it isnot added again with a new label. Universal rules always generate a new onlusion.The last rule in Figure 1 is the Priniple of Bivalene (PB) branhing rule. It isonly applied for a formula A following the branhing heuristis :PB is used for a formula A that serves as an auxiliary premise for a 8-rule;PB is only applied if there is a unused 8-main premise but no other linearexpansion is possible.The main premises that trigger the appliation of PB for A are: F A � B, T AnBand T B=A. The orresponding 8-rule will be appliable on the T A branh. Onlysubformulas of the original sequent will be introdued by PB. It introdues two \sub-stitution plaes" in the orrespondene formula, ℄1 and ℄2, one for eah new branh.Eah ative branh in a SLaKE tableau always has exatly one substitution plae.Substitution plaes guarantee that eah formula introdued in the orrespondeneformula will be in the sope the orret quanti�ers.



In�nite SLaKE-Tableaux 5A sequent of the formA1; : : : ; An ` C is transformed into the initial SLaKE-tableau:T A1 : a1...T An : anF C : aSine the tableau is a refutation method, this indues the orrespondene formula::' = :9aa1 : : : an[STa1(A1) ^ : : : ^ STan(An) ^ :STa(C) ^ Ra(a1 : : : an�1)an ^ ℄℄A single premised sequent A ` C generates the initial tableau ontaining T A : a andF C : a, with the initial orrespondene formula :'(℄1) = :9a(STa(A) ^ :STa(C) ^℄1). We ould extend the method for sequents with empty anteedents, but we do notpursue this topi here.The aim of the SLaKE-tableau onstrution is not to lose every tableau branh, butto expand eah tableau branh until no more expansions are possible. Eah expansionstep will also give us a new version of the orrespondene formula. If we an �nitelyexpand all tableau branhes, a valuation for the atomi formula is onstruted, sothat we obtain a �rst-order formula by substituting in the �nal formula the evaluatedvalues. It is also possible that there will be some in�nite branhes (something thatwould not happen in simple propositional tableaux).Formally, let the ountable set of labels L be linearly ordered by <L. A SLaKE-saturated set � is a set of labelled signed formulas suh that, with respet to the rulesof Figure 1:(a) If the premise of a 9-rule is in �, eah of its onsequene is in � for some label.(b) If the premises of a 8-rule are in �, its onsequene is in � with a label bigger thanthose of its premises, aording to <L.() For eah ompound formula in � that is a main premise of a 8-rule, there mustbe in � either a an auxiliary premise or the opposite of it.The expansion of a tableau aims at onstruting branhes that are SLaKE-saturatedsets. Items (a) and (b) orrespond to normal branh expansion. The restrition on theorder of the onsequene labels in (b) rises the possibility of having in�nite SLaKE-saturated sets. Item () is the branhing heuristis.The expansion of a tableau is thus the stepwise onstrution of a saturated ounter-model for the input sequent. Eah step generates a seond-order formula :'i+1(℄i+1)that is equivalent to :'i(℄i). At the end of a �nite expansion, a orrespondeneformula will be built from a suitable valuation, alled the anonial valuation.Definition 3.1Let X 2 fT; Fg; de�ne �X suh that �T = F and �F = T . For eah SLaKE atomiformula X p : x in the tableau, de�ne:O(X p : x) = fy j �X p : y preedes X p:xgFor every atomi p, de�ne the anonial valuation of P (x) impliitly as:X̂p:x((P (x)$ ^y2O(Tp:x)x 6= y) ^ (:P (x)$ ^y2O(Fp:x)x 6= y))



6 In�nite SLaKE-TableauxThe anonial valuation is the minimal ondition a ountermodel must satisfy tofalsify the input sequent:� all the atomi onditions determined by the tableau must hold (see Lemma 5.1);and� no formula an be both true and false at the same world.To obtain a �rst-order formula we need to substitute the anonial valuation into:'. If the tableau saturates, suh a valuation/substitution satis�es all ompoundformulas. The �rst-order formula : thus obtained is obviously implied by :'. Weknow thatFat 3.2 ([4℄)If a sequent produes a �nite SLaKE-tableau, then it is equivalent to a �rst-orderrestrition over ternary frames. 1We want to show the onverse of suh statement, namely that in�nite tableaux haveno �rst-order equivalent. Let us �rst see some examples of SLaKE tableaux.3.1 Finite SLaKE-TableauConsider the sequent A=B ` BnA. Its assoiated SLaKE tableau is:1: T p=q : a2: F qnp : a :' = :9a(STa(p=q) ^ :STa(qnp) ^ ℄1)3: T q : b from 24: F p :  from 2 ℄1 := 9b9(Rba ^Q(b) ^ :P () ^ ℄2)5: T p : d from 1,4 ℄2 := 8d(Rdab) P (d) ^ ℄3)Initially, we expand line 2, and simultaneously, using the semantis of qnp, we expandthe orrespondene formula substituting ℄1 into it. We then use lines 1 and 3 foranother expansion, obtaining ℄2. At this point, the tableau is saturated and losed(remember our main goal is not to lose a tableau, but to saturate every branh ofit). Make ℄3 := >. We have thus built the seond-order formula::' = :9a(STa(p=q) ^ :STa(qnp) ^ 9b9(Rba ^Q(b) ^ :P () ^ 8d(Rdab) P (d))))The formula :' is equivalent to the original sequent. We onstrut the followingimpliit anonial valuation for the atoms in :', by foring that no world both ontaina T - and an F -signed atom:Q(b)$ > (:P ()$ >) ^ (P (d)$ d 6= )Saturation guarantees that the ompound formulas in :' an be substituted by>. By substituting eah seond-order variable in :' by their anonial valuation, weobtain the �rst-order formula:9a9b9(> ^ > ^Rba ^ 9b9(Rba ^ > ^ > ^ 8d(Rdab) d 6= )))1This result has not been published yet, the the results in this paper are not dependent on it but are intendedto omplement it.



In�nite SLaKE-Tableaux 7whih is equivalent to 8a8b8(Rba ) Rab), meaning that R must have the om-mutativity property for its seond and third positions. It is easy to verify that anymodel satisfying suh a property also satisfy the original sequent, and therefore it isequivalent to it.Now let us see an example with branhing. For that, onsider Peire's Axiom(pnq)np ` p.1: T (pnq)np : a2: F p : a3(i): T pnq : b 3(ii): F pnq : b4(i): T p : 5(i): T q : d 4(ii): T p : e5(ii): F q : f :' = :9a(STa((pnq)np) ^ :P (a) ^ ℄1)℄1 := 8b((STb(pnq) ^ ℄i2) _ (:STb(pnq) ^ ℄ii2 )))℄i2 = 8(Rba) (P () ^ ℄i3))℄i3 = 8d(Rdb) (Q(d) ^ ℄i4)) ℄ii2 = 9e9f(Rfeb ^ P (e) ^ :Q(f)^℄ii3 )The branhes are independently developed. The left branh will ause substitutionsin ℄i2 and the right branh will ause substitutions in ℄ii2 . If we were looking for a losedtableau, we ould stop the development of the left branh at 4(i); however, our aimhere is to obtain a SLaKE-saturated set at eah branh, so we proeed to obtain 5(i).The orrespondene formula obtained after both branhes are saturated is:8a9b[ :(STa((pnq)np) ^ :P (a) ^ STb(pnq) ^ 8(Rba) (P () ^ 8d(Rdb) Q(d)))))℄^8a9b[ :(STa((pnq)np) ^ :P (a) ^ :STb(pnq) ^ 9e9f(Rfeb ^ P (e) ^ :Q(f)))℄The anonial valuation is developed suh that no atom is both false and true ata world; to guarantee the right soping of variables, a world is fored to be di�erentfrom those opposite ones preeding it in the tableau. This results in the valuation:(:P (a)$ >) ^ (P ()$  6= a) ^ (P (e)$ e 6= a)(Q(d)$ >) ^ (:Q(f)$ >)The �rst-order orrespondene formula thus obtained is:8a9b(Raba^ 8ef(Rfeb) e = a))3.2 In�nite SLaKE-TableauIt is not always the ase that a tableau branh an be �nitely saturated. In thoseases we annot apply the method above, so we do not get a �rst-order formula. Forexample, onsider the tableau for p=p ` pnp:1: T p=p : a2: F pnp : a3: T p : b from 24: F p :  from 25: T p : d from 1 and 36: T p : e from 1 and 57: T p : f from 1 and 6...It is lear that the aim of onstruting a SLaKE-saturated leads in this ase toan in�nite tableau (with a single branh). Another example is (AnA)nA ` A, whih



8 In�nite SLaKE-Tableauxontains one �nite and one in�nite branh:1: T (pnp)np : a2: F p : a3i: T pnp : b4i: T p : 5i: T p : d from 3i and 4i6i: T p : e from 3i and 5i... 3ii: F pnp : b4ii: T p : e5i: F p : fIt was shown in [6℄ that those sequents have no �rst-order orrespondene.4 Deteting In�nite BranhesWe an detet in�nite branhes of SLaKE-tableaux in the ategorial fragment inthe following way. For eah branh B in a tableau, de�ne its dependeny graph GB =(N;E), where a node in N is a set of signed unlabelled formulas used as joint premisesin an expansion step in B, that is:N = ffX1A1; : : : ; XnAngj Xi 2 fT; Fg and X1A1 : a1; : : : ; XnAn : an 2 B are used as jointpremises of the same derivation step in B's expansion gAording to the expansion rules in Figure 1, the nodes will be singletons or have twoelements. There is a direted edge from n1 = fX1A1; : : : ; XnAng to n2 3 X A i� inB's onstrution there was an expansion rule with premises X1A1 : a1; : : : ; XnAn : anand onsequene X A : a.Theorem 4.1A branh B in a SLaKE tableau over the ategorial fragment is in�nite i� GB has ayle.A tableau is non-deterministi if at some point in its expansion two or more ruleswere appliable.Corollary 4.2If one expansion of a non-deterministi branh is in�nite, then any other possibleexpansion will also be in�nite.Corollary 4.3It is deidable whether the expansion of a �nite set of SLaKE-formulas will lead toan in�nite branh.5 The Seond-Orderness of In�nite SLaKE-TableauxThe aim of this setion is to show that if a SLaKE-tableau has an in�nite branh,then its orresponding seond-order formula :' annot be equivalent to a �rst-orderformula. For that we use an auxiliary onstrution.Parallel to the onstrution of a SLaKE-saturated set, we build a R-on�guration�. The set � is initially empty and is built during the tableau's expansion:



In�nite SLaKE-Tableaux 9(a) If a 9-rule generates an expansion of the form 9xy(R(x; y; z)^ : : :), add R(x; y; z)to �.(b) If a 8-rule generates an expansion of the form 8xy(R(x; y; z) ^ : : : ) : : :), addR(x; y; z) to �.The on�guration � allows us to onstrut a model for the SLaKE-saturated set,whih will be a ountermodel to the input sequent.Suppose we have a saturated branh B, that may be �nite or in�nite, with assoiatedSLaKE-saturated set � and R-on�guration �. A B-model is any model MB =(W;R; VB) suh that: W � fx j x is a lable ourring in �gR � fhx; y; zi j Rxyz 2 �gIf F p : x 2 � then x 62 VB(p)If T p : x 2 � then x 2 VB(p)Let X A : a 2 �, X 2 fT; Fg. We say that MB satis�es X A : a if MB; a j= A i�X = T .Lemma 5.1Let � be a SLaKE-saturated set orresponding to a branh B, and let MB be aB-model. For every X A : x 2 � then MB satis�es X A : x.Lemma 5.2Consider a sequent A1; : : : ; An ` C whose tableau ontains a saturated branh B.Let :' be the sequent's orresponding seond-order formula. Then, for any B-model,MB, MB 6j= :'.Now let us onsider a sequent A1; : : : ; An ` C whose saturated SLaKE-tableauontains an in�nite branh B and whose seond-order orresponding formula is :'.For eah step i in the onstrution of the in�nite branh B, let Bi be the set offormulas ontained in the tableau at step i. We de�ne a theory �i indutively as:Wi = fx j x is a lable ourring in Big the world at i�i = Vfx 6= y j x; y 2 Wi;x 6= yg unique names for worlds�i = VfRxyz 2 � j x; y; x 2 Wig � restrited to WiVi = VfP (x) j T p : x 2 Big ^Vf:Q(x) j F q : x 2 Big V restrited to Wi�i = :' ^ Vi ^ �i ^ �iLemma 5.3At every step i there is a model for �i.Theorem 5.4If a ategorial sequent generates a SLaKE-tableau with an in�nite branh, than it isnot equivalent to a �rst-order formula.Proof. Assume that the tableau orresponding formula :' is equivalent to a �rst-order formula. By Corollary 4.2 any expansion of the input sequent will generate anin�nite branh. For any suh in�nite branh B, generate the in�nite sequene f�igi2N,where eah �i is equivalent to a �rst-order formula. By Lemma 5.3, any �nite subsetof f�igi2N has a model (just take the model for the largest i). However, any model
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