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Abstract

In this work, we explore an algorithm for the Correspondence Theory of Substructural Catego-
rial Logic, known as a SLaKE-tableau. Such algorithm allows us to compute a first-order formula
equivalent to a sequent in substructural categorial logic when such sequent generates a finite SLaKE-
tableau.

Here we study the cases when such SLaKE-tableau is infinite. We show that it is decidable whether
a sequent will generate a finite tableau, presenting a graph-based algorithm for its detection. Our
main result is a proof that sequents generating infinite SLaKE-tableaux are not equivalent to a
first-order formula.
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1 Introduction

Since Kripke has proposed a possible world semantics for modal logics [5], it has been
noted that the presence of certain modal axioms impose specific restrictions on the
binary accessibility relation of Kripke frames. Any modal axiom can be translated
to a second-order formula and at the heart of modal correspondence theory lies the
identification of which axioms correspond to some first-order restriction over Kripke
frames [10].

In her PhD thesis [6], Natasha Kurtonina has shown that a fragment of substruc-
tural logics, known as Categorial Logics [7, 1], can be treated as a modal logic with
a Kripke-style semantics based on a ternary accessibility relation. Kurtonina showed,
using several methods, that some sequents are equivalent to first-order restrictions
over ternary frames, while others have no such first-order equivalence.

In a recent work [4], we have proposed an algorithmic method for Categorial Cor-
respondence Theory. This method is based on SLaKE-tableauz, and we have showed
that a categorial sequent that generates a finite SLaKE-tableau is equivalent to a
first-order formula that is obtainable by algorithmic methods.

In this work we extend such result, showing that:

e there is a graph-based algorithm that decides whether a categorial sequent gener-
ates an infinite SLaKE-tableau; and

e if a categorial sequent generates an infinite SLaKE-tableau, it is not equivalent to
a first-order formula.

Our work is inserted in the tradition of algorithmic correspondence theory for Modal
Logics. The most traditional result in this area is the Sahlgvist-van Benthem Algo-
rithm that finds a first-order formula corresponding to monomodal formula in the
so-called Sahlguist fragment of modal logic [8, 10]. That algorithm works only for
that restricted modal fragment, for the problem of finding whether a modal formula
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has a first-order equivalent is undecidable, a result due to Chagrova. We do not
suffer from this restriction because our fragment involves ternary relations (and not
binary, as in the monomodal case); also, the semantics of substructural logics further
restricts the format of the second-order equivalents of substructural logics. As a result
the problem of finding a first-order equivalent is decidable for the fragment dealt with
in this paper.

The paper develops as follows. Section 2 presents Substructural Categorial Logics
and its semantics based on a ternary accessibility relation. Section 3 introduces
SLaKE-tableaux. We concentrate on showing the decidability of finiteness for SLaKE-
tableaux in Section 4. Finally, Section shows that sequents associated with infinite
tableaux have no first-order equivalent.

2 Substructural Categorial Logics

In this work we deal with the fragment of substructural categorial logic containing a
countable set of propositional letters P = {po,p1, ..} and the usual categorial binary
connectives: / (slash), \ (backslash) and e (product). The e connective is assumed
to be left-associative, that is, Ae Be(C = (A e B)e (. The /-connective is the
right implication connective, such that from A/B and B (in this order), we infer A;
similarly, the \-connective is the left implication, so from B and B\ A (in this order)
infer A.

A sequent is an expression of the form I' - C, where T is the antecedent and C' is
the single formula that is contained in the consequent. The antecedents of sequents is
a comma-separated binary trees, also left associative, such that an antecedent of the
form Ay, Ay, A3 = ((A1, As), A3). A sequent calculus presentation for such a logic,
known as the non-associative Lambek Calculus, has been defined in several places in
the literature (e.g. in [7, 1]). But here, we concentrate purely on a modal-like semantic
presentation based on ternary frames.

We define a ternary frame as a pair § = (W, R), where W is a non-empty set of pos-
sible worlds and R is a ternary accessibility relation. A ternary model M = (W,R, V)
consists of ternary frame plus a valuation V : P — 2 sending propositional letters
to sets of worlds. The semantic interpretation of categorial formulas in the {/,\, e}-
fragment over ternary frames is given below

S, ViafEp iff a€V(p)

§V,al=A/B iff VOVe(ReabAG,V,bl= B =3, V,ck A)
§,V,al=B\A iff VYbV¢(RcbaAF,V,bEB =3, V,cE A)
§,V,a=BeA iff JbIc(RabcAF,V,bEAANG,V,cl= B)

We also use the abbreviations:

Rab(cd) = gef Fz(Rabx A Rzcd)
Ra(be)d = 4ef Fy(Rayd A Rybe)

Such abbreviation associates to the left; that is, Ra(bed)e =4 Ra((bc)d)e, etc. As
usual, we write §,a = A when §,V,a = A for any valuation V; if a is omitted, this
means that the condition holds for any possible world.

A sequent Aj,... A, F C is valid at a world ¢ € W in ternary frame § (notation:
SalE (A,... A, F C) )it §,V,a = Ay e ... e A, implies §,V,a = C. This is
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equivalent to saying that if for some a1, ..., a,, Ra(a; ...a,_1)a, and, for 1 <i < n,
5, V,a; |= A;, this implies §,V,a = C.
Note that § can be seen as a first-order model for a language over R and Py, ..., P,

where each P; is a predicate symbol corresponding to the propositional letter p;.
The notation (VP)y indicate the universal closure of all second-order variables in
o, and (3P)y the existential one. Following the modal logic tradition, the standard
translation of a categorial formula A into second-order logic formula is (YP)VaST,(A),

where:
ST (pz) = Pi(a)
T,(AeB) = 3bc(Rabe A STy(A) A ST.(B))
ST (B/A) = VYbe(Reab A STy(A) = ST.(B))
ST.(A\B) = Vbc(Rcba A STy(A) = ST.(B))

The second-order quantification is over the relevant predicate symbols and reflects
all relevant valuation in a frame. So every categorial sequent A F C corresponds to a
second-order formula such that § = (4,..., A, F C) iff

§ = (YP)Vay ...ana (STe, (A1) A ... ANST,, (An) AR(ay ...an)a = ST,(C))

The goal of correspondence theory is to know when such a second-order formula
defines a first-order frame property, that is, if there is a first-order formula ) such
that

It is the computation of such a property, when it exists, that we investigate next
by means of SLaKE-tableaux.

3 Substructural Labelled KE Tableaux

Substructural Labelled KE (SLaKE) tableaux are the main proof theoretical equip-
ment we use in the generation of correspondence formulas for substructural sequents.

D’Agostino has shown in [3] that analytic tableaux, in the style proposed by
Smullyan [9], cannot polynomially simulate truth tables and in some cases perform
much worse than them. To avoid such problems in a principled way, KE-tableaux
were introduced.

The use of KE tableaux for substructural logics have been proposed in [2], by
attaching a label to the signed formula, as in 7' A : a. We use this idea, but without
following its labelling discipline. Instead, we simply add a new label at each new
node of the tableau. Formally, let £ be a countable set of labels, let A be a categorial
formula; then for every a € £, the formulas T' A : @ and F' A : a are signed labelled
formulas.

Each finite SLaKE-tableau is associated with a correspondence formula. The orig-
inal sequent is associated with an initial tableau and with a second-order formula.
There are several linear expansion rules and a single branching rule based on the
Principle of Bivalence. Each of the tableau expansion rules is associated with an ex-
pansion of the correspondence formula of the form t; := (R, By, ..., By, $i+1), where
R is the ternary accessibility relation, By, ..., B, are the formulas generated in the
expansion, and f is the “substitution place” for next expansion and can be read simply
as truth. The tableau rules for SLaKE-tableaux are illustrated in Figure 1.
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Name Type SLaKE Ezpansion Formula Ezpansion
T A/B:a

(T)) (linear-V) T B:b #i :=Ve(Reab = (STe(A) Ait1))
T A:c (new c)

F A/B:a
(F/) (linear-3) T B :b (new b) #; := 3b3c(Recab A STy(B) A ST (A) Ait1)
F A:c (new c)

T B\A:a
(T\) (linear-V) TB:b #i :=Ve(Reba = (STe(A) Ait1))
T A:c (new c)

F B\A:a
(F\) (linear-3) T B :b (new b) #; := Jb3c(Reba A STy (B) A ST (A) Ait1)
F A:c (new c)

T AeB:a
(Te) (linear-3) T A:b (new b) #; := 3bIc(Rabe A STy (A) A STe(B) A fit1)
T B :c (new c)

F AeB:a
(F'e) (linear-V) TA:b #; := Ve(Rabe = (=STe(B) A fit1))
F B :c (new c)

(PB) (branch)

b= Va((STe(A) AR V (<STa(4) A )

Fi1Gc. 1. SLaKE rules

In each linear rule in Figure 1, the formulas above the horizontal line are the
premises of the rule, and those below it are the conclusions of the rule. There are
one-premised and two-premised rules, but each rule has exactly one premise that is
a compound formula, which is called the main premise; other premises are called
auziliary. Two-premised rules are universal and one-premised rules are ezistential. If
either of the conclusions of an existential rule is present on the current branch, it is
not added again with a new label. Universal rules always generate a new conclusion.

The last rule in Figure 1 is the Principle of Bivalence (PB) branching rule. It is
only applied for a formula A following the branching heuristics:

PB is used for a formula A that serves as an auxiliary premise for a V-rule;
PB is only applied if there is a unused V-main premise but no other linear
expansion is possible.

The main premises that trigger the application of PB for A are: F Ae B, T A\B
and T B/A. The corresponding V-rule will be applicable on the 7" A branch. Only
subformulas of the original sequent will be introduced by PB. It introduces two “sub-
stitution places” in the correspondence formula, # and #?, one for each new branch.
Each active branch in a SLaKE tableau always has exactly one substitution place.
Substitution places guarantee that each formula introduced in the correspondence
formula will be in the scope the correct quantifiers.



Infinite SLaKE-Tableaux 5

A sequent of the form A, ..., A, F C is transformed into the initial SLaKE-tableau:
T A1 L ax

T A, :ay,
FC:a

Since the tableau is a refutation method, this induces the correspondence formula:
—p =-3aay ...a,[STe, (A1) A ... ANST,, (An) AN=ST,(C) A Ra(ay ...an—1)an Af]

A single premised sequent A - C' generates the initial tableau containing 7' A : a and
F C : a, with the initial correspondence formula —¢(8;) = =3a(ST,(A) A ST, (C) A
f1). We could extend the method for sequents with empty antecedents, but we do not
pursue this topic here.

The aim of the SLaKE-tableau construction is not to close every tableau branch, but
to expand each tableau branch until no more expansions are possible. Each expansion
step will also give us a new version of the correspondence formula. If we can finitely
expand all tableau branches, a valuation for the atomic formula is constructed, so
that we obtain a first-order formula by substituting in the final formula the evaluated
values. It is also possible that there will be some infinite branches (something that
would not happen in simple propositional tableaux).

Formally, let the countable set of labels £ be linearly ordered by <.. A SLaKE-
saturated set T is a set of labelled signed formulas such that, with respect to the rules
of Figure 1:

(a) If the premise of a 3-rule is in I', each of its consequence is in I' for some label.

(b) If the premises of a V-rule are in I, its consequence is in I' with a label bigger than
those of its premises, according to <.

(c) For each compound formula in I' that is a main premise of a V-rule, there must
be in I' either a an auxiliary premise or the opposite of it.

The expansion of a tableau aims at constructing branches that are SLaKE-saturated
sets. Items (a) and (b) correspond to normal branch expansion. The restriction on the
order of the consequence labels in (b) rises the possibility of having infinite SLaKE-
saturated sets. Item (c) is the branching heuristics.

The expansion of a tableau is thus the stepwise construction of a saturated counter-
model for the input sequent. Each step generates a second-order formula —¢;41 (fi41)
that is equivalent to —p;(f;). At the end of a finite expansion, a correspondence
formula will be built from a suitable valuation, called the canonical valuation.

DEFINITION 3.1 - - B
Let X € {T,F}; define X such that T = F and F = T. For each SLaKE atomic
formula X p: x in the tableau, define:

O(X p:x)={y| X p:y precedes X p:x}

For every atomic p, define the canonical valuation of P(z) implicitly as:

AN@P@ e N\ a2prEP@ e N c#y)

Xpz yeO(Tp:x) yeO(Fp:x)
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The canonical valuation is the minimal condition a countermodel must satisfy to
falsify the input sequent:

e all the atomic conditions determined by the tableau must hold (see Lemma 5.1);
and

e 1o formula can be both true and false at the same world.

To obtain a first-order formula we need to substitute the canonical valuation into
—p. If the tableau saturates, such a valuation/substitution satisfies all compound
formulas. The first-order formula — thus obtained is obviously implied by —p. We
know that

Facr 3.2 ([4])
If a sequent produces a finite SLaKE-tableau, then it is equivalent to a first-order
restriction over ternary frames. !

We want to show the converse of such statement, namely that infinite tableaux have
no first-order equivalent. Let us first see some examples of SLaKE tableaux.

3.1  Finite SLaKE-Tableau
Consider the sequent A/B F B\ A. Its associated SLaKE tableau is:

Tplg:a

Fq\p:a —p = —3a(STu(p/q) A ~STa(g\p) A1)
Tqg:b from 2

Fp:c from 2 f1 := 3b3c(Reba A Q(b) A =P(c) A 2)
Tp:d from 1,4 2 := Vd(Rdab = P(d) A t3)

G o =

Initially, we expand line 2, and simultaneously, using the semantics of ¢\p, we expand
the correspondence formula substituting #; into it. We then use lines 1 and 3 for
another expansion, obtaining f5. At this point, the tableau is saturated and closed
(remember our main goal is not to close a tableau, but to saturate every branch of
it). Make t3 := T. We have thus built the second-order formula:

- = 23a(ST,(p/q) A ~STa(q¢\p) A FbIc(Reba A Q(b) A —P(c) AVd(Rdab = P(d))))

The formula —¢ is equivalent to the original sequent. We construct the following
implicit canonical valuation for the atoms in =, by forcing that no world both contain
a T- and an F-signed atom:

Q) & T (~P(c) ¢ T) A (P(d) ¢ d # ¢)

Saturation guarantees that the compound formulas in =@ can be substituted by
T. By substituting each second-order variable in —¢ by their canonical valuation, we
obtain the first-order formula

=3a3b3c(T A T A Reba A Fb3c(Reba A T AT AVd(Rdab = d # ¢)))

1This result has not been published yet, the the results in this paper are not dependent on it but are intended
to complement it.
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which is equivalent to YaVbVc(Rcba = Rcab), meaning that R must have the com-
mutativity property for its second and third positions. It is easy to verify that any
model satisfying such a property also satisfy the original sequent, and therefore it is
equivalent to it.

Now let us see an example with branching. For that, consider Peirce’s Axiom

(P\)\p +- p.

1. T (pP\a)\p:a

2. Fp:a - = 23a(STa((P\@)\P) A 2P (a) A1)
3(i). T p\g:b 3(ii)). Fp\g:b f1 :=Vb((STh(P\@) A t5) V (=STy(p\a) A #5°)))
4(1). T p:c 4(ii). T p:e #5 = Ve(Reba = (P(c) A f3)) B .
5(1). T q:d 5(ii). Fq:f i = Vd(Rdeb = (Q(d) Aty)) 45 = 3e3f(Rfeb A Ple) A ~Q(F)ABE)

The branches are independently developed. The left branch will cause substitutions
in #} and the right branch will cause substitutions in £, If we were looking for a closed
tableau, we could stop the development of the left branch at 4(i); however, our aim
here is to obtain a SLaKE-saturated set at each branch, so we proceed to obtain 5(3).
The correspondence formula obtained after both branches are saturated is:

Va3b[  —(STa((p\g)\p) A ~P(a) A STy (p\q) A Ve(Reba = (P(c) A Vd(Rdch = Q(d)))))]
A

Va3b[ =(STu((P\g)\p) A =P (a) A =STy(p\q) A Jedf(Rfeb A P(e) A =Q(f)))]

The canonical valuation is developed such that no atom is both false and true at
a world; to guarantee the right scoping of variables, a world is forced to be different
from those opposite ones preceding it in the tableau. This results in the valuation:

(=P(a) < T)A(P(c) < c# a) A (P(e) <> e#a)
(Qd) & T)A(=Q(f) & T)

The first-order correspondence formula thus obtained is:

Va3b(Raba AVef(Rfeb= e = a))

3.2 Infinite SLaKE-Tableau

It is not always the case that a tableau branch can be finitely saturated. In those
cases we cannot apply the method above, so we do not get a first-order formula. For
example, consider the tableau for p/p - p\p:

1. Tp/p:a

2. Fp\p:a

3. Tp:d from 2

4. Fp:c from 2

5. Tp:d from 1 and 3
6. T'p:e from 1 and 5
7. Top:f from 1 and 6

It is clear that the aim of constructing a SLaKE-saturated leads in this case to
an infinite tableau (with a single branch). Another example is (A\A)\A F A, which
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contains one finite and one infinite branch:

L. T (p\p)\p:a

2. Fp:a
3i. Tp\p:b 3ii. Fp\p:b
4. Tp:c 4it. T op:e
5i. T p:dfrom 3i and 4i 5t. Fop:f

6i. T p:e from 3i and 5i

It was shown in [6] that those sequents have no first-order correspondence.

4 Detecting Infinite Branches

We can detect infinite branches of SLaKE-tableaux in the categorial fragment in
the following way. For each branch B in a tableau, define its dependency graph Gg =
(N, E), where a node in N is a set of signed unlabelled formulas used as joint premises
in an expansion step in B, that is:

N={{Xi4,.... X, A} X,e€{T,F}tand X1 A1 :a1,...,X, Ay : ap € B are used as joint
premises of the same derivation step in B’s expansion }

According to the expansion rules in Figure 1, the nodes will be singletons or have two
elements. There is a directed edge from n; = {X141,...,XpAp} tone 3 X A iff in
B’s construction there was an expansion rule with premises X1 A; : aq,..., X, Ap : an
and consequence X A : a.

THEOREM 4.1
A branch B in a SLaKE tableau over the categorial fragment is infinite iff Gz has a
cycle.

A tableau is non-deterministic if at some point in its expansion two or more rules
were applicable.

COROLLARY 4.2
If one expansion of a non-deterministic branch is infinite, then any other possible
expansion will also be infinite.

COROLLARY 4.3
It is decidable whether the expansion of a finite set of SLaKE-formulas will lead to
an infinite branch.

5 The Second-Orderness of Infinite SLaKE-Tableaux

The aim of this section is to show that if a SLaKE-tableau has an infinite branch,
then its corresponding second-order formula —¢ cannot be equivalent to a first-order
formula. For that we use an auxiliary construction.

Parallel to the construction of a SLaKE-saturated set, we build a R-configuration
p. The set p is initially empty and is built during the tableau’s expansion:
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(a) If a 3-rule generates an expansion of the form Jzy(R(z,y,2) A...), add R(z,y, z)
to p.

(b) If a V-rule generates an expansion of the form Vay(R(z,y,z) A ... = ...), add
R(z,y,z) to p.

The configuration p allows us to construct a model for the SLaKE-saturated set,
which will be a countermodel to the input sequent.

Suppose we have a saturated branch B, that may be finite or infinite, with associated
SLaKE-saturated set I' and R-configuration p. A B-model is any model Mp =
(W, R, Vg) such that:

W D {z | z is a lable ocurring in T'}
R 2 {(z,y,2) | Reyz € p}

If Fp:zeTl then z & Va(p)

IfT p:z el then z € Va(p)

Let X A:a €T, X € {T,F}. We say that Mp satisfies X A:a if Mp,a = A iff
X=T.

LEMMA 5.1
Let I' be a SLaKE-saturated set corresponding to a branch B, and let Mp be a
B-model. For every X A :x € T then Mp satisfies X A : x.

LEMMA 5.2
Consider a sequent A;,..., A, F C whose tableau contains a saturated branch B.

Let = be the sequent’s corresponding second-order formula. Then, for any B-model,
MB: MB l;é P,

Now let us consider a sequent Aq,...,A, F C whose saturated SLaKE-tableau
contains an infinite branch B and whose second-order corresponding formula is —.

For each step i in the construction of the infinite branch B, let B; be the set of
formulas contained in the tableau at step i. We define a theory 7; inductively as:

Wi = {z | z is a lable ocurring in B;} the world at i
ai=Nz#ylz,y e Wiz £y} unique names for worlds
pi = MRzyz € p|z,y,x € Wi} p restricted to W;

Vi= N {P@) | Tp:zeB}AN{-Q(z) | F qg:x€B;} V restricted to W;
Ti = e ANViNa; A p;

LEMMA 5.3
At every step ¢ there is a model for 7;.

THEOREM 5.4
If a categorial sequent generates a SLaKE-tableau with an infinite branch, than it is
not equivalent to a first-order formula.

PROOF. Assume that the tableau corresponding formula =y is equivalent to a first-
order formula. By Corollary 4.2 any expansion of the input sequent will generate an
infinite branch. For any such infinite branch B, generate the infinite sequence {7; }ien,
where each 7; is equivalent to a first-order formula. By Lemma, 5.3, any finite subset
of {7;}ien has a model (just take the model for the largest 7). However, any model
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of {7;}ien is a B-model and by Lemma 5.2 it cannot satisfy —p, so {7;}ien has no
models.

This contradicts the compactness theorem for first-order logic, so = cannot be
equivalent to a first-order formula. [ |
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