
Revising Specifications with CTL Properties

using Bounded Model Checking

No Author Given

No Institute Given

Abstract. During the process of software development, it is very com-
mon that inconsistencies arise between the formal specification and some
desired property. Belief Revision deals with the problem of accommodat-
ing new information that may be inconsistent with an existing knowledge
base.

In this paper, we propose the use of belief revision techniques in order to
deal with inconsistencies in formal specifications. The main problem to
be solved is that the most well known results for belief revision only hold
for logics which are monotonic and compact, while most discrete-time
temporal logics used to express system properties – and in particular,
CTL — are not compact. We suggest the use of bounded model-checking,
transforming the problem from CTL into classical propositional logic and
then transforming back the results to suggest revisions to the user.

Keywords: Model-checking, belief revision, formal specification, CTL.

1 Introduction

A system specification evolves when there is a conflict between the actual prop-
erties of the system and its intended new behaviour. In terms of formal speci-
fications, this can be modelled by the existence of an inconsistency between an
existing specification and a desired property.

Handling inconsistencies in specifications is a critical activity in the software
development process. A variety of techniques has been developed for checking
specifications for inconsistencies. These include formal techniques such as those
based on model checking or theorem proving [1–5]. Model checking of speci-
fications, in particular, is usually performed in CTL logic or in some related
formalism.

While many of these approaches provide rigorous, and often automated, anal-
ysis of software specifications to reveal inconsistencies, they often also do not
support the system developer in solving these inconsistencies after they have
been discovered.

To address this issue, a first proposal of evolving system specifications in
CTL was presented in [6] based on techniques of belief revision to suggest ways
for changing system specifications, as illustrated in Figure 1. Belief revision [7, 8]
is a sub-area of artificial intelligence whose main focus is to keep the consistency
of a set of beliefs when new beliefs are incorporated.

System Description Simple CTL Formula

OK
Model Checking +

Belief Revision

Suggestions of Change

Yes

No

Fig. 1. Model-checking with belief revision

Belief revision is normally done in terms of revision operations. However, it
is not always the case that such operations exist for all formalisms. The method
presented in [6] could only deal with simple CTL expressions, but typically
one would light to check complex system properties. In the case of revising
a specification with an arbitrarily complex property, it is very important to
determine if a specification can be revised at all.

In this work, we study CTL specification and model checking techniques with
respect to obtaining a method that guarantees that revised specifications always
exist. In particular, we study the existence of contraction operations over specifi-
cations, which is the belief revision operation that performs the removal of some
currently held belief, that is, some current system property that follows from
the specification. The addition of new properties can be done by first contract-
ing its negation, and then simply adding the new property to the contracted
specification.

The starting point of this study is a quite general result on the existence of
contraction operations for formal systems [9]. It turns out that CTL (and any
other temporal logic used for model checking such as LTL, CTL and CTL∗) does
not fulfil the required conditions to guarantee the existence of a contracted theory.
This means that, in general, one cannot guarantee that a revised specification
exists using the traditional tools of belief revision.

The main contribution of this work is an interaction between model checking
and bounded model checking that helps us solve this problem. Our proposal is
illustrated is Figure 2.

The idea is that, once an inconsistency has been detected in a specification by
model checking, one can determine a bound for bounded model checking [10]. The
technique of bounded model checking transforms the model checking problem
into a classical satisfiability problem. As classical logic satisfies the conditions
of existence of a revised specification [9], one then performs a contraction over
the transformed specification, and finally one has to work the contraction back
to obtain the suggestions on how to revise the original specification.

A second advantage of this approach is that, with the translation into classical
logic, CTL statements with arbitrary complexity can be accepted for model

System Description Any CTL Formula

OK Model Checking

Classical Translation

Bounded Model
Checking

Enriched Change Suggestion

Yes

No: determine bound size

Fig. 2. Specification Revision via Bounded Model Checking

checking and specification revision, so a new kind of change suggestions can be
obtained, enriching the capabilities of the method.

The paper is organised as follows: in the next two sections, we briefly in-
troduce the areas of Belief Revision and CTL Model Checking. In Section 4 we
discuss the applicability of standard belief revision to CTL. Next in Section 5
we present our method. Then we conclude, pointing towards future work.

2 Belief Revision

The necessity to model the behaviour of dynamic knowledge bases formed the
basis of belief revision theory [7, 8]. Most of the literature in the area is based
on the seminal work of Alchourrón, Gärdenfors and Makinson [11], that have
proposed some postulates that describe the formal properties that a revision
process should obey. They have also proposed some constructions that satisfy
the postulates. The theory became known as the AGM paradigm, due to the
initial of the authors.

In AGM theory, the beliefs of an agent are represented by a belief set, a
set of formulas closed under logical consequence (K = Cn(K), where Cn is a
supraclassical consequence operator). There are three types of change operators
for a belief set (K). In expansion (K + α), a consistent information α, together
with its logical consequences, is added to the belief set K. In contraction (K−α),
the information α is abandoned. Since the set K is logically closed, it could be
necessary to abandon other beliefs that would imply α. In revision (K ∗ α), an
information α is added to K and to keep consistency it can be necessary to
abandon other beliefs of K.

Besides belief sets, one can use the idea of possible worlds in order to represent
the beliefs of the agent. Possible worlds can be thought of as possible states of
the world (or, in propositional logics, propositional valuations). Given a belief
set K, [K] is the set of the possible worlds where all formulas of K are true.
And for a set Wk of possible worlds we can define a corresponding belief set K

as the set of formulas that are true in all the worlds of Wk.

This was the line followed in [6]: the possible worlds were associated to the
possible states of the system and an operation of revision was proposed based
on [12].

In this work, we follow a different approach to belief revision. Instead of deal-
ing with belief sets, i.e., sets closed under logical consequences, we are interested
in finite specifications. We use the idea of belief bases, in the line of [8].

3 CTL Model-Checking

The basic principle of model-checking is: given a property of the system, de-
scribed in a temporal logic, determine whether the finite state machine that
represents the described system satisfies such property. In other words, verify
whether a formula f is true in a graph G of states.

c

a

c

b

b

s2

s0

s1

Fig. 3. Kripke Structure

The finite state machine that represents the system can be described as a
specific Kripke structure, that is defined as: a set S of states, a set R of transitions
between states (where each state must have a successor), a set I of initial states
and a function L that associates to each state a set of propositions that hold in
that state. To model a state in deadlock (state without successors) it suffices to
create a transition from the state to itself. Figure 3 represents a Kripke structure
where P = {a, b, c}, S = {s0, s1, s2}, R = {(s0, s1), (s0, s2), (s1, s0), (s1, s2),
(s2, s2)}, I = {s0} with L(s0) = {a, b}, L(s1) = {b, c} and L(s2) = {c}.

3.1 Computation Tree Logic

The properties of the system are described in temporal logic. Temporal logic
is a type of modal logic where it is possible to represent and to reason about
propositions related to time. Through temporal logic it is possible to express
sentences of the type “I am ALWAYS hungry” or “I will be hungry UNTIL I
eat in a all-you-can-eat restaurant”.

Clarke and Emerson [13] proposed CTL (Computation Tree Logic), a logic
capable to consider different possible futures, through the notion of branching
time. The idea of this logic is to quantify over the possible runs of a program
through the notion of paths that exist in the space of states of the system. The
properties can be evaluated with respect to all the runs or some run. This logic
is used in some model-checkers, such as NuSMV, which we have used in our
implementation. The syntax of CTL is given by the following definition:

φ ::= p|¬φ|φ∧φ|(AXφ)|(AGφ)|(AFφ)|(EXφ)|(EGφ)|(EFφ)|E(φ Uφ)|A(φ Uφ)

where p is a propositional atom, ¬, ∧ are the usual logical connectives and
the other are temporal operators. Each temporal operator is composed of a path
quantifier (E, “there exists a path”, or A, “for all paths”) followed by a state
operator (X, next state in the path, U, until, G, globally, or F, finally). CTL has
the following semantic definition:

Definition 1. Let M be a Kripke structure and π(i) the i-th state of a path. We
say that M, s |= φ if and only if φ is true in the state s of M . Thus we have:

1. M, s |= p iff p ∈ L(s0)
2. M, s |= ¬φ iff M, s 6|= φ

3. M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2

4. M, s |= EX φ iff there is a state s′ of M such that (s, s′) ∈ R and M, s′ |= φ

5. M, s |= EG φ iff there is a path π of M such that π(1) = s and ∀i ≥
1 • M ,π(i) |= φ

6. M, s |= E(φ1 U φ2) iff there is a path π of M such that π(1) = s and
∃i ≥ 1 • (M, π(i) |= φ2 ∧ ∀j,i > j ≥ 1 • M ,π(j) |= φ1)

The other temporal operators can be derived from EX, EG and EU :
AX φ = ¬ EX ¬φ

AG φ = ¬ EF ¬φ

AF φ = ¬ EG ¬φ

EF φ = E [true U φ]
A[φ U β] = ¬ E[¬β U ¬φ ∧ ¬β] ∧ ¬ EG ¬β

We say that a Kripke structure M satisfies a formula CTL φ if M, s0 |= φ,
where s0 is an initial state.

The main approach for automatic formula verification in CTL is based on the
fixed point theory to characterize its operators. For details the reader is referred
to [14].

4 Guaranteeing the Existence of Specification Revisions

The AGM framework for belief revision was originally formulated having clas-
sical logic in mind. There have been some attempts to apply the operations for
different logics, such as modal or description logics, but in [15] it was shown
that AGM can only be applied to logics that are decomposable, i.e., logics for
which it holds that for any sets of formulas X, K if Cn(∅) ⊂ Cn(X) ⊂ Cn(K),
then there exists a set Y such that Cn(Y) ⊂ Cn(K) and Cn(X ∪ Y) = Cn(K).
Flouris has shown that some important description logics are not decomposable
and therefore, do not admit an AGM style contraction operation.

CTL (and modal logics in general) are decomposable. This means that AGM-
style operations can be applied. However, the use of logically closed sets leads to
problems from the computational point of view, since they are typically infinite.

For belief bases, [9] has shown that if the logic is compact and monotonic,
the typical constructions can be applied. But CTL and other temporal logics
based on discrete time are not compact. This means that it is not possible to
directly inherit all the results, as the theorems in [9] do not say anything about
the case where the logic is not compact.

The approach we follow here is to avoid the issue by first translating the
problem into propositional logic and then applying standard methods of belief
revision.

5 Revising via Bounded Model Checking

A solution to the problem of ensuring the applicability of belief revision tech-
niques is proposed here. This is achieved by means of Bounded Model Checking
and its associated translation of both specification and CTL property to propo-
sitional logic. The process is illustrated in Figure 2 and detailed next.

5.1 Bounded Model Checking

The idea of Bounded Model Checking [10, 16] is to fix a bound k for the maximal
path in a Kripke Model that can be traversed. This allows a given Kripke Model
K to be translated into a propostional classical formula Kk.

The semantic of CTL formulas is then altered to guarantee that the size of
paths traversed in the evaluation of a formula are never larger than k. A special
model-theoretic construct is needed for the semantics of the EG operator, namely
the k-loop, that is a path of size at most k containing a loop. The k-bounded
semantic of CTL formulas, M, s |=k φ, k ≥ 0, is defined as

1. M, s |=k p iff p ∈ L(s0)
2. M, s |=k ¬φ iff M, s 6|=k φ

3. M, s |=k φ1 ∧ φ2 iff M, s |=k φ1 and M, s |=k φ2

4. M, s |=k EX φ iff there is a state s′ of M such that (s, s′) ∈ R and M, s′ |=k−1

φ

5. M, s |=k EG φ iff there is a k-loop π of M such that π(1) = s and ∀i ≥
1 • M ,π(i) |=k−i φ

6. M, s |=k E(φ1 U φ2) iff there is a path π of M such that π(1) = s and
∃i ≥ 1 • (M, π(i) |=k−i φ2 ∧ ∀j,i > j ≥ 1 • M ,π(j) |=k−j φ1)

With a fixed bound k and this k-bounded semantics, one can translate a
bounded CTL formula φ into a classical formula Ak

φ. One then submits the for-

mula Kk ∧ Ak
φ to some efficient SAT solver (that is, a classical propositional

theorem prover, such as Chaff[17] or Berkmin [18]) to obtain a verdict. If the
formula is unsatisfiable, this means that ¬φ holds at the Kripke Model K. Oth-
erwise a classical valuation v is presented by the SAT solver, which represents a
path in traversed the model such that φ holds at the Kripke model.

5.2 The Method of BMC Revisions

By checking a formula φ against a model, one is trying to force the property ¬φ

over the revised model. In fact, if K and φ are inconsistent, this means that K

“implies” ¬φ. So if Kk ∧ Ak
φ is inconsistent, nothing needs to be done, and this

is our ideal case.
The method for obtaining change suggestions from bounded model checking

is triggered in the situation where the SAT solver outputs a valuation that
satisfies the formula Kk ∧ Ak

φ, as represented in Figure 4.

K
k
∧A

k
φ SAT v

Yes

Fig. 4. Bounded Model Checking Triggering Belief Revision

Any classical valuation v can be directly transformed into a formula Av =∧
v(elli)=1 ℓi that conjoins all literals satisfied by v.

The basic idea of the method is to revise the specification represented by
Kk ∧ Ak

φ so that valuation v is not allowed. However, it may be the case that

Kk ∧ Ak
φ ∧ ¬Av may be a satisfiable formula, satisfied by valuation v2, so that

¬Av2
is added to the theory. This process is iterated m times until an inconsistent

theory K ′ is obtained:

K ′ = Kk ∧ Ak
φ ∧ ¬Av1

∧ . . .¬Avm

As the number of possible valuations is finite, the process always terminates.
The revised specification Krev is obtained by

Krev = K ′ ∗ ¬Ak
φ = (K ′ − ¬Ak

φ) + ¬Ak
φ

One last step is still missing, namely, the translation back from propositional
classical Krev into change suggestions in the original specification K.

Theorem 1. The revised specification Krev always exists.

This means that the initial specification can be revised with respect to any
CTL formula provided a large enough bound k is used. One possible way of
determining such bound is to run a usual (unbounded) model checking with
respect to the desired property, ¬φ.

This method is apparently trading a PSPACE-complete problem (model
checking) for an NP-complete one (SAT). Is there a price to pay for it? In fact:

– No upper limit has been established over m, the number of times that SAT
is executed; in the worst case, it is an exponential number, in terms of the
number of propositional variables.

– The bound k may be hard to find. In particular, an approximate approach
may be used via bounded model checking.

5.3 Generating Change Suggestions

To generate change suggestions, one has to compare the initial translation Kk

with the revised theory Krev and propagate back the differences to the specifi-
cation. The translation back is not a problem because:

– The atomic formulas of K all represent clear facts about the specification
such as “p holds at state S” and “S0 accesses S1”.

– Belief revision techniques usually do not introduce new atomic symbols, so
Krev is a boolean combination of the same literals present in K.

As Krev can be simply translated back in terms of the original specification
elements, the only problem now is how to interpret that revised specification.

In general, the initial specification K is a definite description, presented as
a conjunction of literals, such as “p holds at state S0 which accesses state S1,
where p is false”. In contrast, the revised model Krev will very likely have parts
of it constituted of the disjunction of several options, eg. statements of the form
“state S0 accesses either Si or Sj and p either holds in both Si and Sj , or in
none of them”.

Once the differences between K and Krev have been detected, one may
present them to the user as the output solution. However, what one needs in
the end of the revision process is a definite model again, so one is faced with the
following possibilities:

– Present the possible definite models in some (perhaps arbitrary) order, such
that all presented definite models are the only possible ones entailed by the
specification; there may be an exponentially large number of such models.

– Choose a single definite model to present as a suggestion. The preference of
one model over the others may be built-in in the revision method, so that
Krev is in fact a definite description.

We believe that end-users must have a say on which kind of suggestion they
find more useful.

6 Conclusions

We have shown how belief revision can be used to revise specifications even
when the properties to introduce are specified in CTL. The technical problem
that arises is that one cannot guarantee the existence of a revised model in CTL
and similar discrete-time temporal logics, such as LTL and CTL∗.

The solution comes in using Bounded Model Checking and a translation of
both specification and CTL formulas to propositional logic, such that a SAT
solver is applicable. A method was proposed to iterate through these theories
until belief revision is applicable, and the revised version is guaranteed to exist,
and easily translatable back to the specification level.

Future works include studying the formal properties of the proposed method
and implementing such specification revision operations. In particular, a process
of stepwise refinements of a specification is to be submitted to such a process.
The feedback from such a process will help us decide on the best way to present
to the specifier the change suggestions provided by the method.

References

1. Winter, K.: Model checking for abstract state machines. Journal of Universal
Computer Science 3(5) (1997) 689–701

2. Bessow, R.: Model Checking Combined Z and Statechart Specifications. PhD
thesis, Technical University of Berlin, Faculty of Computer Science (November
2003) available from http://edocs.tu-berlin.de/diss/2003/buessow robert.pdf.

3. Leuschel, M., Butler, M.: ProB: A model checker for B. In Araki, K., Gnesi,
S., Mandrioli, D., eds.: FME 2003: Formal Methods. LNCS 2805. Springer-Verlag
(2003) 855–874

4. Kolyang, Santen, T., Wolff, B.: A structure preserving encoding of Z in Is-
abelle/HOL. In von Wright, J., Grundy, J., Harrison, J., eds.: Proceedings of the
9th International Conference on Theorem Proving in Higher Order Logics, Turku,
Finland, Springer-Verlag LNCS 1125 (1996) 283–298

5. E.M. Clarke, O. Grumberg, K. Hamaguchi: Another look at LTL model checking.
In D. Dill, ed.: Proceedings of the 6th International Conference on Computer-Aided
Verification CAV. LNCS 818. Springer-Verlag (1994) 415–427

6. de Sousa, T.C., Wassermann, R.: Handling inconsistencies in CTL model-checking
using belief revision. In: Proceedings of the Brazilian Symposium on Formal Meth-
ods (SBMF). (2007)

7. Grdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States.
MIT Press (1988)

8. Hansson, S.O.: A Textbook of Belief Dynamics. Kluwer Academic Publishers
(1997)

9. Hansson, S.O., Wassermann, R.: Local change. Studia Logica 70(1) (2002) 49–76
10. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without

bdds. In Cleaveland, R., ed.: Tools and Algorithms for Construction and Analysis
of Systems, 5th International Conference, TACAS ’99. Lecture Notes in Computer
Science, Springer (1999) 193–207

11. Alchourron, C., Grdenfors, P., Makinson, D.: On the logic of theory change: Partial
meet contraction and revision functions. Journal of Symbolic Logic 50(2) (1985)
510–530

12. Grove, A.: Two modellings for theory change. Journal of Philosophical Logic 17(2)
(1988) 157–170

13. Clark, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In Kozen, D., ed.: Logics of Programs. LNCS
131. Springer-Verlag (1981) 52–71

14. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press (2000)

15. Flouris, G.: On Belief Change and Ontology Evolution. PhD thesis, University of
Crete (2006)

16. Penczek, W., Wozna, B., Zbrzezny, A.: Bounded model checking for the universal
fragment of ctl. Fundamenta Informaticae 51(1) (2002) 135–156

17. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an Efficient SAT Solver. In: Proceedings of the 38th Design Automation
Conference (DAC’01). (2001) 530–535

18. Goldberg, E., Novikov, Y.: Berkmin: A Fast and Robust SAT Solver. In: Design
Automation and Test in Europe (DATE2002). (2002) 142–149

