Logics for Approximate Reasoning:
Approximating Classical Logic “From Above”

Marcelo Finger and Renata Wassermann

Department of Computer Science
Institute of Mathematics and Statistics
University of Sao Paulo, Brazil
{mfinger,renata}@ime.usp.br

Abstract. Approximations are used for dealing with problems that are
hard, usually NP-hard or coNP-hard. In this paper we describe the no-
tion of approximating classical logic from above and from below, and
concentrate in the first. We present the family s; of logics, and show
it performs approximation of classical logic from above. The family s;
can be used for disproving formulas (the SAT-problem) in a local way,
concentrating only on the relevant part of a large set of formulas.

1 Introduction

Logic has been used in several areas of Artificial Intelligence as a tool for repre-
senting knowledge as well as a tool for problem solving. One of the main criticism
to the use of logic as a tool for automatic problem solving refers to the compu-
tational complexity of logical problems. Even if we restrict ourselves to classical
propositional logic, deciding whether a set of formulas logically implies a certain
formula is a co-NP-complete problem [GJ79]. Another problem comes from the
inadequacy of modelling real agents as logical beings. Ideal, logically omniscient
agents know all the consequences of their beliefs. However, real agents are limited
in their capabilities.

Cadoli and Schaerf have proposed the use of approximate entailment as a way
of reaching at least partial results when solving a problem completely would be
too expensive [SC95]. Their method consists in defining different logics for which
satisfiability is easier to compute than classical logic and treat these logics as
upper and lower bounds for the classical problem. In [SC95], these approximate
logics are defined by means of valuation semantics and algorithms for testing
satisfiability. The language they use is restricted to that of clauses, i.e., negation
appears only in the scope of atoms and there is no implication.

The approximations are based on the idea of a context set S of atoms. The
atoms in S are the only ones whose consistency is taken into account in the
process of verifying whether a given formula is entailed by a set of formulas. As
we increase the size of the context set S, we get closer to classical entailment,
but the computational complexity also increases.

Cadoli and Schaerf proposed two systems, intending to approximate classical
entailment from two ends. The S3 family approximates classical logic from bel-
low, in the following sense. Let P be a set of propositions and S C S* C ... C P;
let Th(L) indicate the set of theorems of a logic. Then:

Th(S3(@)) C Th(S5(S8°)) € Th(S5(S")) C ... C Th(S3(P)) = Th(CL)

where CL is classical logic (in Section 3 this notion is extended to the entailment
relation |=).

Approximating a classical logic from below is useful for efficient theorem prov-
ing. Conversely, approximating classical logic from above is useful for disproving
theorems, which is the satisfiability (SAT) problem.

Unfortunately, Cadoli and Schaerf’s other system, S;, does not approximate
classical logic from above, as we will see in Section 3. In this paper, we study the
family of logical entailments s;, which are approximations of classical logic from
above. While S; only deals with formulas in negation normal form, s; covers full
propositional logic.

The family of logic s; also tackles the problem of non-locality in S;, which
implies that S; approximations do not concentrate on the relevant formulas.
Discussions on locality are found in Section 5.

This paper proceeds as follows: in the next section, we briefly present Cadoli
and Schaerf’s work on approximate entailment. In Section 3 we present the no-
tion of approximation that we are aiming at and show why Cadoli and Schaerf’s
system S; does not approximate classical logic from above. In Section 4 we
present our system s;and in Section 5 some examples of its behaviour.

Notation: Let P be a countable set of propositional letters. We concen-
trate on the classical propositional language Lo formed by the usual boolean
connectives — (implication), A (conjunction), V (disjunction) and — (negation).

Throughout the paper, we use lowercase Latin letters to denote propositional
letters, lowercase Greek letters to denote formulas, and uppercase letters (Greek
or Latin) to denote sets of formulas. The letters S and s will denote sets of
propositional letters.

Let S C P be a finite set of propositional letters. We abuse notation and
write that, for any formula a € Lo, a € S if all its propositional letters are in
S. A propositional valuation vy is a function v, : P — {0,1}.

2 Approximate Entailment

We briefly present here the notion of approximate entailment and summarise the
main results obtained in [SC95].

Schaerf and Cadoli define two approximations of classical entailment: =g
which is complete but not sound, and =% which is classically sound but incom-
plete. These approximations are carried out over a set of atoms S C P which
determines their closeness to classical entailment. In the trivial extreme of ap-
proximate entailment, i.e., when S = P, classical entailment is obtained. At the

other extreme, when S = &, =% holds for any two formulas (i.e., for all a,3,
we have a =L) and =% corresponds to Levesque’s logic for explicit beliefs
[Lev84], which bears a connection to relevance logics such as those of Anderson
and Belnap [AB75].

In an S; assignment, if p € S, then p and —p are given opposite truth values,
while if p € S, both p and —p get value 0. In an S5 assignment, if p € S, then
p and —p get opposite truth values, while if p € S, p and —p do not both get
0, but may both get 1. The names S; and S3 come from the possible truth
assignments for literals outside S. If p € S, there is only one S; assignment for
p and —p, the one which makes them both false. There are three possible Ss
assignments, the two classical ones, assigning p and —p opposite truth values,
and an extra one, making them both true. The set of formulas for which we are
testing entailments is assumed to be in clausal form. Satisfiability, entailment,
and validity are defined in the usual way.

The following examples illustrate the use of approximate entailment. Since
% is sound but incomplete, it can be used to approximate =, i.e., if for some
S we have that B % «, then B = a. On the other hand, =} is unsound but
complete, and can be used for approximating £, i.e., if for some S we have that
B L a, then B [~ a.

Ezample 1. ([SC95]) We want to check whether B = «a, where a = —cow V
molar-teeth and
B = {—cow V grass-eater, ~dogV carnivore,
—grass-eater V —canine-teeth, wcarnivore V mammal,
—mammal V canine-teeth V molar-teeth,
—grass—eater V mammal,-mammal V vertebrate,
—wvertebrate V animal}.

Using the Ss-semantic defined above, we can see that for S = {grass-eater,
mammal, canine-teeth}, we have that B % a, hence B = a.

Ezample 2. ([SC95]) We want to check whether B [~ 3, where f=-child V
pensioner and
B = { —person V child V youngster V adult V senior,
—adult V student V worker V unemployed,
—pensioner V senior, —wyoungster V student V worker,
—senior V pensioner V worker, —pensioner V -istudent,
—student V child V youngster V adult,
—pensioner V —worker}.

Using the Si-semantic above, for S = {child, worker, pensioner}, we have
that B [£4 3, and hence B [~ .

Note that in both examples above, S is a small part of the language.
Schaerf and Cadoli obtain the following results for approximate inference.

Theorem 1 ([SC95]). There exists an algorithm for deciding if B 3 a and
deciding B =5 o which runs in O(|B|.|a|.2'5") time.

The result above depends on a polynomial time satisfiability algorithm for
belief bases and formulas in clausal form alone. This result has been extended in
[CS95] for formulas in negation normal form, but is not extendable to formulas
in arbitrary forms [CS96].

3 The Notion of Approximation

The notion of approximation proposed by Cadoli and Schaerf can be described
in the following way. Let =2%: 2€ x £ be the entailment relation in the logic
S3(.9), that is, the member of the family of logics S3 determined by parameter
S. Then, we had the following property. For

zgslgsuggslngp

we have that
S C |=35/ C...C |=5f3,n C '=%=|=CL

where |=c| is classical entailment, and hence this was justifiably called an ap-
proximation of classical logic from below.

A family of logics that approximates classical logic from below is useful for
theorem proving. For in such case, if a B % a in logic S3(S), then we know
that classically B |= a. So if it is more efficient to do theorem proving in S5(.5),
we may prove some classical theorems at a “reduced cost” as theorem proving is
a coNP-complete problem. If we fail to prove a theorem in S3(S), however, we
don’t know its classical status; it may be provable in S3(S’) for some S’ O S,
or it may be that classically B & «a. The method for theorem proving in Ss
presented in [FWO01] had the advantage of providing an incremental method of
theorem proving; that is, if we failed to prove B =% «, a method was provided
for incrementing S and continuing the proof without restarting the proof.

Besides the potential economy in theorem proving, logic S3(S), by means of
its parameter S gives us a clear notion of what propositional symbols are relevant
for the proof of B = a.

Similarly, we say that a family of parameterised logics L(S) is an approwi-
mation of classical logic from above if we have:

Fos2Fs 2 ... 2F5. 2 Fp=Fa

In a dual way, a family of logics that approximates classical logic from above
is useful for disproving theorems. That is, if we show that B [#g a then we
classically know that B [~ «, with the advantage of disproving a theorem at a
reduced cost, for the problem in classical logic is the SAT-problem, and there-
fore NP-complete. Similarly, the parameter S gives us a clear notion of what
propositional symbols are relevant for disproving a theorem (i.e. for satisfying
its negation).

Unfortunately, S; does not approximate classical logic from above. In fact,
if S1 approximated classical logic from above, one would expect any classical

theorem to be a theorem of S;(5) for any S. However, the formula pV —p is false
unless p € S and hence the logic S; does not qualify for an approximation of
classical logic from above.

Besides not being an approximation of classical logic from above, there is
another limitation in the Cadoli and Schaerf approach which is common to both
S1 and S3: The system is restricted to —-free formulas and in negation normal
form. For the case of S35, we have addressed this limitation in [FWO01]. We are
now going to address this limitation, while also trying to provide a logic that
approximates classical logic from above.

Another problem of S; is that reasoning within S; is not local, at least one
literal of each clause must be in S, as it was noted in [tTvH96]. This means that
even clauses which are completely irrelevant for disproving the given formula
will be examined.

In the next section, we present a system that approximates classical logic
without suffering from these limitations.

4 The Family of Logics s;

The problem of creating a logic that approximates classical logic from above
comes from the following fact. Any logic that is defined in terms of a binary
valuation v : £ — {0,1} that properly extends classical logic is inconsistent.
This is very simple to see. If it is a proper extension of classical logic, it will
contradict a classical validity. Since it is an extension of classical logic, from this
contradiction any formula is derivable.

The way Cadoli and Schaerf avoided this problem was not to make its binary
valuation a full extension of classical logic. Here, we take a different approach, for
we want to construct an extension of classical entailment, and define a ternary
valuation, that is, we define a valuation vl(a) C {0,1}; later we show that
vi(a) £ 2.

For that, consider the full language of classical logic based on a set of propo-
sition symbols P. We define the family of logics s1(s), parameterised by the set
s C P. Let a be a formula and let prop(a) be the set of propositional symbols
occurring in a. We say that « € s iff prop(a) C s.

Let v, be a classical propositional valuation. Starting from v,, we build an
si-valuation v} : £ — 2{%1} by defining when 1 € v!(a) and when 0 € v!(a).
This definition is parameterised by the set s C P in the following way. Initially,
for propositional symbols, v} extends v,:

0€evli(p) & vp(p) =0
levi(p) © vy(p)=1 or p¢s

That is, v} extends v, but whenever we have an atom p & s, 1 € vl(p); if
p & s and vy(p) = 0, we get v} (p) = {0,1}. The rest of the definition of v}
proceeds in the same spirit, as follows:

0 € vl(-a) & 1evi(a)

0Oevi(anp) & 0€vl(a)or0ev(B)

0evl(avB) & 0€vl(a)and0evl()
0evi(a— B) & 1e€vi(a)and0evl(B)

1€ vl(-a) & 0€vl(a) or "a¢s
levi(anp) © levi(a)andlevi(B)oranp¢s
levi(avp) © levi(a)orlevl(B) oraVvp¢s
levi(a—=pB) & 0evl(a)orlevl(f) ora—p¢gs

We start pointing out two basic properties of v}, namely that is a ternary
relation and that 1 € v}(a) whenever a ¢ s.

Lemma 1. Let a be any formula. Then

(a) vy(e) # @
(b) If a & s then 1 € vl(a).

Proof. Let a be any formula. Then:

(a) First note that for any propositional symbol, v,(p) € v; (p) S0 vl(p) # 2.
Then a simple structural induction on « shows that vl(a) #
(b) Straight from the definition of v!. O

It is interesting to see that in one extreme, i.e., when s = &, sj-valuations
trivialise, assigning the value 1 to every formula in the language. When s = P,
s1-valuations over the connectives correspond to Kleene’s semantics for three
valued logics [Kle38].

The next important property of v} is that it is an extension of classical logic
in the following sense. Let vl be an s;-valuation; its underlying propositional
valuation, v, is given by

vp(p) = 0,0 € vl(p)
'Up(p) =1,0¢ 'U;(p)

as can be inspected from definition of v} Also note that v, and s uniquely define
vl

Lemma 2. Let v, : £ — {0,1} be a classical binary valuation extending v,.
Then, for every formula o, v.(a) € vl(a).

Proof. By structural induction on a. It suffices to note that the property is valid
for p € P. Then a simple inspection of the definition of v} gives us the inductive
cases. O

Just note that Lemma 2 implies Lemma 1(a). We can also say that if o € s,
then v} behaves classically in the following sense.

Lemma 3. Let v, be a propositional valuation and let v} and v, be, respectively,
its s1(s) and classical extensions. If a € s, v}(a) = {vc()}

Proof. A simple inspection of the definition of v} shows that if a € s, v} behaves
classically. O

Finally, we compare s;-valuations under expanding sets s.

Lemma 4. Suppose s C s' and let vl(a) and vl (a) extend the same proposi-
tional valuation. Then v}(a) 2 vk (a).

Proof. If a € s, v} () and v}, (@) behave classically. If a ¢ s, then 1 € v} () and
we have to analyse what happens when 0 € v}, (a). By structural induction on
a, we show that 0 € vl(a).

For the base case, just note that v} and U;, have the same underlying propo-
sitional valuation.

Consider 0 € v} (-a), then 1 € v}, (a). Since a & s, 1 € v} (a), s0 0 € v} (-a).

Consider 0 € v}, (@ =), then 1 € v}, (a) and 0 € v},(3). By the induction
hypothesis, 0 € v1(8). If a ¢ s, 1 € vl(a) and we are done. If @ € s, then
also a € ', vi(a) and v} (a) behave classically and agree with each other, so
1 € vl (@) and we are done.

The cases where 0 € vl (a A B) and 0 € vL(a V B) are straightforward
consequences of the induction hypothesis. |

The next step is to define the notion of a s;-entailment.

4.1 s;-Entailment

The idea is to define an entailment relation for s1, =1, parameterised on the set
s C P so as to extend for any s the classical entailment relation

BEa

To achieve that, we have to make valuations applying on the left handside
of =1 to be stricter than classical valuations, and the valuations that apply to
the right handside of =! to be more relazed than classical valuations, for every
s C P. This motivates the following definitions.

Definition 1. Let o € L and let v§ be a si-valuation. Then:

— Ifvl(a) = {1} then we say that « is strictly satisfied by v!.
— If 1 € vl (a) then we say that « is relaxedly satisfied by v}.

That these definitions are the desired ones follows from the following.
Lemma 5. Let o € L. Then:

(a) « is strictly satisfiable implies that o is classically satisfiable.
(b) « is classically satisfiable implies that o is relazedly satisfiable.

Proof.

(a) Consider v! such that vl(a) = {1}. Let v, be its underlying propositional
valuation and let v, be a classical valuation that extends v,. Since 0 ¢ v!(a),
by Lemma 2 we have that v.(a) # 0, so v.(a) = 1.

(b) Consider a classical valuation v, such that v.(a) = 1. Let vp, be its underlying
propositional valuation. Then directly from Lemma 2, 1 € v} (a). O

We are now in a position to define the notion of s;-entailment.

Definition 2. We say that B1,...,Bm EL a iff all si-valuation v} that strictly
satisfies all B;, 1 < i < mn, relaxedly satisfies a.

The following are important properties of s;-entailment.

Lemma 6.

(a) B EL a, for every a € L.
) Ep=Fa

(c) IfsCs', EL D EL.
Proof.

(a) By Lemma 1(b), 1 € vy (a), for every a € L.

(b) By Lemma 3, v}, is a classical valuation, and the notions of strict, relaxed
and classical valuation coincide.

(c) Suppose s C s', B =L, a but B [£! a. Then exists v} such that v (8;) = {1},
for all B; € B but vl(a) = {0}. Let v}, be the s;-valuation generated by v’
underlying propositional valuation. From Lemma 4 we have that v} (8;) =
{1}, for all §; € B.

Since B =1, a, we have that 1 € v}, (a). Again by Lemma 4 we get 1 € v} (),
which contradicts v} (a) = {0}. So B =} a. O

From what has been shown, it follows directly that this notion of entailment
is the desired one.

Theorem 2. The family of si-logics approximates classical entailment from above,
that is:

Izlz 2 |=}g: D ... D |=}g,n D |:%>=|:CL
Proof. Directly from Lemma 6. -

It is interesting to point that if v} is a sj-valuation falsifying B = «, we
have a classical valuation v, that falsifies B = « built as an extension of the
propositional valuation v, such that v,(p) =1 & vl(p) = {1}.

One interesting property that fails for s;-entailment is the deduction theorem.
One half of it is still true, namely that

BE!a=k! (/\B) —a

However, the converse is not true. Here is a counterexample. Suppose ¢ € s and
pEs,s0q—p¢s. Then L ¢ — p; take a valuation that makes vl(g) =1 and
vl(p) = 0, hence q [~ p.

5 Examples

In this section, we examine some examples and compare s; to Cadoli and Schaerf’s
S1. We have already seen that, unlike S; entailment, s; entailment truly approx-
imates classical entailment from above.

Let us have a look at what happens with Example 2 when we use s; entail-
ment:

Ezample 8 (Example 2 revisited).
We want to check whether B (£~ 3, where f=-child V pensioner and

B = { —person V child V youngster V adult V senior,
—adult V student V worker V unemployed,
—pensioner V senior, -youngster V student V worker,
—senior V pensioner V worker, —pensioner V -istudent,
—student V child V youngster V adult,
—pensioner V —worker}.

It is not difficult to see that with s={child, pensioner}, we can take a
propositional valuation v, such that v,(pensioner) = 0 and v,(p) = 1 for p any
other propositional letter, such that the s;-valuation obtained from v, strictly
satisfies every formula in B but does not relaxedly satisfy 8. Hence, we have
that B £l 38, and B [~ .

This example shows that we can obtain an answer to the question of whether
B £ (with a set s smaller than the set S needed for Sj.

Another concern was the fact that S; did not allow for local reasoning. Con-
sider the following example, borrowed from [CPWO01]:

Example 4. The following represents beliefs about a young student, Hans.

B = {student, student — young, young — —pensioner,
worker, worker — —pensioner,
blue-eyes, likes-dancing, six-feet-tall}.

We want to know whether Hans is a pensioner.

We have seen that in order to use Cadoli and Schaerf’s S7, we had to start
with a set S containing at least one atom of each clause. This means that when
we build S, we have to take into account even clauses which are completely
irrelevant to the query, as likes-dancing.

In our system, formulas not in s will be automatically set to 1. If we have
s={pensioner}, a propositional valuation such that v,(pensioner) = 0 and
vp(p) = 1 for p any other propositional letter, can be extended to an s;-valuation
that strictly satisfies B but does not relaxedely satisfy pensioner. Hence, B [£pensioner.

It is not difficult to see that, unlike in Cadoli and Schaerf’s S; and S3, the
classical equivalences of the connectives hold in s;, which means that we do not
have any gains in terms of the size of the set s using different equivalent forms
of the same knowledge base.

6 Conclusions and Future Work

We have proposed a system for approximate entailment that can be used for
approximating classical logic “from above”, in the sense that at each step, we
prove less theorems, until we reach classical logic. The system proposed is based
on a three-valued valuation and a different notion of entailment, where the logic
on the right hand side of the entailment relation does not have to be the same
as the logic on the left hand side. This sort of “hybrid” entailment relation has
been proposed before in Quasi-Classical Logic [Hun00].

Future work includes the study of the formal relationship between our system
and other three-valued semantics and the design of a tableaux proof method for
the logic, following the line of [FWO01].

References

[AB75] A.R Anderson and N.D Belnap. Entailment: The Logic of Relevance and
Necessity, Vol. 1. Princeton University Press, 1975.

[CPWO01] Samir Chopra, Rohit Parikh, and Renata Wassermann. Approximate belief
revision. Logic Journal of the IGPL, 9(6):755-768, 2001.

[CS95] Marco Cadoli and Marco Schaerf. Approximate inference in default logic and
circumscription. Fundamenta Informaticae, 23:123-143, 1995.

[CS96] Marco Cadoli and Marco Schaerf. The complexity of entailment in proposi-
tional multivalued logics. Annals of Mathematics and Artificial Intelligence,
18(1):29-50, 1996.

[FW01] Marcelo Finger and Renata Wassermann. Tableaux for approximate reason-
ing. In Leopoldo Bertossi and Jan Chomicki, editors, IJCAI-2001 Workshop
on Inconsistency in Data and Knowledge, pages 71-79, Seattle, August 6-10
2001.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, 1979.

[Hun00] A. Hunter. Reasoning with contradictory information in quasi-classical logic.
Journal of Logic and Computation, 10(5):677-703, 2000.

[K1e38] S. C. Kleene. On a notation for ordinal numbers. Journal of Symbolic Logic,
1938.

[Lev84] Hector Levesque. A logic of implicit and explicit belief. In Proceedings of
AAAIL 84, 1984.

[SC95] Marco Schaerf and Marco Cadoli. Tractable reasoning via approximation.
Artificial Intelligence, 74(2):249-310, 1995.

[tTvH96] Annette ten Teije and Frank van Harmelen. Computing approximate diag-
noses by using approximate entailment. In Proceedings of KR’96, 1996.

