Approximate Reasoning and
Paraconsistency - Preliminary Report

Marcelo Finger, Department of Computer Science, Institute of Mathematics and
Statistics, University of Sao Paulo, Brazil, mfinger@ime.usp.br

Renata Wassermann, Department of Computer Science, Institute of Mathematics
and Statistics, University of Sao Paulo, Brazil, renata@ime.usp.br

Abstract

This paper relates two apparently distinct topics in non-classical logics. One of the main criticisms of classical logic
is that theories trivialize in the presence of inconsistency. Paraconsistent logics were introduced in the fifties by da
Costa to avoid such problem. Da Costa’s system C avoids trivialization by changing the behavior of negation.

Cadoli and Schaerf have proposed the Calculus S3, where approximate entailment is used as a way of reaching
at least partial results when solving a problem completely would be too expensive. However, the language they use
is restricted to that of clauses, i.e., negation appears only in the scope of atoms and there is no implication.

In this paper, we will relate a formalism developed by computer scientists aiming at computational efficiency
(Cadoli and Schaerf’s system S3) and another developed by logicians aiming to deal with inconsistency (da Costa’s
C1). We propose a proof method for S3 to use with C1. We also give a sound and complete axiomatization for Ss,
based on the axiomatization of the calculus C1, thus sowing how similar they are, and where they differ.

1 Introduction

Paraconsistent logics were introduced by da Costa in the end of the fifties to avoid a well known
problem of classical logic, that of trivialization in the presence of inconsistency. If we happen to
have both a formula and its negation in a set, classical logic can infer from this set just any formula
of the language. This is not very reasonable if we think of realistic systems storing information.
Suppose we update, by mistake, a database with inconsistent information about a product in
a shop. It does not seem reasonable to say that now all information about other products is
“contaminated” by the inconsistency. The inconsistency damages the database only locally, i.e.,
only for reasoning about that particular product.

Da Costa’s system C; avoids trivialization by changing the behavior of negation. Some formulas
are said to be well behaved and for them, negation behaves classically. For formulas which are not
well behaved, it may happen that both the formula and its negation are assigned the value true.

Logic has been used in several areas of Artificial Intelligence as a tool for representing knowledge
as well as a tool for problem solving. One of the main criticism to the use of logic as a tool for
automatic problem solving refers to the computational complexity of logical problems. Even if
we restrict ourselves to classical propositional logic, deciding whether a set of formulas logically
implies a certain formula is an NP-complete problem [GJ79)].

Cadoli and Schaerf have proposed the use of approximate entailment as a way of reaching
at least partial results when solving a problem completely would be too expensive [SC95]. Their
method consists in defining different logics for which satisfiability is easier to compute than classical
logic and treat these logics as upper and lower bounds for the classical problem. In [SC95],
these approximate logics are defined by means of valuation semantics and algorithms for testing
satisfiability. The language they use is restricted to that of clauses, i.e., negation appears only in
the scope of atoms and there is no implication.

The approximations are based on the idea of a context set S of atoms. The atoms in S are
the only ones whose consistency is taken into account in the process of verifying whether a given
formula is entailed by a set of formulas. As we increase the size of the context set S, we get closer

L. J. of the IGPL, Vol. 0 No. 0, pp. 1-10 0000 1 @© Oxford University Press

2 Approximate Reasoning and Paraconsistency - Preliminary Report

to classical entailment, but the computational complexity also increases.

In this paper, we will relate a formalism developed by computer scientists aiming at computa-
tional efficiency (Cadoli and Schaerf’s system) and another developed by logicians aiming to deal
with inconsistency (da Costa’s C1).

As a result, we can adapt the proof method that we have developed for S3 to use with C;. We
also give a sound and complete axiomatization for Ss, based on the axiomatization of the calculus
Cy. In Cadoli and Schaerf’s work, the treatment of S3 is purely semantical. An axiomatization
was still missing.

The paper proceeds as follows: we briefly present Cadoli and Schaerf’s S3 system for approximate
entailment. Then we present an extended version of S3 which we call FineS;. We then present da
Costa’s C; and show some results about the relationship between FineSs3 and C}.

1.1 Preliminaries

Let P be a countable set of propositional letters. We concentrate on the classical propositional
language L¢ formed by the usual boolean connectives — (implication), A (conjunction), V (dis-
junction) and — (negation).
Throughout the paper, we use lowercase Latin letters to denote propositional letters, lowercase
Greek letters to denote formulas, and uppercase letters (Greek or Latin) to denote sets of formulas.
A propositional valuation vy, is a function v, : P — {0, 1}.

2 Approximate Entailment

We briefly present here the notion of approzimate entailment and summarize the main results
obtained in [SC95].

Schaerf and Cadoli define two approximations of classical entailment: |=% which is complete but
not sound, and =% which is sound and incomplete. These approximations are carried out over a set
of atoms S C P which determines their closeness to classical entailment. In the trivial extreme of
approximate entailment, i.e., when S = P, classical entailment is obtained. At the other extreme,
when S = 0, E4 holds for any two formulas (i.e., for all o, 3, we have a L 3) and ¥ corresponds
to Levesque’s logic for explicit beliefs [Lev84], which bears a connection to relevance logics such as
those of Anderson and Belnap [AB75].

In an S; assignment, if p € S, then p and —p are given opposite truth values; if p € S, then
p and —p both get the value 0. In an S5 assignment, if p € S, then p and —p get opposite truth
values, while if p & S, p and —p do not both get 0, but may both get 1. The set of formulas for
which we are testing entailments is assumed to be in clausal form. Satisfiability, entailment, and
validity are defined in the usual way.

The following examples illustrate the use of approximate entailment. Since =% is sound but
incomplete, it can be used to approximate k=, ie., if for some S we have that B % «, then
B = a. On the other hand, =% is unsound but complete, and can be used for approximating £,
i.e., if for some S we have that B [£4 o, then B [£ «.

ExampPLE 2.1 ([SC95])
We want to check whether B |= «, where @ = —cow V molar-teeth and

B = {-cow V grass-eater,
—dogV carnivore,
—grass—eater V —canine-teeth,
—carnivore V mammal,
—mammal V canine-teeth V molar-teeth,
—grass—eater V mammal,
—mammal V vertebrate,
—wvertebrate V animal}.

Approximate Reasoning and Paraconsistency - Preliminary Report 3
For S = {grass-eater, mammal, canine-teeth}, we have that B % «, hence B k= a.

ExamMPLE 2.2 ([SC95])
We want to check whether B £ 3, where f=-child V pensioner and

B = {-person V child V youngster V
V adult V senior,
—pensioner V senior,
—youngster V student V worker,
—senior V pensioner V worker,
—adult V student V worker V
V unemployed,
—pensioner V —student,
—student V child V youngster V adult,
—pensioner V —worker}.

For S = {child, worker, pensioner}, we have that B [£L /3, and hence B £ .

Note that in both examples above, S is a small part of the language. The approximation of
classical inference is made via a simplification of the belief base B as follows (for a given conclusion
a and context set S):

LeEmMA 2.3 ([SC95])
Let simplify-1(B, S) be the result of deleting all literals of B which mention atoms outside S. B
is Si-satisfiable if and only if simplify-1(B, S) is classically satisfiable.

LEmMMA 2.4 ([SC95])
Let simplify-3(B, S) be the result of deleting all clauses of B which contain an atom outside S.
Then B is Ss-satisfiable if and only if simplify-3(B, S) is classically satisfiable.

Schaerf and Cadoli then obtain the following results for approximate inference:

THEOREM 2.5 ([SC95])
There exists an algorithm for deciding if B =% « and deciding B |=% a which runs in O(|B|.|a|.2!51)
time.

The result above depends on a polynomial time satisfiability algorithm for belief bases and
formulas in clausal form alone. This result has been extended in [CS95] for formulas in negation
normal form, but is not extendable to formulas in arbitrary forms [CS96].

The good point of Schaerf and Cadoli’s systems is that they present an incremental algorithm
to test for S; entailment as new elements are added to S. But there are two major limitations in
their results:

1. The system is restricted to —-free formulas and in negation normal form. In [CPWO00] it is
noted that the standard translation of formulas into clausal form does not preserve truth-values
under the non-standard semantics of S3.

2. The set S must be guessed at each step of the approximation; no method is given for the atoms
to be added to S. Some heuristics for a specific application are presented in [tTvH97], but
nothing is said about the general case.

In [FWO01], we have extended S5 to full propositional logic, given a sound and complete proof
method for the extended system and showed how this proof method helps us to choose the atoms
to add to S. In this paper, we will extend S3 semantics further, compare it to da Costa’s system
(1 and show what each system can offer to the other one. We provide an axiomatization for the
extended version of S3 based on the axiomatization of C; and provide a better proof method for
C; than what was proposed before.

4 Approximate Reasoning and Paraconsistency - Preliminary Report

3 The Family of Logics FineS;

In this section, we describe the logic S3 extended to full propositional logic as originally in [FWO01].
In fact, we are going to define a slightly distinct logic, that allows us to a better comparison with
da Costa’s C. Such a logic allows us to approximate classical logic in finer steps, and therefore
we call it FineSs.

The difference between Sz and FineSs is the following. In [FWO01], the set S which parameterized
a logic in the family Ss of logics consisted of a set of propositional letters, in which it followed
Schaerf and Cadoli’s initial proposal [SC95].

Here, however, we present a finer definition of S as a set of formulas closed under the formation
of formulas. That is:

a,feES=a—08, aNF, aVF, a €S

In [FWO01] we abused notation and stated that a formula a € S whenever a’s propositional were
in S. This was equivalent to closing S under:

(a) formula construction; and
(b) subformula formation: If @ € S and 3 is a subformula of «, then 5 € S.

Therefore, any logic in the original system is also a logic in FineSs. Furthermore, we can now
have a € S without having any subformula of & in S, which was not possible in the original system
Ss3. As a result, here we can increase the set S in much finer steps, resulting in a much finer
approximation of classical logic.

We present a binary semantics for FineSs, which for that reason is called an Ss o semantics. It
is remarkable that such semantic definition is exactly the same as that of [FWO01], differing only in
the notion of S in item (v) of Definition 3.1.

DEFINITION 3.1

A propositional valuation vy, is a function v, : P — {0,1}. An S;3»-valuation v%‘2 is a function,
v¥? : Lo — {0,1}, that extends a propositional valuation v, (i.e., v¥%(p) = v,(p)), satisfying the
following restrictions:

(1) v%‘?(a AB)=1 & viia) =032(B) =1

(i7) v%‘%(a vB3)=0 & vii(a) =vd?(B) =

(@ii) v¥*(a—pB)=0 & vi*(a)=1and v¥%(B) =0
(iv) v¥%*(=a) =0 = v¥%(a) =1

(v v¥?(ma) =1, a€S = v¥%*(a)=0

Rules (i)-(ii7) are exactly those of classical logic. Rules (iv) and (v) restrict the semantics
of negation: rule (iv) states that if v3?(-a) = 0, then negation behaves classically and forces
v¥?(a) = 1; rule (v) states that if v¥?(-a) = 1, negation must behave classically only if a €
S. Formulas outside S may behave classically or paraconsistently, i.e., both the formula and its
negation may be assigned the truth value 1.

Note that an Sss-valuation is not uniquely defined by the propositional valuation it extends.
This is due to the fact that if @ € S and v¥?(a) = 1, the value of v3?(—a) can be either 0 (in
which case a has a classical behavior) or 1 (in which case « behaves paraconsistently).

LEMMA 3.2
The valuation v¥? is determined by its value on the set P U {-a|a & S}.

We define a formula « to be S-valid in S35 if v%’z(a) = 1 for any Ss»-valuation. A formula is
S-satisfiable in Ss.o if there is one v¥? such that v¥?(a) = 1. The S;32-entailment relationship

between a set of formulas I' and a formula « is represented as

r |:3S'2 «

Approximate Reasoning and Paraconsistency - Preliminary Report 5

and holds if every valuation v¥? that simultaneously satisfies all formulas in I' also satisfies . A
formula is S-valid if it is entailed by (), represented as =% a.

Lemma 3.2 suggests a translation between a formula in FineSs and one in classical logic, such
that every formula of the form —a with a ¢ S is mapped into a new propositional symbol p_.
Let a*% be the translation of «, defined as:

*S

= p
(a oﬁ)*s = a*S 06*57 SES {/\7\/7_>}
*S
—a)*S = _'(CY)7 a€sS
ey = { Pa ,aES

The following properties of FineS3 follow from this fact.

LEmMA 3.3
A formula « is S-satisfiable in S35 iff (—la)*s is classically satisfiable

LEMMA 3.4
Every formula o ¢ S is satisfiable in Ss 5.

LEMMA 3.5
S5 o-validity is subclassical. That is, any S-valid formula in S5 5 is classically valid, for any S.

The deduction theorem holds for the S3 2 semantics, as can be seen directly from the definitions.

LEMMA 3.6 (Deduction Theorem)
Let T be a finite set of formulas. Then

I EL aiff B2 /\F - a.
Now we examine a few examples of S3 o entailment.

ExAmPLE 3.7
Consider the formula « V —a. We show that it is a valid formula in S5, for any S.

Indeed, if a € S, we are in a classical setting, so any valuation makes a V -« true.

If a« €5, let v¥? be a valuation. If v¥3?(=a) = 1, then a V —a clearly is true. If, however,
v¥?(=a) = 0, by rule (iv) above v¥?(a) =1, so a V —a is also true.

EXAMPLE 3.8

We now show that the S5 semantics is paraconsistent. For that, consider the two propositions p
and ¢ and suppose that p ¢ S; take a valuation v¥? such that v¥?(p) = 1 and v¥?(¢) = 0, and
consider the formula (p A =p) — ¢. By Lemma 3.2, the value of v¥? is not fully determined, so
we fix v¥?(-p) = 1. It is simple to verify now that the valuation thus constructed is such that

vE2((p A —p) = q) = 0, that is the logic does not trivialize in the presence of inconsistency.

ExaMPLE 3.9

We now analyze the validity of Modus Ponens in S3 5. The usual formulation of Modus Ponens,
a = B,a EL? B, is valid in Ss; indeed, if v¥? satisfies a, the only possible way that it also
satisfies & — [is that it satisfies 3, thus proving the entailment. Note that since no —-formula
was involved, the reasoning is totally classical.

However, if we consider the version of Modus Ponens consisting of the translation of & — 3 into
-V [(the only possible version of Modus Ponens in [SC95]), the situation changes completely if
a ¢ S, for then we can have a valuation that satisfies both a and —« (and thus —a V), but that
falsifies 3, so that —a V 8, a %2 .

6 Approximate Reasoning and Paraconsistency - Preliminary Report
Positive Azioms:

(=1) a=(B—-0o)

(=2) (@=2B) =2 (a=>(B—=7) > (@=9)
(_)3) aaa_)ﬁ/ﬁ

(A1) alf =«

(A2) ahf—p

(A3) a— (B—aAnp)

(V1) a—aVp

(V2) B—)aVﬂ

(Vs) (@=7) = (B=7) = (avB—=7)

Negation Axzioms:

(neg1) (a—pB)—= ((a = —f) > —-a), provided g €S
(negz2) (aA-a)— 3, provideda €S
(negs) aV-a

Fi1G. 1. An Axiomatization for FineSs

3.1 An Aziomatization for FineSs

Consider the axioms in Figure 1. The Positive Azioms are precisely the classical axioms for the
connectives —, A and V; the rule of Modus Ponens is presented as (—3). Our system differs from
classical logic in the Negation Azioms.

In fact, without the proviso in axioms (neg;) and (negs), the negation axioms are precisely the
classical —-axioms. The —-introduction of axiom (neg;) is restricted to the consequences of « in
S. The trivialization of axiom (negy) is restricted to the members of S, that is, non-members
of S can behave paraconsistently. Axiom (negs) tells us that the excluded middle is accepted
unconditionally in our logic.

THEOREM 3.10
The axiomatization of Figure 1 is sound with respect to the S3. semantics. That is, all formulas
inferred from the FineSs axiomatization are true in all S5 »-valuations.

PRrROOF. By a straightforward, but tedious, verification of the validity of the axioms. The positive
axioms are dealt with by the classical part of the S5 semantics. Axiom (negs) is dealt with in
Example 3.8, and Modus Ponens is dealt with in Example 3.9. The validity of axioms (neg;) and
(negy) are easily verified. [|

A formula «a is S-inconsistent if it is provable that « — (8 A —[) for some § € S. Similarly, a set
X of formulas is S-inconsistent if there are formulas x1,...,xn € X such that A x; = (8 A =p)
for some B € S. A formula or set is S-consistent if it is not S-inconsistent.

The axiomatization above is S-complete iff for any S-consistent formula « there is an Sso
valuation v¥? such that v¥?(a) = 1. The proof of completeness follows a Lindenbaum construction.

A mazimal S-consistent set (MSCS) is a set of formulas X such that:

e X is S-consistent; and
e there is no MSCS X' D X.

LEmmA 3.11
For every S-consistent formula « there is a MSCS X such that o € X.

ProoF. Consider an enumeration of the formulas gy, 81, ..., 5, Construct a sequence of sets
X; such that

Approximate Reasoning and Paraconsistency - Preliminary Report 7

XO = «
X, X;U{p:}, if X;U{p;}is S-consistent
ol X, otherwise

Let X = Ufio X;. We claim that X is a MSCS, for the following reasons:

e X is S-consistent. Otherwise let X1 be the first element in the sequence that is S-inconsistent.
Then we must have Xj11 # Xj, s0 Xg+1 = Xp U {8k}, but this is only possible if X U {5k}
is S-consistent, contradicting the fact that Xi41 is S-inconsistent.

e X is maximal. Otherwise there is a MSCS X' D X. In this case thereis a 8y € X'—X. Consider
the set Xy, U{fk}; if it is S-consistent, then X, U{8r} = Xi41 D X, which contradicts 5 ¢ X.
If Xy U{Bk} is S-inconsistent, then X' is inconsistent because X3 D X D X' and 8, € X/,
which contradicts the consistency of X'. Hence X must be maximal.

It is obvious that a € X, so the proof is finished. [|

LEMMA 3.12
Let X be a MSCS. Let v : L& — {0, 1} such that v(a) =1 iff & € X. Then v is a S3.» valuation.

PROOF. We have to show that v satisfies the restrictions of Definition 3.1. Conditions (i) — —(7i7)
are classical semantical conditions and are accounted for by the positive axioms, which are the
classical ones.

We then show that: (¥) wv(a) = 0 = w(—-a) = 1. For that, suppose v(a) = 0. Then
a € X. Due to the maximality of X, there must be x1,...,x, € X such that it is provable that
((A xi) ANa) = (B A—pB) for some € S. Therefore:

F(Axi)ANa) = B=F(Axi)) > (@a—=pB)=a—->peX
FAxi)Aa) = 8=F(Axi) = (a—>8)=a— X

It follows that both & - f € X and @ — -4 € X. From Axiom (neg;), it follows that -a € X,
so v(—a) = 1, proving ().

From (*) it follows that v obeys property (iv) of Definition 3.1. Indeed, suppose that v(—«a) = 0;
if v(a) = 0, then by (x¥) we have that v(—«a) = 1, a contradiction. So we must have v(a) = 1,
satisfying (iv).

We then show that: (xx) wv(a) = 1,a € S = v(—-a) = 0. For that, suppose v(a) = 1 and
a € S. Then a € X. Suppose now, for contradiction that -« € X. From Axiom (negs) we have
that any 8 € X, contradicting the consistency of X. So -« ¢ X and v(—«a) = 0, thus proving (xx).

From (x%) we see that v obeys property (v) of Definition 3.1. Indeed, suppose that v(—a) =1
and a € S; if v(a) = 1, by (x*) we have that v(—-a) = 0, a contradiction. So we must have
v(a) = 0, satisfying (v). | |
THEOREM 3.13

The axiomatization of Figure 1 is complete with respect to the S3.2 semantics.

ProOOF. By Lemma 3.11 there is a MSCS X with a € X. Then, by Lemma 3.12, there is a Ss »-
valuation v? such that v¥?(8) = 1 iff 3 € X. In particular, v¥?(a) = 1. | |

4 Relating FineS; to Da Costa’s ()

In this section, we introduce Da Costa’s calculus C; by means of axioms and valuation semantics.
We then show how our system relates to this calculus.

DEFINITION 4.1
A formula « is said to be well behaved if the principle of non-contradiction holds for «, i.e., if
=(a A =) holds. We use a° to denote —(a A —a).

8 Approximate Reasoning and Paraconsistency - Preliminary Report

Da Costa’s calculus [dC63] was introduced in order to deal with possible inconsistencies that
should not damage reasoning by trivializing it. The idea is to block derivations from formulas
which are not well behaved, isolating inconsistencies.

The following is an axiomatization of C:

(=1) a—=(B—a)

(=2) (@=p)=(a=>(B—27) > (@=7)
(=3) a,a—=p8/8

(M) aAf—oa

(/\2) Oé/\ﬂ—)ﬂ

(N3) a—=(B—=aAnpB)

(Vi) a—avp

(\/2) ﬁ —>aVB

(V3) (a=7)=>((B=7)—=(aVB—=7)
(1) B2 = (a—=pB) = (= =) = —a)
(m2) a®AB? = ((a—=B)° A(aAB)’A(aVB)°)
(—3) aV-a

(~4) —a—-a

A semantic for this system was given in [dCAT77].

DEFINITION 4.2
An N -valuation vy is a function, vy : Lo — {0,1}, that extends a propositional valuation v,
(i-e., un(p) = vp(p)), satisfying the following restrictions:

(4) ov(anp) =1 & un(a) =uvn(p) =1
(ii)) wa(aVvp)=0 & on(a) =uy () 0
(iii) un(a— B) =0 & ov(a)=1la
on(B) = 0
(iv) wa(a) =0 = v (na) =
() wn(-ma) =1 = on(a) = 1
(i) wv(B)=wnv(a—=p)=un(a—=-0)=1 = wv(a)=0
(wii) ovn(a®) = vn(8°) =1 = onv((axp)?) =1,% €
{—>,/\ v}

An AN -valuation has the following properties:

LeMMA 4.3
(1) va(a) =1 oxv(-ana®)=0
(2) v (@) =0 & vn(a) = vy (-a)

It is not hard to see that the systems are very similar, although not equivalent. There are two
main differences. First, the set of formulas for which var(a®) = 1 does not correspond exactly to

S:

LEMMA 4.4
If a € S, then var(a®) = 1. The converse does not always hold, i.e., we may have an A-valuation
v such that v(a®) =1 and a & S.

PRrOOF. Follows directly from the definitions. « € S means that a and —« must have opposite
truth values, but o € S does not necessarily mean that o and —~a have the same truth values. N

The second difference between the two systems is in the behavior of double negation. In Cf,
double negation may be eliminated (but not introduced), while in S3, a does not follow from ——a.

Since we have sound and complete semantics for both systems, we can show how the systems
relate to each other by checking the semantics.

Approximate Reasoning and Paraconsistency - Preliminary Report 9

PROPOSITION 4.5
Every A -valuation is an S3.»-valuation.

Proor. Conditions (i),(ii),(iii), and (iv) are the same. We only have to check whether v(—a) =
l,a € S = v(a) = 0 follows from the definition of N-valuation. We know that a € S implies
v(a®) = 1. And from v(—«a) = v(a®) =1 it follows by part (2) of Lemma 4.3 that v(a) = 0. ||

PROPOSITION 4.6
Not every Ss3 »-valuation is an A-valuation.

PROOF. It suffices to see that we may have an Ss s-valuation v so that for some formula « such
that « € S, we have v(——a) = v(—«a) = 1 and v(a) = 0. This valuation fails to satisfy item (v) of
the definition of A-valuation.

The two propositions show that FineSs is actually more general than Cf.

COROLLARY 4.7
Let S be a fixed set of formulas closed under formula construction and let C; be C; with an added
axiom «a° for each a € S. Then Theorems(FineS;) C Theorems(C}) C Theorems(L¢).

We can adapt the tableaux system proposed in [FWO01] for extended Ss to build a proof method
for €. In the rule where we had the proviso a € S we now have «°, and we have to add a rule to
deal with double negation. The study of this tableaux system is left for future work.

5 Conclusion

In this paper, we have presented a new extended version of Cadoli and Schaerf’s approximate
entailment and given a sound and complete axiomatization for it. We have compared it to Da
Costa’s C calculus for paraconsistent logic. We have shown that our system is more general than
C1, which can be seen both from the semantics as from the axiomatizations.

A proof method based on tableaux for paraconsistent logic has been proposed in [CLM92]. The
idea behind their system is very similar to ours: the only difference from tableaux for classical
logic is an extra condition for the rules involving negation. However, as in the calculus C; [dC63],
the condition that a formula behaves classically is part of the language. As a result, the tableau
construction sometimes loops. In our system, the fact that a formula is well behaved is not part
of the language, but is stated in the meta-language, through the set S.

Future work includes studying the computational complexity of the tableaux system and ex-
tending Cadoli and Schaerf’s 5.

Acknowledgments

Marcelo Finger is partly supported by the Brazilian Research Council (CNPq), grant PQ 300597 /95-
5. Renata Wassermann was supported by FAPESP through grant 99/11602-6. This work was
developed under the CNPq project APQ 468765/00-0.

References

[AB75] A.R Anderson and N.D Belnap. Entailment: The Logic of Relevance and Necessity, Vol. 1. Princeton
University Press, 1975.

[CLM92] Walter A. Carnielli and Mamede Lima-Marques. Reasoning under inconsistent knowledge. Journal of
Applied Non-Classical Logics, 2(1):49-79, 1992.

[CPWO00] Samir Chopra, Rohit Parikh, and Renata Wassermann. Approximate belief revision. In Proceedings of
Workshop on Language, Logic and Information (WoLLIC), 2000.

[CS95] Marco Cadoli and Marco Schaerf. Approximate inference in default logic and circumscription. Fundamenta
Informaticae, 23:123-143, 1995.

10 Approximate Reasoning and Paraconsistency - Preliminary Report

[CS96] Marco Cadoli and Marco Schaerf. The complexity of entailment in propositional multivalued logics. Annals
of Mathematics and Artificial Intelligence, 18(1):29-50, 1996.

[dC63] Newton C.A. da Costa. Calculs propositionnels pour les systémes formels inconsistants. Comptes Rendus
d’Academie des Sciences de Paris, 257, 1963.

[dCAT77] Newton C. A. da Costa and Elias H. Alves. A semantical analysis of the calculi Cy,. Notre Dame Journal
of Formal Logic, 16, 1977.

[FWO01] Marcelo Finger and Renata Wassermann. Tableaux for approximate reasoning. Technical report, Depart-
ment of Computer Science - IME - University of Sao Paulo, 2001.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, 1979.

[Lev84] Hector Levesque. A logic of implicit and explicit belief. In Proceedings of AAAI-84, 1984.

[SC95] Marco Schaerf and Marco Cadoli. Tractable reasoning via approximation. Artificial Intelligence, 74(2):249—
310, 1995.

[tTvH97] Annette ten Teije and Frank van Harmelen. Exploiting domain knowledge for approximate diagnosis.
In M. Pollack, editor, Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence
(IJCAI’97), pages 454-459, Nagoya, Japan, August 1997.

