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tThis paper relates two apparently distin
t topi
s in non-
lassi
al logi
s. One of the main 
riti
isms of 
lassi
al logi
is that theories trivialize in the presen
e of in
onsisten
y. Para
onsistent logi
s were introdu
ed in the �fties by daCosta to avoid su
h problem. Da Costa's system C1 avoids trivialization by 
hanging the behavior of negation.Cadoli and S
haerf have proposed the Cal
ulus S3, where approximate entailment is used as a way of rea
hingat least partial results when solving a problem 
ompletely would be too expensive. However, the language they useis restri
ted to that of 
lauses, i.e., negation appears only in the s
ope of atoms and there is no impli
ation.In this paper, we will relate a formalism developed by 
omputer s
ientists aiming at 
omputational eÆ
ien
y(Cadoli and S
haerf's system S3) and another developed by logi
ians aiming to deal with in
onsisten
y (da Costa'sC1). We propose a proof method for S3 to use with C1. We also give a sound and 
omplete axiomatization for S3,based on the axiomatization of the 
al
ulus C1, thus sowing how similar they are, and where they di�er.1 Introdu
tionPara
onsistent logi
s were introdu
ed by da Costa in the end of the �fties to avoid a well knownproblem of 
lassi
al logi
, that of trivialization in the presen
e of in
onsisten
y. If we happen tohave both a formula and its negation in a set, 
lassi
al logi
 
an infer from this set just any formulaof the language. This is not very reasonable if we think of realisti
 systems storing information.Suppose we update, by mistake, a database with in
onsistent information about a produ
t ina shop. It does not seem reasonable to say that now all information about other produ
ts is\
ontaminated" by the in
onsisten
y. The in
onsisten
y damages the database only lo
ally, i.e.,only for reasoning about that parti
ular produ
t.Da Costa's system C1 avoids trivialization by 
hanging the behavior of negation. Some formulasare said to be well behaved and for them, negation behaves 
lassi
ally. For formulas whi
h are notwell behaved, it may happen that both the formula and its negation are assigned the value true.Logi
 has been used in several areas of Arti�
ial Intelligen
e as a tool for representing knowledgeas well as a tool for problem solving. One of the main 
riti
ism to the use of logi
 as a tool forautomati
 problem solving refers to the 
omputational 
omplexity of logi
al problems. Even ifwe restri
t ourselves to 
lassi
al propositional logi
, de
iding whether a set of formulas logi
allyimplies a 
ertain formula is an NP-
omplete problem [GJ79℄.Cadoli and S
haerf have proposed the use of approximate entailment as a way of rea
hingat least partial results when solving a problem 
ompletely would be too expensive [SC95℄. Theirmethod 
onsists in de�ning di�erent logi
s for whi
h satis�ability is easier to 
ompute than 
lassi
allogi
 and treat these logi
s as upper and lower bounds for the 
lassi
al problem. In [SC95℄,these approximate logi
s are de�ned by means of valuation semanti
s and algorithms for testingsatis�ability. The language they use is restri
ted to that of 
lauses, i.e., negation appears only inthe s
ope of atoms and there is no impli
ation.The approximations are based on the idea of a 
ontext set S of atoms. The atoms in S arethe only ones whose 
onsisten
y is taken into a

ount in the pro
ess of verifying whether a givenformula is entailed by a set of formulas. As we in
rease the size of the 
ontext set S, we get 
loser1L. J. of the IGPL, Vol. 0 No. 0, pp. 1{10 0000 
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2 Approximate Reasoning and Para
onsisten
y - Preliminary Reportto 
lassi
al entailment, but the 
omputational 
omplexity also in
reases.In this paper, we will relate a formalism developed by 
omputer s
ientists aiming at 
omputa-tional eÆ
ien
y (Cadoli and S
haerf's system) and another developed by logi
ians aiming to dealwith in
onsisten
y (da Costa's C1).As a result, we 
an adapt the proof method that we have developed for S3 to use with C1. Wealso give a sound and 
omplete axiomatization for S3, based on the axiomatization of the 
al
ulusC1. In Cadoli and S
haerf's work, the treatment of S3 is purely semanti
al. An axiomatizationwas still missing.The paper pro
eeds as follows: we brie
y present Cadoli and S
haerf's S3 system for approximateentailment. Then we present an extended version of S3 whi
h we 
all FineS3. We then present daCosta's C1 and show some results about the relationship between FineS3 and C1.1.1 PreliminariesLet P be a 
ountable set of propositional letters. We 
on
entrate on the 
lassi
al propositionallanguage LC formed by the usual boolean 
onne
tives ! (impli
ation), ^ (
onjun
tion), _ (dis-jun
tion) and : (negation).Throughout the paper, we use lower
ase Latin letters to denote propositional letters, lower
aseGreek letters to denote formulas, and upper
ase letters (Greek or Latin) to denote sets of formulas.A propositional valuation vp is a fun
tion vp : P ! f0; 1g.2 Approximate EntailmentWe brie
y present here the notion of approximate entailment and summarize the main resultsobtained in [SC95℄.S
haerf and Cadoli de�ne two approximations of 
lassi
al entailment: j=1S whi
h is 
omplete butnot sound, and j=3S whi
h is sound and in
omplete. These approximations are 
arried out over a setof atoms S � P whi
h determines their 
loseness to 
lassi
al entailment. In the trivial extreme ofapproximate entailment, i.e., when S = P , 
lassi
al entailment is obtained. At the other extreme,when S = ;, j=1S holds for any two formulas (i.e., for all �,�, we have � j=1S �) and j=3S 
orrespondsto Levesque's logi
 for expli
it beliefs [Lev84℄, whi
h bears a 
onne
tion to relevan
e logi
s su
h asthose of Anderson and Belnap [AB75℄.In an S1 assignment, if p 2 S, then p and :p are given opposite truth values; if p 62 S, thenp and :p both get the value 0. In an S3 assignment, if p 2 S, then p and :p get opposite truthvalues, while if p 62 S, p and :p do not both get 0, but may both get 1. The set of formulas forwhi
h we are testing entailments is assumed to be in 
lausal form. Satis�ability, entailment, andvalidity are de�ned in the usual way.The following examples illustrate the use of approximate entailment. Sin
e j=3S is sound butin
omplete, it 
an be used to approximate j=, i.e., if for some S we have that B j=3S �, thenB j= �. On the other hand, j=1S is unsound but 
omplete, and 
an be used for approximating 6j=,i.e., if for some S we have that B 6j=1S �, then B 6j= �.Example 2.1 ([SC95℄)We want to 
he
k whether B j= �, where � = :
ow _ molar-teeth andB = f:
ow _ grass-eater,:dog_ 
arnivore,:grass-eater _ :
anine-teeth,:
arnivore _ mammal,:mammal _ 
anine-teeth _ molar-teeth,:grass-eater _ mammal,:mammal _ vertebrate,:vertebrate _ animalg.



Approximate Reasoning and Para
onsisten
y - Preliminary Report 3For S = fgrass-eater, mammal, 
anine-teethg, we have that B j=3S �, hen
e B j= �.Example 2.2 ([SC95℄)We want to 
he
k whether B 6j= �, where �=:
hild _ pensioner andB = f:person _ 
hild _ youngster __ adult _ senior,:pensioner _ senior,:youngster _ student _ worker,:senior _ pensioner _ worker,:adult _ student _ worker __ unemployed,:pensioner _ :student,:student _ 
hild _ youngster _ adult,:pensioner _ :workerg.For S = f
hild, worker, pensionerg, we have that B 6j=1S �, and hen
e B 6j= �.Note that in both examples above, S is a small part of the language. The approximation of
lassi
al inferen
e is made via a simpli�
ation of the belief base B as follows (for a given 
on
lusion� and 
ontext set S):Lemma 2.3 ([SC95℄)Let simplify-1(B;S) be the result of deleting all literals of B whi
h mention atoms outside S. Bis S1-satis�able if and only if simplify-1(B;S) is 
lassi
ally satis�able.Lemma 2.4 ([SC95℄)Let simplify-3(B;S) be the result of deleting all 
lauses of B whi
h 
ontain an atom outside S.Then B is S3-satis�able if and only if simplify-3(B;S) is 
lassi
ally satis�able.S
haerf and Cadoli then obtain the following results for approximate inferen
e:Theorem 2.5 ([SC95℄)There exists an algorithm for de
iding if B j=3S � and de
iding B j=1S � whi
h runs in O(jBj:j�j:2jSj)time.The result above depends on a polynomial time satis�ability algorithm for belief bases andformulas in 
lausal form alone. This result has been extended in [CS95℄ for formulas in negationnormal form, but is not extendable to formulas in arbitrary forms [CS96℄.The good point of S
haerf and Cadoli's systems is that they present an in
remental algorithmto test for Si entailment as new elements are added to S. But there are two major limitations intheir results:1. The system is restri
ted to !-free formulas and in negation normal form. In [CPW00℄ it isnoted that the standard translation of formulas into 
lausal form does not preserve truth-valuesunder the non-standard semanti
s of S3.2. The set S must be guessed at ea
h step of the approximation; no method is given for the atomsto be added to S. Some heuristi
s for a spe
i�
 appli
ation are presented in [tTvH97℄, butnothing is said about the general 
ase.In [FW01℄, we have extended S3 to full propositional logi
, given a sound and 
omplete proofmethod for the extended system and showed how this proof method helps us to 
hoose the atomsto add to S. In this paper, we will extend S3 semanti
s further, 
ompare it to da Costa's systemC1 and show what ea
h system 
an o�er to the other one. We provide an axiomatization for theextended version of S3 based on the axiomatization of C1 and provide a better proof method forC1 than what was proposed before.



4 Approximate Reasoning and Para
onsisten
y - Preliminary Report3 The Family of Logi
s FineS3In this se
tion, we des
ribe the logi
 S3 extended to full propositional logi
 as originally in [FW01℄.In fa
t, we are going to de�ne a slightly distin
t logi
, that allows us to a better 
omparison withda Costa's C1. Su
h a logi
 allows us to approximate 
lassi
al logi
 in �ner steps, and thereforewe 
all it FineS3.The di�eren
e between S3 and FineS3 is the following. In [FW01℄, the set S whi
h parameterizeda logi
 in the family S3 of logi
s 
onsisted of a set of propositional letters, in whi
h it followedS
haerf and Cadoli's initial proposal [SC95℄.Here, however, we present a �ner de�nition of S as a set of formulas 
losed under the formationof formulas. That is: �; � 2 S =) �! �; � ^ �; � _ �; :� 2 SIn [FW01℄ we abused notation and stated that a formula � 2 S whenever �'s propositional werein S. This was equivalent to 
losing S under:(a) formula 
onstru
tion; and(b) subformula formation: If � 2 S and � is a subformula of �, then � 2 S.Therefore, any logi
 in the original system is also a logi
 in FineS3. Furthermore, we 
an nowhave � 2 S without having any subformula of � in S, whi
h was not possible in the original systemS3. As a result, here we 
an in
rease the set S in mu
h �ner steps, resulting in a mu
h �nerapproximation of 
lassi
al logi
.We present a binary semanti
s for FineS3, whi
h for that reason is 
alled an S3:2 semanti
s. Itis remarkable that su
h semanti
 de�nition is exa
tly the same as that of [FW01℄, di�ering only inthe notion of S in item (v) of De�nition 3.1.Definition 3.1A propositional valuation vp is a fun
tion vp : P ! f0; 1g. An S3:2-valuation v3:2S is a fun
tion,v3:2S : LC ! f0; 1g, that extends a propositional valuation vp (i.e., v3:2S (p) = vp(p)), satisfying thefollowing restri
tions:(i) v3:2S (� ^ �) = 1 , v3:2S (�) = v3:2S (�) = 1(ii) v3:2S (� _ �) = 0 , v3:2S (�) = v3:2S (�) = 0(iii) v3:2S (�! �) = 0 , v3:2S (�) = 1 and v3:2S (�) = 0(iv) v3:2S (:�) = 0 ) v3:2S (�) = 1(v) v3:2S (:�) = 1; � 2 S ) v3:2S (�) = 0Rules (i){(iii) are exa
tly those of 
lassi
al logi
. Rules (iv) and (v) restri
t the semanti
sof negation: rule (iv) states that if v3:2S (:�) = 0, then negation behaves 
lassi
ally and for
esv3:2S (�) = 1; rule (v) states that if v3:2S (:�) = 1, negation must behave 
lassi
ally only if � 2S. Formulas outside S may behave 
lassi
ally or para
onsistently, i.e., both the formula and itsnegation may be assigned the truth value 1.Note that an S3:2-valuation is not uniquely de�ned by the propositional valuation it extends.This is due to the fa
t that if � 62 S and v3:2S (�) = 1, the value of v3:2S (:�) 
an be either 0 (inwhi
h 
ase � has a 
lassi
al behavior) or 1 (in whi
h 
ase � behaves para
onsistently).Lemma 3.2The valuation v3:2S is determined by its value on the set P [ f:�j� 62 Sg.We de�ne a formula � to be S-valid in S3:2 if v3:2S (�) = 1 for any S3:2-valuation. A formula isS-satis�able in S3:2 if there is one v3:2S su
h that v3:2S (�) = 1. The S3:2-entailment relationshipbetween a set of formulas � and a formula � is represented as� j=3:2S �
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onsisten
y - Preliminary Report 5and holds if every valuation v3:2S that simultaneously satis�es all formulas in � also satis�es �. Aformula is S-valid if it is entailed by ;, represented as j=3:2S �.Lemma 3.2 suggests a translation between a formula in FineS3 and one in 
lassi
al logi
, su
hthat every formula of the form :� with � 62 S is mapped into a new propositional symbol p:�.Let ��S be the translation of �, de�ned as:p�S = p(� Æ �)�S = ��S Æ ��S ; Æ 2 f^;_;!g(:�)�S = � :(��S); � 2 Sp:� ; � 62 SThe following properties of FineS3 follow from this fa
t.Lemma 3.3A formula � is S-satis�able in S3:2 i� (:�)�S is 
lassi
ally satis�ableLemma 3.4Every formula � 62 S is satis�able in S3:2.Lemma 3.5S3:2-validity is sub
lassi
al. That is, any S-valid formula in S3:2 is 
lassi
ally valid, for any S.The dedu
tion theorem holds for the S3:2 semanti
s, as 
an be seen dire
tly from the de�nitions.Lemma 3.6 (Dedu
tion Theorem)Let � be a �nite set of formulas. Then� j=3:2S � i� j=3:2S ^�! �:Now we examine a few examples of S3:2 entailment.Example 3.7Consider the formula � _ :�. We show that it is a valid formula in S3:2 for any S.Indeed, if � 2 S, we are in a 
lassi
al setting, so any valuation makes � _ :� true.If � 62 S, let v3:2S be a valuation. If v3:2S (:�) = 1, then � _ :� 
learly is true. If, however,v3:2S (:�) = 0, by rule (iv) above v3:2S (�) = 1, so � _ :� is also true.Example 3.8We now show that the S3:2 semanti
s is para
onsistent. For that, 
onsider the two propositions pand q and suppose that p 62 S; take a valuation v3:2S su
h that v3:2S (p) = 1 and v3:2S (q) = 0, and
onsider the formula (p ^ :p) ! q. By Lemma 3.2, the value of v3:2S is not fully determined, sowe �x v3:2S (:p) = 1. It is simple to verify now that the valuation thus 
onstru
ted is su
h thatv3:2S ((p ^ :p)! q) = 0, that is the logi
 does not trivialize in the presen
e of in
onsisten
y.Example 3.9We now analyze the validity of Modus Ponens in S3:2. The usual formulation of Modus Ponens,� ! �; � j=3:2S �, is valid in S3:2; indeed, if v3:2S satis�es �, the only possible way that it alsosatis�es � ! � is that it satis�es �, thus proving the entailment. Note that sin
e no :-formulawas involved, the reasoning is totally 
lassi
al.However, if we 
onsider the version of Modus Ponens 
onsisting of the translation of �! � into:� _ � (the only possible version of Modus Ponens in [SC95℄), the situation 
hanges 
ompletely if� 62 S, for then we 
an have a valuation that satis�es both � and :� (and thus :� _ �), but thatfalsi�es �, so that :� _ �; � 6j=3:2S �.



6 Approximate Reasoning and Para
onsisten
y - Preliminary ReportPositive Axioms:(!1) �! (� ! �)(!2) (�! �)! (�! (� ! 
))! (�! 
)(!3) �; �! �=�(^1) � ^ � ! �(^2) � ^ � ! �(^3) �! (� ! � ^ �)(_1) �! � _ �(_2) � ! � _ �(_3) (�! 
)! ((� ! 
)! (� _ � ! 
))Negation Axioms:(neg1) (�! �)! ((�! :�)! :�), provided � 2 S(neg2) (� ^ :�)! �, provided � 2 S(neg3) � _ :�Fig. 1. An Axiomatization for FineS33.1 An Axiomatization for FineS3Consider the axioms in Figure 1. The Positive Axioms are pre
isely the 
lassi
al axioms for the
onne
tives !, ^ and _; the rule of Modus Ponens is presented as (!3). Our system di�ers from
lassi
al logi
 in the Negation Axioms.In fa
t, without the proviso in axioms (neg1) and (neg2), the negation axioms are pre
isely the
lassi
al :-axioms. The :-introdu
tion of axiom (neg1) is restri
ted to the 
onsequen
es of � inS. The trivialization of axiom (neg2) is restri
ted to the members of S, that is, non-membersof S 
an behave para
onsistently. Axiom (neg3) tells us that the ex
luded middle is a

eptedun
onditionally in our logi
.Theorem 3.10The axiomatization of Figure 1 is sound with respe
t to the S3:2 semanti
s. That is, all formulasinferred from the FineS3 axiomatization are true in all S3:2-valuations.Proof. By a straightforward, but tedious, veri�
ation of the validity of the axioms. The positiveaxioms are dealt with by the 
lassi
al part of the S3:2 semanti
s. Axiom (neg3) is dealt with inExample 3.8, and Modus Ponens is dealt with in Example 3.9. The validity of axioms (neg1) and(neg2) are easily veri�ed.A formula � is S-in
onsistent if it is provable that �! (�^:�) for some � 2 S. Similarly, a setX of formulas is S-in
onsistent if there are formulas �1; : : : ; �n 2 X su
h that V�i ! (� ^ :�)for some � 2 S. A formula or set is S-
onsistent if it is not S-in
onsistent.The axiomatization above is S-
omplete i� for any S-
onsistent formula � there is an S3:2valuation v3:2S su
h that v3:2S (�) = 1. The proof of 
ompleteness follows a Lindenbaum 
onstru
tion.A maximal S-
onsistent set (MSCS) is a set of formulas X su
h that:� X is S-
onsistent; and� there is no MSCS X 0 � X .Lemma 3.11For every S-
onsistent formula � there is a MSCS X su
h that � 2 X .Proof. Consider an enumeration of the formulas �0; �1; : : : ; �i; : : : . Constru
t a sequen
e of setsXi su
h that
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y - Preliminary Report 7X0 = �Xi+1 = � Xi [ f�ig; if Xi [ f�ig is S-
onsistentXi; otherwiseLet X = S1i=0Xi. We 
laim that X is a MSCS, for the following reasons:� X is S-
onsistent. Otherwise letXk+1 be the �rst element in the sequen
e that is S-in
onsistent.Then we must have Xk+1 6= Xk, so Xk+1 = Xk [ f�kg, but this is only possible if Xk [ f�kgis S-
onsistent, 
ontradi
ting the fa
t that Xk+1 is S-in
onsistent.� X is maximal. Otherwise there is a MSCSX 0 � X . In this 
ase there is a �k 2 X 0�X . Considerthe set Xk [f�kg; if it is S-
onsistent, then Xk[f�kg = Xk+1 � X , whi
h 
ontradi
ts �k 62 X .If Xk [ f�kg is S-in
onsistent, then X 0 is in
onsistent be
ause Xk � X � X 0 and �k 2 X 0,whi
h 
ontradi
ts the 
onsisten
y of X 0. Hen
e X must be maximal.It is obvious that � 2 X , so the proof is �nished.Lemma 3.12Let X be a MSCS. Let v : LC �! f0; 1g su
h that v(�) = 1 i� � 2 X . Then v is a S3:2 valuation.Proof. We have to show that v satis�es the restri
tions of De�nition 3.1. Conditions (i)��(iii)are 
lassi
al semanti
al 
onditions and are a

ounted for by the positive axioms, whi
h are the
lassi
al ones.We then show that: (�) v(�) = 0 =) v(:�) = 1. For that, suppose v(�) = 0. Then� 62 X . Due to the maximality of X , there must be �1; : : : ; �n 2 X su
h that it is provable that((V�i) ^ �)! (� ^ :�) for some � 2 S. Therefore:` (V�i) ^ �)! � =)` (V�i)! (�! �) =) �! � 2 X` (V�i) ^ �)! :� =)` (V�i)! (�! :�) =) �! :� 2 XIt follows that both � ! � 2 X and � ! :� 2 X . From Axiom (neg1), it follows that :� 2 X ,so v(:�) = 1, proving (�).From (*) it follows that v obeys property (iv) of De�nition 3.1. Indeed, suppose that v(:�) = 0;if v(�) = 0, then by (�) we have that v(:�) = 1, a 
ontradi
tion. So we must have v(�) = 1,satisfying (iv).We then show that: (��) v(�) = 1; � 2 S =) v(:�) = 0. For that, suppose v(�) = 1 and� 2 S. Then � 2 X . Suppose now, for 
ontradi
tion that :� 2 X . From Axiom (neg2) we havethat any � 2 X , 
ontradi
ting the 
onsisten
y of X . So :� 62 X and v(:�) = 0, thus proving (��).From (��) we see that v obeys property (v) of De�nition 3.1. Indeed, suppose that v(:�) = 1and � 2 S; if v(�) = 1, by (��) we have that v(:�) = 0, a 
ontradi
tion. So we must havev(�) = 0, satisfying (v).Theorem 3.13The axiomatization of Figure 1 is 
omplete with respe
t to the S3:2 semanti
s.Proof. By Lemma 3.11 there is a MSCS X with � 2 X . Then, by Lemma 3.12, there is a S3:2-valuation v3:2S su
h that v3:2S (�) = 1 i� � 2 X . In parti
ular, v3:2S (�) = 1.4 Relating FineS3 to Da Costa's C1In this se
tion, we introdu
e Da Costa's 
al
ulus C1 by means of axioms and valuation semanti
s.We then show how our system relates to this 
al
ulus.Definition 4.1A formula � is said to be well behaved if the prin
iple of non-
ontradi
tion holds for �, i.e., if:(� ^ :�) holds. We use �o to denote :(� ^ :�).



8 Approximate Reasoning and Para
onsisten
y - Preliminary ReportDa Costa's 
al
ulus [dC63℄ was introdu
ed in order to deal with possible in
onsisten
ies thatshould not damage reasoning by trivializing it. The idea is to blo
k derivations from formulaswhi
h are not well behaved, isolating in
onsisten
ies.The following is an axiomatization of C1:(!1) �! (� ! �)(!2) (�! �)! (�! (� ! 
))! (�! 
)(!3) �; �! �=�(^1) � ^ � ! �(^2) � ^ � ! �(^3) �! (� ! � ^ �)(_1) �! � _ �(_2) � ! � _ �(_3) (�! 
)! ((� ! 
)! (� _ � ! 
))(:1) �o ! (�! �)! ((�! :�)! :�)(:2) �o ^ �o ! ((�! �)o ^ (� ^ �)o ^ (� _ �)o)(:3) � _ :�(:4) ::� ! �A semanti
 for this system was given in [dCA77℄.Definition 4.2An N -valuation vN is a fun
tion, vN : LC ! f0; 1g, that extends a propositional valuation vp(i.e., vN (p) = vp(p)), satisfying the following restri
tions:(i) vN (� ^ �) = 1 , vN (�) = vN (�) = 1(ii) vN (� _ �) = 0 , vN (�) = vN (�) = 0(iii) vN (�! �) = 0 , vN (�) = 1 andvN (�) = 0(iv) vN (�) = 0 ) vN (:�) = 1(v) vN (::�) = 1 ) vN (�) = 1(vi) vN (�o) = vN (�! �) = vN (�! :�) = 1 ) vN (�) = 0(vii) vN (�o) = vN (�o) = 1 ) vN ((� � �)o) = 1; � 2f!;^;_gAn N -valuation has the following properties:Lemma 4.3(1) vN (�) = 1, vN (:� ^ �o) = 0(2) vN (�o) = 0, vN (�) = vN (:�)It is not hard to see that the systems are very similar, although not equivalent. There are twomain di�eren
es. First, the set of formulas for whi
h vN (�o) = 1 does not 
orrespond exa
tly toS:Lemma 4.4If � 2 S, then vN (�o) = 1. The 
onverse does not always hold, i.e., we may have an N -valuationv su
h that v(�o) = 1 and � 62 S.Proof. Follows dire
tly from the de�nitions. � 2 S means that � and :� must have oppositetruth values, but � 62 S does not ne
essarily mean that � and :� have the same truth values.The se
ond di�eren
e between the two systems is in the behavior of double negation. In C1,double negation may be eliminated (but not introdu
ed), while in S3, � does not follow from ::�.Sin
e we have sound and 
omplete semanti
s for both systems, we 
an show how the systemsrelate to ea
h other by 
he
king the semanti
s.
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y - Preliminary Report 9Proposition 4.5Every N -valuation is an S3:2-valuation.Proof. Conditions (i),(ii),(iii), and (iv) are the same. We only have to 
he
k whether v(:�) =1; � 2 S ) v(�) = 0 follows from the de�nition of N -valuation. We know that � 2 S impliesv(�o) = 1. And from v(:�) = v(�o) = 1 it follows by part (2) of Lemma 4.3 that v(�) = 0.Proposition 4.6Not every S3:2-valuation is an N -valuation.Proof. It suÆ
es to see that we may have an S3:2-valuation v so that for some formula � su
hthat � 62 S, we have v(::�) = v(:�) = 1 and v(�) = 0. This valuation fails to satisfy item (v) ofthe de�nition of N -valuation.The two propositions show that FineS3 is a
tually more general than C1.Corollary 4.7Let S be a �xed set of formulas 
losed under formula 
onstru
tion and let CS1 be C1 with an addedaxiom �o for ea
h � 2 S. Then Theorems(FineS3) � Theorems(C31 ) � Theorems(LC).We 
an adapt the tableaux system proposed in [FW01℄ for extended S3 to build a proof methodfor C1. In the rule where we had the proviso � 2 S we now have �o, and we have to add a rule todeal with double negation. The study of this tableaux system is left for future work.5 Con
lusionIn this paper, we have presented a new extended version of Cadoli and S
haerf's approximateentailment and given a sound and 
omplete axiomatization for it. We have 
ompared it to DaCosta's C1 
al
ulus for para
onsistent logi
. We have shown that our system is more general thanC1, whi
h 
an be seen both from the semanti
s as from the axiomatizations.A proof method based on tableaux for para
onsistent logi
 has been proposed in [CLM92℄. Theidea behind their system is very similar to ours: the only di�eren
e from tableaux for 
lassi
allogi
 is an extra 
ondition for the rules involving negation. However, as in the 
al
ulus C1 [dC63℄,the 
ondition that a formula behaves 
lassi
ally is part of the language. As a result, the tableau
onstru
tion sometimes loops. In our system, the fa
t that a formula is well behaved is not partof the language, but is stated in the meta-language, through the set S.Future work in
ludes studying the 
omputational 
omplexity of the tableaux system and ex-tending Cadoli and S
haerf's S1.A
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