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2 Approximate Reasoning and Paraonsisteny - Preliminary Reportto lassial entailment, but the omputational omplexity also inreases.In this paper, we will relate a formalism developed by omputer sientists aiming at omputa-tional eÆieny (Cadoli and Shaerf's system) and another developed by logiians aiming to dealwith inonsisteny (da Costa's C1).As a result, we an adapt the proof method that we have developed for S3 to use with C1. Wealso give a sound and omplete axiomatization for S3, based on the axiomatization of the alulusC1. In Cadoli and Shaerf's work, the treatment of S3 is purely semantial. An axiomatizationwas still missing.The paper proeeds as follows: we briey present Cadoli and Shaerf's S3 system for approximateentailment. Then we present an extended version of S3 whih we all FineS3. We then present daCosta's C1 and show some results about the relationship between FineS3 and C1.1.1 PreliminariesLet P be a ountable set of propositional letters. We onentrate on the lassial propositionallanguage LC formed by the usual boolean onnetives ! (impliation), ^ (onjuntion), _ (dis-juntion) and : (negation).Throughout the paper, we use lowerase Latin letters to denote propositional letters, loweraseGreek letters to denote formulas, and upperase letters (Greek or Latin) to denote sets of formulas.A propositional valuation vp is a funtion vp : P ! f0; 1g.2 Approximate EntailmentWe briey present here the notion of approximate entailment and summarize the main resultsobtained in [SC95℄.Shaerf and Cadoli de�ne two approximations of lassial entailment: j=1S whih is omplete butnot sound, and j=3S whih is sound and inomplete. These approximations are arried out over a setof atoms S � P whih determines their loseness to lassial entailment. In the trivial extreme ofapproximate entailment, i.e., when S = P , lassial entailment is obtained. At the other extreme,when S = ;, j=1S holds for any two formulas (i.e., for all �,�, we have � j=1S �) and j=3S orrespondsto Levesque's logi for expliit beliefs [Lev84℄, whih bears a onnetion to relevane logis suh asthose of Anderson and Belnap [AB75℄.In an S1 assignment, if p 2 S, then p and :p are given opposite truth values; if p 62 S, thenp and :p both get the value 0. In an S3 assignment, if p 2 S, then p and :p get opposite truthvalues, while if p 62 S, p and :p do not both get 0, but may both get 1. The set of formulas forwhih we are testing entailments is assumed to be in lausal form. Satis�ability, entailment, andvalidity are de�ned in the usual way.The following examples illustrate the use of approximate entailment. Sine j=3S is sound butinomplete, it an be used to approximate j=, i.e., if for some S we have that B j=3S �, thenB j= �. On the other hand, j=1S is unsound but omplete, and an be used for approximating 6j=,i.e., if for some S we have that B 6j=1S �, then B 6j= �.Example 2.1 ([SC95℄)We want to hek whether B j= �, where � = :ow _ molar-teeth andB = f:ow _ grass-eater,:dog_ arnivore,:grass-eater _ :anine-teeth,:arnivore _ mammal,:mammal _ anine-teeth _ molar-teeth,:grass-eater _ mammal,:mammal _ vertebrate,:vertebrate _ animalg.



Approximate Reasoning and Paraonsisteny - Preliminary Report 3For S = fgrass-eater, mammal, anine-teethg, we have that B j=3S �, hene B j= �.Example 2.2 ([SC95℄)We want to hek whether B 6j= �, where �=:hild _ pensioner andB = f:person _ hild _ youngster __ adult _ senior,:pensioner _ senior,:youngster _ student _ worker,:senior _ pensioner _ worker,:adult _ student _ worker __ unemployed,:pensioner _ :student,:student _ hild _ youngster _ adult,:pensioner _ :workerg.For S = fhild, worker, pensionerg, we have that B 6j=1S �, and hene B 6j= �.Note that in both examples above, S is a small part of the language. The approximation oflassial inferene is made via a simpli�ation of the belief base B as follows (for a given onlusion� and ontext set S):Lemma 2.3 ([SC95℄)Let simplify-1(B;S) be the result of deleting all literals of B whih mention atoms outside S. Bis S1-satis�able if and only if simplify-1(B;S) is lassially satis�able.Lemma 2.4 ([SC95℄)Let simplify-3(B;S) be the result of deleting all lauses of B whih ontain an atom outside S.Then B is S3-satis�able if and only if simplify-3(B;S) is lassially satis�able.Shaerf and Cadoli then obtain the following results for approximate inferene:Theorem 2.5 ([SC95℄)There exists an algorithm for deiding if B j=3S � and deiding B j=1S � whih runs in O(jBj:j�j:2jSj)time.The result above depends on a polynomial time satis�ability algorithm for belief bases andformulas in lausal form alone. This result has been extended in [CS95℄ for formulas in negationnormal form, but is not extendable to formulas in arbitrary forms [CS96℄.The good point of Shaerf and Cadoli's systems is that they present an inremental algorithmto test for Si entailment as new elements are added to S. But there are two major limitations intheir results:1. The system is restrited to !-free formulas and in negation normal form. In [CPW00℄ it isnoted that the standard translation of formulas into lausal form does not preserve truth-valuesunder the non-standard semantis of S3.2. The set S must be guessed at eah step of the approximation; no method is given for the atomsto be added to S. Some heuristis for a spei� appliation are presented in [tTvH97℄, butnothing is said about the general ase.In [FW01℄, we have extended S3 to full propositional logi, given a sound and omplete proofmethod for the extended system and showed how this proof method helps us to hoose the atomsto add to S. In this paper, we will extend S3 semantis further, ompare it to da Costa's systemC1 and show what eah system an o�er to the other one. We provide an axiomatization for theextended version of S3 based on the axiomatization of C1 and provide a better proof method forC1 than what was proposed before.



4 Approximate Reasoning and Paraonsisteny - Preliminary Report3 The Family of Logis FineS3In this setion, we desribe the logi S3 extended to full propositional logi as originally in [FW01℄.In fat, we are going to de�ne a slightly distint logi, that allows us to a better omparison withda Costa's C1. Suh a logi allows us to approximate lassial logi in �ner steps, and thereforewe all it FineS3.The di�erene between S3 and FineS3 is the following. In [FW01℄, the set S whih parameterizeda logi in the family S3 of logis onsisted of a set of propositional letters, in whih it followedShaerf and Cadoli's initial proposal [SC95℄.Here, however, we present a �ner de�nition of S as a set of formulas losed under the formationof formulas. That is: �; � 2 S =) �! �; � ^ �; � _ �; :� 2 SIn [FW01℄ we abused notation and stated that a formula � 2 S whenever �'s propositional werein S. This was equivalent to losing S under:(a) formula onstrution; and(b) subformula formation: If � 2 S and � is a subformula of �, then � 2 S.Therefore, any logi in the original system is also a logi in FineS3. Furthermore, we an nowhave � 2 S without having any subformula of � in S, whih was not possible in the original systemS3. As a result, here we an inrease the set S in muh �ner steps, resulting in a muh �nerapproximation of lassial logi.We present a binary semantis for FineS3, whih for that reason is alled an S3:2 semantis. Itis remarkable that suh semanti de�nition is exatly the same as that of [FW01℄, di�ering only inthe notion of S in item (v) of De�nition 3.1.Definition 3.1A propositional valuation vp is a funtion vp : P ! f0; 1g. An S3:2-valuation v3:2S is a funtion,v3:2S : LC ! f0; 1g, that extends a propositional valuation vp (i.e., v3:2S (p) = vp(p)), satisfying thefollowing restritions:(i) v3:2S (� ^ �) = 1 , v3:2S (�) = v3:2S (�) = 1(ii) v3:2S (� _ �) = 0 , v3:2S (�) = v3:2S (�) = 0(iii) v3:2S (�! �) = 0 , v3:2S (�) = 1 and v3:2S (�) = 0(iv) v3:2S (:�) = 0 ) v3:2S (�) = 1(v) v3:2S (:�) = 1; � 2 S ) v3:2S (�) = 0Rules (i){(iii) are exatly those of lassial logi. Rules (iv) and (v) restrit the semantisof negation: rule (iv) states that if v3:2S (:�) = 0, then negation behaves lassially and foresv3:2S (�) = 1; rule (v) states that if v3:2S (:�) = 1, negation must behave lassially only if � 2S. Formulas outside S may behave lassially or paraonsistently, i.e., both the formula and itsnegation may be assigned the truth value 1.Note that an S3:2-valuation is not uniquely de�ned by the propositional valuation it extends.This is due to the fat that if � 62 S and v3:2S (�) = 1, the value of v3:2S (:�) an be either 0 (inwhih ase � has a lassial behavior) or 1 (in whih ase � behaves paraonsistently).Lemma 3.2The valuation v3:2S is determined by its value on the set P [ f:�j� 62 Sg.We de�ne a formula � to be S-valid in S3:2 if v3:2S (�) = 1 for any S3:2-valuation. A formula isS-satis�able in S3:2 if there is one v3:2S suh that v3:2S (�) = 1. The S3:2-entailment relationshipbetween a set of formulas � and a formula � is represented as� j=3:2S �



Approximate Reasoning and Paraonsisteny - Preliminary Report 5and holds if every valuation v3:2S that simultaneously satis�es all formulas in � also satis�es �. Aformula is S-valid if it is entailed by ;, represented as j=3:2S �.Lemma 3.2 suggests a translation between a formula in FineS3 and one in lassial logi, suhthat every formula of the form :� with � 62 S is mapped into a new propositional symbol p:�.Let ��S be the translation of �, de�ned as:p�S = p(� Æ �)�S = ��S Æ ��S ; Æ 2 f^;_;!g(:�)�S = � :(��S); � 2 Sp:� ; � 62 SThe following properties of FineS3 follow from this fat.Lemma 3.3A formula � is S-satis�able in S3:2 i� (:�)�S is lassially satis�ableLemma 3.4Every formula � 62 S is satis�able in S3:2.Lemma 3.5S3:2-validity is sublassial. That is, any S-valid formula in S3:2 is lassially valid, for any S.The dedution theorem holds for the S3:2 semantis, as an be seen diretly from the de�nitions.Lemma 3.6 (Dedution Theorem)Let � be a �nite set of formulas. Then� j=3:2S � i� j=3:2S ^�! �:Now we examine a few examples of S3:2 entailment.Example 3.7Consider the formula � _ :�. We show that it is a valid formula in S3:2 for any S.Indeed, if � 2 S, we are in a lassial setting, so any valuation makes � _ :� true.If � 62 S, let v3:2S be a valuation. If v3:2S (:�) = 1, then � _ :� learly is true. If, however,v3:2S (:�) = 0, by rule (iv) above v3:2S (�) = 1, so � _ :� is also true.Example 3.8We now show that the S3:2 semantis is paraonsistent. For that, onsider the two propositions pand q and suppose that p 62 S; take a valuation v3:2S suh that v3:2S (p) = 1 and v3:2S (q) = 0, andonsider the formula (p ^ :p) ! q. By Lemma 3.2, the value of v3:2S is not fully determined, sowe �x v3:2S (:p) = 1. It is simple to verify now that the valuation thus onstruted is suh thatv3:2S ((p ^ :p)! q) = 0, that is the logi does not trivialize in the presene of inonsisteny.Example 3.9We now analyze the validity of Modus Ponens in S3:2. The usual formulation of Modus Ponens,� ! �; � j=3:2S �, is valid in S3:2; indeed, if v3:2S satis�es �, the only possible way that it alsosatis�es � ! � is that it satis�es �, thus proving the entailment. Note that sine no :-formulawas involved, the reasoning is totally lassial.However, if we onsider the version of Modus Ponens onsisting of the translation of �! � into:� _ � (the only possible version of Modus Ponens in [SC95℄), the situation hanges ompletely if� 62 S, for then we an have a valuation that satis�es both � and :� (and thus :� _ �), but thatfalsi�es �, so that :� _ �; � 6j=3:2S �.



6 Approximate Reasoning and Paraonsisteny - Preliminary ReportPositive Axioms:(!1) �! (� ! �)(!2) (�! �)! (�! (� ! ))! (�! )(!3) �; �! �=�(^1) � ^ � ! �(^2) � ^ � ! �(^3) �! (� ! � ^ �)(_1) �! � _ �(_2) � ! � _ �(_3) (�! )! ((� ! )! (� _ � ! ))Negation Axioms:(neg1) (�! �)! ((�! :�)! :�), provided � 2 S(neg2) (� ^ :�)! �, provided � 2 S(neg3) � _ :�Fig. 1. An Axiomatization for FineS33.1 An Axiomatization for FineS3Consider the axioms in Figure 1. The Positive Axioms are preisely the lassial axioms for theonnetives !, ^ and _; the rule of Modus Ponens is presented as (!3). Our system di�ers fromlassial logi in the Negation Axioms.In fat, without the proviso in axioms (neg1) and (neg2), the negation axioms are preisely thelassial :-axioms. The :-introdution of axiom (neg1) is restrited to the onsequenes of � inS. The trivialization of axiom (neg2) is restrited to the members of S, that is, non-membersof S an behave paraonsistently. Axiom (neg3) tells us that the exluded middle is aeptedunonditionally in our logi.Theorem 3.10The axiomatization of Figure 1 is sound with respet to the S3:2 semantis. That is, all formulasinferred from the FineS3 axiomatization are true in all S3:2-valuations.Proof. By a straightforward, but tedious, veri�ation of the validity of the axioms. The positiveaxioms are dealt with by the lassial part of the S3:2 semantis. Axiom (neg3) is dealt with inExample 3.8, and Modus Ponens is dealt with in Example 3.9. The validity of axioms (neg1) and(neg2) are easily veri�ed.A formula � is S-inonsistent if it is provable that �! (�^:�) for some � 2 S. Similarly, a setX of formulas is S-inonsistent if there are formulas �1; : : : ; �n 2 X suh that V�i ! (� ^ :�)for some � 2 S. A formula or set is S-onsistent if it is not S-inonsistent.The axiomatization above is S-omplete i� for any S-onsistent formula � there is an S3:2valuation v3:2S suh that v3:2S (�) = 1. The proof of ompleteness follows a Lindenbaum onstrution.A maximal S-onsistent set (MSCS) is a set of formulas X suh that:� X is S-onsistent; and� there is no MSCS X 0 � X .Lemma 3.11For every S-onsistent formula � there is a MSCS X suh that � 2 X .Proof. Consider an enumeration of the formulas �0; �1; : : : ; �i; : : : . Construt a sequene of setsXi suh that



Approximate Reasoning and Paraonsisteny - Preliminary Report 7X0 = �Xi+1 = � Xi [ f�ig; if Xi [ f�ig is S-onsistentXi; otherwiseLet X = S1i=0Xi. We laim that X is a MSCS, for the following reasons:� X is S-onsistent. Otherwise letXk+1 be the �rst element in the sequene that is S-inonsistent.Then we must have Xk+1 6= Xk, so Xk+1 = Xk [ f�kg, but this is only possible if Xk [ f�kgis S-onsistent, ontraditing the fat that Xk+1 is S-inonsistent.� X is maximal. Otherwise there is a MSCSX 0 � X . In this ase there is a �k 2 X 0�X . Considerthe set Xk [f�kg; if it is S-onsistent, then Xk[f�kg = Xk+1 � X , whih ontradits �k 62 X .If Xk [ f�kg is S-inonsistent, then X 0 is inonsistent beause Xk � X � X 0 and �k 2 X 0,whih ontradits the onsisteny of X 0. Hene X must be maximal.It is obvious that � 2 X , so the proof is �nished.Lemma 3.12Let X be a MSCS. Let v : LC �! f0; 1g suh that v(�) = 1 i� � 2 X . Then v is a S3:2 valuation.Proof. We have to show that v satis�es the restritions of De�nition 3.1. Conditions (i)��(iii)are lassial semantial onditions and are aounted for by the positive axioms, whih are thelassial ones.We then show that: (�) v(�) = 0 =) v(:�) = 1. For that, suppose v(�) = 0. Then� 62 X . Due to the maximality of X , there must be �1; : : : ; �n 2 X suh that it is provable that((V�i) ^ �)! (� ^ :�) for some � 2 S. Therefore:` (V�i) ^ �)! � =)` (V�i)! (�! �) =) �! � 2 X` (V�i) ^ �)! :� =)` (V�i)! (�! :�) =) �! :� 2 XIt follows that both � ! � 2 X and � ! :� 2 X . From Axiom (neg1), it follows that :� 2 X ,so v(:�) = 1, proving (�).From (*) it follows that v obeys property (iv) of De�nition 3.1. Indeed, suppose that v(:�) = 0;if v(�) = 0, then by (�) we have that v(:�) = 1, a ontradition. So we must have v(�) = 1,satisfying (iv).We then show that: (��) v(�) = 1; � 2 S =) v(:�) = 0. For that, suppose v(�) = 1 and� 2 S. Then � 2 X . Suppose now, for ontradition that :� 2 X . From Axiom (neg2) we havethat any � 2 X , ontraditing the onsisteny of X . So :� 62 X and v(:�) = 0, thus proving (��).From (��) we see that v obeys property (v) of De�nition 3.1. Indeed, suppose that v(:�) = 1and � 2 S; if v(�) = 1, by (��) we have that v(:�) = 0, a ontradition. So we must havev(�) = 0, satisfying (v).Theorem 3.13The axiomatization of Figure 1 is omplete with respet to the S3:2 semantis.Proof. By Lemma 3.11 there is a MSCS X with � 2 X . Then, by Lemma 3.12, there is a S3:2-valuation v3:2S suh that v3:2S (�) = 1 i� � 2 X . In partiular, v3:2S (�) = 1.4 Relating FineS3 to Da Costa's C1In this setion, we introdue Da Costa's alulus C1 by means of axioms and valuation semantis.We then show how our system relates to this alulus.Definition 4.1A formula � is said to be well behaved if the priniple of non-ontradition holds for �, i.e., if:(� ^ :�) holds. We use �o to denote :(� ^ :�).



8 Approximate Reasoning and Paraonsisteny - Preliminary ReportDa Costa's alulus [dC63℄ was introdued in order to deal with possible inonsistenies thatshould not damage reasoning by trivializing it. The idea is to blok derivations from formulaswhih are not well behaved, isolating inonsistenies.The following is an axiomatization of C1:(!1) �! (� ! �)(!2) (�! �)! (�! (� ! ))! (�! )(!3) �; �! �=�(^1) � ^ � ! �(^2) � ^ � ! �(^3) �! (� ! � ^ �)(_1) �! � _ �(_2) � ! � _ �(_3) (�! )! ((� ! )! (� _ � ! ))(:1) �o ! (�! �)! ((�! :�)! :�)(:2) �o ^ �o ! ((�! �)o ^ (� ^ �)o ^ (� _ �)o)(:3) � _ :�(:4) ::� ! �A semanti for this system was given in [dCA77℄.Definition 4.2An N -valuation vN is a funtion, vN : LC ! f0; 1g, that extends a propositional valuation vp(i.e., vN (p) = vp(p)), satisfying the following restritions:(i) vN (� ^ �) = 1 , vN (�) = vN (�) = 1(ii) vN (� _ �) = 0 , vN (�) = vN (�) = 0(iii) vN (�! �) = 0 , vN (�) = 1 andvN (�) = 0(iv) vN (�) = 0 ) vN (:�) = 1(v) vN (::�) = 1 ) vN (�) = 1(vi) vN (�o) = vN (�! �) = vN (�! :�) = 1 ) vN (�) = 0(vii) vN (�o) = vN (�o) = 1 ) vN ((� � �)o) = 1; � 2f!;^;_gAn N -valuation has the following properties:Lemma 4.3(1) vN (�) = 1, vN (:� ^ �o) = 0(2) vN (�o) = 0, vN (�) = vN (:�)It is not hard to see that the systems are very similar, although not equivalent. There are twomain di�erenes. First, the set of formulas for whih vN (�o) = 1 does not orrespond exatly toS:Lemma 4.4If � 2 S, then vN (�o) = 1. The onverse does not always hold, i.e., we may have an N -valuationv suh that v(�o) = 1 and � 62 S.Proof. Follows diretly from the de�nitions. � 2 S means that � and :� must have oppositetruth values, but � 62 S does not neessarily mean that � and :� have the same truth values.The seond di�erene between the two systems is in the behavior of double negation. In C1,double negation may be eliminated (but not introdued), while in S3, � does not follow from ::�.Sine we have sound and omplete semantis for both systems, we an show how the systemsrelate to eah other by heking the semantis.
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