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ien
eInstitute of Mathemati
s and Statisti
sUniversity of S~ao Paulo, BrazilAbstra
tIn this paper, we show that in
onsisten
y
an be fruitfully used to approximate 
lassi-
al theorem proving. We extend Cadoli andS
haerf's Approximate Entailment, originallyde�ned only for formulas in 
lausal form, to full
lassi
al propositional logi
. To this end, weprovide approximations to 
lassi
al logi
 via afamily of logi
s solidly based on formal seman-ti
s and a tableaux proof system. Soundnessand 
ompleteness are shown for the tableaux
al
ulus with respe
t to the given semanti
s.The tableaux system is then shown to providea useful heuristi
s for the in
remental approx-imation of 
lassi
al logi
, a feature that wasla
king in existing proposals for approximatereasoning.By means of su
h in
remental method, we 
anmove from one logi
 to the next one in the fam-ily, aiming to show a 
lassi
al theorem. In
re-mentality means that we 
an pro
eed with theproof in the latter logi
 from the point where itstopped in the former one, without doing anyre
omputation.1 Introdu
tionIt has been an e�ort of logi
ians for quite some timeto make in
onsisten
y respe
table [Gabbay and Hunter,1991℄. The aim of su
h line of resear
h was to showthat some in
onsistent states may be tolerated withoutone ever having to resolve the in
onsisten
y. This paper,however, fo
uses in another way of making in
onsisten
yrespe
table, namely by showing that in
onsisten
y 
anbe fruitfully used to approximate 
lassi
al theorem prov-ing. In fa
t, we are taking advantage of a fa
t frequentlypointed out in the literature, that to maintain a 
om-plete and 
onsistent pi
ture of the world the world is
omputationally expensive. We may ignore in
onsisten-
ies in irrelevant parts of the world while trying to provea 
lassi
al result.The high pri
e of theorem proving is well known. Logi
has been used in several areas of Arti�
ial Intelligen
e

as a tool for representing knowledge as well as a tool forproblem solving. One of the main 
riti
ism to the useof logi
 as a tool for automati
 problem solving refers tothe 
omputational 
omplexity of logi
al problems. Evenif we restri
t ourselves to 
lassi
al propositional logi
,de
iding whether a set of formulas logi
ally implies a
ertain formula is an NP-
omplete problem [Garey andJohnson, 1979℄.Cadoli and S
haerf have proposed the use of approx-imate entailment as a way of rea
hing at least partialresults when solving a problem 
ompletely would be tooexpensive [S
haerf and Cadoli, 1995℄. Their method 
on-sists in de�ning di�erent logi
s for whi
h satis�ability iseasier to 
ompute than 
lassi
al logi
 and treat these log-i
s as upper and lower bounds for the 
lassi
al problem.In [S
haerf and Cadoli, 1995℄, these approximate logi
sare de�ned by means of valuation semanti
s and algo-rithms for testing satis�ability. The language they use isrestri
ted to that of 
lauses, i.e., negation appears onlyin the s
ope of atoms and there is no impli
ation.The approximations are based on the idea of a 
on-text set S of atoms. The atoms in S are the only oneswhose 
onsisten
y is taken into a

ount in the pro
ess ofverifying whether a given formula is entailed by a set offormulas. As we in
rease the size of the 
ontext set S, weget 
loser to 
lassi
al entailment, but the 
omputational
omplexity also in
reases.In this paper, we generalize Cadoli and S
haerf'ssemanti
s to deal with full propositional logi
. Thisgeneralization is needed, sin
e the usual translation offormulas into 
lausal form is not sound under Cadoliand S
haerf's non-standard semanti
s. We present atableaux system for the extended logi
 whi
h is soundand 
omplete with respe
t to the semanti
. The mainfeature of our system is that the tableaux method givesa 
lear way of 
onstru
ting the 
ontext set S in orderto obtain the 
lassi
al answer. Our 
ontribution is thus,besides the generalization of approximate entailment, a
onstru
tive method for 
al
ulating the approximations.The paper pro
eeds as follows: in Se
tion 3, we brie
ydes
ribe Cadoli and S
haerf's approximate entailment.In Se
tion 4, we extend their semanti
 to full propo-sitional logi
. In Se
tion 5, we present the tableauxmethod for the extended logi
. In Se
tion 6, we illus-



trate the use of the tableaux and show some of theirproperties. In Se
tion 7 we proof soundness and 
om-pleteness of the method. Finally, in Se
tion 8, we dis
ussthe method and point toward future work.2 PreliminariesLet P be a 
ountable set of propositional letters. We
on
entrate on the 
lassi
al propositional language LCformed by the usual boolean 
onne
tives ! (impli
a-tion), ^ (
onjun
tion), _ (disjun
tion) and : (negation).Throughout the paper, we use lower
ase Latin lettersto denote propositional letters, lower
ase Greek letters todenote formulas, and upper
ase letters (Greek or Latin)to denote sets of formulas.Let S � P be a �nite set of propositional letters. Weabuse notation and write that, for any formula � 2 LC ,� 2 S if all its propositional letters are in S. A proposi-tional valuation vp is a fun
tion vp : P ! f0; 1g.3 Approximate EntailmentWe brie
y present here the notion of approximate en-tailment and summarize the main results obtained in[S
haerf and Cadoli, 1995℄.S
haerf and Cadoli de�ne two approximations of 
las-si
al entailment: j=1S whi
h is 
omplete but not sound,and j=3S whi
h is sound and in
omplete. These approx-imations are 
arried out over a set of atoms S � Pwhi
h determines their 
loseness to 
lassi
al entailment.In the trivial extreme of approximate entailment, i.e.,when S = P , 
lassi
al entailment is obtained. At theother extreme, when S = ?, j=1S holds for any two for-mulas (i.e., for all �,�, we have � j=1S �) and j=3S 
orre-sponds to Levesque's logi
 for expli
it beliefs [Levesque,1984℄, whi
h bears a 
onne
tion to relevan
e logi
s su
has those of Anderson and Belnap [Anderson and Belnap,1975℄.In an S1 assignment, if p 2 S, then p and :p are givenopposite truth values; if p 62 S, then p and :p both getthe value 0. In an S3 assignment, if p 2 S, then p and:p get opposite truth values, while if p 62 S, p and :p donot both get 0, but may both get 1. The names S1 andS3 
ome from the possible truth assignments for literalsoutside S. If p 62 S, there is only one S1 assignment forp and :p, the one whi
h makes them both false. Thereare three possible S3 assignments, the two 
lassi
al ones,assigning p and :p opposite truth values, and an extraone, making them both true. The set of formulas forwhi
h we are testing entailments is assumed to be in
lausal form. Satis�ability, entailment, and validity arede�ned in the usual way.The following examples illustrate the use of approxi-mate entailment. Sin
e j=3S is sound but in
omplete, it
an be used to approximate j=, i.e., if for some S we havethat B j=3S �, then B j= �. On the other hand, j=1S isunsound but 
omplete, and 
an be used for approximat-ing 6j=, i.e., if for some S we have that B 6j=1S �, thenB 6j= �.

Example 1 ([S
haerf and Cadoli, 1995℄) We wantto 
he
k whether B j= �, where � = :
ow _molar-teeth andB = f:
ow _ grass-eater,:dog_ 
arnivore,:grass-eater _ :
anine-teeth,:
arnivore _ mammal,:mammal _ 
anine-teeth _ molar-teeth,:grass-eater _ mammal,:mammal _ vertebrate,:vertebrate _ animalg.For S = fgrass-eater, mammal, 
anine-teethg, wehave that B j=3S �, hen
e B j= �.Example 2 ([S
haerf and Cadoli, 1995℄) We wantto 
he
k whether B 6j= �, where �=:
hild _ pensionerandB = f:person _ 
hild _ youngster __ adult _ senior,:pensioner _ senior,:youngster _ student _ worker,:senior _ pensioner _ worker,:adult _ student _ worker __ unemployed,:pensioner _ :student,:student _ 
hild _ youngster _ adult,:pensioner _ :workerg.For S = f
hild, worker, pensionerg, we have thatB 6j=1S �, and hen
e B 6j= �.Note that in both examples above, S is a small part ofthe language. The approximation of 
lassi
al inferen
e ismade via a simpli�
ation of the belief base B as follows(for a given 
on
lusion � and 
ontext set S):Lemma 3.1 ([S
haerf and Cadoli, 1995℄) Letsimplify-1(B;S) be the result of deleting all literals of Bwhi
h mention atoms outside S. B is S1-satis�able ifand only if simplify-1(B;S) is 
lassi
ally satis�able.Theorem 3.2 ([S
haerf and Cadoli, 1995℄)Let � be �S _ �S, where letters(�S) � S andletters(�S)\S = ?. Then B j=1S � i� B [ f:�Sg is notS1 satis�able.1This means that, in order to test whether B 6j=1S �, forevery literal of � of the form p, where p 2 S, we add the
lause :p to B and for every literal of � of the form :p,where p 2 S, we add the 
lause p to B. Let B0 be thisexpanded set of 
lauses. We now must 
he
k whetherB0 is S1 satis�able. Using Lemma 3.1, we 
an redu
ethis problem to testing the 
lassi
al satisfatibility of asimpli�ed set of 
lauses.Lemma 3.3 ([S
haerf and Cadoli, 1995℄) Letsimplify-3(B;S) be the result of deleting all 
lausesof B whi
h 
ontain an atom outside S. Then B is1This 
an only be done be
ause �S behaves 
lassi
allyand we 
an 
ompute its negation in 
lausal form (as a set of
lauses).



S3-satis�able if and only if simplify-3(B;S) is 
lassi
allysatis�able.Theorem 3.4 ([S
haerf and Cadoli, 1995℄) Letletters(�) � S. Then B j=3S � i� B [ f:�g is not S3satis�able.As in the 
ase of S1, Lemma 3.3 and Theorem3.4 together provide a 
onstru
ive method for testingS3 entailment. Consider the Example 1, where S =fgrass-eater, mammal, 
anine-teethg and we want totest whether B j=3S:
ow _ molar-teeth. In order touse Theorem 3.4 we must add 
ow and molar-teeth toS, then add the 
lauses 
ow and :molar-teeth to B.We 
an then use Lemma 3.3 to simplify the expandedbase, obtaining:B0 = f:
ow _ grass-eater,:grass-eater _ :
anine-teeth,:mammal _ 
anine-teeth _ molar-teeth,:grass-eater _ mammal,
ow, : molar-teethgThis set is 
lassi
ally unsatis�able, thus, B j=3S:
ow_ molar-teeth.S
haerf and Cadoli then obtain the following results forapproximate inferen
e:Theorem 3.5 ([S
haerf and Cadoli, 1995℄) Thereexists an algorithm for de
iding if B j=3S � and de
idingB j=1S � whi
h runs in O(jBj:j�j:2jSj) time.The result above depends on a polynomial time satis�-ability algorithm for belief bases and formulas in 
lausalform alone. This result has been extended in [Cadoli andS
haerf, 1995℄ for formulas in negation normal form, butis not extendable to formulas in arbitrary forms [Cadoliand S
haerf, 1996℄.The good point of S
haerf and Cadoli's systems is thatthey present an in
remental algorithm to test for Si en-tailment as new elements are added to S. But there aretwo major limitations in their results:1. The system is restri
ted to !-free formulas and innegation normal form. In [Chopra et al., 2000℄ it isnoted that the standard translation of formulas into
lausal form does not preserve truth-values underthe non-standard semanti
 of S3.2. The set S must be guessed at ea
h step of the ap-proximation; no method is given for the atoms to beadded to S. Some heuristi
s for a spe
i�
 appli
a-tion are presented in [ten Teije and van Harmelen,1997℄, but nothing is said about the general 
ase.In this paper, we will 
on
entrate on S3 entailment.In the following se
tions we will extend S3 to full propo-sitional logi
, present a proof method for the extendedsystem and show how this proof method helps us to in-
rementally 
onstru
t the set S.

4 Semanti
sIn this se
tion, we extend S3 to full propositional logi
.We present a binary semanti
s for the full fragment ofS3, for that reason we 
all it an S3:2 semanti
s 2.The two-valued semanti
s for S3 is based on a propo-sitional valuation, as de�ned below.De�nition 4.1 An S3:2-valuation v3:2S is a fun
tion,v3:2S : LC ! f0; 1g, that extends a propositional valu-ation vp (i.e., v3:2S (p) = vp(p)), satisfying the followingrestri
tions:(i) v3:2S (� ^ �) = 1 , v3:2S (�) = v3:2S (�) = 1(ii) v3:2S (� _ �) = 0 , v3:2S (�) = v3:2S (�) = 0(iii) v3:2S (�! �) = 0 , v3:2S (�) = 1 andv3:2S (�) = 0(iv) v3:2S (:�) = 0 ) v3:2S (�) = 1(v) v3:2S (:�) = 1; � 2 S ) v3:2S (�) = 0Rules (i){(iii) are exa
tly those of 
lassi
al logi
.Rules (iv) and (v) restri
t the semanti
s of negation:rule (iv) states that if v3:2S (:�) = 0, then negation be-haves 
lassi
ally and for
es v3:2S (�) = 1; rule (v) statesthat if v3:2S (:�) = 1, negation must behave 
lassi
allyonly if � 2 S. Formulas outside S may behave 
lassi-
ally or para
onsistently, i.e., both the formula and itsnegation may be assigned the truth value 1.Note that an S3:2-valuation is not uniquely de�ned bythe propositional valuation it extends. This is due to thefa
t that if � 62 S and v3:2S (�) = 1, the value of v3:2S (:�)
an be either 0 (in whi
h 
ase � has a 
lassi
al behaviour)or 1 (in whi
h 
ase � behaves para
onsistently).Lemma 4.2 The valuation v3:2S is determined by itsvalue on the set P [ f:�j� 62 Sg.Proof: For the 
onne
tives ^, _ and !, it is im-mediate that the value of v3:2S is determined by thatof the subformulas. If v3:2S (�) = 0, then by rule (iv)v3:2S (:�) = 1. If � 2 S the value of v3:2S (:�) is the oppo-site of that of v3:2S (�). We are left only with the formulasin P [ f:�j� 62 Sg to determine v3:2S . �We de�ne a formula � to be S-valid in S3:2 if v3:2S (�) =1 for any S3:2-valuation. A formula is S-satis�able inS3:2 if there is one v3:2S su
h that v3:2S (�) = 1. The S3:2-entailment relationship between a set of formulas � anda formula � is represented as� j=3:2S �and holds if every valuation v3:2S that simultaneously sat-is�es all formulas in � also satis�es �. A formula is S-valid if it is entailed by ?, represented as j=3:2S �.Lemma 4.2 suggests a translation between a formulain S3 and one in 
lassi
al logi
, su
h that every formula2A three-valued semanti
s, 
alled S3:3 semanti
s, 
an beprovided to 
over the !-free fragment; in su
h a fragment,S3:2 and S3:3 
oin
ide.



of the form :� with � 62 S is mapped into a new propo-sitional symbol p:�. Let ��S be the translation of �,de�ned as: p�S = p(� Æ �)�S = ��S Æ ��S ; Æ 2 f^;_;!g(:�)�S = � :(��S); � 2 Sp:� ; � 62 SLemma 4.3 A formula � is S-satis�able in S3:2 i�(:�)�S is 
lassi
ally satis�ableLemma 4.4 Let Prop(�) represent the propositionalsymbols in �. Every formula � with Prop(�)\S = ? issatis�able in S3:2.Proof: Sin
e Prop(�)\S = ?, the translation (�)�Sleads us into the :-free fragment of 
lassi
al logi
 (with-out falsity, ?), and any formula is su
h fragment is sat-is�able (just make all atoms 1), so Lemma 4.3 makes �satis�able in S3:2. �Note that for Cadoli and S
haerf's S3, the 
onditionProp(�) 6� S is suÆ
ient, sin
e they only deal with
lauses. If any literal of a 
lause is not in S, it 
anbe assigned the value 1, making the whole 
lause (a dis-jun
tion of literals) satis�able.Lemma 4.5 S3:2-validity is sub
lassi
al. That is, anyS-valid formula in S3:2 is 
lassi
ally valid, for any S.Proof: It suÆ
es to noti
e that any 
lassi
al valua-tion satis�es the S3:2-restri
tions for any S. Therefore,the set of all 
lassi
al valuations is 
ontained in the setof all S3:2-valuations (but there are S3:2-valuations thatare not 
lassi
). So if a formula is satis�ed by all S3:2-valuations, it will be satis�ed by all 
lassi
al ones. �The dedu
tion theorem holds for the S3:2 semanti
s,as 
an be seen dire
tly from the de�nitions.Lemma 4.6 (Dedu
tion Theorem) Let � be a �niteset of formulas. Then� j=3:2S � i� j=3:2S ^�! �:Now we examine a few examples of S3:2 entailment.Example 3 Consider the formula �_:�. We show thatit is a valid formula in S3:2 for any S.Indeed, if � 2 S, we are in a 
lassi
al setting, so anyvaluation makes � _ :� true.If � 62 S, let v3:2S be a valuation. If v3:2S (:�) = 1, then�_:� 
learly is true. If, however, v3:2S (:�) = 0, by rule(iv) above v3:2S (�) = 1, so � _ :� is also true.Example 4 We now show that the S3:2 semanti
s ispara
onsistent. For that, 
onsider the two propositionsp and q and suppose that p 62 S; take a valuation v3:2Ssu
h that v3:2S (p) = 1 and v3:2S (q) = 0, and 
onsider theformula (p^:p)! q. By Lemma 4.2, the value of v3:2S isnot fully determined, so we �x v3:2S (:p) = 1. It is simpleto verify now that the valuation thus 
onstru
ted is su
hthat v3:2S ((p ^ :p) ! q) = 0, that is the logi
 does nottrivialize in the presen
e of in
onsisten
y.

Example 5 We now analyse the validity of Modus Po-nens in S3:2. The usual formulation of Modus Ponens,� ! �; � j=3:2S �, is valid in S3:2; indeed, if v3:2S satis-�es �, the only possible way that it also satis�es �! �is that it satis�es �, thus proving the entailment. Notethat sin
e no :-formula was involved, the reasoning istotally 
lassi
al.However, if we 
onsider the version of Modus Ponens
onsisting of the translation of � ! � into :� _ � (theonly possible version of Modus Ponens in [S
haerf andCadoli, 1995℄), the situation 
hanges 
ompletely if � 62 S,for then we 
an have a valuation that satis�es both �and :� (and thus :� _ �), but that falsi�es �, so that:� _ �; � 6j=3:2S �.5 KE-Tableaux for S3We develop an inferen
e system for the full logi
 S3 basedon the KE-tableau methodology. KE-tableaux were in-trodu
ed by D'Agostino [D'Agostino, 1992℄ as a prin-
ipled 
omputational improvement over Smullyan's Se-manti
 Tableaux [Smullyan, 1968℄, and have sin
e beensu

essfully applied to a variety of logi
s [D'Agostinoand Gabbay, 1994; Broda and Finger, 1995; Broda etal., 1999℄.KE-tableaux deal with T - and F -signed formulas. Soif � is a formula, T � and F � are signed formulas. T �is the 
onjugate formula of F �, and vi
e versa. Anexpansion of a tableau is allowed when the premises ofan expansion rule are present in a bran
h; the expansion
onsists of adding the 
on
lusions of the rule to the endof all bran
hes passing through the set of all premises ofthat rule.For ea
h 
onne
tive, there are at least one T - and oneF -linear expansion rules. Linear expansion rules alwayshave a main premise, and may also have an auxiliarypremise. They may have one or two 
onsequen
es. Theonly bran
hing rule is the Prin
iple of Bivalen
e, statingthat something 
annot be true and false at the sametime. Figure 1 shows KE-tableau expansion rules for
lassi
al logi
.In Figure 1 we see that ea
h of the binary 
onne
tives!;^ and _ are asso
iated to two two-premised rules andone one-premised rule. The two-premised rules have amain ante
edent and an auxiliary ante
edent ; the one-premised rules have two 
onsequen
es. Classi
al nega-tion is asso
iated to two one premised rules, ea
h witha single 
on
lusion. The �nal line presents the Prin
ipleof Bivalen
e (PB), stating that any formula � is eithertrue of false. The appli
ation of PB transforms a singlebran
h into two bran
hes with the same pre�x, di�eringonly by the �nal formula, ea
h new bran
h getting oneof the two 
onjugates.PB is used a

ording to a bran
hing rule: PB is used togenerate the auxiliary premise for a two-premised rule;this guarantees that PB is only used over subformulasof some 
omplex formula o

urring in the tableau. Thisalso guarantees the subformula property, i.e. an expan-sion always introdu
es in the tableau a subformula of



T �! �T �T � (T !1) T �! �F �F � (T !2) F �! �T �F � (F !)F � ^ �T �F � (F^1) F � ^ �T �F � (F^2) T � ^ �T �T � (T^)T � _ �F �T � (T_1) T � _ �F �T � (T_2) F � _ �F �F � (F_)T :�F � (T:) F :�T � (F:)T � F � (PB)Figure 1: KE-rules for 
lassi
al logi
some previously o

urring formula.As in semanti
 tableaux, to show that �1; : : : ; �n ` �we start with the initial tableauT �1...T �nF �and develop the tableau by applying the expansion rulesin Figure 1. A bran
h is 
losed if it 
ontains both F �and T �, for some formula �. The sequent above isshown if we 
an 
lose all bran
hes in the tableau, inwhi
h 
ase the tableau is said to be 
losed.Example 6 We know that 
lassi
ally, � ! � is equiv-alent to :� _ �. This is shown by means of the twoKE-tableaux in Figure 2, where the boxed formulas in-di
ate the 
losure of 
ondition for ea
h bran
h. The lefttableau shows � ! � ` :� _ � and the right one shows:� _ � ` �! �.1: T �! �2: F :� _ �3: F :� from 24: F � from 25: T � from 36: T � from 1,5�
1: T :� _ �2: F �! �3: T � from 24: F � from 25: T :� from 1,46: F � from 5�Figure 2: The 
lassi
al equivalen
e of �! � and :�_�Note that both tableaux would bran
h in a semanti
tableau version of this proof. The fa
t that KE-tableauxdo not bran
h is an indi
ation that they are more eÆ
ient

than traditional semanti
 tableaux. In fa
t, KE-tableaux
an p-simulate semanti
 tableaux, but the 
onverse is nottrue [D'Agostino, 1992℄.Example 7 To show the use of PB, we present a KE-tableau now showing that ::� _ ::�;:� ` �.T ::� _ ::�T :�F �F �T ::� F ::�F :� T ::�� F :�T ��After expanding T :�, no more linear expansion rulesare appli
able, so we bran
h over ::� in T ::� _ ::�a

ording to the bran
hing rule, so that the negativebran
h on the right 
an be used as an auxiliary premiseto T ::�_::� generating T ::�. On the left bran
h,a single expansion of T ::� leads us to F :�, whi
h
loses that bran
h and the tableau.5.1 Tableaux for S3In order to 
onstru
t a KE-tableau system for S3, wekeep almost all the 
lassi
al rules, 
hanging only the rule(T :), by adding a side 
ondition. The old rule (T :) isremoved and its S3 version be
omes:T :�F � provided that � 2 SThe meaning of this rule is that the expansion of abran
h is only allowed if it 
ontains the rule's ante
edentand the proviso is satis�ed, that is, the formula in ques-tion belongs to S. This rule is a
tually a restri
tion ofthe 
lassi
al rule, stating that if � 62 S the (T :)-rule
annot be applied. Let us 
all the system thus obtainedKES3.This makes our system immediately sub
lassi
al, forany tableau that 
loses for KES3 also 
loses for 
lassi-
al logi
. So any theorems we prove in KES3 are also
lassi
al theorems. The 
onverse is not the 
ase, as theexamples below will show that there are 
lassi
al theo-rems whi
h are not KES3-theorems.So KES3 is 
orre
t and in
omplete with respe
t to
lassi
al logi
. The a
tual proof of 
orre
tness and 
om-pleteness of KES3 with respe
t to the semanti
s pre-sented in Se
tion 4 will be presented in Se
tion 7. First,let us examine a few examples.Example 8 We �rst show that! is no longer de�nablein terms of _ and ^, by redoing the tableaux of Figure 2in Figure 3.In Figure 3 we are assuming that S = ?. Note thatthe left tableau for � ! � ` :� _ � is exa
tly the sameas for 
lassi
al logi
.



1: T �! �2: F :� _ �3: F :� from 24: F � from 25: T � from 36: T � from 1,5�
1: T :� _ �2: F �! �3: T � from 24: F � from 25: T :� from 1,4?Figure 3: ! is not de�nable in terms of _ and : in KES3However, the tableau on the right for :�_ � ` �! �
annot be 
losed for the rule on T :� 
annot be appliedfor � 62 S. We get stu
k, as there are no further rulesto be applied, meaning that the input sequent is notprovable.This shows that ! 
an no longer be de�ned in termsof _ and : in S3.One important feature of the open tableau in Figure 3is that if, at the point that it gets stu
k, we insert thepropositional letters of � in the set S, the tableau ex-pansion 
an pro
eed as in 
lassi
al logi
. In fa
t, thetableau then 
loses after a single step. This shows thatthe sequent :� _ � ` � ! � is dedu
ible if � 2 S (andnothing needs to be said about �).What we have a
tually done is to 
hange the logi
 weare operating with during the KE-tableau expansion byadding a formula to S. That formula was 
hosen so thata stu
k tableau 
ould pro
eed 
lassi
ally. This a
tuallymakes us move one step 
loser to 
lassi
al logi
. Classi
allogi
 is rea
hed when all atoms are in S.This simple pro
edure suggests an in
remental way ofdoing approximate theorem proving.6 The In
rementality of the MethodThe idea of approximate reasoning found in [S
haerf andCadoli, 1995℄ 
onsists in trying to prove a 
lassi
al for-mula in S3 for in
reasingly large sets S. Apart from 
on-sidering an !-free fragment, the work in [S
haerf andCadoli, 1995℄ did not provide a way of 
hoosing S orhow to in
rement it. Our theorem proving method fora given input sequent is intended to �ll this gap. It issummarized in the following:1. S := ?.2. Transform the input sequent in an initial KES3-tableau.3. Expand the tableau until it is 
losed or stu
k.4. If the tableau is 
losed, terminate with su

ess.5. If the tableau 
ontains a bran
h that 
annot be 
las-si
ally expanded, terminate with failure.6. If the tableau is stu
k due to a formula T:�, makeS := S [ f�g and go ba
k to 3.By S := S [ f�g we mean that all atoms in � areadded to S. It is 
lear that if an atom does not appear

inside the s
ope of a negation, it will not be inserted inS. However, that does not mean that if it appears insidea negation it will end up in S, as the tableau for ` p_:pshows: F p _ :pF pF :pT p�whi
h shows that ` p _ :p is S3-valid for S = ?.Note that in step 6 above, there may be more thenone stu
k point in the tableau, so we need to 
hoseone formula to pro
eed. If there are two stu
k formu-las in the same bran
h of the tableau, the 
ontents of Smay di�er a

ording to the 
hoi
e of formula we makeat step 6. This is illustrated by the following tableau forp ^ q ` ::p _ ::q: T p ^ qF ::p _ ::qT pT qF ::pF ::qT :pT :qAt this point we have both T :p and T :q blo
king thebran
h development. If we 
hose the �rst one, S be
omesfpg and the tableau 
loses; if we 
hose the se
ond one,S be
omes fqg and the tableau also 
loses.An interesting fa
t is that we 
an only prove :(p^:p)in KES3 for p 2 S, whi
h shows the para
onsisten
y ofthe system: F :(p ^ :p)T p ^ :pT pT :pF p if p 2 S�We now show the 
orre
tness of the proposed in
re-mental method.Theorem 6.1 (Corre
tness of the Method) Givenan input sequent �1; : : : ; �n ` � then the method abovealways terminates. It terminates with su

ess i� thesequent is 
lassi
ally valid.Proof: Note that the set S 
an only in
rease at ea
h
y
le, so if the tableau does not 
lose, S will eventually
ontain all propositional symbols in the input sequentthat o

ur within a T -marked negation, in whi
h 
asethe tableau will be a 
lassi
al one; by the terminationproperty of KE-tableaux, it will terminate. Be
ause any
losing KES3 tableau also 
lassi
ally 
loses, a su

essfulterminating tableau must be 
lassi
ally valid. On theother hand, if a sequent is 
lassi
ally valid, it's 
orre-sponding KES3-tableau, when it be
omes 
lassi
al, willeventually 
lose. �



Example 9 The following example illustrates the use ofthe system KES3. Consider the problem of Example 1,where we want to know whether :
ow _ molar-teethfollows from a set of 
lauses B. We start by labellingthe initial 
lauses with T (lines 1-8) and the formulawe want to refute with F (line 9). Figure 4 shows the
omplete tableau (g-e stands for grass-eater, 
-t for
anine-teeth, and m-t for molar-teeth).B = f:
ow _ grass-eater,:dog_ 
arnivore,:grass-eater _ :
anine-teeth,:
arnivore _ mammal,:mammal _ 
anine-teeth _ molar-teeth,:grass-eater _ mammal,:mammal _ vertebrate,:vertebrate _ animalg.1: T :
ow _ g-e2: T :dog_ 
arnivore3: T :g-e _ :
-t4: T :
arnivore _ mammal5: T :mammal _ 
-t _ m-t6: T :g-e _ mammal7: T :mammal _ vertebrate8: T :vertebrate _ animal9: F :
ow _ m-t10: F :
ow from 911: F m-t from 912: T g-e from 1,1013: F :g-e 130: T :g-e PB14: T :
-t from 3,13 140 F g-e g-e 2 S15: T mammal from 6,13 150 �16: T :mammal _ 
-t from 5,1117: F 
-t from 14; 
-t 2 S18: T :mammal from 16,1719: F mammal from 18; mammal 2 S20: � Figure 4: KES3 tableau for 
lausesWe start with S = ?. When we get to line 14', weneed to add grass-eater to S in order to 
lose the rightbran
h. We 
an then pro
eed applying rules until line17, where one more atom, 
anine-teeth, must be addedto S. What happens is that the tableau does not 
loseif these atoms are not in S. During the development ofthe tableau we get 
lues about whi
h atoms must be inS. When the atom mammal is added to S, the tableau
loses and we have that B j=3S:
ow _ molar-teeth forS= fgrass-eater, 
anine-teeth, mammalg.Example 10 This example shows that formulas thatare 
lassi
ally equivalent may have di�erent behaviourunder S3. We transform the set B from Example 1 intoa set B0 whi
h is 
lassi
ally equivalent to B but is not in
lausal form. Then we try to 
he
k whether B0 j=3S
ow

! molar-teeth. Figure 5 shows the 
omplete tableau.Note that this time, we 
an 
lose the tableau addingonly one atom to S, i.e., B0 j=3S
ow ! molar-teeth forS=f
anine-teethg.B0 = f
ow ! grass-eater,dog! 
arnivore,grass-eater ! :
anine-teeth,
arnivore ! mammal,mammal ! 
anine-teeth _ molar-teeth,grass-eater ! mammal,mammal ! vertebrate,vertebrate ! animalg.1: T 
ow ! g-e2: T dog! 
arnivore3: T g-e ! :
-t4: T 
arnivore ! mammal5: T mammal ! 
-t _ m-t6: T g-e ! mammal7: T mammal ! vertebrate8: T vertebrate ! animal9: F 
ow ! m-t10: T 
ow from 911: F m-t from 912: T g-e from 1,1013: T :
-t from 3,1214: T mammal from 6,1215: T 
-t _ m-t from 5,1416: T 
-t from 11,1517: F 
-t from 13; 
-t 2 S18: �Figure 5: KES3 tableau with impli
ation7 Soundness and 
ompleteness of KES3It is very important to note that we are not proposinga simple ad ho
 modi�
ation of a KE-tableau for do-ing theorem proving, but we are building a me
hanismfor approximate reasoning with a solid logi
al basis. Tosustain su
h a 
laim, we have to prove the soundnessand 
ompleteness of the KES3 tableau method of Se
-tion 5 with respe
t to the S3:2 two-valued semanti
s ofSe
tion 4.First, we need to de�ne the notions of soundness and
ompleteness. So KES3 is sound with respe
t to theS3:2 semanti
s if whenever a tableau 
loses for an inputsequent, then the sequent's ante
edent formulas entailits 
onsequent in S3:2. Conversely, the KES3-tableaumethod is 
omplete with respe
t to the S3:2 semanti
s iffor all sequents su
h that the the ante
edent entails the
onsequent in S3:2, all KES3-tableaux 
lose.We extend the valuation to signed formulas in the ob-vious way, that is, v3:2S (T�) = 1 i� v3:2S (�) = 1 andv3:2S (F�) = 1 i� v3:2S (�) = 0. A valuation satisfy abran
h in a tableau if it simultaneously satisfy all thesigned formulas in the bran
h.



7.1 SoundnessTo prove soundness, we �rst show the 
orre
tness of alllinear expansion rules of KES3.Lemma 7.1 If the ante
edents of the KES3 linear ex-pansion rules are S-satis�ed in S3 by v3:2S so are its 
on-
lusions.Proof: A simple inspe
tion of the rules in Figure 1with the modi�
ation in (T :) for KES3 shows the result.�We now show that the bran
hing rule PB also preservesatis�ability.Lemma 7.2 If a bran
h is satis�ed by a valuation v3:2Sprior to the appli
ation of PB, then at least one of thetwo bran
hes generated is satis�ed by a valuation v3:2Safter the appli
ation of PB.Proof: Suppose the bran
hing o

urs over the for-mula �. Be
ause v3:2S is a fun
tion onto f0; 1g, we havethat v3:2S (T �) = 1 or v3:2S (F �) = 1, so v3:2S satis�es oneof the two bran
hes generated by the appli
ation of PB.�Theorem 7.3 (Soundness) Suppose a tableau for�1; : : : ; �n ` � 
loses. Then �1; : : : ; �n j=3:2S �.Proof: We show the 
ontrapositive. So suppose�1; : : : ; �n 6j=3:2S �, so there is a valuation v3:2S su
h thatv3:2S (�1) = : : : = v3:2S (�1) = 1 and v3:2S (�) = 0. In this
ase, the initial tableau for �1; : : : ; �n ` � is su
h thatall formulas T �1; : : : ; T �n; F � are satis�ed by v3:2S .By Lemmas 7.1 and 7.2, we see that ea
h appli
ationof an expansion rule preserves at least one satis�ablebran
h. As 
losed bran
hes are not satis�able, at leastone bran
h remains open and the tableau 
annot 
lose.�7.2 CompletenessWe say that a bran
h of a tableau is 
omplete if thereare no more appli
able expansion rules.Lemma 7.4 An open 
omplete bran
h in a KES3-tableau is S-satis�able in S3:2.Proof: Given an open 
omplete bran
h B, we 
on-stru
t the following valuation v3:2S , based on the propo-sitional and negated formulas in B:v3:2S (p) = 1 i� T p 2 Bv3:2S (p) = 0 i� F p 2 Bv3:2S (:�) = 1 i� T :� 2 B; and� 62 SSin
e the tableau is open, we do not have that for thesame atom q, both T q and F q are in B, so the valu-ation above is a partial fun
tion. To obtain a 
ompletefun
tion, a

ording to Lemma 4.2, we need to de�ne thevalue of v3:2S for propositions and formulas of the form:� not o

urring in B; in fa
t, the value of v3:2S for su
hformulas 
an be any, but to be deterministi
 let us makethem all false.A simple stru
tural indu
tion on the signed formulasin B shows that v3:2S satis�es the bran
h. �

Theorem 7.5 (Completeness) If �1; : : : ; �n j=3:2S �then any possible KES3 tableau for �1; : : : ; �n ` � 
loses.Proof: Suppose for 
ontradi
tion that there is atableau for �1; : : : ; �n ` � with an open 
omplete bran
hB. Then by Lemma 7.4 there is a S3:2 valuation thatsatis�es B, whi
h in
ludes T �1; : : : ; T �n; F �, 
ontra-di
ting �1; : : : ; �n j=3:2S �. �8 Dis
ussionWe have extended Cadoli and S
haerf's ApproximateEntailment to full propositional logi
, providing a se-manti
s, and a sound and 
omplete proof method.The proof method is an adaptation of a tableaux sys-tem whi
h was shown to be 
omputationally more eÆ-
ient than semanti
 tableaux. The method is in
remen-tal: the tableau is built for a given 
ontext set S andwhen new atoms are added to S we 
an 
ontinue fromwhere we stopped. The 
onstru
tion of the tableauxmakes 
lear whi
h atoms must be added to S.A proof method based on tableaux for para
onsistentlogi
 has been proposed in [Carnielli and Lima-Marques,1992℄. The idea behind their system is very similar toours: the only di�eren
e from tableaux for 
lassi
al logi
is an extra 
ondition for the rules involving negation.However, as in the 
al
ulus C1 [da Costa, 1963℄, the 
on-dition that a formula behaves 
lassi
ally is part of thelanguage. As a result, the tableau 
onstru
tion some-times loops.Future work in
ludes studying the formal relation be-tween the extended version of S3 and da Costa's C1, the
omplexity of the proposed proof method, and a systemof tableaux for the extended version of S1.A
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