
Tableaux for Approximate ReasoningMarelo Finger and Renata Wassermannfmfinger,renatag�ime.usp.brDepartment of Computer SieneInstitute of Mathematis and StatistisUniversity of S~ao Paulo, BrazilAbstratIn this paper, we show that inonsistenyan be fruitfully used to approximate lassi-al theorem proving. We extend Cadoli andShaerf's Approximate Entailment, originallyde�ned only for formulas in lausal form, to fulllassial propositional logi. To this end, weprovide approximations to lassial logi via afamily of logis solidly based on formal seman-tis and a tableaux proof system. Soundnessand ompleteness are shown for the tableauxalulus with respet to the given semantis.The tableaux system is then shown to providea useful heuristis for the inremental approx-imation of lassial logi, a feature that waslaking in existing proposals for approximatereasoning.By means of suh inremental method, we anmove from one logi to the next one in the fam-ily, aiming to show a lassial theorem. Inre-mentality means that we an proeed with theproof in the latter logi from the point where itstopped in the former one, without doing anyreomputation.1 IntrodutionIt has been an e�ort of logiians for quite some timeto make inonsisteny respetable [Gabbay and Hunter,1991℄. The aim of suh line of researh was to showthat some inonsistent states may be tolerated withoutone ever having to resolve the inonsisteny. This paper,however, fouses in another way of making inonsistenyrespetable, namely by showing that inonsisteny anbe fruitfully used to approximate lassial theorem prov-ing. In fat, we are taking advantage of a fat frequentlypointed out in the literature, that to maintain a om-plete and onsistent piture of the world the world isomputationally expensive. We may ignore inonsisten-ies in irrelevant parts of the world while trying to provea lassial result.The high prie of theorem proving is well known. Logihas been used in several areas of Arti�ial Intelligene

as a tool for representing knowledge as well as a tool forproblem solving. One of the main ritiism to the useof logi as a tool for automati problem solving refers tothe omputational omplexity of logial problems. Evenif we restrit ourselves to lassial propositional logi,deiding whether a set of formulas logially implies aertain formula is an NP-omplete problem [Garey andJohnson, 1979℄.Cadoli and Shaerf have proposed the use of approx-imate entailment as a way of reahing at least partialresults when solving a problem ompletely would be tooexpensive [Shaerf and Cadoli, 1995℄. Their method on-sists in de�ning di�erent logis for whih satis�ability iseasier to ompute than lassial logi and treat these log-is as upper and lower bounds for the lassial problem.In [Shaerf and Cadoli, 1995℄, these approximate logisare de�ned by means of valuation semantis and algo-rithms for testing satis�ability. The language they use isrestrited to that of lauses, i.e., negation appears onlyin the sope of atoms and there is no impliation.The approximations are based on the idea of a on-text set S of atoms. The atoms in S are the only oneswhose onsisteny is taken into aount in the proess ofverifying whether a given formula is entailed by a set offormulas. As we inrease the size of the ontext set S, weget loser to lassial entailment, but the omputationalomplexity also inreases.In this paper, we generalize Cadoli and Shaerf'ssemantis to deal with full propositional logi. Thisgeneralization is needed, sine the usual translation offormulas into lausal form is not sound under Cadoliand Shaerf's non-standard semantis. We present atableaux system for the extended logi whih is soundand omplete with respet to the semanti. The mainfeature of our system is that the tableaux method givesa lear way of onstruting the ontext set S in orderto obtain the lassial answer. Our ontribution is thus,besides the generalization of approximate entailment, aonstrutive method for alulating the approximations.The paper proeeds as follows: in Setion 3, we brieydesribe Cadoli and Shaerf's approximate entailment.In Setion 4, we extend their semanti to full propo-sitional logi. In Setion 5, we present the tableauxmethod for the extended logi. In Setion 6, we illus-



trate the use of the tableaux and show some of theirproperties. In Setion 7 we proof soundness and om-pleteness of the method. Finally, in Setion 8, we disussthe method and point toward future work.2 PreliminariesLet P be a ountable set of propositional letters. Weonentrate on the lassial propositional language LCformed by the usual boolean onnetives ! (implia-tion), ^ (onjuntion), _ (disjuntion) and : (negation).Throughout the paper, we use lowerase Latin lettersto denote propositional letters, lowerase Greek letters todenote formulas, and upperase letters (Greek or Latin)to denote sets of formulas.Let S � P be a �nite set of propositional letters. Weabuse notation and write that, for any formula � 2 LC ,� 2 S if all its propositional letters are in S. A proposi-tional valuation vp is a funtion vp : P ! f0; 1g.3 Approximate EntailmentWe briey present here the notion of approximate en-tailment and summarize the main results obtained in[Shaerf and Cadoli, 1995℄.Shaerf and Cadoli de�ne two approximations of las-sial entailment: j=1S whih is omplete but not sound,and j=3S whih is sound and inomplete. These approx-imations are arried out over a set of atoms S � Pwhih determines their loseness to lassial entailment.In the trivial extreme of approximate entailment, i.e.,when S = P , lassial entailment is obtained. At theother extreme, when S = ?, j=1S holds for any two for-mulas (i.e., for all �,�, we have � j=1S �) and j=3S orre-sponds to Levesque's logi for expliit beliefs [Levesque,1984℄, whih bears a onnetion to relevane logis suhas those of Anderson and Belnap [Anderson and Belnap,1975℄.In an S1 assignment, if p 2 S, then p and :p are givenopposite truth values; if p 62 S, then p and :p both getthe value 0. In an S3 assignment, if p 2 S, then p and:p get opposite truth values, while if p 62 S, p and :p donot both get 0, but may both get 1. The names S1 andS3 ome from the possible truth assignments for literalsoutside S. If p 62 S, there is only one S1 assignment forp and :p, the one whih makes them both false. Thereare three possible S3 assignments, the two lassial ones,assigning p and :p opposite truth values, and an extraone, making them both true. The set of formulas forwhih we are testing entailments is assumed to be inlausal form. Satis�ability, entailment, and validity arede�ned in the usual way.The following examples illustrate the use of approxi-mate entailment. Sine j=3S is sound but inomplete, itan be used to approximate j=, i.e., if for some S we havethat B j=3S �, then B j= �. On the other hand, j=1S isunsound but omplete, and an be used for approximat-ing 6j=, i.e., if for some S we have that B 6j=1S �, thenB 6j= �.

Example 1 ([Shaerf and Cadoli, 1995℄) We wantto hek whether B j= �, where � = :ow _molar-teeth andB = f:ow _ grass-eater,:dog_ arnivore,:grass-eater _ :anine-teeth,:arnivore _ mammal,:mammal _ anine-teeth _ molar-teeth,:grass-eater _ mammal,:mammal _ vertebrate,:vertebrate _ animalg.For S = fgrass-eater, mammal, anine-teethg, wehave that B j=3S �, hene B j= �.Example 2 ([Shaerf and Cadoli, 1995℄) We wantto hek whether B 6j= �, where �=:hild _ pensionerandB = f:person _ hild _ youngster __ adult _ senior,:pensioner _ senior,:youngster _ student _ worker,:senior _ pensioner _ worker,:adult _ student _ worker __ unemployed,:pensioner _ :student,:student _ hild _ youngster _ adult,:pensioner _ :workerg.For S = fhild, worker, pensionerg, we have thatB 6j=1S �, and hene B 6j= �.Note that in both examples above, S is a small part ofthe language. The approximation of lassial inferene ismade via a simpli�ation of the belief base B as follows(for a given onlusion � and ontext set S):Lemma 3.1 ([Shaerf and Cadoli, 1995℄) Letsimplify-1(B;S) be the result of deleting all literals of Bwhih mention atoms outside S. B is S1-satis�able ifand only if simplify-1(B;S) is lassially satis�able.Theorem 3.2 ([Shaerf and Cadoli, 1995℄)Let � be �S _ �S, where letters(�S) � S andletters(�S)\S = ?. Then B j=1S � i� B [ f:�Sg is notS1 satis�able.1This means that, in order to test whether B 6j=1S �, forevery literal of � of the form p, where p 2 S, we add thelause :p to B and for every literal of � of the form :p,where p 2 S, we add the lause p to B. Let B0 be thisexpanded set of lauses. We now must hek whetherB0 is S1 satis�able. Using Lemma 3.1, we an reduethis problem to testing the lassial satisfatibility of asimpli�ed set of lauses.Lemma 3.3 ([Shaerf and Cadoli, 1995℄) Letsimplify-3(B;S) be the result of deleting all lausesof B whih ontain an atom outside S. Then B is1This an only be done beause �S behaves lassiallyand we an ompute its negation in lausal form (as a set oflauses).



S3-satis�able if and only if simplify-3(B;S) is lassiallysatis�able.Theorem 3.4 ([Shaerf and Cadoli, 1995℄) Letletters(�) � S. Then B j=3S � i� B [ f:�g is not S3satis�able.As in the ase of S1, Lemma 3.3 and Theorem3.4 together provide a onstruive method for testingS3 entailment. Consider the Example 1, where S =fgrass-eater, mammal, anine-teethg and we want totest whether B j=3S:ow _ molar-teeth. In order touse Theorem 3.4 we must add ow and molar-teeth toS, then add the lauses ow and :molar-teeth to B.We an then use Lemma 3.3 to simplify the expandedbase, obtaining:B0 = f:ow _ grass-eater,:grass-eater _ :anine-teeth,:mammal _ anine-teeth _ molar-teeth,:grass-eater _ mammal,ow, : molar-teethgThis set is lassially unsatis�able, thus, B j=3S:ow_ molar-teeth.Shaerf and Cadoli then obtain the following results forapproximate inferene:Theorem 3.5 ([Shaerf and Cadoli, 1995℄) Thereexists an algorithm for deiding if B j=3S � and deidingB j=1S � whih runs in O(jBj:j�j:2jSj) time.The result above depends on a polynomial time satis�-ability algorithm for belief bases and formulas in lausalform alone. This result has been extended in [Cadoli andShaerf, 1995℄ for formulas in negation normal form, butis not extendable to formulas in arbitrary forms [Cadoliand Shaerf, 1996℄.The good point of Shaerf and Cadoli's systems is thatthey present an inremental algorithm to test for Si en-tailment as new elements are added to S. But there aretwo major limitations in their results:1. The system is restrited to !-free formulas and innegation normal form. In [Chopra et al., 2000℄ it isnoted that the standard translation of formulas intolausal form does not preserve truth-values underthe non-standard semanti of S3.2. The set S must be guessed at eah step of the ap-proximation; no method is given for the atoms to beadded to S. Some heuristis for a spei� applia-tion are presented in [ten Teije and van Harmelen,1997℄, but nothing is said about the general ase.In this paper, we will onentrate on S3 entailment.In the following setions we will extend S3 to full propo-sitional logi, present a proof method for the extendedsystem and show how this proof method helps us to in-rementally onstrut the set S.

4 SemantisIn this setion, we extend S3 to full propositional logi.We present a binary semantis for the full fragment ofS3, for that reason we all it an S3:2 semantis 2.The two-valued semantis for S3 is based on a propo-sitional valuation, as de�ned below.De�nition 4.1 An S3:2-valuation v3:2S is a funtion,v3:2S : LC ! f0; 1g, that extends a propositional valu-ation vp (i.e., v3:2S (p) = vp(p)), satisfying the followingrestritions:(i) v3:2S (� ^ �) = 1 , v3:2S (�) = v3:2S (�) = 1(ii) v3:2S (� _ �) = 0 , v3:2S (�) = v3:2S (�) = 0(iii) v3:2S (�! �) = 0 , v3:2S (�) = 1 andv3:2S (�) = 0(iv) v3:2S (:�) = 0 ) v3:2S (�) = 1(v) v3:2S (:�) = 1; � 2 S ) v3:2S (�) = 0Rules (i){(iii) are exatly those of lassial logi.Rules (iv) and (v) restrit the semantis of negation:rule (iv) states that if v3:2S (:�) = 0, then negation be-haves lassially and fores v3:2S (�) = 1; rule (v) statesthat if v3:2S (:�) = 1, negation must behave lassiallyonly if � 2 S. Formulas outside S may behave lassi-ally or paraonsistently, i.e., both the formula and itsnegation may be assigned the truth value 1.Note that an S3:2-valuation is not uniquely de�ned bythe propositional valuation it extends. This is due to thefat that if � 62 S and v3:2S (�) = 1, the value of v3:2S (:�)an be either 0 (in whih ase � has a lassial behaviour)or 1 (in whih ase � behaves paraonsistently).Lemma 4.2 The valuation v3:2S is determined by itsvalue on the set P [ f:�j� 62 Sg.Proof: For the onnetives ^, _ and !, it is im-mediate that the value of v3:2S is determined by thatof the subformulas. If v3:2S (�) = 0, then by rule (iv)v3:2S (:�) = 1. If � 2 S the value of v3:2S (:�) is the oppo-site of that of v3:2S (�). We are left only with the formulasin P [ f:�j� 62 Sg to determine v3:2S . �We de�ne a formula � to be S-valid in S3:2 if v3:2S (�) =1 for any S3:2-valuation. A formula is S-satis�able inS3:2 if there is one v3:2S suh that v3:2S (�) = 1. The S3:2-entailment relationship between a set of formulas � anda formula � is represented as� j=3:2S �and holds if every valuation v3:2S that simultaneously sat-is�es all formulas in � also satis�es �. A formula is S-valid if it is entailed by ?, represented as j=3:2S �.Lemma 4.2 suggests a translation between a formulain S3 and one in lassial logi, suh that every formula2A three-valued semantis, alled S3:3 semantis, an beprovided to over the !-free fragment; in suh a fragment,S3:2 and S3:3 oinide.



of the form :� with � 62 S is mapped into a new propo-sitional symbol p:�. Let ��S be the translation of �,de�ned as: p�S = p(� Æ �)�S = ��S Æ ��S ; Æ 2 f^;_;!g(:�)�S = � :(��S); � 2 Sp:� ; � 62 SLemma 4.3 A formula � is S-satis�able in S3:2 i�(:�)�S is lassially satis�ableLemma 4.4 Let Prop(�) represent the propositionalsymbols in �. Every formula � with Prop(�)\S = ? issatis�able in S3:2.Proof: Sine Prop(�)\S = ?, the translation (�)�Sleads us into the :-free fragment of lassial logi (with-out falsity, ?), and any formula is suh fragment is sat-is�able (just make all atoms 1), so Lemma 4.3 makes �satis�able in S3:2. �Note that for Cadoli and Shaerf's S3, the onditionProp(�) 6� S is suÆient, sine they only deal withlauses. If any literal of a lause is not in S, it anbe assigned the value 1, making the whole lause (a dis-juntion of literals) satis�able.Lemma 4.5 S3:2-validity is sublassial. That is, anyS-valid formula in S3:2 is lassially valid, for any S.Proof: It suÆes to notie that any lassial valua-tion satis�es the S3:2-restritions for any S. Therefore,the set of all lassial valuations is ontained in the setof all S3:2-valuations (but there are S3:2-valuations thatare not lassi). So if a formula is satis�ed by all S3:2-valuations, it will be satis�ed by all lassial ones. �The dedution theorem holds for the S3:2 semantis,as an be seen diretly from the de�nitions.Lemma 4.6 (Dedution Theorem) Let � be a �niteset of formulas. Then� j=3:2S � i� j=3:2S ^�! �:Now we examine a few examples of S3:2 entailment.Example 3 Consider the formula �_:�. We show thatit is a valid formula in S3:2 for any S.Indeed, if � 2 S, we are in a lassial setting, so anyvaluation makes � _ :� true.If � 62 S, let v3:2S be a valuation. If v3:2S (:�) = 1, then�_:� learly is true. If, however, v3:2S (:�) = 0, by rule(iv) above v3:2S (�) = 1, so � _ :� is also true.Example 4 We now show that the S3:2 semantis isparaonsistent. For that, onsider the two propositionsp and q and suppose that p 62 S; take a valuation v3:2Ssuh that v3:2S (p) = 1 and v3:2S (q) = 0, and onsider theformula (p^:p)! q. By Lemma 4.2, the value of v3:2S isnot fully determined, so we �x v3:2S (:p) = 1. It is simpleto verify now that the valuation thus onstruted is suhthat v3:2S ((p ^ :p) ! q) = 0, that is the logi does nottrivialize in the presene of inonsisteny.

Example 5 We now analyse the validity of Modus Po-nens in S3:2. The usual formulation of Modus Ponens,� ! �; � j=3:2S �, is valid in S3:2; indeed, if v3:2S satis-�es �, the only possible way that it also satis�es �! �is that it satis�es �, thus proving the entailment. Notethat sine no :-formula was involved, the reasoning istotally lassial.However, if we onsider the version of Modus Ponensonsisting of the translation of � ! � into :� _ � (theonly possible version of Modus Ponens in [Shaerf andCadoli, 1995℄), the situation hanges ompletely if � 62 S,for then we an have a valuation that satis�es both �and :� (and thus :� _ �), but that falsi�es �, so that:� _ �; � 6j=3:2S �.5 KE-Tableaux for S3We develop an inferene system for the full logi S3 basedon the KE-tableau methodology. KE-tableaux were in-trodued by D'Agostino [D'Agostino, 1992℄ as a prin-ipled omputational improvement over Smullyan's Se-manti Tableaux [Smullyan, 1968℄, and have sine beensuessfully applied to a variety of logis [D'Agostinoand Gabbay, 1994; Broda and Finger, 1995; Broda etal., 1999℄.KE-tableaux deal with T - and F -signed formulas. Soif � is a formula, T � and F � are signed formulas. T �is the onjugate formula of F �, and vie versa. Anexpansion of a tableau is allowed when the premises ofan expansion rule are present in a branh; the expansiononsists of adding the onlusions of the rule to the endof all branhes passing through the set of all premises ofthat rule.For eah onnetive, there are at least one T - and oneF -linear expansion rules. Linear expansion rules alwayshave a main premise, and may also have an auxiliarypremise. They may have one or two onsequenes. Theonly branhing rule is the Priniple of Bivalene, statingthat something annot be true and false at the sametime. Figure 1 shows KE-tableau expansion rules forlassial logi.In Figure 1 we see that eah of the binary onnetives!;^ and _ are assoiated to two two-premised rules andone one-premised rule. The two-premised rules have amain anteedent and an auxiliary anteedent ; the one-premised rules have two onsequenes. Classial nega-tion is assoiated to two one premised rules, eah witha single onlusion. The �nal line presents the Prinipleof Bivalene (PB), stating that any formula � is eithertrue of false. The appliation of PB transforms a singlebranh into two branhes with the same pre�x, di�eringonly by the �nal formula, eah new branh getting oneof the two onjugates.PB is used aording to a branhing rule: PB is used togenerate the auxiliary premise for a two-premised rule;this guarantees that PB is only used over subformulasof some omplex formula ourring in the tableau. Thisalso guarantees the subformula property, i.e. an expan-sion always introdues in the tableau a subformula of



T �! �T �T � (T !1) T �! �F �F � (T !2) F �! �T �F � (F !)F � ^ �T �F � (F^1) F � ^ �T �F � (F^2) T � ^ �T �T � (T^)T � _ �F �T � (T_1) T � _ �F �T � (T_2) F � _ �F �F � (F_)T :�F � (T:) F :�T � (F:)T � F � (PB)Figure 1: KE-rules for lassial logisome previously ourring formula.As in semanti tableaux, to show that �1; : : : ; �n ` �we start with the initial tableauT �1...T �nF �and develop the tableau by applying the expansion rulesin Figure 1. A branh is losed if it ontains both F �and T �, for some formula �. The sequent above isshown if we an lose all branhes in the tableau, inwhih ase the tableau is said to be losed.Example 6 We know that lassially, � ! � is equiv-alent to :� _ �. This is shown by means of the twoKE-tableaux in Figure 2, where the boxed formulas in-diate the losure of ondition for eah branh. The lefttableau shows � ! � ` :� _ � and the right one shows:� _ � ` �! �.1: T �! �2: F :� _ �3: F :� from 24: F � from 25: T � from 36: T � from 1,5�
1: T :� _ �2: F �! �3: T � from 24: F � from 25: T :� from 1,46: F � from 5�Figure 2: The lassial equivalene of �! � and :�_�Note that both tableaux would branh in a semantitableau version of this proof. The fat that KE-tableauxdo not branh is an indiation that they are more eÆient

than traditional semanti tableaux. In fat, KE-tableauxan p-simulate semanti tableaux, but the onverse is nottrue [D'Agostino, 1992℄.Example 7 To show the use of PB, we present a KE-tableau now showing that ::� _ ::�;:� ` �.T ::� _ ::�T :�F �F �T ::� F ::�F :� T ::�� F :�T ��After expanding T :�, no more linear expansion rulesare appliable, so we branh over ::� in T ::� _ ::�aording to the branhing rule, so that the negativebranh on the right an be used as an auxiliary premiseto T ::�_::� generating T ::�. On the left branh,a single expansion of T ::� leads us to F :�, whihloses that branh and the tableau.5.1 Tableaux for S3In order to onstrut a KE-tableau system for S3, wekeep almost all the lassial rules, hanging only the rule(T :), by adding a side ondition. The old rule (T :) isremoved and its S3 version beomes:T :�F � provided that � 2 SThe meaning of this rule is that the expansion of abranh is only allowed if it ontains the rule's anteedentand the proviso is satis�ed, that is, the formula in ques-tion belongs to S. This rule is atually a restrition ofthe lassial rule, stating that if � 62 S the (T :)-ruleannot be applied. Let us all the system thus obtainedKES3.This makes our system immediately sublassial, forany tableau that loses for KES3 also loses for lassi-al logi. So any theorems we prove in KES3 are alsolassial theorems. The onverse is not the ase, as theexamples below will show that there are lassial theo-rems whih are not KES3-theorems.So KES3 is orret and inomplete with respet tolassial logi. The atual proof of orretness and om-pleteness of KES3 with respet to the semantis pre-sented in Setion 4 will be presented in Setion 7. First,let us examine a few examples.Example 8 We �rst show that! is no longer de�nablein terms of _ and ^, by redoing the tableaux of Figure 2in Figure 3.In Figure 3 we are assuming that S = ?. Note thatthe left tableau for � ! � ` :� _ � is exatly the sameas for lassial logi.



1: T �! �2: F :� _ �3: F :� from 24: F � from 25: T � from 36: T � from 1,5�
1: T :� _ �2: F �! �3: T � from 24: F � from 25: T :� from 1,4?Figure 3: ! is not de�nable in terms of _ and : in KES3However, the tableau on the right for :�_ � ` �! �annot be losed for the rule on T :� annot be appliedfor � 62 S. We get stuk, as there are no further rulesto be applied, meaning that the input sequent is notprovable.This shows that ! an no longer be de�ned in termsof _ and : in S3.One important feature of the open tableau in Figure 3is that if, at the point that it gets stuk, we insert thepropositional letters of � in the set S, the tableau ex-pansion an proeed as in lassial logi. In fat, thetableau then loses after a single step. This shows thatthe sequent :� _ � ` � ! � is deduible if � 2 S (andnothing needs to be said about �).What we have atually done is to hange the logi weare operating with during the KE-tableau expansion byadding a formula to S. That formula was hosen so thata stuk tableau ould proeed lassially. This atuallymakes us move one step loser to lassial logi. Classiallogi is reahed when all atoms are in S.This simple proedure suggests an inremental way ofdoing approximate theorem proving.6 The Inrementality of the MethodThe idea of approximate reasoning found in [Shaerf andCadoli, 1995℄ onsists in trying to prove a lassial for-mula in S3 for inreasingly large sets S. Apart from on-sidering an !-free fragment, the work in [Shaerf andCadoli, 1995℄ did not provide a way of hoosing S orhow to inrement it. Our theorem proving method fora given input sequent is intended to �ll this gap. It issummarized in the following:1. S := ?.2. Transform the input sequent in an initial KES3-tableau.3. Expand the tableau until it is losed or stuk.4. If the tableau is losed, terminate with suess.5. If the tableau ontains a branh that annot be las-sially expanded, terminate with failure.6. If the tableau is stuk due to a formula T:�, makeS := S [ f�g and go bak to 3.By S := S [ f�g we mean that all atoms in � areadded to S. It is lear that if an atom does not appear

inside the sope of a negation, it will not be inserted inS. However, that does not mean that if it appears insidea negation it will end up in S, as the tableau for ` p_:pshows: F p _ :pF pF :pT p�whih shows that ` p _ :p is S3-valid for S = ?.Note that in step 6 above, there may be more thenone stuk point in the tableau, so we need to hoseone formula to proeed. If there are two stuk formu-las in the same branh of the tableau, the ontents of Smay di�er aording to the hoie of formula we makeat step 6. This is illustrated by the following tableau forp ^ q ` ::p _ ::q: T p ^ qF ::p _ ::qT pT qF ::pF ::qT :pT :qAt this point we have both T :p and T :q bloking thebranh development. If we hose the �rst one, S beomesfpg and the tableau loses; if we hose the seond one,S beomes fqg and the tableau also loses.An interesting fat is that we an only prove :(p^:p)in KES3 for p 2 S, whih shows the paraonsisteny ofthe system: F :(p ^ :p)T p ^ :pT pT :pF p if p 2 S�We now show the orretness of the proposed inre-mental method.Theorem 6.1 (Corretness of the Method) Givenan input sequent �1; : : : ; �n ` � then the method abovealways terminates. It terminates with suess i� thesequent is lassially valid.Proof: Note that the set S an only inrease at eahyle, so if the tableau does not lose, S will eventuallyontain all propositional symbols in the input sequentthat our within a T -marked negation, in whih asethe tableau will be a lassial one; by the terminationproperty of KE-tableaux, it will terminate. Beause anylosing KES3 tableau also lassially loses, a suessfulterminating tableau must be lassially valid. On theother hand, if a sequent is lassially valid, it's orre-sponding KES3-tableau, when it beomes lassial, willeventually lose. �



Example 9 The following example illustrates the use ofthe system KES3. Consider the problem of Example 1,where we want to know whether :ow _ molar-teethfollows from a set of lauses B. We start by labellingthe initial lauses with T (lines 1-8) and the formulawe want to refute with F (line 9). Figure 4 shows theomplete tableau (g-e stands for grass-eater, -t foranine-teeth, and m-t for molar-teeth).B = f:ow _ grass-eater,:dog_ arnivore,:grass-eater _ :anine-teeth,:arnivore _ mammal,:mammal _ anine-teeth _ molar-teeth,:grass-eater _ mammal,:mammal _ vertebrate,:vertebrate _ animalg.1: T :ow _ g-e2: T :dog_ arnivore3: T :g-e _ :-t4: T :arnivore _ mammal5: T :mammal _ -t _ m-t6: T :g-e _ mammal7: T :mammal _ vertebrate8: T :vertebrate _ animal9: F :ow _ m-t10: F :ow from 911: F m-t from 912: T g-e from 1,1013: F :g-e 130: T :g-e PB14: T :-t from 3,13 140 F g-e g-e 2 S15: T mammal from 6,13 150 �16: T :mammal _ -t from 5,1117: F -t from 14; -t 2 S18: T :mammal from 16,1719: F mammal from 18; mammal 2 S20: � Figure 4: KES3 tableau for lausesWe start with S = ?. When we get to line 14', weneed to add grass-eater to S in order to lose the rightbranh. We an then proeed applying rules until line17, where one more atom, anine-teeth, must be addedto S. What happens is that the tableau does not loseif these atoms are not in S. During the development ofthe tableau we get lues about whih atoms must be inS. When the atom mammal is added to S, the tableauloses and we have that B j=3S:ow _ molar-teeth forS= fgrass-eater, anine-teeth, mammalg.Example 10 This example shows that formulas thatare lassially equivalent may have di�erent behaviourunder S3. We transform the set B from Example 1 intoa set B0 whih is lassially equivalent to B but is not inlausal form. Then we try to hek whether B0 j=3Sow

! molar-teeth. Figure 5 shows the omplete tableau.Note that this time, we an lose the tableau addingonly one atom to S, i.e., B0 j=3Sow ! molar-teeth forS=fanine-teethg.B0 = fow ! grass-eater,dog! arnivore,grass-eater ! :anine-teeth,arnivore ! mammal,mammal ! anine-teeth _ molar-teeth,grass-eater ! mammal,mammal ! vertebrate,vertebrate ! animalg.1: T ow ! g-e2: T dog! arnivore3: T g-e ! :-t4: T arnivore ! mammal5: T mammal ! -t _ m-t6: T g-e ! mammal7: T mammal ! vertebrate8: T vertebrate ! animal9: F ow ! m-t10: T ow from 911: F m-t from 912: T g-e from 1,1013: T :-t from 3,1214: T mammal from 6,1215: T -t _ m-t from 5,1416: T -t from 11,1517: F -t from 13; -t 2 S18: �Figure 5: KES3 tableau with impliation7 Soundness and ompleteness of KES3It is very important to note that we are not proposinga simple ad ho modi�ation of a KE-tableau for do-ing theorem proving, but we are building a mehanismfor approximate reasoning with a solid logial basis. Tosustain suh a laim, we have to prove the soundnessand ompleteness of the KES3 tableau method of Se-tion 5 with respet to the S3:2 two-valued semantis ofSetion 4.First, we need to de�ne the notions of soundness andompleteness. So KES3 is sound with respet to theS3:2 semantis if whenever a tableau loses for an inputsequent, then the sequent's anteedent formulas entailits onsequent in S3:2. Conversely, the KES3-tableaumethod is omplete with respet to the S3:2 semantis iffor all sequents suh that the the anteedent entails theonsequent in S3:2, all KES3-tableaux lose.We extend the valuation to signed formulas in the ob-vious way, that is, v3:2S (T�) = 1 i� v3:2S (�) = 1 andv3:2S (F�) = 1 i� v3:2S (�) = 0. A valuation satisfy abranh in a tableau if it simultaneously satisfy all thesigned formulas in the branh.



7.1 SoundnessTo prove soundness, we �rst show the orretness of alllinear expansion rules of KES3.Lemma 7.1 If the anteedents of the KES3 linear ex-pansion rules are S-satis�ed in S3 by v3:2S so are its on-lusions.Proof: A simple inspetion of the rules in Figure 1with the modi�ation in (T :) for KES3 shows the result.�We now show that the branhing rule PB also preservesatis�ability.Lemma 7.2 If a branh is satis�ed by a valuation v3:2Sprior to the appliation of PB, then at least one of thetwo branhes generated is satis�ed by a valuation v3:2Safter the appliation of PB.Proof: Suppose the branhing ours over the for-mula �. Beause v3:2S is a funtion onto f0; 1g, we havethat v3:2S (T �) = 1 or v3:2S (F �) = 1, so v3:2S satis�es oneof the two branhes generated by the appliation of PB.�Theorem 7.3 (Soundness) Suppose a tableau for�1; : : : ; �n ` � loses. Then �1; : : : ; �n j=3:2S �.Proof: We show the ontrapositive. So suppose�1; : : : ; �n 6j=3:2S �, so there is a valuation v3:2S suh thatv3:2S (�1) = : : : = v3:2S (�1) = 1 and v3:2S (�) = 0. In thisase, the initial tableau for �1; : : : ; �n ` � is suh thatall formulas T �1; : : : ; T �n; F � are satis�ed by v3:2S .By Lemmas 7.1 and 7.2, we see that eah appliationof an expansion rule preserves at least one satis�ablebranh. As losed branhes are not satis�able, at leastone branh remains open and the tableau annot lose.�7.2 CompletenessWe say that a branh of a tableau is omplete if thereare no more appliable expansion rules.Lemma 7.4 An open omplete branh in a KES3-tableau is S-satis�able in S3:2.Proof: Given an open omplete branh B, we on-strut the following valuation v3:2S , based on the propo-sitional and negated formulas in B:v3:2S (p) = 1 i� T p 2 Bv3:2S (p) = 0 i� F p 2 Bv3:2S (:�) = 1 i� T :� 2 B; and� 62 SSine the tableau is open, we do not have that for thesame atom q, both T q and F q are in B, so the valu-ation above is a partial funtion. To obtain a ompletefuntion, aording to Lemma 4.2, we need to de�ne thevalue of v3:2S for propositions and formulas of the form:� not ourring in B; in fat, the value of v3:2S for suhformulas an be any, but to be deterministi let us makethem all false.A simple strutural indution on the signed formulasin B shows that v3:2S satis�es the branh. �

Theorem 7.5 (Completeness) If �1; : : : ; �n j=3:2S �then any possible KES3 tableau for �1; : : : ; �n ` � loses.Proof: Suppose for ontradition that there is atableau for �1; : : : ; �n ` � with an open omplete branhB. Then by Lemma 7.4 there is a S3:2 valuation thatsatis�es B, whih inludes T �1; : : : ; T �n; F �, ontra-diting �1; : : : ; �n j=3:2S �. �8 DisussionWe have extended Cadoli and Shaerf's ApproximateEntailment to full propositional logi, providing a se-mantis, and a sound and omplete proof method.The proof method is an adaptation of a tableaux sys-tem whih was shown to be omputationally more eÆ-ient than semanti tableaux. The method is inremen-tal: the tableau is built for a given ontext set S andwhen new atoms are added to S we an ontinue fromwhere we stopped. The onstrution of the tableauxmakes lear whih atoms must be added to S.A proof method based on tableaux for paraonsistentlogi has been proposed in [Carnielli and Lima-Marques,1992℄. The idea behind their system is very similar toours: the only di�erene from tableaux for lassial logiis an extra ondition for the rules involving negation.However, as in the alulus C1 [da Costa, 1963℄, the on-dition that a formula behaves lassially is part of thelanguage. As a result, the tableau onstrution some-times loops.Future work inludes studying the formal relation be-tween the extended version of S3 and da Costa's C1, theomplexity of the proposed proof method, and a systemof tableaux for the extended version of S1.Aknowledgments: Marelo Finger is partly sup-ported by the Brazilian Researh Counil (CNPq), grantPQ 300597/95-5. Renata Wassermann was supported byFAPESP through grant 99/11602-6. This work was de-veloped under the CNPq projet APQ 468765/00-0.Referenes[Anderson and Belnap, 1975℄ A.R Anderson and N.DBelnap. Entailment: The Logi of Relevane and Ne-essity, Vol. 1. Prineton University Press, 1975.[Broda and Finger, 1995℄ K. Broda and M. Finger. KE-tableaux for a fragment of linear logi. In Proeed-ings of the 4th International Workshop on AnalytiTableaux and Related Methods, Koblenz, May 1995.[Broda et al., 1999℄ K. Broda, M. Finger, and A. Russo.Labelled natural dedution for substrutural logis.Logi Journal of the IGPL, 7(3):283{318, 1999.[Cadoli and Shaerf, 1995℄ Maro Cadoli and MaroShaerf. Approximate inferene in default logi andirumsription. Fundamenta Informatiae, 23:123{143, 1995.[Cadoli and Shaerf, 1996℄ Maro Cadoli and MaroShaerf. The omplexity of entailment in propositional
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