Tableaux for Approximate Reasoning

Marcelo Finger and Renata Wassermann
{mfinger,renata}@ime.usp.br
Department of Computer Science
Institute of Mathematics and Statistics
University of Sao Paulo, Brazil

Abstract

In this paper, we show that inconsistency
can be fruitfully used to approximate classi-
cal theorem proving. We extend Cadoli and
Schaerf’s Approximate Entailment, originally
defined only for formulas in clausal form, to full
classical propositional logic. To this end, we
provide approximations to classical logic via a
family of logics solidly based on formal seman-
tics and a tableaux proof system. Soundness
and completeness are shown for the tableaux
calculus with respect to the given semantics.

The tableaux system is then shown to provide
a useful heuristics for the incremental approx-
imation of classical logic, a feature that was
lacking in existing proposals for approximate
reasoning.

By means of such incremental method, we can
move from one logic to the next one in the fam-
ily, aiming to show a classical theorem. Incre-
mentality means that we can proceed with the
proof in the latter logic from the point where it
stopped in the former one, without doing any
recomputation.

1 Introduction

It has been an effort of logicians for quite some time
to make inconsistency respectable [Gabbay and Hunter,
1991]. The aim of such line of research was to show
that some inconsistent states may be tolerated without
one ever having to resolve the inconsistency. This paper,
however, focuses in another way of making inconsistency
respectable, namely by showing that inconsistency can
be fruitfully used to approximate classical theorem prov-
ing. In fact, we are taking advantage of a fact frequently
pointed out in the literature, that to maintain a com-
plete and consistent picture of the world the world is
computationally expensive. We may ignore inconsisten-
cies in irrelevant parts of the world while trying to prove
a classical result.

The high price of theorem proving is well known. Logic
has been used in several areas of Artificial Intelligence

as a tool for representing knowledge as well as a tool for
problem solving. One of the main criticism to the use
of logic as a tool for automatic problem solving refers to
the computational complexity of logical problems. Even
if we restrict ourselves to classical propositional logic,
deciding whether a set of formulas logically implies a
certain formula is an NP-complete problem [Garey and
Johnson, 1979].

Cadoli and Schaerf have proposed the use of approx-
imate entailment as a way of reaching at least partial
results when solving a problem completely would be too
expensive [Schaerf and Cadoli, 1995]. Their method con-
sists in defining different logics for which satisfiability is
easier to compute than classical logic and treat these log-
ics as upper and lower bounds for the classical problem.
In [Schaerf and Cadoli, 1995], these approximate logics
are defined by means of valuation semantics and algo-
rithms for testing satisfiability. The language they use is
restricted to that of clauses, i.e., negation appears only
in the scope of atoms and there is no implication.

The approximations are based on the idea of a con-
text set S of atoms. The atoms in S are the only ones
whose consistency is taken into account in the process of
verifying whether a given formula is entailed by a set of
formulas. As we increase the size of the context set S, we
get closer to classical entailment, but the computational
complexity also increases.

In this paper, we generalize Cadoli and Schaerf’s
semantics to deal with full propositional logic. This
generalization is needed, since the usual translation of
formulas into clausal form is not sound under Cadoli
and Schaerf’s non-standard semantics. We present a
tableaux system for the extended logic which is sound
and complete with respect to the semantic. The main
feature of our system is that the tableaux method gives
a clear way of constructing the context set S in order
to obtain the classical answer. Our contribution is thus,
besides the generalization of approximate entailment, a
constructive method for calculating the approximations.

The paper proceeds as follows: in Section 3, we briefly
describe Cadoli and Schaerf’s approximate entailment.
In Section 4, we extend their semantic to full propo-
sitional logic. In Section 5, we present the tableaux
method for the extended logic. In Section 6, we illus-

trate the use of the tableaux and show some of their
properties. In Section 7 we proof soundness and com-
pleteness of the method. Finally, in Section 8, we discuss
the method and point toward future work.

2 Preliminaries

Let P be a countable set of propositional letters. We
concentrate on the classical propositional language L
formed by the usual boolean connectives — (implica-
tion), A (conjunction), V (disjunction) and — (negation).

Throughout the paper, we use lowercase Latin letters
to denote propositional letters, lowercase Greek letters to
denote formulas, and uppercase letters (Greek or Latin)
to denote sets of formulas.

Let S C P be a finite set of propositional letters. We
abuse notation and write that, for any formula a € L¢,
a € S if all its propositional letters are in S. A proposi-
tional valuation v, is a function v, : P — {0,1}.

3 Approximate Entailment

We briefly present here the notion of approximate en-
tailment and summarize the main results obtained in
[Schaerf and Cadoli, 1995].

Schaerf and Cadoli define two approximations of clas-
sical entailment: =% which is complete but not sound,
and 2 which is sound and incomplete. These approx-
imations are carried out over a set of atoms S C P
which determines their closeness to classical entailment.
In the trivial extreme of approximate entailment, i.e.,
when S = P, classical entailment is obtained. At the
other extreme, when S = @, =L holds for any two for-
mulas (i.e., for all ,3, we have a EL) and % corre-
sponds to Levesque’s logic for explicit beliefs [Levesque,
1984], which bears a connection to relevance logics such
as those of Anderson and Belnap [Anderson and Belnap,
1975].

In an S; assignment, if p € S, then p and —p are given
opposite truth values; if p € S, then p and —p both get
the value 0. In an S3 assignment, if p € S, then p and
—p get opposite truth values, while if p € S, p and —p do
not both get 0, but may both get 1. The names S; and
S3 come from the possible truth assignments for literals
outside S. If p € S, there is only one S; assignment for
p and —p, the one which makes them both false. There
are three possible S3 assignments, the two classical ones,
assigning p and —p opposite truth values, and an extra
one, making them both true. The set of formulas for
which we are testing entailments is assumed to be in
clausal form. Satisfiability, entailment, and validity are
defined in the usual way.

The following examples illustrate the use of approxi-
mate entailment. Since E% is sound but incomplete, it
can be used to approximate |=, i.e., if for some S we have
that B E% a, then B |E a. On the other hand, £k is
unsound but complete, and can be used for approximat-
ing £, ie., if for some S we have that B [£% «, then
B}~ a.

Example 1 ([Schaerf and Cadoli, 1995]) We want
to check whether B | «, where a = -icow V
molar-teeth and

B = {-cow V grass-eater,

—dogV carnivore,

—grass-eater V —canine-teeth,
—carnivore V mammal,

—mammal V canine-teeth V molar-teeth,
“grass—eater V mammal,

—mammal V vertebrate,

—wvertebrate V animal}.

For S = {grass-eater, mammal, canine-teeth}, we

have that B E% «, hence B [a.

Example 2 ([Schaerf and Cadoli, 1995]) We want
to check whether B [~ 3, where f=-child V pensioner
and

B = {-person V child V youngster V

V adult V senior,
—pensioner V senior,
—youngster V student V worker,
—isenior V pensioner V worker,
—adult V student V worker V

V unemployed,
—pensioner V —student,
—istudent V child V youngster V adult,
—pensioner V —worker}.

For S = {child, worker, pensioner}, we have that
B [£L B, and hence B £ B.

Note that in both examples above, S is a small part of
the language. The approximation of classical inference is
made via a simplification of the belief base B as follows
(for a given conclusion « and context set S):

Lemma 3.1 ([Schaerf and Cadoli, 1995]) Let
simplify-1(B, S) be the result of deleting all literals of B
which mention atoms outside S. B is Si-satisfiable if
and only if simplify-1(B,S) is classically satisfiable.

Theorem 3.2 ([Schaerf and Cadoli, 1995])

Let o be as V ag, where letters(as) C S and
letters(ag) NS = @. Then B E§ a iff BU{-as} is not
S1 satisfiable.!

This means that, in order to test whether B £} «, for
every literal of « of the form p, where p € S, we add the
clause —p to B and for every literal of « of the form —p,
where p € S, we add the clause p to B. Let B’ be this
expanded set of clauses. We now must check whether
B’ is S; satisfiable. Using Lemma 3.1, we can reduce
this problem to testing the classical satisfatibility of a
simplified set of clauses.

Lemma 3.3 ([Schaerf and Cadoli, 1995]) Let
simplify-3(B,S) be the result of deleting all clauses
of B which contain an atom outside S. Then B is

'This can only be done because as behaves classically
and we can compute its negation in clausal form (as a set of
clauses).

Ss3-satisfiable if and only if simplify-3(B, S) is classically
satisfiable.

Theorem 3.4 ([Schaerf and Cadoli, 1995]) Let
letters(a) C S. Then B E% « iff B U {-a} is not Ss
satisfiable.

As in the case of S;, Lemma 3.3 and Theorem
3.4 together provide a construcive method for testing
S3 entailment. Consider the Example 1, where S =
{grass-eater, mammal, canine-teeth} and we want to
test whether B |=%—cow V molar-teeth. In order to
use Theorem 3.4 we must add cow and molar-teeth to
S, then add the clauses cow and —-molar-teeth to B.
We can then use Lemma 3.3 to simplify the expanded
base, obtaining:

B' = {-cow V grass-eater,
—grass-eater V —canine-teeth,
—mammal V canine-teeth V molar-teeth,
“grass-eater V mammal,
cow, = molar-teeth}

This set is classically unsatisfiable, thus, B E%-cow
V molar-teeth.
Schaerf and Cadoli then obtain the following results for
approximate inference:

Theorem 3.5 ([Schaerf and Cadoli, 1995]) There
exists an algorithm for deciding if B E% « and deciding
B EL a which runs in O(|B|.|a|.2!51) time.

The result above depends on a polynomial time satisfi-
ability algorithm for belief bases and formulas in clausal
form alone. This result has been extended in [Cadoli and
Schaerf, 1995] for formulas in negation normal form, but
is not extendable to formulas in arbitrary forms [Cadoli
and Schaerf, 1996].

The good point of Schaerf and Cadoli’s systems is that
they present an incremental algorithm to test for S; en-
tailment as new elements are added to S. But there are
two major limitations in their results:

1. The system is restricted to —-free formulas and in
negation normal form. In [Chopra et al., 2000] it is
noted that the standard translation of formulas into
clausal form does not preserve truth-values under
the non-standard semantic of Ss.

2. The set S must be guessed at each step of the ap-
proximation; no method is given for the atoms to be
added to S. Some heuristics for a specific applica-
tion are presented in [ten Teije and van Harmelen,
1997], but nothing is said about the general case.

In this paper, we will concentrate on S3 entailment.
In the following sections we will extend S3 to full propo-
sitional logic, present a proof method for the extended
system and show how this proof method helps us to in-
crementally construct the set S.

4 Semantics

In this section, we extend S3 to full propositional logic.
We present a binary semantics for the full fragment of
S3, for that reason we call it an S;.» semantics 2.

The two-valued semantics for Ss is based on a propo-
sitional valuation, as defined below.

Definition 4.1 An S;,-valuation v¥? is a function,
v¥? 1 Lo — {0,1}, that extends a propositional valu-
ation v, (i.e., v32(p) = v,y(p)), satisfying the following
restrictions:

(i) v§*(anp)=1 & 0§ () =vg?(B) =
() oB2avA) =0 & uia)=ul2(s) =
(iii) v¥*(a—pB)=0 & v%z(a) =1and

) Us2(5) =0
(iv) v¥*(-a) =0 = v (a) =1
(v) v¥(~a)=1l,a€eS = vi*(a)=0

Rules (7)—(iii) are exactly those of classical logic.
Rules (iv) and (v) restrict the semantics of negation:
rule (iv) states that if v¥?(-a) = 0, then negation be-
haves classically and forces v¥?(a) = 1; rule (v) states
that if v3?(=a) = 1, negation must behave classically
only if @ € S. Formulas outside S may behave classi-
cally or paraconsistently, i.e., both the formula and its
negation may be assigned the truth value 1.

Note that an S5 o-valuation is not uniquely defined by
the propositional valuation it extends. This is due to the
fact that if « ¢ S and v3?(a) = 1, the value of v¥?(-)
can be either 0 (in which case a has a classical behaviour)
or 1 (in which case a behaves paraconsistently).

Lemma 4.2 The valuation v¥?

value on the set P U {—-aja & S}.

Proof: For the connectives A, V and —, it is im-
mediate that the value of v? is determined by that
of the subformulas. If v¥?(a) = 0, then by rule (iv)
v¥3?(ma) = 1. If a € S the value of v¥?(—a) is the oppo-
site of that of v¥?(a). We are left only with the formulas

in PU{-ala € S} to determine v¥?. O

is determined by its

We define a formula « to be S-valid in Ss 2 if v3?(a) =
1 for any S3.-valuation. A formula is S-satisfiable in
Ss 5 if there is one v¥? such that v¥?(a) = 1. The S5 -
entailment relationship between a set of formulas I' and
a formula « is represented as

r |:3S'2 «

and holds if every valuation v¥? that simultaneously sat-
isfies all formulas in I' also satisfies a. A formula is S-
valid if it is entailed by @, represented as %2 a.
Lemma 4.2 suggests a translation between a formula
in S3 and one in classical logic, such that every formula

2A three-valued semantics, called S3.3 semantics, can be
provided to cover the —-free fragment; in such a fragment,
Ss.2 and S3.3 coincide.

of the form —a with o € S is mapped into a new propo-
sitional symbol p_,. Let a*° be the translation of «,

defined as:
*S D
(aOB)*S = a*s 06*57 ° e {/\7 \/7 _)}
*S
oS — -(a*), a €S
(—a) = { Pow ,agS

Lemma 4.3 A formula « is S-satisfiable in Sso iff
(—a)*S is classically satisfiable

Lemma 4.4 Let Prop(a) represent the propositional
symbols in . Every formula « with Prop(a)NS = & is
satisfiable in S3.5.

Proof: Since Prop(a)NS = @, the translation (a)*®
leads us into the —-free fragment of classical logic (with-
out falsity, 1), and any formula is such fragment is sat-
isfiable (just make all atoms 1), so Lemma 4.3 makes «
satisfiable in S3 5. O

Note that for Cadoli and Schaerf’s S3, the condition
Prop(a) € S is sufficient, since they only deal with
clauses. If any literal of a clause is not in S, it can
be assigned the value 1, making the whole clause (a dis-
junction of literals) satisfiable.

Lemma 4.5 S3,-validity is subclassical. That is, any
S-valid formula in S35 is classically valid, for any S.

Proof: It suffices to notice that any classical valua-
tion satisfies the S5 o-restrictions for any S. Therefore,
the set of all classical valuations is contained in the set
of all S3 o-valuations (but there are Ss »-valuations that
are not classic). So if a formula is satisfied by all Ss.o-
valuations, it will be satisfied by all classical ones. O

The deduction theorem holds for the S3 o semantics,
as can be seen directly from the definitions.

Lemma 4.6 (Deduction Theorem) Let T be a finite
set of formulas. Then

L EL? aiff =52 /\F - a.
Now we examine a few examples of S3 - entailment.

Example 3 Consider the formula aV—«a. We show that
it is a valid formula in S35 for any S.

Indeed, if @ € S, we are in a classical setting, so any
valuation makes « V -« true.

If a ¢ S, let v¥? be a valuation. If v¥?(=a) = 1, then
aV -a clearly is true. If, however, v¥?(=a) = 0, by rule
(iv) above v¥?(a) =1, so a V = is also true.

Example 4 We now show that the S3- semantics is
paraconsistent. For that, consider the two propositions
p and ¢ and suppose that p ¢ S; take a valuation v%?2
such that v¥?(p) = 1 and v¥?(¢) = 0, and consider the
formula (pA—p) — ¢. By Lemma 4.2, the value of v¥? is
not fully determined, so we fix v3?(—p) = 1. It is simple
to verify now that the valuation thus constructed is such
that v32((p A =p) = ¢) = 0, that is the logic does not
trivialize in the presence of inconsistency.

Example 5 We now analyse the validity of Modus Po-
nens in Sz . The usual formulation of Modus Ponens,
a = Bya EX? B, is valid in Ss; indeed, if v¥? satis-
fies a, the only possible way that it also satisfies a — 3
is that it satisfies 3, thus proving the entailment. Note
that since no —-formula was involved, the reasoning is
totally classical.

However, if we consider the version of Modus Ponens
consisting of the translation of « — § into —a V § (the
only possible version of Modus Ponens in [Schaerf and
Cadoli, 1995]), the situation changes completely if a € S,
for then we can have a valuation that satisfies both «
and -« (and thus —a V), but that falsifies 3, so that

—a VB, a EE? B

5 KE-Tableaux for S;

We develop an inference system for the full logic S5 based
on the KE-tableau methodology. KE-tableaux were in-
troduced by D’Agostino [D’Agostino, 1992] as a prin-
cipled computational improvement over Smullyan’s Se-
mantic Tableaux [Smullyan, 1968], and have since been
successfully applied to a variety of logics [D’Agostino
and Gabbay, 1994; Broda and Finger, 1995; Broda et
al., 1999].

KE-tableaux deal with T'- and F-signed formulas. So
if a is a formula, 7" « and F' « are signed formulas. T «
is the conjugate formula of F' «, and vice versa. An
expansion of a tableau is allowed when the premises of
an expansion rule are present in a branch; the expansion
consists of adding the conclusions of the rule to the end
of all branches passing through the set of all premises of
that rule.

For each connective, there are at least one T'- and one
F-linear expansion rules. Linear expansion rules always
have a main premise, and may also have an auxiliary
premise. They may have one or two consequences. The
only branching rule is the Principle of Bivalence, stating
that something cannot be true and false at the same
time. Figure 1 shows KE-tableau expansion rules for
classical logic.

In Figure 1 we see that each of the binary connectives
—, A and V are associated to two two-premised rules and
one one-premised rule. The two-premised rules have a
main antecedent and an auxiliary antecedent; the one-
premised rules have two consequences. Classical nega-
tion is associated to two one premised rules, each with
a single conclusion. The final line presents the Principle
of Bivalence (PB), stating that any formula « is either
true of false. The application of PB transforms a single
branch into two branches with the same prefix, differing
only by the final formula, each new branch getting one
of the two conjugates.

PB is used according to a branching rule: PB is used to
generate the auxiliary premise for a two-premised rule;
this guarantees that PB is only used over subformulas
of some complex formula occurring in the tableau. This
also guarantees the subformula property, i.e. an expan-
sion always introduces in the tableau a subformula of

Ta—p Ta—p Fa—p
_Ta @sy _FB (1 Ta (F-)
T3 F « Fp
Fanpg Fanpg Tanp
Ta (Fr) TB (FAz) T o (TA)
F B Fa Tps
TavVvp T aVvp Favp
Fa (rvw) F B (1w Fa (rv)
T B T a F B

T -« F -«
Fa I Ta &)
Ta Fa P

Figure 1: KE-rules for classical logic

some previously occurring formula.
As in semantic tableaux, to show that ay,...,a, F 8
we start with the initial tableau

TOél

T a,

Fp
and develop the tableau by applying the expansion rules
in Figure 1. A branch is closed if it contains both F' «
and T «, for some formula «. The sequent above is

shown if we can close all branches in the tableau, in
which case the tableau is said to be closed.

Example 6 We know that classically, « — § is equiv-
alent to —a vV . This is shown by means of the two
KE-tableaux in Figure 2, where the boxed formulas in-
dicate the closure of condition for each branch. The left
tableau shows @ — f F —a V 8 and the right one shows
—aVpBkFa—g.

1. Ta—p 1. T-aVp

2. F-aVp 2. Fa—=p

3. F -« from 2 3. from 2

4. from 2 4, Fp from 2

5. T a from 3 5. T -a from 14

6. from 1,5 6. from 5
> X

Figure 2: The classical equivalence of &« — # and —-a VvV 3

Note that both tableaux would branch in a semantic
tableau version of this proof. The fact that KE-tableaux
do not branch is an indication that they are more efficient

than traditional semantic tableaux. In fact, KE-tableaux
can p-simulate semantic tableaux, but the converse is not
true [D’Agostino, 1992].

Example 7 To show the use of PB, we present a KE-
tableau now showing that ——a Vv ==4,-a 5.

T -«
F a
T 1Y F 1

T —=f

X Fﬂﬂ

X

After expanding T —«, no more linear expansion rules
are applicable, so we branch over =—a in T =—a V =—f
according to the branching rule, so that the negative
branch on the right can be used as an auxiliary premise
to T ==« V =—f generating T ——f3. On the left branch,
a single expansion of T ==« leads us to F' —«, which
closes that branch and the tableau.

5.1 Tableaux for S;

In order to construct a KE-tableau system for S3, we
keep almost all the classical rules, changing only the rule
(T =), by adding a side condition. The old rule (7" —) is
removed and its S3 version becomes:

T -«
F «a

provided that o € S

The meaning of this rule is that the expansion of a
branch is only allowed if it contains the rule’s antecedent
and the proviso is satisfied, that is, the formula in ques-
tion belongs to S. This rule is actually a restriction of
the classical rule, stating that if a ¢ S the (7' —)-rule
cannot be applied. Let us call the system thus obtained
KES;.

This makes our system immediately subclassical, for
any tableau that closes for KES3 also closes for classi-
cal logic. So any theorems we prove in KES3 are also
classical theorems. The converse is not the case, as the
examples below will show that there are classical theo-
rems which are not KESs-theorems.

So KESj3 is correct and incomplete with respect to
classical logic. The actual proof of correctness and com-
pleteness of KES3; with respect to the semantics pre-
sented in Section 4 will be presented in Section 7. First,
let us examine a few examples.

Example 8 We first show that — is no longer definable
in terms of V and A, by redoing the tableaux of Figure 2
in Figure 3.

In Figure 3 we are assuming that S = @. Note that
the left tableau for « — 8 F —a V § is exactly the same
as for classical logic.

1. Ta— B 1. T -aV B
2. F-avp 2. Fa—p
3. F -« from 2 3. T a from 2
4. from 2 4. F B from 2
5. T « from 3 5. T ?—|a from 1,4
6. from 1,5

X

Figure 3: — is not definable in terms of V and — in KESs5

However, the tableau on the right for ~aV gt a — 8
cannot be closed for the rule on T' =« cannot be applied
for o ¢ S. We get stuck, as there are no further rules
to be applied, meaning that the input sequent is not
provable.

This shows that — can no longer be defined in terms
of V and = in S3.

One important feature of the open tableau in Figure 3
is that if, at the point that it gets stuck, we insert the
propositional letters of « in the set S, the tableau ex-
pansion can proceed as in classical logic. In fact, the
tableau then closes after a single step. This shows that
the sequent —a V f F a — 8 is deducible if « € S (and
nothing needs to be said about).

What we have actually done is to change the logic we
are operating with during the KE-tableau expansion by
adding a formula to S. That formula was chosen so that
a stuck tableau could proceed classically. This actually
makes us move one step closer to classical logic. Classical
logic is reached when all atoms are in S.

This simple procedure suggests an incremental way of
doing approximate theorem proving.

6 The Incrementality of the Method

The idea of approximate reasoning found in [Schaerf and
Cadoli, 1995] consists in trying to prove a classical for-
mula in S3 for increasingly large sets S. Apart from con-
sidering an —-free fragment, the work in [Schaerf and
Cadoli, 1995] did not provide a way of choosing S or
how to increment it. Our theorem proving method for
a given input sequent is intended to fill this gap. It is
summarized in the following;:

1. S:=@.

2. Transform the input sequent in an initial KESs-
tableau.

3. Expand the tableau until it is closed or stuck.
4. If the tableau is closed, terminate with success.

5. If the tableau contains a branch that cannot be clas-
sically expanded, terminate with failure.

6. If the tableau is stuck due to a formula T'—«, make
S :=SU{a} and go back to 3.

By S := S U {a} we mean that all atoms in « are
added to S. It is clear that if an atom does not appear

inside the scope of a negation, it will not be inserted in
S. However, that does not mean that if it appears inside
a negation it will end up in S, as the tableau for - pV—p
shows:
FpV-p

Fp

F —p

Tp

X

which shows that - p V —p is Ss3-valid for S = &.
Note that in step 6 above, there may be more then
one stuck point in the tableau, so we need to chose
one formula to proceed. If there are two stuck formu-
las in the same branch of the tableau, the contents of S
may differ according to the choice of formula we make
at step 6. This is illustrated by the following tableau for
pAqgE——pV g

T'phg

At this point we have both 7' =p and T' —¢ blocking the
branch development. If we chose the first one, S becomes
{p} and the tableau closes; if we chose the second one,
S becomes {¢} and the tableau also closes.

An interesting fact is that we can only prove —(pA—p)
in KES; for p € S, which shows the paraconsistency of
the system:

F =(pA-p)
TpA-p

T —p

iprS

X

We now show the correctness of the proposed incre-
mental method.

Theorem 6.1 (Correctness of the Method) Given
an input sequent a,...,a, F B then the method above
always terminates. It terminates with success iff the
sequent is classically valid.

Proof: Note that the set S can only increase at each
cycle, so if the tableau does not close, S will eventually
contain all propositional symbols in the input sequent
that occur within a T-marked negation, in which case
the tableau will be a classical one; by the termination
property of KE-tableaux, it will terminate. Because any
closing KES3 tableau also classically closes, a successful
terminating tableau must be classically valid. On the
other hand, if a sequent is classically valid, it’s corre-
sponding KESs3-tableau, when it becomes classical, will
eventually close. O

Example 9 The following example illustrates the use of
the system KES3. Consider the problem of Example 1,
where we want to know whether —cow V molar-teeth
follows from a set of clauses B. We start by labelling
the initial clauses with T' (lines 1-8) and the formula
we want to refute with F' (line 9). Figure 4 shows the
complete tableau (g-e stands for grass-eater, c-t for
canine-teeth, and m-t for molar-teeth).

B = {-cow V grass-eater,
—dogV carnivore,
—grass—eater V —canine-teeth,
—carnivore V mammal,
—mammal V canine-teeth V molar-teeth,
—grass—eater V mammal,
—mammal V vertebrate,
—wvertebrate V animal}.
1. T —cow V g-e
2. T —dogV carnivore
3. T —-g-e V —c-t
4. T -carnivore V mammal
5. T —mammal V c-t V m-t
6. T —g-e V mammal
7. T —mammal V vertebrate
8. T —wertebrate V animal
9. F —cow V m-t
10. F -cow from 9
11. Fm-t from 9
12. from 1,10
13. F -g-e 13". T —g-e PB
14. T —c-t from 3,13 | 14/ g-ecS
15. from 6,13 [15" x
16. T —mammal V c-t from 5,11
17. F c-t from 14,c-t € S
18. T —mammal from 16,17
19. from 18, mammal € S
20. x

Figure 4: KES3 tableau for clauses

We start with S = @. When we get to line 14’, we
need to add grass-eater to S in order to close the right
branch. We can then proceed applying rules until line
17, where one more atom, canine-teeth, must be added
to S. What happens is that the tableau does not close
if these atoms are not in S. During the development of
the tableau we get clues about which atoms must be in
S. When the atom mammal is added to .S, the tableau
closes and we have that B |=¥—cow V molar-teeth for
S= {grass-eater, canine-teeth, mammal}.

Example 10 This example shows that formulas that
are classically equivalent may have different behaviour
under S3. We transform the set B from Example 1 into
a set B’ which is classically equivalent to B but is not in
clausal form. Then we try to check whether B’ F¥cow

— molar-teeth. Figure 5 shows the complete tableau.
Note that this time, we can close the tableau adding
only one atom to S, i.e., B’ F3cow — molar-teeth for
S={canine-teeth}.

B' = {cow — grass-eater,
dog— carnivore,
grass—-eater — -—icanine-teeth,
carnivore — mammal,
mammal — canine-teeth V molar-teeth,
grass-eater — mammal,
mammal — vertebrate,
vertebrate — animal}.
1. T cow — g-e
2. T dog— carnivore
3. T g-e = —c-t
4. T carnivore — mammal
5. T mammal — c-t V m-t
6. T g-e — mammal
7. T mammal — vertebrate
8. T vertebrate — animal
9. F cow — m-t
10. T cow from 9
11. F -t from 9
12. T g-e from 1,10
13. T —c-t from 3,12
14. T mammal from 6,12
15. T c-t V m-t from 5,14
16. T c-t from 11,15
17. F c-t from 13,c-t € S
18. X

Figure 5: KESj3 tableau with implication

7 Soundness and completeness of KES;

It is very important to note that we are not proposing
a simple ad hoc modification of a KE-tableau for do-
ing theorem proving, but we are building a mechanism
for approximate reasoning with a solid logical basis. To
sustain such a claim, we have to prove the soundness
and completeness of the KES3 tableau method of Sec-
tion 5 with respect to the S35 two-valued semantics of
Section 4.

First, we need to define the notions of soundness and
completeness. So KESj3 is sound with respect to the
S3.o semantics if whenever a tableau closes for an input
sequent, then the sequent’s antecedent formulas entail
its consequent in S3. Conversely, the KESs3-tableau
method is complete with respect to the S3.o semantics if
for all sequents such that the the antecedent entails the
consequent in S3 o, all KES3-tableaux close.

We extend the valuation to signed formulas in the ob-
vious way, that is, v3?(Ta) = 1 iff v¥?(a) = 1 and
vE?(Fa) = 1 iff v¥*(a) = 0. A valuation satisfy a
branch in a tableau if it simultaneously satisfy all the
signed formulas in the branch.

7.1 Soundness

To prove soundness, we first show the correctness of all
linear expansion rules of KESs.

Lemma 7.1 If the antecedents of the KESs linear ex-
pansion rules are S-satisfied in S by v¥? so are its con-
clusions.

Proof: A simple inspection of the rules in Figure 1
with the modification in (7' =) for KES3 shows the result.
O

We now show that the branching rule PB also preserve
satisfiability.
Lemma 7.2 If a branch is satisfied by a valuation v¥?
prior to the application of PB, then at least one of the

two branches generated is satisfied by a valuation v3?

after the application of PB.

Proof: Suppose the branching occurs over the for-
mula a. Because v%? is a function onto {0,1}, we have
that v¥32(T) = 1 or v¥?(F «) = 1, so v¥? satisfies one
of the two branches generated by the application of PB.
(|

Theorem 7.3 (Soundness) Suppose a tableau for
Qi,...,an F B closes. Then ay,...,a, E3? B.

Proof: We show the contrapositive. So suppose
ai,...,an L2 B, so there is a valuation v¥? such that
vE%(ar) = ... = v¥?(a1) = 1 and v¥?(B) = 0. In this
case, the initial tableau for ay,...,a, F B is such that
all formulas T v, ..., T ay, F (3 are satisfied by v3?.

By Lemmas 7.1 and 7.2, we see that each application
of an expansion rule preserves at least one satisfiable
branch. As closed branches are not satisfiable, at least
one branch remains open and the tableau cannot close.
d

7.2 Completeness

We say that a branch of a tableau is complete if there
are no more applicable expansion rules.

Lemma 7.4 An open complete branch in a KESs3-
tableau is S-satisfiable in S3.5.

Proof: Given an open complete branch B, we con-
struct the following valuation v¥?, based on the propo-
sitional and negated formulas in B:

v¥?(p)=1 if TpeB
vi?(p)=0 iff FpeB
v¥?(~a) =1 iff T -a€ B,anda ¢ S

Since the tableau is open, we do not have that for the
same atom ¢, both T' ¢ and F' ¢q are in B, so the valu-
ation above is a partial function. To obtain a complete
function, according to Lemma 4.2, we need to define the
value of v3? for propositions and formulas of the form
=« not occurring in Bj; in fact, the value of v¥? for such
formulas can be any, but to be deterministic let us make
them all false.

A simple structural induction on the signed formulas
in B shows that v3? satisfies the branch. O

Theorem 7.5 (Completeness) If ai,...,a, EL?
then any possible KES3 tableau for aq, ..., an = B closes.

Proof: Suppose for contradiction that there is a
tableau for ay, ..., a, F # with an open complete branch
B. Then by Lemma 7.4 there is a S3 valuation that
satisfies B, which includes T «,...,T ay, F 3, contra-
dicting v, ..., a, EE? B. O

8 Discussion

We have extended Cadoli and Schaerf’s Approximate
Entailment to full propositional logic, providing a se-
mantics, and a sound and complete proof method.

The proof method is an adaptation of a tableaux sys-
tem which was shown to be computationally more effi-
cient than semantic tableaux. The method is incremen-
tal: the tableau is built for a given context set S and
when new atoms are added to S we can continue from
where we stopped. The construction of the tableaux
makes clear which atoms must be added to S.

A proof method based on tableaux for paraconsistent
logic has been proposed in [Carnielli and Lima-Marques,
1992]. The idea behind their system is very similar to
ours: the only difference from tableaux for classical logic
is an extra condition for the rules involving negation.
However, as in the calculus C; [da Costa, 1963], the con-
dition that a formula behaves classically is part of the
language. As a result, the tableau construction some-
times loops.

Future work includes studying the formal relation be-
tween the extended version of S3 and da Costa’s C1, the
complexity of the proposed proof method, and a system
of tableaux for the extended version of S.

Acknowledgments: Marcelo Finger is partly sup-
ported by the Brazilian Research Council (CNPq), grant
PQ 300597/95-5. Renata Wassermann was supported by
FAPESP through grant 99/11602-6. This work was de-
veloped under the CNPq project APQ 468765/00-0.

References

[Anderson and Belnap, 1975] A.R Anderson and N.D
Belnap. Entailment: The Logic of Relevance and Ne-
cessity, Vol. 1. Princeton University Press, 1975.

[Broda and Finger, 1995] K. Broda and M. Finger. KE-
tableaux for a fragment of linear logic. In Proceed-
ings of the 4th International Workshop on Analytic
Tableauz and Related Methods, Koblenz, May 1995.

[Broda et al., 1999] K. Broda, M. Finger, and A. Russo.
Labelled natural deduction for substructural logics.
Logic Journal of the IGPL, 7(3):283-318, 1999.

[Cadoli and Schaerf, 1995] Marco Cadoli and Marco
Schaerf. Approximate inference in default logic and
circumscription. Fundamenta Informaticae, 23:123—
143, 1995.

[Cadoli and Schaerf, 1996] Marco Cadoli and Marco
Schaerf. The complexity of entailment in propositional

multivalued logics. Annals of Mathematics and Arti-
ficial Intelligence, 18(1):29-50, 1996.

[Carnielli and Lima-Marques, 1992] Walter A. Carnielli
and Mamede Lima-Marques. Reasoning under incon-
sistent knowledge. Journal of Applied Non-Classical
Logics, 2(1):49-79, 1992.

[Chopra et al., 2000] Samir Chopra, Rohit Parikh, and
Renata Wassermann. Approximate belief revision. In
Proceedings of Workshop on Language, Logic and In-
formation (WoLLIC), 2000.

[da Costa, 1963] Newton C.A. da Costa. Calculs propo-
sitionnels pour les systémes formels inconsistants.

Comptes Rendus d’Academie des Sciences de Paris,
257, 1963.

[D’Agostino and Gabbay, 1994] M. D’Agostino and
D. Gabbay. A Generalization of Analytic Deduction
via Labelled Tableaux, part I: Basic Substructural
Logics. Journal of Automated Reasoning, 13:243-281,
1994.

[D’Agostino, 1992] Marcello D’Agostino. Are tableaux
an improvement on truth-tables? — cut-free proofs
and bivalence. Journal of Logic, Language and Infor-
mation, 1:235-252, 1992.

[Gabbay and Hunter, 1991] Dov Gabbay and Anthony
Hunter. Making inconsistency respectable, part 1. In
Proceedings of Fundamental of Artificial Intelligence
Research (FAIR ’91), Vol 535 of LNAI pages 19-32.
Springer-Verlag, 1991.

[Garey and Johnson, 1979] M. R. Garey and D. S. John-
son. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

[Levesque, 1984] Hector Levesque. A logic of implicit
and explicit belief. In Proceedings of AAAI-84, 1984.

[Schaerf and Cadoli, 1995] Marco Schaerf and Marco
Cadoli. Tractable reasoning via approximation. Arti-
ficial Intelligence, 74(2):249-310, 1995.

[Smullyan, 1968] Raymond M. Smullyan. First-Order
Logic. Springer-Verlag, 1968.

[ten Teije and van Harmelen, 1997] Annette ten Teije
and Frank van Harmelen. Exploiting domain knowl-
edge for approximate diagnosis. In M. Pollack, editor,
Proceedings of the Fifteenth International Joint Con-
ference on Artificial Intelligence (IJCAI’97), pages
454-459, Nagoya, Japan, August 1997.

