
THE UNRESTRICTED ADDITION OF A TEMPORAL DIMENSION TO ALOGIC SYSTEMMARCELO FINGER AND M. ANGELA WEISSAbstra
t. This papers generalises and 
ompletes the work on 
ombining temporal logi
s startedby Finger and Gabbay [5℄. We present proofs of transferen
e of 
ompleteness and de
idability forthe temporalisation of logi
s T(L) for any 
ow of time, eliminating the original restri
tion thatrequired linear time for the transferen
e of those properties through logi
 
ombination.This generalisation over generi
 
ows of times propagates to other 
ombinations of logi
s that
an be interpreted in terms of temporalisations. In this way, the independent 
ombination oftemporal logi
s is obtained over generi
 
ows of time.1. Introdu
tionIn this paper we extend the study of the temporalisation of logi
 systems introdu
ed by Fingerand Gabbay in [5℄. There, the temporalisation pro
ess was restri
ted to linear 
ows of time. Here,we aim to generalize it to any 
ow of time. We are interested in studying the transferen
e ofproperties from the logi
 system L into its temporalised version T(L).The system T(L) 
ombines two logi
s: a temporal logi
 T, whi
h is applied externally to a givenlogi
 system L. This 
ombination pro
ess, 
alled temporalisation, involves the 
ombination of thelanguages, inferen
e systems, and model stru
tures of T and L into a language, inferen
e systemand model stru
ture of T(L). We show that if the logi
 systems T and L are sound, 
omplete orde
idable, then T(L) is also sound, 
omplete or de
idable; no 
onstraints are imposed on the natureof the 
ow of time.To show the transferen
e of 
ompleteness via logi
 
ombination, we maintain the same generalproof strategy of by Finger and Gabbay [5℄. However, be
ause here we 
annot rely on the linearityof the 
ow of time, the underlying proof 
onstru
tion has to be almost fully reworked. For that, weintrodu
e a bound asso
iated to the number of steps in \the past" and the number of steps in \thefuture" one must take to evaluate a given formula  in a temporal model. This 
onstru
tion allowsus to sele
t the \relevant" time points in the evaluation of a formula. The set of \relevant" timepoints may be in�nite, but ea
h point 
an be rea
hed in �nitely many steps. This 
onstru
tionallows us to do without the original restri
tion of linearity.Our approa
h naturally leads us to de
ision pro
edures. In Se
tion 4 we show that providedthat L and T are de
idable, so is T(L).Combination of logi
s have been previously analyzed in the literature. Combinations of tenseand modality were dis
ussed in [6℄, without expli
itly providing a general methodology for doing so.Fine and S
hurz [1℄ and Kra
ht and Wolter [4℄ have studied the transfer properties of systemati
ally
ombining independently axiomatisable monomodal systems. The work of [1℄ generalizes to morethan two independent modalities. Finger and Gabbay [5, 2℄ were the �rst to address the issue of1




ombining logi
s with two-pla
e modalities, S (\sin
e") and U (\until"), and with modalities thatwere not all independent, for \sin
e" and \until" intera
t with ea
h other. The results of [5, 2℄,however, are restri
ted to the 
ase of linear 
ows of time and, be
ause non-linear 
ows, e.g. overtrees or over some other partially ordered sets, often appears in Mathemati
s as well as in ComputerS
ien
e, our approa
h is needed.It is important to note that this generalisation over generi
 
ows of times propagates to other
ombinations of logi
s that 
an be interpreted in terms of temporalisations. In [2℄, it was shownthat the independent 
ombination of two US logi
s, US � �U �S 
an be seen as the in�nite union ofseveral temporalisation US( �U �S) and US( �U �S(US)); : : : , and thus the results here also generalisethe transferen
e of soundness, 
ompleteness and de
idability for US � �U �S over generi
 
ows oftime. 2. The Temporalised System T(L)In this se
tion we des
ribe the system T(L) introdu
ed in [5℄. By a logi
 system we mean atriple S = (LS ;`S ;KS), where LS is the system's language, `S is an inferen
e system and KS isthe system's asso
iated 
lass of models.The language of T(L). The language LUS of the temporal system T is built from a denumerableset of atoms A, applying the two-pla
e modalities U (until) and S, (sin
e), and the Boolean
onne
tives : (negation) and ^ (
onjun
tion).Very little is required of the internal logi
 L, ex
ept that its language is des
ribed from adenumerable set of atoms and that it has the 
lassi
al Boolean 
onne
tives : and ^; but see belowin 
ase it does not have them. Apart from that, any other type of modalities or predi
ates area

epted in the language.Before we de�ne the language of the temporalised system T(L) we need to introdu
e a fewde�nitions.The language LL of L is partitioned into the sets BCL and MLL, where:� BCL, the set of Boolean 
ombinations 
onsists of the formulas built up from any other formulaswith the use of the Boolean 
onne
tives : or ^;� MLL, the set of monolithi
 formulas is the 
omplementary set of BCL in LL.If the external logi
 L does not 
ontain the 
lassi
al 
onne
tives : and ^, we assume thatMLL = LL and BCL = ;, so every formula in L is 
onsidered monolithi
.The set of temporalised formulas, LT(L), is de�ned as the smallest set 
losed under the rules1. If A 2MLL, then A 2 LT(L);2. If A;B 2 LT(L), then :A 2 LT(L) and A ^B 2 LT(L);3. If A;B 2MLL, then S(A;B) 2 LT(L) and U(A;B) 2 LT(L).Note that the atoms of LUS are not elements of LT(L). As an example of a temporalised language,
onsider the atoms p; q 2 LL and � is a modal symbol in L, then �p and �(p ^ q) are monolithi
formulas whereas :�p and �p ^�q are two Boolean 
ombinations.The mirror image of a given formula is given by repla
ing U by S and vi
e-versa. We will usethe 
onne
tives _ and! and the 
onstants > and ? in its usual meaning. Also, the formulas PA,2



FA, GA and HA abbreviate respe
tively S(A;>), U(A;>), :F (:A) and :P (:A). The 
omplexityof a formula A is the 
ardinality of its subformulas.The Semanti
s of T(L). A 
ow of time is a pair (T;<) where T is a set of time points and <is a binary relation on T . By imposing restri
tions on < we generate 
lasses of 
ows of time, e.g.the 
lass Klin of all transitive, irre
exive and linear 
ows of time.Let KL be the 
lass of models of L. Let (T;<) be a 
ow of time and let g be a mapping fromT into KL. The mapping g is assumed to be su
h that for all formula A 2 LL for all t 2 T ,either g(t) j= A or g(t) j= :A. E.g., if L is a S5 system, the mapping g rea
hes at ea
h t a triple(Wt; Rt; xt), where (Wt; Rt) is a Kripke frame and xt 2 Wt is a possible world, so that eitherWt; Rt; xt j= A or Wt; Rt; xt j= :A, for every formula A of L; this would not be the 
ase if xt werenot in
luded.A triple MT(L) = (T;<; g) is a temporalised model of T(L). We say that a temporal model(T;<; g) belongs to a 
lass K i� (T;<) 2 K.The satisfa
tion relation j= is de�ned re
ursively over stru
ture of temporalised formulas:1. MT(L); t j= A, A 2MLL, i� g(t) =ML and ML j= A;2. MT(L); t j= :A i� MT(L); t 6j= A;3. MT(L); t j= A ^B i� MT(L); t j= A and MT(L); t j= B;4. MT(L); t j= S(A;B) i� there exists s < t su
h that MT(L); s j= A and for all s < r < t,MT(L); r j= A;5. MT(L); t j= U(A;B) i� there exists t < s su
h that MT(L); s j= A and for all t < r < s,MT(L); r j= A.A formula is valid in a 
lass K if it is veri�ed at all times at all models over that 
lass.The Inferen
e System of T(L). We assume that an inferen
e system for a generi
 logi
 systemis a me
hanism 
apable of re
ursively enumerating the set of all provable formulas of the system,here 
alled theorems of the logi
 system.An inferen
e system is sound with respe
t to a 
lass of models C if all its theorems are validover C. Conversely, it is 
omplete if all valid formulas are theorems. We assume that L's inferen
esystem is sound and 
omplete.We will assume that the temporal logi
 T's inferen
e system is given in an axiomati
 form,
onsisting of a set of axioms and a set of inferen
e rules. For example, 
onsider the possibleaxiomatizations of US over several 
lasses of 
ows of time presented in [7℄ or in [3℄. When atemporal logi
 T is sound and 
omplete over the 
lass K of 
ows, we write T=K.Given T=K, the inferen
e system of T(L) is denoted by T(L)=K and 
onsists of the followingelements:� The axioms of T=K;� The inferen
e rules of T=K;� The inferen
e rule Preserve: For every formula ' in LL, if `L ' then `T (L) '.In [5℄ it is shown that if T=K and L have a sound inferen
e system, then the inferen
e system ofT(L)=K is sound; no extra restri
tions are made on the nature of K. Also, in 
ase L has a 
omplete3



inferen
e system and Klin is a 
lass of linear 
ows of time, then the inferen
e system of if T(L)=Klinis 
omplete. We want to eliminate this restri
tion on linearity.3. Completeness of T(L)To show the transferen
e of 
ompleteness we maintain the same proof strategy of [5℄, but weintrodu
e a new te
hnique and rework its underlying 
onstru
tions. In the presen
e of linearity, one
an write a formula that expresses the fa
t that a formula A \is true everywhere" in a model. Thissimpli�es life a lot, but 
annot be reprodu
ed in a generi
 model. So we introdu
e a te
hnique thatpi
ks up the \relevant" worlds in a model for the evaluation of a given formula, and we 
onstru
ta formula that for
es A to be true over all su
h relevant worlds.
consistentϕ

model for A

model for ϕ

translation

completeness

model
manipulation

derived
completeness

A consistent

T(L)

US Figure 1. Completeness proof strategyThe strategy of the proof is illustrated in Figure 1. We start with a 
onsistent LT(L)-formula', translate it into a pure LUS-temporal logi
 
onsistent formula A; then 
ompleteness of LUS=Kgives us a model for A; after some model manipulation (and the 
ompleteness of L) we obtain aT(L)=K-model for ', thus deriving the 
ompleteness for T(L)=K. The more sophisti
ated bit ofthe proof is the initial translation step, whi
h in the generi
 
ase has to deal with the nesting oftemporal operators in ' instead of the simpler translation used for the linear 
ase. Su
h initialelaboration allows us later to do a straightforward model manipulation to 
onstru
t a model for'. To deal with the nesting of temporal operator in a formula, we de�ne the operator nesting tree ofa temporal or temporalised formula  , D . A tree is represented here as a set of strings of 0's and1's, with the symbol � representing 
on
atenation of strings; the empty string is represented by ".The tree is 
losed under pre�x formation of its strings, that is, if 101 2 D , then "; 1; 10 2 D aswell. The 0 represents a past operator (a step to the past) and the 1 represents a future operator(or a step to the future).Notation 3.1. In the following we will use the Greek letters ',  and � to indi
ate T(L) formulas,and the letters A, B and C to indi
ate temporal US formulas. We use the Greek letters ',  and� also to refer to either a temporal or temporalised formula.De�nition 3.2. Given a formula  2 LUS[LT(L) we build its operator nesting tree D re
ursivelyover the stru
ture of  : 4



1. If  is a literal or monolithi
, then D = f"g;2. If  = '1 ^ '2, then D = D'1 [D'2 ;3. If  = :', then D = D';4. If  = S('1; '2), then D = f"g [ f0 � sjs 2 D'1 [D'2g;5. If  = U('1; '2), then D = f"g [ f1 � sjs 2 D'1 [D'2g.This de�nition implies that " 2 D for any  and, as a 
onsequen
e, the pre�x of any string inD will also be a member of D . For example, 
onsider the US formulaA = S(U(p; S(p; q)); S(p; p)) ^ U(:U(p; q); S(p; q))It's asso
iated operator nesting tree will be:DA = DS(U(p;S(p;q));S(p;p)) [DU(:U(p;q);S(p;q));DA = f"g [ f0 � sjs 2 DU(p;S(p;q)) [DS(p;p)g [ f1 � rjr 2 DU(p;q) [DS(p;q)g;DA = f"; 0; 1g [ f01 � s0js0 2 Dp [DS(p;q)g [ f00 � s00js00 2 Dpg[f11 � r0jr0 2 Dp [Dqg [ f10 � r00jr00 2 Dp [Dqg;DA = f"; 0; 1; 01; 00; 11; 10g [ f010 � s000js000 2 [Dp [Dqg ;DA = f"; 0; 1; 01; 00; 11; 10; 010g:Let 1m represents a string of m 1's, and similarly for 0m. Let 00 and 10 represent the emptystring. So ea
h string 
an be represented as 1m10m2 : : : 1mn�10mn , where all mi > 0, ex
ept for m1and mn, that 
an be 0. Note that n is always an even number.Ea
h su
h string is then asso
iated to a temporal operator over H and G. Let H0 =G0 = ;let Gn+1 = G(Gn ); and Hn+1 = H(Hn ). So ea
h string 1m10m2 : : : 1mn�10mn is asso
iatedwith the temporal operator Gm1Hm2 : : : Gmn�1Hmn , whi
h we abbreviate as �m1;m2;:::;mn�1;mn .As an example, �0;2(�0;3;1;0 ) � �0;5;1;0 instead of �0;2;0;3;1;0 .We 
an now start de�ning the translation of 
onsistent formulas in T(L) into 
onsistent formulasin US. The �rst step is the 
orresponden
e mapping.De�nition 3.3. Let fp1; p2;: : :g be an enumeration of the set of atoms of US, and let f 1;  2; : : : gbe an enumeration of MLL, the set of monolithi
 formulas of T(L). De�ne the 
orresponden
emapping � from LT(L) into LUS, indu
tively over a formula as:(8 i 2MLL)(�( i)) = pi�(:�) = :�(�)�(�1 ^ �2) = �(�1) ^ �(�2)�(S(�1; �2)) = S(�(�1); �(�2))�(U(�1; �2)) = U(�(�1); �(�2))The following two lemmas are shown in [5℄:Lemma 3.4 (The 
orresponden
e Lemma). The 
orresponden
e mapping � is a bije
tion:Lemma 3.5. For all � 2 LT(L), if � is T(L)-
onsistent, then �(�) is US-
onsistent:The reverse of Lemma 3.5 is not true, as we 
an see in this example:Example 3.6. In a modal normal logi
 with the modality �, for all atoms '; ,� � �('!  )! (�'! � )5



is a theorem in L. The formulas �('!  ), �' and � are monolithi
, so they are mapped by �into some atoms of US, say p1, p2 and p3, respe
tively.Thus, �(�) = p1 ! (p2 ! p3), that is not a theorem in T.For the model manipulation in the �nal part of the proof of 
ompleteness, we will need also the
onverse of Lemma 3.5, that is, T(L) theorems must be mapped into US theorems. To a
hieve that,we de�ne the transformation �, whi
h makes use of the operator nesting tree D , and preserves
onsisten
y and whi
h will guarantee that theorems in are mapped into theorems of US.De�nition 3.7. Given two formulas '; 2 LT(L), de�ne:1. Mon(') is the set of monolithi
 subformulas of ';2. Lit(') =Mon(') [ f: j 2Mon(')g;3. In
(') = fVF jF � Lit(') and F `L?g; that is In
(') is the set of L-in
onsistent formulasthat 
an be built using the monolithi
 subformulas of ';4. �' is the 
onjun
tion of all formulas of the form �m1;:::;mn where �m1;:::;mn is a temporaloperator asso
iated to a string in the operator nesting tree D';5. �(') = Vf�': j 2 In
(')g.Example 3.8. If ' = S(p; q), then D' = f"; 0g. So, for any formula  , �' = �0;0 ^�0;1 = ^H .The terminology used in De�nition 3.7 were introdu
ed in [5℄. The modi�
ation for the general
ase we had to make here is restri
ted to the de�nition of �' (used in the de�nitions of �(')).The following Lemma is an adaptation of [5℄ for a the 
ase of generi
 
ows of time.Lemma 3.9. `T(L) �( ).Proof: Every formula ' in In
( ) is a 
ontradi
tion, and therefore its negation is a theorem ofT(L). Now, if :' is a theorem, so are H:' and G:'; by indu
tion we get that �m1;:::;mn:' is atheorem too, for any m1; : : : ;mn.Putting together Lemmas 3.5 and 3.9, we have that if  is T(L)-
onsistent, then �( ^ �( )) isUS-
onsistent. We 
an apply 
ompleteness of US/K and obtain a US-model MUS for �( ^ �( ))over K. Furthermore, the theoremhood of the monolithi
 L-formulas in  is 
aptured in �( ) andwill guarantee that its translation will be true in the \relevant part" of MUS. It is this notion of\relevant part" of a temporal model that we de�ne next by asso
iating sub
ows of time to binarytrees (not very surprisingly). At this part of the proof we will be working at the US level.Let (T;<) 2 K be a 
ow of time, and let t; s 2 T . We say that s is 1-related to t if t < s (s isin the future of t); similarly, s is 0-related to t if s < t (s is in the past of t). Let t1; : : : ; tn 2 T bea sequen
e of time points su
h that ea
h pair ti; ti+1 is 0- or 1-related. Su
h a sequen
e 
an thenbe asso
iated to a string of 0's and 1's of length n� 1, where the ith position is 1 if ti and ti+1 are1-related, and 0 otherwise; we represent it as string(t1; : : : ; tn).The \relevant part" of a 
ow of time (T;<), with respe
t to a temporal formula A at a point t,is formally de�ned as the range of A at t over (T;<), Rg(A; t):6



Rg(A; t) = ftg [ fs 2 T j string(t; t1; : : : ; tn; s) 2 DA for some t1; : : : ; tn 2 TgNote that sin
e DA = D:A, it follows that Rg(A; t) = Rg(:A; t).It is important to highlight that we are not 
onstru
ting a submodel of a given model generatedby Rg(A; t). Our aim is to 
onstru
t a model that belongs to a 
lass K. If we start in a model overK and generate a submodel based on Rg(A; t), there is no way to guarantee that the generatedsubmodel belongs to K, and in general it does not. So Rg(A; t) will be used to fo
us on a relevantpart of the model. The satisfa
tion of a formula A at a point t in a temporal model depends onlyon the temporal valuation at points in Rg(A; t), as shown below.Lemma 3.10. Consider a temporal model M = (T;<; g), a formula A 2 LUS, and a point t 2 T .Then for any model M0 = (T;<; g0) su
h that g0(s) = g(s) for every s 2 Rg(A; t),M; t j= A i� M0; t j= A:Proof: Initially note that, both M and M0 are based on the same 
ow of time, so for everyformula B of A and for every s 2 T , Rg(B; s) is the same set. We pro
eed by stru
tural indu
tionover A.� If A is atomi
, then g(t) = g0(t).� If A = :B, then Rg(A; t) = Rg(B; t), so the indu
tion hypothesis dire
tly �ves us the result.� If A = B1 ^B2, then Rg(A; t) = Rg(B1; t) [Rg(B2; t), and therefore for every s 2 Rg(Bi; t),g(t) = g0(t) [i = 1; 2℄, so the indu
tion hypothesis applies and gives us that M; t j=Bi i� M0; t j= Bi, from whi
h the result follows immediately.� If A = S(B;C), then M; t j= A i� there exists a t0 < t with M; t0 j= B and for every t00su
h that t0 < t00 < t, M; t00 j= C. Note that both t0; t00 2 Rg(A; t). Furthermore, be
ausethe temporal nesting of B and C is smaller than that of A, we have Rg(B; t0) � Rg(A; t)and therefore g(s) = g(s0) for every s 2 Rg(B; t0), so the indu
tion hypothesis applies andyields M; t0 j= B i� M0; t0 j= B; analogously, we get that for every t00 su
h that t0 < t00 < t,M; t00 j= C i� M0; t0 j= C, and therefore the result follows.� If A = S(B;C) the reasoning is totally analogous to the previous 
ase, �nishing the proof.The following lemma shows that the de�nition of �( ) preserves  's truth value over that\relevant part" of a model.Lemma 3.11. Let MUS = (T;<; g) be a temporal model over K and '; 2 LT(L). Let t 2 T sothat MUS; t j= �(�' ). Then for every s 2 Rg(�('); t), MUS; s j= �( ).Proof: We know that �' = ^1m1 :::0mn2D'�m1;::: ;mn :A simple indu
tion shows that D' = D�('), and therefore�(�' ) = ^1m1 :::0mn2D�(')�m1;::: ;mn�( ):7



Consider s 2 Rg(�('); t). Then either s = t or there are t1; : : : ; tn 2 Rg(�('); t) su
h thatstring(t; t1; : : : ; tn; s) 2 D�('). If s = t, sin
e " 2 D�('), it follows that MUS; s j= �( ). In thelatter 
ase, we show the result by indu
tion on n.For n = 1, we have that either s < t, in whi
h 
ase we have that MUS; t j= H�( ) so MUS; s j=�( ), or t < s, in whi
h 
ase we have that MUS; t j= G�( ) so MUS; s j= �( ).For the indu
tive 
ase, we have that string(t; t1; : : : ; tn; s) 2 D�('). Again we have two possibili-ties. If tn < s then the rightmost operator in �m1;::: ;mn is a G, and the indu
tion hypothesis givesus that MUS; tn j= G�( ) so MUS; s j= �( ). If s < tn then the rightmost operator in �m1;::: ;mnis an H, and the indu
tion hypothesis gives us that MUS; tn j= H�( ) so MUS; s j= �( ).This �nishes the indu
tion and the proof.We 
an now �nally to glue the pie
es of the 
ompleteness proof.Theorem 3.12. If the logi
al system L is 
omplete and US is 
omplete over a 
lass of 
ows oftime K, then the logi
al system T(L) is 
omplete over K.Proof: Let  be a T(L)/K-
onsistent formula. We will 
onstru
t a T(L)-model for  over the
lass K.By Lemma 3.9,  ^ �( ) is also a T(L)-
onsistent formula. So, by Lemma 3.5, �( ^ �( )) is aT-
onsistent formula. As we assume that US=K is 
omplete, then there exists a temporal modelMUS = (T;<; g) with (T;<) 2 K su
h that for some t 2 T , MUS; t j= �( ^ �( )). For everys 2 Rg( ; t), de�ne: G (t) = f' 2 Lit( )jMUS; t j= �(')gClaim: For every s 2 Rg( ; t), G (s) is �nite and L-
onsistent.Indeed, G (t) is �nite be
ause Lit( ) is �nite. To prove 
onsisten
y, suppose by absurd thatfor some s 2 T , G (s) is L-in
onsistent. Then there exists a subset of G (s), f'1; : : : ; 'ng su
hthat `L V1�i�n 'i ! ?. Thus V1�i�n 'i 2 In
( ).Let � = � �(V1�i�n 'i). As MUS; t j= �( ^ �( )) and :� is a 
onjun
t of �( ^ �( )), i.e.�( ^ �( )) = � ^ :�, for some formula �; by Lemma 3.11 and MUS; t j= :�, it follows thatMUS; s j= :�. By the de�nition of G (s),MUS; s j= �(V1�i�n 'i), 
ontradi
ting the in
onsisten
yof V1�i�n 'i.Therefore G (s) is always L-
onsistent, proving the 
laim.This 
laim is then used to build a model for  in the following way. By Lemma 3.11, for ea
hs 2 Rg( ; t), MUS; s j= �(G (t)). By hypothesis, L is 
omplete, so for ea
h s 2 Rg( ; t) thereexists a model for the L-
onsistent formula G (s), MsL. So, we 
an de�ne a valuation h as:h(s) =MsLfor every s 2 Rg( ; t); for s 2 T �Rg( ; t), h(s) 
an be any model of L.Consider MT(L) = (T;<; h). To obtain 
ompleteness, all we have to do is to prove thatMT(L); t j=  . First, note that for every s 2 Rg( ; t), and every monolithi
 subformula B of , MT(L); t j= ' i� MUS; t j= �('). Then a straightforward stru
tural indu
tion on ' generalizesthis to show that MT(L); t j=  i� MUS; t j= �( ); details omitted.8



But sin
e we have thatMUS; t j= �( ), it follows thatMT(L) is a temporalised model for  overK, �nishing the proof. 4. De
idability and ComplexityDe
idability and Complexity results are shown in [5℄ 
onditioned to 
ompleteness of a givensubsystem of the linear 
ow of time system K.We extend here the de
idability and 
omplexity shown in [5℄. Re
all that a given system L isde
idable if for any formula  2 L, there exists a de
ision pro
edure to show if  is a theorem ornot. So, if L is 
omplete then L is de
idable if for any formula  2 L, it is possible to show if  isvalid or not.Let us suppose that both the temporal system T and the external system L are de
idable. Weassume for simpli
ity that both T and the external system L are sound and 
omplete. Then, T(L) isalso sound and 
omplete, and it follows that de
idability is obtainable if we 
an de
ide the validityof a T(L) formula  in any temporalised model.Now, be
ause L is de
idable, the formula �( ) 
an be 
onstru
ted and is a T(L)-theorem, so  is a theorem i� �( ) !  is. We want to show that  is a T(L)-theorem i� �(�( ) !  ) is aUS-theorem.It is trivial to show that if �( ) is a US-theorem, then  is a T(L)-theorem; it suÆ
es to mimi
the US-proof at the temporalised level, sin
e all US axioms and inferen
e rules are present atT(L).For the other dire
tion, suppose  is a T(L)-theorem. I follows from Lemmas 3.10 and 3.11,that if there was a 
ountermodel for �(�( ) !  ), we would be able to 
onstru
t a 
ountermodelfor �( )!  , and thus also a 
ountermodel for  , whi
h 
ontradi
ts 
ompleteness.Therefore we have proved that to de
ide whether  is a theorem, we 
an de
ide if �(�( )!  )is a theorem. But sin
e �( ) is 
onstru
tible by the de
idability of L, we 
an apply the de
idabilityof US as the �nal part of our de
ision pro
edure. We have thus proved that:Theorem 4.1. If T and L are sound, 
omplete and de
idable, T(L) is de
idable.To eliminate the need to assume soundness and 
ompleteness, a proof method like that of [5℄
an be applied, with 
onsiderably more proof theoreti
al manipulation.5. Con
lusionWe have extended the original result on temporalisation of [5℄ to any 
ow of time. Re
ursivetemporalisations were used in [2℄ to show the transferen
e of 
ompleteness and de
idability for thefull 
ombination of two linear US-temporal logi
s. Su
h 
ombinations do not have the restri
tionthat one logi
 is external to the other, and allows arbitrary nesting of one kind of modality insidethe other.What is notable is that the same original 
onstru
tion of [2℄ applies dire
tly to the re
ursivetemporalisation of generi
 (not ne
essarily linear) temporal logi
s. That is, the results here pre-sented also generalise the transferen
e of 
ompleteness and de
idability to the full 
ombination ofUS-temporal logi
s. 9
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