
THE UNRESTRICTED ADDITION OF A TEMPORAL DIMENSION TO ALOGIC SYSTEMMARCELO FINGER AND M. ANGELA WEISSAbstrat. This papers generalises and ompletes the work on ombining temporal logis startedby Finger and Gabbay [5℄. We present proofs of transferene of ompleteness and deidability forthe temporalisation of logis T(L) for any ow of time, eliminating the original restrition thatrequired linear time for the transferene of those properties through logi ombination.This generalisation over generi ows of times propagates to other ombinations of logis thatan be interpreted in terms of temporalisations. In this way, the independent ombination oftemporal logis is obtained over generi ows of time.1. IntrodutionIn this paper we extend the study of the temporalisation of logi systems introdued by Fingerand Gabbay in [5℄. There, the temporalisation proess was restrited to linear ows of time. Here,we aim to generalize it to any ow of time. We are interested in studying the transferene ofproperties from the logi system L into its temporalised version T(L).The system T(L) ombines two logis: a temporal logi T, whih is applied externally to a givenlogi system L. This ombination proess, alled temporalisation, involves the ombination of thelanguages, inferene systems, and model strutures of T and L into a language, inferene systemand model struture of T(L). We show that if the logi systems T and L are sound, omplete ordeidable, then T(L) is also sound, omplete or deidable; no onstraints are imposed on the natureof the ow of time.To show the transferene of ompleteness via logi ombination, we maintain the same generalproof strategy of by Finger and Gabbay [5℄. However, beause here we annot rely on the linearityof the ow of time, the underlying proof onstrution has to be almost fully reworked. For that, weintrodue a bound assoiated to the number of steps in \the past" and the number of steps in \thefuture" one must take to evaluate a given formula  in a temporal model. This onstrution allowsus to selet the \relevant" time points in the evaluation of a formula. The set of \relevant" timepoints may be in�nite, but eah point an be reahed in �nitely many steps. This onstrutionallows us to do without the original restrition of linearity.Our approah naturally leads us to deision proedures. In Setion 4 we show that providedthat L and T are deidable, so is T(L).Combination of logis have been previously analyzed in the literature. Combinations of tenseand modality were disussed in [6℄, without expliitly providing a general methodology for doing so.Fine and Shurz [1℄ and Kraht and Wolter [4℄ have studied the transfer properties of systematiallyombining independently axiomatisable monomodal systems. The work of [1℄ generalizes to morethan two independent modalities. Finger and Gabbay [5, 2℄ were the �rst to address the issue of1



ombining logis with two-plae modalities, S (\sine") and U (\until"), and with modalities thatwere not all independent, for \sine" and \until" interat with eah other. The results of [5, 2℄,however, are restrited to the ase of linear ows of time and, beause non-linear ows, e.g. overtrees or over some other partially ordered sets, often appears in Mathematis as well as in ComputerSiene, our approah is needed.It is important to note that this generalisation over generi ows of times propagates to otherombinations of logis that an be interpreted in terms of temporalisations. In [2℄, it was shownthat the independent ombination of two US logis, US � �U �S an be seen as the in�nite union ofseveral temporalisation US( �U �S) and US( �U �S(US)); : : : , and thus the results here also generalisethe transferene of soundness, ompleteness and deidability for US � �U �S over generi ows oftime. 2. The Temporalised System T(L)In this setion we desribe the system T(L) introdued in [5℄. By a logi system we mean atriple S = (LS ;`S ;KS), where LS is the system's language, `S is an inferene system and KS isthe system's assoiated lass of models.The language of T(L). The language LUS of the temporal system T is built from a denumerableset of atoms A, applying the two-plae modalities U (until) and S, (sine), and the Booleanonnetives : (negation) and ^ (onjuntion).Very little is required of the internal logi L, exept that its language is desribed from adenumerable set of atoms and that it has the lassial Boolean onnetives : and ^; but see belowin ase it does not have them. Apart from that, any other type of modalities or prediates areaepted in the language.Before we de�ne the language of the temporalised system T(L) we need to introdue a fewde�nitions.The language LL of L is partitioned into the sets BCL and MLL, where:� BCL, the set of Boolean ombinations onsists of the formulas built up from any other formulaswith the use of the Boolean onnetives : or ^;� MLL, the set of monolithi formulas is the omplementary set of BCL in LL.If the external logi L does not ontain the lassial onnetives : and ^, we assume thatMLL = LL and BCL = ;, so every formula in L is onsidered monolithi.The set of temporalised formulas, LT(L), is de�ned as the smallest set losed under the rules1. If A 2MLL, then A 2 LT(L);2. If A;B 2 LT(L), then :A 2 LT(L) and A ^B 2 LT(L);3. If A;B 2MLL, then S(A;B) 2 LT(L) and U(A;B) 2 LT(L).Note that the atoms of LUS are not elements of LT(L). As an example of a temporalised language,onsider the atoms p; q 2 LL and � is a modal symbol in L, then �p and �(p ^ q) are monolithiformulas whereas :�p and �p ^�q are two Boolean ombinations.The mirror image of a given formula is given by replaing U by S and vie-versa. We will usethe onnetives _ and! and the onstants > and ? in its usual meaning. Also, the formulas PA,2



FA, GA and HA abbreviate respetively S(A;>), U(A;>), :F (:A) and :P (:A). The omplexityof a formula A is the ardinality of its subformulas.The Semantis of T(L). A ow of time is a pair (T;<) where T is a set of time points and <is a binary relation on T . By imposing restritions on < we generate lasses of ows of time, e.g.the lass Klin of all transitive, irreexive and linear ows of time.Let KL be the lass of models of L. Let (T;<) be a ow of time and let g be a mapping fromT into KL. The mapping g is assumed to be suh that for all formula A 2 LL for all t 2 T ,either g(t) j= A or g(t) j= :A. E.g., if L is a S5 system, the mapping g reahes at eah t a triple(Wt; Rt; xt), where (Wt; Rt) is a Kripke frame and xt 2 Wt is a possible world, so that eitherWt; Rt; xt j= A or Wt; Rt; xt j= :A, for every formula A of L; this would not be the ase if xt werenot inluded.A triple MT(L) = (T;<; g) is a temporalised model of T(L). We say that a temporal model(T;<; g) belongs to a lass K i� (T;<) 2 K.The satisfation relation j= is de�ned reursively over struture of temporalised formulas:1. MT(L); t j= A, A 2MLL, i� g(t) =ML and ML j= A;2. MT(L); t j= :A i� MT(L); t 6j= A;3. MT(L); t j= A ^B i� MT(L); t j= A and MT(L); t j= B;4. MT(L); t j= S(A;B) i� there exists s < t suh that MT(L); s j= A and for all s < r < t,MT(L); r j= A;5. MT(L); t j= U(A;B) i� there exists t < s suh that MT(L); s j= A and for all t < r < s,MT(L); r j= A.A formula is valid in a lass K if it is veri�ed at all times at all models over that lass.The Inferene System of T(L). We assume that an inferene system for a generi logi systemis a mehanism apable of reursively enumerating the set of all provable formulas of the system,here alled theorems of the logi system.An inferene system is sound with respet to a lass of models C if all its theorems are validover C. Conversely, it is omplete if all valid formulas are theorems. We assume that L's inferenesystem is sound and omplete.We will assume that the temporal logi T's inferene system is given in an axiomati form,onsisting of a set of axioms and a set of inferene rules. For example, onsider the possibleaxiomatizations of US over several lasses of ows of time presented in [7℄ or in [3℄. When atemporal logi T is sound and omplete over the lass K of ows, we write T=K.Given T=K, the inferene system of T(L) is denoted by T(L)=K and onsists of the followingelements:� The axioms of T=K;� The inferene rules of T=K;� The inferene rule Preserve: For every formula ' in LL, if `L ' then `T (L) '.In [5℄ it is shown that if T=K and L have a sound inferene system, then the inferene system ofT(L)=K is sound; no extra restritions are made on the nature of K. Also, in ase L has a omplete3



inferene system and Klin is a lass of linear ows of time, then the inferene system of if T(L)=Klinis omplete. We want to eliminate this restrition on linearity.3. Completeness of T(L)To show the transferene of ompleteness we maintain the same proof strategy of [5℄, but weintrodue a new tehnique and rework its underlying onstrutions. In the presene of linearity, onean write a formula that expresses the fat that a formula A \is true everywhere" in a model. Thissimpli�es life a lot, but annot be reprodued in a generi model. So we introdue a tehnique thatpiks up the \relevant" worlds in a model for the evaluation of a given formula, and we onstruta formula that fores A to be true over all suh relevant worlds.
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US Figure 1. Completeness proof strategyThe strategy of the proof is illustrated in Figure 1. We start with a onsistent LT(L)-formula', translate it into a pure LUS-temporal logi onsistent formula A; then ompleteness of LUS=Kgives us a model for A; after some model manipulation (and the ompleteness of L) we obtain aT(L)=K-model for ', thus deriving the ompleteness for T(L)=K. The more sophistiated bit ofthe proof is the initial translation step, whih in the generi ase has to deal with the nesting oftemporal operators in ' instead of the simpler translation used for the linear ase. Suh initialelaboration allows us later to do a straightforward model manipulation to onstrut a model for'. To deal with the nesting of temporal operator in a formula, we de�ne the operator nesting tree ofa temporal or temporalised formula  , D . A tree is represented here as a set of strings of 0's and1's, with the symbol � representing onatenation of strings; the empty string is represented by ".The tree is losed under pre�x formation of its strings, that is, if 101 2 D , then "; 1; 10 2 D aswell. The 0 represents a past operator (a step to the past) and the 1 represents a future operator(or a step to the future).Notation 3.1. In the following we will use the Greek letters ',  and � to indiate T(L) formulas,and the letters A, B and C to indiate temporal US formulas. We use the Greek letters ',  and� also to refer to either a temporal or temporalised formula.De�nition 3.2. Given a formula  2 LUS[LT(L) we build its operator nesting tree D reursivelyover the struture of  : 4



1. If  is a literal or monolithi, then D = f"g;2. If  = '1 ^ '2, then D = D'1 [D'2 ;3. If  = :', then D = D';4. If  = S('1; '2), then D = f"g [ f0 � sjs 2 D'1 [D'2g;5. If  = U('1; '2), then D = f"g [ f1 � sjs 2 D'1 [D'2g.This de�nition implies that " 2 D for any  and, as a onsequene, the pre�x of any string inD will also be a member of D . For example, onsider the US formulaA = S(U(p; S(p; q)); S(p; p)) ^ U(:U(p; q); S(p; q))It's assoiated operator nesting tree will be:DA = DS(U(p;S(p;q));S(p;p)) [DU(:U(p;q);S(p;q));DA = f"g [ f0 � sjs 2 DU(p;S(p;q)) [DS(p;p)g [ f1 � rjr 2 DU(p;q) [DS(p;q)g;DA = f"; 0; 1g [ f01 � s0js0 2 Dp [DS(p;q)g [ f00 � s00js00 2 Dpg[f11 � r0jr0 2 Dp [Dqg [ f10 � r00jr00 2 Dp [Dqg;DA = f"; 0; 1; 01; 00; 11; 10g [ f010 � s000js000 2 [Dp [Dqg ;DA = f"; 0; 1; 01; 00; 11; 10; 010g:Let 1m represents a string of m 1's, and similarly for 0m. Let 00 and 10 represent the emptystring. So eah string an be represented as 1m10m2 : : : 1mn�10mn , where all mi > 0, exept for m1and mn, that an be 0. Note that n is always an even number.Eah suh string is then assoiated to a temporal operator over H and G. Let H0 =G0 = ;let Gn+1 = G(Gn ); and Hn+1 = H(Hn ). So eah string 1m10m2 : : : 1mn�10mn is assoiatedwith the temporal operator Gm1Hm2 : : : Gmn�1Hmn , whih we abbreviate as �m1;m2;:::;mn�1;mn .As an example, �0;2(�0;3;1;0 ) � �0;5;1;0 instead of �0;2;0;3;1;0 .We an now start de�ning the translation of onsistent formulas in T(L) into onsistent formulasin US. The �rst step is the orrespondene mapping.De�nition 3.3. Let fp1; p2;: : :g be an enumeration of the set of atoms of US, and let f 1;  2; : : : gbe an enumeration of MLL, the set of monolithi formulas of T(L). De�ne the orrespondenemapping � from LT(L) into LUS, indutively over a formula as:(8 i 2MLL)(�( i)) = pi�(:�) = :�(�)�(�1 ^ �2) = �(�1) ^ �(�2)�(S(�1; �2)) = S(�(�1); �(�2))�(U(�1; �2)) = U(�(�1); �(�2))The following two lemmas are shown in [5℄:Lemma 3.4 (The orrespondene Lemma). The orrespondene mapping � is a bijetion:Lemma 3.5. For all � 2 LT(L), if � is T(L)-onsistent, then �(�) is US-onsistent:The reverse of Lemma 3.5 is not true, as we an see in this example:Example 3.6. In a modal normal logi with the modality �, for all atoms '; ,� � �('!  )! (�'! � )5



is a theorem in L. The formulas �('!  ), �' and � are monolithi, so they are mapped by �into some atoms of US, say p1, p2 and p3, respetively.Thus, �(�) = p1 ! (p2 ! p3), that is not a theorem in T.For the model manipulation in the �nal part of the proof of ompleteness, we will need also theonverse of Lemma 3.5, that is, T(L) theorems must be mapped into US theorems. To ahieve that,we de�ne the transformation �, whih makes use of the operator nesting tree D , and preservesonsisteny and whih will guarantee that theorems in are mapped into theorems of US.De�nition 3.7. Given two formulas '; 2 LT(L), de�ne:1. Mon(') is the set of monolithi subformulas of ';2. Lit(') =Mon(') [ f: j 2Mon(')g;3. In(') = fVF jF � Lit(') and F `L?g; that is In(') is the set of L-inonsistent formulasthat an be built using the monolithi subformulas of ';4. �' is the onjuntion of all formulas of the form �m1;:::;mn where �m1;:::;mn is a temporaloperator assoiated to a string in the operator nesting tree D';5. �(') = Vf�': j 2 In(')g.Example 3.8. If ' = S(p; q), then D' = f"; 0g. So, for any formula  , �' = �0;0 ^�0;1 = ^H .The terminology used in De�nition 3.7 were introdued in [5℄. The modi�ation for the generalase we had to make here is restrited to the de�nition of �' (used in the de�nitions of �(')).The following Lemma is an adaptation of [5℄ for a the ase of generi ows of time.Lemma 3.9. `T(L) �( ).Proof: Every formula ' in In( ) is a ontradition, and therefore its negation is a theorem ofT(L). Now, if :' is a theorem, so are H:' and G:'; by indution we get that �m1;:::;mn:' is atheorem too, for any m1; : : : ;mn.Putting together Lemmas 3.5 and 3.9, we have that if  is T(L)-onsistent, then �( ^ �( )) isUS-onsistent. We an apply ompleteness of US/K and obtain a US-model MUS for �( ^ �( ))over K. Furthermore, the theoremhood of the monolithi L-formulas in  is aptured in �( ) andwill guarantee that its translation will be true in the \relevant part" of MUS. It is this notion of\relevant part" of a temporal model that we de�ne next by assoiating subows of time to binarytrees (not very surprisingly). At this part of the proof we will be working at the US level.Let (T;<) 2 K be a ow of time, and let t; s 2 T . We say that s is 1-related to t if t < s (s isin the future of t); similarly, s is 0-related to t if s < t (s is in the past of t). Let t1; : : : ; tn 2 T bea sequene of time points suh that eah pair ti; ti+1 is 0- or 1-related. Suh a sequene an thenbe assoiated to a string of 0's and 1's of length n� 1, where the ith position is 1 if ti and ti+1 are1-related, and 0 otherwise; we represent it as string(t1; : : : ; tn).The \relevant part" of a ow of time (T;<), with respet to a temporal formula A at a point t,is formally de�ned as the range of A at t over (T;<), Rg(A; t):6



Rg(A; t) = ftg [ fs 2 T j string(t; t1; : : : ; tn; s) 2 DA for some t1; : : : ; tn 2 TgNote that sine DA = D:A, it follows that Rg(A; t) = Rg(:A; t).It is important to highlight that we are not onstruting a submodel of a given model generatedby Rg(A; t). Our aim is to onstrut a model that belongs to a lass K. If we start in a model overK and generate a submodel based on Rg(A; t), there is no way to guarantee that the generatedsubmodel belongs to K, and in general it does not. So Rg(A; t) will be used to fous on a relevantpart of the model. The satisfation of a formula A at a point t in a temporal model depends onlyon the temporal valuation at points in Rg(A; t), as shown below.Lemma 3.10. Consider a temporal model M = (T;<; g), a formula A 2 LUS, and a point t 2 T .Then for any model M0 = (T;<; g0) suh that g0(s) = g(s) for every s 2 Rg(A; t),M; t j= A i� M0; t j= A:Proof: Initially note that, both M and M0 are based on the same ow of time, so for everyformula B of A and for every s 2 T , Rg(B; s) is the same set. We proeed by strutural indutionover A.� If A is atomi, then g(t) = g0(t).� If A = :B, then Rg(A; t) = Rg(B; t), so the indution hypothesis diretly �ves us the result.� If A = B1 ^B2, then Rg(A; t) = Rg(B1; t) [Rg(B2; t), and therefore for every s 2 Rg(Bi; t),g(t) = g0(t) [i = 1; 2℄, so the indution hypothesis applies and gives us that M; t j=Bi i� M0; t j= Bi, from whih the result follows immediately.� If A = S(B;C), then M; t j= A i� there exists a t0 < t with M; t0 j= B and for every t00suh that t0 < t00 < t, M; t00 j= C. Note that both t0; t00 2 Rg(A; t). Furthermore, beausethe temporal nesting of B and C is smaller than that of A, we have Rg(B; t0) � Rg(A; t)and therefore g(s) = g(s0) for every s 2 Rg(B; t0), so the indution hypothesis applies andyields M; t0 j= B i� M0; t0 j= B; analogously, we get that for every t00 suh that t0 < t00 < t,M; t00 j= C i� M0; t0 j= C, and therefore the result follows.� If A = S(B;C) the reasoning is totally analogous to the previous ase, �nishing the proof.The following lemma shows that the de�nition of �( ) preserves  's truth value over that\relevant part" of a model.Lemma 3.11. Let MUS = (T;<; g) be a temporal model over K and '; 2 LT(L). Let t 2 T sothat MUS; t j= �(�' ). Then for every s 2 Rg(�('); t), MUS; s j= �( ).Proof: We know that �' = ^1m1 :::0mn2D'�m1;::: ;mn :A simple indution shows that D' = D�('), and therefore�(�' ) = ^1m1 :::0mn2D�(')�m1;::: ;mn�( ):7



Consider s 2 Rg(�('); t). Then either s = t or there are t1; : : : ; tn 2 Rg(�('); t) suh thatstring(t; t1; : : : ; tn; s) 2 D�('). If s = t, sine " 2 D�('), it follows that MUS; s j= �( ). In thelatter ase, we show the result by indution on n.For n = 1, we have that either s < t, in whih ase we have that MUS; t j= H�( ) so MUS; s j=�( ), or t < s, in whih ase we have that MUS; t j= G�( ) so MUS; s j= �( ).For the indutive ase, we have that string(t; t1; : : : ; tn; s) 2 D�('). Again we have two possibili-ties. If tn < s then the rightmost operator in �m1;::: ;mn is a G, and the indution hypothesis givesus that MUS; tn j= G�( ) so MUS; s j= �( ). If s < tn then the rightmost operator in �m1;::: ;mnis an H, and the indution hypothesis gives us that MUS; tn j= H�( ) so MUS; s j= �( ).This �nishes the indution and the proof.We an now �nally to glue the piees of the ompleteness proof.Theorem 3.12. If the logial system L is omplete and US is omplete over a lass of ows oftime K, then the logial system T(L) is omplete over K.Proof: Let  be a T(L)/K-onsistent formula. We will onstrut a T(L)-model for  over thelass K.By Lemma 3.9,  ^ �( ) is also a T(L)-onsistent formula. So, by Lemma 3.5, �( ^ �( )) is aT-onsistent formula. As we assume that US=K is omplete, then there exists a temporal modelMUS = (T;<; g) with (T;<) 2 K suh that for some t 2 T , MUS; t j= �( ^ �( )). For everys 2 Rg( ; t), de�ne: G (t) = f' 2 Lit( )jMUS; t j= �(')gClaim: For every s 2 Rg( ; t), G (s) is �nite and L-onsistent.Indeed, G (t) is �nite beause Lit( ) is �nite. To prove onsisteny, suppose by absurd thatfor some s 2 T , G (s) is L-inonsistent. Then there exists a subset of G (s), f'1; : : : ; 'ng suhthat `L V1�i�n 'i ! ?. Thus V1�i�n 'i 2 In( ).Let � = � �(V1�i�n 'i). As MUS; t j= �( ^ �( )) and :� is a onjunt of �( ^ �( )), i.e.�( ^ �( )) = � ^ :�, for some formula �; by Lemma 3.11 and MUS; t j= :�, it follows thatMUS; s j= :�. By the de�nition of G (s),MUS; s j= �(V1�i�n 'i), ontraditing the inonsistenyof V1�i�n 'i.Therefore G (s) is always L-onsistent, proving the laim.This laim is then used to build a model for  in the following way. By Lemma 3.11, for eahs 2 Rg( ; t), MUS; s j= �(G (t)). By hypothesis, L is omplete, so for eah s 2 Rg( ; t) thereexists a model for the L-onsistent formula G (s), MsL. So, we an de�ne a valuation h as:h(s) =MsLfor every s 2 Rg( ; t); for s 2 T �Rg( ; t), h(s) an be any model of L.Consider MT(L) = (T;<; h). To obtain ompleteness, all we have to do is to prove thatMT(L); t j=  . First, note that for every s 2 Rg( ; t), and every monolithi subformula B of , MT(L); t j= ' i� MUS; t j= �('). Then a straightforward strutural indution on ' generalizesthis to show that MT(L); t j=  i� MUS; t j= �( ); details omitted.8



But sine we have thatMUS; t j= �( ), it follows thatMT(L) is a temporalised model for  overK, �nishing the proof. 4. Deidability and ComplexityDeidability and Complexity results are shown in [5℄ onditioned to ompleteness of a givensubsystem of the linear ow of time system K.We extend here the deidability and omplexity shown in [5℄. Reall that a given system L isdeidable if for any formula  2 L, there exists a deision proedure to show if  is a theorem ornot. So, if L is omplete then L is deidable if for any formula  2 L, it is possible to show if  isvalid or not.Let us suppose that both the temporal system T and the external system L are deidable. Weassume for simpliity that both T and the external system L are sound and omplete. Then, T(L) isalso sound and omplete, and it follows that deidability is obtainable if we an deide the validityof a T(L) formula  in any temporalised model.Now, beause L is deidable, the formula �( ) an be onstruted and is a T(L)-theorem, so  is a theorem i� �( ) !  is. We want to show that  is a T(L)-theorem i� �(�( ) !  ) is aUS-theorem.It is trivial to show that if �( ) is a US-theorem, then  is a T(L)-theorem; it suÆes to mimithe US-proof at the temporalised level, sine all US axioms and inferene rules are present atT(L).For the other diretion, suppose  is a T(L)-theorem. I follows from Lemmas 3.10 and 3.11,that if there was a ountermodel for �(�( ) !  ), we would be able to onstrut a ountermodelfor �( )!  , and thus also a ountermodel for  , whih ontradits ompleteness.Therefore we have proved that to deide whether  is a theorem, we an deide if �(�( )!  )is a theorem. But sine �( ) is onstrutible by the deidability of L, we an apply the deidabilityof US as the �nal part of our deision proedure. We have thus proved that:Theorem 4.1. If T and L are sound, omplete and deidable, T(L) is deidable.To eliminate the need to assume soundness and ompleteness, a proof method like that of [5℄an be applied, with onsiderably more proof theoretial manipulation.5. ConlusionWe have extended the original result on temporalisation of [5℄ to any ow of time. Reursivetemporalisations were used in [2℄ to show the transferene of ompleteness and deidability for thefull ombination of two linear US-temporal logis. Suh ombinations do not have the restritionthat one logi is external to the other, and allows arbitrary nesting of one kind of modality insidethe other.What is notable is that the same original onstrution of [2℄ applies diretly to the reursivetemporalisation of generi (not neessarily linear) temporal logis. That is, the results here pre-sented also generalise the transferene of ompleteness and deidability to the full ombination ofUS-temporal logis. 9
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