THE UNRESTRICTED ADDITION OF A TEMPORAL DIMENSION TO A
LOGIC SYSTEM
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ABsTRACT. This papers generalises and completes the work on combining temporal logics started
by Finger and Gabbay [5]. We present proofs of transference of completeness and decidability for
the temporalisation of logics T(L) for any flow of time, eliminating the original restriction that
required linear time for the transference of those properties through logic combination.

This generalisation over generic flows of times propagates to other combinations of logics that
can be interpreted in terms of temporalisations. In this way, the independent combination of
temporal logics is obtained over generic flows of time.

1. INTRODUCTION

In this paper we extend the study of the temporalisation of logic systems introduced by Finger
and Gabbay in [5]. There, the temporalisation process was restricted to linear flows of time. Here,
we aim to generalize it to any flow of time. We are interested in studying the transference of
properties from the logic system L into its temporalised version T(L).

The system T(L) combines two logics: a temporal logic T, which is applied externally to a given
logic system L. This combination process, called temporalisation, involves the combination of the
languages, inference systems, and model structures of T and L into a language, inference system
and model structure of T(L). We show that if the logic systems T and L are sound, complete or
decidable, then T(L) is also sound, complete or decidable; no constraints are imposed on the nature
of the flow of time.

To show the transference of completeness via logic combination, we maintain the same general
proof strategy of by Finger and Gabbay [5]. However, because here we cannot rely on the linearity
of the flow of time, the underlying proof construction has to be almost fully reworked. For that, we
introduce a bound associated to the number of steps in “the past” and the number of steps in “the
future” one must take to evaluate a given formula v in a temporal model. This construction allows
us to select the “relevant” time points in the evaluation of a formula. The set of “relevant” time
points may be infinite, but each point can be reached in finitely many steps. This construction
allows us to do without the original restriction of linearity.

Our approach naturally leads us to decision procedures. In Section 4 we show that provided
that L and T are decidable, so is T(L).

Combination of logics have been previously analyzed in the literature. Combinations of tense
and modality were discussed in [6], without explicitly providing a general methodology for doing so.
Fine and Schurz [1] and Kracht and Wolter [4] have studied the transfer properties of systematically
combining independently axiomatisable monomodal systems. The work of [1] generalizes to more

than two independent modalities. Finger and Gabbay [5, 2] were the first to address the issue of
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combining logics with two-place modalities, S (“since”) and U (“until”), and with modalities that
were not all independent, for “since” and “until” interact with each other. The results of [5, 2],
however, are restricted to the case of linear flows of time and, because non-linear flows, e.g. over
trees or over some other partially ordered sets, often appears in Mathematics as well as in Computer
Science, our approach is needed.

It is important to note that this generalisation over generic flows of times propagates to other
combinations of logics that can be interpreted in terms of temporalisations. In [2], it was shown
that the independent combination of two US logics, US @ US can be seen as the infinite union of
several temporalisation US(US) and US(US(US)),..., and thus the results here also generalise
the transference of soundness, completeness and decidability for US @ US over generic flows of
time.

2. THE TEMPORALISED SYSTEM T(L)

In this section we describe the system T(L) introduced in [5]. By a logic system we mean a
triple S = (Lg,Fg,Ks), where Lg is the system’s language, g is an inference system and Kg is
the system’s associated class of models.

The language of T(L). The language Lys of the temporal system T is built from a denumerable
set of atoms A, applying the two-place modalities U (until) and S, (since), and the Boolean
connectives = (negation) and A (conjunction).

Very little is required of the internal logic L, except that its language is described from a
denumerable set of atoms and that it has the classical Boolean connectives — and A; but see below
in case it does not have them. Apart from that, any other type of modalities or predicates are
accepted in the language.

Before we define the language of the temporalised system T(L) we need to introduce a few
definitions.

The language £, of L is partitioned into the sets BC| and M L, where:

e BC\, the set of Boolean combinations consists of the formulas built up from any other formulas
with the use of the Boolean connectives — or A;
e MLy, the set of monolithic formulas is the complementary set of BC| in L.

If the external logic L does not contain the classical connectives — and A, we assume that
ML, = £, and BC_ = (), so every formula in L is considered monolithic.
The set of temporalised formulas, L), is defined as the smallest set closed under the rules

1.If Ae MLy, then A € 'CT(L);

2. If A,B € ET(L)» then —A € LT(L) and AANB € ET(L);

3. If A,B € MLy, then S(A,B) € Ly() and U(A, B) € Ly

Note that the atoms of Lys are not elements of L1(1). As an example of a temporalised language,
consider the atoms p,q € £, and O is a modal symbol in L, then Op and O(p A ¢) are monolithic
formulas whereas —p and Op A Cg are two Boolean combinations.

The marror image of a given formula is given by replacing U by S and vice-versa. We will use

the connectives V and — and the constants T and L in its usual meaning. Also, the formulas PA,
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FA, GA and H A abbreviate respectively S(A, T), U(A, T), -F(—A) and =P(—A). The complezity
of a formula A is the cardinality of its subformulas.

The Semantics of T(L). A flow of time is a pair (T, <) where T is a set of time points and <
is a binary relation on 7'. By imposing restrictions on < we generate classes of flows of time, e.g.
the class Kj;;, of all transitive, irreflexive and linear flows of time.

Let IC;, be the class of models of L. Let (T, <) be a flow of time and let g be a mapping from
T into Kr. The mapping g is assumed to be such that for all formula A € £, for all ¢t € T,
either ¢g(t) = A or g(t) = —A. E.g., if L is a S5 system, the mapping g reaches at each t a triple
(Wi, Ry, z¢), where (Wy, R;) is a Kripke frame and z; € W, is a possible world, so that either
Wy, R,z |= A or Wy, Ry, ¢ |= - A, for every formula A of L; this would not be the case if z; were
not included.

A triple M) = (T,<,g) is a temporalised model of T(L). We say that a temporal model
(T, <,g) belongs to a class K iff (T, <) € K.

The satisfaction relation |= is defined recursively over structure of temporalised formulas:

1. MT(L)at E A Ae ML, iff g(t) = My, and M, = A;

2- MT(L),t ): _|A iff MT(L)at l# A,

3. MT(L),t ): A /\B lﬁ MT(L)7t |: A and MT(L)7t ): _B7

4. Mty t = S(A, B) iff there exists s < t such that My, s E A and for all s < r < t,
M), E 4

5 Myy,t E U(A, B) iff there exists t < s such that My),s = A and for all t < r <'s,
Mrw),r = A

A formula is valid in a class K if it is verified at all times at all models over that class.

The Inference System of T(L). We assume that an inference system for a generic logic system
is a mechanism capable of recursively enumerating the set of all provable formulas of the system,
here called theorems of the logic system.

An inference system is sound with respect to a class of models C if all its theorems are valid
over C. Conversely, it is complete if all valid formulas are theorems. We assume that L’s inference
system is sound and complete.

We will assume that the temporal logic T’s inference system is given in an axiomatic form,
consisting of a set of azxioms and a set of inference rules. For example, consider the possible
axiomatizations of US over several classes of flows of time presented in [7] or in [3]. When a
temporal logic T is sound and complete over the class K of flows, we write T/K.

Given T/K, the inference system of T(L) is denoted by T(L)/XC and consists of the following
elements:

e The axioms of T/K;
e The inference rules of T/K;
e The inference rule Preserve: For every formula ¢ in £y, if -1, ¢ then Fpz) .

In [5] it is shown that if T/KC and L have a sound inference system, then the inference system of

T(L)/K is sound; no extra restrictions are made on the nature of /C. Also, in case L has a complete
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inference system and Ky, is a class of linear flows of time, then the inference system of if T(L) /Ky,
is complete. We want to eliminate this restriction on linearity.

3. COMPLETENESS OF T(L)

To show the transference of completeness we maintain the same proof strategy of [5], but we
introduce a new technique and rework its underlying constructions. In the presence of linearity, one
can write a formula that expresses the fact that a formula A “is true everywhere” in a model. This
simplifies life a lot, but cannot be reproduced in a generic model. So we introduce a technique that
picks up the “relevant” worlds in a model for the evaluation of a given formula, and we construct
a formula that forces A to be true over all such relevant worlds.

; derived
consistent --=--==--- » model for
(L) 0 completeness 0
translation modgl .
manipulation
us A consistent model for A
completeness

FiGUrE 1. Completeness proof strategy

The strategy of the proof is illustrated in Figure 1. We start with a consistent L1 )-formula
¢, translate it into a pure Lys-temporal logic consistent formula A; then completeness of Lys/K
gives us a model for A; after some model manipulation (and the completeness of L) we obtain a
T(L)/K-model for ¢, thus deriving the completeness for T(L)/X. The more sophisticated bit of
the proof is the initial translation step, which in the generic case has to deal with the nesting of
temporal operators in ¢ instead of the simpler translation used for the linear case. Such initial
elaboration allows us later to do a straightforward model manipulation to construct a model for
©.

To deal with the nesting of temporal operator in a formula, we define the operator nesting tree of
a temporal or temporalised formula +, D,,. A tree is represented here as a set of strings of 0’s and
1’s, with the symbol * representing concatenation of strings; the empty string is represented by e.
The tree is closed under prefix formation of its strings, that is, if 101 € Dy, then ¢,1,10 € Dy, as
well. The 0 represents a past operator (a step to the past) and the 1 represents a future operator
(or a step to the future).

Notation 3.1. In the following we will use the Greek letters ¢, 1) and x to indicate T(L) formulas,
and the letters A, B and C to indicate temporal US formulas. We use the Greek letters ¢, 1 and
x also to refer to either a temporal or temporalised formula.

Definition 3.2. Given a formula v € LysULy) we build its operator nesting tree Dy, recursively

over the structure of 1:
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If 4 is a literal or monolithic, then Dy = {e};

If = @1 A\ @2, then Dy, = Dy, U D,,;

If = =, then Dy = D,;

If 9 = S(p1,92), then Dy = {e} U{0*s|s € D, UD,,};
If p = U(p1,92), then Dy = {e} U{l xs|s € Dy, UDy,}.

Otk W

This definition implies that € € Dy, for any 1 and, as a consequence, the prefix of any string in
Dy, will also be a member of D,,. For example, consider the US formula

A=SU(p,Sp:q),Sp:p) NUU(p,q),S(p,q))

It’s associated operator nesting tree will be:

Da= Dswpswa)ser) Y Puuw.a).swa)
Da= {efUi0*sls € Dy spg) Y Dsppt Uil *7lr € Dygq U Dspgts
Dy= {,0,1} U{01x5'|s" € Dy U Dgp gy} U{00 *s"|s" € Dy}U
{11« r'|r" € D, U Dy} U {10 x r"|r" € D, U D},
D= {e0,1,01,00,11,10} U {010 « s""|s" € UD, U Dy} ,
Dy = {e0,1,01,00,11,10,010}.

Let 1™ represents a string of m 1’s, and similarly for 0™. Let 0° and 1° represent the empty
string. So each string can be represented as 1™10™2 .. 1M»-1(0™» where all m; > 0, except for m;
and my, that can be 0. Note that n is always an even number.

Each such string is then associated to a temporal operator over H and G. Let H%)=G")=1);
let G"Mlep = G(G™p); and H™ep = H(H™p). So each string 1™10™2 .., 1™»-10™" is associated
with the temporal operator G™*H™? ... G™»~t H™" which we abbreviate as U, m.,...;m;_1,m -

As an example, Oy 2(Co3,1,0%) = 0o 5,109 instead of Co203,1,0¢-

We can now start defining the translation of consistent formulas in T(L) into consistent formulas
in US. The first step is the correspondence mapping.

Definition 3.3. Let {p1,p2,...} be an enumeration of the set of atoms of US, and let {¢1,19,...}
be an enumeration of ML, the set of monolithic formulas of T(L). Define the correspondence
mapping o from L1y into Lys, inductively over a formula as:

(Vipi € ML )(o (i) = pi

o(~x) = -olx)
oxiAxz) = olxi)Ao(x2)
o(Sx1,x2)) = Slolx),o(x2))
o(U(x1,x2)) = Ulo(x1),o(x2))
The following two lemmas are shown in [5]:
Lemma 3.4 (The correspondence Lemma). The correspondence mapping o is a bijection. |
Lemma 3.5. For all x € Ly, if x is T(L)-consistent, then o(x) is US-consistent. [ |

The reverse of Lemma 3.5 is not true, as we can see in this example:

Example 3.6. In a modal normal logic with the modality [, for all atoms ¢, 1,

x =0(p — ) = (Op — Oy)
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is a theorem in L. The formulas O(¢ — 1), Oy and iy are monolithic, so they are mapped by o
into some atoms of US, say pi, po and ps, respectively.
Thus, o(x) = p1 — (p2 — p3), that is not a theorem in T. [ |

For the model manipulation in the final part of the proof of completeness, we will need also the
converse of Lemma 3.5, that is, T(L) theorems must be mapped into US theorems. To achieve that,
we define the transformation 7, which makes use of the operator nesting tree D, and preserves
consistency and which will guarantee that theorems in are mapped into theorems of US.

Definition 3.7. Given two formulas ¢, € L1 (L), define:

1. Mon(yp) is the set of monolithic subformulas of ¢;

2. Lit(p) = Mon(p) U {1l € Mon(p)};

3. Inc(yp) = {\ F|F C Lit(y) and F k| L}; that is Inc(yp) is the set of L-inconsistent formulas
that can be built using the monolithic subformulas of ¢;

4. Oy is the conjunction of all formulas of the form U, . % where O, ., is a temporal

n

operator associated to a string in the operator nesting tree D;

5. n(p) = NMOp—9p[p € Inc(p)}.

Example 3.8. If ¢ = S(p,q), then D, = {€,0}. So, for any formula ¢, Oyp = Oy otp A Doa¢p =
N\ Hip. [ |

The terminology used in Definition 3.7 were introduced in [5]. The modification for the general
case we had to make here is restricted to the definition of Oyt (used in the definitions of 7(y)).
The following Lemma is an adaptation of [5] for a the case of generic flows of time.

Lemma 3.9. Frq) n().

Proof: Every formula ¢ in Inc(y) is a contradiction, and therefore its negation is a theorem of
T(L). Now, if = is a theorem, so are H—p and G—y; by induction we get that Oy, ;m, 2 is a
theorem too, for any mq,... ,m,. |

Putting together Lemmas 3.5 and 3.9, we have that if ¢ is T(L)-consistent, then o(¢) An(¢))) is
US-consistent. We can apply completeness of US/K and obtain a US-model Mys for o(¢ A n(v))
over K. Furthermore, the theoremhood of the monolithic L-formulas in ¢ is captured in n(1) and
will guarantee that its translation will be true in the “relevant part” of Mys. It is this notion of
“relevant part” of a temporal model that we define next by associating subflows of time to binary
trees (not very surprisingly). At this part of the proof we will be working at the US level.

Let (T,<) € K be a flow of time, and let t,s € T. We say that s is 1-related to ¢ if ¢ < s (s is
in the future of ¢); similarly, s is O-related to t if s < ¢ (s is in the past of t). Let ¢y,... ,t, € T be
a sequence of time points such that each pair ¢;,%;11 is 0- or 1-related. Such a sequence can then
be associated to a string of 0’s and 1’s of length n — 1, where the ith position is 1 if ¢; and ¢; 1 are
1-related, and 0 otherwise; we represent it as string(¢1,... ,ty).

The “relevant part” of a flow of time (7, <), with respect to a temporal formula A at a point %,

is formally defined as the range of A at t over (T, <), Rg(A,1):
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Rg(A,t) = {t} U{s € T | string(t,t1,... ,tn,s) € D4 for some t1,... ,t, € T}

Note that since Dy = D- 4, it follows that Rg(A,t) = Rg(—A,1).

It is important to highlight that we are not constructing a submodel of a given model generated
by Rg(A,t). Our aim is to construct a model that belongs to a class K. If we start in a model over
K and generate a submodel based on Rg(A,t), there is no way to guarantee that the generated
submodel belongs to &, and in general it does not. So Rg(A,t) will be used to focus on a relevant
part of the model. The satisfaction of a formula A at a point ¢ in a temporal model depends only
on the temporal valuation at points in Rg(A,t), as shown below.

Lemma 3.10. Consider a temporal model M = (T, <,g), a formula A € Lys, and a point t € T'.
Then for any model M' = (T, <,q') such that g'(s) = g(s) for every s € Rg(A,t),

Mt Aiff Mt = A,

Proof: Initially note that, both M and M’ are based on the same flow of time, so for every
formula B of A and for every s € T', Rg(B, s) is the same set. We proceed by structural induction
over A.

e If A is atomic, then g(t) = ¢'(¢).

e If A=-DB, then Rg(A,t) = Rg(B,t), so the induction hypothesis directly fives us the result.

e If A= By A By, then Rg(A,t) = Rg(B1,t) URg(Bs,t), and therefore for every s € Rg(B;,t),
g(t) = ¢'(t) i = 1,2], so the induction hypothesis applies and gives us that M,t =
B; iff M',t = B;, from which the result follows immediately.

o If A = S(B,C), then M,t = A iff there exists a ¢ < ¢t with M, = B and for every t"
such that ¢ < t" <t, M,t" = C. Note that both ¢',t" € Rg(A,t). Furthermore, because
the temporal nesting of B and C is smaller than that of A, we have Rg(B,t') C Rg(A,t)
and therefore g(s) = g(s') for every s € Rg(B,t'), so the induction hypothesis applies and
yields M,t' = B ifft M’ ¢’ |= B; analogously, we get that for every ¢ such that ¢ < ¢" < t,
M, t" = Ciff M',t' = C, and therefore the result follows.

o If A= S(B,(C) the reasoning is totally analogous to the previous case, finishing the proof.l

The following lemma shows that the definition of n(1y) preserves v’s truth value over that
“relevant part” of a model.

Lemma 3.11. Let Mys = (T, <,g) be a temporal model over K and ¢, € Ltqy. Lett € T so
that Mys,t |= o(0yep). Then for every s € Rg(o(p),t), Muys,s = o(v).

Proof: We know that
DwQﬁ = /\ Dmla"'amn¢'

1™1..0mn €D,
A simple induction shows that D, = D), and therefore
o(ptp) = /\ Oas,...;man o (3)-

1m1...0mneD,
7
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Consider s € Rg(o(¢p),t). Then either s = t or there are t1,...,t, € Rg(o(yp),t) such that
string(t,t1, ... ,tn,8) € Dypy. If s =1, since € € Dy, it follows that Mys,s = o(1). In the
latter case, we show the result by induction on n.

For n = 1, we have that either s < ¢, in which case we have that Mys,t = Ho (1) so Mys, s E
o(¢), or t < s, in which case we have that Mys, t = Go (1) so Mys,s = o().

For the inductive case, we have that string(¢,t1,... ,t,,s) € Dy (4. Again we have two possibili-
ties. If t,, < s then the rightmost operator in U,;,, ... m, is a G, and the induction hypothesis gives
us that Muys, t, = Go() so Mys,s = o(y). If s <, then the rightmost operator in Oy, . m,,
is an H, and the induction hypothesis gives us that Mys,t, = Ho(¢) so Mys, s | ().

This finishes the induction and the proof. |

We can now finally to glue the pieces of the completeness proof.

Theorem 3.12. If the logical system L is complete and US is complete over a class of flows of
time IC, then the logical system T(L) is complete over K.

Proof: Let 1) be a T(L)/K-consistent formula. We will construct a T(L)-model for 1 over the
class K.

By Lemma 3.9, 9 A n(v) is also a T(L)-consistent formula. So, by Lemma 3.5, o(1) An(1))) is a
T-consistent formula. As we assume that US/K is complete, then there exists a temporal model
Mys = (T,<,g) with (T, <) € K such that for some ¢t € T, Mys,t = o( A n(¢)). For every
s € Rg(v,t), define:

Gy(t) = {p € Lit(4)|[Mus, t |= o(p)}

Claim: For every s € Rg(¢,t), Gy(s) is finite and L-consistent.

Indeed, Gy (t) is finite because Lit(¢) is finite. To prove consistency, suppose by absurd that
for some s € T, Gy(s) is L-inconsistent. Then there exists a subset of Gy(s), {¢1,...,¢n} such
that FL Ajjcp i = L. Thus A\, @i € Inc(y).

Let { = Oypo(A1<ic, i) As Mus,t |= o(yp An(p)) and =€ is a conjunct of o(y A (1)), ie.
o An(y)) = x A =€, for some formula y; by Lemma 3.11 and Mys,t = =€, it follows that
Muys, s = ~€. By the definition of Gy (s), Muys, s = 0(Ai<;<,, i), contradicting the inconsistency
of Ai<icn #i-

Therefore G (s) is always L-consistent, proving the claim.

This claim is then used to build a model for 1 in the following way. By Lemma 3.11, for each
s € Rg(y,t), Muys,s = o(Gy(t)). By hypothesis, L is complete, so for each s € Rg(¢,t) there
exists a model for the L-consistent formula G (s), M{. So, we can define a valuation h as:

h(s) = M}

for every s € Rg(1,t); for s € T — Rg(1),1), h(s) can be any model of L.

Consider M) = (T,<,h). To obtain completeness, all we have to do is to prove that
Mr),t F t. First, note that for every s € Rg(¢,t), and every monolithic subformula B of
Y, Mr),t = ¢ iff Mys,t = o(p). Then a straightforward structural induction on ¢ generalizes

this to show that My, t = ¢ iff Mys,t | o()); details omitted.
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But since we have that Mys,t |= o (1), it follows that M) is a temporalised model for ¢ over
IC, finishing the proof. |

4. DECIDABILITY AND COMPLEXITY

Decidability and Complexity results are shown in [5] conditioned to completeness of a given
subsystem of the linear flow of time system X.

We extend here the decidability and complexity shown in [5]. Recall that a given system L is
decidable if for any formula ¢ € L, there exists a decision procedure to show if ¢ is a theorem or
not. So, if L is complete then L is decidable if for any formula ¢ € L, it is possible to show if 1) is
valid or not.

Let us suppose that both the temporal system T and the external system L are decidable. We
assume for simplicity that both T and the external system L are sound and complete. Then, T(L) is
also sound and complete, and it follows that decidability is obtainable if we can decide the validity
of a T(L) formula % in any temporalised model.

Now, because L is decidable, the formula (1)) can be constructed and is a T(L)-theorem, so v
is a theorem iff n(¢)) — ¢ is. We want to show that ¢ is a T(L)-theorem iff o(n(¢)) — ) is a
U S-theorem.

It is trivial to show that if o(¢) is a US-theorem, then ¢ is a T(L)-theorem; it suffices to mimic
the US-proof at the temporalised level, since all US axioms and inference rules are present at
T(L).

For the other direction, suppose 1 is a T(L)-theorem. I follows from Lemmas 3.10 and 3.11,
that if there was a countermodel for o(n(¢)) — 1), we would be able to construct a countermodel
for n(1) — 1, and thus also a countermodel for 1, which contradicts completeness.

Therefore we have proved that to decide whether 1) is a theorem, we can decide if o(n(y) — 1)
is a theorem. But since 7(1)) is constructible by the decidability of L, we can apply the decidability
of US as the final part of our decision procedure. We have thus proved that:

Theorem 4.1. If T and L are sound, complete and decidable, T(L) is decidable.

To eliminate the need to assume soundness and completeness, a proof method like that of [5]
can be applied, with considerably more proof theoretical manipulation.

5. CONCLUSION

We have extended the original result on temporalisation of [5] to any flow of time. Recursive
temporalisations were used in [2] to show the transference of completeness and decidability for the
full combination of two linear U S-temporal logics. Such combinations do not have the restriction
that one logic is external to the other, and allows arbitrary nesting of one kind of modality inside
the other.

What is notable is that the same original construction of [2] applies directly to the recursive
temporalisation of generic (not necessarily linear) temporal logics. That is, the results here pre-
sented also generalise the transference of completeness and decidability to the full combination of
U S-temporal logics.
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