
Sharing Resour
e-Sensitive Knowledgeusing Combinator Logi
s?Mar
elo Finger??Instituto de Matem�ati
a e Estat��sti
aUniversidade de S~ao PauloRua do Mat~ao, 101005315-970 S~ao Paulo, BrazilPhone: +55 -11 818 6310Email: mfinger�ime.usp.br Wamberto Vas
on
elos? ? ?Institut f�ur InformatikUniversit�at Z�uri
hWinterthurerstr., 190CH 8057 Z�uri
h, SwitzerlandPhone: +41 -1 635 6757Email: wvas
on
elos�a
m.orgAbstra
t. Resear
h on ontologies has been pursued as a solution tothe diÆ
ult problem of knowledge sharing. Ontologies
onsist of a do-main des
ription whi
h suits the needs of all systems to be integrated.Any agreed ontology, however, is not the end of the problems involved inknowledge sharing sin
e how we represent knowledge is intimately linkedto the inferen
es we expe
t to perform with it. Knowledge sharing
an-not ignore the similarities and di�eren
es between the inferen
e enginesparti
ipating in the information ex
hange. We illustrate this issue via a
ase study on resour
e-sensitive knowledge-based systems and we showhow these
an eÆ
iently share their knowledge using
ombinator logi
s.Keywords. Knowledge sharing; resour
e-sensitive logi
s.1 Introdu
tionOne of the bene�ts of formally representing knowledge lies in its potential tobe shared. Te
hnologies for
omputer inter
onne
tion, now relatively
heap andwidespread, make it possible for knowledge bases and inferen
e engines developedin di�erent lo
ations to intera
t in order to solve together more
omplex problemsthan those they were originally intended for individually [6℄.In this paper we investigate the problem of knowledge sharing among resour
e-sensitive systems (also
alled substru
tural logi
 systems [9℄). The
lass of sub-stru
tural logi
s, en
ompassing, for instan
e, intuitionisti
 logi
s [8℄, relevan
elogi
s [2℄ and linear logi
s [15℄, employ in their inferen
es stru
tural rules whi
htake into a

ount the stru
ture of premises in a dedu
tion [9℄. Substru
tural log-i
s di�er from ea
h other by virtue of the stru
tural rules allowed in their proofs:the set of stru
tural rules permitted in one logi
 may be extended or redu
edthus giving rise to other logi
s. A number of real-life problems
an be natu-rally represented and elegantly solved via resour
e-sensitive inferen
ing. Usefuland
omputationally eÆ
ient reasoning systems have been developed employingsubstru
tural logi
s (for instan
e, [19℄ and [25℄).? Work sponsored by the Consortium British Coun
il/CAPES (Brazil), Grant no.070/98.?? Partially sponsored by CNPq (Brazilian Resear
h Coun
il), Grant no. 300597/95-9.? ? ? On a Post-Do
toral leave of absen
e from Departamento de Estat��sti
a e Computa-�
~ao, Universidade Estadual do Cear�a, Cear�a, Brazil, sponsored by CNPq, Grant no.201340/91-7.

The organisation of this paper is as follows. Initially, we list some of the is-sues related to knowledge sharing and give a perspe
tive on work
arried out.In Se
tion 2 we present
ombinator logi
s as our
hosen formalism for de�ning aknowledge-sharing framework among systems based in resour
e-sensitive logi
s;we also justify our
hoi
e and
ompare it with alternative approa
hes. In Se
-tion 3 we show how
ombinator logi
s
an be used to foster integration amongknowledge-based systems. Finally in Se
tion 4 we
omment on our work, draw
on
lusions and give dire
tions for future resear
h.1.1 Some Issues on Knowledge SharingResear
h on knowledge sharing mostly
on
entrates on the mappings betweendi�erent domain-spe
i�
 notations while making the assumption that the infer-en
e me
hanisms of ea
h system are
ompatible. Sometimes this assumption isexpli
it: to share knowledge, ea
h system must translate its knowledge into astandard system of inferen
e [17, 21, 23℄. At other times the assumption is im-pli
it: a standard knowledge representation language is provided but it is mostlyleft to users of the notation to
hoose
ompatible forms of inferen
e [18, 24℄.Without this assumption it would be very diÆ
ult to guarantee that themeaning of knowledge expressed in one system is preserved when used by anothersystem. This meaning preservation would, in prin
iple, require us to demonstratethat the models of the world permitted by a system supplying its knowledge in-
lude all the models of the world permitted by the system re
eiving that knowl-edge. If we allow donors of knowledge also to be re
ipients then the theoreti
al
onstraint be
omes even stronger: the models permitted by all systems must
oin
ide pre
isely. This raises a major pra
ti
al problem be
ause di�eren
es inmodels of the world often show up in the distin
t forms of inferen
e used toderive
onsequen
es from the knowledge we represent.A de�nitive solution for this problem would require that all knowledge-basedsystems must share the same models of the world. This solution, however, isnot pra
ti
al, for it is far too restri
tive, ruling out many interesting and usefulforms of partial knowledge sharing, as shown in [7℄. Partially shared knowledgeinvolves loss of information but in many
ases the loss may be dete
ted, assessedand made tolerable.In [5℄ a formal method to share
omponents of di�erent logi
s is des
ribed.That proposal is based on the
on
ept of institutions [16℄ to represent logi
sand employs spe
ial mappings among their
omponents as a means to translatelogi
s and to share their model theory, dedu
tive system, axioms and theorems.However, we would like to a
hieve knowledge sharing in a more opportunisti
form: rather than assuming we have a formal des
ription of ea
h system, ours
enario will be a more realisti
 one if we assume that very little is known of allparti
ipating systems. A knowledge-based system (hen
eforth
alled \KBS", forshort) KBS 1 may want to try to use another system KBS 2 by posing it queriesand analysing its answers. In this work we des
ribe a
omputationally eÆ
ientapproa
h to perform the analysis of answers.Knowledge
an be shared in many di�erent ways. We des
ribe here somepossible s
enarios for knowledge sharing. Let there be two knowledge based sys-tems, KBS 1 = (IE 1;KB1) and KBS 2 = (IE 2;KB2), where KB i is the system'srespe
tive knowledge base and IE i its inferen
e engine [14℄. Let us suppose that

KBS 1, the re
ipient, poses query Q to KBS 2, the donor. KBS1 must then supplythe triple hQ; IE ;KBi, informing the donor system of the knowledge sharing de-tails: KBS2 is to provide an answer to Q employing KB and IE , that is, whetherKB `IE Q holds. We
an then have:{ Donor system as a surrogate { this situation arises when KBS 1 supplies thetriple hQ; IE 1;KB1i to KBS 2 and KBS 2 employs IE 1 on KB1 in order tosolve Q. KBS 2 is simply used as a surrogate
omputational devi
e emulatingKBS 1.{ Donor system as a partial surrogate { this happens when KBS 1 supplieshQ; IE 1;KB2i to KBS 2 and KBS 2 employs IE 1 on its own knowledge baseKB2 in order to solve Q.{ Donor system as a partial ora
le { this situation happens when KBS1 sup-plies hQ; IE 2;KB1i to KBS 2 and KBS 2 employs its own inferen
e engineIE 2 on the given knowledge base KB1 in order to solve Q.{ Donor system as an ora
le { this happens when KBS 1 supplies hQ; IE 2;KB2ito KBS 2 and KBS 2 employs its own inferen
e engine IE 2 on its own knowl-edge base KB2 in order to solve Q.In the ora
le
ase, the answers provided by the donor system KBS 2 are to be
onsidered as always right and used as su
h: the inferen
es
arried out within theora
le are not regarded as important. If, on the other hand, the inferen
es are tobe taken into a

ount, that is, the re
ipient system is not only interested in the�nal answers but also in how they have been obtained, then we say that KBS 2is a surrogate system [7℄. Variants of the s
enarios above are possible, su
h asKBS 1 providing hQ; IE 1 [IE 2;KB2i or hQ; IE 1;KB1 [KB2i in whi
h
ase there
ipient system's
apabilities are extended. By posing restri
tions or extendingthe KBS's inferential power, a number of interesting and pra
ti
al situationsarise.1.2 The Problem: A

epting Inferen
esEa
h system has its own inferen
e engine. This poses a diÆ
ulty when we aredealing with surroga
y situations, for it may happen that the re
ipient systemis supplied with answers whose dedu
tions would not be permitted were its owninferen
e engine employed. How
an this problem be
ir
umvented?We suggest that the solution is to let the donor system behave as it wants,and to let the re
ipient de
ide whether it a

epts or not the answers to a givenquery.To enable a KBS to reje
t an answer from a remote system, the latter mustprovide not only the answer for a given query, but also des
ribe how that in-feren
e was a
hieved. This means that the donor must provide, together withits answer, a des
ription of the inferen
e steps that led to that
on
lusion. There
eiver will inspe
t that inferen
e and de
ide whether to a

ept or reje
t it.This poses an extra overhead whi
h may lead to una

eptable ineÆ
ien
ies.Proofs are normally large obje
ts, usually of orders of magnitude larger than theanswer they generate. Pro
edures to examine a proof and
he
k for propertiesin it will naturally re
e
t the size and
omplexity of the obje
ts involved.In the following we show how this problem
an be avoided by sending a mu
hmore
ompa
t representation of the \important aspe
ts" of the inferen
es. We

show that this
an be done eÆ
iently for the
lass of resour
e-sensitive logi
sknown as substru
tural logi
s.2 Substru
tural and Combinator Logi
s2.1 Substru
tural Logi
sSubstru
tural logi
s are a family of logi
s whi
h di�er from ea
h other by the setof stru
tural rules that ea
h logi
 in the family a

epts. These stru
tural rulesdetermine how resour
es are dealt with by ea
h logi
, and therefore the wholefamily is also known as resour
e sensitive logi
s.For the purpose of this work, we will be working with a fragment of the logi
de�ned by the
onne
tives
 (multipli
ative
onjun
tion),! (right impli
ation)and (left impli
ation) (in the absen
e of
ommutativity, ! and are notequivalent). Ea
h logi
 in the family will obey the following
onne
tive rules,depi
ted as Gentzen sequent rules:(Axiom)' ` ' � ` ' � ` � (`
)�;� ` '
 � � ['; ℄ ` � (
 `)� ['
 ℄ ` � �; ' ` � (`!)� ` '! �� ` ' �[℄ ` � (!`)�['! ; � ℄ ` � '; � ` � (`)� ` � ' � ` ' �[℄ ` � (`)�[�; '℄ ` �Be
ause we are not assuming a priori stru
tural rules, the ante
edent of a se-quent is a binary tree, with formulae at its leaves and ',' at the internal nodes.Ante
edents are by default left-asso
iative, so �1; �2; �3 a
tually represents((�1; �2); �3). The
onsequent of a sequent is always a single formula. By � ['℄we mean a spe
i�
 o

urren
e of ' in the stru
ture � , and a
orresponding � [℄in the lower part of a rule means the substitution of that o

urren
e of ' bythe stru
ture 	 in � . What distinguishes one substru
tural logi
 from anotherare the stru
tural rules that are allowed in its inferen
es. The most
ommonstru
tural rules are:Left-asso
iativity Right-asso
iativity Commutativity Contra
tion Thinning�; (�;) ` �(�; �); 	 ` � (�; �); 	 ` ��; (�;) ` � (�; �); 	 ` �(�;); � ` � (�; �); � ` ��; � ` � � ` ��; 	 ` �For example, the Lambek Cal
ulus is the logi
 that a

epts only the asso
ia-tivity rules (while the Pure Lambek Cal
ulus a

epts none), whi
h, in terms ofresour
es, means that all formulae must be used in a given order; Linear Logi
a

epts asso
iativity and
ommutativity, so formulae must all be used, and onlyon
e, but in any order; Relevan
e Logi
s further a

epts
ontra
tion, whi
h al-lows it to reuse formulae in a dedu
tion. Finally, Intuitionisti
 Logi
 a

epts allstru
tural rules, and therefore a

epts all
onstru
tible theorems.The hierar
hy of substru
tural logi
s has Intuitionisti
 Logi
 at its top.Classi
al Logi
 would be the next step, a

epting all stru
tural rules and non-
onstru
tive proofs (we
an proveA_:A in
lassi
al logi
, without proving eitherA or :A), but it remains outside the family of resour
e-sensitive substru
turallogi
s.

2.2 CombinatorsDunn and Meyer [10℄ noted that the stru
tural rules
an be represented by
om-binators. Combinators are �-terms with no free variables [3℄. We present belowa few examples of
ombinators (we represent
ombinators by
apital letters; the
hoi
e of letters is histori
al):B � �xyz:x(yz) Bxyz � x(yz)C � �xyz:xzy Cxyz � xzyI � �x:x Ix � x W � �xy:xyy Wxy � xyyS � �xyz:xz(yz) Sxyz � xz(yz)K � �xy:x Kxy � xThe symbol� means \redu
es to" and in the traditional �-
al
ulus it is repla
edby =. The right hand-side
olumn shows that
ombinators
an be de�ned without�-abstra
tion and, in this sense, they be
ome proper
ombinators disso
iatedfrom the �-
al
ulus, as in their original formulation [22℄.There are also
ompound
ombinators obtained from the primitive
ombina-tors above using fun
tional appli
ation: C1C2 reads C1 applied to C2; appli
ationis also left-asso
iative. For example,
ombinators W and S are interde�nablein the presen
e of the I, B and C: W = CSI and S = B(BW)(BC(BB)) as it
an be veri�ed from their de�nition above, that is, Wxy = CSIxy � SxIy �xy(Iy) � xyy and Sxyz = B(BW)(BC(BB))xyz � BW ((BC(BB))x) yz �W ((BC)(BB)xy) z � BC(BB)xyzz � C ((BB)x) yzz � BBxzyz � B (xz) yz �xz(yz). Indeed, any �-de�nable fun
tion (and therefore any
ombinator)
an beexpressed in terms of the
ombinators S and K [3℄; however, the set of
ombi-nators presented above is very
onvenient to a

ount for the use of the most
ommon stru
tural rules.In fa
t, if we read the stru
tural rules bottom-up, we
an see that the B
ombinator a

ounts for left-asso
iativity, C for
ommutativity, I for identity, Wfor
ontra
tion, K for thinning (S is also a type of
ontra
tion, not very usual inlogi
s).2.3 Combinator Logi
sDunn and Meyer [10℄ proposed a stru
turally-free logi
 (SFL) where the systemis free from any stru
tural presupposition (when
e its name). All stru
turaloperations have to be a

ounted for via
ombinator rules, and hen
e anothername for su
h a logi
 is Combinator Logi
. In the language of su
h a logi
, the
ombinators are
onsidered as spe
ial atomi
 formulae. Hen
e, p! (B
 q) is aformula of su
h a language. The
onne
tive rules for su
h a language are exa
tlythose presented before. However, there are no stru
tural rules in SFL. Instead,we have
onne
tive rules ; a generi

ombinator rule is� [�(�1; : : : ; �k)℄ ` � (X `)� [X; �1; : : : ; �k ℄ ` �(where Xx1 : : : xk � �(x1; : : : ; xk)) for a
ombinator that, when applied to thelower sequent as shown, generates the upper sequent.Some instantiations of the generi

ombinator rule for the
ombinators pre-sented above are:

Identity Left-asso
iativity Thinning� [�℄ ` � (I `)� [I; �℄ ` � � [�; (;�)℄ ` � (B `)� [B; �; 	;�℄ ` � � [�℄ ` � (K `)� [K; �; 	 ℄ ` �Commutativity Contra
tion� [�;�; 	 ℄ ` � (C `)� [C; �; 	;�℄ ` � � [�;	; 	 ℄ ` � (W `)� [W; �;	 ℄ ` �Note that above we also show the stru
tural rule asso
iated with ea
h
ombinatorrule.Combinator rules leave a \trail" of
ombinators in a proof, and su
h
ombina-tors are eviden
e of the stru
tural rules needed for the dedu
tion. For example,to show that B ` (p ! q) ! [(r ! p) ! (r ! q)℄ we perform the followingdedu
tion steps: q ` q p ` p (!`)p ! q; p ` q r ` r (!`)p! q; (r ! p; r) ` q (B `)B; p! q; r ! p; r ` q (`! 3�)B ` (p! q) ! [(r ! p)! (r ! q)℄This dedu
tion shows that the formula (p ! q) ! [(r ! p) ! (r ! q)℄ isa theorem of the !-fragment of all logi
s whi
h permit the stru
tural rule forleft-asso
iativity.2.4 Stru
turally-Free Theorem ProvingIn the
ontext of Combinator Logi
s, Finger [11℄ proposed the notion of Stru
tural-ly-Free Theorem Proving (SFTP), whi
h
an be de�ned as follows. Given anante
edent � and a
onsequent �, �nd a
ombinator X su
h that X; � ` � isdedu
ible in Combinator Logi
. Su
h an a
tivity is a generalisation of traditionaltheorem proving, be
ause by inspe
ting the
ombinators that
ompose the an-swer X, it allows us to answer the question: in whi
h substru
tural logi
s is agiven sequent dedu
ible.Finger [11℄ noted that there were a few problems with the logi
 of
ombi-nators, namely the fa
t that there was no
ombinator rule to deal with right-asso
iativity, and that it
ould not
ope with the
onne
tive.To deal with right asso
iativity, a new
ombinator B�1, was introdu
edin [12℄, with its asso
iated
ombinator rule:B�1x(yz)� xyz � [(�;); �℄ ` � (B�1 `)� [B�1; �; (;�)℄ ` �Adding the
ombinator B�1 to the usual
ombinatorial system introdu
es some
onsisten
y problems; these problems have been addressed and solved in [12℄by redu
ing the
lass of
ombinators allowed, without diminishing the set ofstru
tural rules representable. It was then shown in [11℄ that for every intuition-isti
ally valid sequent � ` � in the f!;
g-fragment, SFTP
an be solved; thatis, a
ombinator X
an be
omputed su
h that X; � ` � is dedu
ible in SFL.To introdu
e the -
onne
tive in the logi
, it is ne
essary to remove
ombi-nators as atomi
 formulae and add them as a label, in the fashion of LabelledDedu
tive Systems [13℄. The algorithm of [11℄
an then be extended to deal withthe f!; ;
g-fragment.

3 EÆ
ient Knowledge Sharing between Substru
-tural Logi
sIn this work we explore the issues
on
erning knowledge sharing among a veryspe
i�

lass of knowledge-based systems: those whose underlying logi
s are sub-stru
tural. We shall assume that our systems all share the same vo
abulary, thatis, their knowledge bases are all subsets of a language P . If this assumption doesnot hold then a translation fun
tion among the languages of ea
h system shouldbe provided [5℄ or, alternatively, the
orresponden
e among spe
i�

onstru
tsto be shared [6℄ ought to be given.3.1 Knowledge Sharing between Relevan
e and Linear Log-i
sLet there be the set of formulae fp q
 r; q r; r s; s g
omprisingthe knowledge-base of a donor system. It represents a small fragment of simplepropositional knowledge. Let us assume further that the inferen
e engine of su
hsystem in
orporates a relevant logi
s [2℄. When posed a query p then we havethe following sequent proof:q ` q r ` r (`
)q; r ` q
 r p ` p (`)p q
 r; (q; r) ` p (B `)B; p q
 r; q; r ` p r ` r (`)B; p q
 r; (q r; r); r ` p (B ` 2�)BBB; p q
 r; q r; r; r ` p (B `;W `;B `)B(BW)(BBB); p q
 r; q r; r ` p s ` s (`)B(BW)(BBB); p q
 r; q r; (r s; s) ` s (B `)B(BB)(B(BW)(BBB)); p q
 r; q r; r s; s ` sThe
ombinators of the dedu
tion above
an be simpli�ed with the
ombinatorlist notation of [12℄, of the form hX(i1); : : : ;X(in)i , hen
e we have B(BB)(B(BW)(BB(BB(I)))) and thus hB(3);W(3);B(2);B(2)i.This list notation shows the real
ombinatorial
ontent of the
omplex
om-binator term. The list hB(3);W(3);B(2);B(2)i
learly shows that there were threeuses of left-asso
iativity (the B's) and one use of
ontra
tion (theW). The indi
esrepresent the position on the ante
edent where these rules were applied: therewas a
ontra
tion at the third position, and left-asso
iativity was applied twi
eat the se
ond position and on
e at the third. An inspe
tion of the proof showsthat this was indeed the
ase. Details on how this works, and how to
omputethe list
ombinator asso
iated with a dedu
tion (without a
tually
onstru
tingthe whole dedu
tion)
an be found in [11, 12℄.The output of the query to the KBS above
onsists of the proof that pholds, the sequent proof and the list of
ombinators above: hB(3);W(3);B(2);B(2)i.Re
ipient systems are able to eÆ
iently evaluate the answer provided | ratherthan examining the proof, a linear s
an of the list of
ombinators is enough to

he
k for properties of the donor system. In our example, sin
e W is found inthe output string of
ombinators, we
on
lude that the dedu
tion is not linear.Re
ipient systems whi
h required that proofs be linear
ould reje
t the dedu
tionabove just by examining the simpli�ed list of
ombinators.Su
h a method for qui
kly
he
king the kind of stru
tural rule (i.e. the
on-trol of resour
es) used by a remote inferen
e system easily generalises to anysubstru
tural system. All it is required to do is to send, together with the an-swer to a query, a
ombinator list asso
iated with the dedu
tion of the answerto the query.3.2 Knowledge Sharing between Lambek and PropositionalCal
uliAnother interesting opportunity to foster knowledge sharing between systemsarises in the
ontext of natural language pro
essing. Let us suppose the donorsystem
onsists of a parser for English with the fragment of phrase stru
turegrammar [1℄ fS NP
VP ;NP Art
N ;VP Vbe
Adjg. Su
h grammar
an be represented in
ategorial grammar [20, 4℄ as fS = s;NP = np;VP =npns;Art = np=n;N = n;Vbe = (npns)=(n=n);Adj = n=ng. As is usual in the
ategorial grammar tradition, the slash notation is used instead of the impli
a-tions, so the slashes above are simply a notational variation (A=B � B ! Aand BnA � A B), so that the dire
tional versions of Modus Ponens areA=B;B ` A and B;BnA ` A.Let us further suppose that the re
ipient system wants to know if the string\The tree is green" is a
orre
t senten
e in English and submits the list of asso
i-ated types of the
omponents of the string, that is, (npns)=(n=n); n=n; (np=n); n,to �nd out whether the donor system
an infer a senten
e s from su
h an input.If the donor system is equipped with an inferen
e system for propositionallogi
, the following proof is possible:np ` np s ` s (C(n))np;npns ` s (n `)hC(1)i : npns;np ` s nnn ` nnn (= `)hC(1)i : (npns)=(n=n); n=n;np ` s n ` n (= `)hC(1)i : (npns)=(n=n); n=n; (np=n; n) ` s (B(n))hB(3);C(1)i : (npns)=(n=n); n=n;np=n; n ` sHowever, upon examination of the asso
iated list hB(3);C(1)i of
ombinators, there
ipient system may have a restri
tion that it will not a

ept proofs in whi
hthe order of formulae is
hanged (that is, there are o

urren
es of
ombinatorC). This reje
tion will happen when the re
ipient system in
orporates LambekCal
ulus [9℄.The order of the formulae dedu
ed in the ante
edent is not exa
tly the orderof the formulae generated by \The tree is green". Indeed, the sequent above isa
tually a proof that the string \is green The tree" is a grammati
ally
orre
tsenten
e, whi
h is obviously not true. Although the
ategorial grammar above
an be employed in many di�erent and useful ways, the re
ipient system only

wants proofs for those senten
es in whi
h no
hanges in the order of
omponentsof the senten
e is
arried out. The re
ipient system may ask for an alternativeproof, in whi
h
ase it may be supplied with the last sequent of the followingproof: np ` np s ` s (n `)np;npns ` s n ` n (= `)np=n; n;npns ` s n=n ` n=n (= `)np=n; n; ((npns)=(n=n); n=n) ` s (B(n))hB(3)i : np=n; n; (npns)=(n=n); n=n ` sUpon examination of the
ombinators asso
iated with the proof above, the re-
ipient (Lambek Cal
ulus) system will de
ide to a

ept it. Note that the order ofthe formulae of this sequent follows dire
tly the order of the formulae asso
iatedto ea
h word in \The tree is green". Rather than
he
king the sequent proof, asimpler test of linear
omplexity is performed.4 Con
lusions and Dire
tions of Resear
hWe have proposed an eÆ
ient way to foster opportunisti
 sharing of knowledgeamong inferen
e systems whi
h in
orporate di�erent kinds of substru
tural logi
s(e.g., linear logi
s, relevan
e logi
s, Lambek Cal
ulus and intuitionisti
 logi
s).Our proposal employs
ombinator logi
s [10, 3℄ as a unifying framework for rep-resenting substru
tural logi
s and stru
turally-free theorem proving [11, 12℄ as ameans to
hara
terise their inferen
es.We have addressed systems for whi
h a deeper form of knowledge-sharingis sought: not only the
orresponden
e among terms and formulae is ne
essary(that is, an ontology [24℄), but also the inferen
es performed. The �nal resultof inferen
es as well as their intermediate steps should be available for inspe
-tion and reje
tion or a

eptan
e, depending on the restri
tions of those systemssharing their knowledge.Our approa
h does not require that ea
h system be translated into one singleall-en
ompassing logi
. Rather, ea
h system may in
orporate its own distin
tsubstru
tural logi
 as long as its inferen
es are performed stru
turally-free andthe set of
ombinators appearing in the proofs are shared by the systems involved.Ours is an eÆ
ient approa
h be
ause proofs
an be examined (and a

epted orreje
ted) just by s
anning a string of
ombinators.Prototypi
al versions of stru
turally-free theorem provers have already beendeveloped. However, at their present stage, a proof is supplied and only then
an it be examined. We would like to investigate an \early-fail" approa
h thusenabling an inferen
e to be stopped as soon as a parti
ular
ombinator (or one ofa list of
ombinator) appears. In our Lambek Cal
ulus and Propositional Logi

ase above (Se
tion 3.2) the �rst proof
ould have been aborted as soon as theC
ombinator appeared and only the last proof would have been supplied.Referen
es1. James Allen. Natural Language Understanding. Benjamin-Cummings PublishingCo., 2nd edition, 1994.

2. A. R. Anderson and N. D. Belnap Jr. Entailment: The Logi
 of Relevan
e andNe
essity. Prin
eton Univ. Press, 1975.3. H. P. Barendregt. The Lambda Cal
ulus: Its Syntax and Semanti
s. ElsevierS
ien
e Publishers, 1981.4. Bob Carpenter. Type-Logi
a Semanti
s. MIT press, 1997.5. M. Cerioli and J. Meseguer. May I borrow your Logi
? (Transporting Logi
alStru
tures along Maps). Theoreti
al Computer S
ien
e, 173:311{347, 1997.6. F. S. Correa da Silva, W. W. Vas
on
elos, and D. S. Robertson. Cooperation Be-tween Knowledge-Based Systems. In Pro
. IV World Congress on Expert Systems,pages 819{825, Mexi
o City, Mexi
o, 1998.7. F. S. Correa da Silva, W. W. Vas
on
elos, D. S. Robertson, J. Agust��, and A. C. V.Melo. Why Ontologies are not Enough for Knowledge Sharing. In Springer-Verlag,editor, LNAI, vol. 1611, pages 520{529, 1999.8. D. Van Dalen. Intuitionisti
 logi
. In D. Gabbay and F. Guenthner, editors,Handbook of Philosoph. Log., volume III, 1984.9. K. Do�sen. A Histori
al Introdu
tion to Substru
tural Logi
s. In P. S. Heister andK. Do�sen, editors, Substru
tural Logi
s, pages 1{31. Oxford Univ. Press, 1993.10. J. M. Dunn and R. K. Meyer. Combinators and Stru
turally Free Logi
. Logi
Journal of the IGPL, 5(4):505{538, 1997.11. M. Finger. Towards stru
turally-free theorem proving. Logi
 Journal of the IGPL,6(3):425{449, 1998.12. M. Finger. Stru
turally-free theorem proving and the learning of stru
tural permis-sions in
ategorial grammar. In Pro
. 4th Workshop on Logi
al Aspe
ts of Comp.Ling. (LACL98), 1998.13. Dov M. Gabbay. Labelled Dedu
tive Systems, volume 1 of Oxford Logi
 Guides:33. Oxford Univ. Press, 1996.14. J. Giarratano and G. Riley. Expert Systems: Prin
iples and Programming. PWSPubl. Co., 3rd. edition, 1999.15. J. Y. Girard. Linear Logi
. Theor. Comp. S
., 50:1{102, 1987.16. J. A. Goguen and R. M. Burstall. Institutions: Abstra
t Model Theory for Spe
i-�
ation and Programming. J. ACM, 39:95{146, 1992.17. P. Gray et al. KRAFT { Knowledge Reuse and Fusion/Transformation. http://www.
sd.abdn.a
.uk/ apree
e/ Resear
h/ KRAFT/ KRAFTinfo.html.18. N. Guarino, editor. Formal Ontology in Information Systems. IOS Press, 1998.19. J. S. Hodas and D. Miller. Logi
 Programming in a Fragment of Intuitionisti
Linear Logi
. Inf. & Comput., 110(2):327{365, 1994.20. M. Moortgat. Categorial type logi
s. In J. Van Benthem and A. ter Meulen, edi-tors, Handbook of Logi
 and Language, pages 93{178. Elsevier North-Holland/MITPress, 1997.21. R. Ne
hes and D. Gunning. The Knowledge Sharing E�ort. http://www-ksl.stanford.edu/knowledge-sharing /papers/kse-overview.html.22. A. S
h�on�nkel. �Uber die Bausteine der Mathematis
hen Logik. In J. van Hei-jenoort, editor, From Frege to G�odel. Harvard Univ. Press, Cambridge, Mass.,1924. Reprinted.23. V. S. (proje
t dire
tor) Subrahmanian. Hermes { a Heterogeneous Reasoning andMediator System. http:// www.
s.umd.edu/ proje
ts/ hermes/index.html.24. M. Us
hold and M. Gruninger. Ontologies: Prin
iples, Methods and Appli
ations.Knowl. Eng. Review, 11(2):93{136, 1996.25. M. Winiko� and J. Harland. Implementation and Development Issues for theLinear Logi
 Programming Language Lygon. In Pro
. 8th Australasian ComputerS
ien
e Conf., pages 562{573, Adelaide, Australia, February 1995.

