Sharing Resource-Sensitive Knowledge
using Combinator Logics*

Marcelo Finger** Wamberto Vasconcelos™ **
Instituto de Matemadtica e Estatistica Institut fiir Informatik
Universidade de Sao Paulo Universitat Ziirich
Rua do Matao, 1010 Winterthurerstr., 190
05315-970 Sao Paulo, Brazil CH 8057 Ziirich, Switzerland
Phone: 455 -11 818 6310 Phone: 441 -1 635 6757
Email: mfinger@ime.usp.br Email: wvasconcelosQacm.org

Abstract. Research on ontologies has been pursued as a solution to
the difficult problem of knowledge sharing. Ontologies consist of a do-
main description which suits the needs of all systems to be integrated.
Any agreed ontology, however, is not the end of the problems involved in
knowledge sharing since how we represent knowledge is intimately linked
to the inferences we expect to perform with it. Knowledge sharing can-
not ignore the similarities and differences between the inference engines
participating in the information exchange. We illustrate this issue via a
case study on resource-sensitive knowledge-based systems and we show
how these can efficiently share their knowledge using combinator logics.
Keywords. Knowledge sharing; resource-sensitive logics.

1 Introduction

One of the benefits of formally representing knowledge lies in its potential to
be shared. Technologies for computer interconnection, now relatively cheap and
widespread, make it possible for knowledge bases and inference engines developed
in different locations to interact in order to solve together more complex problems
than those they were originally intended for individually [6].

In this paper we investigate the problem of knowledge sharing among resource-
sensitive systems (also called substructural logic systems [9]). The class of sub-
structural logics, encompassing, for instance, intuitionistic logics [8], relevance
logics [2] and linear logics [15], employ in their inferences structural rules which
take into account the structure of premises in a deduction [9]. Substructural log-
ics differ from each other by virtue of the structural rules allowed in their proofs:
the set of structural rules permitted in one logic may be extended or reduced
thus giving rise to other logics. A number of real-life problems can be natu-
rally represented and elegantly solved via resource-sensitive inferencing. Useful
and computationally efficient reasoning systems have been developed employing
substructural logics (for instance, [19] and [25]).

* Work sponsored by the Consortium British Council/CAPES (Brazil), Grant no.
070/98.
** Partially sponsored by CNPq (Brazilian Research Council), Grant no. 300597/95-9.
*** On a Post-Doctoral leave of absence from Departamento de Estatistica e Computa-
¢ao, Universidade Estadual do Ceard, Ceard, Brazil, sponsored by CNPq, Grant no.
201340/91-7.

The organisation of this paper is as follows. Initially, we list some of the is-
sues related to knowledge sharing and give a perspective on work carried out.
In Section 2 we present combinator logics as our chosen formalism for defining a
knowledge-sharing framework among systems based in resource-sensitive logics;
we also justify our choice and compare it with alternative approaches. In Sec-
tion 3 we show how combinator logics can be used to foster integration among
knowledge-based systems. Finally in Section 4 we comment on our work, draw
conclusions and give directions for future research.

1.1 Some Issues on Knowledge Sharing

Research on knowledge sharing mostly concentrates on the mappings between
different domain-specific notations while making the assumption that the infer-
ence mechanisms of each system are compatible. Sometimes this assumption is
explicit: to share knowledge, each system must translate its knowledge into a
standard system of inference [17,21,23]. At other times the assumption is im-
plicit: a standard knowledge representation language is provided but it is mostly
left to users of the notation to choose compatible forms of inference [18, 24].

Without this assumption it would be very difficult to guarantee that the
meaning of knowledge expressed in one system is preserved when used by another
system. This meaning preservation would, in principle, require us to demonstrate
that the models of the world permitted by a system supplying its knowledge in-
clude all the models of the world permitted by the system receiving that knowl-
edge. If we allow donors of knowledge also to be recipients then the theoretical
constraint becomes even stronger: the models permitted by all systems must
coincide precisely. This raises a major practical problem because differences in
models of the world often show up in the distinct forms of inference used to
derive consequences from the knowledge we represent.

A definitive solution for this problem would require that all knowledge-based
systems must share the same models of the world. This solution, however, is
not practical, for it is far too restrictive, ruling out many interesting and useful
forms of partial knowledge sharing, as shown in [7]. Partially shared knowledge
involves loss of information but in many cases the loss may be detected, assessed
and made tolerable.

In [5] a formal method to share components of different logics is described.
That proposal is based on the concept of institutions [16] to represent logics
and employs special mappings among their components as a means to translate
logics and to share their model theory, deductive system, axioms and theorems.
However, we would like to achieve knowledge sharing in a more opportunistic
form: rather than assuming we have a formal description of each system, our
scenario will be a more realistic one if we assume that very little is known of all
participating systems. A knowledge-based system (henceforth called “KBS”, for
short) KBS; may want to ¢ry to use another system KBS» by posing it queries
and analysing its answers. In this work we describe a computationally efficient
approach to perform the analysis of answers.

Knowledge can be shared in many different ways. We describe here some
possible scenarios for knowledge sharing. Let there be two knowledge based sys-
tems, KBS, = (IE1,KB1) and KBSy = (IE5, KB>), where KB; is the system’s
respective knowledge base and IE; its inference engine [14]. Let us suppose that

KBS, the recipient, poses query @ to KBS,, the donor. KBS, must then supply
the triple (@, IE, KB), informing the donor system of the knowledge sharing de-
tails: KBS> is to provide an answer to () employing KB and [F, that is, whether
KB kg @ holds. We can then have:

— Donor system as a surrogate — this situation arises when KBS supplies the
triple (@, IE,, KB1) to KBS> and KBS» employs IE; on KB; in order to
solve Q. KBS is simply used as a surrogate computational device emulating
KBS;.

— Donor system as a partial surrogate — this happens when KBS supplies
(Q,IE,, KBs) to KBS and KBS> employs IE; on its own knowledge base
KB, in order to solve Q.

— Donor system as a partial oracle — this situation happens when KBS; sup-
plies (@, IE2, KB;) to KBS, and KBS» employs its own inference engine
IE5 on the given knowledge base KB in order to solve Q).

— Donor system as an oracle — this happens when KBS supplies (Q), [E>, KB>)
to KBS, and KBS, employs its own inference engine IE, on its own knowl-
edge base KB, in order to solve Q.

In the oracle case, the answers provided by the donor system KBS, are to be
considered as always right and used as such: the inferences carried out within the
oracle are not regarded as important. If, on the other hand, the inferences are to
be taken into account, that is, the recipient system is not only interested in the
final answers but also in how they have been obtained, then we say that KBS,
is a surrogate system [7]. Variants of the scenarios above are possible, such as
KBS providing (Q), [E, U IE2, KB>) or (Q), [E1, KBy U KB>) in which case the
recipient system’s capabilities are extended. By posing restrictions or extending
the KBS’s inferential power, a number of interesting and practical situations
arise.

1.2 The Problem: Accepting Inferences

Each system has its own inference engine. This poses a difficulty when we are
dealing with surrogacy situations, for it may happen that the recipient system
is supplied with answers whose deductions would not be permitted were its own
inference engine employed. How can this problem be circumvented?

We suggest that the solution is to let the donor system behave as it wants,
and to let the recipient decide whether it accepts or not the answers to a given
query.

To enable a KBS to reject an answer from a remote system, the latter must
provide not only the answer for a given query, but also describe how that in-
ference was achieved. This means that the donor must provide, together with
its answer, a description of the inference steps that led to that conclusion. The
receiver will inspect that inference and decide whether to accept or reject it.

This poses an extra overhead which may lead to unacceptable inefficiencies.
Proofs are normally large objects, usually of orders of magnitude larger than the
answer they generate. Procedures to examine a proof and check for properties
in it will naturally reflect the size and complexity of the objects involved.

In the following we show how this problem can be avoided by sending a much
more compact representation of the “important aspects” of the inferences. We

show that this can be done efficiently for the class of resource-sensitive logics
known as substructural logics.

2 Substructural and Combinator Logics
2.1 Substructural Logics

Substructural logics are a family of logics which differ from each other by the set
of structural rules that each logic in the family accepts. These structural rules
determine how resources are dealt with by each logic, and therefore the whole
family is also known as resource sensitive logics.

For the purpose of this work, we will be working with a fragment of the logic
defined by the connectives ® (multiplicative conjunction), — (right implication)
and <« (left implication) (in the absence of commutativity, — and < are not
equivalent). Each logic in the family will obey the following connective rules,
depicted as Gentzen sequent rules:

I'tep AkFx Ilp,] - x ok x

—— (Axiom) — (F®) —————— (®F) ————— ()
ke IAFe®x Iyl x 'p—x
'y ARlFx o, I'Fx 'y Al x

— T (sh) —/——— (re) ————— T («h)

Alp = o, I F x I'bx+o Al o] F x

Because we are not assuming a priori structural rules, the antecedent of a se-
quent is a binary tree, with formulae at its leaves and ’,” at the internal nodes.
Antecedents are by default left-associative, so @1, ®., P35 actually represents
((@1,P2),P3). The consequent of a sequent is always a single formula. By I'[¢]
we mean a specific occurrence of ¢ in the structure I', and a corresponding I'[¥]
in the lower part of a rule means the substitution of that occurrence of ¢ by
the structure ¥ in I'. What distinguishes one substructural logic from another
are the structural rules that are allowed in its inferences. The most common
structural rules are:

Left-associativity| Right-associativity] Commutativity] Contraction| Thinning
I (e,%) F x (I2), x| (®),¥Fx (I09),PFx| I'Fx

(I'®),¥ F x r@wktx |(Le),ebx| Lebx |[L¥EX

For example, the Lambek Calculus is the logic that accepts only the associa-
tivity rules (while the Pure Lambek Calculus accepts none), which, in terms of
resources, means that all formulae must be used in a given order; Linear Logic
accepts associativity and commutativity, so formulae must all be used, and only
once, but in any order; Relevance Logics further accepts contraction, which al-
lows it to reuse formulae in a deduction. Finally, Intuitionistic Logic accepts all
structural rules, and therefore accepts all constructible theorems.

The hierarchy of substructural logics has Intuitionistic Logic at its top.
Classical Logic would be the next step, accepting all structural rules and non-
constructive proofs (we can prove AV—A4 in classical logic, without proving either
A or =A), but it remains outside the family of resource-sensitive substructural
logics.

2.2 Combinators

Dunn and Meyer [10] noted that the structural rules can be represented by com-
binators. Combinators are A-terms with no free variables [3]. We present below
a few examples of combinators (we represent combinators by capital letters; the
choice of letters is historical):

B = Aryz.x(yz) Bryz — z(yz)| (W = Azy.zyy Wzy —» zyy
C = M\zyz.xz2y Cxyz - xzy | |S = Aryz.wz(yz) Szyz - xz(yz)
| = Ar.x lz - x K= A\ry.x Key - x

The symbol - means “reduces to” and in the traditional A-calculus it is replaced
by =. The right hand-side column shows that combinators can be defined without
A-abstraction and, in this sense, they become proper combinators dissociated
from the A-calculus, as in their original formulation [22].

There are also compound combinators obtained from the primitive combina-
tors above using functional application: CyCs reads C applied to Cy; application
is also left-associative. For example, combinators W and S are interdefinable
in the presence of the I, B and C: W = CSl and S = B(BW)(BC(BB)) as it
can be verified from their definition above, that is, Wzy = CSlxy — Szly —
zy(ly) — xyy and Szyz = B(BW)(BC(BB))zyz — BW ((BC(BB))z)yz —
W ((BC)(BB)zy) z - BC(BB)zyzz — C((BB)z) yzz - BBxzyz - B (zz)yz —
xz(yz). Indeed, any A-definable function (and therefore any combinator) can be
expressed in terms of the combinators S and K [3]; however, the set of combi-
nators presented above is very convenient to account for the use of the most
common structural rules.

In fact, if we read the structural rules bottom-up, we can see that the B
combinator accounts for left-associativity, C for commutativity, | for identity, W
for contraction, K for thinning (S is also a type of contraction, not very usual in
logics).

2.3 Combinator Logics

Dunn and Meyer [10] proposed a structurally-free logic (SFL) where the system
is free from any structural presupposition (whence its name). All structural
operations have to be accounted for via combinator rules, and hence another
name for such a logic is Combinator Logic. In the language of such a logic, the
combinators are considered as special atomic formulae. Hence, p - (B ® ¢q) is a
formula of such a language. The connective rules for such a language are exactly
those presented before. However, there are no structural rules in SFL. Instead,
we have connective rules; a generic combinator rule is

I'o(®1,...,P)] F x
X, ®y,..., 8] F x

(XF)

(where Xzy ...z - o(xy,...,zt)) for a combinator that, when applied to the
lower sequent as shown, generates the upper sequent.

Some instantiations of the generic combinator rule for the combinators pre-
sented above are:

Identity Left-associativity Thinning

(o] - x rie, (v, 5)] - x re)-¢
—_— (k) (BF) (KH)
IlL o x I'B,®,¥, 5] x I'K, &, ¥ ¢
Commutativity Contraction

I'e,=2,¥|F x e, v, v+ x

_— CH)|———— (WH)

I'C.o,¥, 51 Fx I'W,®, 7]+ x

Note that above we also show the structural rule associated with each combinator
rule.

Combinator rules leave a “trail” of combinators in a proof, and such combina-
tors are evidence of the structural rules needed for the deduction. For example,
to show that B+ (p = ¢) — [(r — p) = (r — ¢)] we perform the following

deduction steps: 4rq prop
—_— (>h)
p—>qg,pkq rEr

(—F)
p—q,(r—pr)kg

(BF)
B,p—q,r—pritgq

(F— 3x)
Br(p—q) = I[(r—p) — (r—4q)]

This deduction shows that the formula (p — q) = [(r = p) = (r =)] is

a theorem of the —-fragment of all logics which permit the structural rule for

left-associativity.

2.4 Structurally-Free Theorem Proving

In the context of Combinator Logics, Finger [11] proposed the notion of Structural-
ly-Free Theorem Proving (SFTP), which can be defined as follows. Given an
antecedent I' and a consequent Y, find a combinator X such that X,I" F x is
deducible in Combinator Logic. Such an activity is a generalisation of traditional
theorem proving, because by inspecting the combinators that compose the an-
swer X, it allows us to answer the question: in which substructural logics is a
given sequent deducible.

Finger [11] noted that there were a few problems with the logic of combi-
nators, namely the fact that there was no combinator rule to deal with right-
associativity, and that it could not cope with the < connective.

To deal with right associativity, a new combinator B~!, was introduced
in [12], with its associated combinator rule:

. rie,v), sk x
B z(yz) » zyz (B™"H)
rB, e, @ 2)Fx

Adding the combinator B! to the usual combinatorial system introduces some
consistency problems; these problems have been addressed and solved in [12]
by reducing the class of combinators allowed, without diminishing the set of
structural rules representable. It was then shown in [11] that for every intuition-
istically valid sequent I" - x in the {—, ® }-fragment, SFTP can be solved; that
is, a combinator X can be computed such that X, I" I x is deducible in SFL.

To introduce the <—-connective in the logic, it is necessary to remove combi-
nators as atomic formulae and add them as a label, in the fashion of Labelled
Deductive Systems [13]. The algorithm of [11] can then be extended to deal with
the {—, -, ®}-fragment.

3 Efficient Knowledge Sharing between Substruc-
tural Logics

In this work we explore the issues concerning knowledge sharing among a very
specific class of knowledge-based systems: those whose underlying logics are sub-
structural. We shall assume that our systems all share the same vocabulary, that
is, their knowledge bases are all subsets of a language P. If this assumption does
not hold then a translation function among the languages of each system should
be provided [5] or, alternatively, the correspondence among specific constructs
to be shared [6] ought to be given.

3.1 Knowledge Sharing between Relevance and Linear Log-
ics

Let there be the set of formulae {p < ¢® r,q « r,r + s,s <} comprising
the knowledge-base of a donor system. It represents a small fragment of simple
propositional knowledge. Let us assume further that the inference engine of such
system incorporates a relevant logics [2]. When posed a query < p then we have
the following sequent proof:

qtq rkEr
(F®)
,rEq®r pEp
(+F)
p+q®r,(g,r)Fp
(BF)
B,p+—q®mr,q,rkp rkEr
(«F)
B,p+q®r,(qmr,r),rtp
(BF 2x)

BBB,p+ ¢®r,q <+ r,r,rkFp
(BH,WH,BF)
B(BW)(BBB),p < q¢®r,qg < 7,7 p sks

(«F)

B(BW)(BBB),p +~ g ®r, g <1, (r + s,5) F s
(BF)

B(BB)(B(BW)(BBB)),p < q®r,q < 1,7 < s,st s

The combinators of the deduction above can be simplified with the combinator
list notation of [12], of the form (X(;,),...,X,)) , hence we have B(BB)(B(BW)(B
B(BB(1)))) and thus (B(g),W(g), B(g), B(g)).

This list notation shows the real combinatorial content of the complex com-
binator term. The list (B(s), W(s), B(2), B(2)) clearly shows that there were three
uses of left-associativity (the B’s) and one use of contraction (the W). The indices
represent the position on the antecedent where these rules were applied: there
was a contraction at the third position, and left-associativity was applied twice
at the second position and once at the third. An inspection of the proof shows
that this was indeed the case. Details on how this works, and how to compute
the list combinator associated with a deduction (without actually constructing
the whole deduction) can be found in [11,12].

The output of the query to the KBS above consists of the proof that < p
holds, the sequent proof and the list of combinators above: (B(s), W3y, B(2), B(2))-
Recipient systems are able to efficiently evaluate the answer provided — rather
than examining the proof, a linear scan of the list of combinators is enough to

check for properties of the donor system. In our example, since W is found in
the output string of combinators, we conclude that the deduction is not linear.
Recipient systems which required that proofs be linear could reject the deduction
above just by examining the simplified list of combinators.

Such a method for quickly checking the kind of structural rule (i.e. the con-
trol of resources) used by a remote inference system easily generalises to any
substructural system. All it is required to do is to send, together with the an-
swer to a query, a combinator list associated with the deduction of the answer
to the query.

3.2 Knowledge Sharing between Lambek and Propositional
Calculi

Another interesting opportunity to foster knowledge sharing between systems
arises in the context of natural language processing. Let us suppose the donor
system consists of a parser for English with the fragment of phrase structure
grammar [1] {S <~ NP® VP,NP < Art® N, VP < V4, ® Adj}. Such grammar
can be represented in categorial grammar [20,4] as {S = s, NP = np, VP =
np\s, Art = np/n, N = n, V. = (np\s)/(n/n), Adj = n/n}. As is usual in the
categorial grammar tradition, the slash notation is used instead of the implica-
tions, so the slashes above are simply a notational variation (A/B = B — A
and B\A = A « B), so that the directional versions of Modus Ponens are
A/B,BF A and B,B\AF A.

Let us further suppose that the recipient system wants to know if the string
“The tree is green” is a correct sentence in English and submits the list of associ-
ated types of the components of the string, that is, (np\s)/(n/n),n/n, (np/n),n,
to find out whether the donor system can infer a sentence s from such an input.

If the donor system is equipped with an inference system for propositional
logic, the following proof is possible:

nptnp sks

(Cny)
np,np\s + s

(\F)
(C(l)) : np\s,npt s n\ntn\n
(/r)

(Cary) = (mp\s)/(n/n),n/n,npts nkn
(Cy) = (mp\s)/(n/n),n/n,(np/n,n) s

(Bes),Cy) : (np\s)/(n/n),n/n,np/n,nt s

(/F)

(Bn))

However, upon examination of the associated list (B3, C(1)) of combinators, the
recipient system may have a restriction that it will not accept proofs in which
the order of formulae is changed (that is, there are occurrences of combinator
C). This rejection will happen when the recipient system incorporates Lambek
Calculus [9].

The order of the formulae deduced in the antecedent is not exactly the order
of the formulae generated by “The tree is green”. Indeed, the sequent above is
actually a proof that the string “is green The tree” is a grammatically correct
sentence, which is obviously not true. Although the categorial grammar above
can be employed in many different and useful ways, the recipient system only

wants proofs for those sentences in which no changes in the order of components
of the sentence is carried out. The recipient system may ask for an alternative
proof, in which case it may be supplied with the last sequent of the following
proof:

nptnp sks

A\ F)

np,np\sks nkn

(/F)

np/n,n,np\sts n/ntn/n
np/n,n, ((np\s)/(n/n),n/n) ks

(Bes)) : mp/m,n, (np\s)/(n/n),n/nt s

(/F)

(B(n))

Upon examination of the combinators associated with the proof above, the re-
cipient (Lambek Calculus) system will decide to accept it. Note that the order of
the formulae of this sequent follows directly the order of the formulae associated
to each word in “The tree is green”. Rather than checking the sequent proof, a
simpler test of linear complexity is performed.

4 Conclusions and Directions of Research

We have proposed an efficient way to foster opportunistic sharing of knowledge
among inference systems which incorporate different kinds of substructural logics
(e.g., linear logics, relevance logics, Lambek Calculus and intuitionistic logics).
Our proposal employs combinator logics [10,3] as a unifying framework for rep-
resenting substructural logics and structurally-free theorem proving [11,12] as a
means to characterise their inferences.

We have addressed systems for which a deeper form of knowledge-sharing
is sought: not only the correspondence among terms and formulae is necessary
(that is, an ontology [24]), but also the inferences performed. The final result
of inferences as well as their intermediate steps should be available for inspec-
tion and rejection or acceptance, depending on the restrictions of those systems
sharing their knowledge.

Our approach does not require that each system be translated into one single
all-encompassing logic. Rather, each system may incorporate its own distinct
substructural logic as long as its inferences are performed structurally-free and
the set of combinators appearing in the proofs are shared by the systems involved.
Ours is an efficient approach because proofs can be examined (and accepted or
rejected) just by scanning a string of combinators.

Prototypical versions of structurally-free theorem provers have already been
developed. However, at their present stage, a proof is supplied and only then
can it be examined. We would like to investigate an “early-fail” approach thus
enabling an inference to be stopped as soon as a particular combinator (or one of
a list of combinator) appears. In our Lambek Calculus and Propositional Logic
case above (Section 3.2) the first proof could have been aborted as soon as the
C combinator appeared and only the last proof would have been supplied.

References

1. James Allen. Natural Language Understanding. Benjamin-Cummings Publishing
Co., 2nd edition, 1994.

10.

11.

12.

13.

14.

15.
16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

A. R. Anderson and N. D. Belnap Jr. Entailment: The Logic of Relevance and
Necessity. Princeton Univ. Press, 1975.

H. P. Barendregt. The Lambda Calculus: Its Syntar and Semantics. Elsevier
Science Publishers, 1981.

Bob Carpenter. Type-Logica Semantics. MIT press, 1997.

M. Cerioli and J. Meseguer. May I borrow your Logic? (Transporting Logical
Structures along Maps). Theoretical Computer Science, 173:311-347, 1997.

F. S. Correa da Silva, W. W. Vasconcelos, and D. S. Robertson. Cooperation Be-
tween Knowledge-Based Systems. In Proc. IV World Congress on Ezpert Systems,
pages 819-825, Mexico City, Mexico, 1998.

F. S. Correa da Silva, W. W. Vasconcelos, D. S. Robertson, J. Agusti, and A. C. V.
Melo. Why Ontologies are not Enough for Knowledge Sharing. In Springer-Verlag,
editor, LNAI, vol. 1611, pages 520-529, 1999.

D. Van Dalen. Intuitionistic logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosoph. Log., volume III, 1984.

K. Dosen. A Historical Introduction to Substructural Logics. In P. S. Heister and
K. Dosen, editors, Substructural Logics, pages 1-31. Oxford Univ. Press, 1993.

J. M. Dunn and R. K. Meyer. Combinators and Structurally Free Logic. Logic
Journal of the IGPL, 5(4):505-538, 1997.

M. Finger. Towards structurally-free theorem proving. Logic Journal of the IGPL,
6(3):425-449, 1998.

M. Finger. Structurally-free theorem proving and the learning of structural permis-
sions in categorial grammar. In Proc. 4th Workshop on Logical Aspects of Comp.
Ling. (LACL98), 1998.

Dov M. Gabbay. Labelled Deductive Systems, volume 1 of Ozford Logic Guides:
33. Oxford Univ. Press, 1996.

J. Giarratano and G. Riley. Ezpert Systems: Principles and Programming. PWS
Publ. Co., 3rd. edition, 1999.

J. Y. Girard. Linear Logic. Theor. Comp. Sc., 50:1-102, 1987.

J. A. Goguen and R. M. Burstall. Institutions: Abstract Model Theory for Speci-
fication and Programming. J. ACM, 39:95-146, 1992.

P. Gray et al. KRAFT — Knowledge Reuse and Fusion/Transformation. http://
www.csd.abdn.ac.uk/ apreece/ Research/ KRAFT/ KRAF Tinfo.html.

N. Guarino, editor. Formal Ontology in Information Systems. IOS Press, 1998.

J. S. Hodas and D. Miller. Logic Programming in a Fragment of Intuitionistic
Linear Logic. Inf. & Comput., 110(2):327-365, 1994.

M. Moortgat. Categorial type logics. In J. Van Benthem and A. ter Meulen, edi-
tors, Handbook of Logic and Language, pages 93-178. Elsevier North-Holland/MIT
Press, 1997.

R. Neches and D. Gunning. The Knowledge Sharing Effort. http://www-
ksl.stanford.edu/knowledge-sharing /papers/kse-overview.html.

A. Schénfinkel. Uber die Bausteine der Mathematischen Logik. In J. van Hei-
jenoort, editor, From Frege to Gddel. Harvard Univ. Press, Cambridge, Mass.,
1924. Reprinted.

V. S. (project director) Subrahmanian. Hermes — a Heterogeneous Reasoning and
Mediator System. http:// www.cs.umd.edu/ projects/ hermes/index.html.

M. Uschold and M. Gruninger. Ontologies: Principles, Methods and Applications.
Knowl. Eng. Review, 11(2):93-136, 1996.

M. Winikoff and J. Harland. Implementation and Development Issues for the
Linear Logic Programming Language Lygon. In Proc. 8" Australasian Computer
Science Conf., pages 562-573, Adelaide, Australia, February 1995.

