
Sharing Resoure-Sensitive Knowledgeusing Combinator Logis?Marelo Finger??Instituto de Matem�atia e Estat��stiaUniversidade de S~ao PauloRua do Mat~ao, 101005315-970 S~ao Paulo, BrazilPhone: +55 -11 818 6310Email: mfinger�ime.usp.br Wamberto Vasonelos? ? ?Institut f�ur InformatikUniversit�at Z�urihWinterthurerstr., 190CH 8057 Z�urih, SwitzerlandPhone: +41 -1 635 6757Email: wvasonelos�am.orgAbstrat. Researh on ontologies has been pursued as a solution tothe diÆult problem of knowledge sharing. Ontologies onsist of a do-main desription whih suits the needs of all systems to be integrated.Any agreed ontology, however, is not the end of the problems involved inknowledge sharing sine how we represent knowledge is intimately linkedto the inferenes we expet to perform with it. Knowledge sharing an-not ignore the similarities and di�erenes between the inferene enginespartiipating in the information exhange. We illustrate this issue via aase study on resoure-sensitive knowledge-based systems and we showhow these an eÆiently share their knowledge using ombinator logis.Keywords. Knowledge sharing; resoure-sensitive logis.1 IntrodutionOne of the bene�ts of formally representing knowledge lies in its potential tobe shared. Tehnologies for omputer interonnetion, now relatively heap andwidespread, make it possible for knowledge bases and inferene engines developedin di�erent loations to interat in order to solve together more omplex problemsthan those they were originally intended for individually [6℄.In this paper we investigate the problem of knowledge sharing among resoure-sensitive systems (also alled substrutural logi systems [9℄). The lass of sub-strutural logis, enompassing, for instane, intuitionisti logis [8℄, relevanelogis [2℄ and linear logis [15℄, employ in their inferenes strutural rules whihtake into aount the struture of premises in a dedution [9℄. Substrutural log-is di�er from eah other by virtue of the strutural rules allowed in their proofs:the set of strutural rules permitted in one logi may be extended or reduedthus giving rise to other logis. A number of real-life problems an be natu-rally represented and elegantly solved via resoure-sensitive inferening. Usefuland omputationally eÆient reasoning systems have been developed employingsubstrutural logis (for instane, [19℄ and [25℄).? Work sponsored by the Consortium British Counil/CAPES (Brazil), Grant no.070/98.?? Partially sponsored by CNPq (Brazilian Researh Counil), Grant no. 300597/95-9.? ? ? On a Post-Dotoral leave of absene from Departamento de Estat��stia e Computa-�~ao, Universidade Estadual do Cear�a, Cear�a, Brazil, sponsored by CNPq, Grant no.201340/91-7.



The organisation of this paper is as follows. Initially, we list some of the is-sues related to knowledge sharing and give a perspetive on work arried out.In Setion 2 we present ombinator logis as our hosen formalism for de�ning aknowledge-sharing framework among systems based in resoure-sensitive logis;we also justify our hoie and ompare it with alternative approahes. In Se-tion 3 we show how ombinator logis an be used to foster integration amongknowledge-based systems. Finally in Setion 4 we omment on our work, drawonlusions and give diretions for future researh.1.1 Some Issues on Knowledge SharingResearh on knowledge sharing mostly onentrates on the mappings betweendi�erent domain-spei� notations while making the assumption that the infer-ene mehanisms of eah system are ompatible. Sometimes this assumption isexpliit: to share knowledge, eah system must translate its knowledge into astandard system of inferene [17, 21, 23℄. At other times the assumption is im-pliit: a standard knowledge representation language is provided but it is mostlyleft to users of the notation to hoose ompatible forms of inferene [18, 24℄.Without this assumption it would be very diÆult to guarantee that themeaning of knowledge expressed in one system is preserved when used by anothersystem. This meaning preservation would, in priniple, require us to demonstratethat the models of the world permitted by a system supplying its knowledge in-lude all the models of the world permitted by the system reeiving that knowl-edge. If we allow donors of knowledge also to be reipients then the theoretialonstraint beomes even stronger: the models permitted by all systems mustoinide preisely. This raises a major pratial problem beause di�erenes inmodels of the world often show up in the distint forms of inferene used toderive onsequenes from the knowledge we represent.A de�nitive solution for this problem would require that all knowledge-basedsystems must share the same models of the world. This solution, however, isnot pratial, for it is far too restritive, ruling out many interesting and usefulforms of partial knowledge sharing, as shown in [7℄. Partially shared knowledgeinvolves loss of information but in many ases the loss may be deteted, assessedand made tolerable.In [5℄ a formal method to share omponents of di�erent logis is desribed.That proposal is based on the onept of institutions [16℄ to represent logisand employs speial mappings among their omponents as a means to translatelogis and to share their model theory, dedutive system, axioms and theorems.However, we would like to ahieve knowledge sharing in a more opportunistiform: rather than assuming we have a formal desription of eah system, oursenario will be a more realisti one if we assume that very little is known of allpartiipating systems. A knowledge-based system (heneforth alled \KBS", forshort) KBS 1 may want to try to use another system KBS 2 by posing it queriesand analysing its answers. In this work we desribe a omputationally eÆientapproah to perform the analysis of answers.Knowledge an be shared in many di�erent ways. We desribe here somepossible senarios for knowledge sharing. Let there be two knowledge based sys-tems, KBS 1 = (IE 1;KB1) and KBS 2 = (IE 2;KB2), where KB i is the system'srespetive knowledge base and IE i its inferene engine [14℄. Let us suppose that



KBS 1, the reipient, poses query Q to KBS 2, the donor. KBS1 must then supplythe triple hQ; IE ;KBi, informing the donor system of the knowledge sharing de-tails: KBS2 is to provide an answer to Q employing KB and IE , that is, whetherKB `IE Q holds. We an then have:{ Donor system as a surrogate { this situation arises when KBS 1 supplies thetriple hQ; IE 1;KB1i to KBS 2 and KBS 2 employs IE 1 on KB1 in order tosolve Q. KBS 2 is simply used as a surrogate omputational devie emulatingKBS 1.{ Donor system as a partial surrogate { this happens when KBS 1 supplieshQ; IE 1;KB2i to KBS 2 and KBS 2 employs IE 1 on its own knowledge baseKB2 in order to solve Q.{ Donor system as a partial orale { this situation happens when KBS1 sup-plies hQ; IE 2;KB1i to KBS 2 and KBS 2 employs its own inferene engineIE 2 on the given knowledge base KB1 in order to solve Q.{ Donor system as an orale { this happens when KBS 1 supplies hQ; IE 2;KB2ito KBS 2 and KBS 2 employs its own inferene engine IE 2 on its own knowl-edge base KB2 in order to solve Q.In the orale ase, the answers provided by the donor system KBS 2 are to beonsidered as always right and used as suh: the inferenes arried out within theorale are not regarded as important. If, on the other hand, the inferenes are tobe taken into aount, that is, the reipient system is not only interested in the�nal answers but also in how they have been obtained, then we say that KBS 2is a surrogate system [7℄. Variants of the senarios above are possible, suh asKBS 1 providing hQ; IE 1 [ IE 2;KB2i or hQ; IE 1;KB1 [KB2i in whih ase thereipient system's apabilities are extended. By posing restritions or extendingthe KBS's inferential power, a number of interesting and pratial situationsarise.1.2 The Problem: Aepting InferenesEah system has its own inferene engine. This poses a diÆulty when we aredealing with surrogay situations, for it may happen that the reipient systemis supplied with answers whose dedutions would not be permitted were its owninferene engine employed. How an this problem be irumvented?We suggest that the solution is to let the donor system behave as it wants,and to let the reipient deide whether it aepts or not the answers to a givenquery.To enable a KBS to rejet an answer from a remote system, the latter mustprovide not only the answer for a given query, but also desribe how that in-ferene was ahieved. This means that the donor must provide, together withits answer, a desription of the inferene steps that led to that onlusion. Thereeiver will inspet that inferene and deide whether to aept or rejet it.This poses an extra overhead whih may lead to unaeptable ineÆienies.Proofs are normally large objets, usually of orders of magnitude larger than theanswer they generate. Proedures to examine a proof and hek for propertiesin it will naturally reet the size and omplexity of the objets involved.In the following we show how this problem an be avoided by sending a muhmore ompat representation of the \important aspets" of the inferenes. We



show that this an be done eÆiently for the lass of resoure-sensitive logisknown as substrutural logis.2 Substrutural and Combinator Logis2.1 Substrutural LogisSubstrutural logis are a family of logis whih di�er from eah other by the setof strutural rules that eah logi in the family aepts. These strutural rulesdetermine how resoures are dealt with by eah logi, and therefore the wholefamily is also known as resoure sensitive logis.For the purpose of this work, we will be working with a fragment of the logide�ned by the onnetives 
 (multipliative onjuntion),! (right impliation)and  (left impliation) (in the absene of ommutativity, ! and  are notequivalent). Eah logi in the family will obey the following onnetive rules,depited as Gentzen sequent rules:(Axiom)' ` ' � ` ' � ` � (` 
)�;� ` '
 � � [';  ℄ ` � (
 `)� ['
  ℄ ` � �; ' ` � (`!)� ` '! �� ` ' �[ ℄ ` � (!`)�['!  ; � ℄ ` � '; � ` � (` )� ` � ' � ` ' �[ ℄ ` � ( `)�[�;   '℄ ` �Beause we are not assuming a priori strutural rules, the anteedent of a se-quent is a binary tree, with formulae at its leaves and ',' at the internal nodes.Anteedents are by default left-assoiative, so �1; �2; �3 atually represents((�1; �2); �3). The onsequent of a sequent is always a single formula. By � ['℄we mean a spei� ourrene of ' in the struture � , and a orresponding � [	 ℄in the lower part of a rule means the substitution of that ourrene of ' bythe struture 	 in � . What distinguishes one substrutural logi from anotherare the strutural rules that are allowed in its inferenes. The most ommonstrutural rules are:Left-assoiativity Right-assoiativity Commutativity Contration Thinning�; (�; 	) ` �(�; �); 	 ` � (�; �); 	 ` ��; (�; 	) ` � (�; �); 	 ` �(�; 	); � ` � (�; �); � ` ��; � ` � � ` ��; 	 ` �For example, the Lambek Calulus is the logi that aepts only the assoia-tivity rules (while the Pure Lambek Calulus aepts none), whih, in terms ofresoures, means that all formulae must be used in a given order; Linear Logiaepts assoiativity and ommutativity, so formulae must all be used, and onlyone, but in any order; Relevane Logis further aepts ontration, whih al-lows it to reuse formulae in a dedution. Finally, Intuitionisti Logi aepts allstrutural rules, and therefore aepts all onstrutible theorems.The hierarhy of substrutural logis has Intuitionisti Logi at its top.Classial Logi would be the next step, aepting all strutural rules and non-onstrutive proofs (we an proveA_:A in lassial logi, without proving eitherA or :A), but it remains outside the family of resoure-sensitive substruturallogis.



2.2 CombinatorsDunn and Meyer [10℄ noted that the strutural rules an be represented by om-binators. Combinators are �-terms with no free variables [3℄. We present belowa few examples of ombinators (we represent ombinators by apital letters; thehoie of letters is historial):B � �xyz:x(yz) Bxyz � x(yz)C � �xyz:xzy Cxyz � xzyI � �x:x Ix � x W � �xy:xyy Wxy � xyyS � �xyz:xz(yz) Sxyz � xz(yz)K � �xy:x Kxy � xThe symbol� means \redues to" and in the traditional �-alulus it is replaedby =. The right hand-side olumn shows that ombinators an be de�ned without�-abstration and, in this sense, they beome proper ombinators dissoiatedfrom the �-alulus, as in their original formulation [22℄.There are also ompound ombinators obtained from the primitive ombina-tors above using funtional appliation: C1C2 reads C1 applied to C2; appliationis also left-assoiative. For example, ombinators W and S are interde�nablein the presene of the I, B and C: W = CSI and S = B(BW)(BC(BB)) as itan be veri�ed from their de�nition above, that is, Wxy = CSIxy � SxIy �xy(Iy) � xyy and Sxyz = B(BW)(BC(BB))xyz � BW ((BC(BB))x) yz �W ((BC)(BB)xy) z � BC(BB)xyzz � C ((BB)x) yzz � BBxzyz � B (xz) yz �xz(yz). Indeed, any �-de�nable funtion (and therefore any ombinator) an beexpressed in terms of the ombinators S and K [3℄; however, the set of ombi-nators presented above is very onvenient to aount for the use of the mostommon strutural rules.In fat, if we read the strutural rules bottom-up, we an see that the Bombinator aounts for left-assoiativity, C for ommutativity, I for identity, Wfor ontration, K for thinning (S is also a type of ontration, not very usual inlogis).2.3 Combinator LogisDunn and Meyer [10℄ proposed a struturally-free logi (SFL) where the systemis free from any strutural presupposition (whene its name). All struturaloperations have to be aounted for via ombinator rules, and hene anothername for suh a logi is Combinator Logi. In the language of suh a logi, theombinators are onsidered as speial atomi formulae. Hene, p! (B
 q) is aformula of suh a language. The onnetive rules for suh a language are exatlythose presented before. However, there are no strutural rules in SFL. Instead,we have onnetive rules ; a generi ombinator rule is� [�(�1; : : : ; �k)℄ ` � (X `)� [X; �1; : : : ; �k ℄ ` �(where Xx1 : : : xk � �(x1; : : : ; xk)) for a ombinator that, when applied to thelower sequent as shown, generates the upper sequent.Some instantiations of the generi ombinator rule for the ombinators pre-sented above are:



Identity Left-assoiativity Thinning� [�℄ ` � (I `)� [I; �℄ ` � � [�; (	;�)℄ ` � (B `)� [B; �; 	;�℄ ` � � [�℄ ` � (K `)� [K; �; 	 ℄ ` �Commutativity Contration� [�;�; 	 ℄ ` � (C `)� [C; �; 	;�℄ ` � � [�;	; 	 ℄ ` � (W `)� [W; �;	 ℄ ` �Note that above we also show the strutural rule assoiated with eah ombinatorrule.Combinator rules leave a \trail" of ombinators in a proof, and suh ombina-tors are evidene of the strutural rules needed for the dedution. For example,to show that B ` (p ! q) ! [(r ! p) ! (r ! q)℄ we perform the followingdedution steps: q ` q p ` p (!`)p ! q; p ` q r ` r (!`)p! q; (r ! p; r) ` q (B `)B; p! q; r ! p; r ` q (`! 3�)B ` (p! q) ! [(r ! p)! (r ! q)℄This dedution shows that the formula (p ! q) ! [(r ! p) ! (r ! q)℄ isa theorem of the !-fragment of all logis whih permit the strutural rule forleft-assoiativity.2.4 Struturally-Free Theorem ProvingIn the ontext of Combinator Logis, Finger [11℄ proposed the notion of Strutural-ly-Free Theorem Proving (SFTP), whih an be de�ned as follows. Given ananteedent � and a onsequent �, �nd a ombinator X suh that X; � ` � isdeduible in Combinator Logi. Suh an ativity is a generalisation of traditionaltheorem proving, beause by inspeting the ombinators that ompose the an-swer X, it allows us to answer the question: in whih substrutural logis is agiven sequent deduible.Finger [11℄ noted that there were a few problems with the logi of ombi-nators, namely the fat that there was no ombinator rule to deal with right-assoiativity, and that it ould not ope with the  onnetive.To deal with right assoiativity, a new ombinator B�1, was introduedin [12℄, with its assoiated ombinator rule:B�1x(yz)� xyz � [(�; 	); �℄ ` � (B�1 `)� [B�1; �; (	;�)℄ ` �Adding the ombinator B�1 to the usual ombinatorial system introdues someonsisteny problems; these problems have been addressed and solved in [12℄by reduing the lass of ombinators allowed, without diminishing the set ofstrutural rules representable. It was then shown in [11℄ that for every intuition-istially valid sequent � ` � in the f!;
g-fragment, SFTP an be solved; thatis, a ombinator X an be omputed suh that X; � ` � is deduible in SFL.To introdue the  -onnetive in the logi, it is neessary to remove ombi-nators as atomi formulae and add them as a label, in the fashion of LabelledDedutive Systems [13℄. The algorithm of [11℄ an then be extended to deal withthe f!; ;
g-fragment.



3 EÆient Knowledge Sharing between Substru-tural LogisIn this work we explore the issues onerning knowledge sharing among a veryspei� lass of knowledge-based systems: those whose underlying logis are sub-strutural. We shall assume that our systems all share the same voabulary, thatis, their knowledge bases are all subsets of a language P . If this assumption doesnot hold then a translation funtion among the languages of eah system shouldbe provided [5℄ or, alternatively, the orrespondene among spei� onstrutsto be shared [6℄ ought to be given.3.1 Knowledge Sharing between Relevane and Linear Log-isLet there be the set of formulae fp  q 
 r; q  r; r  s; s  g omprisingthe knowledge-base of a donor system. It represents a small fragment of simplepropositional knowledge. Let us assume further that the inferene engine of suhsystem inorporates a relevant logis [2℄. When posed a query p then we havethe following sequent proof:q ` q r ` r (` 
)q; r ` q 
 r p ` p ( `)p q 
 r; (q; r) ` p (B `)B; p q 
 r; q; r ` p r ` r ( `)B; p  q 
 r; (q  r; r); r ` p (B ` 2�)BBB; p q 
 r; q  r; r; r ` p (B `;W `;B `)B(BW)(BBB); p q 
 r; q  r; r ` p s ` s ( `)B(BW)(BBB); p q 
 r; q  r; (r  s; s) ` s (B `)B(BB)(B(BW)(BBB)); p  q 
 r; q  r; r  s; s ` sThe ombinators of the dedution above an be simpli�ed with the ombinatorlist notation of [12℄, of the form hX(i1); : : : ;X(in)i , hene we have B(BB)(B(BW)(BB(BB(I)))) and thus hB(3);W(3);B(2);B(2)i.This list notation shows the real ombinatorial ontent of the omplex om-binator term. The list hB(3);W(3);B(2);B(2)i learly shows that there were threeuses of left-assoiativity (the B's) and one use of ontration (theW). The indiesrepresent the position on the anteedent where these rules were applied: therewas a ontration at the third position, and left-assoiativity was applied twieat the seond position and one at the third. An inspetion of the proof showsthat this was indeed the ase. Details on how this works, and how to omputethe list ombinator assoiated with a dedution (without atually onstrutingthe whole dedution) an be found in [11, 12℄.The output of the query to the KBS above onsists of the proof that  pholds, the sequent proof and the list of ombinators above: hB(3);W(3);B(2);B(2)i.Reipient systems are able to eÆiently evaluate the answer provided | ratherthan examining the proof, a linear san of the list of ombinators is enough to



hek for properties of the donor system. In our example, sine W is found inthe output string of ombinators, we onlude that the dedution is not linear.Reipient systems whih required that proofs be linear ould rejet the dedutionabove just by examining the simpli�ed list of ombinators.Suh a method for quikly heking the kind of strutural rule (i.e. the on-trol of resoures) used by a remote inferene system easily generalises to anysubstrutural system. All it is required to do is to send, together with the an-swer to a query, a ombinator list assoiated with the dedution of the answerto the query.3.2 Knowledge Sharing between Lambek and PropositionalCaluliAnother interesting opportunity to foster knowledge sharing between systemsarises in the ontext of natural language proessing. Let us suppose the donorsystem onsists of a parser for English with the fragment of phrase struturegrammar [1℄ fS  NP 
VP ;NP  Art
N ;VP  Vbe
Adjg. Suh grammaran be represented in ategorial grammar [20, 4℄ as fS = s;NP = np;VP =npns;Art = np=n;N = n;Vbe = (npns)=(n=n);Adj = n=ng. As is usual in theategorial grammar tradition, the slash notation is used instead of the implia-tions, so the slashes above are simply a notational variation (A=B � B ! Aand BnA � A  B), so that the diretional versions of Modus Ponens areA=B;B ` A and B;BnA ` A.Let us further suppose that the reipient system wants to know if the string\The tree is green" is a orret sentene in English and submits the list of assoi-ated types of the omponents of the string, that is, (npns)=(n=n); n=n; (np=n); n,to �nd out whether the donor system an infer a sentene s from suh an input.If the donor system is equipped with an inferene system for propositionallogi, the following proof is possible:np ` np s ` s (C(n))np;npns ` s (n `)hC(1)i : npns;np ` s nnn ` nnn (= `)hC(1)i : (npns)=(n=n); n=n;np ` s n ` n (= `)hC(1)i : (npns)=(n=n); n=n; (np=n; n) ` s (B(n))hB(3);C(1)i : (npns)=(n=n); n=n;np=n; n ` sHowever, upon examination of the assoiated list hB(3);C(1)i of ombinators, thereipient system may have a restrition that it will not aept proofs in whihthe order of formulae is hanged (that is, there are ourrenes of ombinatorC). This rejetion will happen when the reipient system inorporates LambekCalulus [9℄.The order of the formulae dedued in the anteedent is not exatly the orderof the formulae generated by \The tree is green". Indeed, the sequent above isatually a proof that the string \is green The tree" is a grammatially orretsentene, whih is obviously not true. Although the ategorial grammar abovean be employed in many di�erent and useful ways, the reipient system only



wants proofs for those sentenes in whih no hanges in the order of omponentsof the sentene is arried out. The reipient system may ask for an alternativeproof, in whih ase it may be supplied with the last sequent of the followingproof: np ` np s ` s (n `)np;npns ` s n ` n (= `)np=n; n;npns ` s n=n ` n=n (= `)np=n; n; ((npns)=(n=n); n=n) ` s (B(n))hB(3)i : np=n; n; (npns)=(n=n); n=n ` sUpon examination of the ombinators assoiated with the proof above, the re-ipient (Lambek Calulus) system will deide to aept it. Note that the order ofthe formulae of this sequent follows diretly the order of the formulae assoiatedto eah word in \The tree is green". Rather than heking the sequent proof, asimpler test of linear omplexity is performed.4 Conlusions and Diretions of ResearhWe have proposed an eÆient way to foster opportunisti sharing of knowledgeamong inferene systems whih inorporate di�erent kinds of substrutural logis(e.g., linear logis, relevane logis, Lambek Calulus and intuitionisti logis).Our proposal employs ombinator logis [10, 3℄ as a unifying framework for rep-resenting substrutural logis and struturally-free theorem proving [11, 12℄ as ameans to haraterise their inferenes.We have addressed systems for whih a deeper form of knowledge-sharingis sought: not only the orrespondene among terms and formulae is neessary(that is, an ontology [24℄), but also the inferenes performed. The �nal resultof inferenes as well as their intermediate steps should be available for inspe-tion and rejetion or aeptane, depending on the restritions of those systemssharing their knowledge.Our approah does not require that eah system be translated into one singleall-enompassing logi. Rather, eah system may inorporate its own distintsubstrutural logi as long as its inferenes are performed struturally-free andthe set of ombinators appearing in the proofs are shared by the systems involved.Ours is an eÆient approah beause proofs an be examined (and aepted orrejeted) just by sanning a string of ombinators.Prototypial versions of struturally-free theorem provers have already beendeveloped. However, at their present stage, a proof is supplied and only thenan it be examined. We would like to investigate an \early-fail" approah thusenabling an inferene to be stopped as soon as a partiular ombinator (or one ofa list of ombinator) appears. In our Lambek Calulus and Propositional Logiase above (Setion 3.2) the �rst proof ould have been aborted as soon as theC ombinator appeared and only the last proof would have been supplied.Referenes1. James Allen. Natural Language Understanding. Benjamin-Cummings PublishingCo., 2nd edition, 1994.



2. A. R. Anderson and N. D. Belnap Jr. Entailment: The Logi of Relevane andNeessity. Prineton Univ. Press, 1975.3. H. P. Barendregt. The Lambda Calulus: Its Syntax and Semantis. ElsevierSiene Publishers, 1981.4. Bob Carpenter. Type-Logia Semantis. MIT press, 1997.5. M. Cerioli and J. Meseguer. May I borrow your Logi? (Transporting LogialStrutures along Maps). Theoretial Computer Siene, 173:311{347, 1997.6. F. S. Correa da Silva, W. W. Vasonelos, and D. S. Robertson. Cooperation Be-tween Knowledge-Based Systems. In Pro. IV World Congress on Expert Systems,pages 819{825, Mexio City, Mexio, 1998.7. F. S. Correa da Silva, W. W. Vasonelos, D. S. Robertson, J. Agust��, and A. C. V.Melo. Why Ontologies are not Enough for Knowledge Sharing. In Springer-Verlag,editor, LNAI, vol. 1611, pages 520{529, 1999.8. D. Van Dalen. Intuitionisti logi. In D. Gabbay and F. Guenthner, editors,Handbook of Philosoph. Log., volume III, 1984.9. K. Do�sen. A Historial Introdution to Substrutural Logis. In P. S. Heister andK. Do�sen, editors, Substrutural Logis, pages 1{31. Oxford Univ. Press, 1993.10. J. M. Dunn and R. K. Meyer. Combinators and Struturally Free Logi. LogiJournal of the IGPL, 5(4):505{538, 1997.11. M. Finger. Towards struturally-free theorem proving. Logi Journal of the IGPL,6(3):425{449, 1998.12. M. Finger. Struturally-free theorem proving and the learning of strutural permis-sions in ategorial grammar. In Pro. 4th Workshop on Logial Aspets of Comp.Ling. (LACL98), 1998.13. Dov M. Gabbay. Labelled Dedutive Systems, volume 1 of Oxford Logi Guides:33. Oxford Univ. Press, 1996.14. J. Giarratano and G. Riley. Expert Systems: Priniples and Programming. PWSPubl. Co., 3rd. edition, 1999.15. J. Y. Girard. Linear Logi. Theor. Comp. S., 50:1{102, 1987.16. J. A. Goguen and R. M. Burstall. Institutions: Abstrat Model Theory for Spei-�ation and Programming. J. ACM, 39:95{146, 1992.17. P. Gray et al. KRAFT { Knowledge Reuse and Fusion/Transformation. http://www.sd.abdn.a.uk/ apreee/ Researh/ KRAFT/ KRAFTinfo.html.18. N. Guarino, editor. Formal Ontology in Information Systems. IOS Press, 1998.19. J. S. Hodas and D. Miller. Logi Programming in a Fragment of IntuitionistiLinear Logi. Inf. & Comput., 110(2):327{365, 1994.20. M. Moortgat. Categorial type logis. In J. Van Benthem and A. ter Meulen, edi-tors, Handbook of Logi and Language, pages 93{178. Elsevier North-Holland/MITPress, 1997.21. R. Nehes and D. Gunning. The Knowledge Sharing E�ort. http://www-ksl.stanford.edu/knowledge-sharing /papers/kse-overview.html.22. A. Sh�on�nkel. �Uber die Bausteine der Mathematishen Logik. In J. van Hei-jenoort, editor, From Frege to G�odel. Harvard Univ. Press, Cambridge, Mass.,1924. Reprinted.23. V. S. (projet diretor) Subrahmanian. Hermes { a Heterogeneous Reasoning andMediator System. http:// www.s.umd.edu/ projets/ hermes/index.html.24. M. Ushold and M. Gruninger. Ontologies: Priniples, Methods and Appliations.Knowl. Eng. Review, 11(2):93{136, 1996.25. M. Winiko� and J. Harland. Implementation and Development Issues for theLinear Logi Programming Language Lygon. In Pro. 8th Australasian ComputerSiene Conf., pages 562{573, Adelaide, Australia, February 1995.


