
IMPERATIVE HISTORY: TWO-DIMENSIONALEXECUTABLE TEMPORAL LOGICMARCELO FINGERDepartamento de Ciencia da ComputacaoInstituto de Matematica e EstatisticaUniversidade de Sao PauloANDMARK REYNOLDSDepartment of Computer ScienceKing's College, London1 IntroductionIn this paper we combine two interesting and useful recently proposed ideaswithin applied temporal logic which were both initially developed by DovGabbay (amongst others). We coin the term \Imperative History" for thetwo-dimensional executable temporal logic which results from combiningthe Imperative Future idea of an executable temporal logic (proposed in [10]and described more fully in [3]) with the idea of using a two-dimensionaltemporal logic to describe the evolution of temporal databases (an ideaproposed in [6] but closely related to the work in [4]). We demonstrate thatthis combination leads to a powerful declarative approach to handling timein databases.Temporal Logic has become one of the most important formalisms fordescribing, specifying, controlling and reasoning about systems which ex-hibit some kind of on-going interaction with their environment. The formallanguage with its proof-theory, decision algorithms and associated meth-ods of practical application has found many uses in dealing with programs,complex reactive systems, databases and arti�cial intelligent systems: theinterested reader is referred to [9] for a fuller description of these applica-tions. In this paper we extend two di�erent applications.In [10] it was suggested that the formal temporal language for describingthe development of a reactive system could be used, in a restricted form,to actually write the programs which control the behaviour of the sys-



80 MARCELO FINGER AND MARK REYNOLDStem. Thus we use temporal logic as a declarative programming language:the logic becomes executable. All the well-known advantages of declarativeprogramming languages apply: they are quick to write, easy to understandand anyone interested in formal veri�cation has a head start.In the executable temporal logic of [10], the simple restricted formatfor the formulas of the temporal language which become program rules issummarized as Past implies Future. The procedural e�ect of such a rule isthat some condition on the observed past behaviour of the system (and/orits environment) controls whether the system brings about some future sit-uation. Thus this idea is rendered as Declarative Past implies ImperativeFuture. There is an ever increasing body of useful work developing fromthis proposal and related work. The interested reader can �nd descriptionsof �rst-order versions, e�cient implementations and generalizations to con-currency amongst other recent developments in [3].Another very important use of temporal logic is in dealing with databaseswhich make use of time. We call these temporal databases. Time can be rel-evant to a database in one or both of two di�erent ways. Each change to thecontents of the database will be made at some time: we refer to this as thetransaction time of the database update. Databases often also store infor-mation about the time of events: we refer to the actual time of occurrenceof an event as its valid time. Depending on which of these uses is made oftime or on whether both approaches have a role to play, we can identifyseveral di�erent types of temporal databases but what is common to all,as with all systems which change over time, is that describing or reasoningabout their evolution is very conveniently done with temporal logic.With both the forms of temporal information involved, it was thus sug-gested in [6], that describing the evolution of a temporal database is bestdone with two-dimensional temporal logic. This is because, for example, ata certain transaction time today, say, we might realize that our databasehas not been kept up to date and we may add some data about an eventwhich occurred (at a valid time) last week. Thus a one-dimensional modelwhich represents this-morning's view of the history of the recorded world,is changed, by the afternoon, into a new one-dimensional model by havingthe state of its view about last week altered. A series of one-dimensionalmodels arranged from one day to the next is clearly a structure for a two-dimensional temporal logic. Other applications of two-dimensional tempo-ral logic exist| for example in dealing with intervals of time [1]| butthe logic is generally quite di�cult to reason with (see [22]). However, ithas recently been shown ([4]) that the kind of logic needed for databaseapplications is much more amenable.Managing databases is not just about collecting facts. There are manyuses for more general rules. For example, we often need integrity con-



TWO-DIMENSIONAL EXECUTABLE TEMPORAL LOGIC 81straints, derived properties, conditional updates, side-e�ects and system-atic corrections. All such rules must be expressed in some sort of database-control/programming language.In this paper we suggest using a two-dimensional executable temporallogic as a declarative language for expressing rules for temporal databasemanagement. The most common form for these rules will be a formulawhich expresses a condition on the one-dimensional historical model at acertain time controlling a condition on the new one-dimensional historicalmodel which should hold after the next transaction. This may necessitate anupdate to recorded history (about some valid times in the past, present orfuture). We thus call this executable temporal logic \Imperative History".The paper is structured as follows. In the next section, we de�ne proposi-tional and predicate one-dimensional temporal logics: their languages formthe basis of existing executable temporal logics and our two-dimensionaltemporal logic. Also in this section, we describe the existing (one-dimensio-nal) executable temporal logic MetateM and its variations. In section 3,we describe two-dimensional logic as it is applied to temporal databases.We also briey describe the idea of temporal databases and their varioustypes. In section 4, we introduce the idea of an executable two-dimensionallogics and describe how it could be used in database management. In sec-tion 5, we provide a simple example of the idea in action in the intensivecare ward of a hospital: this example develops, some previous applicationsof executable temporal logic. In section 6, we give a possible extension ofthe technique to database triggers before summarizing our work.2 Executable Temporal Logic2.1 Temporal LogicWe are going to be concerned with the behaviour of processes over time.Two very useful formal languages for describing such behaviour are thepropositional temporal logic PTL and the �rst-order temporal logic FTLbased on the temporal connectives until U and since S introduced by Kampin [12]. The simpler propositional language allows us to express less and sois easier to deal with.A crucial point in the executable temporal logic paradigm is that thesame languages are used to specify the desired behaviour of a program andto actually write the program to satisfy the speci�cation. In fact, in theideal case, the speci�cation and the program are the same thing.In any case, amongst many other advantages, using the same languagefor speci�cation and implementation gives us a head start in proving cor-rectness of programs.



82 MARCELO FINGER AND MARK REYNOLDS2.2 Temporal StructuresThe languages FTL and PTL are used to describe the behaviour of pro-cesses over time. In this paper, we will take the underlying ow of time tobe either the natural numbers {equivalently some sequence s0; s1; s2; ::: ofstates { or the integers. In general, such temporal languages can describechanges over any linear order (T;<) of time points.In the propositional case the state at each time is just given by the truthvalues of a set LP of atomic propositions or atoms. The behaviour we aredescribing is just the way the various atoms become true or false over time.To formalize this we use a map �P : T � LP ! f>;?g where �P (t; q) = >i� the atom q is true at time t.In �rst-order temporal structures the state at each time is a whole �rst-order structure with a domain of objects on which are interpreted constantsymbols, function symbols and predicate symbols. Without any restrictionssuch situations would be too messy to describe formally so we make someassumptions. As described in [18] there are many sets of simplifying as-sumptions which can be made but the ones we make here are comfortableto work with and, at the same time, so general that other approaches canbe easily coded in.For a start we assume that each state is a �rst order structure in thesame language. So suppose that LP is a set of predicate symbols and LFis a set of function symbols. We divide up LP into a set LnP for each n � 0being the n-ary predicate symbols. We also divide up LF into a set LnF foreach n � 0 being the n-ary predicate symbols. The 0-ary function symbolsare just constants.We assume a constant domainD of objects but, over time, the extensionsof the predicates change. To formalize this we use a map �P = �0P : T �L0P ! f>;?g and a map �nP : T � LnP ! Dn for each n = 1; 2; :::. Theinterpretations of the functions are constant: we use maps �nF : LnF !(Dn ! D).In many of the de�nitions below we can include the propositional caseas a special case of the �rst-order one by equating LP with L0P and �P with�0P .2.3 SyntaxAs well as LnP and LF , we also use a countable set LV of variable symbols.The terms of FTL are built in the usual way from LF and LV .The set of formulas of FTL is de�ned by:� if t1; :::; tn are terms and p is an n-ary predicate symbol then p(t1; :::; tn)is a formula,



TWO-DIMENSIONAL EXECUTABLE TEMPORAL LOGIC 83� if � and � are formulas then so are >, :�, � ^ �, 8x�, U (�; �) andS (�; �).We have the usual idea of free and bound variable symbols in a formulaand so the usual idea of a sentence { i.e. a formula with no free variables.The class of formulas which do not have any variable symbols or constantsform the well-formed formulas of the propositional language PTL. In PTLwe only use 0-ary predicate symbols which are just propositions.A formula of the form p(u) is called a positive literal. A formula of theform :p(u) is called a negative literal. A literal is either a positive one or anegative one. A literal is ground if it is also a sentence.2.4 SemanticsA variable assignment is a mapping from LV into D. Given such a variableassignment V we assume it extends to all terms by recursively de�ningV (f(u1; :::; un)) = �nF (f)(V (u1); :::; V (un)) for any f 2 LnF .For a temporal structureM = (T;<;D; f�nPgn�0; f�nFgn�0) a time pointt 2 T , a formula ', and a variable assignment V , we de�ne whether (or notresp.) '(d) under V is true at t inM, writtenM; t; V j= ' (orM; t; V 6j= 'resp.) by induction on the construction of '.� M; t; V j= >.� M; t; V j= q for a proposition q i� �0P (t; q) = >.� M; t; V j= p(u) for an n-ary predicate p and n-tuple u of terms i�(V (u1); :::; V (un)) 2 �nP (t; p).� M; t; V j= :� i� M; t; V 6j= �.� M; t; V j= � ^  i� M; t; V j= � and M; t; V j=  .� M; t; V j= U ( ; �) i� there is s > t in T such that M; s; V j=  andfor all r 2 T such that t < r < s, M; r; V j= �.� M; t; V j= S ( ; �) i� there is s < t in T such that M; s; V j=  andfor all r 2 T such that s < r < t, M; r; V j= �.� M; t; V j= 8x� for x 2 LV i� for all d 2 D M; t;W j= � where W isthe variable assignment given byW (y) = � V (y) y 6= xd y = x:It is easy to prove that the truth of a formula at a point in a structuredoes not depend on assignments to variables which do not appear free init. So we can write M; t; v j= ' where v is a partial assignment providedits domain does include the free variables of '. When � is a sentence { ora PTL formula { we also write M; t j= � i� M; t;? j= � where ? is theempty map.



84 MARCELO FINGER AND MARK REYNOLDS2.5 ModelsSay that temporal structure M is a model of a sentence � i� M; 0 j= �.A sentence is satis�able i� it has such a model. A sentence � is valid i�M; t j= � for all structures M and for all time points t in M.2.6 AbbreviationsWe read U ( ; �) as \� until  " and similarly for since. Note that our U isstrict in the sense that U (q; p) being true says nothing about what is truenow. In some presentations of temporal logic, until is de�ned to be non-strict. We can introduce an abbreviation U + for non-strict until: U +( ; �)i�  _ (� ^ (U ( ; �))).As well as the classical abbreviations ?, _, !, $ and 9 we also havemany temporal ones. The only ones that we need in this paper are:g' \' is true in the next state" U (';?)ccdefggg' \there was a last state and ' was true in this state" S (';?)}' \' will be true in some future state" U (';>)' \' will be true in all future states" :}:'}� ' \' was true in the past" S (';>)\' has always been true in the past" :}� (:')start \it is now the start of time" :(S (>;>))2.7 SeparationAs one would expect from the declarative past /imperative future motiva-tion, one distinction which plays an important role in MetateM is thatbetween formulas which refer to the past and those which refer to the fu-ture. Let us make this precise.A formula ' is a not necessarily strict future time formula i� it is builtwithout S . The class of strict future time formulas include only� U (�;  ) where  and � are both not necessarily strict future timeformulas and� :', '^ and 8x' where ' and  are both strict future time formulas.Dually we have strict and not necessarily strict past time formulas.It is clear that a strict past time formula only depends on the past forits truth. This classi�cation of formulas is the basis for Gabbay's separationproperty and separation theorem which is itself useful for establishing theexpressive power of the MetateM language. See [9] for details which alsoinclude a discussion of the proof-theory of the temporal logics mentionedabove.



TWO-DIMENSIONAL EXECUTABLE TEMPORAL LOGIC 852.8 Explicit TimeIn using executable temporal logic it is often useful to be able to refer ex-plicitly to the time of an event as measured by some clock or calendar. Thisis especially so when we come to use the logic to reason about temporaldatabases. To support this feature we will suppose that our logic includesa special 1-ary predicate time which at any time t is only true of somesyntactic representation of t. That is, there are enough constants and func-tion symbols in the language to allow us to write (the name of) time t andall temporal structures M = (T;<;D; f�nPgn�0; f�nFgn�0) mentioned aresupposed to have the property that �1P (t; time) = ftg for each t 2 T .Note that with this assumption on our structures, the temporal languageFTL can easily be shown to be as expressive as a two-sorted �rst-orderlanguage.2.9 MetateM Programming LanguageMetateM is really a paradigm for programming languages rather than oneparticular language. The bases are three:� programs should be expressed in a temporal language;� programs should be able to be read declaratively;� the operation of the program should be interpretative with individualprogram clauses operating according to the \declarative past impliesimperative future" idea.Most versions ofMetateM use the temporal languages PTL and FTLwith until and since.The basic idea of declarative languages is that a program should be ableto be read as a speci�cation of a problem in some formal language and thatrunning the program should solve that problem. Thus we will see that aMetateM program can easily be read as a temporal sentence and thatrunning the program should produce a model of that sentence.The task of the MetateM program is to build a model satisfying thedeclared speci�cation. This can sometimes be done by a machine followingsome arcane, highly complex procedure which eventually emerges with thedescription of the model (see [16]). That would not be the MetateM ap-proach. Because we are describing a programming language, transparencyof control is crucial. It should be easy to follow and predict the program'sbehaviour and the contribution of the individual clauses must be straightforward.Fortunately, these various disparate aims can be very nicely satis�edby the intuitively appealing \declarative past implies imperative future"idea of [10]. The MetateM program rule is of the form P ) F where P



86 MARCELO FINGER AND MARK REYNOLDSis a strict past-time formula and F is a not necessarily strict future-timeformula. The idea is that on the basis of the declarative truth of the pasttime P the program should go on to \do" F .In the case of a closed system, a MetateM program is a list fPi !Fi j i = 1; :::; ng of such rules and, at least in the propositional case, itrepresents the PTL formula n̂i=1(Pi ! Fi):The program is read declaratively as a speci�cation: the execution mecha-nism should deliver a model of this formula. To do so it will indicate whichpropositions are true and which are false at time 0, then at time 1, then attime 2, e.t.c. It does this by going through the whole list of rules Pi ! Fiat each successive stage and make sure that Fi gets made true whenever Piis. This is called forward chaining. For details of the way it does this see[2]. In the �rst-order case there are several slightly di�erent versions ofMetateM. The simplest involves allows only clauses in the forms:start ) p(c)start ) }q(c)8X:[ ccdefggg ĥi=1ki(X) ) p(X)]8X:[ ccdefggg ĥi=1 ki(X) ) }q(X)]where each ki is a literal, p and q are predicates and c is a tuple of constants.These constraints enable us to implement the program in a direct way.3 Temporal UpdatesWe de�ne a temporal database as a �nite temporal structure, i.e. a tem-poral structure M = (T;<;D; f�nPgn�0; f�nFgn�0) obeying the followingconstraints:� The set of predicate symbols is �nite.� The interpretation of each predicate is �nite, i.e. for every predicatesymbol p there are only �nitely many tuples ha1; : : : ; ani for whichthere exists a t 2 T such that�nP (t; p(a1; : : : ; an)) = >



TWO-DIMENSIONAL EXECUTABLE TEMPORAL LOGIC 87� It is usual for databases thatM be a Herbrand model , i.e. the domainD is identical to the set of constant symbols and every ground term isinterpreted into itself.� We further assume that the set of points where an atomic formulap(a1; : : : ; an) is true must be representable by a temporal element , i.e.a �nite union of intervals over T . For example, if T = N, then [0; 10][[20; 30] is a temporal element, but the set of all even numbers is not. 1These conditions guarantee that temporal databases can be �nitely rep-resented as a set of labelled formulas , i : p(a1; : : : ; an), where p(a1; : : : ; an)is an atomic formula and i is a temporal element over T ; in this context, alabelled formula i : p(a1; : : : ; an) represents a partial temporal structure.In traditional databases, the update of data means the replacement ofthe current value of the data by a new one. In temporal databases one ispresented with the extra possibility of changing the past, the present andthe future. In a nutshell, a temporal update is a \change in history". Notethe double reference to time in such an expression: change relates to thetemporal evolution of data, while history refers to the temporal record.These two notions of time are independent and coexistent. In analysingupdates in temporal databases we have to be able to cope simultaneouslywith those two notions of time. For that, we present next a two-dimensionaltemporal logic, a formalism that will allow for the simultaneous handling oftwo references of time. We will stick to the propositional case, for the up-dates we are concerned with are only atomic updates that may be modelledas propositional atoms.3.1 Propositional Two-dimensional Temporal LogicThere are several modal and temporal logic systems in the literature whichare called two-dimensional ; all of them provide some sort of double referenceto an underlying modal or temporal structure. More systematically, two-dimensional systems have been studied as the result of combining two one-dimensional logic systems [4, 5]. In [5] two criteria were presented to classifya logical system as two-dimensional:� The connective approach: a temporal logic system is two-dimensionalif it contains two sets of connectives, each set referring to a distinctow of time.1This condition basically tells that there is a limit to what temporal data can berepresented. The condition itself can be relaxed if data expressivity is enhanced, butsome time-stamps will always remain unrepresentable. Eg. if deductive rules are addedto the database, periodic sets, like the even numbers, become representable; but sincethere are uncountably many subsets of N, it will never be possible to represent all ofthem.



88 MARCELO FINGER AND MARK REYNOLDS� The semantic approach: a temporal logic system is two-dimensional ifthe truth value of a formulas is evaluated with respect to two timepoints.The two criteria are independent and there are examples of systemssatisfying each criterion alone, or both. For the purposes of this work, thetwo-dimensional temporal logic satis�es both criteria, and is thus a broadlytwo-dimensional logic. Both ows of time are assumed to be discrete (Z).In databases it is usual to useZinstead of N as the underlying ow of time.So let L be a countable set of propositional atoms. Besides the booleanconnectives, we consider two sets of temporal operators. The horizontaloperators are the usual \since" (S ) and \until" (U ) two place operators,together with all the usual derived operators; the horizontal dimension willbe used to represent valid time temporal information. The vertical dimen-sion is assumed to be a Z-like ow and the operators over such dimensionsare the two-place operators \since vertical" (S ) and the \until vertical"(U ); in general, we use barred symbols when they refer to the vertical di-mension. The vertical dimension will be used to represent transaction timeinformation. Two-dimensional formulas are inductively de�ned as:� every propositional atom is a two-dimensional formula;� if A and B are two-dimensional formulas, so are :A and A^B, S (A;B)and U (A;B),S (A;B) and U (A;B).On the semantic side, we consider two ows of time: the horizontal one(T;<) and the vertical one (T; < ). Two-dimensional formulas are evaluatedwith respect to two dimensions, typically a time point t 2 T and a timepoint �t 2 T , so that a two dimensional plane model is a structure based ontwo ows of time M = (T;<; T; < ; �). The two-dimensional assignment� maps every triple (t; �t; p) into f>;?g. The model structure can be seenas a two-dimensional plane, where every point is identi�ed by a pair ofcoordinates, one for each ow of time (there are other, non-standard modelsof two-dimensional logics which are not planar; see [5]).The fact that a formula A is true in the two-dimensional plane modelM at point (t; �t) is represented by M; t; �t j= A and is de�ned inductivelyas:



TWO-DIMENSIONAL EXECUTABLE TEMPORAL LOGIC 89M; t; �t j= p i� �(t; �t; p) = >.M; t; �t j= :A i� it is not the case that M; t; �t j= A.M; t; �t j= A^B i� M; t; �t j= A and M; t; �t j= B.M; t; �t j= S (A;B) i� there exists a t0 2 T with t0 < t and M; t0; �t j= Aand for every t00 2 T , whenever t0 < t00 < t thenM; t00; �t j= B.M; t; �t j= U (A;B) i� there exists an t0 2 T with t < t0 andM; t0; �t j= Aand for every t00 2 T , whenever t < t00 < t0 thenM; t0; �t j= B.M; t; �t j=S (A;B) i� there exists a �t0 2 T with �t0 < �t and M; t; �t0 j= Aand for every �t00 2 T , whenever �t0 < �t0 < �t thenM; t; �t00 j= B.M; t; �t j= U (A;B) i� there exists a �t0 2 T with �t < �t0 and M; t; �t0 j= Aand for every �t0 2 T , whenever �t < �t00 < �t0 thenM; t; �t00 j= B.Note that the semantics of horizontal and vertical operators are totallyindependent from each other, i.e. the horizontal operators have no e�ect onthe vertical dimension and similarly for the vertical operators. If we considerthe formula without the vertical operators, we have a one-dimensional hor-izontal U S -temporal logic: similarly for the vertical temporal logic. Unarytemporal predicates can be de�ned for both dimensions in the usual way,so we get , , }, }� , etc, for the horizontal dimension and , , },}� , etc, for the vertical one.3.2 Two-Dimensional SeparationThe separation result does not hold for two-dimensional temporal logicabove; i.e. , given a two-dimensional formula, it is not guaranteed thatthere exists an equivalent formula that is a conjunction of formulas of theform Past _ Present _ Future,where Present contains no temporal operators, Past contains no future (i.e.U and U ) operators and Future contains no past (i.e. S andS ) operators.For example, the formula }}� p cannot be separated.However, for a very useful class of formulas called temporalised formulas ,we obtain a restricted notion of separation, called vertical separation, whichis strong enough for our purposes here.A temporalised formulas is a two-dimensional formula in which no ver-tical temporal operator appears inside the scope of a horizontal temporal



90 MARCELO FINGER AND MARK REYNOLDSoperator. Eg. }}A is a temporalised formula, but }}A is not. Tempo-ralised formulas can be seen as the result of having the vertical temporaldimension applied externally to a one-dimensional temporal logic, as dis-cussed in [4].A formula is vertically separable if it is equivalent to a formula that isa conjunction of formulas of the formv-Past _ v-Present _ v-Future,where v-Past contains no vertical future operators (i.e. U and its derivedoperators), v-Future contains no vertical past (i.e.S and its derived opera-tors) and no vertical operator occurs in v-Present . The following result wasproved in [4].THEOREM 3.1 If A is a temporalised formula then A is vertically separa-ble.Of course, a totally analogous horizontal separation can be obtainedfor formulas where the horizontal dimension is applied externally to thevertical one. In this work, vertical separation is emphasized because in ourmodelling of temporal database evolution (see Section 3.4), the horizontaldimension represents the state of the database, while the vertical dimensionrepresents the evolution of such temporal database; hence it is the verticaldimension that is external to the database.In this context, the horizontal dimension representing the temporaldatabase state is called the valid time dimension. The vertical dimensionrepresenting the evolution of temporal database states is called the trans-action time dimension.3.3 The Two-Dimensional DiagonalWe now examine some properties of the diagonal in two-dimensional planemodels. The diagonal is a privileged line in the two-dimensional modelintended to represent the sequence of time points we call \now", i.e. the timepoints which an historical observer is expected to traverse. The observer ison the diagonal when he or she poses a query (i.e. evaluates the truth valueof a formula) on a two-dimensional model.So let � be a special atom that denotes the points of the diagonal, whichis characterised by the following property: for every t 2 T and every �t 2Z:M; t; �t j= � i� t = �t:The diagonal is illustrated in Figure 1.



TWO-DIMENSIONAL EXECUTABLE TEMPORAL LOGIC 91
................................................................... -6( �T; < ) }� (T;<)}� �}� �}� �

Figure 1 The two-dimensional diagonalThe following formulas are true at all points of the two-dimensionalplane model: }� �_�_}� }� �$}��$( :�^ :�^ :�^ :�) }� �$}�The diagonal divides the two-dimensional plane in two semi-planes. Thesemi-plane that is to the (horizontal) left of the diagonal is \the past",and the formulas }� and }� � are true at all points of this semi-plane.Similarly, the semi-plane that is to the (horizontal) right of the diagonal is\the future", and the formulas }� � and }� are true at all points of thissemi-plane. Figure 1 puts this fact in evidence.The propositional approach of this section di�ers from the �rst ordertreatment of temporal features in the previous section. To reconcile thesetwo di�erent approaches a propositional abstraction of database manipula-tions can be developed. However, for space reasons, we omit such presen-tation, referring the reader to [7] for details.3.4 Temporal Database EvolutionIn describing the evolution of a temporal database, we have to distinguishthe database evolution from the evolution of the world it describes. The\world", also called the Universe of Discourse, is understood to be anyparticular set of objects and relations between them in a certain environ-ment that we may wish to describe. The database, in its turn, contains adescription of the world. Conceptually, we have to bear in mind two distincttypes of evolution, as introduced in [6]:� The evolution of the modelled world is the result of changes in theworld that occur independently of the database.� A temporal database contains a description of the history of the mod-elled world that is also constantly changing due to database updates,



92 MARCELO FINGER AND MARK REYNOLDSgenerating a sequence of database states. This evolution of the tem-poral description does not depend only on what is happening at thepresent; changes in the way the past is viewed also alter this histori-cal description; moreover, changes in expectations about the future, ifthose expectations are recorded in the database, also generate an alter-ation of the historical description. This process is also called historicalrevision.These two distinct concepts of evolution are reected by a distinctionbetween two kinds of ows of time, whether their time points refer to amoment in the history of the world, or whether they are associated with amoment in time at which a historical description is in the database.Several di�erent names are found in the literature for these two timeconcepts. The former is called evaluation time [13, 9], historical time [6],valid time [19] and event time [14]. The latter time concept is called utter-ance time [13], reference time [9], transaction time [6, 19] and belief time[20]. In this presentation we chose to follow a glossary of temporal databaseconcepts proposed in [11], calling the former valid time, which is associatedwith the horizontal dimension in our two-dimensional model, and callingthe latter transaction time, which is associated with the vertical dimension.So we use the two-dimensional plane model to simultaneously cope withthe two notions of time in the description of the evolution of a temporaldatabase, as illustrated in Figure 2.
................................................................... -6 -valid-time database state at �tM�t\now"�ttimetransaction

Figure 2 Two-dimensional database evolutionLetM = (T;<; T; < ; �) be a two-dimensional plane model; its horizon-tal projection with respect to the vertical point �t 2 T is the one-dimensionaltemporal model M�t = (T;<; ��t);such that, for every propositional atom q, time points t 2 T and �t 2 T ,��t(t; q) = > i� �(t; �t; q) = >:



TWO-DIMENSIONAL EXECUTABLE TEMPORAL LOGIC 93It follows that for every horizontal U S -formula A and for every t 2 T and�t 2 T , M�t; t j= A i� M; t; �t j= A. The horizontal projection representsa state of a temporal database.Updating temporal databases requires that, besides specifying the atomto be inserted or deleted, we specify its valid time. For that reason, it isconvenient to use the notation of time-stamped atoms to represent the databeing inserted and deleted. As a result, in�nite updates are possible as longas such update is representable by a �nite set of labelled formulas, where thelabel (time-stamp) is a temporal element. For example, �� = f[�1;+1] :pg deletes the atom p for all times.An update pair (�+; ��) consists of two �nite disjoint sets of time-stamped atoms, where �+ is the insertion set and �� is the deletion set ;by disjoint sets, in the context of data representation, it is meant that itis not the case that �+ : p 2 �+ and �� : p 2 �� such that �+ \ �� 6= ?.We say that an update pair determines or characterises a database update��t occurring at transaction time �t 2 Z if the application of the updatefunction ��t to the database state M�t = (T;<; ��t) generates a databasestate ��t(M�t) = (T;<;��t(��t)) satisfying, for every propositional atom qand every time point t 2 T ,� if � : q 2 �+, then ��t(��t)(t; q) = > for every t 2 � ;� if � : q 2 ��, then ��t(��t)(t; q) = ? for every t 2 � ;� if neither t : q 2 �+ nor t : q 2 ��, then ��t(��t)(t; q) = ��t(t; q).The �rst item corresponds to the insertion of atomic information, the secondone corresponds to the deletion of atomic information, and the third onecorresponds to the persistency of the una�ected atoms in the database.Note that the disjoint sets �+ and �� are represented in the same way thatthe underlying database, so that we can represent a temporal databaseupdate schematically as:��t(M�t) =M�t [ �+ � ��When the sets �+ and �� are not disjoint, i.e. the update it is trying to insertand remove the same information, the situation is undetermined; typicallythis would mean that the transaction in which the update was generatedshould be rolled back. The update ��t is a database state transformationfunction. An update may be empty (�+ = �� = ?), in which case thetransformation function is just the identity and the database state remainsthe same.4 Imperative HistoryThe two-dimensional temporal model can be applied in two distinct situa-tions, namely:



94 MARCELO FINGER AND MARK REYNOLDS� In the context of standard, one-dimensional temporal databases, thetwo-dimensional model is used to represent the evolution of the database.The current state of the database is constantly modi�ed, i.e. historyis constantly been rewritten, and past states of the database are notrecorded.� In the context of bitemporal databases, both dimensions are stored,so the two-dimensional model can be seen as modelling a state of thedatabase.In each of these two situations, the two-dimensional model allows us tolift the restrictions imposed by the imperative future to MetateM rulesof the form past ^present !futurein a distinct way. In the context of bitemporal databases, this may lead toa two-dimensional imperative history over bitemporal databases, which isquite outside the scope of this presentation and is left as future work. Sowe concentrate one the �rst option, which is purely one dimensional.4.1 Imperative History for a One-Dimensional DatabaseWhen only a single state representing the history of the world is stored inthe database, an imperative history rule has the general format ofhistory ;historywhich, in formal terms is a formula of the form';  where both ' and  are any FTL-formulas that may refer to the (one-dimensional) present, past or future; ' and  are thus called historicalformulas .The meaning of an imperative history rule is, however, given in terms ofthe two-dimensional model. Therefore, the rule above is seen as representingthe two-dimensional formula 8X8Y ('! d )which clearly is a vertically separated formula. In this paper we will usesuch rules to specify that at every transaction time t, the correspondingformula holds at (t; t), i.e. on the diagonal.This new view of FTL-formulas consists of the following reading of atemporal database evolution: \for all substitutions of the free variables thatmakes (the temporal query) ' true at the current time (i.e. on the diagonalpoint of the current state) force  to be true at this valid time in the next



TWO-DIMENSIONAL EXECUTABLE TEMPORAL LOGIC 95state". The formula ' is called the condition or query part of the rule, and is called the action part.Several restrictions are imposed on the format of those rules. First, itis required that the set of free variables of  be free in ' so as to avoidundetermined actions. The complete rendering of an imperative history rulebecomes: 8X8Y ('(X; Y )! d (X))Second, it is required of the query part of the rule to be range restricted .This condition guarantees that queries have at most �nitely many answers,and hence only �nitely many actions to be executed. Range restrictednessdemands that all the free variables occurring in the query formula shouldoccur in a positive literal of the formula.Finally, it is convenient to require that the action part of the rule bedeterministic so that the rule management system will always know howto execute the rule. One way to avoid non-determinism is to constrainthe format of the action formula to a conjunction of positive and negativeliterals, possibly preceded by a string of d's or ccdefggg's. The following is adeterministic action formula:ccdefgggclear top(X) ^ :occupied(X) ^ d dplace(Obj, X)Note that in imperative history rules forcing  to be true may falsify '.For instance, the simple rule p ; :p is legitimate, for it is understood asp! d:p), i.e. whenever t : p is true in the current state at transaction timet, t : :p will hold at the next database state, not causing any inconsistency.4.2 A System's Architecture to Support Imperative HistoryConceptually, the support of imperative history rules is not much di�erentfrom the support of standard rules found in non-temporal databases. Asshown in �gure 3, an architecture of such a system is centered on the tem-poral database manager (TDM), which performs all the tasks of a normaldatabase manager, plus the manipulation of time.Imperative history rules are stored in the rule manager (RM), and can beprecompiled and optimized. The TDM activates the RM which, by selectingwhich rules to execute (see Section 6 on triggers), submit queries to thedatabase via the TDM. The TDM then sends the answers back to the RM,and at the end of the rule execution cycle receives from it the actions thatare to be performed. Some of these actions are temporal database updateswhich are sent to the database, others are messages sent to user or somekind of interaction with the temporal database's environment, such as anorder to print a cheque or to signal an alarm, which are sent by the TDM viathe environment interface module; others, still, may be triggering actionsthat will come back to the RM.



96 MARCELO FINGER AND MARK REYNOLDSone-dimensionalvalid timetemporaldatabase TemporalDatabaseManager INTERFACE UserEnviron-mentRule ManagerDerivedData ActiveRulesFigure 3. Possible architecture that supports IMPHIST rulesThis apparently excessive tra�c through the TDM in the processing ofrules may be diminished if the RM is allowed to interact separately with theconstituent parts of the TDM. In this way, the RM may interact directlywith the database access module for querying and updating, receive triggersfrom and send triggers to the transaction selector, and send messages andrequests to the environment directly to the interface module, avoiding theTDM in those cases. Of course, this is just a conceptual architecture, andeach systems may adapt it di�erently to its own design philosophy.5 ExampleIn this section we see the Imperative History ideas in action in a very sim-ple example. The example concerns a patient monitoring system (PMS) foruse in an intensive care ward of a hospital. It is based on the PMS systemdescribed in a software engineering context in [21] which has been imple-mented in a prototype version by an executable temporal logic language in[17]. The description and these implementations all concern a distributedsystem problem focussing on formal speci�cations of the communicationbetween separate modules. Here we will introduce a historical dimensionby requiring patient data to be recorded.So suppose that we have a central nurse console (NC) interacting withseveral distributed patient monitors. The responsibilities of the NC will



TWO-DIMENSIONAL EXECUTABLE TEMPORAL LOGIC 97include:� recording information about a constant stream of patient data {herejust heart rates{ from the patient modules;� recording data manually input by the nurse about changes in occupantsof beds;� notifying the nurse of alarming events (heart rate out of safety rangeetc);� answering queries about beds and hearts in the present and the past;� and correcting incorrectly recorded information.A fully comprehensive database for this task would need to be twodimensional so that it could record information about the correction ofpast mistakes. Such information would be needed to explain actions whichwere taken on the grounds of information subsequently corrected. However,we will consider a simpler, one-dimensional temporal database adequate tohold a representation of the most up to date account of the history of thesituation in the intensive care ward. Changes to data about the past willbe allowed (as mistakes in recording do occur) but we will not necessarilybe able to reconstruct the superseded model of the history of the ward.The users will be primarily interested in the following two predicates:heart rate(Patient,Rate) the heart rate of Patient is Rateocc(Bed,Patient) Bed is occupied by PatientThese are the most important predicates which vary in time in the worldwhich the database will try to model. However it is easier to actually recordsome di�erent predicates in the database. We introduce:hrm( Patient, Rate) the heart rate of Patient is measured as Ratechpat(Bed,Old,New) Bed is vacated by patient Oldand occupied by patient New.Empty beds can easily be handled within this formalism.The simple (one-dimensional) temporal formula8p: 8r: ��(heart rate(p,r), S(hrm(p,r);:9r2: hrm(p,r2))speci�es how to interpolate the most recent heart rate reading to any time.Below we will show how to render this in an imperative history rule.Similarly, chpat and occ are related by8b:8p:��(occ(b,p), S(9q:chpat(b,q,p);:9q': chpat(b,p,q')):



98 MARCELO FINGER AND MARK REYNOLDSIn general with deductive databases, whether temporal or otherwise,there is a distinction between basic and derived predicates. The databasemanager must be told which predicates are to have their history recorded.Other predicates play subsidiary roles: either being able to be derived fromthe recorded ones or appearing temporarily to produce, in combinationwith Imperative History rules, systematic changes in the database. In ourexample the database will only record the history of the predicates hrm andchpat.Thus, the database manager will be responsible for� translating automatically recorded heart rate measurements into data-base updates;� doing the same for information entered by the nurse;� answering queries which may be expressed in terms of derived predi-cates;� producing the side-e�ect of an alarm which is described in terms ofderived predicates;� allowing error correction (including corrections of corrections e.t.c.)and disallowing nonsensical attempts at error correction.Although our database is one dimensional, we use two dimensions oftime to describe the way it changes over time. In this two dimensionalapproach, the predicates we have introduced take on a slightly expandedsemantics: for example, heart rate(Patient,Rate) holding at valid timet and transaction time t will mean that at transaction time t, the database'smodel of the world contained the information that at valid time t, the heartrate of Patient is Rate.Let us now examine some of the properties of this two-dimensional ac-count and see which need explicit statement.We suppose that automatic measurements arrive in the form of atomst : bhrm(b,r) labelled with time instants. Such an atom indicates a heartrate measurement of r on the patient in bed b was made at the instant t.An atom like this may arrive at the manager at any time after t and so itse�ects will be recorded at some even later transaction time.The e�ect of the arrival of such an atom is given by}� (time(t) ^ bhrm(b,r)^ occ(b,p)); }� (time(t) ^ hrm(p,r))and the procedural e�ect of this rule is as follows. Suppose that at transac-tion time t1 the labelled atom t2 : bhrm(b,r) is true. Then, the databasemanager will check, from the rule manager, whether t2 : occ(b; p) holdsfor any p. If so, then by transaction time t1 + 1, the database will maket2 : hrm(p; r) hold.Information entered by the nurse has a slightly more complicated ef-fect. Suppose that the nurse enters the information that at time t, pa-



TWO-DIMENSIONAL EXECUTABLE TEMPORAL LOGIC 99tient p vacates bed b and patient q replaces her or him. We use the atomnurse requests chpat add(b,p,q,t) to indicate this. One of the e�ectsof this information being entered is often the transaction}� nurse requests chpat add(b,p,q,t); }� (time(t)^chpat(b,p,q)):However we might want to disallow this direct update if the database cur-rently shows that occ(b,p) is not true at that valid time. Thus we usenurse requests chpat add(b,p,q,t)^ occ(b,p); }� (time(t) ^ chpat(b,p,q)):instead.A Systematic Change to HistoryThere is also another e�ect of the nurse entering a bed-change fact. Say thatthe nurse enters the information that at time t, the patient p is replacedby patient q in bed b. Any heart rate measurements already recorded frombed b but with later valid times than t are recorded as being about patientp but are now known to refer to patient q instead. Thus we havenurse requests chpat add(b,old,new,t) ^}� (time(t) ^ :chpat(b,old,new)); }� (time(t)^ chpat(b,old,new))This rule is a very good example of the power of two-dimensional tem-poral logic. It is a very clear case of a systematic change to history.Queries and Side-e�ectsQueries are very straight forward to deal with. They are likely to be ex-pressed in terms of occ and heart rate and so can be answered using thederivation laws for these two predicates.The syntax for the �rst of these rules isS(hrm(p,r);:9r2: hrm(p,r2)); heart rate(p,r):Note that there is no interesting two-dimensional character to this rule.The side-e�ect of an alarm sounding for dangerous heart rate measure-ments can be produced by combining a derivation:S (heart rate(p,r) ^ (r > maxrate); alarm off(p)); alarm!(p)with the hard-wiring of the current truth of predicate alarm! to the alarmbell. We associate an alarm sounding at time t with the predicate alarm!being true at time t in the model of the ward kept at transaction time t. Theintroduction of a nurse request to turn the alarm o� and the correspondingpredicate alarm off is to prevent historical situations causing alarms.



100 MARCELO FINGER AND MARK REYNOLDSCorrectionsCorrections can not be handled by allowing the nurse to enter in directlythe falsity of chpat for a particular historical time. This is because wemust check for attempts at silly corrections. Thus we separate the fact ofthe nurse requesting a correction from the act of updating in accordancewith that correction.As well as corrections involving removal of recorded facts we also needto be able to add facts about the past. The nurse's requests are formalizedin the predicate nurse requests hrm add(p,r,t)which means that the nurse requests that hrm(p,r) be added for valid timet and similar predicates nurse requests hrm remove(p,r,t),nurse requests chpat add(b,p,q,t) andnurse requests chpat remove(b,p,q,t).We introduce a predicate error whose truth at particular time on thediagonal has the side-e�ect of notifying the nurse that she or he has justrequested a silly correction.The rules which de�ne the truth of error look like the following:nurse requests hrm add(p,r,t) ^ }� (time(t)^ hrm(p,r)); g(error)When error does not hold, then we use a set of Imperative Historyformulas to bring about the correction:nurse requests chpat remove(b,old,new,t)^}� (time(t) ^ chpat(b,old,new)); }� (time(t) ^ :chpat(b,old,new))nurse requests chpat add(b,old,new,t)^}� (time(t) ^ :chpat(b,old,new)); }� (time(t)^ chpat(b,old,new))and similarly for hrm.Of course, just as with the nurse entering new information about bedchanges, there is a consequence for heart rate measurements data from thecorrection of bed occupant data. We havenurse requests chpat add(b,old,new,t1)^}� (time(t2)^ hrm(old,r) ^ }� (time(t1)^ :chpat(b,old,new)); }� (time(t2)^ hrm(new,r)^ :hrm(old,r))and}� (nurse requests chpat remove(b,old,new,t1)^}� (time(t2)^ hrm(new,r) ^ }� (time(t1)^ chpat(b,old,new))); }� (time(t1)^ hrm(old,r)^ :hrm(new,r))Correcting corrections turns out to be just the same as entering in newinformation.



TWO-DIMENSIONAL EXECUTABLE TEMPORAL LOGIC 101PersistenceBy requiring the database manager to follow the speci�cation above| i.e.the explicit rules and the informal description of its operation| we actuallyend up abstractly building a two-dimensional temporal structure. A groundatomic formula is true in this structure at times (t; t) if and only if thedatabase claims at transaction time t that the formula is true at validtime t. It is clear that this structure is a model of the formulas explicitlymentioned above as rules.However, the structure is also a model of many other formulas. Forexample, because of the operation of the database manager, only chang-ing stored information in response to new data or entered requests, thereare several persistence axioms. The one below indicates that heart ratemeasurements persist from an automatic measurement unless a request forchange arrives:��8p: 8b: 8r: [hrm(p,r),S((bhrm(b,r)^ occ(b,p)) _ nurse requests hrm add(p,r);:nurse requests hrm remove(p,r))]It is important to note that these two-dimensional rules describe theabstract model which is built by the database manager but they do nothave to be explicitly programmed by the user.SummaryIn summary then, we can think of the running of the NC as the gradualconstruction of a two-dimensional temporal structure. Its language involvesmany predicates which have a variety of connections with the real world:� heart rate and occ a�ect the truth of queries;� hrm and chpat represent the data stored;� alarm and error produce side-e�ects;� nurse requests hrm add e.t.c. is true when the nurse makes a requestto correct data via the NC;� and bhrm is true when data arrives from a patient monitor.There are also a variety of explicit or implicit properties exhibited by thestructure:� persistence arises from the inertia of the database;� derivation rules de�ne some predicates in terms of others;� and Imperative History rules describe how various predicates requirechanges to the history recorded in the database.



102 MARCELO FINGER AND MARK REYNOLDS6 TriggersIn this section we will enhance imperative history rules with triggers . In-formally, a trigger is a mechanism that enables the processing of a rule.Only when a rule is enabled (i.e. when its trigger is �red) is its antecedentchecked against the temporal database and the corresponding actions areexecuted; otherwise, when the trigger of a rule is not �red, the rule remainsdisabled and is ignored.A trigger will be represented by a guard (i.e. a label) placed in front ofthe rule: trigger : Condition ;Actionand it is read aswhen trigger is �red if Condition holds then execute Action.A rule without a trigger can be thought of as being labelled by truth, >,so it is always enabled.One of the main reasons to include triggers in rules is to increase the sys-tem's e�ciency. Without triggers, all rules have their antecedents checkedagainst the database at every rule evaluation cycle | which, according tothe two-dimensional model, means at every transaction time. When trig-gers are present, only the subset of enabled rules have their antecedentevaluated. We also say that the rule is �red when its trigger is.Another good reason to include triggers is that they may be treated aschannels through which the outside world communicates with the system,in the sense of [15]. For instance, in the rule sketched below:alarm ringing : door open ;close door.the fact that the alarm is ringing is external to the system. This rule isactivated only when it is communicated to the system that the alarm isringing; therefore the trigger is called external . Only then it is checkedwhether the door is open.Triggers may be also used in connection with an event internal to thedatabase, such as the insertion (+) or deletion (�) of a fact. For example,when a door is recorded closed, we may wish to issue several warnings:+door closed : emergency mode ;( lock door ^ trigger lights ).As also seen in the example above, the Action-part of the rule can also �re aninternal trigger (trigger lights), which on its turn will activate another ruleat the next transaction time. Therefore a chain of control of rule executionmay be created through the rules.Finally, there may be triggers related to events associated to a resourcemanaged by the system, such as the system clock, �le access, etc. For ex-ample:



TWO-DIMENSIONAL EXECUTABLE TEMPORAL LOGIC 103time is(8am) : user logged in(User) ;good morning to(User)As we see, triggers can also carry parameters and have the same \appear-ance" as a normal database predicate.There must be a mechanism for linking external and system triggersto their corresponding external and system events, but this will not bediscussed here.We will use the two-dimensional view of temporal database evolution togive a formal semantics to triggers. Internal, external and system triggersare seen as non-persistent predicates .We have to distinguish between triggerpredicates and data predicates. When we de�ned the update semanticsof data predicates in Section 3.4, whatever data was neither inserted nordeleted had its validity persisting into the following database state at thefollowing transaction time.However, trigger predicates have a \�xed duration" of a single trans-action time unit. The insertion a trigger atomic predicate in the databasecorresponds to the �ring of a trigger with the respective set of parameters.A trigger �red (i.e. inserted) at transaction time t will hold at the nexttransaction time, t + 1. It will only hold at transaction time t + 2 if hasbeen re-�red (i.e. re-inserted) at t + 1; otherwise it is removed from thedatabase.With this dynamic semantics for trigger predicates, we can constructtrigger expressions by combining trigger predicates with boolean operators.A guarded rule of the formtrigger expression : Condition ;Actionis then evaluated simply as(trigger expression ^ Condition) ;Action.The di�erence between trigger expression and Condition remains solely inthe dynamic behaviour of its components.7 ConclusionThe main contribution of this paper is the suggestion of an appropriate ex-ecutable temporal logic for declarative management of temporal databases.By using a two-dimensional temporal language and restricting our attentionto a certain simple form of formula, we can express many useful patternsof updates and yet provide them with a direct procedural e�ect. We havedemonstrated the usefulness of this language in a small example: in futurework we hope to apply the language and develop the techniques in a much
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