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1 Introduction

In this paper we combine two interesting and useful recently proposed ideas
within applied temporal logic which were both initially developed by Dov
Gabbay (amongst others). We coin the term “Imperative History” for the
two-dimensional executable temporal logic which results from combining
the Imperative Future idea of an executable temporal logic (proposed in [10]
and described more fully in [3]) with the idea of using a two-dimensional
temporal logic to describe the evolution of temporal databases (an idea
proposed in [6] but closely related to the work in [4]). We demonstrate that
this combination leads to a powerful declarative approach to handling time
in databases.

Temporal Logic has become one of the most important formalisms for
describing, specifying, controlling and reasoning about systems which ex-
hibit some kind of on-going interaction with their environment. The formal
language with its proof-theory, decision algorithms and associated meth-
ods of practical application has found many uses in dealing with programs,
complex reactive systems, databases and artificial intelligent systems: the
interested reader is referred to [9] for a fuller description of these applica-
tions. In this paper we extend two different applications.

In [10] it was suggested that the formal temporal language for describing
the development of a reactive system could be used, in a restricted form,
to actually write the programs which control the behaviour of the sys-
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tem. Thus we use temporal logic as a declarative programming language:
the logic becomes executable. All the well-known advantages of declarative
programming languages apply: they are quick to write, easy to understand
and anyone interested in formal verification has a head start.

In the executable temporal logic of [10], the simple restricted format
for the formulas of the temporal language which become program rules is
summarized as Past implies Future. The procedural effect of such a rule is
that some condition on the observed past behaviour of the system (and/or
its environment) controls whether the system brings about some future sit-
uation. Thus this idea is rendered as Declarative Past implies Imperative
Future. There is an ever increasing body of useful work developing from
this proposal and related work. The interested reader can find descriptions
of first-order versions, efficient implementations and generalizations to con-
currency amongst other recent developments in [3].

Another very important use of temporal logic is in dealing with databases
which make use of time. We call these temporal databases. Time can be rel-
evant to a database in one or both of two different ways. Each change to the
contents of the database will be made at some time: we refer to this as the
transaction time of the database update. Databases often also store infor-
mation about the time of events: we refer to the actual time of occurrence
of an event as its valid time. Depending on which of these uses is made of
time or on whether both approaches have a role to play, we can identify
several different types of temporal databases but what is common to all,
as with all systems which change over time, is that describing or reasoning
about their evolution is very conveniently done with temporal logic.

With both the forms of temporal information involved, it was thus sug-
gested in [6], that describing the evolution of a temporal database is best
done with two-dimensional temporal logic. This is because, for example, at
a certain transaction time today, say, we might realize that our database
has not been kept up to date and we may add some data about an event
which occurred (at a valid time) last week. Thus a one-dimensional model
which represents this-morning’s view of the history of the recorded world,
is changed, by the afternoon, into a new one-dimensional model by having
the state of its view about last week altered. A series of one-dimensional
models arranged from one day to the next is clearly a structure for a two-
dimensional temporal logic. Other applications of two-dimensional tempo-
ral logic exist— for example in dealing with intervals of time [1]— but
the logic is generally quite difficult to reason with (see [22]). However, it
has recently been shown ([4]) that the kind of logic needed for database
applications is much more amenable.

Managing databases is not just about collecting facts. There are many
uses for more general rules. For example, we often need integrity con-
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straints, derived properties, conditional updates, side-effects and system-
atic corrections. All such rules must be expressed in some sort of database-
control/programming language.

In this paper we suggest using a two-dimensional executable temporal
logic as a declarative language for expressing rules for temporal database
management. The most common form for these rules will be a formula
which expresses a condition on the one-dimensional historical model at a
certain time controlling a condition on the new one-dimensional historical
model which should hold after the next transaction. This may necessitate an
update to recorded history (about some valid times in the past, present or
future). We thus call this executable temporal logic “Imperative History”.

The paper is structured as follows. In the next section, we define proposi-
tional and predicate one-dimensional temporal logics: their languages form
the basis of existing executable temporal logics and our two-dimensional
temporal logic. Also in this section, we describe the existing (one-dimensio-
nal) executable temporal logic METATEM and its variations. In section 3,
we describe two-dimensional logic as it is applied to temporal databases.
We also briefly describe the idea of temporal databases and their various
types. In section 4, we introduce the idea of an executable two-dimensional
logics and describe how it could be used in database management. In sec-
tion 5, we provide a simple example of the idea in action in the intensive
care ward of a hospital: this example develops, some previous applications
of executable temporal logic. In section 6, we give a possible extension of
the technique to database triggers before summarizing our work.

2 Executable Temporal Logic

2.1 Temporal Logic

We are going to be concerned with the behaviour of processes over time.
Two very useful formal languages for describing such behaviour are the
propositional temporal logic PTL and the first-order temporal logic FTL
based on the temporal connectives until U and since S introduced by Kamp
n [12]. The simpler propositional language allows us to express less and so
is easier to deal with.

A crucial point in the executable temporal logic paradigm is that the
same languages are used to specify the desired behaviour of a program and
to actually write the program to satisfy the specification. In fact, in the
ideal case, the specification and the program are the same thing.

In any case, amongst many other advantages, using the same language
for specification and implementation gives us a head start in proving cor-
rectness of programs.
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2.2 Temporal Structures

The languages FTL and PTL are used to describe the behaviour of pro-
cesses over time. In this paper, we will take the underlying flow of time to
be either the natural numbers —equivalently some sequence sg, sq, So, ... of
states — or the integers. In general, such temporal languages can describe
changes over any linear order (7', <) of time points.

In the propositional case the state at each time is just given by the truth
values of a set Lp of atomic propositions or atoms. The behaviour we are
describing is just the way the various atoms become true or false over time.
To formalize this we use a map 7p : T X Lp — {T, L} where 7p(t,q) =T
iff the atom ¢ is true at time ¢.

In first-order temporal structures the state at each time is a whole first-
order structure with a domain of objects on which are interpreted constant
symbols, function symbols and predicate symbols. Without any restrictions
such situations would be too messy to describe formally so we make some
assumptions. As described in [18] there are many sets of simplifying as-
sumptions which can be made but the ones we make here are comfortable
to work with and, at the same time, so general that other approaches can
be easily coded in.

For a start we assume that each state is a first order structure in the
same language. So suppose that Lp is a set of predicate symbols and Lp
is a set of function symbols. We divide up Lp into a set L% for each n > 0
being the n-ary predicate symbols. We also divide up L into a set L% for
each n > 0 being the n-ary predicate symbols. The 0-ary function symbols
are just constants.

We assume a constant domain D of objects but, over time, the extensions
of the predicates change. To formalize this we use a map 7p = 7% : T X
LY — {T,1} and a map 7 : T x L% — D" for each n = 1,2, .... The
interpretations of the functions are constant: we use maps 7 : L% —
(D™ — D).

In many of the definitions below we can include the propositional case
as a special case of the first-order one by equating £p with £} and 7p with
70,

2.3 Syntax

As well as £ and Lf, we also use a countable set Ly of variable symbols.
The terms of FTL are built in the usual way from Lr and Ly .
The set of formulas of FTL is defined by:

— ifty, ..., t, are terms and p is an n-ary predicate symbol then p(ty, ..., 1)
is a formula,
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— if o and § are formulas then so are T, —a, a A 8, Vao, U (o, §) and
S (o, B).

We have the usual idea of free and bound variable symbols in a formula
and so the usual idea of a sentence — i.e. a formula with no free variables.
The class of formulas which do not have any variable symbols or constants
form the well-formed formulas of the propositional language PTL. In PTL
we only use 0-ary predicate symbols which are just propositions.

A formula of the form p(@) is called a positive literal. A formula of the
form —p(w) is called a negative literal. A literal is either a positive one or a
negative one. A literal is ground if it is also a sentence.

2.4 Semantics

A variable assignment is a mapping from Ly into D. Given such a variable
assignment V we assume it extends to all terms by recursively defining
V(fur,...,un)) = 7%(f)(V(wr), ..., V(uy,)) for any f € L.

For a temporal structure M = (T, <, D, {7 B }n>0, {7F}n>0) a time point
t € T, a formula ¢, and a variable assignment V', we define whether (or not

resp.) ¢(d) under V' is true at ¢ in M, written M, ¢,V = ¢ (or M, t,V £ ¢
resp.) by induction on the construction of ¢.

- M, t,VET.

— M, t,V | ¢ for a proposition ¢ iff 7% (¢,q) = T.

- M,t,V = p(w) for an n-ary predicate p and n-tuple @ of terms iff
(V(u1), ..., V(un)) € mi(t, p).

- M, t,V E-xiff MtV IE .

- M, t,VEXAYIT M,V E xyand M, t,V = .

— M, t,V E U (¢, x) iff thereis s > ¢t in T such that M, s,V [ ¢ and
for all » € T such that t <r < s, M,r,V = \.

- M, t,V = S (¢, x) iff there is s < ¢t in T such that M, s,V = ¢ and
for all » € T such that s <r <t, M,r,V = \.

— M, t,V EVayx forz € Ly iff for all d € D M,t,W = y where W is

the variable assignment given by

wi ={ ¥ 17

It is easy to prove that the truth of a formula at a point in a structure
does not depend on assignments to variables which do not appear free in
it. So we can write M, t,v = ¢ where v is a partial assignment provided
its domain does include the free variables of ¢. When o is a sentence — or
a PTL formula — we also write M,t | o ifft M,t,@ = 0 where & is the
empty map.
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2.5 Models

Say that temporal structure M is a model of a sentence o iff M,0 | o.
A sentence is satisfiable iff it has such a model. A sentence o is wvalid iff
M, t = o for all structures M and for all time points ¢ in M.

2.6 Abbreviations

We read U (1, ) as “€ until ¢” and similarly for since. Note that our U is
strict in the sense that U (q, p) being true says nothing about what is true
now. In some presentations of temporal logic, until is defined to be non-
strict. We can introduce an abbreviation ¢ T for non-strict until: ¢ ¥ (¢, €)
iV (€A (U (1,6)).

As well as the classical abbreviations 1, V, —, ¢ and 3 we also have
many temporal ones. The only ones that we need in this paper are:

O@  “pis true in the next state” U(p, L)
Q¢ “there was a last state and ¢ was true in this state” S (g, 1)
Qe “p will be true in some future state” U(p, T)
Lle  “p will be true in all future states” O

® ¢  “p was true in the past” S(p, T)

[ | “© has always been true in the past” - @ (—p)
start “it is now the start of time” -(S(T,T))

2.7 Separation

As one would expect from the declarative past /imperative future motiva-
tion, one distinction which plays an important role in METATEM is that
between formulas which refer to the past and those which refer to the fu-
ture. Let us make this precise.

A formula ¢ is a not necessarily strict future time formula iff it is built
without &. The class of strict future time formulas include only

— U (x,1) where ¢ and y are both not necessarily strict future time
formulas and
— —p, @A and Yz where ¢ and 1 are both strict future time formulas.

Dually we have strict and not necessarily strict past time formulas.

It is clear that a strict past time formula only depends on the past for
its truth. This classification of formulas is the basis for Gabbay’s separation
property and separation theorem which is itself useful for establishing the
expressive power of the METATEM language. See [9] for details which also
include a discussion of the proof-theory of the temporal logics mentioned
above.
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2.8 Explicit Time

In using executable temporal logic it is often useful to be able to refer ex-
plicitly to the time of an event as measured by some clock or calendar. This
is especially so when we come to use the logic to reason about temporal
databases. To support this feature we will suppose that our logic includes
a special l-ary predicate time which at any time ¢ is only true of some
syntactic representation of . That is, there are enough constants and func-
tion symbols in the language to allow us to write (the name of) time ¢ and
all temporal structures M = (T, <,D,{7P}n>0,{7E}n>0) mentioned are
supposed to have the property that 7h(t, time) = {t} for each t € T.

Note that with this assumption on our structures, the temporal language
FTL can easily be shown to be as expressive as a two-sorted first-order
language.

2.9 METATEM Programming Language

METATEM is really a paradigm for programming languages rather than one
particular language. The bases are three:

— programs should be expressed in a temporal language;

— programs should be able to be read declaratively;

— the operation of the program should be interpretative with individual
program clauses operating according to the “declarative past implies
imperative future” idea.

Most versions of METATEM use the temporal languages PTL and FTL
with until and since.

The basic idea of declarative languages is that a program should be able
to be read as a specification of a problem in some formal language and that
running the program should solve that problem. Thus we will see that a
METATEM program can easily be read as a temporal sentence and that
running the program should produce a model of that sentence.

The task of the METATEM program is to build a model satisfying the
declared specification. This can sometimes be done by a machine following
some arcane, highly complex procedure which eventually emerges with the
description of the model (see [16]). That would not be the METATEM ap-
proach. Because we are describing a programming language, transparency
of control is crucial. It should be easy to follow and predict the program’s
behaviour and the contribution of the individual clauses must be straight
forward.

Fortunately, these various disparate aims can be very nicely satisfied
by the intuitively appealing “declarative past implies imperative future”
idea of [10]. The METATEM program rule is of the form P = F where P
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is a strict past-time formula and F' is a not necessarily strict future-time
formula. The idea is that on the basis of the declarative truth of the past
time P the program should go on to “do” F.

In the case of a closed system, a METATEM program is a list {P; —
F; | i = 1,...,n} of such rules and, at least in the propositional case, it
represents the PTL formula

n
OAP— F).

=1
The program is read declaratively as a specification: the execution mecha-
nism should deliver a model of this formula. To do so it will indicate which
propositions are true and which are false at time 0, then at time 1, then at
time 2, e.t.c. It does this by going through the whole list of rules P, — F;
at each successive stage and make sure that F; gets made true whenever P,
is. This is called forward chaining. For details of the way it does this see
[2].

In the first-order case there are several slightly different versions of

METATEM. The simplest involves allows only clauses in the forms:

start = p(?)

start = $q(?)

VX.[O ;\ki(f) = p(X)]

h
VX.[O /\ E(X) = Oq(X)]

where each k; is a literal, p and ¢ are predicates and ¢ is a tuple of constants.
These constraints enable us to implement the program in a direct way.

3 Temporal Updates

We define a temporal database as a finite temporal structure, i.e. a tem-
poral structure M = (T, <,D,{7p}n>0, {TF}n>0) obeying the following
constraints:

— The set of predicate symbols is finite.

— The interpretation of each predicate is finite, i.e. for every predicate

symbol p there are only finitely many tuples (aq,...,a,) for which
there exists a ¢ € T such that

mp(t,plar,...,an)) =T
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— It is usual for databases that M be a Herbrand model, i.e. the domain
D is identical to the set of constant symbols and every ground term is
interpreted into itself.

— We further assume that the set of points where an atomic formula
p(ai,...,a,) is true must be representable by a temporal element, i.e.
a finite union of intervals over T'. For example, if T' = N, then [0, 10]U
[20, 30] is a temporal element, but the set of all even numbers is not.

These conditions guarantee that temporal databases can be finitely rep-
resented as a set of labelled formulas, i : p(aq,...,a,), where p(ay, ..., a,)
is an atomic formula and 7 is a temporal element over T'; in this context, a
labelled formula 7 : p(ay, ..., a,) represents a partial temporal structure.

In traditional databases, the update of data means the replacement of
the current value of the data by a new one. In temporal databases one is
presented with the extra possibility of changing the past, the present and
the future. In a nutshell, a temporal update is a “change in history”. Note
the double reference to time in such an expression: change relates to the
temporal evolution of data, while history refers to the temporal record.
These two notions of time are independent and coexistent. In analysing
updates in temporal databases we have to be able to cope simultaneously
with those two notions of time. For that, we present next a two-dimensional
temporal logic, a formalism that will allow for the simultaneous handling of
two references of time. We will stick to the propositional case, for the up-
dates we are concerned with are only atomic updates that may be modelled
as propositional atoms.

3.1 Propositional Two-dimensional Temporal Logic

There are several modal and temporal logic systems in the literature which
are called two-dimensional; all of them provide some sort of double reference
to an underlying modal or temporal structure. More systematically, two-
dimensional systems have been studied as the result of combining two one-
dimensional logic systems [4, 5]. In [5] two criteria were presented to classify
a logical system as two-dimensional:

— The connective approach: a temporal logic system is two-dimensional
if it contains two sets of connectives, each set referring to a distinct
flow of time.

!This condition basically tells that there is a limit to what temporal data can be
represented. The condition itself can be relaxed if data expressivity is enhanced, but
some time-stamps will always remain unrepresentable. Eg. if deductive rules are added
to the database, periodic sets, like the even numbers, become representable; but since
there are uncountably many subsets of N, it will never be possible to represent all of
them.
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— The semantic approach: a temporal logic system is two-dimensional if
the truth value of a formulas is evaluated with respect to two time
points.

The two criteria are independent and there are examples of systems
satisfying each criterion alone, or both. For the purposes of this work, the
two-dimensional temporal logic satisfies both criteria, and is thus a broadly
two-dimensional logic. Both flows of time are assumed to be discrete (Z).
In databases it is usual to use Z instead of N as the underlying flow of time.

So let £ be a countable set of propositional atoms. Besides the boolean
connectives, we consider two sets of temporal operators. The horizontal
operators are the usual “since” (§) and “until” (U ) two place operators,
together with all the usual derived operators; the horizontal dimension will
be used to represent valid time temporal information. The vertical dimen-
ston is assumed to be a Z-like flow and the operators over such dimensions
are the two-place operators “since vertical” (S ) and the “until vertical”
(U); in general, we use barred symbols when they refer to the vertical di-
mension. The vertical dimension will be used to represent transaction time
information. Two-dimensional formulas are inductively defined as:

— every propositional atom is a two-dimensional formula;
— if A and B are two-dimensional formulas, so are =4 and AAB, S (A, B)
and U (A, B),S (A, B) and U (A, B).

On the semantic side, we consider two flows of time: the horizontal one
(T, <) and the vertical one (T, < ). Two-dimensional formulas are evaluated
with respect to two dimensions, typically a time point ¢ € T and a time
point t € T, so that a two dimensional plane model is a structure based on
two flows of time M = (T, <,T, <, 7). The two-dimensional assignment
7 maps every triple (¢,¢, p) into {T, L}. The model structure can be seen
as a two-dimensional plane, where every point is identified by a pair of
coordinates, one for each flow of time (there are other, non-standard models
of two-dimensional logics which are not planar; see [5]).

The fact that a formula A is true in the two-dimensional plane model
M at point (t,t) is represented by M, t.t = A and is defined inductively
as:
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M ttEp iff n(t,t,p)=T.

Mttt E-A iff it is not the case that M, ¢, t | A.

M, t,t = AAB iff M,t,t= A and M, t,tE B.

Mt t = S (A, B) iff there exists a ¢/ € T with ¢/ <t and M, ¢/t = A

and for every t” € T, whenever ¢’ <t < t then

M, t" t = B.
Mt t = U (A, B) iff there exists an ¢/ € T with t <t and M, /.t = A
and for every t” € T, whenever t < t" < t' then

M, 't E B.
t,t ES (A, B) iff there exists a ¢/ € T with ' <t and M,t,t' = A
and for every t” € T, whenever t < t/ < t then

M., t,t" = B.
M, t,t EU(A, B) iff there exists a ' € T with t < ¢’ and M, ¢t,¢' = A
and for every ' € T, whenever t < t" < t' then

M, t, " = B.

<

Note that the semantics of horizontal and vertical operators are totally
independent from each other, i.e. the horizontal operators have no effect on
the vertical dimension and similarly for the vertical operators. If we consider
the formula without the vertical operators, we have a one-dimensional hor-
izontal ¢4 §-temporal logic: similarly for the vertical temporal logic. Unary
temporal predicates can be defined for both dimensions in the usual way,
so we get [], l, O, &, etc, for the horizontal dimension and [J, W, <,

@ | etc, for the vertical one.

3.2 Two-Dimensional Separation

The separation result does not hold for two-dimensional temporal logic
above; i.e. , given a two-dimensional formula, it is not guaranteed that
there exists an equivalent formula that is a conjunction of formulas of the
form

Past vV Present V Future,

where Present contains no temporal operators, Past contains no future (i.e.
U and U) operators and Future contains no past (i.e. Sand S ) operators.
For example, the formula {) ® p cannot be separated.

However, for a very useful class of formulas called temporalised formulas,
we obtain a restricted notion of separation, called vertical separation, which
is strong enough for our purposes here.

A temporalised formulas is a two-dimensional formula in which no ver-
tical temporal operator appears inside the scope of a horizontal temporal
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operator. Eg. OO A is a temporalised formula, but A is not. Tempo-
ralised formulas can be seen as the result of having the vertical temporal
dimension applied ezternally to a one-dimensional temporal logic, as dis-
cussed in [4].

A formula is vertically separable if it is equivalent to a formula that is
a conjunction of formulas of the form

v-Past V v-Present V v-Future,

where v-Past contains no vertical future operators (i.e. 2 and its derived
operators), v-Future contains no vertical past (i.e.S and its derived opera-
tors) and no vertical operator occurs in v-Present. The following result was
proved in [4].

THEOREM 3.1 If A is a temporalised formula then A is vertically separa-
ble.

Of course, a totally analogous horizontal separation can be obtained
for formulas where the horizontal dimension is applied externally to the
vertical one. In this work, vertical separation is emphasized because in our
modelling of temporal database evolution (see Section 3.4), the horizontal
dimension represents the state of the database, while the vertical dimension
represents the evolution of such temporal database; hence it is the vertical
dimension that is external to the database.

In this context, the horizontal dimension representing the temporal
database state is called the wvalid time dimension. The vertical dimension
representing the evolution of temporal database states is called the trans-
action time dimension.

3.3 The Two-Dimensional Diagonal

We now examine some properties of the diagonal in two-dimensional plane
models. The diagonal is a privileged line in the two-dimensional model
intended to represent the sequence of time points we call “now”, i.e. the time
points which an historical observer is expected to traverse. The observer is
on the diagonal when he or she poses a query (i.e. evaluates the truth value
of a formula) on a two-dimensional model.

So let § be a special atom that denotes the points of the diagonal, which
is characterised by the following property: for every ¢t € T and every t € Z:

Mt Tl=d iff t=1.

The diagonal is illustrated in Figure 1.
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(T, %) s O

(1,<)
Figure 1 The two-dimensional diagonal

The following formulas are true at all points of the two-dimensional
plane model:

® SVvovOs ® 506
5%( D—!(S/\.—!(S/\E—MS/\i—!(S) @6%06

The diagonal divides the two-dimensional plane in two semi-planes. The
semi-plane that is to the (horizontal) left of the diagonal is “the past”,
and the formulas {é and ® § are true at all points of this semi-plane.
Similarly, the semi-plane that is to the (horizontal) right of the diagonal is
“the future”, and the formulas @ § and {4 are true at all points of this
semi-plane. Figure 1 puts this fact in evidence.

The propositional approach of this section differs from the first order
treatment of temporal features in the previous section. To reconcile these
two different approaches a propositional abstraction of database manipula-
tions can be developed. However, for space reasons, we omit such presen-
tation, referring the reader to [7] for details.

3.4 Temporal Database Evolution

In describing the evolution of a temporal database, we have to distinguish
the database evolution from the evolution of the world it describes. The
“world”, also called the Universe of Discourse, is understood to be any
particular set of objects and relations between them in a certain environ-
ment that we may wish to describe. The database, in its turn, contains a
description of the world. Conceptually, we have to bear in mind two distinct
types of evolution, as introduced in [6]:

— The evolution of the modelled world is the result of changes in the
world that occur independently of the database.

— A temporal database contains a description of the history of the mod-
elled world that is also constantly changing due to database updates,
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generating a sequence of database states. This evolution of the tem-
poral description does not depend only on what is happening at the
present; changes in the way the past is viewed also alter this histori-
cal description; moreover, changes in expectations about the future, if
those expectations are recorded in the database, also generate an alter-
ation of the historical description. This process is also called historical
Tevision.

These two distinct concepts of evolution are reflected by a distinction
between two kinds of flows of time, whether their time points refer to a
moment in the history of the world, or whether they are associated with a
moment in time at which a historical description is in the database.

Several different names are found in the literature for these two time
concepts. The former is called evaluation time [13, 9], historical time [6],
valid time [19] and event time [14]. The latter time concept is called utter-
ance time [13], reference time [9], transaction time [6, 19] and belief time
[20]. In this presentation we chose to follow a glossary of temporal database
concepts proposed in [11], calling the former valid time, which is associated
with the horizontal dimension in our two-dimensional model, and calling
the latter transaction time, which is associated with the vertical dimension.

So we use the two-dimensional plane model to simultaneously cope with
the two notions of time in the description of the evolution of a temporal
database, as illustrated in Figure 2.

transaction - ”
- “now

time

F-------- R - M;

database state at ¢

valid-time

Figure 2 Two-dimensional database evolution

Let M = (T,<,T, <, ) be a two-dimensional plane model; its horizon-
tal projection with respect to the vertical point £ € T is the one-dimensional
temporal model

Mf = (T7 < 77{)7
such that, for every propositional atom ¢, time points t € T and t € T,

ﬂ—f(tv (]) =T if ﬂ-(tva (]) =T
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It follows that for every horizontal I/ &-formula A and for every t € T and
teT, Mgt A iff M,t,t = A. The horizontal projection represents
a state of a temporal database.

Updating temporal databases requires that, besides specifying the atom
to be inserted or deleted, we specify its valid time. For that reason, it is
convenient to use the notation of time-stamped atoms to represent the data
being inserted and deleted. As a result, infinite updates are possible as long
as such update is representable by a finite set of labelled formulas, where the
label (time-stamp) is a temporal element. For example, ©_ = {[—o0, +0] :
p} deletes the atom p for all times.

An wupdate pair (64,0_) consists of two finite disjoint sets of time-
stamped atoms, where 8 is the insertion set and 0_ is the deletion set;
by disjoint sets, in the context of data representation, it is meant that it
is not the case that 7 : p € 4 and 7_ : p € #_ such that 7, N7_ # @.
We say that an update pair determines or characterises a database update
©; occurring at transaction time ¢ € 7 if the application of the update
function ©; to the database state M; = (T, <, ;) generates a database
state ©(M;) = (T, <,O(rz)) satisfying, for every propositional atom ¢
and every time point t € T,

— if 7: ¢ € 84, then Of(7;)(t,q) = T for every t € T;

— if 7: ¢ € 6_, then Of(7;)(t,q) = L for every t € T

— if neither ¢ : g € 04 nort: q € 6_, then Oz (ry)(t, q) = 7z (t, q).
The first item corresponds to the insertion of atomic information, the second
one corresponds to the deletion of atomic information, and the third one
corresponds to the persistency of the unaffected atoms in the database.
Note that the disjoint sets 4 and 6_ are represented in the same way that
the underlying database, so that we can represent a temporal database
update schematically as:

Of(Mz) =MzUby —6_

When the sets 6, and §_ are not disjoint, i.e. the update it is trying to insert
and remove the same information, the situation is undetermined; typically
this would mean that the transaction in which the update was generated
should be rolled back. The update O is a database state transformation
function. An update may be empty (f; = 0_ = &), in which case the
transformation function is just the identity and the database state remains
the same.

4 Imperative History

The two-dimensional temporal model can be applied in two distinct situa-
tions, namely:
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— In the context of standard, one-dimensional temporal databases, the
two-dimensional model is used to represent the evolution of the database.
The current state of the database is constantly modified, i.e. history
is constantly been rewritten, and past states of the database are not
recorded.

— In the context of bitemporal databases, both dimensions are stored,
so the two-dimensional model can be seen as modelling a state of the
database.

In each of these two situations, the two-dimensional model allows us to
lift the restrictions imposed by the imperative future to METATEM rules
of the form

past Apresent —future

in a distinct way. In the context of bitemporal databases, this may lead to
a two-dimensional imperative history over bitemporal databases, which is
quite outside the scope of this presentation and is left as future work. So
we concentrate one the first option, which is purely one dimensional.

4.1 Imperative History for a One-Dimensional Database

When only a single state representing the history of the world is stored in
the database, an imperative history rule has the general format of

history ~»history

which, in formal terms is a formula of the form

o~ 1

where both ¢ and ¢ are any FTL-formulas that may refer to the (one-
dimensional) present, past or future; ¢ and 1 are thus called historical
formulas.

The meaning of an imperative history rule is, however, given in terms of
the two-dimensional model. Therefore, the rule above is seen as representing
the two-dimensional formula

VXYY (0— 5 1)

which clearly is a vertically separated formula. In this paper we will use
such rules to specify that at every transaction time ¢, the corresponding
formula holds at (¢,%), i.e. on the diagonal.

This new view of FTL-formulas consists of the following reading of a
temporal database evolution: “for all substitutions of the free variables that
makes (the temporal query) ¢ true at the current time (i.e. on the diagonal
point of the current state) force 1 to be true at this valid time in the next
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state”. The formula ¢ is called the condition or query part of the rule, and
1 is called the action part.

Several restrictions are imposed on the format of those rules. First, it
is required that the set of free variables of 4 be free in ¢ so as to avoid
undetermined actions. The complete rendering of an imperative history rule
becomes:

VXVY (0(X,Y)— 5 1(X))

Second, it is required of the query part of the rule to be range restricted.
This condition guarantees that queries have at most finitely many answers,
and hence only finitely many actions to be executed. Range restrictedness
demands that all the free variables occurring in the query formula should
occur in a positive literal of the formula.

Finally, it is convenient to require that the action part of the rule be
deterministic so that the rule management system will always know how
to execute the rule. One way to avoid non-determinism is to constrain
the format of the action formula to a conjunction of positive and negative
literals, possibly preceded by a string of o’s or @’s. The following is a
deterministic action formula:

Oclear_top(X) A —occupied(X) A o oplace(Obj, X)
Note that in imperative history rules forcing ¢ to be true may falsify ¢.
For instance, the simple rule p ~ —p is legitimate, for it is understood as

p— © ), i.e. whenever ¢ : pis true in the current state at transaction time
t, t : -p will hold at the next database state, not causing any inconsistency.

4.2 A System’s Architecture to Support Imperative History

Conceptually, the support of imperative history rules is not much different
from the support of standard rules found in non-temporal databases. As
shown in figure 3, an architecture of such a system is centered on the tem-
poral database manager (TDM), which performs all the tasks of a normal
database manager, plus the manipulation of time.

Imperative history rules are stored in the rule manager (RM), and can be
precompiled and optimized. The TDM activates the RM which, by selecting
which rules to execute (see Section 6 on triggers), submit queries to the
database via the TDM. The TDM then sends the answers back to the RM,
and at the end of the rule execution cycle receives from it the actions that
are to be performed. Some of these actions are temporal database updates
which are sent to the database, others are messages sent to user or some
kind of interaction with the temporal database’s environment, such as an
order to print a cheque or to signal an alarm, which are sent by the TDM via
the environment interface module; others, still, may be triggering actions
that will come back to the RM.
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one-
dimensional Temporal
valid time Database

/

temporal Manager
database

HQ-HREHHZ —

Rule Manager

Derived Active
Data Rules

Figure 3. Possible architecture that supports IMPHIST rules

This apparently excessive traffic through the TDM in the processing of
rules may be diminished if the RM is allowed to interact separately with the
constituent parts of the TDM. In this way, the RM may interact directly
with the database access module for querying and updating, receive triggers
from and send triggers to the transaction selector, and send messages and
requests to the environment directly to the interface module, avoiding the
TDM in those cases. Of course, this is just a conceptual architecture, and
each systems may adapt it differently to its own design philosophy.

5 Example

In this section we see the Imperative History ideas in action in a very sim-
ple example. The example concerns a patient monitoring system (PMS) for
use in an intensive care ward of a hospital. It is based on the PMS system
described in a software engineering context in [21] which has been imple-
mented in a prototype version by an executable temporal logic language in
[17]. The description and these implementations all concern a distributed
system problem focussing on formal specifications of the communication
between separate modules. Here we will introduce a historical dimension
by requiring patient data to be recorded.

So suppose that we have a central nurse console (NC) interacting with
several distributed patient monitors. The responsibilities of the NC will



TWO-DIMENSIONAL EXECUTABLE TEMPORAL LOGIC 97

include:

— recording information about a constant stream of patient data —here
just heart rates— from the patient modules;

— recording data manually input by the nurse about changes in occupants
of beds;

— notifying the nurse of alarming events (heart rate out of safety range
etc);

— answering queries about beds and hearts in the present and the past;

— and correcting incorrectly recorded information.

A fully comprehensive database for this task would need to be two
dimensional so that it could record information about the correction of
past mistakes. Such information would be needed to explain actions which
were taken on the grounds of information subsequently corrected. However,
we will consider a simpler, one-dimensional temporal database adequate to
hold a representation of the most up to date account of the history of the
situation in the intensive care ward. Changes to data about the past will
be allowed (as mistakes in recording do occur) but we will not necessarily
be able to reconstruct the superseded model of the history of the ward.

The users will be primarily interested in the following two predicates:

heart_rate(Patient,Rate) the heart rate of Patient is Rate
occ(Bed,Patient) Bed is occupied by Patient

These are the most important predicates which vary in time in the world
which the database will try to model. However it is easier to actually record
some different predicates in the database. We introduce:

hrm( Patient, Rate) the heart rate of Patient is measured as Rate
chpat(Bed,01d,New) Bed is vacated by patient 01d
and occupied by patient New.

Empty beds can easily be handled within this formalism.
The simple (one-dimensional) temporal formula

Vp. Vr. O0(heart rate(p,r) < S(hrm(p,r), —=3r2. hrm(p,r2))

specifies how to interpolate the most recent heart rate reading to any time.
Below we will show how to render this in an imperative history rule.
Similarly, chpat and occ are related by

Vb.Vp.OO(occ(b,p) & S(Jq.chpat(b,q,p), ~Iq’. chpat(b,p,q’)).
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In general with deductive databases, whether temporal or otherwise,
there is a distinction between basic and derived predicates. The database
manager must be told which predicates are to have their history recorded.
Other predicates play subsidiary roles: either being able to be derived from
the recorded omnes or appearing temporarily to produce, in combination
with Imperative History rules, systematic changes in the database. In our
example the database will only record the history of the predicates hrm and
chpat.

Thus, the database manager will be responsible for

— translating automatically recorded heart rate measurements into data-
base updates;

— doing the same for information entered by the nurse;

— answering queries which may be expressed in terms of derived predi-
cates;

— producing the side-effect of an alarm which is described in terms of
derived predicates;

— allowing error correction (including corrections of corrections e.t.c.)
and disallowing nonsensical attempts at error correction.

Although our database is one dimensional, we use two dimensions of
time to describe the way it changes over time. In this two dimensional
approach, the predicates we have introduced take on a slightly expanded
semantics: for example, heart _rate(Patient,Rate) holding at valid time
t and transaction time ¢ will mean that at transaction time #, the database’s
model of the world contained the information that at valid time ¢, the heart
rate of Patient is Rate.

Let us now examine some of the properties of this two-dimensional ac-
count and see which need explicit statement.

We suppose that automatic measurements arrive in the form of atoms
t : bhrm(b,r) labelled with time instants. Such an atom indicates a heart
rate measurement of r on the patient in bed b was made at the instant ¢.
An atom like this may arrive at the manager at any time after ¢ and so its
effects will be recorded at some even later transaction time.

The effect of the arrival of such an atom is given by

® (time(t) A bhrm(b,r) A occ(b,p)) ~ ® (time(t) Ahrm(p,r))

and the procedural effect of this rule is as follows. Suppose that at transac-
tion time #; the labelled atom ¢y : bhrm(b,r) is true. Then, the database
manager will check, from the rule manager, whether ¢; : occ(b,p) holds
for any p. If so, then by transaction time t; 4+ 1, the database will make
tz : hrm(p, r) hold.

Information entered by the nurse has a slightly more complicated ef-
fect. Suppose that the nurse enters the information that at time ¢, pa-
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tient p vacates bed b and patient q replaces her or him. We use the atom
nurse._requests_chpat_add(b,p,q,t) to indicate this. One of the effects
of this information being entered is often the transaction

® nurse_requests_chpat_add(b,p,q,t) ~ @ (time(t)Achpat(b,p,q)).

However we might want to disallow this direct update if the database cur-
rently shows that occ(b,p) is not true at that valid time. Thus we use

nurse._requests_chpat_add(b,p,q,t) A occ(b,p)
~ & (time(t) A chpat(b,p,q)).

instead.

A Systematic Change to History

There is also another effect of the nurse entering a bed-change fact. Say that
the nurse enters the information that at time ¢, the patient p is replaced
by patient q in bed b. Any heart rate measurements already recorded from
bed b but with later valid times than ¢ are recorded as being about patient
p but are now known to refer to patient q instead. Thus we have

nurse requests_chpat_add(b,old,new,t) A
® (time(t) A —chpat(b,old,new)) ~ @ (time(t) A chpat(b,old,new))

This rule is a very good example of the power of two-dimensional tem-
poral logic. It is a very clear case of a systematic change to history.

Queries and Side-effects

Queries are very straight forward to deal with. They are likely to be ex-
pressed in terms of occ and heart_rate and so can be answered using the
derivation laws for these two predicates.

The syntax for the first of these rules is

S(hrm(p,r), ~3r2. hrm(p,r2)) ~ heart rate(p,r).

Note that there is no interesting two-dimensional character to this rule.
The side-effect of an alarm sounding for dangerous heart rate measure-
ments can be produced by combining a derivation

- S (heart_rate(p,r) A (r > maxrate), alarm off(p)) ~ alarm!(p)

with the hard-wiring of the current truth of predicate alarm! to the alarm
bell. We associate an alarm sounding at time ¢ with the predicate alarm!
being true at time ¢ in the model of the ward kept at transaction time ¢. The
introduction of a nurse request to turn the alarm off and the corresponding
predicate alarm off is to prevent historical situations causing alarms.
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Corrections

Corrections can not be handled by allowing the nurse to enter in directly
the falsity of chpat for a particular historical time. This is because we
must check for attempts at silly corrections. Thus we separate the fact of
the nurse requesting a correction from the act of updating in accordance
with that correction.

As well as corrections involving removal of recorded facts we also need
to be able to add facts about the past. The nurse’s requests are formalized
in the predicate

nurse_requests_hrm add(p,r,t)

which means that the nurse requests that hrm(p,r) be added for valid time
t and similar predicates nurse _requests_hrm remove(p,r,t),

nurse requests_chpat_add(b,p,q,t) and

nurse requests_chpat _remove(b,p,q,t).

We introduce a predicate error whose truth at particular time on the
diagonal has the side-effect of notifying the nurse that she or he has just
requested a silly correction.

The rules which define the truth of error look like the following;:

nurse_requests_hrm add(p,r,t) A ® (time(t) Ahrm(p,r)) ~ O(error)

When error does not hold, then we use a set of Imperative History
formulas to bring about the correction:

nurse requests_chpat_remove(b,o0ld,new,t)A

® (time(t) A chpat(b,old,new)) ~ & (time(t) A ~chpat(b,o0ld,new))
nurse requests_chpat_add(b,old,new,t)A

® (time(t) A —chpat(b,old,new)) ~ @ (time(t) A chpat(b,old,new))

and similarly for hrm.

Of course, just as with the nurse entering new information about bed
changes, there is a consequence for heart rate measurements data from the
correction of bed occupant data. We have

nurse_requests_chpat_add(b,old,new,tl)

A® (time(t2) Ahrm(old,r) A ® (time(t1) A —chpat(b,old,new))
~ & (time(t2) A hrm(new,r) A —hrm(old,r))

and

@® (nurse_requests_chpat_remove(b,old,new,t1)

A® (time(t2) A hrm(new,r) A ® (time(t1) A chpat(b,old,new)))
~ & (time(t1) A hrm(old,r) A —hrm(new,r))

Correcting corrections turns out to be just the same as entering in new
information.
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Persistence

By requiring the database manager to follow the specification above— i.e.
the explicit rules and the informal description of its operation— we actually
end up abstractly building a two-dimensional temporal structure. A ground
atomic formula is true in this structure at times (¢,¢) if and ouly if the
database claims at transaction time ¢ that the formula is true at valid
time t. It is clear that this structure is a model of the formulas explicitly
mentioned above as rules.

However, the structure is also a model of many other formulas. For
example, because of the operation of the database manager, only chang-
ing stored information in response to new data or entered requests, there
are several persistence axioms. The one below indicates that heart rate
measurements persist from an automatic measurement unless a request for
change arrives:

O0Ovp. Vb. Vr. [hrm(p,T) <
S((bhrm(b,r) A occ(b,p)) V nurse_requests_hrm add(p,r),
—nurse_requests_hrm remove(p,r))]

It is important to note that these two-dimensional rules describe the
abstract model which is built by the database manager but they do not
have to be explicitly programmed by the user.

Summary

In summary then, we can think of the running of the NC as the gradual
construction of a two-dimensional temporal structure. Its language involves
many predicates which have a variety of connections with the real world:

— heart_rate and occ affect the truth of queries;

— hrm and chpat represent the data stored;

— alarm and error produce side-effects;

— nurse_requests_hrm add e.t.c. is true when the nurse makes a request
to correct data via the NC;

— and bhrm is true when data arrives from a patient monitor.

There are also a variety of explicit or implicit properties exhibited by the
structure:

— persistence arises from the inertia of the database;

— derivation rules define some predicates in terms of others;

— and Imperative History rules describe how various predicates require
changes to the history recorded in the database.
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6 Triggers

In this section we will enhance imperative history rules with t¢riggers. In-
formally, a trigger is a mechanism that enables the processing of a rule.
Only when a rule is enabled (i.e. when its trigger is fired) is its antecedent
checked against the temporal database and the corresponding actions are
executed; otherwise, when the trigger of a rule is not fired, the rule remains
disabled and is ignored.

A trigger will be represented by a guard (i.e. a label) placed in front of
the rule:

trigger : Condition ~»Action
and it is read as
when trigger is fired if Condition holds then execute Action.

A rule without a trigger can be thought of as being labelled by truth, T,
so it is always enabled.

One of the main reasons to include triggers in rules is to increase the sys-
tem’s efficiency. Without triggers, all rules have their antecedents checked
against the database at every rule evaluation cycle — which, according to
the two-dimensional model, means at every transaction time. When trig-
gers are present, only the subset of enabled rules have their antecedent
evaluated. We also say that the rule is fired when its trigger is.

Another good reason to include triggers is that they may be treated as
channels through which the outside world communicates with the system,
in the sense of [15]. For instance, in the rule sketched below:

alarm_ringing : door_open ~»close_door.

the fact that the alarm is ringing is ezternal to the system. This rule is
activated only when it is communicated to the system that the alarm is
ringing; therefore the trigger is called external. Ouly then it is checked
whether the door is open.

Triggers may be also used in connection with an event internal to the
database, such as the insertion (4) or deletion (—) of a fact. For example,
when a door is recorded closed, we may wish to issue several warnings:

+door_closed : emergency_mode ~»( lock_door A trigger_lights ).

As also seen in the example above, the Action-part of the rule can also fire an
internal trigger (trigger_lights), which on its turn will activate another rule
at the next transaction time. Therefore a chain of control of rule execution
may be created through the rules.

Finally, there may be triggers related to events associated to a resource
managed by the system, such as the system clock, file access, etc. For ex-
ample:
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time_is(8am) : user_logged_in(User) ~»good_morning_to(User)

As we see, triggers can also carry parameters and have the same “appear-
ance” as a normal database predicate.

There must be a mechanism for linking external and system triggers
to their corresponding external and system events, but this will not be
discussed here.

We will use the two-dimensional view of temporal database evolution to
give a formal semantics to triggers. Internal, external and system triggers
are seen as non-persistent predicates. We have to distinguish between trigger
predicates and data predicates. When we defined the update semantics
of data predicates in Section 3.4, whatever data was neither inserted nor
deleted had its validity persisting into the following database state at the
following transaction time.

However, trigger predicates have a “fixed duration” of a single trans-
action time unit. The insertion a trigger atomic predicate in the database
corresponds to the firing of a trigger with the respective set of parameters.
A trigger fired (i.e. inserted) at transaction time ¢ will hold at the next
transaction time, t + 1. It will only hold at transaction time ¢ + 2 if has
been re-fired (i.e. re-inserted) at ¢ + 1; otherwise it is removed from the
database.

With this dynamic semantics for trigger predicates, we can construct
trigger expressions by combining trigger predicates with boolean operators.
A guarded rule of the form

trigger_expression : Condition ~»Action
is then evaluated simply as
(trigger_expression A Condition) ~»Action.

The difference between trigger_expression and Condition remains solely in
the dynamic behaviour of its components.

7 Conclusion

The main contribution of this paper is the suggestion of an appropriate ex-
ecutable temporal logic for declarative management of temporal databases.
By using a two-dimensional temporal language and restricting our attention
to a certain simple form of formula, we can express many useful patterns
of updates and yet provide them with a direct procedural effect. We have
demonstrated the usefulness of this language in a small example: in future
work we hope to apply the language and develop the techniques in a much
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larger example. It will be interesting to demonstrate the technique in ac-
tion on a two-dimensional temporal database where the use of Imperative
History rules in database management will be slightly different.

In other future work we hope to address questions of implementability
of various restricted Imperative History languages.
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