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Abstract

Inspired by the recent work on approximating classical logic, we present a procedure
that approximates the modal logic K by determining a maximum limit of introspec-
tion. This procedure has a clear semantics and a natural proof theory in the context
of Massacci’s modal Single Step Tableaux (SST).
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1 Introduction

George Boole defined logic as the science of “the fundamental laws of those
operations of the mind by which reasoning is performed” [1]. Much of the
later development emphasised the relations between logic and foundations of
mathematics, leaving aside its use as a model for a thinking agent. With the
development of Artificial Intelligence, however, the use of logic as the basis of
the formalisation of problems of Knowledge Representation has been shown,
in many cases, to be successful, returning in a certain way to Boole’s ideal.

Ideal agents know all the consequences of their beliefs. However, real
agents are limited in their capabilities. Following the work of Marco Cadoli
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and Marco Schaerf [9], Marcelo Finger and Renata Wassermann [3] devel-
oped a method for modelling limited and approximated reasoning for classical
propositional logic. Their work considers a set of atoms — which is called rele-
vant propositions — permitting a non-classical behaviour of the operator ¬ on
sentences containing atoms outside this set. The set of relevant propositions is
a parameter in the construction of a family of logics that “approximate” clas-
sical logic. Each logic in the family proves a subset of classical theorems; the
approximation process happens when a logic cannot prove a specific theorem,
so its parameter set is incremented, moving to a more powerful logic.

There are two sources of complexity in modal logics: logical omniscience
and unbounded logical introspection 4 . Logical omniscience means that the
thinking agent knows all the consequences of his beliefs. The work of Fin-
ger and Wassermann, among others, give a method to control this feature
in classical logic, and this method is easily translated to modal logic. This
paper is concerned with the other source of complexity. Unbounded logical
introspection allows an agent to reason about his beliefs of his beliefs . . . of
his beliefs. Limitation is accomplished by selecting a maximum limit of in-
trospection, inside which the agent can reason classically about its beliefs;
outside, the behaviour is non-normal. By selecting arbitrarily large limits of
introspection, we can recover classical normal modal logic; for the sake of this
presentation, we restrict ourselves to modal logic K, but the ideas here are by
no means restricted to K.

This modal logic of limited of introspection is initially presented in seman-
tical terms. The semantics gives rise to a very simple proof theory in the
context of the Massacci’s SST-tableaux [8]. Massacci, in [7], has developed
a different method of approximating modal logics. In the context of Hilbert-
style derivation systems, this kind of approximations is known in the work of
Ghilardi [5].

The rest of the paper develops as follows. Section 2 presents the notations
used, some concepts of modal logics necessary for the following sections and
what do labelled signed sentences (used in the tableau-based proof theory)
mean. Section 3 presents the semantics of the approximating logics, examples
and a theorem that states exactly what is needed to determine the truth of a
sentence in an approximating logic. Section 4 presents a tableau-based proof
theory in the context of SST, examples and proves soundness and complete-
ness of the tableaux rules with respect to the semantics of Section 3. In the
conclusion, possible directions for future research are discussed.

4 We observe that the use of the word “introspection” is usually restricted to the context
of epistemic logic. Following [7], we extend its use to any modal logic.
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2 Preliminaries

We assume familiarity with the basics of modal logics as presented, for in-
stance, in [6], and Smullyan’s tableaux [10]. Some notations will be ex-
plained. The language is based on a denumerable set A of propositional
variables, or atoms, and contains the logical symbols ¬, ∧, ∨, ⊃, � and
♦. Consider a model M = 〈W,R, v〉 for the modal logic K. In this model,
W is a set of possible worlds, R ⊆ W ×W is the accessibility relation and
v : W → (A → {0, 1}) is a function that assigns to each world w ∈ W a
propositional valuation. The reflexive transitive closure of a world w ∈ W ,
denoted by w∗, is the set of all t ∈ W such that there is a sequence wRw1,
w1Rw2, . . . , wn−1Rt — this sequence is a path wRw1Rw2R · · ·Rwm−1Rt from
w to t. The distance from w to t in the path wRw1Rw2R · · ·Rwm−1Rt
is denoted by |w, t| and equals to m. The nesting of modal operators in
a sentence φ, N (φ), is defined as follows: if φ is an atom, N (φ) = 0;
N (¬φ) = N (φ); N (φ ∧ ψ) = N (φ ∨ ψ) = N (φ ⊃ ψ) = max{N (φ),N (ψ)};
N (�φ) = N (♦φ) = N (φ) + 1. As an example, N (♦¬�(p ∧ ♦q)) = 3.

In Section 4, we use Massacci’s Single Step Tableaux, SST, as presented
in [8], and here we present only the main aspects needed. SST is a variant
of Fitting’s prefixed tableaux [4]. Tables 1 and 2 show unifying notations that
simplify considerably the presentation of the tableaux rules which are applied
to signed sentences. Signed sentences are sentences that start with a T or a F ,
as Tφ and Fφ. Intuitively, Tφ means “φ is true” and Fφ means “φ is false”;
so Tφ has the same truth value as φ, and Fφ has the same truth value as ¬φ.
The components of SST are prefixed sentences. In those sentences, before any
signed sentence θ, there is a prefix σ, written as σ : θ. A prefix, by definition,
is a finite sequence of integers that begins with 1. Different elements of this
sequence are separated by dots. So 1, 1.1, 1.2.1 are all examples of prefixes.
Intuitively, the prefix σ in σ : θ “names” a world where the sentence θ is true 5 .
The advantage of this representation is that it codifies all introspection steps
needed in order to arrive from the “real” world denoted by 1 to the world
denoted by σ (we “go” from one world w to another t when wRt by the
accessibility relation R). For instance, the prefix 1.2.1.1 shows that, in order
to arrive at the world 1.2.1.1 from the world 1, we need to go from 1 to 1.2,
them from 1.2 to 1.2.1, and finally from 1.2.1 to 1.2.1.1. The size of a prefix
1.n1.n2. . . . .nm is denoted by |1.n1.n2. . . . .nm| and equals to m.

Suppose that we want to prove some unsigned sentence φ. First, we sign φ
as Fφ and prefix it with 1, obtaining 1 : Fφ in the root of the tableau. Then
we add nodes by the tableaux rules. A branch R is a path from the root to
the leaf. Intuitively, each branch is a tentative model, and the tableau is a
systematic attempt to obtain a counter example — technically called counter
model — to φ. A branch of the tableau closes when in it appears a pair of
sentences σ : Tφ and σ : Fφ, and the tableau closes when all its branches

5 We are not assuming that for a given world there is a single name.
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α α1 α2

Tφ ∧ ψ Tφ Tψ

Fφ ∨ ψ Fφ Fψ

Fφ ⊃ ψ Tφ Fψ

neg pos

T¬φ Fφ

F¬φ Tφ

β β1 β2

Fφ ∧ ψ Fφ Fψ

Tφ ∨ ψ Tφ Tψ

Tφ ⊃ ψ Fφ Tψ

Table 1
Smullyan’s unifying notation

ν ν0

T�φ Tφ

F♦φ Fφ

π π0

F�φ Fφ

T♦φ Tφ

Table 2
Fitting’s unifying notation

close. If the tableau closes, we succeeded in proving the original sentence. If
some branch does not close even after we use every possible tableau rule, we
say that it is open and reduced and we have the required counter model.

3 Semantics

The following semantics presents under what conditions a sentence ψ is to
be considered true according to the truth of its subsentences. We have three
parameters that determine the truth: the model M = 〈W,R, v〉, the world
w ∈ W and an integer n (so n ∈ {. . . ,−2,−1, 0, 1, 2, . . .}), that is to be called
maximum limit of introspection.

Semantics of the n-approximations

(i) M, w, n |= p iff v(w)(p) = 1

(ii) M, w, n |= ¬φ iff M, w, n 6|= φ

(iii) M, w, n |= φ ∧ ψ iff M, w, n |= φ and M, w, n |= ψ

(iv) M, w, n |= φ ∨ ψ iff either M, w, n |= φ or M, w, n |= ψ

(v) M, w, n |= φ ⊃ ψ iff either M, w, n 6|= φ or M, w, n |= ψ

(vi) if n > 0, M, w, n |= �φ iff for every t ∈W such that wRt, M, t, n− 1 |= φ

(vii) if n > 0, M, w, n |= ♦φ iff there exists some t ∈W such that wRt and M, t, n−1 |= φ

(viii) if n ≤ 0, either M, w, n |= �φ or M, w, n 6|= �φ

(ix) if n ≤ 0, either M, w, n |= ♦φ or M, w, n 6|= ♦φ

For a fixed n, when M, w, n |= ψ we say that ψ is n-true in the world w on
the model M. Similarly, if for a fixed n we have M, w, n 6|= ψ, then we say
that ψ is n-false in the world w on the model M. When ψ is n-true for every
possible world w on every model M, we say simply that ψ is n-valid, denoting
this fact by n |= ψ. Note that the semantics above implies that every n-valid
theorem is a K-valid theorem. The logic obtained by fixing some n is called
n-logic.
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When n > 0, clauses 6–7 can be applied and the semantics works in the
same way as in classical modal logic. It is in clauses 8–9 that differences can
be found. When n ≤ 0, we only ask that one (and therefore, by clause 2,
exactly one) of �φ and ¬�φ be true. This is a tautology, of course (we are
indeed stating the absence of a condition), but the point in clauses 8–9 is
that there is no other thing that must happen — therefore, we can choose the
truth in any way we like, we have freedom to do that. The choice of truth
could be made on the model itself, but because in our proof theory we shall
be working with the construction of a model, this formulation is better suited.
Clauses 8–9 could be absent from the definition, but we state it for the sake
of clearness.

Now, some examples.

(i) The Rule of Necessitation, n |= φ ⇒ n |= �φ, does not hold in a n-approximation
when n = 0. Let M be an arbitrary model and w some world in this model. Suppose
that φ is n-valid (for instance, a tautology), so that M, t, n |= φ for every t and n.
Take n = 0. By Theorem 3.1, as 0 ≤ 0 and w ∈ w∗, it is possible to choose the 0-truth
of �φ in w. So, assume that M, w, 0 6|= �φ.

(ii) The principle K, �(p ⊃ q) ⊃ (�p ⊃ �q), is not 0-valid. Let M be an arbitrary model
and w some world in this model, and take n = 0. By Theorem 3.1 (in the same way as
the last example), we can choose the 0-truth of �p, �q and �(p ⊃ q) in w; assuming
that M, w, 0 |= �(p ⊃ q), M, w, 0 |= �p and M, w, 0 6|= �q, we obtain a counter
model for K.

(iii) The equivalence ♦φ ≡ ¬�¬φ is not 0-valid. Let M be an arbitrary model and w some
world in this model, and take n = 0. As in the previous examples, we can choose the
truth of ♦φ and �¬φ. Assume that M, w, 0 6|= �¬φ and that M, w, 0 6|= ♦φ. By the
semantics of ¬, condition 2, M, w, 0 6|= �¬φ implies that M, w, 0 |= ¬�¬φ. Similarly,
the other equivalences ¬�φ ≡ ♦¬φ, ¬�¬φ ≡ ♦φ are not 0-valid.

Examples 1 and 2 above show that the logic we are treating here is not normal,
because neither the Rule of Necessitation nor K are n-valid when n = 0 (or
when n ≤ 0).

The following theorem looks at what determines the n-truth of a sentence
at a world w on a model M.

Theorem 3.1 Let M = 〈W,R, v〉 be a model. The n-truth of a sentence φ
for a world w ∈ W is determined by v and by the m-truth of every subsentence
�φ′ and ♦φ′′ of φ for t ∈ w∗, where m ≤ 0 and n−m = |w, t|.

Proof. The proof is by induction on the complexity of φ.

(i) If φ is some atom p, M, w, n |= p if v(w)(p) = 1, and M, w, n 6|= p if
v(w)(p) = 0. So the n-truth of φ in w is determined by v.

(ii) If φ is ¬ϕ, the n-truth of φ in w is opposite to that of ϕ (condition 2 of
the semantics), and by the inductive hypothesis the n-truth of ϕ in w is
determined by v and the m-truth of every subsentence �ϕ′ and ♦ϕ′′ of ϕ
for t ∈ w∗ — subsentences of φ also —, where m ≤ 0 and n−m = |w, t|.

(iii) If φ is ϕ ∧ ψ, the n-truth of φ in w is determined by the n-truth of ϕ
and ψ (condition 3 of the semantics), and by the inductive hypothesis
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the n-truth of ϕ (ψ) in w is determined by v and the m-truth of every
subsentence �ϕ′ (�ψ′) and ♦ϕ′′ (♦ψ′′) of ϕ (ψ) for t ∈ w∗ — subsentences
of φ also —, wherem ≤ 0 and n−m = |w, t|. Similarly for the connectives
∨ and ⊃ (conditions 4–5 of the semantics).

(iv) Suppose that n > 0. If φ is �ϕ, the n-truth of φ for w is determined
by the (n − 1)-truth of ϕ for every t such that wRt, that is, t ∈ w∗ and
|w, t| = 1 (condition 6 of the semantics). By the inductive hypothesis,
the (n−1)-truth of ϕ for t is determined by v and by the m-truth of every
subsentence �ϕ′ and ♦ϕ′′ of ϕ for t′ ∈ t∗ — subsentences of φ also —,
where m ≤ 0 and n− 1−m = |t, t′|. Therefore, the n-truth of φ in w is
determined by v and by the m-truth of every subsentence �ϕ′ and ♦ϕ′′ of
ϕ for t′ ∈ t∗ for every t such that wRt, where m ≤ 0 and n−1−m = |t, t′|.
But wRt and t′ ∈ t∗ implies that t′ ∈ w∗, and |t, t′| = n− 1−m implies
that |w, t′| = (n − 1 − m) + 1 = n − m. So the n-truth of φ in w is
determined by v and by the m-truth of every subsentence �ϕ′ and ♦ϕ′′

of φ for t′ ∈ w∗, where m ≤ 0 and n − m = |w, t′|. Similarly for the
connective ♦ when n > 0 (condition 7 of the semantics).

(v) Suppose that n ≤ 0. If φ is �ϕ, condition 8 of the semantics just says
that either M, w, n |= �ϕ or M, w, n 6|= �ϕ — so we can choose which
one. Therefore, the n-truth of φ for w is determined by the n-truth of �ϕ
for t = w, that obviously satisfies t ∈ w∗. Similarly for the connective ♦
when n ≤ 0 (condition 9 of the semantics).

That completes the proof. Note that in usual modal logics, the truth value of
a sentence at a world in a frame 〈W,R〉 is determined only by v. 2

4 A Tableau-Based Proof Theory

Consider a fixed maximum limit of introspection n. The proof theory of the
semantics presented in the previous section will be given by the so-called n-
SST-rules, that characterise the n-Single Step Tableaux (n-SST). In the tables
below, we use the notations explained on Tables 1 and 2.

σ : α

σ : α1

σ : α2

σ : neg
σ : pos

σ : β
σ : β1 σ : β2

Table 3
Propositional n-SST-rules

Table 3 gives the n-SST rules for propositional connectives, and is exactly
the same as the SST rules for propositional connectives, given in [8].

Table 4 gives the n-SST rules for modal connectives for the modal logic K.
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σ : π
σ.m : π0

(π′) with |σ| < n and σ.m new in the branch

σ : ν
σ.m : ν0 (K) with σ.m already in the branch

Table 4
Modal n-SST-rules

The only difference between these rules and those for SST in [8] is that rule
(π′) substitutes rule (π) there; rule (π′) entitles us to accept σ.m : π0 on the
strength of σ : π only if |σ| < n; this restriction does not exist for (π).

Below we have two examples of proofs by n-SST.

n = 0 n ≥ 1

(1) 1 : F�(p ⊃ q) ⊃ (�p ⊃ �q) (1) 1 : F�(p ⊃ q) ⊃ (�p ⊃ �q)

(2) 1 : T�(p ⊃ q) (2) 1 : T�(p ⊃ q)

(3) 1 : F�p ⊃ �q (3) 1 : F�p ⊃ �q

(4) 1 : T�p (4) 1 : T�p

(5) 1 : F�q (5) 1 : F�q

? (6) 1.1 : Fq

(7) 1.1 : Tp ⊃ q

(8) 1.1 : Tp

(9) 1.1 : Fp (10) 1.1 : Tq

× ×

Fig. 1. Proof of K by n-SST

Figure 1 gives a proof of K by n-SST. Sentences (2) and (3) of both sides
are obtained from (1) by application of the α-rule; in the same way we obtain
(4) and (5). Now, in the left side, there is nothing more that can be done,
because we need to apply (π′) in (5) to obtain a new prefix and this is only
possible for |σ| < n; when n = 0, as in the left side, this does not happen
(0 = |1| ≥ 0). In the right side, we can apply (π′), obtaining (6). (7) and
(8) are obtained from (2) and (4), respectively, by the (K)-rule. (9) and (10)
come from (7) by the β-rule.

The left side of Figure 1 permits us to construct a counter model for K
when n = 0. The counter model is seen in Example 2 of the previous section
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(using 1 in the place of w).

n = 0 n = 1 n ≥ 2

(1) 1 : F��(p ⊃ p) (1) 1 : F��(p ⊃ p) (1) 1 : F��(p ⊃ p)

? (2) 1.1 : F�(p ⊃ p) (2) 1.1 : F�(p ⊃ p)

? (3) 1.1.1 : F (p ⊃ p)

(4)1.1.1 : Tp

(5)1.1.1 : Fp

×

Fig. 2. Proof of ��(p ⊃ p) by n-SST

Figure 2 gives a proof of ��(p ⊃ p) by n-SST. Sentence (1) asks for
application of (π′)-rule, and this cannot be done in the left side because,
there, n = 0, and 0 = |1| ≥ 0. Sentence (2) in the middle and right sides is
obtained by (π′)-rule, that can be applied because |1| < 1. We cannot proceed
anymore in the middle, but because 1 = |1.1| ≤ 2 we can apply (π′) again in
the right side, obtaining (3). Finally, sentences (4) and (5) of the right side
are obtained by application of the α-rule.

The left side of Figure 2 permits us to construct a counter model M =
〈W,R, v〉 for ��(p ⊃ p) when n = 0. We can takeW = {1} (the set of prefixes
in the branch), R = ∅ (because there is no prefix 1.m in the branch which is
accessed by the world denoted by 1), and v(1) is a fixed valuation of the atoms
of the language (any will work). Because of Theorem 3.1, we can choose the
0-truth of ��(p ⊃ p) in the world 1; we choose M, 1, 0 6|= ��(p ⊃ p).

The middle of Figure 2 permits us to construct a counter model for ��(p ⊃
p) when n = 1. Take M = 〈W,R, v〉, where W = {1, 1.1}, R = {(1, 1.1)}
and v(1), v(1.1) fixed arbitrary valuations of the atoms of the language. As
in the previous paragraph, we can choose the 0-truth of �(p ⊃ p) in the
world 1; we choose M, 1, 0 6|= �(p ⊃ p). Then, because 1R1.1, we must have
M, 1, 1 6|= ��(p ⊃ p).

We must show soundness and completeness of the n-SST with respect to
the semantics of the n-approximations presented in the previous section.

Tableaux rules are sound with respect to some semantics if that every
inference that the tableaux rules do can be done by the semantics — that
is, the tableaux does not infer facts that are not permitted already by the
semantics. To show this, we must first explain what it means for a model to
satisfy sentences in a branch of a tableau. Two definitions are needed.

Definition 4.1 [[8]] Let M = 〈W,R, v〉 a model and R a branch of some
n-SST. An SST-interpretation is a mapping from the prefixes σ ∈ R to worlds
i(σ) ∈ W such that, whenever σ, σ.m ∈ R, one has i(σ)Ri(σ.m).
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Definition 4.2 A tableau branch R is satisfiable if there is a model M =
〈W,R, v〉 and an SST-interpretation i such that for every prefixed sentence
σ : Tφ ∈ R, one has M, i(σ), n − |σ| |= φ, and for every prefixed sentence
σ : Fφ ∈ R, one has M, i(σ), n− |σ| 6|= φ.

In Definition 4.2, σ : Tφ is to be considered satisfiable in a model M with
an SST -interpretation i if φ is n − |σ|-true in the world i(σ), and σ : Fφ
is to be considered satisfiable in the same model and interpretation if φ is
n− |σ|-false in the world i(σ). So, to see whether in real world some sentence
is false, we could have to analyse the n − |σ|-truth of the sentence φ in the
world i(σ), that requires |σ| introspection steps to arrive at.

Now soundness follows. Its proof is pretty much the same as that of [8],
with very simple modifications.

Theorem 4.3 (Soundness) Suppose that the n-SST for ψ closes. Then n |=
ψ.

Proof. We shall show that, if a model M with an SST-interpretation i sat-
isfies a branch R of the tableau prior to the application of some n-SST-rule,
then one of the branches obtained by addition of the conclusions of the rule
is also satisfied by M with some SST-interpretation j. This is done by con-
sidering separately the application of every rule, supposing that every kind of
sentence is satisfied by some M and i.

(i) Suppose that σ : Fφ ∨ ψ is satisfiable by M and i. Then, by definition
of satisfaction, M, i(σ), n − |σ| 6|= φ ∨ ψ. The semantics forces us to
accept that M, i(σ), n − |σ| 6|= φ and M, i(σ), n − |σ| 6|= ψ, that is, M
and i satisfy both σ : Fφ and σ : Fψ. The same happens for all other
α-sentences.

(ii) Suppose that σ : T¬φ is satisfiable by M and i. Then, by definition of
satisfaction, M, i(σ), n − |σ| |= ¬φ. The semantics forces us to accept
that M, i(σ), n − |σ| 6|= φ, that is, M and i satisfy σ : Fφ. The same
happens for all other neg-sentences.

(iii) Suppose that σ : Tφ∨ψ is satisfiable by M and i. Then, by definition of
satisfaction, M, i(σ), n− |σ| |= φ ∨ ψ. The semantics forces us to accept
that either M, i(σ), n−|σ| |= φ or M, i(σ), n−|σ| |= ψ, that is, M and i
satisfy either σ : Tφ or σ : Fψ. So some of the two branches that appear
after the application of this β-rule is satisfied by M and i. The same
happens for all other β-sentences.

(iv) Suppose that σ : T�φ is satisfiable by M and i and that there is some
prefix σ.m on the branch. For σ.m to exist, the (π′)-rule must have been
used in a sentence with prefix σ, so |σ| < n, that is, n − |σ| > 0. By
definition of satisfaction, M, i(σ), n− |σ| |= �φ. The semantics forces us
to accept that for every world i(σ′) accessible by i(σ), M, i(σ′), n− (|σ|+
1) |= φ. So this is the case when σ′ = σ.m. Because |σ.m| = |σ| + 1, we
have that M, i(σ.m), n− |σ.m| |= φ, that is, M and i satisfy σ : φ. The
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same happens for all applications of the (K)-rule.

(v) Finally, suppose that σ : F�φ is satisfiable byM and i, and that the (π′)-
rule has been applied producing a new prefix σ.m in a sentence σ.m : Fφ
on the branch. This means, first of all, that |σ| < n, so that n− |σ| > 0.
By definition of satisfaction, M, i(σ), n−|σ| 6|= �φ. Because n−|σ| > 0,
the semantics forces us to accept that, for some world t accessible by i(σ),
M, t, n − (|σ| + 1) 6|= φ. Extend the function i to another j, from the
prefixes on the extended branch to the worlds, as follows:

j(s) =

 t if s = σ.m

i(s) otherwise

First we shall prove that j is an SST-interpretation. We must show, there-
fore, that for all prefixes s and s.l present on the branch, j(s)Rj(s.l). This
is obvious for every s 6= σ, σ.m and every s.l 6= σ.m, because for such s the
function j coincides with i that is an SST-interpretation, so j(s)Rj(s.l)
because already i(s)Ri(s.l). Now consider s = σ. For every σ.l 6= σ.m, j
coincides with i and we also have that j(s)Rj(s.l). Moreover, by construc-
tion (because j(σ.m) = t and i(σ)Rt), j(σ)Rj(σ.m). Finally, because σ.m
is new on the branch, there is no prefix σ.m.l on the branch that requires
us to prove that j(σ.m)Rj(σ.m.l). With the SST-interpretation j, M
satisfies every sentence in the extended branch other than σ.m : Fφ, be-
cause for such sentences the prefixes involved are all different from σ.m
and therefore j coincides with i, so M and i already satisfied them. And,
because the world t accessible by i(σ) = j(σ), M, t, n − (|σ| + 1) 6|= φ
and t = j(σ.m), we have that M, j(σ.m), n− |σ.m| 6|= φ (remember that
|σ.m| = |σ|+1). Therefore the extended branch is satisfiable by M with
the SST-interpretation j.

That completes the proof by induction. 2

Tableaux rules are complete with respect to some semantics if every infer-
ence that the semantics does can also be done by the tableaux rules — that is,
the tableau infers at least the facts permitted by the semantics. The strategy
for proving this is as follows. Suppose that the tableau cannot prove some
sentence. Then some reduced open branch appears. We use this branch to
construct a counter model for the original sentence; this counter model shows
that the original sentence cannot be inferred from the semantics. This means
the same as saying that, if the original sentence can be inferred from the se-
mantics, then there cannot be any reduced open branch in the tableau, that
is, all branches must eventually close.

Theorem 4.4 (Completeness) Suppose that n |= ψ. Then the n-SST for
ψ closes.

Proof. Let R be an reduced open branch of the tableau. Construct the model
M = 〈W,R, v〉 as follows:

10
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• W = {σ : σ ∈ R}
• σRσ′ iff σ′ = σ.m

• v(σ)(p) = 1 if σ : Tp ∈ R; v(σ)(p) = 0 if σ : Fp ∈ R
There is no ambivalence in the definition of v(σ)(p) because the branch does
not close, that is, it does not happen simultaneously that σ : Tp and σ : Fp ∈
R. Notice also that it is necessary, by Theorem 3.1, to define the (n − |σ|)-
truth of the sentences �φ and ♦φ for σ such that |σ| ≥ n (we notice that
every prefix in a branch is in 1∗, and for a prefix 1.n1.n2. . . . .nm, we have
|1, 1.n1.n2. . . . .nm| = m). Assume that M, σ, n − |σ| |= �φ if σ : T�φ ∈ R,
M, σ, n − |σ| 6|= �φ if σ : F�φ ∈ R, and similarly for the sentences ♦φ. For
the atoms and sentences that do not appear in R, assume that some function
to worlds to valuations is fixed.

Now it is necessary to show that R is satisfiable by M so defined, with the
SST-interpretation that is the identity function (i(σ) = σ for every σ ∈ R).
This is done by induction on the complexity of the sentences in the branch
(the part on the right of the prefixes).

(i) M satisfies the atoms by definition.

(ii) If there is a sentence of the form σ : Fφ ⊃ ψ, then (because the branch
is reduced) we have that σ : Tφ and σ : Fψ ∈ R. By the induction
hypothesis, M satisfies σ : Tφ and σ : Fψ. This means that M, σ, n −
|σ| |= φ and M, σ, n − |σ| 6|= ψ. Therefore, by the semantics, M, σ, n −
|σ| 6|= φ ⊃ ψ. In the same way we prove thatM satisfies every α-sentence.

(iii) If there is a sentence of the form σ : F¬φ, then (because the branch
is reduced) we have that σ : Tφ ∈ R. By the induction hypothesis, M
satisfies σ : Tφ. This means thatM, σ, n−|σ| |= φ, soM, σ, n−|σ| 6|= ¬φ.
In the same way we prove that M satisfies every neg-sentence.

(iv) If there is a sentence of the form σ : Tφ ⊃ ψ, then (because the branch
is reduced) we have either σ : Fφ or σ : Tψ ∈ R. By the induction
hypothesis, M satisfies either σ : Fφ or σ : Tψ. So either M, σ, n−|σ| 6|=
φ or M, σ, n−|σ| |= ψ. Therefore, by the semantics, M, σ, n−|σ| |= φ ⊃
ψ. In the same way we prove that M satisfies every β-sentence.

(v) If there is a sentence of the form σ : T�φ, then (because the branch is
reduced) we have that σ.m : Tφ for every σ.m in the branch — that is,
for every prefix accessible by σ. We observe that |σ.m| = |σ|+ 1. By the
induction hypothesis, M satisfies σ.m : Tφ for every σ.m in the branch.
This means that M, σ, n− (|σ|+ 1) |= φ for every prefix accessible by σ.
Therefore, by the semantics, M, σ, n − |σ| |= �φ. In the same way we
prove that M satisfies every ν-sentence.

(vi) If there is a sentence of the form σ : F�φ, there are two cases to consider.
First: if |σ| ≥ n, the sentence is satisfied by the branch by definition. In
the second case, |σ| < n, and the (π′)-rule can be applied. Because the
branch is reduced, we have that σ.m : Fφ for some σ.m in the branch —
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that is, for some prefix accessible by σ. We observe that |σ.m| = |σ|+ 1.
By the induction hypothesis, M satisfies σ.m : Fφ for some σ.m in the
branch. This means thatM, σ, n−(|σ|+1) |= φ for some prefix accessible
by σ. Therefore, by the semantics, M, σ, n− |σ| 6|= �φ. In the same way
we prove that M satisfies every π-sentence.

That completes the proof by induction. 2

We can be sure that if φ is a theorem of K, then there is and n such
that n |= φ as follows. Consider the nesting of modal operators in a sentence
φ, N (φ). We need at most N (φ) introspection steps in order to prove φ,
because this is the maximum number of times that rule (π′), that creates new
prefixes, can be applied to ever increasing prefixes. This is the essence of the
approximation process. If we can prove some sentence with some fixed n, then
we are done; but if not, we can increase n and try to prove the same sentence.
If the sentence φ can be proved classically, it will eventually be proved for
some n-logic (it can be proved for the N (φ)-logic).

5 Conclusion

Although our procedure is described only for the modal logic K, the essence
of the method applies for other basic modal logics. Essentially, what happens
is that for other logics the accessibility relation is restricted to have some
properties (for instance, reflexivity), and accordingly we have more SST-rules
(SST are modular). But the only SST-rule that creates new prefixes is the
(π)-rule, a rule required for all basic modal logics, and its change to (π′) is the
only one that has to be performed in the SST-rules. The arguments 5 in the
proof of soundness and 6 in the proof of completeness, that depend only on
this rule, apply to every basic modal logic, and all the other arguments for the
soundness and completeness of those logics — found in [8] — can be retained
without change. One example: in the modal logic S4, the accessibility relation
between prefixes, that must be reflexive and transitive, is given by σRσ.σ′. All
the tableaux rules from Tables 3 and 4 are preserved, but there is also a new
tableau rule, called (T ), that allows us to add σ : ν0 on the branch of the
tableau whenever σ : ν appears on it, and another tableau rule, called (4),
that allows us to add σ.m : ν on the branch whenever the prefix σ.m and the
sentence σ : ν already appear on it.

One possible application of this procedure is the analysis of proofs in modal
logics. For instance, “how many” proofs can we have with a given maxi-
mum limit of introspection, compared with another? As a possible direction
for future research, there is the fundamental question of the complexity of
the family of n-logics. The provability of sentences for most modal logics
is a PSPACE-complete problem. In classical logic, the provability is a NP-
complete problem. In [2], Marcelo Finger presents a family of logics that
approximates classical inference, in such a way that each step in the approxi-
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mation can be decided in polynomial time. We know that every NP-complete
problem is PSPACE, but we don’t know whether the reciprocal is true of false.
Do the n-logics give rise to problems polynomially tractable? If so, as they
approximate a PSPACE-complete problem, what light do they bring over the
question whether PSPACE ⊆ NP?
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