Concurrency Control for Perceivedly Instantaneous Transactions in
Valid-Time Databases

Marcelo Finger*

Departamento de Ciéncia da Computacao
Instituto de Matematica e Estatistica

Universidade de Sao Paulo
mfinger@ime.usp.br

Abstract

Although temporal databases have received consider-
able attention as a topic for research, little work in
the area has paid attention to the concurrency con-
trol mechanisms that might be employed in tempo-
ral databases. This paper describes how the notion of
the current time — also called ‘now’ — in valid-time
databases can cause standard serialisation theory to
give what are at least unintuitive results, if not actually
incorrect results. The paper then describes two modifi-
cations to standard serialisation theory which correct
the behaviour to give what we term perceivably instan-
taneous transactions: transactions where serialising T
and Ty as [T1,T»] always implies that the current time
seen by Ty is less than or equal to the current time
seen by Ts.

1 Introduction

Query languages for valid-time temporal database
normally contain a notion of ‘current-time’ [WJL93,
Sar90, TCG'93, Sno95], usually represented as the
value of a special variable now. While it is agreed that
the value of now should remain constant during a valid-
time database operation such as querying and updat-
ing [CDI"94, Sno95], no such agreement exists with
respect to the behaviour of now during a valid-time
transaction.

The problem is that now cannot be considered as
reqular data. Otherwise, a long temporal transaction
could read-lock it, preventing the system clock from
changing (supposing, for example, that there is a tick
transaction that models the periodical updates of now).
It is highly undesirable that the duration of transac-

*Partially supported by Brazilian CNPq, research grant PQ
300597/95-9.

Peter MC¢Brien

Dept. of Computer Science
King’s College London
Strand, London WC2R, 2LS
pjm@dcs.kcl.ac.uk

tions influences the way other transactions perceive the
clock.

So now has to be treated as a special value in valid-
time temporal databases that demands special treat-
ment. Several distinct possible semantics for now in
valid-time transactions have been studied in [FM96];
the basic choices and their associated problems are pre-
sented in Section 2. The basic conclusion drawn in
[FM96] is that there is no ‘perfect’ semantics for now
in valid-time databases. However, we claim that per-
ceivedly instantaneous transactions provide the most
intuitive semantics for now. In this kind of transaction,
now remains constant and its value is determined by
the transactions’ submission time.

In this paper, we deal with the problem that per-
ceivedly instantaneous transactions bring to valid-time
databases, namely that their concurrent execution can-
not always be serialised in the standard way. So, after
reviewing the possible semantics for now in valid-time
databases, Section 2 explains our choice of perceived
instantaneity. Section 3 shows that this kind of trans-
action does not respect normal serialisation theory;
it then formulates a temporal serialisation theory and
characterises temporally serialisable executions (The-
orem 3.1). Section 4 proposes two extensions of tradi-
tional two-phase locking that guarantee temporal se-
rialisation, namely maturity ordering (MO-2PL) and
maturity ordering with resource knowledge (MORK-
2PL); temporal serialisation theory is used to prove
their correctness.

2 An Overview of the Semantics of
‘Current-Time’ in Valid-Time Trans-
actions

There are several possible ways of determining the
value of the variable now. Each possible choice for the



semantics of now will be named by subscripting the
‘pure’ variable now with an appropriate letter.

The first semantical choice for temporal transac-
tion’s current-time relates to whether the value of now
should be user-defined or run-time determined. If it is
user defined (nowy ), then prior to a transaction sub-
mission the user has to provide a value for nowy; in
this way, the transaction can be executed as if nowy
were any time in history; the value of nowy does not
change during execution, unless there is an explicit op-
eration to do that in the transaction body. We do not
rule out the existence of transactions with user-defined
values for now, but we also want to allow for the pos-
sibility to set the value of now automatically.

The intuitive semantics for run-time determined
nowgr is ‘at the time of transaction execution’, but
here too there are several choices. The crucial one is
whether nowpg changes or not. If it is allowed to change
by mirroring the value of a real-time system clock,
then it has been shown that the result of a transaction
can be affected by the number of clock ticks occur-
ring during a transaction [FM96]. This could be inter-
preted as a violation of the isolation principle of the
ACID transaction properties [HR83].! Perhaps more
seriously, allowing the value of now to change during a
transaction execution puts a heavy burden on transac-
tion programmers, who in that case have to cope with
the possibility of clock changes between each pair of
now-dependent data accesses. Those problems tell us
that time-varying nowg should be considered only in
very particular cases and should not be the default
semantical choice for now in temporal databases.

So, if the value of now is to be made constant and
run-time dependent, what determines its value? Three
transaction events can be the determiner:

e commit time (nowc): this value is not known dur-
ing transaction execution. Although updates can
be deferred until commit time is known, it is not
possible to execute queries that depend on the un-
known value of now. It is therefore ruled out.

e submission time (nows): this is the time when the
transaction is submitted.

e begin time (nowg): due to system load, the ac-
tual start of execution is delayed for an arbitrary
period after submission.

n fact, the isolation principle requires the execution of
transactions to be independent from each other; here we are as-
suming a stronger isolation, namely that of external events such
as clock ticks; that is why we carefully stated that this could be
seen as a violation, instead of stating it certainly is one.

We show in Section 3 that both begin time and
submission time may fail to serialise under two-phase
locking if we impose that the order of now should be
kept by serialisation.

To summarise, as concluded in [FM96], there are
no semantics for the automatic determination of now
that are technically simple to achieve and intuitive.
While it should always be possible for the user to set
the value of now, we propose that the most intuitive
semantics for now is a constant one, related in some
way to the time of execution of the transaction: per-
ceived instantaneity is akin to transaction atomicity
and frees a programmer from imagining what happens
if time changes during execution; furthermore its value
should be determined by submission time: it approxi-
mates best the semantics of now as ‘at this very mo-
ment’ from the point of view of a user, while begin time
is unknown and can only be interpreted as ‘as soon as
it is possible’. The former is what we call perceivedly
instantaneous transaction in a valid-time database.

The rest of this paper deals with the concurrency
control problems that can arise from our choice, and
how to solve them. Section 3 formalises our notion
of perceivedly instantaneous transaction as an addi-
tional restriction on serialisation graphs, and Section 4
presents two concurrency control mechanisms which
meet, this restriction.

3 Temporal Serialisation

Figure 1 shows two transactions, 77 and 75, running
concurrently according to the two-phase locking (2PL)
concurrency control mechanism.

Transaction 77 was submitted and immediately
started; the reading of the system clock gave t, so
now; = t. Transaction 75, on the other hand, per-
ceives nows = ¢ + 1. All read and write operations
in T} and T refer to the perceived current time (now).
T starts by reading the value of y, and T3 starts by
reading the values of z; soon after that 77 wants to
write to = but is blocked by the locking system un-
til after 75 commits. If we want a serialisation of that
concurrent execution, then [T, 7] is ruled out by the
locking mechanism, so we are left with [T, T}]. But if
transactions were executed serially in this order, the
determination using submission time of the perceived
value of nowg would imply nowy < now;, contradict-
ing the scenario in Figure 1 where now; < nows. Note
that this ‘time going backwards’ phenomenon, caused
by the choice of submission time determining nowg,
can also occur if instead we use nowpg (determined by
begin time). For example, nowp = nowg when the de-



t tipk t+1 N
| blocked g
r1[y] ! ROy (]
’ T ‘ now; =t
- rafr] wsfz]
; wows =41

Figure 1: Violation of temporal serialisation

lay between transaction submission and the beginning
of its execution is null. Time moving backwards even
occurs with nowy, but then it would be argued that
this would be expected, since the progression of values
of nowy would be a matter of user choice.

It follows that normal serialisation does not guar-
antee a ‘now-ordering’ which we call temporal serial-
1sation. This may cause problems because T is per-
ceived as happening before 75, so the past data read
by T3 is incorrect according to such perception. Note
that adopting a timestamp order concurrency control
would not solve the problem: T would be aborted and
restarted in its attempt to write to x; its submission
time does not change after restart, resulting in the
same serialisation [T»,77] but still now; < nows. If
begin time determined the value of now, then after a
restart we could have a new value for now; < nows,
thus obtaining temporal serialisation. This, however,
goes against the intuition of perceived instantaneity.
The solution is to try to impose temporal serialisabil-
ity by means of the concurrency control mechanism. It
is this option that we investigate next.

3.1 Temporal Serialisation Theory

We now detail a temporal serialisation theory which
may be used to avoid the time moving backwards prob-
lem, regardless of the choice of how now is determined.
We call the value of now as seen by a transaction the
maturity of the transaction, and it can be seen as hav-
ing an integer value. A transaction Tj; is more mature
than a transaction T} if the value of the current valid
time seen by 7; is strictly smaller than that seen by
T}; we represent that by writing now; < now;. Our se-
rialisation theory will ensure that if now; < now; then
T; will always be serialised before T}.

A database is seen as a set of ‘objects’ in the loose
sense (not the object oriented sense). The set of pos-
sible operations O; for a transaction 7; contains, for
every object « in the database, r;[z] (read z) and w;[z]
(write x); it also contains the terminating operations
¢; (commit), a; (abort).

Two operations performed by distinct transactions

over the same data x are said to conflict if one of them
is a write operation. A transaction T; is then formalised
as a partial order (T}, <;) where:

° Tt C O@,
e cither a; € T; or ¢; € Tj;

e if [; is a; or ¢;, then for any other operation o € T},
0 <; l;, i.e. l; must be the last operation in the
transaction;

o if [rz][a:], w;[x] € T;, then r[x] <; wilz] or wy[z] <;

For simplicity and to keep notation unambiguous, it
is assumed that at most a single operation on some ob-
ject x is performed during a transaction, as is usual in
classical serialisation theory [BHGS87]; however, none
of the results in this paper depends on such a restric-
tion.

It T ={T,...,T,} is a set of transactions, a com-
plete history H* over T is a partial order (H*, <p+)
such that:

e H*=U_, Ty

o <u- 2 UL, <, Le. the order of H* is an exten-
sion of the orders of Tj;’s;

e for every two conflicting operations p and g in H*,
either p <pg+ q or ¢ <g+ p.

A history H over T is simply a prefix of a complete
history over T'. The committed projection of a history
H,C(H),is obtained by deleting from H all operations
from transactions that are not committed in H.

Two histories (H,<g) and (H',<g/) are equiva-
lent, which is denoted by H = H', if:

e H=H'=J;", T;, i.e. both H and H' are histo-
ries over T

e For every pair of non-aborted transactions T; and
T; in T, if p; conflicts with ¢; in H then p; <y g;
iff p; <u gj.



A history H is serial if for every 13,1} € H, all op-
erations of T; appear before all operations of T or vice-
versa. A history H is serialisable if C(H) is equivalent
to some serial history. For non-temporal transactions,
the notion of serialisability is all that is needed. But
for temporal transactions we do not want more mature
transactions to be serialised after less mature ones.
Therefore we introduce the notion of temporally pre-
serving histories. A history H is temporally preserving
iff for every p;,q; € H, if p; <m g;, then now; < now;.
Finally, we say that a history is temporally serialisable
(TSR) iff C(H) is equivalent to some history that is
both serial and temporally preserving.

Temporal serialisation allows for transactions with
the same maturity to be serialised in any order among
themselves. But it imposes the restriction that more
mature transactions be serialised before less mature
ones. For non-temporal transactions it is widely known
that serialisability is equivalent to having an acyclic se-
rialisation graph [BHG87]. A similar property applies
to histories of temporally serialisable transactions.

Let H be a history over transactions 7T =
{T1,...,T,,}, and TC C T be the set of commit-
ted transactions in H. The serialisation graph for H,
SG(H), is a directed graph whose nodes are T; € TC
and whose edges are such that 1; — T iff there ex-
ists conflicting p;,q; in H such that p; < ¢;. SG(H)
is monotonic iff T; — T implies now; < now;. The
temporal version of the serialisability theorem is the
following.

Theorem 3.1 (Temporal Serialisability) A his-
tory H is temporally serialisable if and only if SG(H)
18 acyclic and monotonic.

Proof (=) Suppose H is temporally serialisable.
Then, by classical serialisability theorem, SG(H) is
acyclic. Suppose T; — Tj is an edge of SG(H). Then
there are conflicting p; and ¢; such that p; <g g;. Since
H is temporally preserving, it follows that now; <
now;, so SG(H) is monotonic, as required.

(<) Suppose SG(H) is now acyclic and mono-
tonic, and suppose the nodes of SG(H) are TC =
Ty,...,Ty. Extend SG(H) into SGy by adding an
edge T; — 1} if now; < now;.

Clearly SGy is monotonic. We claim it is also
acyclic. Since SG'y is monotonic, for every T; — Tj
in SGy we have now; < now;. Therefore, for every
path Ty, ..., Ty, if Tp, precedes Tj, in the path, then
now,, < now,. If there is a cycle T},,..., T, T}, in
SGp, then there must be an extra edge 1), — T,
in SGy but not in SG(H) such that now,, < now,,.
Since there is also a path from T}, to T}, it follows
that now,; < now,,, which is a contradiction.

Since SGy is a directed acyclic graph it may be
topologically sorted. Let T, ,...,Ts, be a topological
sort of SGg, and let Hy be the serial history formed
by concatenating the histories of T, ,...,Ts, . Clearly
both Hs; and C(H) are defined over T'C'. Suppose
there are 13,75 € T'C such that p; € T; conflicts with
q; € Ty. If p; <c(m) ¢; then there is an edge T; — T
in SGg; therefore, in the topological sort of SGg, T;
must appear before 7T so p; <m, g;. Conversely, if
pi <mH, ¢; then either p; <o) ¢; or ¢; <cm) Pi
because p; and g; conflict; but the latter leads to the
contradiction that ¢; <m, p;. So C(H) = Hy, and
hence H is serialisable. Finally, suppose p; and g; con-
flict and p; <uy ¢;. If now; < now; then T; — T
is an edge of SGg, 1T} appears before T; and, from
C(H) = Hs, q; <c(m) pi which contradicts p; <m ¢;.
So now; < now; of all p; <y ¢; and Hy is temporally
preserving. So H is temporally serialisable, finishing
the proof. O

Example 3.2 A non-monotonic graph The situation
depicted in Figure 1 leads to a serialisation graph
that is correct for standard serialisation theory; which
would indicate that the only dependency is T — T}
due to the conflict between w; [z] and ra[x].

wi[z], r2[x]

The graph is non-monotonic since we can add a
dashed line to indicate now; < nows, and see that the
dependency T5 — T breaks the monotonicity rule. O

4 Achieving Temporal Serialisation

Having defined a temporal serialisation theory, we
now aim to define a concurrency control mechanism
which achieves temporal serialisability. We note in
passing that conservative 2PL [BHG87] can achieve
our aim when using nowp, since the locks and the value
of now are determined simultaneously. However, con-
servative locking is not very efficient, and this is not
a general solution for all types of now. Our approach
extends the strict 2PL concurrency control mechanism
to achieve temporal serialisation. 2PL already guaran-
tees serialisation [BHG87], so we only have to enforce
that all temporal histories are temporally preserving.

In 2PL a transaction 7; can perform an operation
pi[z] only after the corresponding lock on z, pl;[z], has
been obtained. Two locks pl;[z] and gl;[z] conflict if
the corresponding operations p;[z] and g;[z] conflict. A



lock pl;[z] is obtained if no conflicting lock on z is be-
ing held. In strict 2PL, locks can be released only after
the transaction commits or aborts. Then following two
protocols develop upon this basic mechanism.

4.1 Maturity Ordering

To achieve temporal serialisation we extend strict
2PL with a mechanism that enforces maturity order-
ing, thus obtaining MO-2PL which satisfies the follow-
ing rules:

1. The strict 2PL rules.

2. Let T; and T; be two transactions such that
now; < now;. If T; is a non-terminated trans-
action that holds or has held a lock for an object
z and T; requests a conflicting lock on z, then
T; is aborted and restarted, and T} is given the
requested lock.

3. A transaction may only be committed after all
more mature transactions have been committed.

Note that rule (3) places a restriction on the value
that may be assigned to now in a new transaction;
that is the value of now in such transactions can not
be more mature than the value of now given to any
committed transaction.

Theorem 4.1 MO-2PL histories are temporally seri-
alisable.

Proof Let H be an MO-2PL history. Since MO-2PL
is simply a restriction of the 2PL rules, it follows that
SG(H) is acyclic.

To show that SG(H) is monotonic, suppose by con-
tradiction it has an edge 7; — T} such that now; <
now;. Since T; — T there must be conflicting opera-
tions p;[x] € T; and g;[x] € T such that p;[x] <z g;[z].
Either T; commits before lock ¢l;[x] is requested, or af-
terwards. If T; committed before ¢l;[z], rule (3) would
be broken, since T} is less mature than 7}. If T; com-
mitted after gl;[z], rule (2) would have caused T; to
be aborted, removing the conflict. Thus now; £ now;
and SG(H) is monotonic.

It follows by Theorem 3.1 that H is temporally se-
rialisable. d

Example 4.2 Use of MO-2PL for Figure 1 If we use
MO-2PL the following changes occur to the normal
2PL behaviour. Firstly, when T5 reaches its end, it is
unable to commit, since the more mature transaction
T is still executing, and thus 75 suspends. Secondly,

when T attempts to obtain a lock for wi[z], T is
aborted since it holds a conflicting lock on z and is less
mature then 7). After T} commits, T, can be restarted.

O

Rule (3) above places a heavy burden on the system
implementing MO-2PL. If there is a single transaction
T that lasts for several chronons (i.e. the basic indi-
visible units of time [Jen94]), then every transaction
submitted in the intermediate chronons while 7" is exe-
cuting will have its commitment unnecessarily delayed
until, at least, the termination of T'. So a single long
transaction can cause the delay of several potentially
small transactions. The number of transactions in the
system can increase significantly, leading to a serious
decrease in system throughput known as thrashing.

For these reasons, MO-2PL should be used in a sys-
tem only if transactions are guaranteed to terminate
within a relatively short period of time, so that at most
one tick event (i.e. a single chronon increment) may oc-
cur during the execution of any transaction. The un-
necessary delays in the commitment of transactions
can then be avoided. If this is not the case, then the
following MORK-2PL system should be adopted.

4.2 Enriching Maturity Order with Re-
source Knowledge

To improve on MO-2PL we have to provide the con-
currency control system with a priori knowledge of the
resources (potential locks) each transaction may need.
With the existence of such knowledge we expect to
eliminate the heavy burden placed by the commit rule
(3) of MO-2PL, and hence provide a greater degree of
concurrency between the transactions. The predecla-
ration of resources is defined as follows.

e Prior to start of execution, a transaction must de-
clare each of the potential locks it may require
during execution. Not all predeclared locks need
be requested during execution. However, if a non-
declared lock is requested, the transaction must
be aborted.

By requiring that all transactions predeclare their
potential locks, we create Maturity Ordering with Re-
source Knowledge (MORK-2PL), which contains MO-
2PL’s rules (1) and (2) plus a new commit rule:

3'. T; can commit while a more mature 7} is still
running only if T} has not predeclared a lock that
conflicts with any of those obtained by T7;; other-
wise T; waits for the termination of T7;.



A small adaptation in the proof of Theorem 4.1
shows that:

Theorem 4.3 MORK-2PL histories are temporally
serialisable.

The previous knowledge of each transaction poten-
tial resources, which is the price paid for the improved
performance of MORK-2PL over MO-2PL, can be ob-
tained by a special compiler/code analyser.

When there are conflicts between locks obtained
by one transaction and potential locks for an exe-
cuting more mature transaction, MORK-2PL behaves
just like MO-2PL; when such conflict does not exist,
MORK-2PL allows a transaction to commit much ear-
lier than MO-2PL would have allowed. Note that in the
case that each transaction predeclares potential locks
on all the database, MORK-2PL degenerates into MO-
2PL.

5 Conclusion

In this paper we have presented a solution to the
time moving backwards problem introduced in [FM96].
This solution was based around the notion of per-
ceivedly instantaneous transactions which required the
presentation of a temporal serialisation theory. We
then presented and proved the correctness of two pro-
tocols for concurrency control of perceivedly instanta-
neous transactions in valid-time databases. Apart from
the obvious contribution to the correct use of now in
temporal databases, we believe that our work has a
useful contribution in the analysis of the use of the
CURRENT_TIMESTAMP variable in SQL92 [ISO92].
This variable would appear to share many of the prop-
erties of the now variable in temporal databases.

Work related to our approach can be found
in [GRLY94|, where the scheduling of transactions was
submitted to chronological constraints involving the
order in which transactions had to be executed; these
constraints were totally external to the transactions
and do not refer to the current-time perceived by
transactions. The serialisation problems encountered
in this paper and [GRL94] are different in nature; as
a result, [GRL94] could not simply extend an existing
scheduling mechanism and had to propose a totally
different chrono-scheduler.

There are several ways in which our work can be
continued. First, although we have theoretically shown
that normal concurrency control may fail temporal se-
rialisation, we do not know how often such a violation
occurs in practical temporal database applications nor

how serious its effects may be. If it happens frequently
enough, or has dear consequences even if occurring
rarely, this would justify the cost of altering concur-
rency control mechanisms.

Second, if temporal serialisation is to be imple-
mented, we have to devise ways of doing it efficiently,
specially in what concerns the manipulation of trans-
action resource knowledge. Preferably, we would like
to be able to add temporal serialisation to an existing
2PL scheduler without interfering with its internal be-
haviour, i.e. by treating it as a black box. We need also
to study potential optimisation for transactions which
do not access the now value, and thus need not obey
temporal serialisation.

Finally, we have to study how perceivedly instanta-
neous transactions can coexist with transactions with
user defined time, or even with transactions supporting
other semantics of now that temporal database appli-
cations may require.

Acknowledgments

The authors would like to thank the anonymous re-
viewers for their carefully reading of this paper, and
helpful suggestions for improvements.

References
[BHG87] P.A. Bernstein, V. Hadzilacos, and
N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison-
Wesley, 1987.

[CDIt94] J. Clifford, C. Dyreson, T. Isakowitz,
C.S. Jensen, and R.T. Snodgrass. On
the semantics of “NOW” in temporal
databases. Technical Report R-94-2047,
Dept. of Mathematics and Computer Sci-
ence, Aalborg University, November 1994.

[FM96] M. Finger and P.J. McBrien. On the
semantics of ‘current-time’ in temporal
databases. In XI Brazilian Symposium
on Databases (SBBD’96), pages 324-337,
http://www.dc.ufscar.br/eventos/sbbd96/,

October 1996.

[GRLY94] D. Georgakopoulos, M. Rusinkiewicz, and
W. Litwin. Chronological scheduling of
transactions with temporal dependencies.

VLDB journal, 3(1):1-28, 1994.



[HR83]

[1S092]

[Jen94]

[Sar90]

[Sno95]

[TCG*93]

[WJIL93]

T. Hérder and A. Reuter. Principles
of transaction-oriented database recovery.
Computing Surveys, 15(4), 1983.

ISO/IEC. Database language SQL (SQL-
92 or SQL2). Technical Report 9075:1992,
I1SO/IEC, 1992.

C.S. Jensen et al. A consensus glossary
of temporal database concepts. SIGMOD
Record, 23(1):52-64, 1994.

N. Sarda. Algebra and query language for a
historical data model. Computer Journal,
22(1):11-18, 1990.

R.T. Snodgrass, editor. The TSQL2 Tem-
poral Query Language. Kluwer Academic
Publishers, 1995.

A.U. Tansel, J. Clifford, S. Gadia, S. Jajo-
dia, A. Segev, and R. Snodgrass, editors.
Temporal Databases: Theory, Design and
Implementation. Benjamin/Cummings,
1993.

G. Wiederhold, S. Jajodia, and W. Litwin.
Integrating temporal data in a heteroge-
nous environment. In Tansel et al.
[TCGT93], chapter 22, pages 563-579.



