
Con
urren
y Control for Per
eivedly Instantaneous Transa
tions inValid-Time DatabasesMar
elo Finger� Peter M
.BrienDepartamento de Ciên
ia da Computa�
~aoInstituto de Matem�ati
a e Estat��sti
aUniversidade de S~ao Paulom�nger�ime.usp.br Dept. of Computer S
ien
eKing's College LondonStrand, London WC2R 2LSpjm�d
s.k
l.a
.ukAbstra
tAlthough temporal databases have re
eived 
onsider-able attention as a topi
 for resear
h, little work inthe area has paid attention to the 
on
urren
y 
on-trol me
hanisms that might be employed in tempo-ral databases. This paper des
ribes how the notion ofthe 
urrent time | also 
alled `now' | in valid-timedatabases 
an 
ause standard serialisation theory togive what are at least unintuitive results, if not a
tuallyin
orre
t results. The paper then des
ribes two modi�-
ations to standard serialisation theory whi
h 
orre
tthe behaviour to give what we term per
eivably instan-taneous transa
tions: transa
tions where serialising T1and T2 as [T1; T2℄ always implies that the 
urrent timeseen by T1 is less than or equal to the 
urrent timeseen by T2.1 Introdu
tionQuery languages for valid-time temporal databasenormally 
ontain a notion of `
urrent-time' [WJL93,Sar90, TCG+93, Sno95℄, usually represented as thevalue of a spe
ial variable now. While it is agreed thatthe value of now should remain 
onstant during a valid-time database operation su
h as querying and updat-ing [CDI+94, Sno95℄, no su
h agreement exists withrespe
t to the behaviour of now during a valid-timetransa
tion.The problem is that now 
annot be 
onsidered asregular data. Otherwise, a long temporal transa
tion
ould read-lo
k it, preventing the system 
lo
k from
hanging (supposing, for example, that there is a ti
ktransa
tion that models the periodi
al updates of now).It is highly undesirable that the duration of transa
-�Partially supported by Brazilian CNPq, resear
h grant PQ300597/95-9.

tions in
uen
es the way other transa
tions per
eive the
lo
k.So now has to be treated as a spe
ial value in valid-time temporal databases that demands spe
ial treat-ment. Several distin
t possible semanti
s for now invalid-time transa
tions have been studied in [FM96℄;the basi
 
hoi
es and their asso
iated problems are pre-sented in Se
tion 2. The basi
 
on
lusion drawn in[FM96℄ is that there is no `perfe
t' semanti
s for nowin valid-time databases. However, we 
laim that per-
eivedly instantaneous transa
tions provide the mostintuitive semanti
s for now. In this kind of transa
tion,now remains 
onstant and its value is determined bythe transa
tions' submission time.In this paper, we deal with the problem that per-
eivedly instantaneous transa
tions bring to valid-timedatabases, namely that their 
on
urrent exe
ution 
an-not always be serialised in the standard way. So, afterreviewing the possible semanti
s for now in valid-timedatabases, Se
tion 2 explains our 
hoi
e of per
eivedinstantaneity. Se
tion 3 shows that this kind of trans-a
tion does not respe
t normal serialisation theory;it then formulates a temporal serialisation theory and
hara
terises temporally serialisable exe
utions (The-orem 3.1). Se
tion 4 proposes two extensions of tradi-tional two-phase lo
king that guarantee temporal se-rialisation, namely maturity ordering (MO-2PL) andmaturity ordering with resour
e knowledge (MORK-2PL); temporal serialisation theory is used to provetheir 
orre
tness.2 An Overview of the Semanti
s of`Current-Time' in Valid-Time Trans-a
tionsThere are several possible ways of determining thevalue of the variable now. Ea
h possible 
hoi
e for the1



semanti
s of now will be named by subs
ripting the`pure' variable now with an appropriate letter.The �rst semanti
al 
hoi
e for temporal transa
-tion's 
urrent-time relates to whether the value of nowshould be user-de�ned or run-time determined. If it isuser de�ned (nowU ), then prior to a transa
tion sub-mission the user has to provide a value for nowU ; inthis way, the transa
tion 
an be exe
uted as if nowUwere any time in history; the value of nowU does not
hange during exe
ution, unless there is an expli
it op-eration to do that in the transa
tion body. We do notrule out the existen
e of transa
tions with user-de�nedvalues for now, but we also want to allow for the pos-sibility to set the value of now automati
ally.The intuitive semanti
s for run-time determinednowR is `at the time of transa
tion exe
ution', buthere too there are several 
hoi
es. The 
ru
ial one iswhether nowR 
hanges or not. If it is allowed to 
hangeby mirroring the value of a real-time system 
lo
k,then it has been shown that the result of a transa
tion
an be a�e
ted by the number of 
lo
k ti
ks o

ur-ring during a transa
tion [FM96℄. This 
ould be inter-preted as a violation of the isolation prin
iple of theACID transa
tion properties [HR83℄.1 Perhaps moreseriously, allowing the value of now to 
hange during atransa
tion exe
ution puts a heavy burden on transa
-tion programmers, who in that 
ase have to 
ope withthe possibility of 
lo
k 
hanges between ea
h pair ofnow-dependent data a

esses. Those problems tell usthat time-varying nowR should be 
onsidered only invery parti
ular 
ases and should not be the defaultsemanti
al 
hoi
e for now in temporal databases.So, if the value of now is to be made 
onstant andrun-time dependent, what determines its value? Threetransa
tion events 
an be the determiner:� 
ommit time (nowC): this value is not known dur-ing transa
tion exe
ution. Although updates 
anbe deferred until 
ommit time is known, it is notpossible to exe
ute queries that depend on the un-known value of now. It is therefore ruled out.� submission time (nowS): this is the time when thetransa
tion is submitted.� begin time (nowB): due to system load, the a
-tual start of exe
ution is delayed for an arbitraryperiod after submission.1In fa
t, the isolation prin
iple requires the exe
ution oftransa
tions to be independent from ea
h other; here we are as-suming a stronger isolation, namely that of external events su
has 
lo
k ti
ks; that is why we 
arefully stated that this 
ould beseen as a violation, instead of stating it 
ertainly is one.

We show in Se
tion 3 that both begin time andsubmission time may fail to serialise under two-phaselo
king if we impose that the order of now should bekept by serialisation.To summarise, as 
on
luded in [FM96℄, there areno semanti
s for the automati
 determination of nowthat are te
hni
ally simple to a
hieve and intuitive.While it should always be possible for the user to setthe value of now, we propose that the most intuitivesemanti
s for now is a 
onstant one, related in someway to the time of exe
ution of the transa
tion: per-
eived instantaneity is akin to transa
tion atomi
ityand frees a programmer from imagining what happensif time 
hanges during exe
ution; furthermore its valueshould be determined by submission time: it approxi-mates best the semanti
s of now as `at this very mo-ment' from the point of view of a user, while begin timeis unknown and 
an only be interpreted as `as soon asit is possible'. The former is what we 
all per
eivedlyinstantaneous transa
tion in a valid-time database.The rest of this paper deals with the 
on
urren
y
ontrol problems that 
an arise from our 
hoi
e, andhow to solve them. Se
tion 3 formalises our notionof per
eivedly instantaneous transa
tion as an addi-tional restri
tion on serialisation graphs, and Se
tion 4presents two 
on
urren
y 
ontrol me
hanisms whi
hmeet this restri
tion.3 Temporal SerialisationFigure 1 shows two transa
tions, T1 and T2, running
on
urrently a

ording to the two-phase lo
king (2PL)
on
urren
y 
ontrol me
hanism.Transa
tion T1 was submitted and immediatelystarted; the reading of the system 
lo
k gave t, sonow1 = t. Transa
tion T2, on the other hand, per-
eives now2 = t + 1. All read and write operationsin T1 and T2 refer to the per
eived 
urrent time (now).T1 starts by reading the value of y, and T2 starts byreading the values of x; soon after that T1 wants towrite to x but is blo
ked by the lo
king system un-til after T2 
ommits. If we want a serialisation of that
on
urrent exe
ution, then [T1; T2℄ is ruled out by thelo
king me
hanism, so we are left with [T2; T1℄. But iftransa
tions were exe
uted serially in this order, thedetermination using submission time of the per
eivedvalue of nowS would imply now2 � now1, 
ontradi
t-ing the s
enario in Figure 1 where now1 < now2. Notethat this `time going ba
kwards' phenomenon, 
ausedby the 
hoi
e of submission time determining nowS ,
an also o

ur if instead we use nowB (determined bybegin time). For example, nowB = nowS when the de-



-t ti
k t+ 1
now2 = t+ 1now1 = tT2T1 r2[x℄ w2[x℄r1[y℄ w1[x℄blo
ked-

Figure 1: Violation of temporal serialisationlay between transa
tion submission and the beginningof its exe
ution is null. Time moving ba
kwards eveno

urs with nowU , but then it would be argued thatthis would be expe
ted, sin
e the progression of valuesof nowU would be a matter of user 
hoi
e.It follows that normal serialisation does not guar-antee a `now-ordering' whi
h we 
all temporal serial-isation. This may 
ause problems be
ause T1 is per-
eived as happening before T2, so the past data readby T2 is in
orre
t a

ording to su
h per
eption. Notethat adopting a timestamp order 
on
urren
y 
ontrolwould not solve the problem: T1 would be aborted andrestarted in its attempt to write to x; its submissiontime does not 
hange after restart, resulting in thesame serialisation [T2; T1℄ but still now1 < now2. Ifbegin time determined the value of now, then after arestart we 
ould have a new value for now1 � now2,thus obtaining temporal serialisation. This, however,goes against the intuition of per
eived instantaneity.The solution is to try to impose temporal serialisabil-ity by means of the 
on
urren
y 
ontrol me
hanism. Itis this option that we investigate next.3.1 Temporal Serialisation TheoryWe now detail a temporal serialisation theory whi
hmay be used to avoid the time moving ba
kwards prob-lem, regardless of the 
hoi
e of how now is determined.We 
all the value of now as seen by a transa
tion thematurity of the transa
tion, and it 
an be seen as hav-ing an integer value. A transa
tion Ti is more maturethan a transa
tion Tj if the value of the 
urrent validtime seen by Ti is stri
tly smaller than that seen byTj ; we represent that by writing nowi < nowj . Our se-rialisation theory will ensure that if nowi < nowj thenTi will always be serialised before Tj .A database is seen as a set of `obje
ts' in the loosesense (not the obje
t oriented sense). The set of pos-sible operations Oi for a transa
tion Ti 
ontains, forevery obje
t x in the database, ri[x℄ (read x) and wi[x℄(write x); it also 
ontains the terminating operations
i (
ommit), ai (abort).Two operations performed by distin
t transa
tions

over the same data x are said to 
on
i
t if one of themis a write operation. A transa
tion Ti is then formalisedas a partial order (Ti;�i) where:� Ti � Oi;� either ai 2 Ti or 
i 2 Ti;� if li is ai or 
i, then for any other operation o 2 Ti,o �i li, i.e. li must be the last operation in thetransa
tion;� if ri[x℄; wi[x℄ 2 Ti, then ri[x℄ �i wi[x℄ or wi[x℄ �iri[x℄.For simpli
ity and to keep notation unambiguous, itis assumed that at most a single operation on some ob-je
t x is performed during a transa
tion, as is usual in
lassi
al serialisation theory [BHG87℄; however, noneof the results in this paper depends on su
h a restri
-tion.If T = fT1; : : : ; Tng is a set of transa
tions, a 
om-plete history H� over T is a partial order (H�;�H�)su
h that:� H� = Sni=1 Ti;� �H� � Sni=1 �i, i.e. the order of H� is an exten-sion of the orders of Ti's;� for every two 
on
i
ting operations p and q in H�,either p �H� q or q �H� p.A history H over T is simply a pre�x of a 
ompletehistory over T . The 
ommitted proje
tion of a historyH , C(H), is obtained by deleting fromH all operationsfrom transa
tions that are not 
ommitted in H .Two histories (H;�H) and (H 0;�H0) are equiva-lent, whi
h is denoted by H � H 0, if:� H = H 0 = Sni=1 Ti, i.e. both H and H 0 are histo-ries over T ;� For every pair of non-aborted transa
tions Ti andTj in T , if pi 
on
i
ts with qj in H then pi �H qji� pi �H0 qj .



A history H is serial if for every Ti; Tj 2 H , all op-erations of Ti appear before all operations of Tj or vi
e-versa. A history H is serialisable if C(H) is equivalentto some serial history. For non-temporal transa
tions,the notion of serialisability is all that is needed. Butfor temporal transa
tions we do not want more maturetransa
tions to be serialised after less mature ones.Therefore we introdu
e the notion of temporally pre-serving histories. A history H is temporally preservingi� for every pi; qj 2 H , if pi �H qj , then nowi � nowj .Finally, we say that a history is temporally serialisable(TSR) i� C(H) is equivalent to some history that isboth serial and temporally preserving.Temporal serialisation allows for transa
tions withthe same maturity to be serialised in any order amongthemselves. But it imposes the restri
tion that moremature transa
tions be serialised before less matureones. For non-temporal transa
tions it is widely knownthat serialisability is equivalent to having an a
y
li
 se-rialisation graph [BHG87℄. A similar property appliesto histories of temporally serialisable transa
tions.Let H be a history over transa
tions T =fT1; : : : ; Tng, and TC � T be the set of 
ommit-ted transa
tions in H . The serialisation graph for H ,SG(H), is a dire
ted graph whose nodes are Ti 2 TCand whose edges are su
h that Ti ! Tj i� there ex-ists 
on
i
ting pi; qj in H su
h that pi �H qj . SG(H)is monotoni
 i� Ti ! Tj implies nowi � nowj . Thetemporal version of the serialisability theorem is thefollowing.Theorem 3.1 (Temporal Serialisability) A his-tory H is temporally serialisable if and only if SG(H)is a
y
li
 and monotoni
.Proof ()) Suppose H is temporally serialisable.Then, by 
lassi
al serialisability theorem, SG(H) isa
y
li
. Suppose Ti ! Tj is an edge of SG(H). Thenthere are 
on
i
ting pi and qj su
h that pi �H qj . Sin
eH is temporally preserving, it follows that nowi �nowj , so SG(H) is monotoni
, as required.(() Suppose SG(H) is now a
y
li
 and mono-toni
, and suppose the nodes of SG(H) are TC =T1; : : : ; Tm. Extend SG(H) into SGH by adding anedge Ti ! Tj if nowi < nowj .Clearly SGH is monotoni
. We 
laim it is alsoa
y
li
. Sin
e SGH is monotoni
, for every Ti ! Tjin SGH we have nowi � nowj . Therefore, for everypath Tp1 ; : : : ; Tpr if Tpi pre
edes Tpj in the path, thennowpi � nowpj . If there is a 
y
le Tp1 ; : : : ; Tpr ; Tp1 inSGH , then there must be an extra edge Tpi ! Tpjin SGH but not in SG(H) su
h that nowpi < nowpj .Sin
e there is also a path from Tpj to Tpi , it followsthat nowpj � nowpi , whi
h is a 
ontradi
tion.

Sin
e SGH is a dire
ted a
y
li
 graph it may betopologi
ally sorted. Let Ts1 ; : : : ; Tsm be a topologi
alsort of SGH , and let Hs be the serial history formedby 
on
atenating the histories of Ts1 ; : : : ; Tsm . Clearlyboth Hs and C(H) are de�ned over TC. Supposethere are Ti; Tj 2 TC su
h that pi 2 Ti 
on
i
ts withqj 2 Tj . If pi �C(H) qj then there is an edge Ti ! Tjin SGH ; therefore, in the topologi
al sort of SGH , Timust appear before Tj so pi �Hs qj . Conversely, ifpi �Hs qj then either pi �C(H) qj or qj �C(H) pibe
ause pi and qj 
on
i
t; but the latter leads to the
ontradi
tion that qj �Hs pi. So C(H) � Hs, andhen
e H is serialisable. Finally, suppose pi and qj 
on-
i
t and pi �H qj . If nowj < nowi then Tj ! Tiis an edge of SGH , Tj appears before Ti and, fromC(H) � Hs, qj �C(H) pi whi
h 
ontradi
ts pi �H qj .So nowi � nowj of all pi �H qj and Hs is temporallypreserving. So H is temporally serialisable, �nishingthe proof. �Example 3.2 A non-monotoni
 graph The situationdepi
ted in Figure 1 leads to a serialisation graphthat is 
orre
t for standard serialisation theory; whi
hwould indi
ate that the only dependen
y is T2 ! T1due to the 
on
i
t between w1[x℄ and r2[x℄.Iw1[x℄; r2[x℄-now1 < now2T1 T2The graph is non-monotoni
 sin
e we 
an add adashed line to indi
ate now1 < now2, and see that thedependen
y T2 ! T1 breaks the monotoni
ity rule. �4 A
hieving Temporal SerialisationHaving de�ned a temporal serialisation theory, wenow aim to de�ne a 
on
urren
y 
ontrol me
hanismwhi
h a
hieves temporal serialisability. We note inpassing that 
onservative 2PL [BHG87℄ 
an a
hieveour aim when using nowB , sin
e the lo
ks and the valueof now are determined simultaneously. However, 
on-servative lo
king is not very eÆ
ient, and this is nota general solution for all types of now. Our approa
hextends the stri
t 2PL 
on
urren
y 
ontrol me
hanismto a
hieve temporal serialisation. 2PL already guaran-tees serialisation [BHG87℄, so we only have to enfor
ethat all temporal histories are temporally preserving.In 2PL a transa
tion Ti 
an perform an operationpi[x℄ only after the 
orresponding lo
k on x, pli[x℄, hasbeen obtained. Two lo
ks pli[x℄ and qlj [x℄ 
on
i
t ifthe 
orresponding operations pi[x℄ and qj [x℄ 
on
i
t. A



lo
k pli[x℄ is obtained if no 
on
i
ting lo
k on x is be-ing held. In stri
t 2PL, lo
ks 
an be released only afterthe transa
tion 
ommits or aborts. Then following twoproto
ols develop upon this basi
 me
hanism.4.1 Maturity OrderingTo a
hieve temporal serialisation we extend stri
t2PL with a me
hanism that enfor
es maturity order-ing , thus obtaining MO-2PL whi
h satis�es the follow-ing rules:1. The stri
t 2PL rules.2. Let Ti and Tj be two transa
tions su
h thatnowi < nowj . If Tj is a non-terminated trans-a
tion that holds or has held a lo
k for an obje
tx and Ti requests a 
on
i
ting lo
k on x, thenTj is aborted and restarted, and Ti is given therequested lo
k.3. A transa
tion may only be 
ommitted after allmore mature transa
tions have been 
ommitted.Note that rule (3) pla
es a restri
tion on the valuethat may be assigned to now in a new transa
tion;that is the value of now in su
h transa
tions 
an notbe more mature than the value of now given to any
ommitted transa
tion.Theorem 4.1 MO-2PL histories are temporally seri-alisable.Proof Let H be an MO-2PL history. Sin
e MO-2PLis simply a restri
tion of the 2PL rules, it follows thatSG(H) is a
y
li
.To show that SG(H) is monotoni
, suppose by 
on-tradi
tion it has an edge Ti ! Tj su
h that nowj <nowi. Sin
e Ti ! Tj there must be 
on
i
ting opera-tions pi[x℄ 2 Ti and qj [x℄ 2 Tj su
h that pi[x℄ �H qj [x℄.Either Ti 
ommits before lo
k qlj [x℄ is requested, or af-terwards. If Ti 
ommitted before qlj [x℄, rule (3) wouldbe broken, sin
e Ti is less mature than Tj . If Ti 
om-mitted after qlj [x℄, rule (2) would have 
aused Ti tobe aborted, removing the 
on
i
t. Thus nowj 6< nowiand SG(H) is monotoni
.It follows by Theorem 3.1 that H is temporally se-rialisable. �Example 4.2 Use of MO-2PL for Figure 1 If we useMO-2PL the following 
hanges o

ur to the normal2PL behaviour. Firstly, when T2 rea
hes its end, it isunable to 
ommit, sin
e the more mature transa
tionT1 is still exe
uting, and thus T2 suspends. Se
ondly,

when T1 attempts to obtain a lo
k for w1[x℄, T2 isaborted sin
e it holds a 
on
i
ting lo
k on x and is lessmature then T1. After T1 
ommits, T2 
an be restarted.�Rule (3) above pla
es a heavy burden on the systemimplementing MO-2PL. If there is a single transa
tionT that lasts for several 
hronons (i.e. the basi
 indi-visible units of time [Jen94℄), then every transa
tionsubmitted in the intermediate 
hronons while T is exe-
uting will have its 
ommitment unne
essarily delayeduntil, at least, the termination of T . So a single longtransa
tion 
an 
ause the delay of several potentiallysmall transa
tions. The number of transa
tions in thesystem 
an in
rease signi�
antly, leading to a seriousde
rease in system throughput known as thrashing .For these reasons, MO-2PL should be used in a sys-tem only if transa
tions are guaranteed to terminatewithin a relatively short period of time, so that at mostone ti
k event (i.e. a single 
hronon in
rement) may o
-
ur during the exe
ution of any transa
tion. The un-ne
essary delays in the 
ommitment of transa
tions
an then be avoided. If this is not the 
ase, then thefollowing MORK-2PL system should be adopted.4.2 Enri
hing Maturity Order with Re-sour
e KnowledgeTo improve on MO-2PL we have to provide the 
on-
urren
y 
ontrol system with a priori knowledge of theresour
es (potential lo
ks) ea
h transa
tion may need.With the existen
e of su
h knowledge we expe
t toeliminate the heavy burden pla
ed by the 
ommit rule(3) of MO-2PL, and hen
e provide a greater degree of
on
urren
y between the transa
tions. The prede
la-ration of resour
es is de�ned as follows.� Prior to start of exe
ution, a transa
tion must de-
lare ea
h of the potential lo
ks it may requireduring exe
ution. Not all prede
lared lo
ks needbe requested during exe
ution. However, if a non-de
lared lo
k is requested, the transa
tion mustbe aborted.By requiring that all transa
tions prede
lare theirpotential lo
ks, we 
reate Maturity Ordering with Re-sour
e Knowledge (MORK-2PL), whi
h 
ontains MO-2PL's rules (1) and (2) plus a new 
ommit rule:30. Ti 
an 
ommit while a more mature Tj is stillrunning only if Tj has not prede
lared a lo
k that
on
i
ts with any of those obtained by Ti; other-wise Ti waits for the termination of Tj .



A small adaptation in the proof of Theorem 4.1shows that:Theorem 4.3 MORK-2PL histories are temporallyserialisable.The previous knowledge of ea
h transa
tion poten-tial resour
es, whi
h is the pri
e paid for the improvedperforman
e of MORK-2PL over MO-2PL, 
an be ob-tained by a spe
ial 
ompiler/
ode analyser.When there are 
on
i
ts between lo
ks obtainedby one transa
tion and potential lo
ks for an exe-
uting more mature transa
tion, MORK-2PL behavesjust like MO-2PL; when su
h 
on
i
t does not exist,MORK-2PL allows a transa
tion to 
ommit mu
h ear-lier than MO-2PL would have allowed. Note that in the
ase that ea
h transa
tion prede
lares potential lo
kson all the database, MORK-2PL degenerates into MO-2PL.5 Con
lusionIn this paper we have presented a solution to thetime moving ba
kwards problem introdu
ed in [FM96℄.This solution was based around the notion of per-
eivedly instantaneous transa
tions whi
h required thepresentation of a temporal serialisation theory. Wethen presented and proved the 
orre
tness of two pro-to
ols for 
on
urren
y 
ontrol of per
eivedly instanta-neous transa
tions in valid-time databases. Apart fromthe obvious 
ontribution to the 
orre
t use of now intemporal databases, we believe that our work has auseful 
ontribution in the analysis of the use of theCURRENT TIMESTAMP variable in SQL92 [ISO92℄.This variable would appear to share many of the prop-erties of the now variable in temporal databases.Work related to our approa
h 
an be foundin [GRL94℄, where the s
heduling of transa
tions wassubmitted to 
hronologi
al 
onstraints involving theorder in whi
h transa
tions had to be exe
uted; these
onstraints were totally external to the transa
tionsand do not refer to the 
urrent-time per
eived bytransa
tions. The serialisation problems en
ounteredin this paper and [GRL94℄ are di�erent in nature; asa result, [GRL94℄ 
ould not simply extend an existings
heduling me
hanism and had to propose a totallydi�erent 
hrono-s
heduler .There are several ways in whi
h our work 
an be
ontinued. First, although we have theoreti
ally shownthat normal 
on
urren
y 
ontrol may fail temporal se-rialisation, we do not know how often su
h a violationo

urs in pra
ti
al temporal database appli
ations nor

how serious its e�e
ts may be. If it happens frequentlyenough, or has dear 
onsequen
es even if o

urringrarely, this would justify the 
ost of altering 
on
ur-ren
y 
ontrol me
hanisms.Se
ond, if temporal serialisation is to be imple-mented, we have to devise ways of doing it eÆ
iently,spe
ially in what 
on
erns the manipulation of trans-a
tion resour
e knowledge. Preferably, we would liketo be able to add temporal serialisation to an existing2PL s
heduler without interfering with its internal be-haviour, i.e. by treating it as a bla
k box. We need alsoto study potential optimisation for transa
tions whi
hdo not a

ess the now value, and thus need not obeytemporal serialisation.Finally, we have to study how per
eivedly instanta-neous transa
tions 
an 
oexist with transa
tions withuser de�ned time, or even with transa
tions supportingother semanti
s of now that temporal database appli-
ations may require.A
knowledgmentsThe authors would like to thank the anonymous re-viewers for their 
arefully reading of this paper, andhelpful suggestions for improvements.Referen
es[BHG87℄ P.A. Bernstein, V. Hadzila
os, andN. Goodman. Con
urren
y Control andRe
overy in Database Systems. Addison-Wesley, 1987.[CDI+94℄ J. Cli�ord, C. Dyreson, T. Isakowitz,C.S. Jensen, and R.T. Snodgrass. Onthe semanti
s of \NOW" in temporaldatabases. Te
hni
al Report R-94-2047,Dept. of Mathemati
s and Computer S
i-en
e, Aalborg University, November 1994.[FM96℄ M. Finger and P.J. M
Brien. On thesemanti
s of `
urrent-time' in temporaldatabases. In XI Brazilian Symposiumon Databases (SBBD'96), pages 324{337,http://www.d
.ufs
ar.br/eventos/sbbd96/,O
tober 1996.[GRL94℄ D. Georgakopoulos, M. Rusinkiewi
z, andW. Litwin. Chronologi
al s
heduling oftransa
tions with temporal dependen
ies.VLDB journal, 3(1):1{28, 1994.



[HR83℄ T. H�arder and A. Reuter. Prin
iplesof transa
tion-oriented database re
overy.Computing Surveys, 15(4), 1983.[ISO92℄ ISO/IEC. Database language SQL (SQL-92 or SQL2). Te
hni
al Report 9075:1992,ISO/IEC, 1992.[Jen94℄ C.S. Jensen et al. A 
onsensus glossaryof temporal database 
on
epts. SIGMODRe
ord, 23(1):52{64, 1994.[Sar90℄ N. Sarda. Algebra and query language for ahistori
al data model. Computer Journal,22(1):11{18, 1990.[Sno95℄ R.T. Snodgrass, editor. The TSQL2 Tem-poral Query Language. Kluwer A
ademi
Publishers, 1995.[TCG+93℄ A.U. Tansel, J. Cli�ord, S. Gadia, S. Jajo-dia, A. Segev, and R. Snodgrass, editors.Temporal Databases: Theory, Design andImplementation. Benjamin/Cummings,1993.[WJL93℄ G. Wiederhold, S. Jajodia, and W. Litwin.Integrating temporal data in a heteroge-nous environment. In Tansel et al.[TCG+93℄, 
hapter 22, pages 563{579.


