
Conurreny Control for Pereivedly Instantaneous Transations inValid-Time DatabasesMarelo Finger� Peter M.BrienDepartamento de Ciênia da Computa�~aoInstituto de Matem�atia e Estat��stiaUniversidade de S~ao Paulom�nger�ime.usp.br Dept. of Computer SieneKing's College LondonStrand, London WC2R 2LSpjm�ds.kl.a.ukAbstratAlthough temporal databases have reeived onsider-able attention as a topi for researh, little work inthe area has paid attention to the onurreny on-trol mehanisms that might be employed in tempo-ral databases. This paper desribes how the notion ofthe urrent time | also alled `now' | in valid-timedatabases an ause standard serialisation theory togive what are at least unintuitive results, if not atuallyinorret results. The paper then desribes two modi�-ations to standard serialisation theory whih orretthe behaviour to give what we term pereivably instan-taneous transations: transations where serialising T1and T2 as [T1; T2℄ always implies that the urrent timeseen by T1 is less than or equal to the urrent timeseen by T2.1 IntrodutionQuery languages for valid-time temporal databasenormally ontain a notion of `urrent-time' [WJL93,Sar90, TCG+93, Sno95℄, usually represented as thevalue of a speial variable now. While it is agreed thatthe value of now should remain onstant during a valid-time database operation suh as querying and updat-ing [CDI+94, Sno95℄, no suh agreement exists withrespet to the behaviour of now during a valid-timetransation.The problem is that now annot be onsidered asregular data. Otherwise, a long temporal transationould read-lok it, preventing the system lok fromhanging (supposing, for example, that there is a tiktransation that models the periodial updates of now).It is highly undesirable that the duration of transa-�Partially supported by Brazilian CNPq, researh grant PQ300597/95-9.

tions inuenes the way other transations pereive thelok.So now has to be treated as a speial value in valid-time temporal databases that demands speial treat-ment. Several distint possible semantis for now invalid-time transations have been studied in [FM96℄;the basi hoies and their assoiated problems are pre-sented in Setion 2. The basi onlusion drawn in[FM96℄ is that there is no `perfet' semantis for nowin valid-time databases. However, we laim that per-eivedly instantaneous transations provide the mostintuitive semantis for now. In this kind of transation,now remains onstant and its value is determined bythe transations' submission time.In this paper, we deal with the problem that per-eivedly instantaneous transations bring to valid-timedatabases, namely that their onurrent exeution an-not always be serialised in the standard way. So, afterreviewing the possible semantis for now in valid-timedatabases, Setion 2 explains our hoie of pereivedinstantaneity. Setion 3 shows that this kind of trans-ation does not respet normal serialisation theory;it then formulates a temporal serialisation theory andharaterises temporally serialisable exeutions (The-orem 3.1). Setion 4 proposes two extensions of tradi-tional two-phase loking that guarantee temporal se-rialisation, namely maturity ordering (MO-2PL) andmaturity ordering with resoure knowledge (MORK-2PL); temporal serialisation theory is used to provetheir orretness.2 An Overview of the Semantis of`Current-Time' in Valid-Time Trans-ationsThere are several possible ways of determining thevalue of the variable now. Eah possible hoie for the1

semantis of now will be named by subsripting the`pure' variable now with an appropriate letter.The �rst semantial hoie for temporal transa-tion's urrent-time relates to whether the value of nowshould be user-de�ned or run-time determined. If it isuser de�ned (nowU), then prior to a transation sub-mission the user has to provide a value for nowU ; inthis way, the transation an be exeuted as if nowUwere any time in history; the value of nowU does nothange during exeution, unless there is an expliit op-eration to do that in the transation body. We do notrule out the existene of transations with user-de�nedvalues for now, but we also want to allow for the pos-sibility to set the value of now automatially.The intuitive semantis for run-time determinednowR is `at the time of transation exeution', buthere too there are several hoies. The ruial one iswhether nowR hanges or not. If it is allowed to hangeby mirroring the value of a real-time system lok,then it has been shown that the result of a transationan be a�eted by the number of lok tiks our-ring during a transation [FM96℄. This ould be inter-preted as a violation of the isolation priniple of theACID transation properties [HR83℄.1 Perhaps moreseriously, allowing the value of now to hange during atransation exeution puts a heavy burden on transa-tion programmers, who in that ase have to ope withthe possibility of lok hanges between eah pair ofnow-dependent data aesses. Those problems tell usthat time-varying nowR should be onsidered only invery partiular ases and should not be the defaultsemantial hoie for now in temporal databases.So, if the value of now is to be made onstant andrun-time dependent, what determines its value? Threetransation events an be the determiner:� ommit time (nowC): this value is not known dur-ing transation exeution. Although updates anbe deferred until ommit time is known, it is notpossible to exeute queries that depend on the un-known value of now. It is therefore ruled out.� submission time (nowS): this is the time when thetransation is submitted.� begin time (nowB): due to system load, the a-tual start of exeution is delayed for an arbitraryperiod after submission.1In fat, the isolation priniple requires the exeution oftransations to be independent from eah other; here we are as-suming a stronger isolation, namely that of external events suhas lok tiks; that is why we arefully stated that this ould beseen as a violation, instead of stating it ertainly is one.

We show in Setion 3 that both begin time andsubmission time may fail to serialise under two-phaseloking if we impose that the order of now should bekept by serialisation.To summarise, as onluded in [FM96℄, there areno semantis for the automati determination of nowthat are tehnially simple to ahieve and intuitive.While it should always be possible for the user to setthe value of now, we propose that the most intuitivesemantis for now is a onstant one, related in someway to the time of exeution of the transation: per-eived instantaneity is akin to transation atomiityand frees a programmer from imagining what happensif time hanges during exeution; furthermore its valueshould be determined by submission time: it approxi-mates best the semantis of now as `at this very mo-ment' from the point of view of a user, while begin timeis unknown and an only be interpreted as `as soon asit is possible'. The former is what we all pereivedlyinstantaneous transation in a valid-time database.The rest of this paper deals with the onurrenyontrol problems that an arise from our hoie, andhow to solve them. Setion 3 formalises our notionof pereivedly instantaneous transation as an addi-tional restrition on serialisation graphs, and Setion 4presents two onurreny ontrol mehanisms whihmeet this restrition.3 Temporal SerialisationFigure 1 shows two transations, T1 and T2, runningonurrently aording to the two-phase loking (2PL)onurreny ontrol mehanism.Transation T1 was submitted and immediatelystarted; the reading of the system lok gave t, sonow1 = t. Transation T2, on the other hand, per-eives now2 = t + 1. All read and write operationsin T1 and T2 refer to the pereived urrent time (now).T1 starts by reading the value of y, and T2 starts byreading the values of x; soon after that T1 wants towrite to x but is bloked by the loking system un-til after T2 ommits. If we want a serialisation of thatonurrent exeution, then [T1; T2℄ is ruled out by theloking mehanism, so we are left with [T2; T1℄. But iftransations were exeuted serially in this order, thedetermination using submission time of the pereivedvalue of nowS would imply now2 � now1, ontradit-ing the senario in Figure 1 where now1 < now2. Notethat this `time going bakwards' phenomenon, ausedby the hoie of submission time determining nowS ,an also our if instead we use nowB (determined bybegin time). For example, nowB = nowS when the de-

-t tik t+ 1
now2 = t+ 1now1 = tT2T1 r2[x℄ w2[x℄r1[y℄ w1[x℄bloked-

Figure 1: Violation of temporal serialisationlay between transation submission and the beginningof its exeution is null. Time moving bakwards evenours with nowU , but then it would be argued thatthis would be expeted, sine the progression of valuesof nowU would be a matter of user hoie.It follows that normal serialisation does not guar-antee a `now-ordering' whih we all temporal serial-isation. This may ause problems beause T1 is per-eived as happening before T2, so the past data readby T2 is inorret aording to suh pereption. Notethat adopting a timestamp order onurreny ontrolwould not solve the problem: T1 would be aborted andrestarted in its attempt to write to x; its submissiontime does not hange after restart, resulting in thesame serialisation [T2; T1℄ but still now1 < now2. Ifbegin time determined the value of now, then after arestart we ould have a new value for now1 � now2,thus obtaining temporal serialisation. This, however,goes against the intuition of pereived instantaneity.The solution is to try to impose temporal serialisabil-ity by means of the onurreny ontrol mehanism. Itis this option that we investigate next.3.1 Temporal Serialisation TheoryWe now detail a temporal serialisation theory whihmay be used to avoid the time moving bakwards prob-lem, regardless of the hoie of how now is determined.We all the value of now as seen by a transation thematurity of the transation, and it an be seen as hav-ing an integer value. A transation Ti is more maturethan a transation Tj if the value of the urrent validtime seen by Ti is stritly smaller than that seen byTj ; we represent that by writing nowi < nowj . Our se-rialisation theory will ensure that if nowi < nowj thenTi will always be serialised before Tj .A database is seen as a set of `objets' in the loosesense (not the objet oriented sense). The set of pos-sible operations Oi for a transation Ti ontains, forevery objet x in the database, ri[x℄ (read x) and wi[x℄(write x); it also ontains the terminating operationsi (ommit), ai (abort).Two operations performed by distint transations

over the same data x are said to onit if one of themis a write operation. A transation Ti is then formalisedas a partial order (Ti;�i) where:� Ti � Oi;� either ai 2 Ti or i 2 Ti;� if li is ai or i, then for any other operation o 2 Ti,o �i li, i.e. li must be the last operation in thetransation;� if ri[x℄; wi[x℄ 2 Ti, then ri[x℄ �i wi[x℄ or wi[x℄ �iri[x℄.For simpliity and to keep notation unambiguous, itis assumed that at most a single operation on some ob-jet x is performed during a transation, as is usual inlassial serialisation theory [BHG87℄; however, noneof the results in this paper depends on suh a restri-tion.If T = fT1; : : : ; Tng is a set of transations, a om-plete history H� over T is a partial order (H�;�H�)suh that:� H� = Sni=1 Ti;� �H� � Sni=1 �i, i.e. the order of H� is an exten-sion of the orders of Ti's;� for every two oniting operations p and q in H�,either p �H� q or q �H� p.A history H over T is simply a pre�x of a ompletehistory over T . The ommitted projetion of a historyH , C(H), is obtained by deleting fromH all operationsfrom transations that are not ommitted in H .Two histories (H;�H) and (H 0;�H0) are equiva-lent, whih is denoted by H � H 0, if:� H = H 0 = Sni=1 Ti, i.e. both H and H 0 are histo-ries over T ;� For every pair of non-aborted transations Ti andTj in T , if pi onits with qj in H then pi �H qji� pi �H0 qj .

A history H is serial if for every Ti; Tj 2 H , all op-erations of Ti appear before all operations of Tj or vie-versa. A history H is serialisable if C(H) is equivalentto some serial history. For non-temporal transations,the notion of serialisability is all that is needed. Butfor temporal transations we do not want more maturetransations to be serialised after less mature ones.Therefore we introdue the notion of temporally pre-serving histories. A history H is temporally preservingi� for every pi; qj 2 H , if pi �H qj , then nowi � nowj .Finally, we say that a history is temporally serialisable(TSR) i� C(H) is equivalent to some history that isboth serial and temporally preserving.Temporal serialisation allows for transations withthe same maturity to be serialised in any order amongthemselves. But it imposes the restrition that moremature transations be serialised before less matureones. For non-temporal transations it is widely knownthat serialisability is equivalent to having an ayli se-rialisation graph [BHG87℄. A similar property appliesto histories of temporally serialisable transations.Let H be a history over transations T =fT1; : : : ; Tng, and TC � T be the set of ommit-ted transations in H . The serialisation graph for H ,SG(H), is a direted graph whose nodes are Ti 2 TCand whose edges are suh that Ti ! Tj i� there ex-ists oniting pi; qj in H suh that pi �H qj . SG(H)is monotoni i� Ti ! Tj implies nowi � nowj . Thetemporal version of the serialisability theorem is thefollowing.Theorem 3.1 (Temporal Serialisability) A his-tory H is temporally serialisable if and only if SG(H)is ayli and monotoni.Proof ()) Suppose H is temporally serialisable.Then, by lassial serialisability theorem, SG(H) isayli. Suppose Ti ! Tj is an edge of SG(H). Thenthere are oniting pi and qj suh that pi �H qj . SineH is temporally preserving, it follows that nowi �nowj , so SG(H) is monotoni, as required.(() Suppose SG(H) is now ayli and mono-toni, and suppose the nodes of SG(H) are TC =T1; : : : ; Tm. Extend SG(H) into SGH by adding anedge Ti ! Tj if nowi < nowj .Clearly SGH is monotoni. We laim it is alsoayli. Sine SGH is monotoni, for every Ti ! Tjin SGH we have nowi � nowj . Therefore, for everypath Tp1 ; : : : ; Tpr if Tpi preedes Tpj in the path, thennowpi � nowpj . If there is a yle Tp1 ; : : : ; Tpr ; Tp1 inSGH , then there must be an extra edge Tpi ! Tpjin SGH but not in SG(H) suh that nowpi < nowpj .Sine there is also a path from Tpj to Tpi , it followsthat nowpj � nowpi , whih is a ontradition.

Sine SGH is a direted ayli graph it may betopologially sorted. Let Ts1 ; : : : ; Tsm be a topologialsort of SGH , and let Hs be the serial history formedby onatenating the histories of Ts1 ; : : : ; Tsm . Clearlyboth Hs and C(H) are de�ned over TC. Supposethere are Ti; Tj 2 TC suh that pi 2 Ti onits withqj 2 Tj . If pi �C(H) qj then there is an edge Ti ! Tjin SGH ; therefore, in the topologial sort of SGH , Timust appear before Tj so pi �Hs qj . Conversely, ifpi �Hs qj then either pi �C(H) qj or qj �C(H) pibeause pi and qj onit; but the latter leads to theontradition that qj �Hs pi. So C(H) � Hs, andhene H is serialisable. Finally, suppose pi and qj on-it and pi �H qj . If nowj < nowi then Tj ! Tiis an edge of SGH , Tj appears before Ti and, fromC(H) � Hs, qj �C(H) pi whih ontradits pi �H qj .So nowi � nowj of all pi �H qj and Hs is temporallypreserving. So H is temporally serialisable, �nishingthe proof. �Example 3.2 A non-monotoni graph The situationdepited in Figure 1 leads to a serialisation graphthat is orret for standard serialisation theory; whihwould indiate that the only dependeny is T2 ! T1due to the onit between w1[x℄ and r2[x℄.Iw1[x℄; r2[x℄-now1 < now2T1 T2The graph is non-monotoni sine we an add adashed line to indiate now1 < now2, and see that thedependeny T2 ! T1 breaks the monotoniity rule. �4 Ahieving Temporal SerialisationHaving de�ned a temporal serialisation theory, wenow aim to de�ne a onurreny ontrol mehanismwhih ahieves temporal serialisability. We note inpassing that onservative 2PL [BHG87℄ an ahieveour aim when using nowB , sine the loks and the valueof now are determined simultaneously. However, on-servative loking is not very eÆient, and this is nota general solution for all types of now. Our approahextends the strit 2PL onurreny ontrol mehanismto ahieve temporal serialisation. 2PL already guaran-tees serialisation [BHG87℄, so we only have to enforethat all temporal histories are temporally preserving.In 2PL a transation Ti an perform an operationpi[x℄ only after the orresponding lok on x, pli[x℄, hasbeen obtained. Two loks pli[x℄ and qlj [x℄ onit ifthe orresponding operations pi[x℄ and qj [x℄ onit. A

lok pli[x℄ is obtained if no oniting lok on x is be-ing held. In strit 2PL, loks an be released only afterthe transation ommits or aborts. Then following twoprotools develop upon this basi mehanism.4.1 Maturity OrderingTo ahieve temporal serialisation we extend strit2PL with a mehanism that enfores maturity order-ing , thus obtaining MO-2PL whih satis�es the follow-ing rules:1. The strit 2PL rules.2. Let Ti and Tj be two transations suh thatnowi < nowj . If Tj is a non-terminated trans-ation that holds or has held a lok for an objetx and Ti requests a oniting lok on x, thenTj is aborted and restarted, and Ti is given therequested lok.3. A transation may only be ommitted after allmore mature transations have been ommitted.Note that rule (3) plaes a restrition on the valuethat may be assigned to now in a new transation;that is the value of now in suh transations an notbe more mature than the value of now given to anyommitted transation.Theorem 4.1 MO-2PL histories are temporally seri-alisable.Proof Let H be an MO-2PL history. Sine MO-2PLis simply a restrition of the 2PL rules, it follows thatSG(H) is ayli.To show that SG(H) is monotoni, suppose by on-tradition it has an edge Ti ! Tj suh that nowj <nowi. Sine Ti ! Tj there must be oniting opera-tions pi[x℄ 2 Ti and qj [x℄ 2 Tj suh that pi[x℄ �H qj [x℄.Either Ti ommits before lok qlj [x℄ is requested, or af-terwards. If Ti ommitted before qlj [x℄, rule (3) wouldbe broken, sine Ti is less mature than Tj . If Ti om-mitted after qlj [x℄, rule (2) would have aused Ti tobe aborted, removing the onit. Thus nowj 6< nowiand SG(H) is monotoni.It follows by Theorem 3.1 that H is temporally se-rialisable. �Example 4.2 Use of MO-2PL for Figure 1 If we useMO-2PL the following hanges our to the normal2PL behaviour. Firstly, when T2 reahes its end, it isunable to ommit, sine the more mature transationT1 is still exeuting, and thus T2 suspends. Seondly,

when T1 attempts to obtain a lok for w1[x℄, T2 isaborted sine it holds a oniting lok on x and is lessmature then T1. After T1 ommits, T2 an be restarted.�Rule (3) above plaes a heavy burden on the systemimplementing MO-2PL. If there is a single transationT that lasts for several hronons (i.e. the basi indi-visible units of time [Jen94℄), then every transationsubmitted in the intermediate hronons while T is exe-uting will have its ommitment unneessarily delayeduntil, at least, the termination of T . So a single longtransation an ause the delay of several potentiallysmall transations. The number of transations in thesystem an inrease signi�antly, leading to a seriousderease in system throughput known as thrashing .For these reasons, MO-2PL should be used in a sys-tem only if transations are guaranteed to terminatewithin a relatively short period of time, so that at mostone tik event (i.e. a single hronon inrement) may o-ur during the exeution of any transation. The un-neessary delays in the ommitment of transationsan then be avoided. If this is not the ase, then thefollowing MORK-2PL system should be adopted.4.2 Enrihing Maturity Order with Re-soure KnowledgeTo improve on MO-2PL we have to provide the on-urreny ontrol system with a priori knowledge of theresoures (potential loks) eah transation may need.With the existene of suh knowledge we expet toeliminate the heavy burden plaed by the ommit rule(3) of MO-2PL, and hene provide a greater degree ofonurreny between the transations. The predela-ration of resoures is de�ned as follows.� Prior to start of exeution, a transation must de-lare eah of the potential loks it may requireduring exeution. Not all predelared loks needbe requested during exeution. However, if a non-delared lok is requested, the transation mustbe aborted.By requiring that all transations predelare theirpotential loks, we reate Maturity Ordering with Re-soure Knowledge (MORK-2PL), whih ontains MO-2PL's rules (1) and (2) plus a new ommit rule:30. Ti an ommit while a more mature Tj is stillrunning only if Tj has not predelared a lok thatonits with any of those obtained by Ti; other-wise Ti waits for the termination of Tj .

A small adaptation in the proof of Theorem 4.1shows that:Theorem 4.3 MORK-2PL histories are temporallyserialisable.The previous knowledge of eah transation poten-tial resoures, whih is the prie paid for the improvedperformane of MORK-2PL over MO-2PL, an be ob-tained by a speial ompiler/ode analyser.When there are onits between loks obtainedby one transation and potential loks for an exe-uting more mature transation, MORK-2PL behavesjust like MO-2PL; when suh onit does not exist,MORK-2PL allows a transation to ommit muh ear-lier than MO-2PL would have allowed. Note that in thease that eah transation predelares potential lokson all the database, MORK-2PL degenerates into MO-2PL.5 ConlusionIn this paper we have presented a solution to thetime moving bakwards problem introdued in [FM96℄.This solution was based around the notion of per-eivedly instantaneous transations whih required thepresentation of a temporal serialisation theory. Wethen presented and proved the orretness of two pro-tools for onurreny ontrol of pereivedly instanta-neous transations in valid-time databases. Apart fromthe obvious ontribution to the orret use of now intemporal databases, we believe that our work has auseful ontribution in the analysis of the use of theCURRENT TIMESTAMP variable in SQL92 [ISO92℄.This variable would appear to share many of the prop-erties of the now variable in temporal databases.Work related to our approah an be foundin [GRL94℄, where the sheduling of transations wassubmitted to hronologial onstraints involving theorder in whih transations had to be exeuted; theseonstraints were totally external to the transationsand do not refer to the urrent-time pereived bytransations. The serialisation problems enounteredin this paper and [GRL94℄ are di�erent in nature; asa result, [GRL94℄ ould not simply extend an existingsheduling mehanism and had to propose a totallydi�erent hrono-sheduler .There are several ways in whih our work an beontinued. First, although we have theoretially shownthat normal onurreny ontrol may fail temporal se-rialisation, we do not know how often suh a violationours in pratial temporal database appliations nor

how serious its e�ets may be. If it happens frequentlyenough, or has dear onsequenes even if ourringrarely, this would justify the ost of altering onur-reny ontrol mehanisms.Seond, if temporal serialisation is to be imple-mented, we have to devise ways of doing it eÆiently,speially in what onerns the manipulation of trans-ation resoure knowledge. Preferably, we would liketo be able to add temporal serialisation to an existing2PL sheduler without interfering with its internal be-haviour, i.e. by treating it as a blak box. We need alsoto study potential optimisation for transations whihdo not aess the now value, and thus need not obeytemporal serialisation.Finally, we have to study how pereivedly instanta-neous transations an oexist with transations withuser de�ned time, or even with transations supportingother semantis of now that temporal database appli-ations may require.AknowledgmentsThe authors would like to thank the anonymous re-viewers for their arefully reading of this paper, andhelpful suggestions for improvements.Referenes[BHG87℄ P.A. Bernstein, V. Hadzilaos, andN. Goodman. Conurreny Control andReovery in Database Systems. Addison-Wesley, 1987.[CDI+94℄ J. Cli�ord, C. Dyreson, T. Isakowitz,C.S. Jensen, and R.T. Snodgrass. Onthe semantis of \NOW" in temporaldatabases. Tehnial Report R-94-2047,Dept. of Mathematis and Computer Si-ene, Aalborg University, November 1994.[FM96℄ M. Finger and P.J. MBrien. On thesemantis of `urrent-time' in temporaldatabases. In XI Brazilian Symposiumon Databases (SBBD'96), pages 324{337,http://www.d.ufsar.br/eventos/sbbd96/,Otober 1996.[GRL94℄ D. Georgakopoulos, M. Rusinkiewiz, andW. Litwin. Chronologial sheduling oftransations with temporal dependenies.VLDB journal, 3(1):1{28, 1994.

[HR83℄ T. H�arder and A. Reuter. Priniplesof transation-oriented database reovery.Computing Surveys, 15(4), 1983.[ISO92℄ ISO/IEC. Database language SQL (SQL-92 or SQL2). Tehnial Report 9075:1992,ISO/IEC, 1992.[Jen94℄ C.S. Jensen et al. A onsensus glossaryof temporal database onepts. SIGMODReord, 23(1):52{64, 1994.[Sar90℄ N. Sarda. Algebra and query language for ahistorial data model. Computer Journal,22(1):11{18, 1990.[Sno95℄ R.T. Snodgrass, editor. The TSQL2 Tem-poral Query Language. Kluwer AademiPublishers, 1995.[TCG+93℄ A.U. Tansel, J. Cli�ord, S. Gadia, S. Jajo-dia, A. Segev, and R. Snodgrass, editors.Temporal Databases: Theory, Design andImplementation. Benjamin/Cummings,1993.[WJL93℄ G. Wiederhold, S. Jajodia, and W. Litwin.Integrating temporal data in a heteroge-nous environment. In Tansel et al.[TCG+93℄, hapter 22, pages 563{579.

