
On the Semantics of `Current-Time' In Temporal DatabasesMarcelo FingerDepartamento de Ciência da Computa�c~aoInstituto de Matem�atica e Estat��sticaUniversidade de S~ao PauloTel: +55 11 818 6135Fax: +55 11 818 6134email: m�nger@ime.usp.br
Peter Mc.BrienDept. of Computer ScienceKing's College LondonStrandLondon WC2R 2LSTel: +44 171 873 2469Fax: +44 171 873 2851email: pjm@dcs.kcl.ac.ukAbstractThe notion of the current-time is frequently found in work on temporal databases, and is usuallyaccessed via a special interpreted variable called now. Whilst this variable has intuitive and simplesemantics with respect to the processing of queries in temporal databases, the semantics of the variableinside transactions has not been studied. With the growing maturity of temporal databases, and theneed to construct production quality temporal DBMS to demonstrate the usefulness of the technology,it is necessary that a complete study be made of transaction processing in temporal databases. Thiswork aims to meet this objective by (1) detailing the alternatives that exist in the evaluation of now,(2) studying the problems of using now in current transaction processing systems, and (3) providea formal framework for the processing of temporal transactions, and give rules in the framework foravoiding problems in evaluating now.Keywords: Temporal databases, valid-time, transaction-time, transaction processing.1 IntroductionThe concept of a special interpreted variable called now is frequently found in work on temporal databases[WJL93, CDS+93, Sar90, Tan93], and models the intuitive notion of the current-time of a database oper-ation. Despite its widespread use, no detailed consideration is ever given as to the exact method by whichthe value of now is evaluated, and what impact using now has on the transaction and concurrency controlmechanisms used in a DBMS. The paper makes three contributions: (1) to give a detailed analysis of thechoices available in the evaluation of now, (2) to demonstrate that the evaluation of now using standardtransaction management rules may sometimes result in concurrent transaction executions which do notserialise, and (3) to de�ne a formal framework with transaction management rules for the processing oftemporal transactions, which allows the usage of now in serialisable transactions.The paper is organised as follows. Section 2 de�nes the main concepts the paper builds upon: themain features of temporal databases, and the temporal properties of transactions. Section 3 discusses hownow may be evaluated in a temporal database, and demonstrates the situations where non-serialisabletransactions result. Section 4 presents a formal framework to analyse the semantics of temporal transactionexecution; several distinct semantics are discussed, showing how the various possibilities for transactioncontrol and the evaluation of now presented in Section 3 may be realised.2 PreliminariesWe �rst present the important concepts of temporal databases as they impact on the transaction processingcontrol to be used, and give a transaction processing framework tailored for temporal databases.

1

2.1 Time in databasesMany applications involving data with a temporal component may be represented in a framework [JCG+94]which involves two temporal dimensions, namely the valid-time which reects the periods of validity ofdata in the universe of discourse (UoD), and transaction-time which reects the periods the data holdsin the database. These two notions are orthogonal, so each one separately, or together, may be stored ina temporal database. A database that stores only the former is called a valid-time database, and one thatstores only the latter is called a transaction-time database. A database that stores both it is a bitemporaldatabase.Databases that model only the temporal behaviour of the UoD might only incorporate valid-timeinformation. However, [Fin94] notes that for the study of the dynamics of valid-time databases, the notionof real-time of execution (and hence the transaction-time associated to facts in the database) must alwaysbe taken into consideration. That is due to transaction-time being associated to updates by virtue of theserialisation ordering of transaction.In our analysis, we will assume that the valid-time stored in a temporal database is a discretelinear ow of time, which is in accordance with the majority of the temporal databases in the litera-ture [MS91, TCG+93]. The indivisible discrete unit of time | the minimal interval | of a time dimensionis called a chronon [JCG+94]. In [CDS+93] a clock tick is the transaction-time corresponding to the bor-der between two transaction-time chronons. Since transaction-time is determined by a measurement ofreal-time, this chronon length is also the e�ective granularity of real-time. For simplicity we will assumethat that transaction-time and valid-time chronons are identical.It is natural and common to have the notion of the `current-time' [WJL93, CDS+93, Sar90, Tan93] intemporal databases, which is usually realised as a special variable called now. This notion of now appearsto be similar to the moving time variable of [CW83]. However, in all the cited literature, the exact methodby which the value of now is calculated is not stated, and this will be the subject in Section 3. We denotethe use of the now variable as either intentional if it appears in the query statement, or extensional if itis embedded in the data. Temporal databases have been proposed which support both usages.2.2 Properties of transactionsA fundamental property of transactions in DBMS is that they should obey the ACID properties [HR83].An important part of maintaining the ACID properties in concurrent transaction execution is ensuringthat the execution is serialisable [BHG87, Ull88]; which requires that when various database operationsof di�erent transactions are interleaved, the end result is the same as if the two transactions had beenexecuted in some serial order.Temporal databases bring an additionally requirement on this serialisation. In the de�nition oftransaction-time in [JCG+94] it is stated that the serialisation order of transactions should respect thetransaction-time associated to the objects e�ected by the transaction. We will study transactions in atemporal framework where they are caused by events which can be:� external : a user or an application program external to the database is submitting the transaction tothe database.� internal : generated by the processing of another transaction in the database. In general, internalevents may be generated either by a transaction directly issuing a command to run a transaction,such as split or spawn [CR91], or indirectly by a transaction modifying a table, such at Sybase tabletriggers [MD92]. We reserve the term cascaded transaction to refer to those internally triggeredtransactions caused by a transaction that has yet to commit.� temporal : the clock ticks of the internal system clock.Whatever event causes a transaction, it may be in one of four states: submitted , running , committed ,and aborted . These states are associated with certain real-times in the transactions life history:� submission-time: the real-time associated to the (internal, temporal or external) event triggering thetransaction.� begin-time: the real-time at which the transaction becomes one of the running transactions in thesystem | in e�ect the time of the �rst entry in the log �le.

EMPLOYEENAME ID SALARY RANK VALID-TIME'Marcelo' 100 2000 'Researcher' [1/1/1994,now]'Tony' 101 2300 'Researcher' [1/1/1994,6/8/1994]'Peter' 102 1800 'Researcher' [1/1/1989,4/4/1994]'Peter' 102 2000 'Lecturer' [5/4/1994,now]Table 1: Contents of the EMPLOYEE relation� commit-time: the real-time representing the end of a transaction's execution, when the commit actionis recorded in the transaction log [BHG87].� abort-time: the real-time representing when the abort of the transaction was recorded in the trans-action log.� lifespan: the interval between begin-time and commit-time.The properties described above are general, and no particular assumption has been made about thedata model, though our presentation will be given in terms of the relational model. Note that the real-timeassociated to the commit-time of the transaction is by de�nition [JCG+94] the transaction-time of thetransaction, and methods to implement this de�nition in 2PL are presented in [LS93]. Indeed, we mayregard the real-time axis as also being the transaction-time axis, since transaction-times are simply thereal-times when a certain type of event occurs.3 The Evaluation of now in Temporal TransactionsThis section describes the alternatives that exists in evaluating the value of now in transactions, giventhat we follow the temporal framework described in Section 2.1.3.1 Responsibility for Deciding the Current-TimeWhen performing an operation in a temporal database, we classify three methods of determining the valueof now:� nowt denotes a value determined by the real-time in which some event occurs. The determining eventis normally transaction related, eg its submission, beginning or commitment.� nowu denotes a user or application outside the DBMS supplying the value of use.� nowr denotes that the value of the real-time clock when then operation is being performed is used.It should be noted that the intentional usage of nowu is equivalent to simply embedding some explicittime in the query. Both nowt and nowu give a constant value of now for each transaction, whilst nowrallows the value to vary within a transaction.3.2 User determined values of nowIn Table 1 in we show a typical usage of now where we store records of employees and their monthly salarypayments in EMPLOYEE, and represent the fact that Marcelo and Peter currently earn $2,000.Our intention is to indicate by the use of now in the schema extension the semantics that a personssalary remains �xed until such time that a speci�c alteration is made. If we use nowu, we allow the userquery to determine the period that a persons salary is at a certain level. Clearly for the extensional useof now, we will not want to use the nowu de�nition.

t1t2Tr tick
26/10/1994 27/10/1994 valid time

timereal pay(100,$10)pay(100,$10) pay(100,$50)
(a) now varies

t2t1 27/10/199426/10/1994 valid time
pay(100,$50)pay(100,$10)Tr timereal

(b) now constantFigure 1: Varying or constant now3.3 Real-time determined values of nowIt is generally regarded that now should be constant for the period of a database operations [CDS+93], butsince previous work has not considered in any detail the use of the variable in transactions, it is unclearwhether now should be constant for the duration of a transaction. Using the real-time de�nition nowrwould lead to the potential for the value of now to vary in transactions containing multiple operations.The consequences of allowing now to change during a transaction are illustrated by the followingexample, where the interplay between the real-time and the valid-time of data is shown as a graph inFigure 1, and it is assumed that the chronon is one day. Suppose there is a transaction Tr that reads thevalue associated to payment p1 at the now, multiplies it by 5, and updates it at the now again. Figure 1(b)illustrates the desired behaviour of such a transaction, with current-time 26/10/1994, starting at time t1and committing at t2.If a clock tick occurs during Tr, t1 < ttick < t2, and if the transaction is allowed to `see' such change,a di�erent and undesirable result is obtained, as illustrated in Figure 1(a). This happens because Tr readsthe value of the fact at one current-time when it starts execution during 26/10/1994, and updates the factat is end, when execution is during 27/10/1994. Choosing a larger granularity for valid-time increasesthe likelihood of a transaction being completely executed within one chronon, but there may still betransactions which cross the border from one chronon to the next.In order to avoid the interference of clock ticks with transaction processing, now must be seen asa constant for a given transaction, and thus nowr should not be used. Note that this rules out the useof the SQL92 CURRENT TIMESTAMP variable [ISO92] as an implementation of now, since this varieswith the value of the real-time clock within a transaction. This is not a surprising result, since CUR-RENT TIMESTAMP was not designed to be used for the implementation of now in temporal databases.For the remainder of this paper we will assume that we choose to make now constant for any partic-ular transaction. Note however, this does not prevent distinct concurrent transactions having distinctcurrent-times.3.4 Event time determined values of nowThe previous discussion has revealed that there are undesirable aspects to the semantics of both nowu andnowr, and so we now focus on the remaining option of nowt as the preferred choice. From the frameworkpresented in Section 2.2, our choice is between submit, begin, and commit-times to determine the valueof now. If we are using strict two-phase locking (2PL) concurrency control mechanism, we can not usecommit-time to decide the value of now within the transaction, since its value would become known only

t sub begt't'sub begt
T4 T326/10/1994 27/10/1994 28/10/1994

real time
Figure 2: now moving backwardsafter the transaction commits [LS93].If begin-time is adopted, the value of now is not known at submission-time; in fact, since the delaybetween submission and execution is arbitrary, the value of now used in the processing of a transaction isan arbitrary value from the point of view of a user/program submitting a transaction. If submission-timeis chosen, delays in entering the running state will not a�ect the current-time seen by a transaction. Eitherchoice may lead to the e�ect described next.3.5 Current-Time Moving BackwardsIf submission-time determines the current-time seen by transactions, the value of now seen by a transactionabout to begin may be less than that seen by a committed one. A serialisation of their execution wouldshow the current-time `moving backwards'. This situation is illustrated in Figure 2. Transaction T4 hasnow=26/10/1994, is submitted after transaction T3 which has now=25/10/1994, but T4 commits beforeT3 even begins its execution, hence they can only be serialised as [T4, T3].Choosing begin-time to decide now might seem to solve this problem, but in fact only reduces it, sincethe serialisation of transactions is not dependent on their begin-time, unless we were to use preemptivelocking with its prohibitive burden to transaction throughput.Having made this observation, there are two courses of action to take:� View that now sometimes moving backwards is not a problem at all. Since valid-time databaseupdates are allowed to alter present, past or future dates (w.r.t. the current real-time), the value ofnow not progressing in step with the serialisation order may not seem very important. Also, sometransactions make no use of now, and process information with respect to a time built into the DMLstatement. Such a time can be in any order with the current transaction-time, and the system mustbe prepared to handle them anyway, so there is no problem in allowing a sequence of transactionswhere the order of current-times seen is not strict.� View nowmoving backwards as breaking the serialisation rules. From the de�nition in [JCG+94] thattransaction-times of data obey the serialisation order of transactions, the fact that now is derivedfrom the same real-time used to determine transaction-time should forbid the moving backwardse�ect. We should thus take some course of action to make submission or begin-time determine theserialisation order of transactions. Preemptive locking [BHG87, Ull88] would do this, we detail inSection 4 slightly less prescriptive strategies.3.6 Serialisation of TransactionsIn this sub-section we see that using begin-time to determine now leads to some concurrent transactionexecutions which are permitted by normal 2PL concurrency control rules [BHG87, Ull88], but which failto produce results which are not serialisable.In Table 1 we list the values for the EMPLOYEE relation, and Table 2(a) the values of PAYMENTSto those employees before execution of the following two transactions:

-real-time

16/12/1994
readEMPLOYEE writePAYMENTST5 actual concurrentexecution of T5readEMPLOYEE writePAYMENTST5 serialisation ofT5 before T6

readEMPLOYEE writePAYMENTST5 serialisation ofT5 after T6
readEMPLOYEE read/writePAYMENTST6

Figure 3: Execution of T5 and T6T5 Pay all current employees a bonus of $50a. read EMPLOYEE: to �nd current employeesb. write PAYMENTS: to give each employee $50T6 Pay all current employees who have earned less than $1000 so far this year a bonus of $100a. read EMPLOYEE: to �nd current employeesb. read PAYMENTS: to �nd current employees with less than $1000c. write PAYMENTS: to give each underpaid employee $100For a standard 2PL system [BHG87, Ull88], both these transactions require a read lock on EMPLOYEEand a write lock on PAYMENTS. Thus when we have a concurrent execution of T5 and T6, the statementsof each transaction interleaved, except the read T6b and write T6c must not get separated by the writeT5b. Thus in Figure 3 we show three correct executions of T5 and T6. Taking an execution of T6 as areference point, we show:� an execution of T5 concurrent with T6. For the purposes of the example say this is what actuallyoccurred.� a serial execution of T5 after T6.� a serial execution of T5 before T6.Let us assume that we have adopted the begin-time of a transaction as the value of now. Given theordering of actions shown in Figure 3 for the concurrent execution of T5 and T6, this would give theresult in Table 2(c). However, if the serialisation was [T5,T6], then T6 would �nd that employee 100 hadalready been paid $1000 during the year, and thus give the result in Table 2(b). If the serialisation was[T6,T5], then the read of EMPLOYEE at the start of T6 must get a value of now equal or after that foundby T5, and hence the result in Table 2(d) shows the two payments to 100 as occurring on the same date.Neither serialisation gives the same result as the concurrent execution, and thus we have violated theACID properties of transaction execution. Thus we should not use begin-time as the value of now in atransaction with 2PL. We can look upon this being due to the fact that the value of now in a table is notsubject to locking when real-time progresses, and thus `moving' a transaction about in time (as is donewhen we serialise them) alters the semantics of execution.

t sub begt begt't'subT1 T226/10/1994 27/10/1994 28/10/1994
real time

Figure 4: Internally triggered transactionsIf we were to adopt the submission-time as the value of now, then the result of the [T6,T5] serialisationwould be Table 2(c) (assuming that the submission-time of T5 was 15/12/1994), i.e. the same as the resultof the concurrent execution. We now have a serialisation of the transactions, and hence obey the ACIDproperties. The reason why submission-time works where begin-time does not is that the value of nowdoes not change as we `move' the transaction about in time during the serialisation process.Note that the situation is to a degree unintuitive, due to the time moving backwards phenomenon.Having submitted T5 before T6, we might expect that its changes would be made �rst. This is not thecase, since employee with ID=100 gets a low pay bonus, despite having recorded a salary of $1000 beforethose dates. This unintuitive behaviour can only be resolved by altering the basic method used to managetransactions, and we return to this topic in Section 4.3.7 The Current-Time of Internally Triggered TransactionsThe di�culty in maintaining serialisation of transactions will be increased when we permit transactionsto be generated by internal events (whether cascaded or not). Consider a transaction T1 that is triggeredby an external event, which at commit-time, triggers a transaction T2 via an internal event. A possiblerun of T1 and T2 illustrated in Figure 4.The external event is submitted at real-time tsub. Due to the load of the system, the execution of thetriggered transaction T1 only begins at real-time tbeg , after a clock tick has occurred. T1 generates theinternal event to trigger T2 at time t0sub, which is also the commit-time of T1, and T2 starts execution atreal-time t0beg .Either tsub or tbeg determines the current-time seen by T1. Hence, it is clear that T1 and related T2will not see the same current-time. The only condition enforced is that T2 sees a current-time greater orequal than that seen by T1. If equality of current-times is desired, a possible solution is to enforce that theevent that triggers the related transaction T2 carries as a parameter the value of now, so that all queriesand updates are evaluated relative to that time, ignoring the current real-time. Alternatively the systemmay provide a mechanism through which related transactions can automatically see the same value ofnow, which we detail in our formal model for temporal database transaction execution in Section 4. Bothare uses of nowu.3.8 Summary of Choices For Determining NowWe have discussed that now may be based on a user de�ned value, the real-time of the current operation orthe real-time of some event in the transaction life history. We determined that the reasonable choice to makeis to based the value on an event in the transaction life history. We have discussed that choosing eithersubmission-time or begin-time as the determiner of now leads to the time moving backwards phenomenon,which breaks the de�nition of transaction-time in [JCG+94] if strict 2PL is used. We have also shownthat using begin-time may cause strict 2PL executions which fail to be serialisable. Finally, we discussedthe possibility that internally triggered transactions may inherit the value of now from the triggeringtransaction. The next section will present a transaction execution model which removes the problems of

PAYMENTSID AMOUNT REASON VALID-TIME100 475 'Salary' 1/1/1994100 475 'Salary' 1/6/1994101 500 'Salary' 1/1/1994102 500 'Salary' 1/1/1994102 500 'Salary' 1/6/1994(a) Before executionPAYMENTSID AMOUNT REASON VALID-TIME100 475 'Salary' 1/1/1994100 475 'Salary' 1/6/1994100 50 'Christmas Bonus' 15/12/1994101 500 'Salary' 1/1/1994102 500 'Salary' 1/1/1994102 500 'Salary' 1/6/1994102 50 'Christmas Bonus' 15/12/1994(b) Execution of T5 followed by T6PAYMENTSID AMOUNT REASON VALID-TIME100 475 'Salary' 1/1/1994100 475 'Salary' 1/6/1994100 50 'Christmas Bonus' 15/12/1994100 100 'Low Pay Bonus' 16/12/1994101 500 'Salary' 1/1/1994102 500 'Salary' 1/1/1994102 500 'Salary' 1/6/1994102 50 'Christmas Bonus' 15/12/1994(c) After concurrent execution of T6 and T5PAYMENTSID AMOUNT REASON VALID-TIME100 475 'Salary' 1/1/1994100 475 'Salary' 1/6/1994100 50 'Christmas Bonus' 16/12/1994100 100 'Low Pay Bonus' 16/12/1994101 500 'Salary' 1/1/1994102 500 'Salary' 1/1/1994102 500 'Salary' 1/6/1994102 50 'Christmas Bonus' 16/12/1994(d) Execution of T6 followed by T5Table 2: Contents of the PAYMENTS relation

time moving backwards, and shows how the use of submission time may be implemented.4 A Temporal Transaction Execution ModelThe choice of method by which transactions waiting to execute are selected for execution has a criticalinuence on the performance of a DBMS, but also, as seen in the previous section, it alters the temporalsemantics of the transaction, since the value of the now variable depends on its evaluation in transaction-time. In this section we will present a formal framework for temporal transaction processing, reviewvarious possible execution strategies for transactions, and study their impact on the temporal semanticsof the transaction execution.Since we are interested only in the temporal semantics of transactions, we will omit details about thedi�erent semantics not a�ect the issue in question. In particular, when we model transaction execution inFigure 5, we show the impact on the temporal semantics (i.e. the value associated with now) as being thesame if a transaction COMMITs or ROLLBACKs, by modelling them both as a general END. In this section,we shall ignore the e�ect of allowing cascaded transactions, where transactions that are running may starta new transaction executing before they have committed. Hence when we illustrate the transaction modelin Figure 5, we show the execution of other transactions as being the result of the END of a transactionbeing reached. Section 5 extends the model to allow for cascaded transactions, and also introduces thenotion of transactions triggered by temporal events.The state of a DBMS which has an extended transaction model can be described by a tuple hR; T; I; Eiwhere:� R is the list of running transactions, currently being executed in the DBMS, that is they have passedBEGIN TRANSACTION1 but not reached a COMMIT TRANSACTION or ROLLBACK TRANSAC-TION. The list is ordered by the transaction-time at which the BEGIN TRANSACTION was executed.� S is the sequence of submitted transactions awaiting execution (that is the issuing of BEGIN TRANS-ACTION). In general, several entries in S may result from a single element in I or E. The list isordered by the transaction selector which chooses which element of I or E should be placed in S,and where it should be placed in S.� I is the list of internally triggered transactions which have yet to be selected for execution. The listis ordered on the transaction-time at which the transaction trigger was generated.� E is the list of externally triggered transactions which have yet to be selected for execution, and isordered by the transaction-time at which the request to execute the transaction was issued.Each transaction t is represented by a tuple t = hn; i; si where� n is the name of the transaction, and thus identi�es the code that de�nes the transaction� i is the instance number of the transaction, and is unique to each invocation of the transaction� s is the reference time of the transaction, and is what we use in evaluating now inside the transaction[CDS+93].In de�ning executional semantics of transactions, we are interesting in de�ning transition rules of theform hR;S; I; Ei) hR0; S0; I 0; E0i, where we perform manipulations on each list X to generate a new listX 0. Any of the transaction lists R;S; I; E may be described by giving its elements t1; t2; : : : in a commaseparated list inside square brackets, and we may concatenate lists together using the � operator, suchthat t1 � [t2; t3] = [t1; t2; t3]. By abuse of notation, we will use � on either single transactions or lists, suchthat [t1]� [t2] = t1 � [t2] = [t1]� t2 = [t1; t2]. For the execution of the model in Figure 5 to be fully speci�ed,we need to specify at least one rule in each of the classes itemised below. In the following list we give witheach class the transition rule that models the behaviour of a transaction manager for a typical DBMS,such as Sybase [MD92]. Note how in such systems the time associated with now varies according to howlong the transaction is delayed in various bu�ers2.1which might be implicit if an ANSI/ISO model is used2Indeed, it may even vary during the execution of the transaction.

S
E

I
R

submit
submit

START END
select

- - -
��?

?
Figure 5: Interaction of transaction lists from hR;S; I; Ei� accept external transaction (AET): remove an element of E and place it in ShR;S; I; Ei; t 2 E) hR;S � [C(t)]; I; E � ti (1)The C function is used to assert that the current transaction-time should be associated with thetransaction, and has the de�nition C(hn; i; si) = hn; i; transaction-timei. This corresponds to howstandard DBMS handle transactions, in that asking what is the time always returns the currentreal-time clock, which we represent by the interpreted variable transaction-time.� accept internal transaction (AIT): remove an element of I and place it in ShR;S; I; Ei; t 2 I) hR;S � [C(t)]; I � t; Ei (2)� start transaction (ST): remove an element of S and place it in RhR;S; I; Ei; t 2 S) hR � [C(t)]; S � t; I; Ei (3)� end transaction (ET): remove an element of R, and add to I all transactions t1; : : : ; tn it has triggeredhR;S; I; Ei; t 2 R) hR� t; S; I � [C(t1); : : : ; C(tn)]; Ei (4)4.1 Alternative Transaction Execution SemanticsWe will now review various alternative execution strategies for our transaction model, paying attention tothe impact of the evaluation of the now variable. We will do this by re�ning the general rules given above,so as to avoid some of the phenomena described in Section 3. Table 3 summarises the possible executionsemantics for transactions which preserve the temporal ordering property.

Rule forAET AIT ST ETStandard DBMS (e.g. Sybase) (1) (2) (3) (4)Submission Time (5) (6) (7) (4)Temporally Connected (5) (6) (7) (8)External Time Preserving + Submission Time (9) (6) (7) (4)External Time Preserving + Temporally Connected (9) (6) (7) (8)Table 3: Summary of rules necessary to implement transaction semantics4.1.1 Use Submission Time instead of Begin TimeThe use of the submission-time of a transaction to determine the value of now has the advantage that thevalue does not vary arbitrarily as the delays in transaction execution vary. It is also essential if we areto have serialisable transactions when using nonconservative locking strategies. To achieve this involvesaltering the AET, AIT and ST rules to preserve the submission-time, giving the following versions of theserules: hR;S; I; Ei; t 2 E) hR;S � [t]; I; E � ti (5)hR;S; I; Ei; t 2 I) hR;S � [t]; I � t; Ei (6)hR;S; I; Ei; t 2 S) hR � [t]; S � t; I; Ei (7)4.1.2 Temporally Connected TransactionsTo avoid the e�ect shown in Section 3.7 of internally triggered transactions evaluating now to di�erentvalues, we must ensure that internally triggered transactions are given the submission-time of the externaltransaction which originally triggered them, possibly transitively via several other internally triggeredtransactions. This is achieved by modifying ET rule (4) as follows:hR;S; I; Ei; hn; i; si 2 R) hR� t; S; I � [hn1; i1; si; : : : ; hnm; im; si]; Ei (8)4.1.3 External Time PreservingIf we are concerned that transactions executing should not see the values of now moving backwards, asdescribed in Section 3.5, then we must prevent the selection of externally triggered transactions with asubmission-time later than transactions already present in R;S; I . This amounts to providing the followingAET rule:hR;S; I; hn; i; si �Ei;:9nr; ir; sr:(hnr; ir; sri 2 R � S � I); sr < s) hR;S � hn; i; si; I; Ei (9)This semantics may be used in combination with either of the two previous semantics proposed.5 Extensions to the Transaction ModelIn this section we consider extensions to the executional model for temporal transactions in a databasesystem which allow:� the ability to trigger transactions of the basis of temporal events, by which we mean the currentvalue of now reaching a particular moment in time.� the ability to cascade transactions; a transaction may be triggered by another one which has yet tocommit.

S
E

I
R

T
submit

submitschedule -
START END

select
- - -

���?
?

Figure 6: Interaction of transaction lists from hR;S; T; I; EiBoth these enhancements require an alteration to the transaction execution model in Figure 5, to givethe model shown in Figure 6. The nature of these alterations and the rules necessary to handle them aregiven in the following subsections.5.1 Handling Temporal EventsWe may model the transactions scheduled against temporal events in a similar to the E and I lists, as alist of scheduled transactions T . The submission-time associated with each transaction in the list is thetime of the temporal event. If the temporal event is repeating (such as `at the start of each day') then thetransaction appears an in�nite number of times in the list, each time associated with a recurrence of theevent. A single new rule class is necessary to handle the input of transactions from the new list.� accept temporal event (ATE): remove an element of T and place it in ShR;S; T; I; Ei; t 2 T) hR;S � [t]; T � t; I; Ei (10)5.2 Cascaded TransactionsThe handling of cascaded transaction manifests itself in Figure 6 as a link directly between the set ofrunning transactions R and the set of internally triggered transactions I . The use of cascaded transactionswill lead us to consider how cascaded aborts a�ect the temporal executional model. Thus two rule classesare required to handle cascaded transactions. The �rst handles the new link in the model, and the secondperforms the necessary task of removing all descendants of a transaction which has to be rolled-back.� cascade transaction (CT): place an element in I , based on the current execution of one element ofR hR;S; T; I; Ei; t 2 R) hR;S; T; I � [t1; : : : ; tn]; Ei (11)� rollback transaction (RT): remove an element from R, and and all other elements from I; S;R whichhave been cascaded from it

hR;S; T; I; Ei; t 2 R) hR� t�D(R; t); S �D(S; t); T; I �D(I; t); Ei (12)where D(L; t) is the set of transactions in list L which have been cascaded by transaction t.6 SummaryWe have reviewed the possible semantics that may be associated to the now interpreted variable. Firstly,we justi�ed the implied de�nition found in the literature that the value of now should be derived from real-time inside the DBMS, and should remain constant for the lifespan of a transaction. We then showed thatchoosing either submit-time or begin-time for the value of now would lead to the time moving backwardsphenomenon, which breaks the de�nition of transaction-time in [JCG+94]. We also showed that choosingbegin-time can lead to concurrent transaction executions which fail to serialise. Problems are also foundwhen internally triggered transactions are permitted.We presented a formal framework for the de�nition of transaction processing rules to be used by atransaction manager in a temporal DBMS. The framework was used to propose transaction processingstrategies which solve the problems with using now that we have described.Further work is needed to: (a) determine which of the proposed semantics for the evaluation of now ismost appropriate in general, or whether a temporal database should make a range of possibilities availableto be chosen by transactions; (b) prove that the execution rules result in a correct implementation; and (c)study how the handling of time relates to classical serialisation theory; it may be the case that serialisationtheory needs to be extended to support some of the semantics of now presented here. The latter pointwould mean moving the solution (to the problems of time moving backwards and lack of serialisation)from an external layer that can be attached to a normal DBMS into the concurrency control mechanism.That constitutes a serious change to the design of current DBMS speci�cally to support the handling oftime, so this issue should be discussed with greater detail than what space allows us here. Preliminaryresults on this work can be found in [FM95].AcknowledgmentsThe early stages of the work described within this paper was partially funded by the EU under theTempora project number E2469 in the Esprit programme. The authors would like to thank members ofthe project for much help and advice during the project.References[BHG87] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery inDatabase Systems. Addison-Wesley, 1987.[CDS+93] J. Cli�ord, C. Dyreson, R.T. Snodgrass, T. Isakowit, and C.S. Jensen. Now in TSQL2.Technical report, The TSQL2 Language Design Committee, December 1993.[CR91] P.K. Chrysanthis and K. Ramamritham. A formalism for extended transaction models. InProceedings of the 17th International Conference on Very Large Data Bases, pages 103{112,Barcelona, Spain, 1991.[CW83] J. Cli�ord and D.S. Warren. Formal semantics for time in databases. ACM Transactions onDatabase Systems, 6(2):123{147, 1983.[Fin94] M. Finger. Changing the Past: Database Applications of Two-dimensional Temporal Logics.PhD thesis, Imperial College, Department of Computing, February 1994.[FM95] M. Finger and P. McBrien. Concurrency control for transactions in valid-time databases.Technical Report 95-07, King's College London, 1995.

[HR83] T. H�arder and A. Reuter. Principles of transaction-oriented database recovery. ComputingSurveys, 15(4), 1983.[ISO92] ISO/IEC. Database language SQL (SQL-92 or SQL2). Technical Report 9075:1992, ISO/IEC,1992.[JCG+94] C. S. Jensen, J. Cli�ord, S. K. Gadia, A. Segev, and R. T. Snodgrass. A consensus glossaryof temporal database concepts. SIGMOD Record, 23(1):52{64, 1994.[LS93] D. Lomet and B. Salzberg. Transaction-time databases. In Tansel et al. [TCG+93], chapter 16,pages 388{417.[MD92] D. McGoveran and C.J. Date. Sybase and SQL Server. Addison Wesley, 1992.[MS91] L.E. McKenzie and R. T. Snodgrass. Evaluation of relational algebra incorporating the timedimension in databases. ACM Computing Surveys, 23(4):501{544, December 1991.[Sar90] N. Sarda. Algebra and query language for a historical data model. Computer Journal, 22(1):11{18, 1990.[Tan93] A.U. Tansel. A generalized relational framework for modeling temporal data. In Tansel et al.[TCG+93], chapter 7, pages 183{201.[TCG+93] A.U. Tansel, J. Cli�ord, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors. TemporalDatabases: Theory, Design and Implementation. Benjamin/Cummings, 1993.[Ull88] J.D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1. ComputerScience Press, 1988.[WJL93] G. Wiederhold, S. Jajodia, and W. Litwin. Integrating temporal data in a heterogenousenvironment. In Tansel et al. [TCG+93], chapter 22, pages 563{579.

