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Non-normal Modalisation

ROGERIO A. S. FAJARDO AND MARCELO FINGER

ABSTRACT. We study the external application of a non-normal
modal logic M to a generic logic L, thus generating a modalised logic
M(L). We prove the transference of completeness and decidability
from M and L to M(L). Previous existing techniques that show the
transference of properties in combinations of modal logics all relied
on some form of normality of the modal system. Our proof is based
on a technique that provides a consistency preserving mapping of L-
formulas into propositional classical formulas; this technique allows
us to do without normality assumptions in the modal system.

1 Introduction

In this paper we study a method of combining non-normal modal logics
called modalisation or the external application of a modal logic M to a
generic logic system L. This combination generates the modalised logic sys-
tem M(L), and we analyse the transference of basic logical properties from
the component logics to the combined system.

The novelty here is the technique for proving the transference of com-
pleteness and decidability, which uses a consistency preserving mapping into
propositional classical logic. This mapping takes formulas of a generic logic
L and generates a set of formulas in propositional classical logic, with the
following property: any finite set of L-formulas is mapped into a consis-
tent set of propositional classical formulas iff the set of L-formulas is L-
consistent. This mapping allows us to show the transference of properties
for non-normal modalisation.

Several combinations of modal and temporal logics have been studied in
the literature, as discussed below. However, almost all of them relied on
the existence of some form of normality, which may be defined either in
algebraic terms or in proof-theoretical terms. In a mono-modal logic with
modality O, normality implies that the following formulas are valid:

O(p — ¢q) — (Op — Og) O(p A q) + (Op AQg)

as well as the admission of the inference rule: From F A infer - O A.
None of these is assumed to hold in a non-normal modal logic. It turns
out that the existing analysis of transference of logical properties from the

Advances in Modal Logic, Volume 4, 1-12.
© 2002, by World Scientific Publishing Co. Pte. Ltd.



2 Rogerio A. S. Fajardo and Marcelo Finger

component logic systems to combined ones in the literature relied funda-
mentally on the assumption of normality.

Non-normal modal systems are starting to attract the attention of re-
search community. For example, in deontic logic with an obligation modal-
ity O [Aqv84], it has been noted that the axiom OA A OB — O(A A B)
needs not always be respected. Furthermore, recent works in the domain of
belief revision have extended the basic ontology to deal not only with belief
modalities, but also with intension and feasibility modalities [HLOO]; the lat-
ter modalities are intrinsically non-normal, and can naturally interact with
other modalities. So it is highly desirable to have a theory of transference
of logical properties for the combination of non-normal modal logics.

This paper starts to investigate how modal logics can be combined with-
out assuming normality. We concentrate on a not so strong way of com-
bining logics, known as modalisation, in which an external modal logic M is
applied to a generic logic L, where the external logic is assumed to be a non-
normal mono-modal logic with a 1-place connective . We believe this is a
promising step in the study of stronger combinations of non-normal modal-
ities, as has been the case in the study of combination of normal temporal
logics [FG96, FW02].

Modalisation is a direct generalisation of the temporalisation process,
which was previously developed for temporal logics with binary connectives
U (“until”) and S (“since”), initially restricted over linear time only [FG92],
then extended to any class of flows of time [FW00] and then to any number
of normal modal/temporal operators with any arity [FW02]. Surprisingly,
however, the strategy for proving the transference of completeness and de-
cidability remained the same throughout all these generalisations, as well as
in the present work. The proof details, however, differed significantly and
have become increasingly more complex.

Apart from the temporalisation /modalisation method, several other com-
binations of logics have been previously analysed in the literature. The
conservativity of independently combined modal logics was presented by
Thomason in [Tho80]. Fine and Schurz [FS91] and Kracht and Wolter
[KWO91] have studied the transfer properties of systematically combining in-
dependently axiomatisable mono-modal systems, also called fusion of modal
logics. The work of Fine and Schurz [FS91] deals with more than two inde-
pendent normal modalities. A generalisation of such results for many-place
multi-modal systems is presented by Wolter in [Wol96]. The independent
combination (fusion) of temporal logics was studied in [FG96, FWO00] ini-
tially for linear time and then for any class of flows of time. Wolter’s ap-
proach in [KW91, Wol96] is algebraic, while all others are based on Kripke
frames; even with an algebraic approach, some notion of normality was used;



Non-normal Modalisation 3

such a notion forbids connectives such as U ("until’) and S (’since’) to be
used in combinations. This restriction was later weakened in [BLSWO02], so
as to allow for connectives temporal U and S as well as other modalities
found is description logics, which are not strictly normal; however, some
notion of normality, even if presented in a weaker format, still had to be
imposed to obtain the transference of logical properties.

The organisation of this paper. The rest of this paper is organised as
follows. We first present the modalised system M(L) in Section 2; its lan-
guage, semantics and inference system will be derived from those of M and
L. We then prove the transference of completeness in Section 3; the crucial
step is the definition of the consistency preserving mapping in Section 3.1,
which leads directly to the transference of completeness in Section 3.2. The
transference of decidability is also a consequence of the consistency preserv-
ing mapping, as shown in Section 4. We conclude with some remarks on
possible application of the results here for stronger combination of logics.

2 The Non-normal Modalisation M(L)

In this section we describe the system M(L), which is based on the tem-
poralisation process introduced in [FG92]. By a logic system we mean a
tuple S = (Ls,Fs,Ks,[Es), where Lg is the system’s language, g is an
inference system, Kg is the system’s associated class of models and =g is
the system’s semantical relation between models and formulas.

The language of M(L)

The language Lym of the mono-modal system M is built from a denumerable
set of atoms P = {po,p1,-..}, applying the one-place modality O and the
Boolean connectives — (negation) and A (conjunction). We use A, B, C for
formulas of M, ¢ for formulas of L and lower Greek letters for formulas of
M(L), possibly with subscripts.

Very little is required of the internal logic L, except that its language is
a denumerable set of finite formulas and that it has the classical Boolean
connectives - and A with its usual semantics. Apart from that, any other
type of construct is acceptable in the language; for example, it may contain
other (normal or non-normal) modalities, or it may possess quantifiers and
predicates.

To avoid double parsing of modalised formulas, we partition the language
of L into the sets:

e Bool, the set of Boolean combinations consists of the formulas built
up from any other formulas with the use of the Boolean connectives
- or A;
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e Monoy, the set of monolithic formulas is the complementary set of
Bool, in the language of L.

If the internal logic L does not contain the classical connectives — and
A, we assume that Mono, = £, and Bool| = @, so every formula in L is
considered monolithic. As an example, consider the atoms p,q € L and B a
modal symbol in L, then HMp and B(p A q) are monolithic formulas whereas
—Mlp and Hp A Bq are Boolean combinations.

The set of modalised formulas, L), is defined as the smallest set closed
under the rules:

1. If ¢ € Monoy, then ¢ € Ly);
2. If Y1,99 € £M(L); then -, € EM(L) and 9 A1y € £M(L)§
3. Ify e L, then Oy € »CM(L)-

Note that the atoms of M are not elements of Ly). We will use the
connectives V, — and <, and the constants T and L, in their usual meaning,.
Also, the formula &A abbreviate -0(—A). The size of a formula A is
number of symbols it contains.

The Semantics of M(L)

The semantics of non-normal modal logics is here based on minimal models
of possible worlds [Che80]. A minimal model for modal logic is a structure
M = (W,N,V) such that W is a set of worlds; N is a mapping N : W —
22W, that is N associate a set of sets of worlds to each world; and V : £ —
2W is a valuation that associates a set of worlds to each formula according
to the following restrictions:

o V(—A) =W \V(A4).
e V(AANB) =V(A)NV(B).
o V(OA) ={w e W|V(A) € N(w)}.

We write M,w | A iff w € V(A4). Under this view, a formula is V-
associated with the set of worlds in which it holds, and the function N
associates a world w € W with a set of propositions that are necessary at
w.
Let Km be a class of models of logic M, usually defined by placing some
restriction on the mapping N. Let K. be the class of models for valid
formulas of L; we specify some restrictions on the semantic relation =, for
the logic L, whose class of models will be called K. The basic restriction
imposes that, for each M € K and ¢ € £; we have

either M | ¢ or M = —p.
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To satisfy this condition in some logics, it may be necessary to adapt the
notion of a class of models. For instance, if L is some modal logic with a
modality M, an element of Ky, is a pair (M|, z), where M| = (W', N', V")
and z € W', such that either M,z |E ¢ or M,z = —g; if the class of
models were simply defined in terms of M|, we could have a formula, say,
a propositional symbol p, such that neither M| = p nor M| = —p.

Finally, we can define a minimal model for the modalised logic M(L) as a
structure Myy = (W, N, g), where W and N are as above, and g : W — Ky
associates to each w € W a model of L. The satisfaction relation |= is then
defined recursively over the structure of modalised formulas:

(i) Mm),w | a, a € Monoy iff g(w) = M and M = «a (denoted
g(w) [ a).

(’L’L) MM(L);w '= - iff MM(L);w bé .
(i) Mm),w E (a A B) iff My, w = a and My, w = B.
(iv) My, w = Da iff {w' € W | My, w' | a} € N(w).

A class of modalised models K L) is obtained from K\ and Km by placing
over modalised models My ) = (W, N, g) the same restrictions over N that
are placed on the class Ky .

A formula is valid in a class K if it is verified at all worlds at all models
over that class.

The Inference System of M(L)

We assume that an inference system, -, for a generic logic system is a mech-
anism capable of recursively enumerating the set of all provable formulas of
the system, here called theorems of the logic system.

An inference system is sound with respect to a class of models K if all its
theorems are valid over K. Conversely, it is complete if all valid formulas
are theorems. We assume that logic L’s inference system, t, is sound and
complete with respect to a class K.

We will assume that the modal logic M inference system, Fy, is given in
an axiomatic form, consisting of a set of axioms and a set of inference rules.
In fact, all we have to assume of Fy is the validity of propositional classical
tautologies, the admissibility of Modus Ponens and the following inference
rule: if Fy A < B then by OA < OB.

We include those rules for they are valid in any minimal model, and they
define a system that is sound and complete with respect to the class of all
minimal models. On the other hand, by forcing other inference rule and
axioms on logic M, some restriction is imposed on the structure of the class
of models; see [Che80].
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The combined inference system of M(L) is denoted by () and consists
of the following elements:

e The axioms and inference rules of Fy;

e The inference rule Preserve: For every formula ¢ in L, if F ¢ then
Fa(ry ¢-

As usual, a formula ¢ is consistent if Ff —p.

In [FG92] it was shown that if L is sound over a class K and M is
sound over a class Ky, then the inference system of ) is sound over
the combined class Ky (L); no extra restrictions were made on the nature
of M. That is, soundness transfers over modalisation. In the following, we
investigate the transference of completeness and decidability.

3 Completeness of M(L)

In this section we show that the non-normal modalisation of sound and com-
plete logics preserves completeness. The proof strategy is the same that has
been used in our previous works of temporalisation [FG92, FW00, FW02]
and is illustrated in Figure 1. We start with a consistent M(L)-formula ¢,
translate it into a consistent modal formula A in M; then completeness of
M over Kim gives us a model for A; after some model manipulation using
the completeness of L, we obtain a model for ¢ in Ky(), thus deriving the
transference of completeness from L and M to M(L).

: derived
consistent | -----== - - - » model for
M(L) 0 completeness 0
A
translation modgl .
manipulation
M A consistent = model for A
completeness

Figure 1. Completeness proof strategy

The difficulty in our proof lies in finding an adequate translation ¢ such
that ¢ is M(L)-consistent iff A = o(p) is M-consistent and such that any
model for o(p) can be easily transformed into a model for . The simple idea
of mapping each monolithic formula of M(L) to a propositional variable does
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not work. To see that, suppose the logic L is a modal logic with modality
B and suppose that the axiom T holds for L:

FLlp—p

Now suppose that ¢ = Bp — p is a M(L) formula; by the inference rule
Preserve, ¢ is a theorem. If we simply map all monolithic subformulas
to atoms, we end up with a formula in M of the form o(p) = ¢ — ¢,
where g1, ¢> are “new” atoms, and M-models of o(p) may make the atom
q1 true but g¢o false at some world, so not all M-models of o(¢) can be
directly transformed into a M(L)-model of ¢. A translation mapping has to
guarantee that the mapped formulas behaves exactly the same way as the
original formulas in terms of satisfiability and validity.

3.1 The Consistency Preserving Map

Let ® = {¢1,...,%n} be a set of monolithic L-formulas. We will map them
into propositional classical formulas Ay, ..., A, as defined below built from
propositions qi, . . ., g,; since M extends classical logic, this will be the basic
step for mapping a M(L) formula ¢ built from the elements of ® into a M
formula o (). The translation o from M(L)-formulas to M-formulas is then
recursively defined as:

(i) = As;
() = o (¥);
(1 Ap2) = o (h1) A o(t2);
(O0¢) = 0o ().

It remains to define the propositional classical formulas A1, ..., A4,. This
mapping of L formulas into classical ones is in fact independent of the modal-
isation process; we will show it guarantees that consistency is preserved
through this mapping. Before we do that, we need some definitions.

If @ = {p1,.-.,9n}, we write o(®) for the set {c(p)lp € ®}. Let
Lit(®) = ® U {—yp|p € ®} be the set of literals of ®. Let Cons(®) =
{A pilp:i € Lit(®) and A = A ¢;}.

Fix an enumeration of ®, € = ¢4, ..., ¥,, and suppose we have variables
qi,---,qn in M. We then recursively define Ay, ..., A, in the following way.
Each A; = o(yp;) will be a boolean combination of ¢, ..., g;-

For the base case, we define A; as follows:

® g

Q

Q

® 0

e Ay =q Aq, if o1 & Cons(®y), ie. b —pr;
e A1 =q1 V —q, if 1 € COHS((I)l), ie. kL ©1;
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e A; = ¢, otherwise.

Now suppose Ay, ..., Ay, is defined for m < n and define ®,,, = {¢1,...,0m}-
As we did for the base case, the definition of A,,;; will have to analyse three
cases of combinations based on ®,,, namely those that imply ¢,,+1, those
that imply —¢.,41, and those of which ;1 is independent.

We start by defining the (transformation of) combinations that imply

Pm+1:
BY (@) = \/ {o(¥)[¢) € Cons(®y,) and F( ¢ = @1}

Bt (®,,) is a disjunction of the o-mapped elements of ®,, that imply
Yma1- BT (®,,) may have several disjuncts, a single one or even none (in
which case B*(®,,) = L1). Similarly, define:

B~ (®n) = \/ {o(¥)|¢ € Cons(®,) and () — ~@mi1} -

B=(®,,) is a disjunction of the o-mapped elements of ®,, that imply
“@m+1- Finally, for the elements of Cons(®,,) that imply neither ¢,,11 nor
“Pm+t1, define:

B%(®,,) = \/ {o(®) A gm+1|t € Cons(P,,) and Y A Ymiy1, Y A =@my1 € Cons(®pi1)}-

The presence of g, 1 in B%(®,,) provides the freedom to choose the truth
value of A,,41. So, finally, we define A,, ;1 as:

Am-‘rl = _‘B_(Qm) A (B+((I)m) \ BO((I’m))

Note that some of the B-elements may be absent from the formula in case it
is an empty disjunction. In particular, if B%(®,,) is empty we will not have
Gm+1, meaning that the value of ¢, 1 is totally determined by 1, ..., ¥m-
With this construction, if a non-normal modal model satisfies a disjunct
of BT (®,,), it will not satisfy B~ (®,,), and hence it satisfies 4., 1. Con-
versely, by satisfying B=(®,,), Ay,y1 is falsified. If neither BT (®,,) nor
B~ (®,,) is satisfied, the new atom g, 1 determines the value of A, 1.
We now revisit the previous example of mapping the axiom T, Hp — p,
from L to classical propositional logic. We have & = {Mp, p}, and Cons(®) =
{Hp A p,—~Hp A p,—~Hp A —p}. Fix an enumeration ¢ = Mp,p; in this case
Cons(®,) = {Hp,—~Mp} and by the definition above 4; = o(Mp) = ¢.
To find A,, note that BT (®1) = ¢; (for . Mp — p), B~ ($1) = L and
B%(®;) = =q1 Aga. Hence Ay = g1V (—q1 Aga), which is classically equivalent
to =g1 — ¢o; note that the consistent combinations of A; and A, are exactly
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the consistent combinations of Mp and p. In this case, o(lp — p) = ¢1 —
(—g1 — g=2), which is a classical tautology, as desired for the mapping of an
L-theorem.

Had we chosen the other enumeration of monolithic formulas (¢/ = p, Bp)
we would have obtained different values: 41 = o(p) = ¢1, A2 = o(Hp) =
g1 A g2; however, this leads to o(Mp — p) = (g1 A ¢2) — q1, which is also a
tautology, as desired.

The following lemma shows that, indeed, this construction always works
and will be useful for the completeness proof.

LEMMA 1 Let ¢ be a conjunction of literals of a set of L-formulas ® =
{Y1,---,n}. Then v is L-consistent iff o(v) is classically consistent.

Proof. By induction on m < n. For m = 1, the result follows immediately
from the definition of A;. Now suppose the result is valid for ®,,; we will
prove it for ®,,,1. All we have to care for are formulas 1 in which ¢,41
occurs, that is ¥ = g A Ym41 Or Y = 4 A = Pm1.

Suppose o (1)) is classically consistent. By the definition of &, o(u) is clas-
sically consistent so the induction hypothesis gives us that p is L-consistent.
Hence o(u) is an element of one of the disjunctions BT (®,,), B~ (®,,) or
BY(@,,).

If o(u) is in BY(®,,), then b 4 — ©;my1. We want to show that ¢ =
B A @my1, in which case 9 is clearly consistent. For contradiction, suppose
that ¥ = pu A =pm41. Suppose v is a classical valuation that satisfies o(u).
By the definition of Apy1 = 0(@ma1), o) is a disjunct in B (®,,), thus
satisfied by v. We show that v does not satisfy B~ (®,,). Indeed, if there is
a conjunct in B~ (®,,) satisfied by v, then there is a conjunction of literals
p' in @, such that F g’ — —@,+1. Since p is consistent, we also have that
FL p — =y, so the induction hypothesis gives us that v cannot satisfy p’,
and hence v cannot satisfy B~ (®,,). It follows that v satisfies o(¢m+1) and
thus falsifies o(10). On the other hand, any valuation that falsifies o(u) also
falsifies o(¢0). So any valuation falsifies o(1)), contradicting its consistency.
We have thus proved that ¥ = p A ¢, 41, and ¥ is consistent.

If o(p) is in B~ (®,,), by an analogous argument, if o(u) is satisfied,
0(1m+1) is falsified, so the only possibility is that ¥ = pu A —@py41. But
then i u — —pm+1 and ¥ is consistent.

Finally, if o(u) is in B%(®,,), then by definition both pu A ¢n,41 and
BN\ ~pm41 are consistent.

Suppose now that 1 is L-consistent. Then g is also L-consistent and by
induction hypothesis, o(u) is classically consistent. Also, o(u) is an element
of one of the disjunctions B¥(®,,), B~ (®,,) or B°(®,,) and we have three
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possibilities to analyse in a manner totally analogous as in the previous
direction. Details omitted. |

We now generalise Lemma 1 to full M(L).

LEMMA 2 Let v be a M(L)-formula and let ® be the set of its mono-
lithic subformulas, over which the mapping o is defined. Then v is M(L)-
consistent iff o(¢) is M-consistent.

Proof. (=) Suppose, for contradiction, that o(+) is inconsistent, that is,
Fm —o (). If ¢ is a subformula of ¢ and a formula of L, then by Lemma 1
o(1) is a classical tautology iff ¢ is a theorem of L and of M(L) by the
inference rule Preserve. Furthermore, all other M inference step can be
copied in M(L). Therefore, the deduction of Fy =0 (7)) can be simulated in
M(L), so as to prove Fy(y —, contradicting the consistency of ).

(«) Suppose now that 9 is M(L)-inconsistent. Consider a deduction of
Fm) —%; suppose it contains an instance of the rule preserve, in which
for a formula ¢ built from the elements of &, k| ¢ is inferred. Then, by
Lemma 1, o(¢p) is a classical tautology, that is also a theorem of M. All other
inference steps of M(L) can be copied as inference steps in M, so that the
deduction of Fy) ¢ can be transformed into a deduction of Fy —o(¢)).

|

This result leads us to a proof of transference of completeness.

3.2 Transference of Completeness
THEOREM 3 IfL and M are complete logics, so is M(L).

Proof. Let 9 be a consistent M(L)-formula and let & be the set of all
monolithic subformulas of 1. By Lemma 2, o(¢) is M-consistent, so by the
completeness of M there is a model My = (W, N, V) with My = o(¢). We
build a M(L) model My = (W, N, g) in the following way: for all w € W
and p € @, g(w) =L ¢ iff w € V(o(p)). To see that this is indeed a model,
consider for each w € W the elements ¢; € ® such that o(p) are satisfied
by V in w; by Lemma, 1 all such ¢; are simultaneously L-consistent and by
completeness of L there is a model M = g(w) that simultaneously satisfies
all of them.

A simple structural induction now shows that My = ¢ iff Mu =
o(¢). Therefore My) = (W, N, g) is a model for ¢» and M(L) is complete
over the same class of models that M is. |
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4 Decidability

We now show the transference of decidability. A logic is decidable if there
is an algorithm that, given any formula in that logic, decides in a finite
number of steps if that formula is a theorem of the logic.

We first note that Lemma 2 gives us immediately that a formula ¢ is a
M(L)-theorem iff o(¢)) is a M-theorem.

THEOREM 4 If the logics L and M are complete and decidable, so is M(L).

Proof. Give a M(L)-formula 1, we can algorithmically construct the set
® of all its monolithic formulas. Since & is finite and L is decidable, we
can construct the set Cons(®) and the M-formula o (). We then apply the
decision procedure for logic M over ¢(+) and by Lemma 2 we know that
is a M(L)-theorem iff o(%)) is a M-theorem. |

4.1 Complexity

As for complexity, the decision procedure above gives us the following. Let
cL(n) and ¢y (n) be the complexities of the decision procedure in L and M,
respectively.

If n is the size of the M(L)-formula ¢, the size of the set ® is O(n) and
the number of elements potentially needed in the construction of Cons(®)
is O(2™). Then the construction of o(4)) can be done in time O(2" x
cL(n)). Note, however, that by the construction of Cons(®), each element
of Cons(®) will generate a disjuct in o(%)), so the size of o(¢) is O(2").
As a consequence, the decision procedure of M is applied to o(%) in time
O(em(2M)).

As a result, we have the following.

LEMMA 5 The time complezity of the decision procedure in Theorem 4 is:
02" x c(n) + em(27)).

With regards to the space complexity, because the size of Cons(®) is
0(2"), so even if the complexity of the decision procedure of logics M and
L are in PSPACE, the space of the decision procedure for M(L) above will
be in EXPSPACE.

LEMMA 6 If the logics L and M are in PSPACE, then M(L) is in EX-
PSPACE.

Of course, this does not rule out the possibility of existing a different
decision procedure for M(L) that places it in PSPACE. In other words, the
discussion above does not provide a lower bound for the complexity of M(L).
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5 Conclusion

We have presented an original method that maps formulas of a logic L into
boolean combinations of propositional classical formulas, so as to preserve
validity and consistency. This mapping was then used to prove the transfer-
ence of completeness and decidability of the modalisation M(L) that applies
non-normal modal logic M to a generic logic L.

For the future, we hope to be able to explore such mapping for other
logics, and for translating a logic into another. Also, as done previously, we
want to explore the use of successive modalisations as a means to study the
independent combination or fusion of two non-normal modal logics. An-
other possible path of development is the generalisation of the non-normal
modalisation process to modal logics with many connectives and with con-
nectives with any finite arity, following the steps of [Wol96, FW02].
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