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ABSTRACT
This work presents a method for predicting resource avail-
ability in opportunistic grids by means of Use Pattern Anal-
ysis (UPA), a technique based on non-supervised learning
methods. The basic assumptions of the method and its capa-
bility to predict resource availability were demonstrated by
simulations; accurate learning techniques and distance met-
rics are determined. The UPA method was implemented and
experiments showed the feasibility of its use in low-overhead
scheduling of grid tasks and its superiority over other pre-
dictive and non-predictive methods.

Categories and Subject Descriptors
C.2 [Computer-communication Networks]: Distribut-
ed Systems; I.5 [Pattern Recognition]: Clustering

General Terms
Algorithms, Performance

Keywords
Use Pattern Analysis, Scheduling, Opportunistic Grids, Grid
Computing

1. INTRODUCTION
Grid computing deals with computationally intensive dis-

tributed applications on heterogeneous environments. Op-
portunistic grids differ from dedicated grids in that the ma-
chines may not be always available to run grid tasks. In
opportunistic Grid Computing, grid applications use the idle
time of desktop machines to perform high-performance com-
putation. If a grid application is running when the machine
is claimed back by its owner, the grid job is either inter-
rupted, migrated or simply aborted. Resource owners have
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to allow the use of the idle time of their computational re-
sources by the grid; but they will only do it provided that
the perceived compromise on the Quality of Service for their
private computations remains very low.

Research groups working on grid systems, such as Con-
dor [10], BOINC [1], OurGrid [3], and our own work on In-
teGrade [6] have investigated opportunistic grid computing
to perform high-performance computation. However, the
support for effectively using these shared resources without
compromising the Quality of Service perceived by the re-
source owners is still very limited.

To address the problem of effective opportunistic compu-
tation, it is very useful to be able to predict when a given
computational resource will be idle, becoming available for
grid applications. If this kind of prediction can be done with
some degree of accuracy, the scheduler may be more effective
in its task of assigning jobs to machines. Each resource has
its own use pattern, and the Use Pattern Analysis (UPA)
consists of the task of detecting the local use pattern of each
resource in each machine.

In this work, a method is described aiming at perform-
ing resource use pattern analysis for machines belonging to
opportunistic grids. This method is based on unsupervised
machine learning [12, 2], which performs a clustering anal-
ysis on past records of resource use to discover prototypical
patterns of use [7]. As usual in machine learning settings,
the learning activity is performed off-line. The use patterns
learned are used at run-time to predict the availability of
computational resources.

The development of the method was done in two steps:
simulation and implementation. A simulation phase was
needed due to the existence of a large number of param-
eters to be set in clustering-based unsupervised machine
learning methods, and was performed using real data col-
lected from machines belonging to the InteGrade oppor-
tunistic grid [6]. Our group developed the Local Use Pattern
Analyser (LUPA) module for the InteGrade grid, and val-
idated the results of the simulation. The implementation
was used to compare the proposed method against other
methods for availability prediction.

The rest of the paper develops as follows. The UPA
method is described in Section 2. Its basic assumption is
validated in the simulation of Section 3 which also deter-
mines several parameters that improve the accuracy of the
method. Implementation experiments are described in Sec-
tion 4. Conclusions and further work are presented in 5.

1.1 Related work
Research work on prediction about grid tasks has con-



centrate on scheduling methods to improve grid application
execution time [11, 13].

Yang, Schopf and Foster [15] propose a conservative schedul-
ing technique that uses predicted mean and variance CPU
capacity information to make data-mapping decisions. It
employs one-step-ahead CPU load prediction based on his-
tory CPU load information.

The Condor Grid system [14, 10] does not predict, but
detects when an application performance is very slow in a
machine and migrates it to some other machine on the grid.

The BOINC system [1] has very recently taken a direction
that most aligns with ours. It uses clustering as a means
to identify correlated availability of Internet resources [8],
based on independent but similar ideas than the ones de-
veloped here. That work differs form ours in that it tries
to identify patterns of availability searching for correlations
between machines over the whole Internet, which implies
in a considerable data collection and processing task, while
our work identifies local patterns of availability, internally
to each machine, at very low cost.

2. THE UPA METHOD
The resource Use Pattern Analysis (UPA) method is based

on the assumption that there is a small set of prototypical
daily behaviours that models resource availability at each
machine. As this is a somewhat bold assumption, prior to
implementation a simulation phase was needed to both val-
idate and fine-tune the method.

Use Pattern Analysis deals with machine resource use ob-
jects. Each object is a vector of values representing the time
series of a machine resource use, as illustrated in Figure 1.
Machine resource use is sampled at a fixed rate (currently,
once every 5 minutes) and grouped in objects covering 48
hours. An object starts at midnight, so there is a 24-hour
overlap between consecutive objects. The span of 48 hours,
instead of 24 hours, is needed for the prediction phase.

Figure 1: An object representing a machine’s CPU

use over a 48h period

The method is capable of monitoring several computa-
tional resources, such as CPU use, available RAM, disk
space, swap space, network and disk I/O; in this work, only
the first two will be discussed, and these are the most rel-
evant for machine allocation decisions. Use Pattern Anal-
ysis performs unsupervised machine learning [12, 2] via a
data clustering process [7] to obtain a fixed number of use
classes, where each class is represented by its prototypical
object. The idea is that each class represents a frequent
use pattern, such as a busy work day, a light work day or a
holiday.

The method involves two phases: a training/learning phase
and an execution/prediction phase.

2.1 Learning

Learning is an off-line activity that inputs a large amount
of objects collected during the machine regular operation.
A clustering algorithm is applied to the training data [7,
5], which groups the training objects into a fixed number k
of clusters. At each cluster, a prototypical element is com-
puted that represents the whole use class. The output of the
method are k prototypical vectors to be used by the runtime
predictor.

It is often common to have incomplete data for training,
due mainly to machine down-time. One possible way to deal
with this problem in the literature is to apply an Expectation
Maximisation completion process [4]. However, the current
approach opted for a simpler solution, and discarded objects
with incomplete data. Provided there is sufficient data, this
solution does not affect the result. As a consequence, re-
source use is equivalent to its unavailability.

In fact, this form of learning is only a reliable method
when there is a considerable mass of data, which in this case
consisted of at least 60 objects, or two months of data. At
the implementation phase, other methods were tested that
need smaller amount of testing data, and their results were
compared against the UPA method.

Data clustering analysis can be parameterised in several
ways. For the UPA development, the following parameters
were considered:

• Number of clusters. We considered a fixed number of
clusters, either 5 or 10.

• Data normalisation. Two possible data normalisation
schemas were considered for vector: no normalisation;
and variational normalisation, in which the means of
all points in a vector is subtracted from all data.

• Computation of prototypical element. Typically this is
a centroid, that is, the average of all cluster elements,
or the centre, that is, an element of the cluster closer to
the centre. Only the centroid method was considered.

• Similarity measurement. There are several ways to
compute the distance between two clusters (similarity
is the inverse of distance), assuming that the distance
between any pair of points a and b is given by the Eu-
clidean distance: dab =

p
P

(ai − bi)2. The following
distances were considered: single linkage, the smallest
distance between points; complete linkage, the largest
distance; centroid method, the distance between cluster
centroids. Ward’s method, the variance of the union of
the clusters.

• Clustering algorithms. There are many algorithms for
clustering, namely hierarchical, sequential, k-means,
etc. No substantial difference in prediction power was
noted among different algorithms. To concentrate on
distance measurements, only hierarchical algorithms
are considered, which constructs clusters on a bottom-
up fashion, each step uniting the two closer (ie, more
similar, less distant) clusters.

2.2 Runtime Prediction
During runtime, a request is sent to each machine pre-

dictor specifying the amount of resources (CPU, disk space,
RAM, etc) and the expected duration needed by an appli-
cation to be executed at that machine; this expected dura-
tion may be provided by users, which may not be a reliable



estimate [9]; work in progress investigates the automated
learning of program resource needs. The UPA predictor has
to decide if this machine will be available for the expected
duration.

This decision is reached according to the following method.
A record is kept about the recent use of each resource; usu-
ally the last 24 hours, as illustrated in Figure 2. The predic-
tor computes the distance between the vector representing
recent history and each of the prototypical element of the
use classes learned during the training phase. The recent use
object has span of 24h, but the prototypical elements have
span of 48h. To compute the distance, the recent record of
resource use is compared with the corresponding times in
the use classes; so if a request for a resource is made at 6
pm, the last 24 hours of that resource use is compared to
the interval 18–42 in each prototypical element. The class
with the smallest distance is the current use class.
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Figure 2: Prediction of class pertinence

The interval between the current time and the end of the
48h in the current use class, after some possible processing,
is used as the prediction of the near future; so if a request
is made at 6pm, this method can predict the next 6 hours.
When variational normalisation is used, the average of the
recent track has to be added to obtain a prediction. If all
requested resources are predicted to be available, then the
application is scheduled to be executed; otherwise, it is re-
jected.

If a prediction for a longer period is needed, there are two
possibilities:

(a) To use less that 24 hours of recent record to compare
with the start of each prototypical element, which allows
for predictions over 24h. The reliability of predictions
decreases with the span of the recent record used.

(b) To chain predictions, by using the last 24 hours of record
or prediction as a basis for the next prediction. This al-
lows for unbounded perditions, but the longer the chain,
the less reliable the prediction. This is not implemented
yet and remains for future work.

3. SIMULATION
There are many parameters involved in data clustering

analysis. Simulation was used to choose those parameters.
In the end, with a set of chosen parameters, the basic as-
sumption of the UPA method could be evaluated, namely
that prototypical daily behaviours are good models of re-
source availability and are worthy of being implemented.

The data for simulation was collected, for CPU and RAM
use, during a period of 120 days from four Linux machines
with very different types of users:

(a) a general purpose machine with more than 30 users;

(b) a single user machine;

(c) a general purpose machine with 6 users;

(d) a multi-user machine employed for testing heavy com-
putational linguistics programs.

For each machine, the learning process generated both a
5-cluster and a 10-cluster output, called according to the
presentation above a5, a10, b5, b10, c5, c10, d5, d10; fur-
thermore, clustering was performed both for pure and for
normalised data.

A single test is defined by a resource r, an instant in time
t, an availability level α and an interval ι; the test output is
yes if it is predicted that the availability level of r will remain
above α for duration ι starting at t, and no otherwise. The
output is correct if the decision coincides with that obtained
from simulation data.

An availability matrix A = {aij}N×M was constructed
for each machine and each resource, with availability α in
the interval 10%–90% of total capacity with 10% steps, and
for intervals ι of 10, 20, 30, 60, 90, 120, 240 minutes. Each aij

contains the percentage of correct predictions in 100 tests for
a given pair 〈α, ι〉, with random starting point t. For each
matrix A, the average prediction success was computed as
µA = 1

NM

PN

i=1

PM

j=1
aij .

One simulation experiment consists of the construction of
an availability matrix A containing 63 cells, each cell the
result of 100 tests, generating a single value for the average
prediction success, µA. The simulation experiments were
made in batches of 8 experiments, one for each machine
with 5 and 10 clusters. For each resource, 4 batches of ex-
periments were made, each using a different distance mea-
surement. The 64 experiments were repeated for normalised
and non-normalised clusters. Overall, 128 experiments are
reported.

3.1 Simulation Results
Figure 3 shows the results of all experiments, separat-

ing the results of predictions based on pure and normalised
(variational) data. The values of µA were surprisingly high.
All values for average prediction success were above 75%,
and mostly above 80%.

The quality of the results allows for the validation of the
basic assumption of the UPA method.

Besides validating the UPA assumption, Figure 3 com-
pares the prediction results obtained from clustering process
with pure data and from normalised clustering with 0-mean,
variational data. Predictions with normalised data yield a
better result in all experiments, with average prediction suc-
cess were above 90% in all cases.

For this reason, the following results are presented only
for normalised clustering.

Experiments were made for hierarchical clustering using
four different types of distance measurements, as described
in Section 2.1. Figure 4 presents the results for RAM avail-
ability prediction and Figure 5 presents the results for CPU
availability prediction.

No distance measurement dominates all the others all the
time. However, it seems that computing distances by Ward’s
method has a slightly superior overall performance. Simi-
larly, no measurement is clearly the worst. As the number
of machines analysed is still small, no categorical preference
can be established. The results in Figures 4 and 5 may even
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Figure 3: Success rates of all experiments, pure × normalised data

suggest that each domain of machines may require an initial
analysis to determine the best measurement for each case.

It is worth noting that predicting RAM availability is eas-
ier than predicting CPU use. It calls the attention that
machine (b) yields the best results for RAM prediction and
the worst ones for CPU prediction. This reinforces the need
for an initial per machine analysis prior to the choice of
measurement to be implemented.

Figures 4 and 5 show a consistent prevalence of 10-cluster
predictions over 5-cluster prediction for all distance mea-
surements. However, in all cases, this prevalence is in fact
very small. Furthermore, by investigating the clusters learned
with 10-cluster outputs, one verifies that a considerable num-
ber of clusters has a very small number of elements, normally
less than 5. On the other hand, with 5-cluster outputs the
representativity of the clusters learned is always higher.

So no categorical conclusion can be reached as to the fact
on the number of clusters, other than that there no big dif-
ference is achieved by choosing a larger number of clusters.

3.2 Simulation Conclusions
Simulation definitely validated the UPA assumption. Data

normalisation is to be preferred, and the number of clusters
can be kept as low as 5, without seriously affecting prediction
performance. Distance measurements have to be analysed
on a case-by-case prior to implementation, but no method
among the analysed ones is either the best or the worst.
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Figure 4: RAM Availability Prediction

4. IMPLEMENTATION
The development of an implementation of a resource Use

Pattern Analyser had three main goals:

• to explore ways the scheduling of grid applications us-
ing the UPA method;
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Figure 5: CPU Availability Prediction

• to compare the UPA scheduling with other scheduling
methods.

• As the UPA method needs a few months of resource
use data collection to be reliable, identify initialisation
strategies to be used during the first period of activa-
tion.

4.1 Design Decisions
Resource use data information has to be collected locally

at each machine taking part in an opportunistic grid. An
initial design decision concerns whether this data is to be
analysed locally, so that the resource use patterns is hidden
from the rest of the system, or if such data is to be sent to an
external analyser. The latter possibility may make the task
of machine allocation easier, but it can be seen as a breach
on the privacy by users of single-user machines, which may
not allow those machines to take part on the grid for fear
that their pattern of work is being monitored. The local
analysis of data also has the advantage of preventing the
flow of use data on the network, decreasing the overhead
placed on the system.

So a Local resource Use Pattern Analyser (LUPA) module
is installed in all machines that allow their resource to be op-
portunistically used by grid applications. The LUPA module
was implemented in C++ on several Linux platforms, and
is now an integral part of the InteGrade distribution 1.

The LUPA architecture is shown if Figure 6, and consists
of three submodules:

• Data Collection. Performs resource use sampling,
recording CPU and RAM use every 5 minutes. This is

1Freely available at http://www.integrade.org.br.



Figure 6: The LUPA Architecture

the same rate used for simulations.

• Pattern Analyser. Performs off-line clustering of re-
source use objects, as described in Section 2, generat-
ing a fixed number k of prototypical use classes; for
the results presented below, k = 5. For time-efficiency
reasons, centroid distance is used.

Currently, patterns are recomputed once a day but
that, as will be shown, is not a burden on the system.

• Predictor. Performs runtime predictions based on
the recent resource use history. The simple interface
to access the predictor is:

double[] getPrediction(resource r, int hours);

which returns a vector of values representing the r-use
prediction for the next hours, in 5-minute intervals.

It is important to note that at this stage of development,
the LUPA module is not yet integrated with the grid sched-
uler. In the experiments for evaluating the implementation,
scheduling is restricted to selecting the machine with higher
CPU availability.

4.2 Experiments
The experiments simulate the scheduling of a grid applica-

tion. Experiments were performed using 15 machines, with
data collection logs varying from 41 to 120 days, none of
which were used for the simulation phase, so as to avoid
biases results.

Three different scheduling methods were compared:

• RR: round robin. Machines are randomly placed
on a circular list; when n machines are requested, the
initial n machines are returned and the list starting
pointer is advanced n positions. No prediction is made.

• last4. Resource prediction for any amount of time
is considered the average of the last four hours. The
method chooses n machines with lower prediction of
resource use.

Preliminary tests were also made for the last 8, 12
and 24 hours, and their performance were considered
basically equivalent to the last4 method.

• UPA. Prediction using the UPA method. The method
chooses n machines with smaller prediction of CPU use
for the next h hours.

An experiment consists of a sequence of tests for a fixed set
of tests parameters. Initially, the valid days in the data col-
lection logs are selected, in which there are at least m valid
machines, where m is a test parameter. For each such day,
pattern analysis is run and then 24 tests are executed, each
for an hour of the day and for each to the three scheduling
algorithms above. These are the instant tests.

The performance metric is the average free CPU in the
chosen machines in the interval [t, t + h], given by

performances(t) = 1 −

Pn

i=1
use(mi, t, h)

n

where s is the scheduling algorithm, n is the number of
chosen machines, mi is one of the machines chosen to run
an application process for h hours starting at time t, and
use(mi, t, h) is the average CPU use at machine mi for that
period according to the log. Experiments can constrain the
set of chosen machines by requiring a minimum CPU avail-
ability a at chosen machines; if this requirement is not met,
the instant test is not computed.

An experiment set of parameters is therefore given by:

• n: number of machines to be chosen to run the appli-
cation, 1 ≤ n ≤ 6;

• h: application duration, in hours, h ∈ {2, 4, 6, 12, 24};

• m: minimum number of machines available to be cho-
sen at a given day, m ≥ n and 1 ≤ m ≤ 15;

• a: minimum CPU availability at chosen machines, a ∈
{0.6, 0.7, 0.8, 0.9, 0.98}.

An experiment is performed for a set of parameters only if
the logs allowed for at least 100 instant tests for that set. A
total of 45 experiments were made, averaging 527 tests each.
The output of an experiment is the performance of each of
the three scheduling methods for each test. The performance
of scheduling methods s and r were compared on a test by
test basis. Methods s1 and s2 were considered equivalent for
a test if the performance difference was less than 2%, that
is, |performances1

(t) − performances2
(t)| < 0.02. Method

s1 performs better than method s2 if performances1
(t) −

performances2
(t) > 0.02.

Results. The performance of RR was consistently below
that of both last4 and UPA scheduling methods, beating
last4 on less than 1% of the tests and UPA even less.

Figure 7 displays a comparison between the UPA and
last4 scheduling methods showing, for each experiment, the
percentage of tests one method is better than or equivalent
to the other. It calls the attention that for an average of
77.6% of all tests, the two methods are equivalent. When
equivalent results are discarded, the UPA performs better
than last4 in 75.6% of the experiments.

Table 1 summarises the effect of the test parameters on
the performance of the methods. Scheduling using UPA

has its relative performance increased when the ratio m/n
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Figure 7: UPA versus last4

UPA last4

Performance Similar to last4,
but better

Similar to UPA,
but worse

Impact of ↑ m/n ↑ performance no effect

Impact of ↑ d ↑ performance
w.r.t last4

↓ performance
w.r.t. UPA

Impact of ↑ h no effect no effect

Table 1: Scheduling Methods Comparison Summary

(available/required machines) increases, as well as when d
(required free CPU) increases. Overall, the UPA method
displays better results. It was also clear that the method
performs well with less than 60-day training data.

We conclude that last4 is quite a good method, and a
candidate to be run during LUPA initialisation. Final LUPA
implementation has the following adaptative behaviour:

• Use UPA method if more than 21 days of data collec-
tion is available; else

• Use last4 method if more than 4 hours of data collec-
tion is available; else

• Predict that resource use at request time persists.

With regards to system overhead, the running time for
pattern analysis was always below 1s, and the running time
for prediction calls was always below 3ms. Measurements
were made on a notebook with an AMD Turion 64 1.8GHz
CPU, 1GB RAM running Kubuntu 7.10 (32 bits) Linux.

5. CONCLUSIONS AND FURTHER WORK
The experiments have shown that some form of prediction

always perform better than no prediction, and the UPA-
scheduling method was favourably compared with respect
to other methods, with small overhead. This confirms that
the method can be used in practical scheduling of grid ap-
plication tasks.

Future work includes integrating the LUPA module with
a task scheduler, so that experiments can be made using
real grid applications and several scheduling variants apply-
ing Use Pattern Analysis can be tested. Furthermore, it
remains to be explored the capacity for longer term predic-
tions, its reliability; there are several scheduling possibilities
this capacity allows for, which deserves a detailed analy-
sis, such as preemptive task migration and the automated
“booking” of machine resources for future executions. Also,

the existence of long histories for training has to be stud-
ied, to determine the ideal weight to be given to recent and
distant past information.
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