Knowledge-Based
—SYSTEMS—

Knowledge-Based Systems 15 (2002) 147-167

www.elsevier.com/locate/knosys

On the insufficiency of ontologies: problems in knowledge sharing and
alternative solutions

Flavio S. Correa da Silva®', Wamberto W. Vasconcelos®™*, David S. Robertson”,
Virginia Brilhante®, Ana C.V. de Melo™', Marcelo Finger®', Jaume Agusti®

nstituto de Matemdtica e Estatistica, Universidade de Sdo Paulo, Rua do Matdo, 1010, 05508-900 Sdo Paulo, Brazil
®Division of Informatics, University of Edinburgh, 80 South Bridge, EHI I1HN Scotland, UK
“Institut d’Investigacié en Intel.ligencia Artificial, Consejo Superior de Investigaciones Cientificas (IIIA/CSIC) UAB, E-08193 Bellaterra, Catalonia, Spain

Received 10 October 2000; accepted 2 February 2001

Abstract

One of the benefits of formally represented knowledge lies in its potential to be shared. Ontologies have been proposed as the ultimate
solution to problems in knowledge sharing. However even when an agreed correspondence between ontologies is reached that is not the end
of the problems in knowledge sharing. In this paper we explore a number of realistic knowledge-sharing situations and their related problems
for which ontologies fall short in providing a solution. For each situation we propose and analyse alternative solutions. © 2002 Elsevier

Science B.V. All rights reserved.

Keywords: Ontologies; Knowledge sharing; Knowledge representation and inference

1. Introduction

One of the benefits of formally represented knowledge
lies in its potential to be shared. The opportunity presented
by computer interconnection technologies such as the Inter-
net is for locally produced knowledge bases and inference
mechanisms to interact in solving problems which are more
complicated than each individual system could tackle on its
own. However, in many such situations we have to face
problems concerning how we can ensure, or at least assess,
the reliability of different forms of cooperation, given that
each system may have been developed by different people
and are likely to be based on different languages and form-
alisms.

Ontologies [24,33,35,52] have been proposed as the ulti-
mate solution to problems in knowledge sharing. Ontologies
provide explicit mappings between shared concepts from

* Corresponding author. Tel.: +44-131-650-2718; fax: +44-131-650-
6513.

E-mail addresses: fcs@ime.usp.br (F.S. Correa da Silva),
wvasconcelos @acm.org (W.W. Vasconcelos), dr@dai.ed.ac.uk
(D.S. Robertson), virginia@dai.ed.ac.uk (V. Brilhante), acvm@ime.usp.br
(A.C.V. de Melo), mfinger@ime.usp.br (M. Finger), agusti@iiia.csic.es
(J. Agusti).

' Fax: +55-11-3818-6134.
2 Tel.: +34-9-3-5809570; fax: +34-9-3-5809661.

formalisms of different systems [52]. However, as pointed
out in Ref. [16], even when an agreed correspondence
between ontologies is reached that is not the end of the
problems. In this paper we explore a number of realistic
knowledge-sharing situations and their related problems
for which ontologies fall short in providing a solution. For
each of such problems we propose and analyse alternative
solutions.

The structure of this paper is as follows. In the rest of this
section we further discuss our aimed class of knowledge-
based systems (KBSs, for short) and their properties; we
also present a parallel between knowledge sharing and
object-oriented technologies (Section 1.2) and a brief
discussion on the existing proposals for the communication
among KBSs (Section 1.3). We present the organisation of
the rest of this paper in the ensuing paragraphs.

Even when a single language can be employed to repre-
sent the messages exchanged among the systems, this by no
means implies that a single theory can be constructed for the
shared ontologies among those systems. This simplified
situation is obviously desirable and should be pursued
whenever possible. In Ref. [24] we find the proposal of an
‘ontology server’, to act as a tool to construct large collec-
tions of shared ontologies. In Section 2 we address the diffi-
culties inherent to this approach.

In Ref. [28] we find the differentiation between KBSs and

0950-7051/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0950-7051(01)00152-6

148 F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147-167

knowledge base repositories, being the latter used to store
declarative knowledge and information, akin and subject to
the same care requested by a database to maintain integrity
and accessibility. Sharing declarative knowledge (e.g.
contained in knowledge base repositories) can be quite
diverse from sharing reasoning (i.e. deductive) knowledge,
as shown in Section 3.

Modelling the content of the messages to be exchanged
between pairs of KBSs is a semantic problem. Since the
construction of the corresponding logical theory of the inter-
lingua is carried through at the syntactical level, it can
happen that some important semantic issues become invisi-
ble in the implementation, nevertheless they may be still
requirements to maintain consistency of the interpretation
of messages. This issue is further analysed in Section 4.

The knowledge sharing strategy for the construction and
application of KBSs may lead to more and more distributed
and fragmented networks of systems. Individual KBSs may
thus become smaller, and it may happen that a request not be
solvable by a single system, but still be solvable by an
appropriate combination of operations from many systems.
In this case, a knowledge broker is demanded to split a
single request into a collection of requests, gather the corre-
sponding operation execution results and assemble them to
satisfy the demanding client. This situation is explored in
Section 5.

Finally, in Section 6 we draw some conclusions and
discuss the results presented.

1.1. Knowledge-based systems: issues and features

Knowledge sharing is closely connected to knowledge-
based systems, which are, on their turn, founded on knowl-
edge. The most commonly used definition of knowledge is
Jjustified true belief, as found in, for instance, the work of
Delgrande and Mylopoulos [18]. Hence, KBSs are computer
software systems that work with justified true beliefs. We
can expand this a bit, and propose that a KBS has as its
content collections of information structures — representa-
tions of beliefs — for which we define formal interpretations
that grant them the status of true beliefs. Moreover, this
status can be checked by means of (most often deductive)
proofs, that provide them a formal justification.

A large number of formal languages exist for KBSs, each
being chosen according to its adequacy for the representa-
tion of the knowledge related to specific domains, ease-of-
use, popularity, and existing supporting tools. For instance,
bayesian and probabilistic languages [43] are convenient for
uncertain knowledge; linear logics [30] are convenient for
representing knowledge whose inferences may be resource-
bounded, and so on. Attempts to provide heterogeneous
sources of knowledge with the ability to cooperate have
arisen in different contexts. Some projects related to this
idea can be found [32,42,50]. A more formal counterpart
to these proposals, oriented to formal specification of soft-
ware, can be found in Refs. [9,31].

KBSs are best presented in terms of logical systems,
although this does not necessarily mean that they have to
be implemented as such. If we concentrate on deductive
logics we can finally achieve the conceptualisation of a
KBS that we intend to adopt throughout this work. We
shall regard a KBS as a deductive theory, written in a parti-
cular logic language with well-defined formal semantics,
which includes the expected soundness and completeness
results for the deductive theory with respect to the corre-
sponding semantic theory. A query is a logical conjecture
posed to the deductive theory, whose truth evaluation is
justified by proof-theoretical means.

KBSs are built for ‘practical’ problem-solving, hence the
semantics of their corresponding deductive theories must be
convincing enough as models for the problems being solved.
Furthermore, the proof generation procedures must be
appropriately implemented as efficient pieces of software,
and they must be appropriately wrapped as usable pieces of
software, with accordingly well-engineered interfaces.

Building a full fledged KBS can be a highly costly endea-
vour, as it requires a deep analysis of the system’s problem
domain and problem solving procedures, the engineering of
an appropriate logical language for the system, the model-
ling and formal reconstruction of the problem and its
solving procedures in terms of the semantics of the corre-
sponding logical language. It is also required that the actual
construction of the deductive theory which models the
specific problem and procedures are taken into account,
and, of course, the whole software engineering business
related to implementing the system, including testing,
validation, code optimisation and interface development.

A historical account® of the development of KBSs shows
that the first systems constructed benefited from the exis-
tence of each other only with respect to the developed skills
and generic methods in use, that could be passed away and
exploited in the construction of the following systems. Little
of the accumulated domain knowledge, deductive theories
and underlying languages could be inherited from one
system to another.

1.2. Knowledge sharing and object-oriented systems

Recent developments in software construction technol-
ogy have suggested that a more efficient approach to the
development of KBSs could be taken, that would lead to
cost-effective construction of higher-quality systems.
Namely, techniques related to distributed object oriented
systems development and implementation have influenced
the development of KBSs towards knowledge sharing
[24,27-29,41].

A well accepted standardised architecture for implement-
ing distributed object oriented systems is the Common
Object Request Broker Architecture (CORBA) proposed

* This can be inferred from the reported experiences of development of
early KBSs, as found in e.g. Ref. [37].

F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147-167 149

by the Object Management Group. According to the
CORBA specification [45]:

e ‘(...) an object system is a collection of objects that
isolates the requestors of services (clients) from the
providers of services by a well-defined encapsulating
interface.’

e ‘(...) An object system provides services to clients. A
client is any entity capable of requesting the service.’

e ‘(...) Anobject is an identifiable, encapsulated entity that
provides one or more services that can be requested by a
client.’

e ‘(...) A requestis an event, i.e. something that occurs at a
particular time. The information associated with a
request consists of an operation, a target object, zero or
more (actual) parameters, and an optional request
context.’

e ‘(...) An interface is a description of a set of possible
operations that a client may request of an object.’

e ‘(...) An operation is an identifiable entity that denotes a
service that can be requested.’

Clients can be external users or objects themselves. Abid-
ing by this architecture, we can implement objects and
clients in a distributed fashion. One advantage of adopting
this discipline of software system construction is the oppor-
tunity for object reuse that can improve software production
efficiency and reliability. Object reuse requires that
requests, interfaces and operations are in accordance with
a standard communication protocol (e.g. the OMG Interface
Definition Language in CORBA).

If we identify objects with KBSs, it becomes clear that
these concepts can be borrowed to describe what knowledge
sharing is about: requests are queries, presented in a
standardised format to a knowledge broker, mediator or
matchmaker that, based on available interfaces, will trigger
the appropriate KBSs and send back the results of corre-
sponding operations:

Knowledge sharing is the process of conveying
knowledge embedded into one KBS to another.

The key advantage of knowledge sharing lies on the reuse
of (partial) capabilities embedded into KBSs [41]. These
capabilities include declarative knowledge, representation
and (inferential, deductive) reasoning capabilities.

The implementation of knowledge sharing services asks
for the provision of adequate communication infrastructure,
to handle requests, advertisement of capabilities and
exchanging of messages that can result from the execution
of operations within KBSs. There exist standard solutions
for the lower level message-passing services, as well as for
the required distributed object management services (e.g.
the already mentioned CORBA standards). Moreover,
given that the objects and messages being passed are of a
specialised kind — namely, they are all queries and
responses to queries directed to and/or generated by KBSs

— there is room for further standardisation, that can
improve reliability and efficiency in system production.

1.3. Communication among KBSs

The Knowledge Query and Manipulation Language
(KQML) [28,39] has been proposed as the standard for
the communication layer among KBSs. It provides for the
encapsulation and passing of messages containing queries
and responses to queries. The actual content of the messages
has to be expressed using a different language,* commonly
called an Interlingua [27,42] because it must be capable of
expressing concepts that are common to systems that
exchange messages.

Strictly speaking, there is no reason to assume that a
generic interlingua can be constructed which is sufficiently
expressive to discriminate contents of messages to be
exchanged between every pair of KBSs. It has been argued
that a language with the expressive power of first-order logic
can be sufficient for the representation of most of such
messages. An example of interlingua based on this point
of view that has been employed with relative success is
the Knowledge Interchange Format (KIF) [29]. The inter-
lingua is thus used to represent concepts belonging to a
System that have to be passed over to another one. These
concepts must therefore ‘make sense’ in both systems, i.e.
they must belong to the shared ontologies of both systems.
Following Gruber [33], “an ontology is an explicit specifi-
cation of a conceptualisation”. A shared ontology is the
explicit specification of shared conceptualisations, i.e. a
common representation for concepts that belong to more
than one system.

Building a theory of shared ontologies for a pair of KBSs
is in many senses similar to building a KBS of its own, since
it requires a deep analysis of the systems’ problem domains
and problem solving procedures, the engineering of an
appropriate logical language to act as interlingua (or the
analysis whether the existing ones, e.g. KIF, are suited to
act as interlingua), and the formal modelling of the content
of the messages to be exchanged between the systems in
terms of the semantics of the interlingua. It is also necessary
that the actual construction and implementation of the
messages be taken care of as queries and operation execu-
tion results and their correspondences with expressions
internal to the systems exchanging messages, in the form
of a logical theory of the interlingua.

2. On sharing and reusing knowledge of multiple
ontologies

In this section we describe an experiment in multiple
ontologies reuse: given the task of engineering a new

* KQML itself could be used to represent the content of messages, but it
has not been designed for this purpose and other languages are better
equipped for this task.

150 F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147-167

Classes and Relations in Ecolingua

Fig. 1. Part of Ecolingua ontology.

ontology, the easiest way is to reuse existing ontologies
whose concepts overlap with those of the new ontology.
However, some difficulties have been detected in this
approach and we have explored alternative solutions for
them.

The knowledge sharing community has started to feel
uneasy about the dearth of convincing successes on ontolo-
gies reuse and application [53]. Few detailed experiment
reports can be found in the relevant literature: the research
work of Swartout et al. [51] used SENSUS, a broad natural
language based ontology for machine translation, to
construct a domain specific ontology for military air
campaign planning. Domain specific concepts were linked
to the SENSUS hierarchy of concepts. For narrowing down
the concepts included, they pruned the hierarchy like in
Section 2.2, followed by reintroduction of manually
selected relevant concepts. The work of Uschold et al.
[54] reuses the EngMath Ontology [34], from the Ontolin-
gua Server library, for deployment of a layout design appli-
cation, having gone through, like us, the process of
translation into a target specification language, Slang.

We wanted to engineer a formal ontology for description
of ecological metadata, Ecolingua [5,6]. Its construction
has been motivated by the development of an automated
ecological modelling system [7], where partial models are
generated based on high-level properties of data, e.g.
quantities associated with ecological entities, physical
dimensions of quantities, sampling campaigns and frequen-
cies, spatial distribution of sampling points, etc. Upon
descriptions of these properties through the ontology, auto-
mated modelling mechanisms draw partial models that are
consistent with the data.

Given the multidisciplinary nature of concepts related to
ecological data, we were interested in exploring knowledge
reuse for constructing Ecolingua. The extensive library of
shareable ontologies made available by the Ontolingua
Server [24] led us to choose it as an ontology construction
tool. Ontolingua, the server’s underlying language, was

created as an attempt to solve the portability problem for
ontologies. It adopts a translation approach in which ontol-
ogies are specified in a standard, system-independent form
and translated into specific representation languages [33].

The deployment of an ontology through the server in a
form that can be used by some reasoning system is thus a
two-fold process. First, the conceptual ontology is created
by means of specifying its definitions through the class, slot,
relation, function, individual and axiom constructs, and then
it is translated into some target implementation language
that is adequate to the intended usage of the ontology.

The extra challenge of the Ecolingua experiment, driven
by the diversity of the domain, was the reuse of concepts
from a number of different ontologies, even though all under
the Ontolingua unifying framework. In the light of the effort
made in our experiment, where we had all the ontologies in
a unique representational framework, we believe that auto-
mated tools to support reuse and integration of different
ontologies under different representation systems is not
yet a reality.

2.1. Conceptual ontology

The Ecolingua [5,6] vocabulary embodies concepts that
one would evoke in order to convey descriptions of ecolo-
gical data properties, functioning as a framework that is
instantiated to particular data sets. The collection of concept
definitions is structured as a hierarchy of interrelated
classes, with axioms restricting interpretations of the defini-
tions. Fig. 1 shows some of the Ecolingua classes and rela-
tions together with an excerpt of Ecolingua’s type
hierarchy. The classes constrain the type of objects involved
in the relations. The directed arcs show the direction of the
relation, from domain classes to range classes; e.g. the rela-
tion sampling frequency gives a non-negative integer (range
class) as the number of occasions in which a quantity
(domain class) has been sampled along a year (domain
class). The classes in dashed boxes in the type hierarchy

F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147-167 151

(= (Nth-Domain ? Relation ?N ? Type)
(= (Member ? Tuple ? Relation)
(And (> (Length ? Tuple) ?N)
(Instance-Of (Nth ? Tuple ?N) ? Type))))

(Positive-Integer 7N)

(Relation ?Relation)

(Nth-Domain Nth-Domain 3 Class)
(Nth-Domain Nth-Domain 2 Positive-Integer)
(Nth-Domain Nth-Domain 1 Relation)

= nth_domain(Relation,N,Type),
= (member(Tuple,Relation),
& (> (length(Tuple),N),
instance_of (nth(Tuple,N),Type)))).

positive_integer(N).
relation(Relation).
nth_domain(nth_domain,1,relation).

nth_domain(nth_domain,2,positive_integer).

nth_domain(nth_domain,3,class).

Fig. 2. KIF axioms (left) and their translation into ontolingua Prolog syntax (right).

exemplify reuse of other ontologies’ classes as super-classes
of the end-ontology classes. Thing, physical attribute, area,
temporal thing and time interval all belong to the same
ontology, Hpkb-Upper-Level, from which we reuse defini-
tions.

2.2. Translating conceptual into operational

The conceptual ontology at the time of translation had 37
classes and about the same number of relations/functions.
We now describe in detail the steps we have taken in order
to have Ecolingua translated into Horn Clauses of a Prolog
program [3,40], our choice of target language.

2.2.1. Step 1: automatic translation by the Ontolingua
Server into Prolog Syntax

The Ontolingua Server provides a translation service into
different target languages, including the so called Prolog
syntax. However, it does not produce Prolog runnable
code but logical sentences in a KIF-like Prolog readable
syntax. This is so because KIF is the formal language
used to represent the definitions comprising the Ontolingua
server’s ontologies. It is a prefix monotonic first-order
logic with set theory that subsumes Horn clause logic
[29]. Thus, only a subset of the definitions is translatable
into standard Prolog. A note on design decisions for trans-
lating Ontolingua to Prolog Syntax can be found in Ref.
[23].

In Ecolingua we refer to selected definitions in five other
ontologies: Hpkb-Upper-Level, Kif-Numbers, Kif-Exten-
sions, Simple-Time and Physical-Quantities. The Onto-
lingua Server translator provides the option of translating an
ontology in isolation, in which case the referenced defini-
tions to other ontologies are not included, or translating the
ontology along with all the complete referenced ontologies.
The translation of Ecolingua into Prolog Syntax through the
former option produces an 85 Kb file, whereas the latter
produces a 5.3 Mb file. Obviously, as far as knowledge
sharing is concerned, we are interested in translation
mechanisms that provide for inclusion of referred defini-
tions. One defines a class, say, plot as a subclass of the
Hpkb-Upper-Level ontology class area for the sake of

reusing area definitions, and therefore those should also be
part of the translation.

In the following step we show how we re-engineered the
5.3 Mb file (which we shall call hereafter simply workfile)
in order to turn it into a better structured, smaller, and,
hopefully, more manageable, set of axioms. Initially,
minor editing was necessary in order to make the file
produced by Ontolingua’s translator readable by our
adopted Prolog interpreter, SICStus [38]. For instance,
literals such as 1istof (), without any arguments, have
appeared — these have been replaced by 1istof (_) with
a fake argument to comply with Prolog’s syntax. It should
be pointed out that Ontolingua’s automatic translator cannot
cope with some constructs in which case these appear as
commented lines in the output file.

2.2.2. Step 2: cleaning up extraneous clauses

Extraneous clauses are over-general facts, definitions of
self subclasses and duplicated classes. These clauses should
be identified and removed from the work file.

e Over general facts — A fact is over general if all its
arguments are uninstantiated variables: for instance,

overgeneral(F) «—
is_ontolingua_predicate(F)A
F A arguments(F,Args)A
VX.var(X) «— member(X,Args).

There were 59 occurrences of over general facts such as
the one above in the workfile. Examples are lis?(X), class(X),
relation(X), set(X), positive_integer(X) and natural(X). To
illustrate this issue, let us consider in detail a particular
clause defining relation positive_integer(X). It comes from
the axioms defining the Nth-Domain relation in the Frame
ontology, which is part of the Ontolingua Server’s library of
ontologies. In the server the relation is documented as:
‘Domain restrictions generalised to n-ary relations. The
sentence (Nth-domain Rel 3 Type) says that the 3rd element
of each tuple in the relation Rel is an instance of the fype
class.’

We show in Fig. 2 both the original KIF axioms and their
translations into Ontolingua Prolog syntax. The axioms

152

Ookbe-omology <eeeeeoo

FE.S. Correa da Silva et al. / Knowledge-

Based Systems 15 (2002) 147-167

eneric

-~ 0 b— pper-Level
GOk{cOn\ology
lnta(}lgtblle; gdlvtdmzl
r_Level kbe-On! _—— .
> @b oW ~------- gssertion
-) @Hpkb-Upper-Level
abstract, mfonnanon
@Hpkb-Upper-Level ~.
mathematic. Sl
mtanrﬁ,lble mdzwdual i ﬂlmg ..
_Uppe‘ S
set_or_collection Teel
T * @ Hpkb-Upper-| T
attribute_value mathematical_object situation s -
@Hpkb_Upper_Level @Hpkb_Upper_Level ©@Hpkb_Upper_Level o ____ =

-

Fid
money R4
@Hpkb-Upper-Level e
.
.
dirtiness
Hpkb-Upper-Level

@Hpkb-U

1

ph{iﬂcal annbute
rotation . - -~~~
-Upper-Level

rate 0

e \/

(-] Hpkb-Upperuvsl

mass =~~
@Hpkb-Upper-Level

/
‘

color
(-] Hpkb Upper-l.avul |

raininess
Upper-Level

_ PR
t ’ "
,
esture

tuple
@ Hpkbjpper—Lml

group
< series ©Hpkb-Upper-Level

@Hpkb-Upper-Level
@Hpkb-Upper-Level

list_sequence
@Hpkb-Upper-Level

n_tuple_interval
ipper-Level

scalar interval
pper Larvel

cloudme:s
Ipkb-Upper-Level

accelerauon
-Level

Upper:

Fig. 3. Extract of the class hierarchy (directed arcs are instances of subclass_of (Class, Parent_class) relation).

(Positive-Integer ?N) and (Relation 7Relation) define the
classes of objects that instantiate variables ?N and
7Relation. There is an implicit notion of variable scope
here. The variables named ?N and ?Relation share the
same instantiation across the axioms. This is what causes
the over general facts in the Prolog version. In Prolog, the
scope of a variable does not go beyond the clause where it
appears. Thus the variable N in the implication axiom and
the other variable N in the positive_integer (N)
axiom do not share. Any term can match N in the Prolog
axiom positive_integer (N), leading to unwanted,
yet logically sound instantiations.

Self Subclasses — The Ontolingua server does not allow
users to define circular subclasses/superclasses: in such
cases an error message ‘Cannot have a circular super-
class/subclass graph’ is displayed. However, the query
subclass_of (X, X) over the knowledge base in the
workfile succeeds for 12 instances of X, all of them
classes in the Hpkb-Upper-Level ontology (e.g.
subclass_of(locomotion_process,locomotion_process)).

Duplicated Clauses — Duplicated clauses amounted to
57 Kb of the workfile.

2.2.3. Step 3: pruning the class hierarchy

Every time a class is created in the server it must be
defined as a subclass of some other existent class, through
the Subclass-Of relation. The Subclass-Of relation is defined
in the Okbc-Ontology as: ‘class C is a subclass of parent

class P if and only if every instance of C is also an instance
of P’, with correspondent KIF axiom:

(< (Subclass-Of 1Child-Class ?Parent-Class)
(Forall (?Instance)
(= (Instance-Of ?nstance ?Child-Class)
(Instance-Of Unstance ?Parent-Class))))

The parent class may be chosen among the classes of
the end-ontology being built or from the classes of any
of the ontologies in the server’s library (henceforth
called alien classes). The chosen parent class in turn
could also have been defined as a subclass of some
other class. Ultimately, the hierarchy of classes is
completed, with the end-ontology classes as leaf nodes
and as root nodes, classes from other ontologies which
are not defined as being subclasses of some other class.
An end-ontology class will not appear as a root node,
since every class when created must be defined as a
subclass of some other class. There are 18 classes in
Ecolingua whose parent classes are defined elsewhere.
For most of them we were able to find classes that are
conceptually appropriate as parent classes, e.g. the
Ecolingua class plot is a subclass of area defined in the
Hpkb-Upper-Level. For the remaining classes we
defined as parent the catch-all class rhing in the Okbc-
Ontology, since thing is the class of everything in the
universe of discourse that can be in a class. This includes
all the relations and objects defined in the KIF specification,
plus all other objects defined in user ontologies.

The resulting class hierarchy is an acyclic graph (or

F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147-167 153

forest) structure. The graph’s nodes are classes and it’s
directed arcs are of the subclass_of relation. It contains
1758 classes altogether, 1721 of which are alien classes.
All classes are found as the set of all nodes that take part
in the subclass_of relation:

Snodes = {Node|AChild, Parent . subclass_of(Child, Node) v
subclass_of(Node, Parent)}

The roots in the forest are the nodes that have no parent:

Skoos = {Node|AChild .
subclass_of(Child, Node) A
not(AParent . subclass_of(Node, Parent))}

Sroots cONtains eight elements: rthing — Okbc-Ontology;
term, expression and operator — KIF-Meta; set and
bounded — KIF-Sets; list — KIF-Lists; and number —
KIF-Numbers. The largest tree by far is the tree under
thing, containing 1681 classes. The thing, set, bounded
and number trees are connected encompassing all but 47
of the classes, which are nodes in the four other disjoint
trees with roots term, expression, operator and list. Alto-
gether, the classes hierarchy topology is a forest of five
disjoint connected trees, one of them containing approxi-
mately 90% of the classes.

Fig. 3 shows an extract of the class hierarchy. In the figure
we adopt the server’s notation Class@Ontology, denoting
class and correspondent ontology. It illustrates the myriad of
classes included in the hierarchy, most of them of unlikely
practical relevance. For instance, the establishment of the
relation subclass_of(plot, area), being plot an end-ontology
class and area defined in the Hpkb-Upper-Level ontology
causes all the classes in Hpkb-Upper-Level to be included
in the hierarchy.

We prune the hierarchy by traversing it bottom-up: from
the leaf nodes, which are end-ontology classes, up to the
root nodes. Sp is the set of pruned classes, the ones we keep,
if Sg. is the set of the end-ontology classes and Sp is
connected to Sg,,:

pruned_classes(Sp) «—
Steo = {Class|ecolingua_class(Class)} A
connected(Sp,Sg.,)

Sp is connected to Sg,, if it is the set of classes that are
in the paths from the end-ontology classes to the forest
roots:

connected(Sp,Sge,) —
Sp= {Class|E|Eco_class .
Eco_class € Sg,, A
in_path(Class, Eco_class)}

The current class is part of the path:

in_path(Class, Class)

The parent class of the current class is also in the path:

in_path(P_class, Class) «—
subclass_of(Class, P_class)

And so is any ancestor of the current class:

in_path(A_class, Class) —
subclass_of(Class, P_class) A
in_path(A_class, P_class)

This pruning method reduces the class hierarchy from
1758 classes to only 76.

The bold arrows in Fig. 3 represent the paths from plot, an
end-ontology class, to thing, a root class. All classes in these
paths are kept. The classes with dashed arcs to their parent
classes exemplify classes that are pruned off. They are not in
the paths from plot to thing (and are not in the paths from
any of the end-ontology classes to any of the root classes).

Despite reducing the hierarchy size dramatically, the
method cannot guarantee that all and only classes of inter-
est, conceptually speaking, are kept.

It is reasonable to expect some specifications (slots and
their values and axioms) in the definitions of classes to be
useful for a reasoning system using the ontology axioms.
For instance, the slot absolute_value_fn, the unary mathe-
matical function that returns the absolute value of its argu-
ment (Hpkb-Upper-Level ontology), with value type
scalar_interval that plot inherits through the path plot —
area — scalar_interval, can be used to ensure that the
area of a plot is given as a positive value. Nevertheless, as
we move higher along the paths, away from plot, the classes
become more and more conceptually remotely related to it,
rendering unlikely practical reuse of their specifications.

On the other hand, there are classes of interest that end up
being pruned off. This is the case, for instance, of some
subclasses of physical_attribute, such as raininess, color
and mass which are desirable as part of Ecolingua’s
universe of discourse. Only an inspection of the class hier-
archy by the ontology designer could guarantee that all and
only classes of interest are maintained, but this is obviously
impractical when the design involves reuse of multiple and
large-scale ontologies.

2.2.4. Step 4: pruning clauses

The objective of this step is to prune our workfile, keep-
ing only the clauses deemed relevant. The relevance criteria
are empirical, based on our familiarity with Ontolingua rela-
tions. The pruning method presented reduces the workfile
down to 1.4 Mb. We start by asserting an initial set of rele-
vant classes, relations and functions. The pruning process
consists of selecting clauses that are related to this initial set.
We take as initial relevant classes:

e The end-ontology classes and all their ancestor classes, i.e.
the classes in the set Sp of pruned classes (Section 2.2).

154 F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147-167

o Theclasses class (Okbc-Ontology), relation, binary_ rela-
tion and function (Kif-Relations), since these are the
meta-ontology classes of which the ontological
constructs are instances.

The initial relevant relations and functions are all rela-
tions and functions of the end-ontology.

Every clause in the workfile is checked for relevance,
with clauses of certain forms treated specifically. With
these specific checks we first select the clauses that specify
relevant instances of the class, relation, individual and
axiom constructs (checks (1)—(5)), and then the clauses
that specify subclass and instance relations involving
them (checks (6) and (7)). Clauses of other forms are rele-
vant if they involve relevant classes or relations (check (8)).
Below we explain the relevance checks for each of these
specific forms of clauses as well as the general case.

(1) Clauses class(C). A clause class(C) is relevant if C is
one of the initial relevant classes:

relevant(class(C)) —
CES,V
C € {class, relation, binary_relation, function}

Or if there is a relevant class, relation or function 7 which
is an instance of class C:

relevant(class(C)) «—
instance_of(T,C) A
(relevant(class(T)) V relevant(relation(T)) V
relevant(function(T)))

instance_of(T,C), T is an instance of class C, is an Onto-
lingua relation defined in the Okbc-Ontology that holds for
every ontological term with an associated definition. Every
class, relation or function is an instance of some class.’ For
example, the relation adjacent_to (Hpkb-Upper-Level
ontology) is an instance of the classes relation and spatial_-
predicate, the latter being a class of relations. The aim of
this check is to include as relevant those classes whose
instances (other classes, relations or functions) are relevant.

(2) Clauses relation(R) and function(R). A clause rela-
tion(R) or function(R) is relevant if R is one of the initial
relevant relations or functions, respectively, i.e. R is an end-
ontology relation or function:

relevant(2?(R)) «—
P € {function, relation} A
ecolingua_relation(R)

Besides the end-ontology ones we should keep relations
and functions (relations hereafter, since in Ontolingua, a

5 An instance should not be confused with the Ontolingua construct
individual. An instance can be a class but an individual cannot.

function is a special kind of relation) that are related to
alien classes. Relations in Ontolingua are used to describe
relationships between n terms, with n = 2. domain(R,C),
the domain of relation R is class C, also a relation in the
Okbc-Ontology, specifies the classes to which each of the
n — 1 terms belong. Each of the n — 1 terms is an instan-
ce_of its domain class. For instance, domain(number_o-
f_replicates, treatment) specifies that the function
number_of replicates applies to objects of the Ecolingua
class treatment.

The counter-relation to domain(R,C) is range(R,C),
which specifies the class of the nth term in the rela-
tion.

As a pruning strategy we keep the relations that have
relevant domain classes only, not including relations with
relevant range classes. The intuition behind this strategy is
that a relation with a relevant domain class has a stronger
bond with our relevant classes hierarchy. The strategy
stretches the boundaries of the ontology from inside out,
absorbing relations that are driven by, or have domains
which are, relevant classes. Keeping relations that have
relevant range classes would mean we would have to
include outsider relations that rather end in relevant classes.
Thus:

relevant(?(R)) «—
P € {function, relation} A
domain(R, C) A relevant(class(C))

(3) Clauses inverse(X,Y). inverse(R1,R2) is a Kif-Rela-
tions ontology function that applies over binary relations.
Its meaning is that one binary relation is the inverse of
another if they are equivalent when their arguments are
swapped. For instance, the Simple-Time ontology relations
after (T\,T,) and before (T,,T}), where T and T, are time
ranges, are equivalent. Therefore inverse_of (after,before)
holds.

These clauses are kept for the sake of retaining in the
ontology the knowledge of the inverse relations of relevant
relations. Thus, clause inverse(R|,R,) is relevant if any of R,
or R, is a relevant relation:

relevant(inverse(R;, Ry)) «—
relevant(relation(R,)) V relevant(relation(R,))

(4) Clauses specifying individuals. Clauses specifying
individuals appear as ground unary predicates %(I), where
I is an individual and % is the class of which 7 is a member.
For instance, forest_logging_disturbance_class(clearing
_edge) denotes that clearing_edge is an individual of the
class forest_logging_disturbance_class.

We want to keep the clauses that specify individuals of
relevant classes, excluding the meta-ontology classes class,
relation, binary_relation and function. The exclusion is
necessary because there exist clauses of the forms class(T),
relation(T), binary_relation(T) and function(T) for every

F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147-167 155

class, relation or function 7. Thus:

relevant(6(I)) «—
€ & {class, relation, binary_relation, function}% A
relevant(class(%))

(5) Clauses specifying logical sentences. Ontologies’
axioms get translated by the Ontolingua Server into logical
sentences appearing as clauses with the predicates: exists,
representing the existential quantifier, forall, the universal
quantifier, =, implication, <, reverse implication, <,
equivalence, and —, negation.

All logical sentences that involve relevant classes,
relations or functions should be kept, since they repre-
sent the axioms that constraint interpretations of the rele-
vant ontological definitions. Names of classes, relations
and functions appear in the logical sentences clauses as
functors in the arguments of the logical operators predi-
cates, for instance < (individual(A), — (set(A))). Thus, a
clause representing a logical sentence is relevant if any
of its arguments contains a functor which is a relevant
class, relation or function:

relevant(Lclause) «—
predicate_name(Lclause, P) A
P € {exists, forall,=,<=,<,—} A
arguments(Lclause, Args) A
contains_functor(Args, F) A
(relevant(class(F)) V relevant(relation(F)) V
relevant(function(F)))

(6) Clauses subclass_of (C,,C;). A clause subclass_
of(C1,C,) is relevant if any of C; or C, is a relevant class:

relevant(subclass_of (C,, Cy)) +—
relevant(class(C))) V relevant(class(C,))

The subclass_of (C,C,) clauses give shape to the class
hierarchy. It is crucial to keep them as part of the pruned
ontology to allow for the inheritance mechanism.

(7) Clauses instance_of (T,C). A clause instance_of (T,C) is
relevant if the term 7 is a relevant class, relation or function:

relevant(instance_of (T, C)) «—
relevant(class(T)) V
relevant(relation(T)) V
relevant(function(T))

Note that checking relevance of these clauses on the
grounds that C is a relevant class would have no pruning
effect. The meta-ontology classes class, relation, binary_
relation and function are relevant classes, and to every
term 7 which is a class exists a clause instance_of
(T,class), to every term T which is a relation exists a clause
instance_of(T, relation), and so on.

(8) Other clauses. Here we check the relevance of any
clause that do not fall into the cases above, i.e. clauses with

predicates outside the set:

Sprea = {class, relation, function,
subclass_of , instance_of , inverse,
exists, forall, =, <, <, —}

Check (2) above guarantees that the domain classes of
relevant relations are part of the pruned ontology, and subse-
quent checks guarantee that clauses that involve these
domain classes are kept. Complementary to that, clauses
that contain as a subterm the range class of a relevant rela-
tion must be kept. Thus, a clause is relevant if its predicate is
not in Sp,.y and it has a subterm which is the range class of a
relevant relation or function:

relevant(Clause) «—
predicate_name(Clause, P) A P & Spyoq A
(relevant(relation(R)) V relevant(function(R))) A
range(R, Class) A subterm(Clause, Class)

And finally the most general case: a clause is relevant if
its predicate is not in Sp,,,; and it has a subterm which is a
relevant class, relation or function.

relevant(Clause) «—
predicate_name(Clause, P) A
P & Sp,oq A subterm(Clause, T) A
(relevant(class(T)) V relevant(relation(T)) V
relevant(function(T)))

2.2.5. Step 5: transforming logical sentences into Horn
clauses

At this stage we have a much smaller collection of KIF
expressions but these still are not in the form required for the
computations we wish to perform in Prolog. The good news
is that, since KIF and Prolog share a common logical paren-
tage, standard truth-preserving transformations from first
order predicate calculus to Horn clauses (see for example
Ref. [40]) can be used to convert many of the expressions to
exactly the form required. For instance, the KIF expression
< (a) (b and c) translates to the equivalent set of Horn
clauses {a <—b Ac,b<—a,c — a}. The bad news is that
not all KIF expressions are translated into an elegant
computational form by this means.

An example is the expression < (a ?X) (or(b ?X)(c ?X)).
As a first stage translation we can obtain the equivalent set
of expressions {a(X) — (b(X)V c(X)),a(X) — (b(X) V
c(X))}. The first of these is acceptable as a Horn clause
but the second is not. There is then an issue about the
form into which we should translate the second expression.
We observe that in our domain of application (and we
suspect in many others) circumstances like this one occur
when the KIF expression’s most likely computational use is
in testing the consistency of the precondition of the implica-
tion. In our example we want to show that b(X) or ¢(X) is
true when a(X) is true. Since we are testing X, rather than
generating an instance of it, we can use the equivalence

156 F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147-167

between P— Q and — (P A — Q) to translate to a Prolog
goal. For our example this is the consistency constraint —
(@X)A = (b(X) V c(X))).

By being selective in this way we translate all our KIF
axioms to Prolog, either as program definitions or as consis-
tency constraints.

2.3. Discussion

The Ontolingua server has been helpful in conceptualis-
ing Ecolingua, promoting structured formal specifications
to a degree. Although KIF axioms can be written, it is
curious to observe their scarcity in most ontologies in the
server’s library. Ontologies and concepts are abundant,
however, selecting relevant ones for reuse can be tedious.
The only way to do this is to browse the ontologies and to
search for concept names by matching words. No meaning-
based search facility is available.

The problems with the translation begin with getting as
outcome from the server the union of the full content of all
referred ontologies, including the infrastructural definitions of
the implicitly imported Frame ontology. The pruning meth-
ods we apply are heuristics. We cannot guarantee that the
pruned ontology is a self-contained, consistent logical theory.
When translating Ontolingua ontologies into any implementa-
tion language, one has to compromise on expressiveness and
reasoning. Inference engines that support the full expressive-
ness of KIF, a first-order logic, cannot be built. The common
logical parentage between KIF and Prolog allowed our
compromises to be relatively modest.

We do not have a metric for cost-effectiveness of this
experiment. Neither could we use an off-the-shelf one for
metrics on knowledge reuse are yet to be formulated. Ref.
[10] is the pioneering work on that. We do have a subjective
evaluation, though. If we were to start building Ecolingua,
knowing what we have learned, we would still use the Onto-
lingua server for browsing existing, potentially useful,
ontologies. However, we would prefer to manually write
down the actual specification of the ontology from scratch
and to rewrite selected definitions for inclusion from other
ontologies, being in total control of every ontological
commitment made.

Applying Ecolingua in the development of a system that
synthesises ecological models based on metadata described
through it, has been reassuring that constructing the ontol-
ogy in the way described in this paper was not cost-effec-
tive. Even after having significantly pruned the ontology we
only actually use a small subset of it. Furthermore, we often
have to fine-tune the axioms in this subset to the needs of the
application.

3. On sharing declarative X inferential knowledge

There are interesting contexts in which it would be desir-
able, if not essential, to share not the declarative knowledge
but the inferences performed by KBSs. The usual process of

translating the knowledge base of KBS, the donor, into the
formalism of KBS,, the recipient, and making it all available
for local use by KBS,, is not always adequate — if a knowl-
edge base contains sensitive information or if queries to it
can be charged, it is not advisable to supply it to another
system.

We regard inferential knowledge as the knowledge impli-
cit in the knowledge base of a KBS and made explicit by its
inference engine. If we are to share this kind of knowledge
then we must ensure that inferences be appropriately repre-
sented and passed on from one KBS to another. There ought
to be, beyond the usual ontological correspondence between
the communicating systems, a correspondence between the
inference engines, in terms of their operators and deduction
rules. If the logical formalisms of the KBSs are similar or if
entailment relationships between their inferential powers
can be detected (e.g. modal logic inferences and classic
logic inferences), the correspondence can be easily
obtained.

However, an interesting problem arises when not all kinds
of inferences provided by one KBS are acceptable by
another system, that is, a situation of partial knowledge
sharing. This can be the case, for instance, of a KBS
which would not accept inferences longer than a certain
limit or, if the KBS providing the inferences charged for
them, beyond a certain price. More sophisticated situations
arise when certain operators or rules of inference are not
accepted. Since inferences can be very large, the problem of
examining them has to be given a computationally feasible
solution.

We have investigated in Ref. [26] the problem of infer-
ential knowledge sharing among resource-sensitive systems
(also called substructural logic systems [19]). The class of
substructural logics, encompassing, for instance, intuitionis-
tic logics [17], relevance logics [1] and linear logics [30],
employ in their inferences structural rules which take into
account the structure of premises in a deduction [19].
Substructural logics differ from each other by virtue of the
structural rules allowed in their proofs: the set of structural
rules permitted in one logic may be extended or reduced
thus giving rise to other logics. A number of real-life
problems can be naturally represented and elegantly solved
via resource-sensitive inferencing. Useful and computation-
ally efficient reasoning systems have been developed
employing substructural logics, for instance Refs. [36,56].

We want to achieve knowledge sharing in an opportunis-
tic form: rather than assuming we have a formal description
of each system, our scenario will be a more realistic one if
we assume that very little is known of all participating
systems. A knowledge-based system KBS; may want to
try to use another system KBS, by posing it queries and
analysing its answers. In this section we describe a compu-
tationally efficient approach to perform the analysis of
answers. We shall assume that our systems all share the
same vocabulary, that is, their knowledge bases are all
subsets of a language 2. If this assumption does not hold

F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147-167

157

TFop AF e, ¥] F
— (Aviom)| |EEEAFX gl [Ee¥lPx o
ok ILAFp®x Tlp®y]+x
Lok T+ Ay + T Tk AlY] -
Derx] |EReamlrx | elrx o | BRe ARIEX
THp—ox Alp = ¢, TTF x TFx o Al % « @] F x

Fig. 4. Connective rules as Gentzen sequent rules.

then a translation function among the languages of each
system should be provided [9] or, alternatively, the corre-
spondence among specific constructs to be shared [15]
ought to be given.

To enable a KBS to reject an answer from a remote
system, the latter must provide not only the answer for a
given query, but also describe how that inference was
achieved. This means that the donor must provide, together
with its answer, a description of the inference steps that led
to that conclusion. The receiver will inspect that inference
and decide whether to accept or reject it. This poses an extra
overhead which may lead to unacceptable inefficiencies.
Proofs are normally large objects, usually of orders of
magnitude larger than the answer they generate. Procedures
to examine a proof and check for properties in it will natu-
rally reflect the size and complexity of the objects involved.

In the following sections we show how this problem can
be avoided by sending a much more compact representation
of the ‘important aspects’ of the inferences. We show that
this can be done efficiently for the class of resource-sensi-
tive logics known as substructural logics.

3.1. Substructural logics

Substructural logics are a family of logics which differ
from each other by the set of structural rules that each logic
in the family accepts. These structural rules determine how
resources are dealt with by each logic, and therefore the
whole family is also known as resource sensitive logics.

For the purpose of this presentation, we will be working
with a fragment of the logic defined by the connectives &
(multiplicative conjunction), — (right implication) and «—
(left implication) (in the absence of commutativity, — and
< are not equivalent). Each logic in the family will obey
the connective rules shown in Fig. 4, depicted as Gentzen
sequent rules.

As we are not assuming a priori structural rules, the ante-
cedent of a sequent is a binary tree, with formulae at its
leaves and ‘,” at the internal nodes. Antecedents are by
default left-associative, so @, ®,, ®; actually represents
((D,D,),P53). The consequent of a sequent is always a single
formula. By I'[¢] we mean a specific occurrence of ¢ in the
structure I, and a corresponding I'[W] in the lower part of a
rule means the substitution of that occurrence of ¢ by the
structure W in I'. What distinguishes one substructural logic
from another are the structural rules that are allowed in its
inferences.

For example, the Lambek calculus is the logic that

accepts only the associativity rules (while the pure Lambek
calculus accepts none), which, in terms of resources, means
that all formulae must be used in a given order; linear logic
accepts associativity and commutativity, so formulae must
all be used, and only once, but in any order; relevance logics
further accepts contraction, which allows it to reuse formu-
lae in a deduction. Finally, intuitionistic logic accepts all
structural rules, and therefore accepts all constructible theo-
rems.

3.2. Combinator logics and structurally-free theorem
proving

Dunn and Meyer [21] noted that the structural rules can
be represented by combinators. Combinators are A-terms
with no free variables [4]. We shall represent combinators
by capital letters; the choice of letters is historical. Some
examples of combinators are

B = Axyz-x(yz) Bxyz — x(yz)
C = MAxyz-xzy Cxyz — xzy
W = Axy-xyy Wxy — xyy

The symbol — means ‘reduces to’ and in the traditional
A-calculus it is replaced by = . The right hand-side formula
in each box shows that combinators can be defined without
A-abstraction and, in this sense, they become proper combi-
nators dissociated from the A-calculus, as in their original
formulation [47].

In Ref. [21] it is proposed a structurally-free logic (SFL)
where the system is free from any structural presupposition
(whence its name). All structural operations have to be
accounted for via combinator rules, and hence another
name for such a logic is combinator logic. In the language
of such a logic, the combinators are considered as special
atomic formulae. Hence, p — (B X ¢) is a formula of such a
language. The connective rules for such a language are
exactly those presented before. However, there are no struc-
tural rules in SFL. Instead, we have connective rules; a
generic combinator rule is

I'o(®y,...,PIF x

X, @y, ..., P x X

(where Xxi,...,x; = o(xy,...,x;)) for a combinator that,
when applied to the lower sequent as shown, generates the
upper sequent. Some instantiations of the generic

158

F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147-167

D : reduced plane fares;
S : high-season;
C : chartered planes available.
p(D) =04
@ p(S|D) = 0.2
/ \ 2(S|-~D) = 0.7
© ® oCID) =08
p(C|=D) =0.3
Disconnected variables are (conditionally) independent. So, every conditional probability involving these

variables can be inferred from the above. For example:

e p(S) = p(S|D)p(D) + p(S|~D)p(~D) = 0.2 x 0.4+ 0.7 x 0.6 = 0.5

* p(DIS) = BEEGIEL = 84592 = 016

e p(D,C|S) = p(D)p(i{g))p(SlD) — 0.4x8:§x0.2 -

Fig. 5. Discount belief network (discount-BN).

combinator rule for the combinators presented above are:

Contraction

e, v, vk x
©h T'W, o, Y] F x WH

Commutativity
I, 5,¥]+Fx
I'C,®,V,E] F x

Left-associativity
I[P, (Y, E) + x
I'B,®,V,E1+x

B

Note that above we also show the structural rule asso-
ciated with the combinator rule.

Combinator rules leave a ‘trail” of combinators in a proof,
and such combinators are evidence of the structural rules
needed for the deduction. Finger [25] proposed the notion of
Structurally-Free Theorem Proving (SFTP), which can be
defined as follows. Given an antecedent I" and a consequent

Zurich & Zurich London + London

Barcelona <— London
London

Comprise the knowledge-base of a donor system. These
propositional formulae entail simple information about
routes of flights (first and second formulae) and the origin
of the journey (third formula). Let us assume further that the
inference engine of such system incorporates a relevant
logics [1]. When posed a query <« Zurich @ Barcelona
(that is, is it possible to go both to Zurich and Barcelona,
leaving from London?) then the donor system prepares the
following sequent proof:

Barcelona + Barcelona London + London

(+F) («+)
Zurich < London, London + Zurich Barcelona < London, London Barcelona
Zurich + London, London, (Barcelona < London, London) + Zurich ® Barcelona @)
(B2), Zurich < London, London, Barcelona < London, London - Zurich @ Barcelona B
(C2,Bz2), Zurich « London, Barcelona < London, London, London \- Zurich ® Barcelona (C(\ll_v) H

(W3, Ca,B2), Zurich + London, Barcelona < London, London + Zurich ® Barcelona

X, find a combinator X such that X, I' - y is deducible in
combinator logic. Such an activity is a generalisation of
traditional theorem proving, because by inspecting the
combinators that compose the answer X, it allows us to
answer the question: in which substructural logics is a
given sequent deducible.

3.3. An example: knowledge sharing between relevance and
linear logics

Let us suppose the following formulae:

Zurich <+ London

The subscript in the combinators indicates the position in
the sequent where that combinator was applied: it can be
defined purely in terms of combinators as X; = X and
X;+1 = BX;. The output of the query to the KBS above
consists of the answer that <« Zurich ® Barcelona holds
and the list (W;,C,,B,). Recipient systems are able to effi-
ciently evaluate the answer provided: rather than examining
the proof, a linear scan of the list of combinators is enough to
check for properties of the donor system. In our example, since
W is found in the output string of combinators, we conclude
that the deduction is not linear. Recipient systems which
required that proofs be linear could reject the deduction
above just by examining the simplified list of combinators.

F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147-167

Such a method for quickly checking the kind of structural
rule, i.e. the control of resources, used by a remote inference
system easily generalises to any substructural system. All it
is required to do is to send, together with the answer to a
query, a combinator list associated with the deduction of the
answer to the query.

4. On sharing syntactic X semantic knowledge

As noted in Refs. [15,16], besides having restrictions on
the use of deductive systems (Section 3), a semantic
mapping on the systems domains is required for certain
knowledge sharing. A nice example of this situation can
be found in systems for reasoning under uncertainty,
where even if we do have a shared ontology for the problem
being solved, we must still establish semantic links between
the inferences performed within each system to actually
have knowledge being shared and reused.

This section presents the issues on having a simple logical
system for interval-based probabilistic reasoning being able
to consult bayesian belief networks to complete its own
inferences. Despite sharing a lot of semantic information,
the differences on the internal procedures to construct
answers create some difficulties to semantically connect
answers from both systems.

Sections 4.1-4.4 introduce the basic definitions of the
probabilistic logics and the bayesian belief networks used
in our work and how they can be semantically related. A
more comprehensive review on these subjects is shown in
Ref. [12]. In order to keep the discussion more objective, we
provide concrete examples.

4.1. A system for probabilistic reasoning

The sample system for probabilistic reasoning used here®
employs a resolution-style SLDNF deductive system for
clausal theories and can be implemented as a pure Prolog
meta-interpreter [2,3,49]. Such a system allows deductions
of degrees of belief apportioned by a rational agent to state-

available(From,To)
available(From,To) +
cheap(From,To,Month)
goodflight(From,To,Month) ¢+
bestflight(From,To,Month)+«

route(1,london,manchester) = [1.
route(2,london,edinburgh) = [1.
route(3,london,aberdeen) = [1.
route(4,manchester,aberdeen) = [1.
route(b,edinburgh,aberdeen) = [1.

ments represented as normal clauses and queries. These
degrees of belief are represented as probabilities on possible
worlds, based on the foundations for well-known formal-

® This is a short version of the system presented in Ref. [14] and imple-
mented in Ref. [11].

“ e ww
R
© o o s o
e e b e

159

isms like incidence calculus [8,13], probabilistic logic [44]
and the Dempster—Shafer theory of evidence [22,48].

This defines a rich subset of first-order logic with a
computationally efficient inference procedure and a
formally specified declarative semantics. A program II is a
theory consisting of a collection of normal clauses
H<—Q,,...,0, and unit clauses H «—, and proofs will be
triggered by a query — Q1. ..., Q},, where H, H' are atomic
predicates and Q;, Q}, are atomic predicates or negations of
atomic predicates.

A setof possible worldsis a collection of worlds (or states, or
interpretations), each of them assigning different truth-values
to the formulae in our language. Intuitively, a possible world
should be viewed as a conceivable hypothetical scenario upon
which we can construct our reasoning. The degree of belief
attached to a query is the probability of selecting a possible
world at random and the query being true in that world. Follow-
ing Ref. [43], one way of evaluating the degree of belief is
based on solutions obtained for the inner and outer
approximations for the probability of a query é =
0',...,0", denoted as 2,(Q) and 2*(Q) respectively,
and calculated as below (complementary definitions
are presented in Appendix A):

2" (H) = 2"(Q)

He—0.0, = 2.H) =max{0,2.(0)+ 2.0, — 1}
P (H) = min{2"(0)). 7" (0»)}
He—Q = 2.H) =max{2.0)).2.(0,)}
H«— 0, P*(H) = min{1,2"(Q) + 7"(0y)}
He—Q = 2.H)=1-2%Q)

P'(H)=1-2.0)

Example 4.1. Let us consider the following KBS; for
flight reservations within the United Kingdom:

exists(X), route(X,From,To)

exists(X), route(X,To,From)

discount (From,To,Month), available(From,To)
reliableorcheap(From,To,Month), available(From,To)
cheap(From,To,Month), reliable(From,To)

exists(1) = [.6,.9]
exists(2) = [.5,.8]
exists(3) = [.5,.7]
exists(4) = [.6,.7]
exists(b) = [.4,.7]

The probability of having flights from a place X to Y is
given by available (X, Y). The probability related to
the query «—available(london,manchester) is
calculated according to the rules above, that is

[max{.6,.0},min{1.,.9}] = [.6,.9]

The probability of having cheap flights, say from London

160 F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147-167

Table 1
Structural similarities between logical system and belief network

Logical system

Belief network

Atomic information
relations

Predicates and ground terms
Normal clauses

Degrees of belief Probability intervals

A priori information Intervals for unit clauses
Output Intervals for queries

Boolean variables

Directed graph edges

Conditional probabilities

Selected set of marginal probabilities
Probabilities given evidential assumptions

Table 2
Operational differences between logical system and belief network

Logical system Belief network

Basis for propagation Logical implication Probabilistic conditioning
Inference system Resolution Bayesian rule
Representation of Interval based Single valued

degrees of belief

to Manchester in August, i.e. « cheap (london,man-
chester, august) cannot be calculated in this theory
through explicit means since discount (london,
manchester, august) has no values. This task is
deferred to Section 4.4.

4.2. Bayesian belief networks

A Bayesian belief network is a directed acyclic graph
in which nodes stand for propositional variables, and
edges for the probabilistic relation between them [55].
For instance, an edge from node v; to node v; denotes
how v; depends on v;. On the other hand, the probability
of v; may change as v; is given as an evidence. A more
formal definition of Bayesian belief network is given in
Appendix A.

Belief networks are mainly applied to the representation
and manipulation of knowledge concerning how evidences
support hypotheses. This is denoted by the probability
propagation along the network via probability values
assigned to nodes and edges, conditional probability
(Appendix A).

Example 4.2. The belief network shown in Fig. 5 repre-
sents the statistical knowledge on how plane fares are
reduced (D) depending on the season (S), and the availabil-
ity of chartered planes (C).

4.3. Mapping formalisms

Comparing the formalisms for uncertain reasoning
presented in the previous sections, we realise their
structural similarities, as presented in Table 1. Both
systems were created to propagate their (probability-
based) representations of degrees of belief along pieces
of knowledge. As a result, they contain operators to

perform conceptually equivalent tasks, as indicated by
their structural similarities (Table 1). In contrast with
the above, the procedures employed within each system
to effectively propagate degrees of belief are very
dissimilar, as presented in Table 2.

To have both systems sharing knowledge, their corre-
sponding capabilities at the conceptual level must be
defined, namely by mapping their semantics (Fig. 6).
The relation must be established as a functional trans-
formation from logical atomic queries to predefined
conditional probabilities of the belief network, and
then back from the (single valued) probability estima-
tions from the belief network to the (interval based)
probability values in the logical system. The interpreta-
tion of queries and answers in each system must be
compatible with each other, hence the connection must
be established at the semantic level.

To link a predicate p (a) from the logic system to a pair
of evidences from the belief network (vi,...,v,ley.....e,) and
(Viseevs Vis Vit 1o--sVle1s..,e,), the set of possible worlds
selected by the evidences ey,...,e, must be disjoint with
the set of possible worlds initially used to interpret
the program. Also, the algebra and probability
measure based on this set of possible worlds must
be independent from the other algebras and measures
used in the initial interpretation of the program. Under
such restrictions, the set of possible worlds, algebras
and probability measures considered initially for the
program can be extended. Results from the bayesian
belief network can then be included as part of the
logical proofs.

Regarding the Example 4.1, a semantic relation
between the KBS; and the discount belief network,
presented in Example 4.2, can be established. If the
notion of reduced fares are appropriately related to
reduced plane fares in KBS;, the predicate
discount (From, To,Month) can be inferred from
the discount belief network. As the Month is given,
we can associate high and low-season time. For the
query «— discount (london, manchester, august), for
example, we may use high season time (S) as evidence.
This way, the inner approximation for the query
discount (london, manchester, august) may be
given by having discount and chartered planes as high-
season is given as evidence. On the other hand, the outer
approximation may be given by having reduced fares as

F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147—-167 161

SEMANTICS

soundness | | completeness

SYNTAX

LOGIC

soundness completeness

SYNTAX

BELIEF NETWORK

Fig. 6. Connection between two KBSs: conceptual level.

high-season is given as evidence. For the query above, these
systems are related as follows:

logic formula

discount(london,manchester,august) [p(D, C|S),p(D|S)]

4.4. Logical system consulting belief networks

This section presents a range of examples in which the
logic system presented above consults one or two belief
networks to complete its queries.

Example 4.3. Once the semantic relation between the
systems is established, the KBS; can use the discount-BN
knowledge to complete its inferences. Using the relations

logic formula

reliable(london,manchester)

defined in the previous section, we may now answer the
query < cheap (london, manchester, august):

available(london,manchester) = [0.6, 0.9]

discount(london,manchester,august)
= [0.13, 0.16]

cheap(london,manchester,august)

= [max{0, (0.13 + 0.6 — 1)}, min{0.16,0.9}] = [0.0,0.16]

Example 4.4. Now, let us consider another belief network

shown in Fig. 7 representing the statistical knowledge on
reliable flights, based on the size of the air-companies and

associated interval result

[0.13, 0.16]

the weather conditions for the area.

Besides having the notions of cheap fares, a new notion on
reliable flights must be established to answer the query «—
bestflight (london,manchester, august) for
example. To do so, the semantic relation must first be estab-
lished between the query+«—reliable (london,
manchester) and the reliability-BN. The weather condi-
tions is given as evidence since the place to go is well-known.
The relation is then defined as follows:

associated interval result

[P(R, BIW,), p(RIW,)] [0.38,0.8]

The query «bestflight (london,manchester,
august) can now be answered:

reliable(london,manchester = [0.38,0.8]
cheap(london,manchester,august) = [0.0,0.16]
bestflight(london,manchester,august)

= [max{0,(0.38 + 0.0 — 1)}, min{0.8,0.16}]

= [0.0,0.16]

Example 4.5. In KBS;, good flights are measured by either
the flight is cheap or the flight is reliable. The query «—
goodflight (london, manchester, august) can

162 F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147-167

then be answered by sharing knowledge either from the relia-
bility-BN or from the discount-BN. If the following semantic
relations are established:

logic formula
reliableorcheap(london,manchester,august)

reliableorcheap(london,manchester,august)

Query «— goodflight (london, manchester, august)
may have two different results, depending on which BN is
being used. If we use reliability-BN, then we have

available(london,manchester)
reliableorcheap(london,manchester,august)

goodflight(london,manchester,august)

If, on the other hand, we use reliability-BN, then we have:
available(london,manchester)
reliableorcheap(london,manchester,august)

goodflight(london,manchester,august)

The results presented here take into account only a simple
situation in which information provided by the networks is
completely missing in the logical system. Additionally, we
have not considered how the connection between systems
would have to be made so that logical theories could also
provide useful information to belief networks. As with the
example above, different KBSs could be used to answer
the same query. A broker containing the descriptions of
the systems capabilities must then be provided. The broker
is concerned with accepting queries, formatting them
accordingly and providing the means to obtain answers
based on the capabilities relation (details on this subject
are presented in Section 5).

5. On sharing group knowledge

In previous sections we have shown how knowledge can
be shared between pairs of systems under different assump-
tions about the reasoning mechanisms employed by those
systems. The ultimate goal of knowledge sharing, however,
requires more than this. It also is necessary that systems
which hitherto have not interacted, and which have been
designed by separate teams of engineers, should be able to
share information. A prerequisite for doing this on a large
scale is some mechanism for guessing which of the many
systems available are capable of supplying different kinds of
information, then acquiring actual information based on
these capability descriptions and finally assembling the

results to supply the information originally requested. This
task is sometimes described as information ‘brokering’. In
Ref. [46] we describe a simple, compact mechanism based

associated interval network result
[p(R, BIW,), p(R|W,)] reliability-BN ~ [0.38,0.8]
[p(D, C|S), p(D|S)] discount-BN [0.13,0.16]

on Horn clause logic for performing this task. The diagram
of Fig. 8 (adapted from that paper) describes the general
brokering method.

[0.6,0.9]
[0.38,0.8]
[max{0,(0.38 + 0.6 — 1)},min{0.9,0.8}] = [0.0,0.8]

[0.6,0.9]
[0.13,0.16]
[max{0,(0.13 + 0.6 — 1)}, min{0.16,0.9}] = [0.0,0.16]

Initially, each KBS describes its capabilities in our
capability language (explained later by example). In the
diagram we depict these capabilities as the boxed C1 and
C2 attached to each of the two KBSs in the example.
Capabilities are advertised by sending these to a broker,
which records the capabilities and the KBSs who claim to
be able to supply them. In Fig. 8 this is shown as a single
broker but we could, if we wished, have a distributed system

R : plane is reliable;
B : big air-companies do the service;
W, : weather conditions in Scotland;.

W, : weather conditions in England;.

p(R) =0.6
p(B|R) = 0.6
@ p(B|-R) = 0.5
/ P(Ws|R) = 0.8

p(We|R) = 0.8
p(We|-R) = 0.7
Other probability information can be inferred from the above:
o p(We) = p(We| R)p(R) + p(We|~R)p(~R) = 0.76
e p(R|W,) = p(R)p(We|R) _ 0.6x0.8 _ g

= T p(We) 0.76

. p(R,BIWe) = ESR!E“:(‘}/!;}S!WE R) _ 0.6x§$6x0.8 =0.38

Fig. 7. Reliability belief network (reliability-BN).

F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147—-167 163

advertise

ADVERTISING CAPABILITIES

advertise

BROKERING A QUERY

Broker

Fig. 8. A capability brokering method.

of brokers — in the most extreme case of a fully distributed
agent system there could be a separate broker for each agent.
In the next stage, another KBS (in our diagram, KBS 3)
sends a query to the broker. The broker constructs from its
capability descriptions its internal description, which we
call a ‘brokerage structure’, of how the query might be
answered based on those capabilities. It then translates its
brokerage structure into a sequence of performative state-
ments describing the messages which it thinks should enable
the query to be satisfied by requesting appropriate KBSs to
discharge their capabilities. In the final stage this performa-
tive information is used by the KBS which sent the query to
select which KBSs to contact, to send appropriate messages
to them, and await appropriate responses.

The details of the brokering mechanism are given in Ref.
[46]. To demonstrate its interaction with the pairwise
knowledge sharing of previous sections we return to our
earlier examples to demonstrate how we may supply
capability descriptions of each KBS and then use these
descriptions to broker information.

Our example will involve three KBSs: the flight reserva-
tion system from Example 4.1 of Section 4.1; the discount
belief network from Fig. 5 of Section 4.2; and the reliability

available(From,To) = P

belief network from Fig. 7 of Section 4.4. We first describe a
set of capabilities for each of these three systems.

We describe capabilities using Horn clauses of the
form C <Py A-- AP, where C is a query which the
system may be capable of answering and each P; is a
query which must be made of another system and the
answer supplied in order for an answer to C to be
attempted. Where the query for C may be attempted
without interacting with other systems we omit the
conditions and simply state C. Notice that these capabil-
ity descriptions are not part of the machinery of infer-
ence of the KBS. They only specify which queries the
KBS is competent to attempt, without prescribing how
(or even if) they will be answered. Capability sets for
each of the three example KBSs, accompanied by infor-
mal descriptions in English, are given below:

Capabilities for flight reservation KBS. Assessing the
chance of flight availability; guessing the chance of a
cheap fare if it is supplied information about the likelihood
of a discount; guessing the chance of a good flight if it is
supplied with the likelihood of a reliable or cheap flight; or
suggesting the best flight if given information about the
chances of discount and reliability.

cheap(From,To,Month) = P, <« discount(From,To) = P,
goodflight(From, To, Month) = P, <« reliableorcheap(From,To, Month) = P,

bestflight(From, To, Month) = P, +— discount(From,To) = P, A reliable(From,To) = P;

164 F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147-167

Capabilities for discount belief network. Estimating
the probability that it is high season; estimating the
probability of a reduced plane fare given that it is
high season; estimating the probability of a reduced
plane fare and chartered planes being available given
that it is high season.

pS)="°P
p(DIS) =P
p(D,C|S) =P

Capabilities for reliability belief network. Estimating the
probability that weather conditions are good in England;
estimating the probability that a plane is reliable given
that weather conditions are good in England; estimating
the probability that a plane is reliable and that a big air
company does the service given that weather conditions
are good in England.

p(W,) =P
pRIW,) =P
p(R,B|W,) =P

Since the ontologies used in the three systems are differ-
ent we also need to supply definitions of translations
between terms in appropriate ontologies - allowing a term
used in one system to be understood in the ontology of
another. We use T) = T, to denote that the term 7 in one
ontology is considered equivalent to the term 7T, in another.’
The definitions are then:

reliableorcheap(From, To, Month) = [P;, P,] =
p(D, C|S) = P; A p(D|S) = P,
reliableorcheap(From,To) = [P,,P,] =
PR, BIW,) = P, Ap(R,W,) = P,

If our broker is supplied with this information then it can
construct brokerage structures for queries posed to it that
involve the coordinated efforts of all three KBSs. The formal
details of this are given in Ref. [46] but, for our current
purposes, it suffices to show informally how this is assembled
for the query goodflight(london,manchester,august) = P. One
nested brokerage structure for this is as shown below:

e The capability goodflight(london,manchester,august) =
P, — reliableorcheap(london,manchester,august): P,
suggests that the query might be answered by the flight
reservation KBS provided that it is supplied with
reliableorcheap(london, manchester, august) = P,.

e reliableorcheap(london, manchester, august) = [P, P,]
can be translated to p(D, C|S) = P, A p(D|S) = P,.

e p(D,C|S) =P, is a capability of the discount belief
network.

7 Strictly we should name the ontologies in these definitions but we leave
this detail out of our example.

e p(D|S)=P, is a capability of the discount belief
network.

This structure is then easily translated into a sequence of
messages which can be sent to the appropriate KBSs. Given
the actual inference mechanisms which we saw in previous
sections, the behaviour we would expect is as follows:

e The broker asks the discount belief network if it can
answer the queries p(D, C|S) = P, and p(D|S) = P,.

e The answers returned are p(DC|S) = 0.13 and p(D|S) =
0.16 (see Fig. 1).

e The broker then applies the translation:
reliableorcheap(londonmanchester,august) = [0.13,0.16] =
p(D,CIS) = 0.13 A p(D|S) = 0.16.

e It now informs the flight reservation KBS of its belief that
reliableorcheap(london, manchester, august) = [0.13, 0.16]
and asks it to supply an answer for
goodflight(london, manchester, august) = P, given this
information.

e The answer is goodflight(london, manchester, august) =
[0.13,0.16].

6. Conclusions and discussion

Ontologies are useful in aiding knowledge sharing.
However, as described in our investigation, many other
important issues arise which cannot be dealt with simply
with ontologies. Other techniques have to be investigated
and combined in order to solve practical problems inherent
in knowledge sharing. In this paper we have discussed a
number of problems related with employing ontologies to
foster knowledge sharing and suggested alternative solu-
tions to them. We have exploited the following aspects:

1. Reusing ontologies to engineer new ontologies — Ontol-
ogies enthusiasts claim that reuse is a useful feature of
ontologies. However, we have shown via an actual experi-
ment in which we tried to build a new ontology reusing a
library of existing ontologies, that reuse is not straightfor-
ward and many practical issues arise. We have presented
and assessed techniques to cope with such issues.

2. Sharing inferences. — When we want to share not the
declarative knowledge of a KBS but its inferences, then
ontologies fall short in providing adequate solutions. If
not all kinds of inferences provided by one KBS are
accepted by another system, that is, a situation of partial
knowledge sharing arises, then it is required that the infer-
ences be examined by the receiving system. Since infer-
ences may be very large, the problem of examining them
has to be given a computationally feasible solution. We
have proposed an efficient way to build and economically
represent proofs by means of combinator logics so as to
enable their efficient interchange and analysis by the
KBSs sharing their knowledge.

3. Sharing semantic knowledge. — In systems for reasoning
under uncertainty, even when we have a shared ontology,

F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147—-167 165

we must still establish semantic links between the infer-
ences performed within each system in order to appropri-
ately share and reuse knowledge. We have studied a
significant instance of this problem, in which a logical
system for interval-based probabilistic reasoning is made
to consult a bayesian belief network to complete its infer-
ences. The difficulties arising are pointed out and we show
how these can be remedied.

4. Sharing group knowledge — When knowledge sharing is to
take place in a large scale, mechanisms are required for
guessing which of the many systems available are capable
of supplying different kinds of information. We have inves-
tigated a simple alternative for a mechanism that acts as a
knowledge broker in which the capabilities of systems are
advertised (as Horn clauses) and consulted by the requesting
systems. We illustrate the workings and the usefulness of our
proposal with a simple motivating example.

This paper does not claim to be exhaustive in pointing out
issues in knowledge sharing which are not accounted for by
ontologies. We have compiled a list of our own experiences
to illustrate our point. It is our hope that more case studies
appear in the literature to guide practitioners in the task of
(re-)engineering KBSs for knowledge sharing.

Acknowledgements

This article presents results of research project Distribu-
ted Environment for Cooperation Among Formalisms for
Knowledge-based Systems (DECaFf-KB), sponsored by
the Brazilian Research Sponsoring Agency CAPES and
the British Council. Flavio S. Correa da Silva was partially
sponsored by the Brazilian Research sponsoring Agency
FAPESP, Grant n0.93/0603-01. Wamberto W. Vasconcelos
was on a Post-Doctoral leave of absence from Departamento
de Estatistica e Computagdo, Universidade Estadual do
Ceara, Ceara, Brazil, sponsored by the Brazilian Research
Council CNPq, grant no. 201340/91-7. Virginia Brilhante
was on leave of absence from Departamento de Ciéncia da
Computacdo, Universidade do Amazonas, Brazil, sponsored
by CAPES, Grant no. BEX 1498/96-7. Ana C.V. de Melo
was partially sponsored by the Brazilian Research Sponsor-
ing Agency FAPESP, Grant no. 93/0603-01. Marcelo Finger
was partially sponsored by CNPq, Grant no. 300597/95-9.
Flavio S. Corea da Silva was partially sponsored by the
Brazilian Research Sponsoring Agency FAPESP, grant no.
93/0603-01, and by an ACI grant of the Generalitat de Cata-
lunya. Jaume Agusti was partially sponsored by an ACI
grant of the Generalitat de Catalunya.

Appendix A. Basic facts on probability theory and
bayesian belief networks

Given a finite set D, an algebra yp on D is a set of subsets
of D such that

* DE xp;
e AE xp=>"A € xp;
o A,BEXD:AUBEXD

A subset of D is called an event on D. Events belonging to
Xp are called measurable events. The basis x|, of an algebra
Xp is the subset of yp such that

o {} & xp:
e ALBE x\p=ANB={};
e KE xp=3A,,...,A, €E Xp: K= A,

A probability measure on xp is a function 2:yp— [0,1]
such that

e P(D) =1 (total probability);
e ANB={}=2AUB)=2A) + #(B) (finite addi-
tivity).

Given two measurable events A, B € xp, the conditional
probability Z(A|B) is defined as:

P(A N B)
= 2 2B
P(A|B) = 2B) (B) 70
0, 2(B)=0

Two measurable events A, B are called independent iff
P(A|B) = 2(A) which, as a corollary, gives that 2(A N
B) = 2(A) X 2#(B). Probability measures can be extended
to non-measurable events, i.e. sets A; € 2D\XD. Given D, xp
and P, we define the inner and outer extensions to 2 (2.,
and 2", respectively) as [20]:

o 2.7 2P = 0,1]

o 7.(A) = sup{PX): X CAXE xp} = P(UX:X C
A X € xb)

e 72°A) = inf{2X):A C XX € xp} = PUX:
XNA#{},XE xh)

A bayesian belief network [55] is a tuple B = (G, P)
where:

e G=(VG,AG) is an acyclic digraph with nodes VG =
{Vi,....,V,},n =1, and edges AG;

e P = {pV)|V; € VG} is a set of real-valued non-negative
functions

pVi i {Cy,} X {Chovy} — [0, 1]

called (conditional) probability assessment functions,
such that for each configuration c,q(V;) of the set
pc(V)) of (immediate) predecessors of node V; in G, we

have that py. (= vilc,gv) = 1 = py,(vile6r,)-

References

[1] A.R. Anderson, N.D. Belnap Jr., Entailment: The Logic of Relevance
and Necessity, vol. 1, Princeton University Press, Princeton, 1975.
[2] K.R. Apt, Logic programming, in: J. van Leeuwen (Ed.), Handbook of

166 F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147-167

Theoretical Computer, Elsevier — MIT Press, Amsterdam —
Cambridge, 1994, pp. 493-574.

[3] K.R. Apt, From Logic Programming to Prolog, Prentice-Hall, UK,
1997.

[4] H.P. Barendregt, The Lambda Calculus: Its Syntax and Semantics,
Number 103 in North-Holland Studies in Logic and the Foundation of
Mathematics, Elsevier, Amsterdam, 1981.

[5] V. Brilhante, Using formal data descriptions for ecological modelling
guidance, Discussion Paper 197, Divison of Informatics, University
of Edinburgh, 1998.

[6] V. Brilhante, Using formal meta-data descriptions for automated

ecological modeling, Papers from the AAAI-99 Workshop on Envir-

onmental Decision Support Systems and Artificial Intelligence WS-

99-07, AAAI, AAAI Press, Menlo Park, CA, 1999.

V. Brilhante, D. Robertson, in: C. Rautenstrauch (Ed.), Environmen-

tal Information Systems in Industry and Public Administration, Idea

Group Publishing, Hershey, PA, 2001 chapter Metadata-supported

Automated Ecological Modelling, in press.

[8] A. Bundy, Incidence calculus: a mechanism for probabilistic reason-
ing, Journal of Automated Reasoning 1 (3) (1985) 263-284.

[9] M. Cerioli, J. Meseguer, May I borrow your logic? (transporting
logical structures along maps), Theoretical Computer Science 173
(1997) 311-347.

[10] P. Cohen, V. Chaudhri, A. Pease, R. Schrag, Does prior knowledge
facilitate the development of knowledge-based systems? Proceedings
of the 16th International Conference on Artificial Intelligence —
AAAI-99, AAAI Press, 1999 pp. 221-226.

[11] F.S. Correa da Silva, Automated reasoning with uncertainties, PhD
thesis, Department of Artificial Intelligence, University of Edinburgh,
1992.

[12] F.S. Correa da Silva, R.C. Araujo, J. Agusti, A.C.V. Melo, Knowl-
edge sharing between a probabilistic logic and bayesian belief
networks, Proceedings of the International Conference on Processing
and Management of Uncertainty, 2000.

[13] E.S. Correa da Silva, A. Bundy, A rational reconstruction of incidence
calculus, Technical Report 517, Department of Artificial Intelligence,
University of Edinburgh, 1991.

[14] FE.S. Correa da Silva, D.S. Robertson, J. Hesketh, Automated Reason-
ing with Uncertainties, Knowledge Representation and Uncertainty,
Volume 808 of Lecture Notes in Artificial Intelligence, Springer,
Berlin, 1994 Chapter 5.

[15] E.S. Correa da Silva, W.W. Vasconcelos, D.S. Robertson, Coopera-
tion between knowledge-based systems, Proceedings of the IV World
Congress on Expert Systems, Mexico City, Mexico, 1998, pp. 819—
825.

[16] E.S. Correa da Silva, W.W. Vasconcelos, D.S. Robertson, J. Agusti,
A.C.V. Melo, Why Ontologies are not Enough for Knowledge Shar-
ing, Lecture Notes in Artificial Intelligence, vol. 1611, Springer,
Berlin, 1999 pp. 520-529.

[17] D. Van Dalen, Intuitionistic logic, in: D. Gabbay, F. Guenthner (Eds.),
Handbook of Philosoph. Log., vol. III: Alternatives to Classical Logic,
Kluwer Academic Publishers, Dordrecht, The Netherlands. 1984.

[18] J.P. Delgrande, J. Mylopoulos, Knowledge representation: features of
knowledge, in: W. Bibel, P. Jorrand (Eds.), Fundamentals of Artificial
Intelligence: An Advanced Course, LNCS 232 Springer, Berlin, 1986.

[19] K. DoSen, A historical introduction to substructural logics, in: P.S.
Heister, K. Dosen (Eds.), Substructural Logics, Oxford University
Press, Oxford, 1993, pp. 1-31.

[20] R.M. Dudley, Real Analysis and Probability, Wadsworth and Brooks/
Cole, Belmont, CA, 1989.

[21] J.M. Dunn, R.K. Meyer, Combinators and structurally free logic,
Logic Journal of the IGPL 5 (4) (1997) 505-538.

[22] R.Fagin, J.Y. Halpern, Uncertainty, belief, and probability, Technical
Report RJ-6191, IBM Research Report, 1989.

[23] A. Farquhar, Ontolingua to Prolog syntax translation, http:/
www.ksl.Stanford. EDU/people/axf/ol-to-prolog.txt, 1995.

[24] A. Farquhar, R.E. Fikes, J. Rice, The Ontolingua Server: a tool for

[7

—

collaborative ontology construction, Technical Report KSL-96-
26.w6, Stanford University, 1996, Web-page available at http://
www-ksl-svc.stanford.edu.

[25] M. Finger, Towards structurally-free theorem proving, Logic Journal
of the IGPL 6 (3) (1998) 425-449.

[26] M. Finger, W.W. Vasconcelos, Sharing resource-sensitive knowledge
using combinator logics, Proceedings of SBIA/IBERAMIA’2000,
LNALI, 2000.

[27] T. Finin, M. Cutkosky, T. Gruber, J. van Baalen, Knowledge sharing
technology project overview, Technical Report KSL-91-71, Stanford
University, November 1991.

[28] T. Finin, D. McKay, R. Fritzon, An overview of KQML: a knowledge
query and manipulation language, Technical report, University of
Maryland Baltimore County, March 1992.

[29] M.R. Genesereth, R.E. Fikes (Eds.), Knowledge Interchange Format,
version 3.0 Reference Manual Computer Science Department, Stan-
ford University, 1992 Report Logic 92-1.

[30] 1.Y. Girard, Linear logic, Theoretical Computer Science 50 (1987) 1—
102.

[31] J.A. Goguen, R.M. Burstall, Institutions: abstract model theory for
specification and programming, Journal of the ACM 39 (1992) 95—
146.

[32] P. Gray et al., KRAFT — Knowledge reuse and fusion/transforma-
tion, http://www.csd.abdn.ac.uk/apreece/Research/ KRAFT/KRAF-
Tinfo.html, 1998.

[33] T.R. Gruber, A. Translation, Approach to portable ontology specifi-
cations, Knowledge Acquisition 5 (2) (1993) 199-220.

[34] T.R. Gruber, G.R. Olsen, An ontology for engineering mathematics,
Proceedings of the Fourth International Conference on Principles of
Knowledge Representation and Reasoning, Bonn, Germany, Morgan
Kaufman, Los Altos, CA, 1994.

[35] N. Guarino (Ed.), Formal Ontology in Information Systems, Volume
46 of series Frontiers in Artificial Intellligence and Appliances. I0S
Press, Amsterdam, 1998.

[36] 1.S. Hodas, D. Miller, Logic programming in a fragment of intuitio-
nistic linear logic, Information and Computation 110 (2) (1994) 327-
365.

[37] P. Jackson, Introduction to Expert Systems, Volume 46 of series
Frontiers in Artificial Intelligence and Applications, Addison-Wesley,
Reading, MA, 1999.

[38] Intelligent Systems Laboratory, SICStus Prolog User’s Manual,
Swedish Institute of Computer Science, available at http:/
www.sics.se/isl/sicstus2.html#Manuals, February 2000.

[39] Y. Labrou, T. Finin, A proposal for a new KQML specification,
Technical report, University of Maryland Baltimore County, February
1997.

[40] J.W. Lloyd, Foundations of Logic Programming, Springer, Berlin,
1993 second, extended edition.

[41] E. Motta, Reusable Components for Knowledge Modelling, I0S
Press, 1999.

[42] R. Neches, D. Gunning, The knowledge sharing effort, http://www-
ksl.stanford.edu/knowledge-sharing/papers/kse-overview.html, 1999.

[43] R. Ng, V.S. Subrahmanian, Probabilistic Logic Programming, Infor-
mation and Computation (1992).

[44] N.J.Nilsson, Probabilistic logic, Artificial Intelligence 28 (1986) 71-87.

[45] OMG and X/Open, The common object request broker: architecture
and specification, Technical Report Revision 2.0, July 1995 —
updated July 1996, The Object Management Group, Inc. and X/
Open, Co Ltd., 1996.

[46] D. Robertson, F. Correa da Silva, J. Agusti, W. Vasconcelos, A light-
weight capability communication mechanism, Proceedings of the
13th International Conference on Industrial and Engineering Applica-
tions of Artificial Intelligence and Expert Systems, New Orleans,
Louisiana, 2000.

[47] A. Schénfinkel, Uber die Bausteine der Mathematischen Logik, in: J.
van Heijenoort (Ed.), From Frege to Godel, Harvard University Press,
Cambridge, MA, 1924 Reprinted.

(48]
[49]

[50]

[51]

[52]

F.S. Correa da Silva et al. / Knowledge-Based Systems 15 (2002) 147—-167 167

G. Shafer, A Mathematical Theory of Evidence, Princeton University
Press, Princeton, 1976.

L. Sterling, E. Shapiro, The Art of Prolog, MIT Press, Cambridge,
MA, 1986.

V.S. Subrahmanian, HERMES — a heterogeneous reasoning and
mediator system, http://www.cs.umd.edu/projects/hermes/
index.html, 1999.

B. Swartout, R. Patil, K. Knight, T. Russ, Toward distributed use of
large-scale ontologies, Proceedings of the 10th Knowledge Acquisi-
tion for Knowledge-Based Systems Workshop — KAW-96, Banff,
Canada, 1996.

M. Uschold, M. Gruninger, Ontologies: principles, methods and
applications, Knowledge Engineering Review 11 (2) (1996) 93—136.

[53] M. Uschold, Where are the killer apps? Proceedings of the Workshop
on Applications of Ontologies and Problem-Solving Methods —
ECAI-98, Brighton, UK, 1998.

[54] M. Uschold, M. Healy, K. Williamson, P. Clark, S. Woods, Ontology
reuse and application, Proceedings of the First International Confer-
ence on Formal Ontology in Information Systems — FOIS’ 98,
Trento, Italy, IOS Press, 1998 pp. 179-192.

[55] L. van der Gaag, Bayesian belief networks: odds and ends, The
Computer 39 (1996) 97-113.

[56] M. Winikoff, J. Harland, Implementation and development issues for
the linear logic programming language Lygon, Proceedings of the
VIII Australasian Computer Science Conference, Adelaide, Australia,
February 1995, pp. 562-573.

