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Abstract

Is it possible to compute in which logics a given formula is deducible? The aim of this paper is to
provide a formal basis to answer positively this question in the context of substructural logics. Such

a basis is founded on structurally-free logic, a logic in which the usual structural rules are replaced
by complex combinator rules , and thus constitute a generalization of traditional sequent systems.

A family of substructural logics is identified by the set of structural rules admissible to all its
members. Combinators encode the sequence of structural rules needed to prove a formula, thus

representing the family of logics in which that formula is provable. In this setting, structurally-
free theorem proving is a decision procedure that inputs a formula and outputs the corresponding

combinator when the formula is deducible.
We then present an algorithm to compute a combinator corresponding to a given formula (if

it exists) in the fragment containing only the connectives → and ⊗. The algorithm is based on
equistructural transformations , i.e. it transforms one sequent in a set of simpler sequents from which

we can compute the combinator (which represents the structure) of the original sequent. We show
that this algorithm is sound and complete and always terminates.

Keywords : Structurally-Free Logic, Automated Deduction, Substructural Logic

1 Introduction

The formulas in a sequent proof can be manipulated by two kinds of rules. Connec-
tive rules are rules that manipulate sets of premises according to the presence of a
connective in some of them. For example, in the sequent calculus, two rules about
the → connective are:

Γ, ϕ ` ψ
(` →)

Γ ` ϕ→ψ

Γ, ψ ` χ ∆ ` ϕ
(→ `)

Γ, ϕ→ψ,∆ ` χ
On the other hand, structural rules do not refer at all to the existence of connectives

in the premises, but operate over the elements of the premises by means of reordering,
grouping, duplication, permutation, elimination, etc. In other words, the “structure”
of premises is changed through the application of structural rules. For example:

Γ, (ϕ, ψ) ` χ
(left-associativity)

(Γ, ϕ), ψ ` χ
(Γ, ϕ), ψ ` χ

(commutativity)
(Γ, ψ), ϕ ` χ

(Γ, ϕ), ϕ ` χ
(contraction)

Γ, ϕ ` χ
Γ ` χ

(weakening or thinning)
Γ, ψ ` χ

It is well-known that the several substructural logics differ from each other by virtue
of the structural rules allowed in the proofs [10]. Connective rules may be thought of
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as invariant for all the family of substructural logics; one still has the choice of which
connectives are dealt with, i.e. which fragment of the logic is on focus. Sometimes,
due to the presence of structural rules, some connectives become equivalent and are
collapsed.

Historically, however, this was not the way the several substructural logics were
created [10]. In fact, Intuitionistic Logic [9] and Relevance Logic [1] were created
with clear philosophical motivation, while Linear Logic [14] was proposed for compu-
tational reasons. It was the process of understanding these logics that later uncovered
similarities and structural differences between them, created several variations, and
finally grouped them into the family of substructural logics.

It was quite natural that the original theorem provers for one member of the family
concerned only to that member. More recently, theorem provers for substructural
logics have been designed to be modularly extensible [8]. By modular extensibility,
it is meant that the basic mechanism of the theorem prover is common to proofs in
several logics, differing only in one “module” of the prover. In this way, for example,
[3] provided a modular theorem prover over the {→,⊗}-fragment of Linear, Relevance
and Intuitionistic Logic.

In this work we intend to go one step further and investigate a structurally-free
theorem prover (SFTP) and provide a formal basis to answer the question:

In which substructural logics is the formula ϕ a theorem?

Since a set of structural rules identifies the family of substructural logics that admits
all such rules, apparently, it would suffice to have a theorem prover that outputs the
structural rules used in the proof. But that assumes the prover is based on sequent
proofs and accounts for the use of every structural rule, which is not usual. Another
way to fake such a prover would be to have at hand a set of theorem provers, each
dedicated to one substructural logic. We could then submit ϕ to each of them and,
according to the yes/no answer of each prover, get the set of logics where we can
prove ϕ. To do such a thing would be very inefficient and inelegant. Furthermore, it
is always possible to invent new substructural logics and this method would tell us
nothing or next to nothing on a new logic.

Ideally, we would like to generate an algorithm, independent from a prover, that
given a provable formula in some substructural logic shown by some prover, can indeed
“infer” the structural rules that are used to prove such a formula.

Indeed, what we plan to do is to give a mathematical account on how to “compute” a
family of logics in which a formula or sequent is provable. For that, we take advantage
of a deductive system that has a built in capability of “remembering” the structural
rules used. This memory is kept by means of introducing combinators (λ-terms with
no free variables) as first class citizens in the logic. Structural rules are replaced by
combinator rules in a sequent, thus generalizing the usual sequent system. We then
show that some special sequents, called abstractive sequents, provide a way to compute
what combinator is needed for their deduction. The final part of the method consists
on how to equistructurally transform a given sequent, i.e. a transformation of sequents
that preserves their structural/combinatorial content. Those transformations should
yield a set of abstractive sequents that allows for the computation of the combinator
corresponding to the input sequent.

We say we are still going towards a structurally-free theorem prover because our
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method does not compute the family of all logics in which a formula is provable.
However, we guarantee a weaker form of completeness, called cc-completeness, that
states that one combinator associated to a formula is computed (representing a family
of logics not necessarily maximal), if at least one such combinator exists.

The main influence of this work comes from Dunn’s and Meyer’s work on struc-
turally free logic [11], further developed in [12]. Dunn and Meyer showed how sub-
structural rules are related to λ-calculus combinators, where a combinator is a λ-
expression without free variables. Combinators were first introduced by Schönfinkel [19]
even before Church created the λ-calculus [5, 6]; it was later shown that combinators
could be represented by closed λ-terms (e.g. [2] for a proof).

The Curry-Howard isomorphism [17] has already shown a relationship between logic
and the λ-calculus, but the relationship investigated by Dunn and Meyer explores a
different connection between combinators and substructural logics on the structural
side.

Those are certainly not the only connections between combinators and logic. The
study of combinators as a foundation of Logic and Mathematics developed into Com-
binatorial Logics [7, 4, 15, 16]. What is significant to our work is that, to provide a
foundation for first-order logic, those works of Combinatory Logics introduced other
forms of combinators which were not equivalent to λ-terms.

We will also need to introduce other forms of combinators which will not in general
be equivalent to λ-terms. The motivation behind their introduction comes from the
fact that standard combinators are not sufficient to represent the set of all structural
rules of Intuitionistic Logic (see Section 3). The whole set of structure-representation
combinators is called complex combinators. Given a closed λ-term, there is an algo-
rithm to compute the equivalent combinator, which is known as combinator abstrac-
tion [2, 18]. It is also possible to provide a stronger version of combinator abstraction
that generates complex combinators [13]. We show that complex combinator abstrac-
tion can be directly applied to ⊗-sequents (i.e. the abstractive sequents mentioned
earlier) as a means to compute the associated complex combinator. The whole prob-
lem then becomes how to transform a {→,⊗}-sequents into a set of ⊗-sequents.

The paper develops as follows. Section 2 introduces Structurally-Free Logics and
gives a Gentzen sequent system for it. Section 3 defines precisely what consists a
structurally-free theorem prover and motivates the creation of complex combinators,
a theme developed in Section 4. Section 5 develops the notions of equistructurality and
shows that abstractive sequents allow for the computation of an associated complex
combinator. Section 6 presents an algorithm based on equistructural transformation,
used to compute a combinator associated to a formula; soundness, cc-completeness
and termination are shown. The paper concludes by pointing out the deficiencies and
possible improvements of our method in Section 7.

2 Structurally-Free Logic

Dunn and Meyer [12] proposed a structurally-free logic (SFL) where the system is free
from any structural pressuposition (whence its name). All structural operations have
to be accounted for via combinators, i.e. λ-terms with no free variables [2]. Figure 1
presents a few examples of combinators. We represent combinators by capital bold
letters; the choice of letters is historical.
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B ≡ λxyz.x(yz) Bxyz � x(yz)
C ≡ λxyz.xzy Cxyz � xzy
I ≡ λx.x Ix � x
W ≡ λxy.xyy Wxy � xyy
S ≡ λxyz.xz(yz) Sxyz � xz(yz)
K ≡ λxy.x Kxy � x

Fig. 1. λ-calculus combinators

In Figure 1 the symbol � means “reduces to” and in the traditional λ-calculus it is
replaced by =. In the semantics of SFL [12], inequality is used instead of equality, so
we prefer � to =. The right hand-side column in Figure 1 shows that combinators can
be defined without λ-abstraction and, in this sense, they become proper combinators
dissociated from the λ-calculus, as in their original formulation [19].

Combinators are not independent from each other. The combinators W and
S are interdefinable in the presence of the I, B and C: W = CSI and S =
B(BW)(BC(BB)) as it can be verified from their definition in the λ-calculus in
Figure 1. Indeed, any λ-definable function (and therefore any combinator) can be
expressed in terms of the combinators S and K [2]; however, the set of combinators
presented in Figure 1 is very convenient to account for the use of the most common
structural rules and so we name them primitive combinators.

Any combinator can be used to represent a structural rule in SFL. Figure 2 shows
a Gentzen system for SFL based on a fragment containing only operator → (right
implication) and ⊗ (intensional or multiplicative conjunction, with Girard’s Linear
Logic notation). Before we discuss Figure 2 in detail, let us present some formal
definitions.

The vocabulary of the language consists of a countable set of propositional letters
P = {p1, p2, . . .}, the set of additional combinator symbols X1, . . . ,Xi, . . . and the
binary connectives → and ⊗. Any propositional letter and any combinator is a for-
mula; and if ϕ and ψ are formulas so are (ϕ→ψ) and (ϕ⊗ψ) (parenthesis are omitted,
as usual, when no ambiguity is implied).

We then define a sequent in the following way. Any formula is a structure; if Γ
and ∆ are structures, so is the ordered pair (Γ,∆). We denote structures by capital
Greek letters. Structures are therefore binary trees, and the order and nesting of
the formulas in them are very important; the ‘,’ in a structure is left-associative, so
Φ,Ψ,Ξ ≡ (Φ,Ψ),Ξ.

A sequent Γ ` ϕ is such that Γ is a structure and ϕ is a formula; Γ is the sequent’s
antecedent and ϕ its succedent .

In Figure 2 the symbol Γ[Φ] is used to represent one occurrence of Φ inside Γ.
Note that, instead of the usual structural rules there is a generic combinator rule that
introduce combinators on the antecedent, where X denotes a generic combinator. To
understand its meaning, let us define its symbols precisely. By Σ(Φ1, . . . ,Φk) it is
meant the class of structures that can be constructed from some non-empty subset of
{Φ1, . . . ,Φk}; inductively, this is defined as:

• Φi ∈ Σ(Φ1, . . . ,Φk) for 1 ≤ i ≤ k;
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(Reflexivity)
ϕ ` ϕ

Connective Rules

Γ ` ϕ ∆ ` χ
(` ⊗)

Γ,∆ ` ϕ⊗χ
Γ[ϕ, ψ] ` χ

(⊗ `)
Γ[ϕ⊗ψ] ` χ

Γ, ϕ ` χ
(` →)

Γ ` ϕ→χ

Γ ` ϕ ∆[ψ] ` χ
(→ `)

∆[ϕ→ψ,Γ] ` χ

Generic Combinator Rule

Γ[σ(Φ1, . . . ,Φk)] ` χ
(X `)

Γ[X,Φ1, . . . ,Φk] ` χ

Fig. 2. A Gentzen system presentation of SFL

• if Γ and ∆ are in Σ(Φ1, . . . ,Φk), so is (Γ,∆).

Then σ(Φ1, . . . ,Φk) denotes an element of Σ(Φ1, . . . ,Φk). Although the presentation
in Figure 2 allows for any combinator rule, some combinators are more useful in the
representation of the common structural rules. For instance, Figure 3 presents several
examples of combinator rules and their associated “structural” role for the primitive
combinators.

The B combinator accounts for associativity, C for commutativity, I for identity,
W for contraction, K for thinning and S is also a type of contraction, called factoring.

Given the sequent rules in Figures 2 and 3, we define a deduction as a tree such that
every leaf node is obtained by the Reflexivity rule, and any internal node is obtained
by the application of a sequent rule to its children nodes. A sequent is deducible if it
is the root of some deduction.

For example, to show that

B ` (p→q)→[(r→p)→(r→q)]

we perform the following deduction steps:

q ` q p ` p
(→ `)

p→q, p ` q r ` r
(→ `)

p→q, (r→p, r) ` q
(B `)

B, p→q, r→p, r ` q
(` → 3×)

B ` (p→q)→[(r→p)→(r→q)]

This deduction shows that the formula (p→q)→[(r→p)→(r→q)] is a theorem of the
→-fragment of all logics which permit the structural rule for left-associativity. Dunn
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identity:
Γ[Φ] ` χ

(I `)
Γ[I,Φ] ` χ

left-associativity:
Γ[Φ, (Ψ,Ξ)] ` χ

(B `)
Γ[B,Φ,Ψ,Ξ] ` χ

commutativity:
Γ[Φ,Ξ,Ψ] ` χ

(C `)
Γ[C,Φ,Ψ,Ξ] ` χ

contraction:
Γ[Φ,Ψ,Ψ] ` χ

(W `)
Γ[W,Φ,Ψ] ` χ

factoring:
Γ[Φ,Ξ, (Ψ,Ξ)] ` χ

(S `)
Γ[S,Φ,Ψ,Ξ] ` χ

thinning:
Γ[Φ] ` ξ

(K `)
Γ[K,Φ,Ψ] ` ξ

Fig. 3. Examples of combinator rules

and Meyer [12] have shown that the Multiple Cut Rule is admissible in SFL, i.e. if
added to SFL, no new sequents would be deduced:

Γ ` ϕ ∆(ϕ) ` ψ
(Cut)

∆(Γ) ` ψ
where the notation ∆(ϕ) identifies one or more occurrence of ϕ in ∆ (but not nec-
essarily all occurrences) and ∆(Γ) is obtained by replacing those occurrences with Γ.
From the admissibility of Multiple Cut follows the admissibility of the single Cut.

Furthermore, what is peculiar to SFL is that combinators are first class citizens,
and it is possible to deduce, for example

K ` K

with a single application of the reflexivity rule; reflexivity remains the sole pure struc-
tural rule preserved in SFL, and sequents thus obtained are called axioms. Besides
the primitive combinators, we can extend the vocabulary with compound combina-
tors, defined as: (i) every primitive combinator is a combinator; (ii) if X1 and X2

are combinators, so is X1X2. We also abbreviate the structure (X1,X2) as X1X2

when X1 and X2 are combinators (this will simplify the definition of a purely logical
sequents below). Given a set of combinators Θ, X is based on Θ if it is an element of
Θ, or composed from combinators based on Θ.

Indeed, SFL is not a single logic, but a family of logics. Let SFL(Θ) be the
logic SFL which allows only combinators based on Θ; we will abbreviate SFL∗ =
SFL({S,K, I,B,C,W}). We can invent logics that only accept certain (primitive
or compound) combinators; for example, SFL({B,CB}) accepts commutativity just
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in the form CB. Since CBϕ1ϕ2ϕ3 � ϕ2(ϕ1ϕ3), the corresponding combinator rule1

(CB `) is:
Γ[Φ2, (Φ1,Φ3)] ` χ

(CB `)
Γ[CB,Φ1,Φ2,Φ3] ` χ

In general, we say that for a (primitive or compound) combinator X such that
Xx1 . . . xk � σ(x1, . . . , xk), its corresponding combinator rule and its corresponding
structural rule are, respectively,

Γ[σ(Φ1, . . . ,Φk)] ` χ
(X `)

Γ[X,Φ1, . . . ,Φk] ` χ and
Γ[σ(Φ1, . . . ,Φk)] ` χ

Γ[Φ1, . . . ,Φk] ` χ .

As usual, a structural rule is called admissible in a logic L if, when added to logic L,
no new sequents are deduced. It is obvious that a combinator rule for a combinator
based on Θ is admissible in SFL(Θ). It follows that a combinator rule corresponding
to an X equivalent to a combinator based on Θ, even if X itself is not based on Θ,
is admissible in SFL(Θ); for example, (W `) is admissible in SFL({S, I,C}) because
W = CSI.

There are certain kinds of SFL formulas and sequents which will play a special role
once we start discussing theorem proving. Let a pure formula/sequent be one such
that it contains no occurrence of a combinator. A pure formula ϕ is a structurally-free
theorem (sf-theorem) in SFL(Θ) if there exists a combinator X based on Θ such that
X ` ϕ is deducible. In this case, X is said to be a combinator for ϕ; Dunn and
Meyer [12] call X ` ϕ a purely logical sequent2 (we will refer to a sequent of the form
X, ϕ1, . . . , ϕn ` χ as purely logical as well, for ϕi and χ pure formulas; it is obvious
that the latter version can be easily transformed into the former using (` →)). Purely
logical sequents have “pure” deductions, as shown below.

Lemma 2.1 Every deducible purely logical sequent has a deduction where combinators
do not occur in a ⊗-formula or →-formula.

Proof. Note that all sequent rules in Figure 2 are subformula preserving, that is,
if ϕ1 is a subformula of ϕ2 before the application of the rule, it will remain so after
the application of the rule. It follows that if a combinator occurs in a ⊗-formula or
→-formula in an intermediary sequent in a deduction, it will remain so in the root of
the deduction, and the deduced sequent cannot be purely logical. Thus there must
be a deduction of a purely logical sequent without such occurrences.

3 Structurally-Free Theorem Proving

The problem of standard substructural theorem proving is to decide, given a set of
premises ϕ1, . . . , ϕn and conclusion χ, if it can be deduced in substructural logic L
that ϕ1, . . . , ϕn ` χ. In the light of structurally-free logics, we have a new class of
problems.

1The combinator CB is sometimes called B′
2In fact, X in X ` ϕ is a structure containing only combinators, but recall that the structure (X1, X2, . . . , Xn) is

abbreviated by X = X1X2 . . . Xn; otherwise we would have to define — an carry it on throughout the paper — a

purely logical sequent as X1, . . . , Xn ` ϕ.
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Definition 3.1 (SFTP) A Structurally-free theorem prover (SFTP) is an algorithm
that takes as input a set of pure formulas, namely a set of premises ϕ1, . . . , ϕn and a
conclusion χ and decides whether there exists a combinator X such that X, ϕ1, . . . , ϕn `
χ is deducible. The output consists of one such X in case one exists.

If we can obtain one such X, we can determine a family of substructural logics in
which ϕ1, . . . , ϕn ` χ holds. To support such claim, we prove the following.

Theorem 3.2 (Structure Correspondence) Any sf-theorem in SFL(Θ) is a the-
orem in any substructural logic that admits all the structural rules corresponding to
the combinators in Θ.

Proof. Let L be a substructural logic in which all combinators in Θ are admissible.
Let ϕ be a theorem in SFL(Θ). By Lemma 2.1 there exists a deduction of X ` ϕ
without combinators occurring in ⊗- and →-formulas. Every combinator introduction
in such deduction can be replaced by an application of the corresponding structural
rule admissible in L, thus generating a deduction for ` ϕ.

This can be applied to several well-known logics.

Corollary 3.3

(a) every SFL∗ sf-theorem is a theorem of Intuitionistic Logic.
(b) every SFL({I,B,C}) sf-theorem is a theorem of Linear Logic.
(c) every SFL({I,B,C,W}) sf-theorem is a theorem of Relevance Logic.
(d) every SFL({I}) sf-theorem is a theorem of the non-associative Lambek Calculus.

Indeed, assume X ` ϕ is a deducible purely logical sequent. Linear Logic allows
only structural rules of identity, associativity and commutativity, but these rules can
be used any number of times and in any order; so if X contains only I’s, B’s and C’s
then we know that ` ϕ holds in Linear Logic. Relevance Logic additionally accepts
structural rules for contraction (W or S), and Intuitionistic Logic accepts contraction
(W or S) and weakening (K). The non-associative Lambek calculus allows only I.

Before we proceed explaining how to construct an SFTP, let us pay some attention
to Corollary 3.3, item (a). Indeed, let us consider the validity of its reciprocal, namely
is it the case that a theorem of the (→,⊗)-fragment of Intuitionistic Logic (IL) is also
an sf-theorem in SFL∗? The answer is no, and to see why it suffices to note that
ϕ1⊗(ϕ2⊗ϕ3)→(ϕ1⊗ϕ2)⊗ϕ3 is an IL theorem, but there is no combinator X such
that X ` ϕ1⊗(ϕ2⊗ϕ3)→(ϕ1⊗ϕ2)⊗ϕ3. There is no combinator definable in terms of
a closed λ-term corresponding to the right-associativity structural rule:

Γ[ϕ1, ϕ2, ϕ3] ` χ
(right-associativity)

Γ[ϕ1, (ϕ2, ϕ3)] ` χ

(for a proof of this fact, see [13].) To eliminate such deficiency, we introduce complex
combinators.
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4 Complex Combinators

We note that right-associativity is “the inverse” of left-associativity in terms of “func-
tional inverses”. So we start by considering inverse combinators3, defined in terms of
reducibility. We denote the functional inverse of combinator X as X•.

Definition 4.1 (Inverse Combinators) Let Θ0 = {S, I,B,C,W}. Let X be a
combinator based on Θ0 such that

Xx1 . . . xk � P (x1, . . . , xk)

where x1, . . . , xk are variables ranging over terms, P (x1, . . . , xk) is a λ-free term built
up using all xi, 1 ≤ i ≤ k. The inverse combinator of X, denoted X•, is such that

X• ∗ P (x1, . . . , xk) � x1 . . . xk

where ∗ is the prepending operation, i.e. x∗y = xy for atomic y, and x∗(zw) = (x∗z)w.

First note that inverse combinators are not always combinators. Consider, for
example, the combinator B, Bxyz � x(yz); its inverse is B•, B•x(yz) � xyz, is not
equivalent to any standard combinator; similarly for S• and W•. However, C• is
such that C•xyz � xzy and indeed C• ≡ C; similarly for I• ≡ I.

The inverse of K was ruled out. If K• were allowed, it would be possible to build
a combinator that reduces to any term. In fact, since for any x and y Kxy � x,
then K•x � xy, so K•I � z for any z. This means that K•I is no longer a function
and it trivializes reducibility. It may be interesting to study some controlled uses of
K• (such as K•

y, K•
yx � xy), but we will not do it here, opting to rule it out of our

language.
Definition 4.1 defines duality for any standard combinator, not only the primitive

ones. So, for example, the inverse of CB, where CBxyz � y(xz), is (CB)•, defined
as (CB)•y(xz) � xyz. In fact, (CB)• = BB•(CI) because

BB•(CI)y(xz) � B•(CIy)(xz) � CIyxz � Ixyz � xyz

BB•(CI) is what we term a complex combinator .

Definition 4.2 (Complex Combinators) A complex combinator is a term built
up in the following way:

• every primitive combinator is a complex combinator;
• the inverses of the primitive combinators in Θ0, are complex combinator, i.e. S•,

I•, B•, C• and W•;
• if X1 and X2 are complex combinators, so is (X1X2).

Composition of complex combinators is left-associative, as usual. An inverse-free
combinator is one without the occurrence of an inverse primitive combinators, i.e. a
combinator equivalent to a λ-term and what we have considered as a combinator before
this section.
3We thank a reviewer for pointing out that the term inverse combinator has already been used by Curry with a

different sense; however, we maintain the current usage for we are really defining functional inverses
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One important property of complex combinators is the substitutivity of reduced
forms:

Lemma 4.3 Let X1 and X2 be complex combinators such that X1 � X2. Let P1 and
P2 be any terms. Then

X1 ∗ P1 � P2 iff X2 ∗ P1 � P2

Proof. By induction on the length of reduction of X1 � X2; details omitted.

We can also have inverses of complex combinators.

Definition 4.4 (Complex Inverses) Let X and X• be K-free complex combinators;
X and X• are inverse complex combinators whenever

X ∗ P1(x1, . . . , xk) � P2(x1, . . . , xk) iff X• ∗ P2(x1, . . . , xk) � P1(x1, . . . , xk)

where x1, . . . , xk are variables ranging over terms, P1,2(x1, . . . , xk) are λ-free terms
built up using all xi, 1 ≤ i ≤ k.

It follows directly from Definition 4.4 that (X•)• ≡ X. Functions are not invertible
in general, but we can take the inverse of any combinator. To solve this apparent
paradox, we bring the attention to a peculiar behaviour of inverse primitive combina-
tors. Unlike inverse-free combinators, inverses do not always reduce when applied to
a large enough number of terms. For example, B•xyz does not reduce. This is due
to the fact that inverse primitive combinators perform a kind of pattern matching, so
B• will only reduce when applied to a term that matches the pattern x(yz).

Looking back at the example above that shows (CB)• = BB•(CI), one is left with
the question on whether the inverse of any complex combinator is equivalent to a
complex combinator. This is not always the case; for instance, combinators without a
normal form do not have an inverse. Indeed, WWW reduces to itself, it does not have
a normal form and we cannot apply the definition above. See [13] for a discussion on
how to compute inverses for a particularly useful class of complex combinators called
list combinators. For the moment let us concentrate on adding inverse combinator
rules to SFL.

Notation: If σ is an antecedent (or a formula), then σ̃ is a combinator term
obtained from deleting the symbols ‘,’ and ‘⊗’ from σ.

The general form of a complex combinator X rule, X∗σ̃1(x1, . . . , xk)�σ̃2(x1, . . . , xk),
is

Γ[σ2(ϕ1, . . . , ϕk)] ` χ
(X `)

Γ[X ∗ σ1(ϕ1, . . . , ϕk)] ` χ
For example, the rules for the inverse primitive operators are:

Γ[ϕ1, ϕ2, ϕ3] ` χ
(B• `)

Γ[B•, ϕ1, (ϕ2, ϕ3)] ` χ
Γ[ϕ1, ϕ2, ϕ3] ` χ

(S• `)
Γ[S•, ϕ1, ϕ3, (ϕ2, ϕ3)] ` χ

Γ[ϕ1, ϕ2] ` χ
(W• `)

Γ[W•, ϕ1, ϕ2, ϕ2] ` χ
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The rules for C• and I• are omitted because they are identical to those for C and I.
(B• `) accounts for right-associativity, (W• `) accounts for expansion (the opposite
of contraction) and (S• `) accounts for distribution (a notion similar to expansion
and the converse of factoring). From Kxyy � xy we see that (W• `) is admissible
in any logic that admits (K `), but not the other way round. Similarly, (S• `) is
admissible if B, B•, C and W• are.

With respect to the proofs of purely logical sequents that include a complex com-
binator, we note that the proof Lemma 2.1 does not mention any combinator rule
in particular, and therefore Lemma 2.1 holds for complex combinators as well. As a
consequence, the Structure correspondence Theorem 3.2 also holds after we extend
the logic with complex combinator.

We can then go back to the converse of Corollary 3.3(a), which motivated the
introduction of complex combinators, and finally prove it.

Theorem 4.5 (IL Correspondence) A formula ϕ is deducible in the (→,⊗)-fragment
of Intuitionistic Logic iff it is an sf-theorem in SFL({K, S, I, B, C, W, B•, W•,
S•}).
Proof. (⇐) This is just Corollary 3.3(a), which still holds for complex combinators
as we have argued above.

(⇒) Let ϕ1, . . . , ϕn ` χ be a deducible sequent in the (→,⊗)-fragment of Intu-
itionistic Logic. We prove by induction on the length l of the intuitionistic deduction,
i.e. the maximum of the number of sequents in each branch of the deduction, that
either ϕ1, . . . , ϕn ` χ is deducible or there exists an X such that X, ϕ1, . . . , ϕn ` χ
in SFL. For l = 1, the only possible deducible sequent is of the form χ ` χ, also
deducible in SFL. So I, χ ` χ is an SFL-deducible sequent in the desired format.

The inductive step is shown by cases. If the root sequent is obtained with a connec-
tive rule with a single premise, i.e. rules (⊗ `) and (` →), the same rules are applied
in SFL and the induction hypothesis clearly lead us to a root in the desired format;
details omitted.

Combinators K, S, I, B, C, W, B•, W• and S• all correspond to structural rules
admissible in IL, so if the root sequent is obtained with a structural rule then in SFL
the root will be obtained by a combinator rule which always add a combinator to the
leftmost position. The induction hypothesis clearly leads us to a root in the desired
format.

The interesting cases are the two-premised connective rules (` ⊗) and (→ `).
Suppose the root of the intuitionistic deduction tree is obtained with (` ⊗) from
premises ψ1, . . . , ψm ` ψ and χ1, . . . , χk ` χ. By the induction hypothesis, there are
X1 and X2 such that its corresponding SFL deduction will be

X1, ψ1, . . . , ψm ` ψ X2, χ1, . . . , χk ` χ
(` ⊗)

X1, ψ1, . . . , ψm, (X2, χ1, . . . , χk) ` ψ⊗χ
This sequent is not in the desired format because X2 occurs inside the sequent.

But then, by simple combinator manipulation, we know that there always exists a
combinator XB,B•,C built up using only the combinators B, B• and C, such that it
“moves” X2 to the front of the sequent by means of simple order permutations:

X1, ψ1, . . . , ψm, (X2, χ1, . . . , χk) ` ψ⊗χ
(XB,B•,C `)

XB,B•,CX1X2, ψ1, . . . , ψm, (χ1, . . . , χk) ` ψ⊗χ
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That such a permutation exists can be shown by a simple induction on m+k; details
omitted. The final sequent is then in the desired format. Note that by omitting the
combinators in this new root, we get the corresponding root in the intuitionistic proof.

Suppose the root of the intuitionistic deduction tree is obtained with (→ `) from
premises ψ1, . . . , ψm ` ψ and Γ[ϕ] ` χ. By the induction hypothesis, its corresponding
SFL deduction will be

X1, ψ1, . . . , ψm ` ψ Γ[ϕ] ` χ
(→ `)

Γ[ψ→ϕ, (X1, ψ1, . . . , ψm)] ` χ
for some X1, clearly not in the desired format for X1 occurs in the middle of the
sequent. But again, by a similar argument, there exists a combinator XB,B•,C which
permutes X1 such that

XB,B•,CX1Γ[ψ→ϕ, (ψ1, . . . , ψm)] ` χ

in the desired format; by deleting the combinators from it we get the root in the
intuitionistic proof.

It is easy to generalize the above result for other logics.

Theorem 4.6 (Full Correspondence) Let Θ be a set of complex combinators con-
taining I, B, B• and C. Let L(Θ) be the class of substructural logics that accepts the
structural rules corresponding to the combinators in Θ. The following are equivalent:

(a) ϕ is an sf-theorem in SFL(Θ).
(b) ϕ is a theorem in the {→,⊗}-fragment of all logics in L(Θ).

The proof is totally analogous to that of Theorem 4.5. Bearing in mind Theorem 4.6
and that Cut Elimination holds for Intuitionistic Logic, the following property comes
with little surprise.

Lemma 4.7 Multiple Cut remains an admissible rule in SFL(Θ).

To prove the result above one would have to modify the analogous proof given
in [12], just adding three more cases of cut elimination for the three new combinator
rules. Such a task is straightforward but tedious; we omit the details.

We concentrate now on the construction of an SFTP. For the rest of this paper, un-
less otherwise specified, whenever we mention combinators we actually mean complex
combinators. By SFL we mean SFL({K,S, I,B,C,W,B•,W•,S•}).

5 Equistructurality

The problem we focus on is how to compute the combinator for an sf-theorem without
generating a sequent proof for it. For that, we need first a few definitions.

Definition 5.1 (Equistructurality) Two sf-theorems ϕ and ψ are equistructural if
there exists a combinator X such that

X ` ϕ and X ` ψ
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are deducible in SFL. Similarly, two pure sequents ϕ1, . . . , ϕm ` ϕ and ψ1, . . . , ψn ` ψ
are equistructural if

X, ϕ1, . . . , ϕm ` ϕ and X, ψ1, . . . , ψn ` ψ
are deducible in SFL. Also, a pure sequent Γ ` ϕ is equistructural to a set of sequents
S = {Γi ` ψi|1 ≤ i ≤ k} if there are combinators X and X1, . . . ,Xk such that
Xi ∗ Γi ` ψi are deducible in SFL and

X1 ∗ Γ1 ` ψ1 . . . Xk ∗ Γk ` ψk

X ∗ Γ ` ϕ
is deducible in SFL; X is thus computable from X1, . . . ,Xk.

Equistructurality plays an important role in our method to create an SFTP. Let
X be an unknown combinator (i.e. a variable ranging over the set of admissible com-
binators) that we want to compute to make X, ϕ1, . . . , ϕm ` χ deducible. What
we propose to do is to manipulate the ϕi and χ to obtain a “more adequate” equi-
structural sequent. But what is an “adequate” sequent? We show that a sequent is
adequate if it is in the ⊗-fragment of the language. Later manipulations will transform
a sequent in the {⊗,→}-language into a set of sequents in the ⊗-fragment.

Properties of the ⊗-fragment
The main attraction of the ⊗-fragment is that in it we can compute the combinator
associated with a sequent, as shown below.

Lemma 5.2 Let p1, . . . , pk be propositional letters and let χ(p1, . . . , pk) be a formula
built up using ⊗ and pi, possibly with omissions. Then

X, p1, . . . , pk ` χ(p1, . . . , pk)

is deducible for X = λp1 . . . pk.χ̃(p1, . . . , pk), where χ̃(p1, . . . , pk) is obtained from
χ(p1, . . . , pk) by deleting the ⊗’s.

Proof. We know that for every λ-term without free variables, there exists a combi-
nator, built up using primitive combinators S, K, I, B, C and W, that is equivalent
to it [2]. In particular, let X be such that Xp1 . . . pk � χ̃(p1, . . . , pk); X can be seen as
a term built up from primitive combinators X1, . . .Xl. We construct bottom-up the
deduction of X, p1, . . . , pk ` χ(p1, . . . , pk). At each step, the antecedent of the lower
sequent is changed by applying the innermost-leftmost primitive combinator Xi in
X, generating the upper sequent; it is clear this corresponds to the use of the (Xi `)
rule. For example,

BKCp1p2p3p4 � K(Cp1)p2p3p4 � Cp1p3p4 � p1p4p3

generates, bottom-up, the deduction tree

p1, p4, p3 ` p1⊗p4⊗p3
(C `)

C, p1, p3, p4 ` p1⊗p4⊗p3
(K `)

K, (C, p1), p2, p3, p4 ` p1⊗p4⊗p3
(B `)

BKC, p1, p2, p3, p4 ` p1⊗p4⊗p3
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The succedent never changes. At the top of the deduction tree we find a sequent
of the form σχ(p1, . . . , pk) ` χ(p1, . . . , pk), where σχ(p1, . . . , pk) is obtained from
χ(p1, . . . , pk) by replacing ⊗’s with separating commas; this is clearly a deducible
sequent and the deduction tree is finished.

A sequent of the format of Lemma 5.2 is called a λ-abstractive sequent . The combi-
nator X obtained with a λ-abstractive sequent is inverse-free, i.e. it is a non-complex
combinator. We can extend the lemma to cope with complex combinators as well.

Lemma 5.3 Let P = {p1, . . . , pk} and Q = {q1, . . . , ql} be sets of propositional letters
such that Q ⊆ P . Let σ(p1, . . . , pk) be a structure containing all pi’s at least once,
and let χ(q1, . . . , ql) be a formula built using ⊗ and the elements of Q. Then

X ∗ σ(p1, . . . , pk) ` χ(q1, . . . , ql)

is deducible in SFL for X ∗ σ̃(p1, . . . , pk) � χ̃(q1, . . . , ql),

Proof. Since Q ⊆ P , it is guaranteed that there exists a complex combinator X
such that X ∗ σ̃(p1, . . . , pk)� χ̃(q1, . . . , ql); X can be effectively computed [13]. Then,
by an analogous construction to that of Lemma 5.2 we obtain a deduction for X ∗
σ(p1, . . . , pk) ` χ(q1, . . . , ql).

A sequent of the format of Lemma 5.3 is called a (complex combinator) abstractive
sequent ; λ-abstractive sequents are always abstractive. We can then summarize the
computational properties of the ⊗-fragment.

Theorem 5.4 In the ⊗-fragment, X ∗ Γ ` χ is deducible in SFL iff X ∗ Γ̃ � χ̃.

Proof. Suppose X ∗ Γ ` χ. It suffices to note that inference rules of (Reflexivity),
(` ⊗), (⊗ `) and the combinator rules are all preserved under �. Then, by a simple
induction on the derivation of X ∗ Γ ` χ we get X ∗ Γ̃ � χ̃.

Suppose now X ∗ Γ̃ � χ̃. Then by the argument used in the proofs of Lemmas 5.2
and 5.3, a proof for X ∗ Γ ` χ is constructed.

The following corollary implies that we can prefer to compute a more simplified
(irreducible) form of combinator without loss of expressivity.

Corollary 5.5 Let X1 and X2 be complex combinators.

(a) Suppose X1 � X2. Then, X1 ∗ Γ ` χ is deducible in the ⊗-fragment iff X2 ∗ Γ `
χ is.

(b) Suppose that X1,Φ1, . . . ,Φn, q ` χ⊗q and X2,Φ1, . . . ,Φn ` χ are abstractive
sequents where q occurs neither in (Φ1, . . . ,Φn) nor in χ. Then X2,Φ1, . . . ,Φn, q `
χ⊗q.

Proof.

(a) X1 ∗ Γ ` χ is deducible iff X1 ∗ Γ̃ � χ̃ by Theorem 5.4
iff X2 ∗ Γ̃ � χ̃ by Lemma 4.3
iff X2 ∗ Γ ` χ is deducible by Theorem 5.4

(b) ¿From X2,Φ1, . . . ,Φn ` χ and Theorem 5.4 we get X2Φ̃1, . . . , Φ̃n�χ̃. Then clearly
X2Φ̃1, . . . , Φ̃n, q� χ̃q and again by Theorem 5.4 we get X2,Φ1, . . . ,Φn, q ` χ⊗q.
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We can use Corollary 5.5(b) to compute a simpler combinator (X2) instead of a
more complex one (X1). We will make use of this simplification in the examples
below.

If it is possible to obtain a λ-abstractive sequent equistructural to a given sequent,
there are known algorithms that perform combinator abstraction [18], i.e. given a
λ-term without free variables, it outputs an equivalent combinator in terms of the
primitive combinators. If only S and K are allowed as primitive, the size of the
output combinator (i.e. the number of primitive combinators in it) is exponential
with k, the number of bound λ-variables. If I, B and C are also allowed, the output
size decreases and becomes quadratic with k; see [18].

Similarly, it is possible to perform complex-combinator abstraction. Given an ab-
stractive sequent, by interpreting complex combinators into their corresponding struc-
tural rules, complex-combinator abstraction gives us the logics in which it is possible
to prove this sequent (and all other sequents equistructural to it). Details on complex-
combinator abstraction can be found in [13].

We now turn to the problem of computing a corresponding complex combinator for
a given pure sequent, the core of SFTP.

6 Equistructural Transformation Rules

A deducible pure sequent Γ ` χ is a pure sequent such that there exists a combinator
X, X∗Γ ` χ is deducible in SFL. X is called the sequent’s corresponding combinator ;
a deducible pure sequent can, in principle, have more than one corresponding com-
binator. At this stage, we will be satisfied if we can compute one such combinator,
if it exists. In other words, we want a decision procedure that outputs a complex
combinator associated with a pure sequent if it is deducible.

The basic idea is, given X∗Γ ` χ with X unknown, to equistructurally transform this
sequent into a set of sequents S = {Xi ∗ Γi ` χi|1 ≤ i ≤ k} and X = f(X1, . . . ,Xk),
such that we know how to compute X from the combinators in S. We apply such
transformations to obtain →-free sequents. We already know how to decide if an
→-free sequent is deducible (just check if it is abstractive) and how to compute its
corresponding combinator using complex combinator abstraction (Theorem 5.4). This
idea is expressed in the basic SFTP algorithm:

Algorithm 6.1 Input: pure sequent Γ ` χ
Output: a corresponding combinator X, if one exists; “fail” otherwise.

S := {X ∗ Γ ` χ}
V := {X}
While S is not empty

Choose a sequent Xi ∗ Γi ` χi from S
if Xi ∗ Γi ` χi is →-free

if it is abstractive
Compute Xi using combinator abstraction
V := V[Xi/value(Xi)] - {Xi} (Xi is removed from V

and its computed value substituted)

else return(‘‘fail’’) (input sequent is not derivable)

else
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transform Xi ∗ Γi ` χi into set S′ = {Yj ∗ Γj ` χj |1 ≤ j ≤ ki}
S := S ∪ S′ - {Xi ∗ Γi ` χi}
V := V ∪ {Xi = f(Y1, . . . ,Yki)} ∪ {Yj|1 ≤ j ≤ ki}

return(X)
end.

Note that all combinators Xi in S and V are unknown variables, and as soon as a
value for them is computed, their value is substituted in those sets and their value
is removed. At the end, we should have just the initial combinator value X, with its
computed value.

Algorithm 6.1 needs to be complemented by a set of transformation rules to trans-
form Xi ∗ Γi ` χi into a set of sequents, each of which contains fewer number of
→-connectives. We would like rules that force Algorithm 6.1 to have the basic prop-
erties of termination, correctness and completeness. Let us first define precisely what
we mean by those properties.

By termination we mean that the algorithm neither gets into an infinite loop nor
gets stuck without a rule to apply when there is still a sequent in S.

The algorithm is correct if it outputs only correct combinators:

Definition 6.2 Given an input pure sequent Γ ` χ such that the transformations
computed a combinator X, this computation is correct if the sequent X ∗ Γ ` χ is
derivable in SFL.

Lemma 6.3 A sufficient condition for correctness of Algorithm 6.1 is that all trans-
formation rules generate a set of sequents that is equistructural to the sequent being
transformed.

Proof. By induction on the deduction of X ∗ Γ ` χ, directly from the definition of
equistructurality in Definition 5.1. If a combinator can be computed, it means that
X ∗ Γ ` χ can be derived in SFL from axioms and abstractive sequents.

As for completeness, at this point we do not aim at developing an algorithm that
is strongly complete. Strong completeness would mean that we could compute all the
combinators corresponding to a given sequent. More modestly, we investigate weaker
forms of completeness.

Definition 6.4 Consider an input pure sequent Γ ` χ such that, there is an SFL
derivation for X ∗ Γ ` χ for some X. Algorithm 6.1 is cc-complete if it can compute
one such X using the given set of transformations.

It follows from Theorem 4.5 that cc-completeness implies that if a sequent is deriv-
able in the {⊗,→}-fragment of Intuitionistic Logic, then we can compute an associated
complex combinator. Also, it means that if the algorithm fails, there is no derivation
of the input sequent for any combinator.

Lemma 6.5 Suppose we have a set of transformation rules that are correct and ter-
minate. A sufficient condition for these rules to generate a cc-complete algorithm is
that whenever a transformation rule is applied to a deducible sequent (in Intuitionistic
Logic), it generates only deducible sequents (in Intuitionistic Logic).
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Proof. Suppose we have a deducible sequent as input. By applying the transfor-
mation rules, termination guarantees that eventually we’ll get only sequents without
any → connectives. But all these sequents, by the hypothesis, are deducible, and by
theorem 5.4, they are abstractive. So we know how to compute their corresponding
combinators and, by correctness, also a combinator corresponding to the input se-
quent.

In the following, we present rules that perform equistructural transformations hav-
ing in mind the conditions above. Formally, the equistructural transformation of a
sequent generates a pair 〈S, f〉, where S is a set of sequents and f a function which
allows us to compute the input sequent’s corresponding combinator in terms of the
corresponding combinators of the sequents in S.

6.1 Pure Transformation Rules

In a pure equistructural transformation, the input sequent is transformed into another
sequent with the same combinator. This is represented by

X ∗ Γ ` χ ET=⇒ X ∗ Γ1 ` χ1.

ET1: Connective transformations. Connective rules do not refer to combina-
tors, and therefore are obviously pure equistructural transformations. The rules we
need are:

(a) X ∗ Γ ` ϕ→χ
ET1=⇒ X ∗ Γ, ϕ ` χ.

(b) X ∗ Γ[ϕ⊗ψ] ` χ ET1=⇒ X ∗ Γ[ϕ, ψ] ` χ.
Rule (a) is the converse of rule (` →) and rule (b) is the converse of (⊗ `). Both

rules are easily proven admissible (with the use of Cut). So ET1 satisfies the condition
of Lemmas 6.3 and 6.5.

Notation simplification: In all examples below (and in some of the proof trees as
well) we will omit the symbol ⊗, writing ϕψ instead of ϕ⊗ψ; this should cause no
confusion because ϕ and ψ are always formulas.

Example 6.6 Consider the deducible purely logical sequent

X ` p→(q→pq).

By applying ET1(a) twice we get

X, p, q ` pq
which is a λ-abstractive sequent, so we have to find a combinator equivalent to λxy.xy.
But by Corollary 5.5(b), we can simplify this task, computing X = λx.x = I.

ET2: Grouping Formulas. Let X ∗ Γ ` χ be a deducible purely logical sequent.
We can group and substitute its formulas in two ways.

(a) If ψ occurs once or more in the sequent, such that none of its subformulas occur
outside ψ, then ψ is substituted by a new atomic symbol α.
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(b) If χ = χ1⊗ . . .⊗χn such that all χi occurs as a component in Γ, then each com-
ponent in the sequent is substituted by a new symbol in the sequent; we obtain
thus an abstractive sequent equistructural to the input one.

Those are clearly pure equistructural transformations that amount to manipulating
substituted formulas as an atom. If ϕ is a formula being substituted above by a new
symbol α, we can postulate that

α ` ϕ and ϕ ` α
¿From this, with simple uses of the Cut rule, we show that the conditions of Lem-
mas 6.3 and 6.5 are satisfied.

Example 6.7 Consider the deducible sequent X, p→q1, q2q1, q2→r ` (p→q1)(q2→r).
We obtain,

X, α1, (q2q1), α2 ` α1α2 by ET2(b)
X, α1, α3, α2 ` α1α2 by ET2(a)

a λ-abstractive sequent leading to λxyz.xz. By Corollary 5.5(b), we simplify it, com-
puting X = λxy.x = K.

6.2 Eliminating → from Antecedents

Pure transformations, especially ET1(a), help us eliminate succedents of the form
ϕ→ψ. We now transform a sequent to eliminate formulas of the form ϕ→ψ from the
antecedent.

Let Γ[ψ][ξ] represent an antecedent containing the formulas ψ and ξ as components
(i.e. not inside an →-formula); the order between ψ and ξ can be any. In this case,
Γ[ψ′][] represents the sequent obtained by substituting ψ with ψ′ and deleting ξ.

ET3: (→ `)-guided transformation. Consider a purely logical sequent X ∗
Γ[ϕ→ψ][ϕ] ` χ. This sequent is equistructurally transformed into:

S =
{

(i) X1 ∗ Γ[ψ, ϕ][] ` χ
(ii) X2X1 ∗ Γ[ϕ→ψ][ϕ] ` X1 ∗ Γ[(ϕ→ψ, ϕ, ϕ)][]

}
and X = X2X1

The formula ϕ→ψ is called the ticket formula, and the separate occurrence of ψ
is called the riding formula. Assuming that the sequents in S are deducible, the
correctness of the equistructural transformation above comes from:

(i) X1 ∗ Γ[ψ, ϕ][] ` χ ϕ ` ϕ
(→ `)

X1 ∗ Γ[(ϕ→ψ, ϕ,ϕ)][] ` χ (ii) X2X1 ∗ Γ[ϕ→ψ][ϕ] ` X1 ∗ Γ[(ϕ→ψ, ϕ, ϕ)][]
(Cut)

X2X1 ∗ Γ[ϕ→ψ][ϕ] ` χ

The use of the Cut Rule above is merely the transitivity of ` (module the use of ET1(b
and c)). In sequent (ii), if by ET2(b) we substitute non-atomic formulas (and X1) by
new symbols, it becomes an abstractive sequent, and therefore always deducible.

The reason that (i) is not simply of the form (i′) X1 ∗ Γ[ψ][] ` χ, as one could
expect — it would certainly be a simpler sequent — is that we could not guarantee
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cc-completeness this way. In many cases, taking (i′) instead of (i) correctly computes
a simpler combinator (see example 6.8 below); however, it does not always decompose
a deducible sequent into a set of deducible sequents. A counterexample to the correct
use of (i′) would be the deducible sequent

p→q, p, p→r ` qr
where ET3 is needed twice. If (i′) is used instead of (i), p will be deleted after the
first application of ET3 we would get a non-deducible sequent.

As we presented it, the following derivation shows that the condition of Lemma 6.5
is observed in Intuitionistic Logic with the use of (i).

Γ[ϕ→ψ][ϕ] ` χ
(Structural manipulation)

Γ[ϕ→ψ, ϕ][] ` χ ψ ` ϕ→ψ
(Cut)

Γ[ψ, ϕ][] ` χ

The problem remains that (i) is guaranteed to generate too many duplications of
the riding formula. For each superfluous use of (i) in the computation, a pair of
combinators W (that duplicates the riding formula) and K (that later eliminates it)
will be present in the computed combinator.

Using (i′), if it turns out that X1 = I, the deduction of the input sequent may be
simplified, for an (I `)-rule can always be substitute by the reflexivity-rule. Thus
if Γ[ψ][] ` χ turns out to be of the form ϕ ` ϕ, then X = X2 obtained from X2 ∗
Γ[ϕ→ψ][ϕ] ` Γ[(ϕ→ψ, ϕ)][]. This simplification yields a “smaller” combinator as
shown in the example below.

Example 6.8 Consider the sequent X ` (p→q)→[(r→p)→(r→q)]; by ET1(a) it is
equistructurally transformed into

X, p→q, r→p, r ` q
We now use ET3 with (i′), equistructurally transforming th sequent above into

X1, p→q, p ` q
X2X1, p→q, r→p, r ` X1, p→q, (r→p, r)

with X = X2X1. The first sequent can be further transformed, still using (i′), into
X3q ` q and X4X3, p→q, q ` X3(p→q, q), with X1 = X4X3. Clearly, X3 = I and
X4 = B. Since X3 = I, we simplify X1 = X4 and X4 is obtained from X4p→q, q `
p→q, q.

So it turns out that X1 = I as well, allowing further simplifications; hence X = X2

obtained from X2, p→q, r→p, r ` p→q, (r→p, r), which yields X2 = B. Finally, as
expected, X = B.

However, if we do follow the official rule and use (i) instead of (i′), no simplification
is applicable and the final result is

X = B(BW)
(

BB
(

BW(B(B(BK)K))
) )

We can in fact construct derivations for both this combinator and B as the corre-
sponding combinators; the steps in their derivations tell us how. Just note that this
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last combinator has two pairs W-K, suggesting two superfluous uses of (i), as indeed
is the case.

Sometimes the sequent is in a format that ET3 cannot be applied directly. For
those cases, we provide further transformations that will produce a sequent in a
format suitable for ET3.

ET4: ⊗-guided transformation. We now consider the transformation that is
guided by the presence of a component in the antecedent of the form Γ[(ϕ1⊗ϕ2)→ψ];
we indeed demand that the input sequent be of the form Γ[(ϕ1⊗ . . .⊗ϕm)→ψ][ϕ1],
although this format information is not used in the transformation. We want to trans-
form the ticket implication (ϕ1⊗ϕ2)→ψ into a formula where ET3 can be applied,
which is ϕ1→(ϕ2→ψ). This is justified by the following derivation.

ϕ1ϕ2→ψ ` ϕ1ϕ2→ψ
(→ `)

ϕ1ϕ2→ψ, (ϕ1ϕ2) ` ψ
(B `)

B, ϕ1ϕ2→ψ, ϕ1, ϕ2 ` ψ
(→ `)

B, ϕ1ϕ2→ψ ` ϕ1→(ϕ2→ψ)

We can then use this derivation to transform a sequent of the form Γ[(ϕ1⊗ϕ2)→ψ] ` χ:

(i) X1 ∗ Γ[ϕ1→(ϕ2→ψ)] ` χ B, ϕ1ϕ2→ψ ` ϕ1→(ϕ2→ψ)

X1 ∗ Γ[B(ϕ1ϕ2→ψ)] ` χ (ii) X2BX1 ∗ Γ[ϕ1ϕ2→ψ] ` X1 ∗ Γ[B(ϕ1ϕ2→ψ)]

X2BX1 ∗ Γ[ϕ1ϕ2→ψ] ` χ

Both steps in the deduction above are Cut steps. Based on that, we define the equi-
structural ⊗-guided transformation as taking a sequent of the form X∗Γ[ϕ1⊗ϕ2→ψ] `
χ and transforming it into:

S =
{

(i) X1 ∗ Γ[ϕ1→(ϕ2→ψ)] ` χ
(ii) X2BX1 ∗ Γ[ϕ1ϕ2→ψ] ` X1 ∗ Γ[B(ϕ1ϕ2→ψ)]

}
and X = X2BX1

Note that (ii), as before, can be equistructurally transformed into an abstractive
sequent by means of ET2(b), and thus X2 is computed. Sequent (i) is now ready for
the application of transformation ET3. The condition of Lemma 6.3 is satisfied.

To show that ET4 also satisfies the condition of Lemma 6.5, we show that (i) can
be obtained from the input formula; note that ϕ1→(ϕ2→ψ) ` ϕ1ϕ2→ψ is deducible
in Intuitionistic Logic, so

Γ[ϕ1ϕ2→ψ] ` χ ϕ1→(ϕ2→ψ) ` ϕ1ϕ2→ψ
(Cut)

Γ[ϕ1→(ϕ2→ψ)] ` χ
is a deduction of (i). As for (ii), as in the previous case, it is treated as a simple
structural manipulation of an axiom, and so it is always deducible.

In a sequence of transformations, ET4 is always used in connection with some use of
ET3; so its use is either [ET4;ET3] or [ET4;. . .;ET4;ET3] (in case ϕ1 = ψ1⊗ . . .⊗ϕm).

ET5: →-guided transformation. Consider an antecedent Γ with a component
of the form ϕ1→(ϕ2→ . . . (ϕm→ϕ) . . .)→ψ such that ϕ is also a component of Γ but
ϕ1→(ϕ2→ . . . (ϕm→ϕ) . . .) is not (otherwise we could apply ET3).
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What we want to transform here is the riding formula ϕ, for if we can transform
it into ϕ1→(ϕ2→ . . . (ϕm→ϕ) . . .), ET3 becomes applicable. However, as with ET3,
if the transformation deletes ϕ, the transformation may generate formulas that are
not deducible; so the riding formula ϕ has to be preserved (duplicated) as well as
transformed. First, we define the following abbreviation:

K[1] = K
K[i+1] = BKK[i]

It is easy to see that K[m]xx1 . . . xm � x, from which we conclude that the sequent
K[m]ϕ ` ϕ1→(. . . (ϕm→ϕ) . . .) is deducible for m ≥ 1. The transformation of X ∗
Γ[ϕ] ` χ follows from the following deduction:

(i) X1 ∗ Γ[ϕ1→(. . . (ϕm→ϕ) . . .), ϕ] ` χ K[m]ϕ ` ϕ1→(. . . (ϕm→ϕ) . . .)

X1 ∗ Γ[K[m]ϕ,ϕ] ` χ(ii) X2K
[m]X1 ∗ Γ[ϕ] ` X1 ∗ Γ[K[m]ϕ, ϕ]

X2K
[m]X1 ∗ Γ[ϕ] ` χ

where both steps above are applications of the Cut-rule.
It follows that the equistructural →-transformation takes a sequent of the form

X ∗ Γ[ϕ] ` χ and transforms it into:

S =
{

(i) X1 ∗ Γ[ϕ1→ . . . (ϕm→ϕ) . . . , ϕ)] ` χ
(ii) X2K[m]X1 ∗ Γ[ϕ] ` X1 ∗ Γ[K[m]ϕ]

}
and X = X2K[m]X1

This transformation satisfies the conditions of Lemma 6.3. That it also satisfies the
conditions of Lemma 6.5 comes from:

Γ[ϕ] ` χ
(Thinning)

Γ[ψ→ϕ, ϕ] ` χ
The computation of X2 follows the same steps as before. In a sequence of transfor-

mations, ET5 is always used in connection with some use of ET3; so its use is either
[ET5;ET3] or [ET5;ET4;. . .;ET4;ET3] (in case ϕ = ψ1⊗ . . .⊗ψm).

6.3 The Split Transformation

In all transformations above, combinator X2 in sequent (ii) can be computed with the
same steps, namely, an application of ET2(b) that will transform (ii) into an abstrac-
tive sequent, followed by complex combinator abstraction. So it is sequent (i) that,
in all cases, will be subject to further transformations and transformations. Succes-
sive applications of ET1–ET5 will eliminate the occurrences of some →-connectives
from the antecedent, but maybe not all of them; however, ET1 guarantees that the
succedent is not of the form ϕ→ψ. We reach a point where ET1–ET5 are not appli-
cable and the succedent is either atomic, or a conjunction of atoms, or a conjunction
containing some →-formula.

In the first two cases the succedent is in the ⊗-fragment, and we know how to
decide if it is deducible and how to compute its corresponding combinator.
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So we are faced with the case in which the succedent is of the form χ1⊗χ2 such
that χ1 or χ2 contains an → connective. So we split the input sequent in three other
sequents.

ET6: Split transformation. Consider a sequent of the form X ∗ Γ ` χ1⊗χ2,
where ET1–ET5 are not applicable and χ1 or χ2 contains an → connective. This
sequent is split into 3 sequents:

S =




(i) X1 ∗ Γ ` χ1

(ii) X2 ∗ Γ ` χ2

(iii) X3X1X2 ∗ Γ ` (X1 ∗ Γ)⊗(X2 ∗ Γ)




and X = X3X1X2

The third sequent is responsible for recomposing the split sequents, as shown in the
following deduction:

(X1 ∗ Γ ` χ1) (X2 ∗ Γ ` χ2)
(` ⊗)

(X1 ∗ Γ), (X2 ∗ Γ) ` χ1⊗χ2 X3X1X2 ∗ Γ ` (X1 ∗ Γ)⊗(X2 ∗ Γ)
(Cut)

X3X1X2 ∗ Γ ` χ1⊗χ2

X3 is computed from sequents (i) and (ii) using transformation ET2(b). X1 and
X2 are computed with further applications or decomposition rules. The conditions of
correctness are clearly satisfied by ET6. To show that the conditions of

6.4 Guaranteeing →-elimination from the sequent

At this point we are guaranteed to eliminate all the → connectives from the succedent,
which is a formula in the ⊗-fragment (see proof of Theorem 6.10 below). We claim
that in such a case (see Lemma 6.9) the →-formula could only have been introduced
in the deduction by the rule (K `), or in a Intuitionistic Deduction, by Thinning.

Therefore we propose the substitution of →-formula of the form ϕ→ψ by a new
atomic symbol α, meaning that the formula ϕ→ψ could have been manipulated as
an atomic symbol.

ET7: Elimination transformation. We are faced with a situation in which the
antecedent contains a formula ϕ→ψ and none of ET1–ET6 can be applied. We then
introduce a new symbol α and make it identical to ϕ→ψ, i.e.

α ` ϕ→ψ and ϕ→ψ ` α
We can then substitute ϕ→ψ by α. The correctness of this step is justified by the
following derivation.

(i) X1 ∗ Γ[α] ` χ ϕ→ψ ` α
(Cut)

X1 ∗ Γ[ϕ→ψ] ` χ
So, the equistructural elimination transformation can be seen as a pure transfor-

mation that takes a sequent of the form X ∗ Γ[ϕ→ψ] ` χ and transforms it into
X ∗ Γ[α] ` χ, for α a new atomic symbol.

The combinator K will necessarily be in X, representing the elimination of a formula
from the antecedent (or the use of thinning in the deduction). The justification for this
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fact, which also shows that this transformation fulfills the conditions of Lemma 6.5
comes from the following result.

Lemma 6.9 Let Γ[ϕ→ψ] ` χ be a deducible sequent such that χ is →-free. If the
inference rule (→ `) is used in any branch of its deduction, then either ET3 or ET4
are applicable at Γ[ϕ→ψ] ` χ.

Proof. By induction on the number of inference rules applications separating the
use of (→ `) and Γ[ϕ→ψ] ` χ. We first note that no inference rule removes a formula
from the succedent, so we can assume that succedents are →-free throughout the
deduction.

The base case is right after the use of (→ `), at which point ET1 is clearly appli-
cable.

Suppose we have an intermediate sequent in the branch of the form ∆[ϕ→ψ] ` ξ.
By induction hypothesis, either ET3 or ET4 are applicable. Note that rules (⊗ `),
(` ⊗) and (→ `) do not affect the applicability of ET3 and ET4. Rule (` →) cannot
be applied because the succedent is →-free at all deductive steps.

Finally, we have to consider structural rules (or combinator rules); but all they can
do is to move ϕ→ψ and ϕ around, and in case ϕ is of the form ϕ1⊗ϕ2, split it. So
the applicability of ET3 can be changed to the applicability of ET4 and vice-versa.
But at the next sequent in the branch, it remains the case that either ET3 or ET4
are applicable.

There are only two ways in which an →-formula may be inserted in the antecedent
of a sequent: either via rule (→ `) and via rule (K `). If the rules ET1–ET6 are not
applicable, Lemma 6.9 yields that in the deduction of Γ[ϕ→ψ] ` χ rule (→ `) could
not have been used, so the →-formula ϕ→ψ was introduced with (K `), and ϕ→ψ
was manipulated as an atomic formula. From such an argumentation we deduce from

Γ[ϕ→ψ] ` χ
the fact that

Γ[α] ` χ
by substituting the insertion of ϕ→ψ by the rule (K `), with an insertion of α. So
the condition for cc-completeness in Lemma 6.5 is met.

6.5 Termination, Correctness and cc-Completeness

Theorem 6.10 Algorithm 6.1 always terminates.

Proof. We note that each sequent generated by an equistructural transformation
has fewer connectives than the transformed sequent. This guarantees that, eventually
either we get stuck, without a transformation to apply, or we get all sequents in the
⊗-fragment, where by Theorem 5.4 we know how to finish the computation.

We claim that the algorithm never gets stuck. Indeed, suppose we get stuck; then
there is a sequent with an → connective in it, otherwise all sequents are in the ⊗-
fragment and the algorithm finishes. But the →-formula cannot be in the succedent
because:

• if the succedent is of the form ϕ→ψ, ET1(a) is applicable.
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• if the succedent is of the form χ1⊗χ2 and the →-formula is contained in χ1 or χ2,
ET6 is applicable.

Both cases contradict the fact that the algorithm got stuck.
So we have a succedent in the ⊗-fragment, and a →-formula in the antecedent

and the algorithm is stuck. Due to rule ET1(b), we know the antecedent is of the
form Γ[ϕ→ψ] ` χ. There are four rules to be potentially applicable: ET3, ET4, ET5
and ET7. If the first three rules —ET3, ET4 and ET5— are not applicable, then
necessarily ET7 will be applicable (and only in such a case). So the algorithm does
not get stuck when there is an →-formula in the antecedent.

Therefore Algorithm 6.1 always terminates.

Theorem 6.11 Algorithm 6.1 is correct and cc-complete.

Proof. Just note that all rules above satisfy the sufficient conditions imposed by
Lemmas 6.3 and 6.5.

Corollary 6.12 Algorithm 6.1 can be used to decide the {⊗,→}-fragment of Intu-
itionistic Logic.

Proof. Straight from the combination of Theorem 6.11 and Theorem 4.5.

7 Conclusions and Further Work

In this paper we have shown that it is possible to automatically infer a family of
substructural logics in which a given formula/sequent is deducible.

The main deficiency of the algorithm proposed in Section 6 is that we do not always
find the family of all logics in which a formula is deducible. One possible way to do that
would be to change our transformation rules so that our algorithm could compute a
minimal combinator in some sense. If this minimal combinator were unique, it would
represent the desired family of all logics in which a formula is deducible. However, as
Example 6.8 shows, the combinators generated are not minimal in any useful sense.
Indeed, for the sake of obtaining cc-completeness, transformation rule ET3 causes the
generation of combinators that are “too big”. It would be interesting to investigate
refinements of ET3 that would not only preserve cc-completeness but also guarantees
minimality (and thus strong completeness. A proper notion of order for complex
combinators also needs to be developed.

We would also like to extend our approach to richer fragments, including negation
and the additive connectives. Here we may reach a decidability threshold quite easily
and it would be interesting to investigate which fragments still permit a terminating
algorithm to compute an associated combinator. Obviously, we must restrict ourselves
to decidable fragments.

Finally, the implementation of structurally-free theorem provers is certainly a topic
worth of further investigation that we wish to pursue.
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