
Handling Database Updates inTwo-dimensional Temporal LogicMarcelo Finger�yDepartment of Computing, Imperial College180 Queen's GateLondon SW7 2BZ, UKE-mail:mf3@doc.ic.ac.ukFebruary 17, 1993(Draft version 0.2)
AbstractThis paper deals with the description of the evolution of the understandingof the history of a particular world. We have particular interest in describingcertain problems that occur in database systems due to updates. For thispurpose, we introduce a two-dimensional temporal logic as a formalism whichenables the description of both the history and the evolution of the beliefsabout the history. The historical dimension describes the history of the worldaccording to a certain belief. The belief dimension describes the evolution ofthose beliefs.The historical dimension is then associated with an historical database,and transactions in the database are associated with changes in belief. Be-sides describing the history of the world, the database system can also executetemporal speci�cations in the form of temporal actions. The two-dimensionalformalism is used to describe the e�ects of updates in the execution of tempo-ral actions. Those descriptions are then taken as speci�cations for a databasesystem and their implementation is discussed.Keywords: Historical Databases, Temporal Logic, Temporal Speci�ca-tions.�I am very grateful to Prof. D. M. Gabbay for his helpful comments.yEsprit BRA project 3096 (SPEC).

1 IntroductionThis paper deals with the problem of describing the evolution of the understandingof the whole history of the world. The world is any particular object in a certainenvironment that we want to describe. Normally, the elements of the world areevolving systems, i.e. they cannot be isolated from the
ow of time, so that the realobject of our description becomes the history of the world. The particular evolvingsystem that we are interested in describing is an historical database.Conceptually, we have to bear in mind two distinct entities that we want to treatdi�erently:a) The world being described and its history.b) The reference according to which the description is made. The refer-ence is an observer looking at the history of the world. The reference isnot part of the world.The exclusion of the reference from the world is to avoid the possibility of havingan observer observing himself, which may be a very interesting problem from thephilosophical point of view, but it is not very useful in the database case where, infact, we want to ensure the separation between the agent and the object.A change in the world is seen as part of its history. A change in the reference isseen as a change in the observer's belief about the history of the world. If we furtherassume that the observer can act upon the world according to what he believesabout the history of the world, we have these two entities constantly interactingwith each other. The problem is describing those two constantly evolving entitiesand their constant interaction.Instants of time also have a distinct treatment whether they are associated withthe history or with a belief. An instant in time associated with the historical de-scription of the world is called an evaluation point. An instant in time associatedwith the reference of a belief is called a reference point or a reference time.If we apply these concepts to the description of databases, the history of theworld is modelled by an historical database [Snodgrass & Ahn 85], wherein everypiece of information is associated to an interval of time, called its validity interval.The actions developed upon the world are caused by temporal speci�cations of theform condition! actionwhere condition is veri�ed against the history of the world (database), and action isto be executed upon the world in the present or future time. The idea of executinga temporal speci�cation re
ects an imperative view of time and is discussed in[Gabbay 89].In this context, the reference can be seen as an observer that has a current beliefabout the history of the world according to which he checks the condition part of atemporal speci�cation that, when veri�ed, triggers the execution of action that will1

in
uence the present and the future of the world. The observer is embedded in thedatabase environment as the executing mechanism of temporal speci�cations.The database user is able to add, delete and modify information in the database,changing the current view about the history of the world. The user can be then seenas some kind of \consciousness" operating behind the observer's \mind", causingthe observer to change his beliefs about the history of the world. The observer's\mind" is changed whenever the user updates the database.In order to deal with both an evolving history and evolving beliefs about it, weintroduce a two-dimensional temporal logic.Two-dimensional temporal systems have been used in the literature in order tocapture some temporal constructions of natural language, such as the past perfectand the present perfect in [Gabbay 90]. An attempt to fomalise the meaning ofverbs like \believe" and \say" in the temporal logic GR [Gabbay & Rohrer 78] isperhaps closer to our goals here. In such a logic, phrases likePeter says it is raining.Peter believes it is raining.are captured in formulae of the form E(x; q)G(x; q)where E and G are intended to capture the meaning of the verbs \say" and \believe",respectively, x is a variable that is associated with the person that said or believed(in this case: Peter), and q is the proposition representing what was said or believed(in this case: it is raining).It is remarkable that, regarding the semantics of the temporal logic GR, the truthvalue of formulae like E(x; q) and G(x; q) is completely independent from the truthvalue of q. In other words, what Peter says or believes is absolutely independent, atleast in principle, of what is happening in the \real world".In the database case, there is no consideration about what the \real world"is meant to be. The presence of some data in the database is the condition forthe observer to believe in it. If any information is deleted from the database, itbecomes part of the observer's past beliefs. The fact that the database is supposedto represent with some accuracy a \real world" is irrelevant for its description,although it is not irrelevant for its proper use.In order to illustrate the kind of problems we have in mind, let's consider thefollowing example:Example 1.1 Retroactive paymentSuppose a database is used to record the information concerning theemployees of a company, including their salaries. Suppose this informa-tion is used for the automatic printing of payment cheques on the eve ofpayment days. This activity can be modelled by the following temporalspeci�cation, written in a Prolog-like notation:2

T payment day ^employee(Person) ^salary(Person;Amount) ! print cheque(Person;Amount)T payment day means that tomorrow is the payment day. Time is dis-cretely counted in days and the rule above is checked against the databaseevery day. When it is the eve of the payment day (i.e. when the expres-sion T payment day evaluates to true), then every employee of the com-pany has his salary searched in the database, and a command is issuedto the printer to print a cheque with the name of the employee and his orher respective salary. This is what is meant by executing the temporalspeci�cation above.But it may happen that a particular employee, say Mr. Jones, re-ceives a retroactive increase of his salary after the printing of his paymentcheque. At the payment day's eve, say 26/10/90, the piece of informationpresent at the database was:salary(Jones, $1000) validity: 01/89 { nowwhich caused a cheque to be printed to Mr. Jones with the amountof $1000 on it. But the retroactive increase of Mr. Jones's salary at31/10/90 left the database with the following information:salary(Jones, $1000) validity: 01/89 { 09/90salary(Jones, $1200) validity: 10/89 { nowIf this information was present in the database at the moment Mr.Jones's $1000 payment cheque was printed, a $1200 cheque would havebeen printed instead. This means that, after the change, the databaseviews the printing of the $1000 payment cheque as based on false infor-mation. We say that, in this situation, the executed action has becomenon-supported, as de�ned in [Finger 90]. At this point, it would be neces-sary to take some kind of corrective action in order to deal with the e�ectsof the presence of the non-supported action in the system. We would likethe database system to detect the presence of such non-supported action,and we may leave the responsibility of taking corrective actions eitherwith the database user or we may wish to specify corrective actions thatshould be executed when a non-supported action is detected.We are going now to present the two-dimensional temporal logic, built to dealwith these problems.2 Propositional Two DimensionalTemporal LogicWe present here a two-dimensional system that enables us to reason about thehistory of the world as well as to reason about the evolution of beliefs about the3

world. Let us �rst consider informally the temporal operators U and S | untiland since | introduced by Kemp and discussed in [Gabbay 81], as well as the lessexpressive operators that can be derived from U and S, namely P (past), F (future),H (always in the past), and G (always in the future). These operators allow us toreason about the history of the world. The operators U and S are two-place; P ,F , H and G are one-place operators; so that, if A and B are correct formulae ofour language (yet to be de�ned) describing the world, we can build, by using theoperators, other formulae like FA and S(A;B) with the following intended meaning:� FA means that there is a time point in the future where A holds in it.� S(A;B) means that there is a time point in the past where A holds in it andB holds in all time points since then.Recall that we have already established a distinction between evaluation timepoints and reference time points. The operators U , S, P , F ,H and G always refer tothe evaluation time points because they are associated to the historical descriptionof the world.The next step is to provide a set of operators to describe beliefs about the worldin an independent way. We do this by duplicating the set of temporal operators sothat we have a new family of operators specialized in expressing beliefs about thehistory. This family is called the �-operators (or belief operators) and is composedby �U , �S, �P , �F , �H and �G.If A and B are formulae of our language, the intended reading of the �-operatorsis the following:� �PA means that there was a reference point in the past where A was believedto hold in it;� �FAmeans that there will be a reference point in the future where A is believedto hold in it;� �HA means that A has always been believed in the past instants;� �GA means that A will always be believed in the future instants;� �S(A;B) means that B has been believe since A was believed� �U(A;B) means that B will be believed until A is believed.We are aware that the intended meaning presented above is certainly not freefrom ambiguities, since the natural language statement \is believed" does not clearlyestablish, in formulae like �PA, in which point of time A is going to be evaluated.This problem can only be solved by giving a formal semantic de�nition, which willbe done later in this section.Note that, in principle, we are dealing with two di�erent
ows of time, that caneven have di�erent natures. For instance, we may want to describe the history of theworld in a dense
ow of time that allows us always to re�ne a certain description4

of the history of the world in terms of temporal details. On the other hand, wemay want to talk about a succession of beliefs about this history, where a change inbeliefs is triggered by some event, e.g., the learning of some new information. In thiscase, the
ow of belief time is clearly discrete, therefore we can have a dense
ow oftime in the historical dimension and a discrete
ow of time in the belief dimension.This means that we can have two completely independent
ows of time being dealtwith by the same logical system. In this presentation we are going to consider twoindependent linear and discrete
ows of time, so that we will be able to de�ne theoperator T (for tomorrow), Y (for yesterday), �T (for the next belief) and �Y (forthe previous belief).While de�ning the language on which the two-dimensional logic is going to bebased, attention must be paid in order to maintain the separation between the his-tory, in one dimension, and the beliefs about it, in the other dimension; furthermore,as stated before, the observer must not be considered as part of the world. We startby considering only a subset of all the possible two-dimensional formulae that canbe generated, by the operators we have introduced, namely the belief formulae, andwe present a semantics to those formulas. The semantics will shed light to our un-derstanding of the operators, so that we will be able to extend the interpretationgiven to the �-operators, and hence extend the two-dimensional language to includemany other formulae that were not meaningful under the original interpretation.2.1 Historical and belief formulaeHaving in mind the intended meaning for the �-operators as presented above, con-sider A as a formula describing the world. Then we have as perfectly meaningfulformulae: PA, �PA and �PPA. Nevertheless, the formula P�PA seems meaningless,i.e. it cannot be read in a meaningful way according to the given interpretation tothe operators; furthermore it appears to show a reference being described as partof the world, since a belief operator is inside the scope of an historical operator.In order to rule out this possible kind of formula, the formulae of our language arepresented in two steps, namely historical formulae and belief formulae. Let us thenformalise the language and its semantics.De�nition 2.1 The alphabetThe two-dimensional propositional alphabet is composed by:� a countable set of propositional letters L = fp1; p2; : : :g;� the boolean connectives :, _, ^ and !;� the two-place operators S, U , �S and �U ;� punctuation signs (,) and ;_ 2Note that the one-place operators P , F ,H and G are not included in the alphabetsince they can be syntactically de�ned in terms of U and S. The same considerationis valid for �P , �F , �H and �G with respect to �S and �U .5

De�nition 2.2 Historical formulaeThe set HF of historical formulae (or h-formulae) is the smallest set such that:� every propositional letter belongs to it, and it is called an atomic formula;� if A 2 HF and B 2 HF then :A 2 HF , (A ^ B) 2 HF , (A _ B) 2 HF and(A! B) 2 HF ;� A 2 HF and B 2 HF then S(A;B) 2 HF and U(A;B) 2 HF . 2What we call here h-formulae is simply the language of the (one-dimensional)temporal logic of since and until. Those formulae are intended to describe only thehistory of the world. We do not write sometimes the outermost parentheses of aformula when no ambiguity is caused.De�nition 2.3 Formulae containing an operatorLet X be a two-place operator and let A and B be formulae. The set FX of formulaecontaining the operator X is the smallest set such that:� X(A;B) 2 FX� if A 2 FX then :A 2 FX� if at least one of A or B belong to FX then so do A ^B, A _B and A! B.A formula A is said to contain the operator X i� A 2 FX . 2We are now in a position to de�ne the set of belief formulae.De�nition 2.4 Belief formulaeThe set BF of belief formulae (or b-formulae) is the smallest set such that:� every h-formula belongs to it, and is called a current belief formula;� if A 2 BF and B 2 BF then �S(A;B) 2 BF and �U(A;B) 2 BF ;� if A 2 BF so that A contains �S or �U , then :A 2 BF ;� if A 2 BF and B 2 BF so that at least one of them contains �S or �U , then(A ^B) 2 BF , (A _B) 2 BF and (A! B) 2 BF . 2The additional condition in the last two items of the de�nition of b-formulae areso as to provide a unique parsing to a formula; for a detailed discussion of this topicrefer to [Finger 90].We are now in a position to de�ne the semantics for the propositional two-dimensional temporal language we have just presented.6

De�nition 2.5 Two-dimensional valuations and modelsConsider a discrete
ow of time composed by the pair (T ; <), where T is a denu-merable set of time points and < is a transitive linear and irre
exive relation overT . We will distinguish between the historical
ow of time (Th; <h) and the reference(or belief)
ow of time (Tb; <b).Let g be a function that for every reference time point o 2 Tb and for everyevaluation time point t 2 Th associates a set of propositional letters, i.e. g(o; t) � L.The function g is called a two-dimensional valuation.A two-dimensional model is a 7-tupleM = (Th; <h;Tb; <b; o; t; g), where (Th; <h)is an historical
ow of time, (Tb; <b) is a reference
ow of time, o 2 Tb is thecurrent belief time, t 2 Th is the current evaluation time and g is a two-dimensionalvaluation. 2De�nition 2.6 Semantics of b-formulaeLet f0,1g be the set of truth values. Let M = (Th; <h;Tb; <b; o0; t0; g) be a two-dimensional model. The notation k A kM(o; t) reads the truth value of A at theevaluation point t with respect to the reference point o, in the model M. We omitM when no confusion is caused, writing only k A k(o; t).Let A and B be b-formulae. We can then de�ne k A k(o; t) inductively:1. k pi k(o; t) = 1 i� pi 2 g(o; t), pi is an atomic formula;2. k :A k(o; t) = 1 i� k A k(o; t) = 0;3. k A ^B k(o; t) = 1 i� k A k(o; t) = 1 and k B k(o; t) = 1;4. k A _B k(o; t) = 1 i� k A k(o; t) = 1 or k B k(o; t) = 1;5. k A! B k(o; t) = 1 i� k A k(o; t) = 0 or k B k(o; t) = 1;6. k S(A;B) k(o; t) = 1 i� 9s(s <h t^ k A k(o; s)^8u(s <h u <h t!k B k(o; u) = 1));7. k U(A;B) k(o; t) = 1 i� 9s(t <h s^ k A k(o; s)^8u(t <h u <h s!k B k(o; u) = 1));8. k �S(A;B) k(o; t) = 1 i� 9x(x <b o^ k A k(x; t)^8y(x <b y <b o!k B k(y; t) = 1));9. k �U(A;B) k(o; t) = 1 i� 9x(o <b x^ k A k(x; t)^8y(o <b y <b x!k B k(y; t) = 1)); 2Note that, since h-formulae constitute a subset of b-formulae, items 1{7 of thede�nition above also give the semantics of h-formulae.Once we have de�ned the syntax and semantics for the present two-dimensionallanguage, we can extend it to by de�ning one-place operators in terms of the two-place operators.De�nition 2.7 One-place temporal operatorsConsider true to represent p ! p, i.e. a formula that always evaluates to 1; andconsider false to represent p ^ :p, i.e. a formula that always evaluates to 0. Let Abe ah h-formula and B be a b-formula. We can then de�ne:7

1. FA =def U(A; true);2. PA =def S(A; true);3. GA =def :F:A;4. HA =def :P:A;5. TA =def U(A; false);6. Y A =def S(A; false);7. �FB =def �U (B; true);8. �PB =def �S(B; true);9. �GB =def :�F:B;10. �HB =def :�P:B;11. �TB =def �U(B; false);12. �YB =def �S(B; false). 2We can then derive the semantic de�nition of �FA, for instance, which has theintended meaning that, in some future belief time, A will be believed to hold:k �FA k(o; t) = 1 i� �U (A; true)i� 9x(x <b o^ k A k(x; t) = 1^8y(x <b y <b o!k true k(y; t) = 1))i� 9x(x <b o^ k A k(x; t) = 1)Note that the evaluation point t is not a�ected by the evaluation of �FA. Infact, the evaluation point t is not a�ected by the semantics of either �U or �S orany of their derived operators. As a consequence, it is irrelevant for their semanticde�nition the relative position between the reference and the evaluation points. Butthis is not always the case for all two-dimensional logics (see, for instance, the F �P �two dimensional system de�ned in [Gabbay 90]). The temporal operators can beseen as performing \moves" or \jumps" in time. The application of a temporaloperator moves either the evaluation point or the reference point or even both. Inthis sense, consider the situation ilustrated in Figure 1.Figure 1a illustrates the kind of movement caused by any of the �-operators,carrying the reference time but leaving the evaluation time in the same position. Onthe other hand, the historical operators, can be seen as moving only the evaluationpoint while leaving the reference point unchanged, as illustrated in Figure 1b.8

a) Move caused by a �-operator: -o : t -o0 : t6b) Move caused by an historical operator: -o : t t0-Figure 1: Time moves caused by temporal operators2.2 Two-dimensional formulaeIn the semantics de�nition of b-formulae we see that the historical and belief for-mulae are completely orthogonal, in a sense that an historical operator provokesno change in the belief dimensions and that a belief operator provokes no changein the historical dimension. This suggests a reinterpretation for these operators asmere displacement operators. An operator like P should be read as \a displacementtowards the past in the historical dimension" a formula like �S(A;B) should be readas \in the present evaluation time, A was a past belief and B has been believedsince". Due to the orthogonality between historical and belief operators, there isno way of having a reference as part of the world nor having a belief as part of thehistory.Under this new interpretation, a formula like P�PA, which is not a b-formula,is acceptable and reads \going to the past in history then going to a past belief, Aholds"; furthermore, the intended meaning of P�PA is the same as the meaning of�PPA. We can then formalise the complete two-dimensional well formed formula.De�nition 2.8 Two-dimensional well formed formulaThe set WFF of two-dimensional well formed fomulae is the smallest set such that:� every propositional letter belongs to it;� if A 2 WFF then :A 2 WFF ;� if A 2 WFF and B 2 WFF then A ^ B 2 WFF , A _ B 2 WFF and A! B 2WFF� if A 2 WFF and B 2 WFF then S(A;B) 2 WFF and U(A;B) 2 WFF ;9

� if A 2 WFF and B 2 WFF then �S(A;B) 2 WFF and �U(A;B) 2 WFF ; 2The two-dimensional well formed formulae were constructed by �rst extendingone-dimensional temporal formulae to b-formulae and then to two-dimensional wellformed formulae so that HF � BF �WFF . The semantics de�nition for b-formulaepresented in De�nition 2.6 can be directly appllied to w�'s. The syntactic de�nitionsof the one-place operators as in De�nition 2.7 are also valid as abbreviations in wellformed formulae.The idea of a two-dimensional model appears as a generalisation of the one-dimensional model to deal with evolving beliefs. A two-dimensional model can bereduced into a one-dimensional model by means of a projection.De�nition 2.9 Projection into the historical dimensionA two-dimensional model M = (Th; <h;Tb; <b; o0; t; g) projected into the historicaldimension with respect to a reference point o is a one-dimensional modelMo = (Th; <h; t; go)where for all s 2 Th, go(s) = g(o; s). 2The projection into the historical dimension gives us the history of the worldaccording to one particular belief. If we project a two-dimensional model into thebelief dimension, we �nish with a view from the evolution of the beliefs about aparticular instant of the history.De�nition 2.10 Projection into the belief dimentionA two-dimensional model M = (Th; <h;Tb; <b; o; t0; g) projected into the historicaldimension with respect to an historical point t is a one-dimensional modelMt = (Tb; <b; o; gt)where for all x 2 Tb, gt(s) = g(x; t). 23 Applications to DatabasesA database is seen here as a one-dimensional temporal model, called an historicaldatabase [Snodgrass & Ahn 85], obtained by projecting a two-dimensional modelinto the historical dimension with respect to the current belief time. A query isan historical formula and query evaluation is the veri�cation of the truth value ofa formula in this model. The evaluation is done by the application of rules 1{7 ofDe�nition 2.6 and the substitution rules 1{6 of De�nition 2.7.Transactions are logical work units, i.e. logical units of change in databases[Date 86]. A transaction is here associated with a change in the current belief time,which is graphically represented by the symbol �!. Since the set Tb is a discrete set,10

it can be modelled by the natural numbers; hence, a database in the current belieftime o goes, after a transaction, to a current belief time o+1 which is representedby o �! o+1. Th is also a discrete set and time is counted in ticks in the historicaldimension.A state of the database is the projection of the two-dimensional model on thehistorical dimension with respect to some reference time. These de�nitions of trans-actions and states are adapted from the de�nitions given by [Cli�ord & Warren 83].Considering some of the possible di�erent relationships between the set of be-lief time points and the set of historical time points, we are able to describe thesynchronism between transactions and ticks as discussed in [TEMPORA 89]:� Th = TbThis is considered the synchronous case, in which a transaction occurs in thedatabase at every tick. This can represent that every time the observer realisesthat time is changing, the database is updated. The duration of a state of thedatabase is constant and equal to one tick. -t1o1 t2o2 t3o3 t4o4-� -� -�� Tb � ThThis is considered a middle term between the synchronous and asynchronouscases, wherein transactions do not occur after every unit of time, but transac-tions are synchronized with the ticks. As a result, states can have a variableduration of an integer number of ticks. -t1 t2 t3 t4 t5 t6 t7 t8o1 o2 o3 o4-� -�-�� Th � TbThis is one possible asynchronous case in which several transactions may occurbetween two ticks, but in which there is always a transaction occurring insynchronism with a tick. It can represent that there is a constant update everytick due to, for instance, temporal speci�cation execution, and the transactionsintroduced between every tick can be caused by the user updating the databaseat any time. -t1 t2 t3 t4o3 o4 o5 o6o1 o2 o7-� -� -�-� -� -�(Note that in the three cases above, there is no need for two distinct <relations, since it is enough to de�ne it on Th [Tb, i.e. we have interlaced
ows of time.) 11

3.1 Temporal Speci�cationsAccording to [Gabbay 89], time can be considered in two ways, namely the declara-tive view of time and the imperative view of time. Viewing an historical database asa model is considering only the declarative view of time. In order to deal with theimperative view of time, we have to extend the database system to cope with tempo-ral speci�cations, so that what we will call a database system has both a descriptivecomponent (i.e. the model) and an active component (i.e. temporal speci�cations).A temporal speci�cation, in the database context, is an historical formula of theform: Condition! ActionCondition is an h-formula, i.e., it is an acceptable query to the database, there-fore is can be evaluated according to the rules 1{7 of De�nition 2.6. When theevaluation succeeds, the Action must be executed.An action, in principle, could be any historical formula involving only the presentand the future (formally, we should say that an action is a boolean combination ofpure-present and pure-future formulae, where the notion of a pure formula es de�nedin [Gabbay 89]) but the execution of an action in the future implies the existence of astrategy to perform this execution, and we certainly want this strategy to guaranteethat the action will be executed, i.e., Action will eventually hold in a future state ofthe database. For this discussion, we assume that the
ows of time are interlacedin one of the three ways described above.In order to have a simpler execution strategy, we may make the action language alittle less expressive then the original formulation. Let's consider a few problematiccases:� The execution of an action of the form A1 _ A2 _ : : : _ An may cause someproblems for the strategy to choose which Ai component to execute in orderto execute the action. Since each Ai may demand certain execution at adi�erent historical time, delaying the execution to a future time may makesome (eventually all) Ai impossible to execute, because it is impossible toexecute an action in the historical past. On the other hand, the immediateexecution of some Ai may be impossibe (e.g., the action may require the useof some resources in the environment that are not available at the moment)or undesirable (e.g., the action may be the payment of an invoice that shouldbe delayed as much as possible).� The execution of an action of the form FA. The problem now is when toexecute this action, since its execution may be inde�nitely postponed; futher-more, we may have the same problems of impossibility and undesirability asin the last case. We suggest that actions fo the form FA be replaced ac-tions with a two-place operator AatnextB, where atnext is an operator usedin [Kr�oger 87], stating that A must be executed at the next occurence of Bin the future. This operator can be de�ned in terms of the U operator asAatnextB � U(A ^ B;:B). 12

By excluding disjunctions and changing FA by AatnextB, we are selectingamong the possible actions, only the de�nite ones. We de�ne then de�nite actionin the following way, wherein a literal is an atomic formula or the negation of anatomic formula:� every literal is a de�nite action;� if A is a de�nite action, TA is a de�nite action;� if A is an action and B is any h-formula, then AatnextB is a de�nite action;� if A1 and A2 are de�nite actions, so is A1 ^A2.The semantics of de�nite actions is given by De�nition 2.6 with the appropriatetransformations TA � U(A; false) and AatnextB � U(A ^B;:B).3.2 Temporal Speci�cations and Database UpdatesA database system is then interacting with the environment it is inserted in. Thisinteraction can happen in two-directions:� Enviroment! Database: the environment (which includes the user) performsan action upon the database, e.g. by updating the database.� Database ! Environment: the database triggers the execution of some actionin the world, e.g. printing checks, etc.The interaction database-environment performed in either way is going to causea change in the database state. A legal update made by the user changes thedatabase state. The execution of a temporal speci�cation will, besides triggering anaction upon the environment, cause an update in the database basically because itbelieves now that an action was triggered. Another way of seeing this update afterthe execution of an action is by considering it as a reaction of the environment uponthe database caused by the executed action.If A is an atomic formula, its insertion in the database can be described by thetwo-dimensional well formed formula�Y :A ^ A (1)whereas its deletion from the database can be expressed by�YA ^ :A (2)A two-dimensional view of the execution of a temporal speci�cation of the formCondition! Actionis the expansion of the formula above to(Condition ^ :Action)! �TAction (3)13

meaning that if Condition holds in one state of the database but not Action, then inthe next state Action is made true. The actual detection of an action to be executedcan be described as: �Y :Condition ^ (Condition ^ :Action) (4)Had we used formula 4 as the antecedent of formula 3, this would mean that when-ever a temporal speci�cation is triggered at a state of the database, it must beexecuted immediately, so that the temporal speci�cation will hold in the next stateof the database; however, this may not be always feasible in practice. ForcingAction to hold in the database may also trigger some action in the database en-vironment which cannot immediately be executed, e.g. due to resource allocation.The database system is then actively interfering with the world it is trying to model.Recall now the retroactive salary rise example, in which an action was executed(namely, the payment of the original salary of $1000) and then the information onwhich this action was based was changed (namely, the salary was increased from$1000 to $1200). We say that, in this case, the action has become non-supported,which is described by the following formula:�P (((Condition ^ :Action)! �TAction)) ^ :Condition (5)Note that the subformula under the scope of the �P operator is formula 3, meaningthat the action was executed in a past state of the database. The second elementof the conjunct says that in the current state of the database, the condition thattriggered the action is no longer valid.Still considering the retroactive salary increase example, the state of the databaseafter the increase implies that a di�erent action (namely, the payment of $1200) sholdhave taken place in the last payment day. We say that the update has caused anaction to be triggered in the past, which is described by the formula:P (�Y :Condition ^ (Condition ^ :Action)) (6)Note that the subformula inside the scope of the P operator is formula 4, whichactually means that an action was triggered in the past. This is the �rst time inwhich we use a formula that is not a b-formulae, and the reason for this is that inthis formula there was an actual need for the evaluation time to be dislocated to thepast.Finally, the case in which a temporal speci�cation is violated must be considered.Since the logical view of the execution of a temporal speci�cation is making Actionhold in the database, it can happen that, at some state after its execution, theinformation about Action is deleted from the database, therefore violating an alreadyexecuted speci�cation:�P ((Condition ^ :Action)! �TAction) ^ (Condition ^ :Action) (7)The subformula inside the scope of the �P operator is formula 3, meaning that theformula was executed in a past state of the database; the rest of the formula speci�esthat Condition still holds in the database but Action was deleted.14

4 Implementation AspectsThe complete implementation of dbT, a prototype of an historical database thatsupports the execution of temporal speci�cations is discussed in [Finger 90]. In thispaper we will only consider those implementation topics related with the descriptionsgiven by formulae 3 { 7.The historical and belief
ows of time are considered to be interlaced and wehave implemented the asynchronous model as described in last section.Formulae 3 { 7 that were used to describe certain situations in a database arenow used as speci�cations. The implementation performs the following tasks:� Detection of an action to be executed;� Execution of an action;� Detection of non-supported actions;� Detection of temporal speci�cation violation.The detection of an action to be executed is performed at the begining of everytick. Therefore, we assume that a tick is a rather large unit of time if comparedwith \real time", i.e. scanning all the temporal speci�cations in order to �nd whichhas been triggered in the last tick can become a rather expensive task if performedonce every second. On the other hand, if it is performed once at the begining ofeach day, the overhead caused by the process of detecting actions to be executed isacceptable provided the number of temporal speci�cations is reasonable. What ismeant by reasonable is relative, because we can have queries that are checked in amuch faster way than others. In this system, since the implementation also checksfor new actions to be executed, as well as actions that have become non-supported,after every transaction in the database, a large number of temporal speci�cationswould certainly yield a very ine�cient system. The detection of an action is done byquerying Condition in the database. The query process records also all the instantsof time that were used in proving the query; this information is later used for thedetection of non-suported actions and we call it temporal dependencies.The execution of actions is a very detailed and complicated matter. It involvesthe allocation of resources in the database environment, (e.g., we can only printa check if the printer is available), the elaboration of a strategy for the executionof pending actions (e.g., decide what is to be printed �rst, payment checks or anoperation report) and the user interface, among other tasks. Our implementation isonly concerned with the e�ects in the database caused by the execution of an action.The detection of non-supported actions is done after a transaction occurs inthe database. The result of the detection of a non-supported action is a messageprompted to the user notifying this fact. The responsibility for taking the appro-priate action is left to the user. A future extension of the system should allow fortwo-dimensional speci�cations to cope with this situation. Instead of re-evaluatingthe Condition part of all the executed actions, we compare the instants of time asso-ciated with the information being changed with the temporal dependencies of each15

action. In case of an intersection, the Condition part of the action is re-evaluatedand in case of failure, the action has become non-supported.Violation of temporal speci�cation has proved to be a rather normal event in thesystem, and its believed to be an indicator of the poor design of the speci�cationrules. For instance, still in the payment example, suppose we have the followingrule: hire(Person;Amount)! Gsalary(Person;Amount)This rule states that whenever a person is hired for an amount of money, his or hersalary is going to be this amount. Any subsequent increase in the person's salarywill cause the violation of the rule above, since part of the information inside the Goperator stating that something \is always going to be" will be deleted. The designof appropriate rules should take into account such situations and try to avoid thoseviolations caused by the simple use of the database.It must be noted that the detection of actions triggered in the past is not per-formed by the implementation. The reason is clear. In order to do so, in principle,we should have to search the whole past every time there is an alteration in thedatabase, evaluating all the speci�cations at all moments of the past. The di�cultycan be detected in the description of an action triggered in the past in formula 6,in which the de�nition of the detection of an action to be executed is completelyinside the scope of the P operator, with no clue about what instant in time it hasoccured. Unless a method is found to select a small set of time points in which thetemporal speci�cations evaluation can be performed instead of scanning the wholepast, the detection of actions triggered in the past has a prohibitive computationalcost.5 Summary and DiscussionsWe have developed in this paper a two-dimensional propositional temporal languagein order to simultaneously describe the history of the world and the evolution ofbeliefs about the world. We have applied this two-dimensional temporal language inthe description of historical databases, basically describing the handling of updatesand its behaviour due to the incorporation and execution of temporal speci�cationas the active part of a database system. The historical level was described in thefully expressive US-temporal logic, and the second dimension was a generalizationof this US-temporal logic to cope with beliefs.5.1 The Two-dimensional Language RevisitedThe two-dimensional temporal language developed so far has the main characteristicof being a propositional language. In order to model a relation (e.g., in order toexplicitly model relational databases) the language should be extended to deal withpredicates and quanti�cation as well. The notion of two-dimensional interpretationsand models should be modi�ed a two-dimensional variable assignment should beintroduced. Note that the introduction of quanti�cation over variable also introduces16

the problem of which is the domain of quanti�cation, so that the meaning of thefollowing formulae must be made precise:� �GG8xA(x)� �G 8xGA(x)� 8x�GGA(x)If we assume that the set of elements (domain) we are reasoning about, andtherefore quantifying over, is constant, i.e. no new element comes to knowledge or isdestroyed in both the historical and the belief
ows of time, then the three formulaeabove are seen as having the same meaning. This restriction may not always re
ectthe intuition of our evolving beliefs and the evolution of history, but in the databasecase it seems a reasonable assumption, since it deals with a limited part of theuniverse in its description that can be supposed constant.Any of the three formulae above should be read as in all future belief pointsand in all the future historical points every element of the global domain has theproperty A. Note that inverting the order of �G and G should not alter the meaningof the three formulae above due to the independence between the two dimensions.The constant domain restriction does not imply the equivalence of fomulae like9xGA(x) and G9xA(x).Even with the constant domain restriction above, there are other problems tobe taken into account. For instance, it may be the case or not that the constantsof the language are rigid designators, i.e. they represent the same object of thedomain at all time points and belief points. The assumption of constants beingrigid designators may again violate the intuition of changing beliefs, but it is also areasonable assumption for a database system.Note as well that the two-dimensional language has no autoepistemic operatorthat allows it to refer to the current beliefs, like in languages described in [Moore 85]and [Konolige 86]. The two-dimensional laguage has no means to di�erentiate be-tween what is true from what is believed to be true, since its starting point is thateverything that is represented is a belief about the world and there is no way ofrefering to the world except by the berliefs about it. On the other hand, the mainpoint of the introduction of the second dimension was to provide a way to actuallydescribe the evolution of the beliefs, as opposed to introspection (what an agentbelieves, and what he believes he believes, and what is true in his beliefs, etc).Finally, the two-dimensional system presented allows for only one believing en-tity, as opposed to the system described in [Konolige 86] wherein many di�erentbelieving entities can coexist and one may have beliefs about what others believe.In this sense, the two-dimensional system has a centralized capability of describ-ing beliefs and their evolution, which suits the desciption fo monolithic databasesystems but may fail to describe distributed database systems.17

5.2 Two Dimensions and Databases RevisitedIn the two-dimensional description of databases, the database was seen as a model,namely the projection of a two-dimensional with respect to a belief point; thesecond dimension ws presented as a witness of the intrinsic temporal nature ordatabases, since the content of the database is always changing in time. Themodel theoretic view of databases can now be changed to a proof theoretic view,as in [Lloyd & Topor 85], by giving a two-dimensional description of a deductivedatabase. A resonably e�cient inference system must be provided together withproofs of soudness and perhaps completeness in some sense. Another possibilityis to provide a means of translating historical formulas to a language in which aninference system already exists, e.g. a Prolog-like language, but some care must betaken for precisely de�ning the meaning of a temporal negation as failure.Temporal speci�cations can play a larger roll in the updating process in thedatabase. As sugested by Peter McBrien, a rule of the formCondition! Actioncan have its Condition part evaluated in both the database and the environment,therefore not only the database state would cause temporal speci�cations to be eval-uated, but the actions of the environment towards the database, e.g. the inclusionor deletion of data, would also activate some rule that will be in charge of process-ing the alteration. This suggests a rule-based database architecture, in which thetemporal rules are the central communicating point between the database and itsenvironment, as opposed to a database centred architecture, in which the databasecommunicates directly with its environment and the temporal rules are seen onlyas an appendix to the database. A further discussion of the consequences of arule-based database system is discussed in [Finger 90].Throughout this paper we have been talking about databases without mentioningintegrity constraints and the reason is the following. In the model theoretic view ofthe database, an integrity constraint is any historical formula that must be satis�edby the database in every state. An integrity constraint normaly has the followingform, or can be brought to it: :BadConditionSince it is not speci�ed what attitude should the database system take in casean update violates some integrity constraint, we suggest that this attitude becomepart of the repertoir of speci�able actions that the database system can trigger byexecuting a temporal speci�cation, therefore the above integrity constraint can beseen by the system as a rule of the form:BadCondition! Attitudeso that the detection of BadCondition in the database will trigger an action respon-sible for the treatment of what should be an integrity constraint violation.18

References[Cli�ord & Warren 83] J. Cli�ord and D. S. Warren. Formal Semantics for Time inDatabase, in ACM Transactions on Database Systems, 8(2), 1983, pp. 214{254.[Date 86] C. J. Date. An Introduction to Database Systems, volume I, fourth edition,Addison-Wesley, 1986.[Finger 90] M. Finger. A Two Dimensional Approach to Historical Databases, M.Sc.Thesis, Department of Computing, Imperial College, 1990.[Gabbay 81] D. M. Gabbay. Expressive Functional Completeness in Tense Logic,in Aspects of Philosophical Logic, ed. U. Monnich, Reidel, Dordrecht, 1981, pp.91{117.[Gabbay 89] D. M. Gabbay. The Declarative Past and the Imperative Future in pro-ceedings, Colloquim on Temporal Logic and Speci�cation, Manchester, April 1987,Ed. B. Banieqbal et al., Springer Lecture Notes in Computer Science 398 (1989).[Gabbay 90] D. M. Gabbay. Temporal Logic | Mathematical Foundations and Com-putational Aspects [Chapter 7: Basic Many Dimensional Systems], Oxford Uni-versity Press, to appear.[Gabbay & Rohrer 78] D. M. Gabbay, C. Rohrer. Relative Tenses: The interpreta-tion of tense forms which occur in the scope of temporal adverbs or in embeddedsentences in Papers on Tense, Aspect and Verb Classi�cation, TBL Verlag G.Narr, Tubingen, 1978, pp. 99{111.[Lloyd & Topor 85] J. W. Lloyd, R. W. Topor. A Basis for Deductive DatabaseSystems, Journal of Logic Programming, 2:93{109, 1985.[Konolige 86] K. Konolige. A Deductive Model of Belief , Research notes in arti�cialintelligence, Morgan Kaufmann, 1986.[Kr�oger 87] F. Kr�oger. Temporal Logics of Programs, Springer EATCS Monographson Theoretical Computer Science, Springer-Verlag, 1987.[Moore 85] R. C. Moore. Semantical Considerations on Nonmonotonical Logic inArti�cial Intelligence, 25(1), 1985.[Snodgrass & Ahn 85] R. Snodgrass, I. Ahn. A taxonomy of Time in Databases, inProceedings of ACM SIGMOD International Conference on Management of Data,Ed. S. Navathe, Association for Computer Machinery. Austin, Texas, May 1985,pp. 236{246.[TEMPORA 89] Background on Representing Rules in Temporal Logic, TEMPORADeliverable T2.1, ESPRIT Project E2469, University of Liege, December 1989.19

