
Anytime Approximations of Classical

Logic from Above

MARCELO FINGER, Department of Computer Science, Institute of
Mathematics and Statistics, University of São Paulo, São Paulo, Brazil.
Email: mfinger@ime.usp.br

RENATA WASSERMANN, Department of Computer Science, Institute of
Mathematics and Statistics, University of São Paulo, São Paulo, Brazil.
Email: renata@ime.usp.br

Abstract

In this article we present s1, a family of logics that is useful to disprove propositional formulas by means of an

anytime approximation process. The systems follows the paradigm of a parameterized family of logics established by

Schaerf’s and Cadoli’s system S1. We show that s1 inherits several of the nice properties of S1, while presenting several

attractive new properties. The family s1 deals with the full propositional language, has a complete tableau proof

system which provides for incremental approximations; furthermore, it constitutes a full approximation of classical

logic from above, with an approximation process with better relevance and locality properties than S1. When applied

to clausal inference, s1 provides a strong simplification method. An application of s1 to model-based diagnosis is

presented, demonstrating how the solution to this problem can benefit from the use of s1 approximations.

Keywords: Automated reasoning, approximate reasoning, theorem proving, satisfiability.

1 Introduction

Classical logic has been used to formalize knowledge representation and reasoning in several

areas of Artificial Intelligence, such as planning, model-based diagnosis, belief revision and

reasoning about actions. The main argument against the use of logic has always been the high

computational complexity involved. Even if we stay within propositional logic, deciding

satisfiability is NP-complete.
Recently, there have been several attempts to model resource-bounded reasoning through

different logical formalisms. The idea which we follow in this article is that of approximate

reasoning. Schaerf and Cadoli [18] proposed the following guidelines for approximations of

classical logic:

(1) Approximations should have clear semantics.
(2) Approximate answers should be easier to compute than the original ones.
(3) Approximations should be incrementally refined, eventually converging to the right

answer.
(4) We should be able to approximate from both ends, i.e. approximations should provide an

upper bound for proving theorems and a lower bound for refuting non-theorems.

When approximating classical logic, we usually aim at giving two methods: one which is

sound but incomplete, proving less theorems than classical logic and one which is complete

Vol. 17 No. 1, � The Author, 2006. Published by Oxford University Press. All rights reserved.

For Permissions, please email: journals.permissions@oxfordjournals.org

Published online 5 September 2006 doi:10.1093/logcom/exl018



but unsound, proving more theorems than classical logic. The former is called an

approximation of classical logic from below and the latter is an approximation from above.
Approximating from below, using sound and incomplete methods, is a process reasonably

well-understood. Several non-classical systems, such as paraconsistent or relevant logics, can

be seen as approximations from below. One only has to restrict some axioms or derivation

rules in order to obtain a subsystem of classical logic. Sound and incomplete methods are

useful for proving theorems, for if a theorem is proven in a subsystem of classical logic,

it must also be a classical theorem. An approximation process from below is a family

of subclassical logics, each of which proves more theorems than the previous ones and in the

limit it becomes classical logic.
On the other hand, approximating from above is useful for refutations, or for testing

satisfiability. If a set of formulas is unsatisfiable in a system that approximates from above,

then it is unsatisfiable in classical logic. However, defining such approximations is a harder

task. A super-system of classical logic is usually classically inconsistent, and an approximation

process from above has to avoid such pitfalls. In a family of logics that approximates classical

logic from above, each super-classical logic must prove less theorems (i.e. disprove more

classical non-theorems) than the previous ones, and in the limit it proves only the classical

theorems.
In this article, we depart from the system S1 proposed by Schaerf and Cadoli [18]

to approximate classical logic from above. Their system was restricted to clausal formulas.

We propose a similar system that can be extended to full propositional logic and show that

our system truly approximates classical logic from above. The family S1 allows for a

parametric approximation process from above; the parameters are given by sets s of

propositional letters such that for

6 0 � s0 � s00 � . . . � P

we have

�1
6 0��1

s0��1
s00� . . . ��1

P¼�CL

where P is the set of all proposition symbols, CL is classical logic and �1
s is the entailment

relation of the logic s1 (s).
The system s1 is first introduced by means of valuation semantics.1 We then provide a

tableau proof method for s1, show how it can be used for performing step-by-step

approximations of classical refutation and give an example of an application.
The article proceeds as follows: in the next section, we briefly review Cadoli and Schaerf’s

work on approximate entailment. In Section 3, we present the semantics for s1 and in

Section 4 we focus on the clausal fragment, so that our system can be compared to Schaerf

and Cadoli’s. We also present an example of application of s1 to model-based diagnosis.

In Section 5, we present an incremental tableau proof method for s1 over full propositional

logic. Finally, in Section 6, we review some logical systems which are related to ours and in

Section 7 we point towards future work.

1A semantical presentation of s1 was first introduced in [5].

54 Anytime Approximations of Classical Logic from Above



Notation: Let P be a countable set of propositional letters. We concentrate on the classical

propositional language LC formed by the usual boolean connectives ! (implication),

^ (conjunction), _ (disjunction) and : (negation).
Throughout the article, we use lowercase Latin letters to denote propositional letters,

lowercase Greek letters to denote formulas, and uppercase letters (Greek or Latin) to denote

sets of formulas.
We indicate by var(�) the set of propositional letters which occur in �. Let S � P be a finite

set of propositional letters. We abuse notation and write that, for any formula � 2 LC, � 2 S if

all its propositional letters are in S, i.e., var(�)�S. A propositional valuation vp is a

function vp : P ! f0, 1g:
If � and � are any sets, by k���k we mean the symmetric difference of two sets, namely

k���k ¼ ð���Þ [ ð�� �Þ:

2 The logical approximations

2.1 The generic notion of a logic approximation

We say that a logic L is approximated by a family of logics L 1, L 2, . . .if

kL � L 1k � kL � L 2k � . . . � 6 0:

To complete this definition, we must specify what we mean by the logic L. In fact, there are

several possibilities, leading to several forms of approximation:

(1) In a right approximation, the logic L is given by the set of theorems (or theses, or validities)

of L , Thð L Þ ¼ f�j �L �g: The word ‘right’ refers to the right-hand side of the

�L �symbol.
(2) In a left approximation, the logic L is given by the set of antitheses (or inconsistencies) of

L , AntiThð L Þ ¼ f�j� �L?g.
(3) In a full approximation, the logic L is given by its entailment relation, �L� 2LL � LL,

where LL is the set of formulas of L . A full approximation is both a right and a left

approximation.

There are two special cases of approximation worth noting. We say that the sequence,

where L 1, L 2, . . . is an approximation of L from below if

L 1 � L 2 � . . . � L

Approximations from below are useful for theorem proving. Each logic L i proves more

elements (theses/antitheses/entailments) of the goal logic L . On the other hand, we may have

an approximation of L from above when,

L 1 � L 2 � . . . � L

Approximations from above are useful for disproving theorems, which in the case of

propositional classical logic is equivalent to the well-known SAT problem. The SAT problem

consists in, given a set of propositional formulas �, deciding whether � is satisfiable, i.e.

whether a truth assignment can be found that makes each formula of � true.

Anytime Approximations of Classical Logic from Above 55



An approximation is finite if there exists a natural number n such that L n ¼ L : And, we

say that an approximation is parameterized if there exists a universe set U and parameter sets

S � U such that L ðSÞ is defined for each set S � U: In this case, an approximation from

above parameterized by sets of propositional letters would be a sequence such that whenever
6 0 � S1 � S2 � . . . � P we have

L ð6 0Þ � L ðS1Þ � L ðS2Þ � . . . � L ðPÞ ¼ L :

Similarly, a parameterized approximation from below can be given. Given a parameterized

approximation, an anytime algorithm is a procedure to decide if � 2 L (or, in case the goal

is to refute, if � 62 L ) that allows us to expand the parameter set S in such a way that, if

the algorithm is stopped anytime, it produces a partial answer: either ‘yes’, or ‘no up to L ðSiÞ’.

We say that this process of approximation is incremental if the algorithm for testing

whether � 2 L ðSiÞ (or whether � 62 L ðSiÞ) can be started from the state where the proof that

� 62 L ðSi�1Þ (or that � 2 L ðSi�1Þ) stopped.

2.2 Approximate entailment

In this section, we briefly present Schaerf and Cadoli’s original family of logics S1 and S3 and

comment their nice approximation properties and on some of their shortcomings. We then

point to the specific limitations of the system S1 which will be explored in further sections.
Schaerf and Cadoli proposed two approximations for classical propositional logic [18].

The idea of the systems was to work with formulas in clausal form and allow for non-classical

valuation semantics. Both systems, S1 and S3, are parameterized by a context set S, which

contains some propositional variables.
The systems are described via non-classical valuation semantics. In both systems, atoms

inside S behave classically, i.e., if p 2 S we must have vðpÞ ¼ 1 if and only if vð:pÞ ¼ 0: In the

system S1, an atom outside S is assigned the value 0, and so is its negation (vðpÞ ¼ vð:pÞ ¼ 0).

There is only one possibility for the pair p,:p, hence the name S1. In S3, there are three

possibilities for such a pair, the two classical ones, where vðpÞ ¼ 0 and vð:pÞ ¼ 1or vðpÞ ¼ 1

and vð:pÞ ¼ 0, and a third possibility, where both p and :p receive the value 1. Since we are

only dealing with clauses (disjunctions of literals), we can easily extend S1 and S3 valuations

to formulas using the classical rule for disjunction:

vð� _ �Þ ¼ 0 iff vð�Þ ¼ 0 and vð�Þ ¼ 0:

Given the above restrictions for the truth assignments, the notions of S1 and S3 entailment

are defined in the usual way: we say that B �1
S � if and only if every S1-valuation that satisfies

all the formulas in B also satisfies �. In the same way, B �3
S � if and only if every S3-valuation

that satisfies all the formulas in B also satisfies �.
The idea of the approximations is to try to check whether for some set S, either B 6�1

S � or

B �3
S �: Since S1-entailment is complete but unsound, if B 6�1

S �, then we know that classically

B 6� �: And since S3-entailment is sound but incomplete, if B �3
S �, then we know that

classically B � �:
The following theorem shows that if we manage to obtain an answer for a small S, we stay

within good complexity bounds.

56 Anytime Approximations of Classical Logic from Above



THEOREM 2.1 [18]
There is an algorithm for deciding whether B �i

S � in OðjBj:j�j:2jSjÞ time, i 2 f1, 3g:

Schaerf and Cadoli provide an incremental algorithm for approximating the test B � �
However, their systems have three major limitations:

(1) The system is restricted to!-free formulas and in negation normal form. In [1], it is noted

that the standard translation of formulas into clausal form does not preserve truth-values

under the non-standard semantic of S1 and S3.
(2) The set S must be guessed at each step of the approximation; no method is given for the

atoms to be added to S. Some heuristics for a specific application are presented in [21], but

nothing is said about the general case.
(3) There is no incremental proof theory.

In [6], we have proposed solutions for these shortcomings concerning the system S3. In this

article, we concentrate on S1.

LEMMA 2.2
According to our definitions above, S3 constitutes a full approximation from below, and S1 is

simply a left approximation from above.

PROOF. The properties of S3 have been treated elsewhere see [6]. To see that S1 is a left

approximation from above, suppose S � S0: We note that there is a one-to-many

correspondence between S1(S)- and S1ðS
0Þ- valuations; in fact, for every v1S0 , let its

correspondent v1S be such that v1S agrees with v1S0 on all atoms in S; v1S and v1S0 agree on

all literals but those in q 2 S0 n S, in which case v1SðqÞ ¼ 0. So given v1S0 , its corresponding v1S
is fully determined, but not the other way round. It follows that if S1ðS

0Þ falsifies a clause  
with valuation v1S0 , its corresponding S1(S)-valuation also falsifies  , because v1S and v1S0

agree on all literals but those in S0 n S, but for any literal q 2 S0 n S we have v1SðqÞ ¼ 0 so

v1Sð Þ ¼ 0: Now, suppose B is an S1ðS
0Þ-inconsistent finite set of clauses, which means

that any S1ðSÞ-valuation falsifies some clause in B; but from the explained above, every

S1(S)-valuation corresponds to some S1ðS
0Þ-valuation and also falsifies a clause in B, so B is

also an S1(S)-inconsistent, which proves S1 is a left approximation from above.
To see that it is not a right approximation from above, it suffices to consider the formula

p _ :p for p 62 S; clearly v1Sðp _ :pÞ ¼ 0, so S1 fails to be a right approximation from above,

and hence it is not a full approximation from above. g

So the original system S1 fails to be a full approximation from above of classical logic.

We propose in this article a system which fully approximates classical logic from above, and

which is not restricted to clausal form.
Another problem with Schaerf and Cadoli’s S1 is that in order to test whether B �1

S �, the
context set S must contain at least one atom from each clause in B, even clauses which

are intuitively irrelevant for �. We will see in Section 3.2 that our system performs a little

bit better with respect to relevance, but the problem of isolating what is relevant in a

refutation is a hard one and we hope to be contributing towards a better understanding

of that problem.
Section 3.2 presents a discussion on the notions of locality and relevance in the context of

refutation, for both the S1 family and the s1-family which we describe next.

Anytime Approximations of Classical Logic from Above 57



3 Semantics for s1

The problem of creating a logic that approximates classical logic from above comes from the

fact that any logic that is defined in terms of a binary valuation v : L ! f0, 1g that properly

extends classical logic is inconsistent. Indeed, if it is a proper extension of classical logic, it will

contradict a classical validity. Since it is an extension of classical logic, from this contradiction

any formula is derivable.
Cadoli and Schaerf avoided this problem by taking a binary valuation that was not an

extension of a classical one. Here, we take a different approach, for we want to construct an

extension of classical entailment, and define a ternary valuation, that is, we define a valuation

v1s ð�Þ � f0, 1g; later we show that v1s ð�Þ 6¼ 6 0.
For that, consider the full language of classical logic based on a set of proposition

symbols P. We define the family of logics S1(s), parameterized by the set s � P: Let � be a

formula and let prop(�) be the set of propositional symbols occurring in �. We say that � 2 s

iff propð�Þ � s.
Let vp be a classical propositional valuation. Starting from vp, we build an S1-valuation

v1s : L ! 2f0, 1g, by defining when 1 2 v1s ð�Þ and when 0 2 v1s ð�Þ. This definition is

parameterized by the set s � P in the following way. Initially, for propositional symbols, v1s
extends vp:

0 2 v1s ðpÞ , vpðpÞ ¼ 0

1 2 v1s ðpÞ , vpðpÞ ¼ 1 or p 62 s

That is, v1s extends vp but whenever we have an atom p 62 s, 1 2 v1s ðpÞ; if p 62 s and vpðpÞ ¼ 0,

we get v1s ðpÞ ¼ f0, 1g: The rest of the definition ofv1s proceeds in the same spirit, as follows:

0 2 v1s ð:�Þ , 1 2 v1s ð�Þ
0 2 v1s ð� ^ �Þ , 0 2 v1s ð�Þ or 0 2 v1s ð�Þ
0 2 v1s ð� _ �Þ , 0 2 v1s ð�Þ and 0 2 v1s ð�Þ
0 2 v1s ð�! �Þ , 1 2 v1s ð�Þ and 0 2 v1s ð�Þ

1 2 v1s ð:�Þ , 0 2 v1s ð�Þ or :� 62 s
1 2 v1s ð� ^ �Þ , 1 2 v1s ð�Þ and 1 2 v1s ð�Þ or � ^ � 62 s
1 2 v1s ð� _ �Þ , 1 2 v1s ð�Þ or 1 2 v1s ð�Þ or � _ � 62 s
1 2 v1s ð�! �Þ , 0 2 v1s ð�Þ or 1 2 v1s ð�Þ or �! � 62 s

This semantics extends classical logic but is not trivial. To see that, suppose we have a

propositional valuation vp such that vpðpÞ ¼ 0 and vpðqÞ ¼ 0: We compute v1s ðp ! qÞ for

different values of s.

(1) Suppose s ¼ 6 0; then p ! q 62 s:

v1s ðpÞ ¼ f0, 1g
v1s ðqÞ ¼ f0, 1g

�
¼)v1s ðp ! qÞ ¼ f0, 1g

(2) Suppose s ¼ fqg; then p ! q 62 s

v1s ðpÞ ¼ f0, 1g
v1s ðqÞ ¼ f0g

�
¼)v1s ðp ! qÞ ¼ f0, 1g

58 Anytime Approximations of Classical Logic from Above



(3) Suppose s ¼ fpg; still p ! q 62 s

v1s ðpÞ ¼ f0g
v1s ðqÞ ¼ f0, 1g

�
¼)v1s ðp ! qÞ ¼ f1g

Note that in this last case, even if p ! q 62 s, we have a ‘classical’ truth value for it, that is,

v1s ðp ! qÞ 6¼ f0, 1g: In the case where s ¼ fp, qg we are in a totally classical setting, and we can

easily obtain v1s ðp ! qÞ ¼ f0g by making vpðpÞ ¼ 1 and vpðqÞ ¼ 0.
We now analyse the properties of s1-valuations. We start pointing out two basic properties

of v1s , namely that is a ternary relation and that 1 2 v1s ð�Þ whenever � 62 s.

LEMMA 3.1
Let � be any formula. Then v1s ð�Þ 6¼ 6 0. Furthermore, if � 62 s then 1 2 v1s ð�Þ.

PROOF. We show that v1s ð�Þ 6¼ 6 0, by structural induction on �. For the base case, note that for
any propositional symbol, vpðpÞ 2 v1s ðpÞ, so v1s ðpÞ 6¼ 6 0: For the inductive cases, note that the

truth value of the formulas :�, � ^ �, � _ � and �! � are not empty whenever, according to

the semantic definition above, the truth value of their components are not empty.
If � 62 s, a simple inspection on the definition above shows that 1 2 v1s ð�Þ. g

It is interesting to see that in one extreme, i.e. when s ¼ 6 0, s1-valuations trivialize, assigning

the value 1 to every formula in the language. When s ¼ P, s1-valuations over the connectives

correspond to Kleene’s semantics for three-valued logics [8].
The next important property of v1s is that it is an extension of classical logic in the following

sense. Let v1s be an S1-valuation; its underlying propositional valuation, vp is given by

vpðpÞ ¼ 0, if 0 2 v1s ðpÞ
vpðpÞ ¼ 1, if 0 62 v1s ðpÞ

as can be inspected from definition of v1s : Also note that vp and s uniquely define v1s .

LEMMA 3.2
Let vc : L ! f0, 1g be a classical binary valuation extending vp. Then, for every formula �,
vcð�Þ 2 v1s ð�Þ.

PROOF. By structural induction on �. It suffices to note that the property is valid for p 2 P.

Then a simple inspection of the definition of v1s gives us the inductive cases. g
Just note that Lemma 3.2 implies that no formula � is such that v1s ð�Þ ¼ 6 0 as in Lemma 3.1.

We can also say that if � 2 s, then v1s behaves classically in the following sense.

LEMMA 3.3
Let vp be a propositional valuation and let v1s and vc be, respectively, its s1(s) and classical

extensions. If � 2 s,v1s ð�Þ ¼ fvcð�Þg.

PROOF. A simple inspection of the definition of v1s shows that if � 2 s, v1s s behaves classically.
Finally, we compare S1-valuations under expanding parameter sets s. g

LEMMA 3.4
Suppose s � s0 and let v1s ð�Þ and v1s0 ð�Þ extend the same propositional valuation. Then

v1s ð�Þ � v1s0 ð�Þ:

Anytime Approximations of Classical Logic from Above 59



PROOF. If � 2 s , v1s ð�Þ and v1s0 ð�Þ behave classically. If � 62 s, then 1 2 v1s ð�Þ and we have to
analyse what happens when 0 2 v1s0 ð�Þ. By structural induction on �, we show that 0 2 v1s ð�Þ.
For the base case, just note that v1s and v1s0 have the same underlying propositional valuation.

Consider 0 2 v1s0 ð:�Þ, then 1 2 v1s0 ð�Þ: Since � 62 s,1 2 v1s ð�Þ, so 0 2 v1s ð:�Þ:
Consider 0 2 v1s0 ð�! �Þ, then 1 2 v1s0 ð�Þ and 0 2 v1s0 ð�Þ. By the induction hypothesis,

0 2 v1s ð�Þ. If � 62 s, 1 2 v1s ð�Þ and we are done. If � 2 s, then also � 2 s0; v1s0 ð�Þ and v1s0 ð�Þ behave
classically and agree with each other, so 1 2 v1s ð�Þ and we are done.

The cases where 0 2 v1s0 ð� ^ �Þ and 0 2 v1s0 ð� _ �Þ are straightforward consequences of the
induction hypothesis. g

The next step is to define the notion of a s1-entailment.

3.1 s1-entailment

The idea is to define an entailment relation for S1, �
1
s , parameterized on the set s � P so as to

extend for any s the classical entailment relation

B � �:

To achieve that, we have to make valuations applying on the left-hand side of �1
s to be

stricter than classical valuations, and the valuations that apply to the right handside of�1
s to

be more relaxed than classical valuations, for every s � P: This motivates the following
definitions.

DEFINITION 3.5
Let � 2 L and let v1s be a S1-valuation. Then:

(1) If v1s ð�Þ ¼ f1g then we say that � is strictly satisfied by v1s .
(2) If 1 2 v1s ð�Þ then we say that � is relaxedly satisfied by v1s .

That these definitions are the desired ones follows from the following.

LEMMA 3.6
Let � 2 L Then:

(1) � is strictly satisfiable implies that � is classically satisfiable.
(2) � is classically satisfiable implies that � is relaxedly satisfiable.

PROOF.

(a) Consider v1s such that v1s ð�Þ ¼ f1g: Let vp be its underlying propositional valuation and let
vc be a classical valuation that extends vp. Since 0 62 v1s ð�Þ, by Lemma 3.2 we have that
vcð�Þ 6¼ 0, so vcð�Þ ¼ 1:

(b) Consider a classical valuation vc such that vcð�Þ ¼ 1: Let vp be its underlying propositional
valuation. Then directly from Lemma 3.2 ,1 2 v1s ð�Þ: g

We are now in a position to define the notion of s1-entailment.

DEFINITION 3.7
We say that �1, . . . ,�m �1

s � iff every S1-valuation v1s that strictly satisfies all �i, 1 � i � n,
relaxedly satisfies �.

The following are important properties of s1-entailment.

60 Anytime Approximations of Classical Logic from Above



LEMMA 3.8

(1) B �1
6 0 �, for every � 2 L:

(2) �1
P¼�CL

(3) If s � s0,�1
s � �1

s0 :

PROOF.

(1) By Lemma 3.1, 1 2 v16 0ð�Þ, for every � 2 L.
(2) By Lemma 3.3, v1P is a classical valuation, and the notions of strict, relaxed and classical

valuation coincide.
(3) Suppose s � s0, B �1

s0 � but B 6�1
s �. Then there exists v1s such that v1s ð�iÞ ¼ f1g, for all

�i 2 B but v1s ð�Þ ¼ f0g: Let v1s0 be the S1-valuation generated by v1s underlying propositional
valuation. From Lemma 3.4 we have that v1s0 ð�iÞ ¼ f1g, for all �i 2 B:
Since B �1

s0 �, we have that 1 2 v1s0 ð�Þ. Again by Lemma 3.4 we get 1 2 v1s ð�Þ, which
contradicts v1s ð�Þ ¼ f0g. So B �1

s �. g

From what has been shown, it follows directly that this notion of entailment is the
desired one.

THEOREM 3.9
The family of s1-logics fully approximates classical logic from above, that is,
for6 0 � s0 � . . . � s0n � P :

�1
=0��1

s0� . . . ��1
s0n��1

P¼�CL

PROOF. Directly from Lemma 3.8. g

Note that if v1s is a S1-valuation falsifying B �1
s �, we have a classical valuation vc that

falsifies B � � built as an extension of the propositional valuation vp such that
vpðpÞ ¼ 1 () v1s ðpÞ ¼ f1g:

One interesting property that fails for s1-entailment is the deduction theorem. One half of it
is still true, namely that

B �1
s � ¼) �1

s ð
^

BÞ ! �:

However, the converse is not true. Here is a counterexample. Suppose q 62 s and p 2 s, so
q ! p 62 s. Then �1

s q ! p; take a valuation that makes v1s ðqÞ ¼ f1g and v1s ðpÞ ¼ f0g,
hence q 6�1

s p:
We now examine s1 and S1 with respect to paraconsistency and paracompleteness.

DEFINITION 3.10
A logic L is paraconsistent if there are formulas � and � such that �,:� 6�L �.

DEFINITION. 3.11
A logic L is paraconsistent if there is a formula � such that 6�L � _ :�:

Despite the fact that s1 allows for truth values {0,1} in which, apparently, a formula is both
true and false, S1 is not a paraconsistent logic. The reason behind this is quite simple.
According to Theorem 3.9, s1-entailment approximates classical logic from above, which
implies that all classical theorems are s1-theorems. In particular, the trivialization theorems
all hold in s1, that is, it is not possible to strictly satisfy both � and :�; so s1 cannot be
paraconsistent.

Anytime Approximations of Classical Logic from Above 61



By the same argument, we see that s1 cannot be paracomplete, either. However, S1(S)

is paracomplete when S does not contain all the propositional letters of the language, as

shown later.

PROPOSITION 3.12
If S is a proper subset of P, then the system S1 is paracomplete.

PROOF. Let p 62 S then in any S1-valuation, both p and :p are assigned the value 0.

Hence, 6�1
S p _ :p:

g
S1(S) is not paraconsistent either, for in S1 it is not possible to satisfy both p and:p

simultaneously.
We next concentrate on the important property of locality.

3.2 Locality and relevance

We would like to have approximations that behave in a local way: formulas of B which are

completely irrelevant to the formula being refuted should not play a role in the process.

Intuitively, when trying to disprove B 6� �, we do not want the approximation process

to include any more formulas from B than what is necessary for achieving this goal.

In the approximation of a refutation, this is related to the size of the context set s needed to

actually perform the refutation. The idea is that we do not want to include in s elements that

are totally irrelevant to the refutation. Let us first define formally what we mean by ‘relevant’
and ‘local’.

Let � be a formula and B a set of formulas. Let R be a binary relation between formulas

defined as: Rð�1,�2Þ if and only if var(�1)\ var(�2) 6¼6 0; that is, Rð�1,�2Þ means that �1 and �2
are syntactically related by sharing some atom. Let R* be the transitive closure of R and

define B� to be the set f� 2 BjR	ð�,�Þg. Note that by definition, R* is reflexive, symmetric and

transitive. We say that B� is the set of formulas in B that are relevant to �.
When trying to refute a formula, one should be able to restrict attention to the relevant

formulas.

PROPOSITION 3.13
Let B be a consistent set of formulas and � a formula. then B 6� � if and only if B� 6� �.

PROOF. One side of the implication, namely that if B 6� � then B� 6� � follows directly from

the monotonicity of classical logic, since B� � B:

To show that B� 6� � implies B 6� �, suppose that B � �: Let ð�1,�2, :::,�nÞ be a proof for �,
where each � i is an axiom, an element of B or follows by Modus Ponens from �i1 and �i2 , with
i1, i2 < i, and �n ¼ �. Let k be the largest integer such that 1 � k � n and �k 62 B�. We know

that �k is not used in an application of Modus Ponens, since it is not related through R*

to any �l with k< l. This means that �k can be deleted from the proof, and

ð�1,�2, :::,�k�1,�kþ1, :::,�nÞ is still a proof for �. We can repeat this reasoning a finite

number of steps until there is no more �i in the proof which is not an element of B�.

Hence, B� ‘ � and therefore, B� � �. g
Given B and �, we call a parameterized approximation absolutely local if the parameter set s

is a subset of var(B�). Non-local approximations are thus undesirable because they force into

the context set s atoms totally unrelated to the goal we want to achieve.

62 Anytime Approximations of Classical Logic from Above



It is not hard to see that Schaerf and Cadoli’s S1 is non-local. In fact, in a S1(S)
approximation, if B is a set of clauses and we want to refute B � �, then every clause in B
must have at least one propositional letter in S. If all atoms in a clause c are outside S,
then by the S1 semantics, all valuations v1S will be such that v1SðcÞ ¼ 0, and it will be
impossible to satisfy B and falsify �. This fact has already been noted in the literature
of applications of S1 to diagnostic problems [21] (see Example 4.7). In s1, the parameter
set does not have to contain an atom of every clause, but only of those clause without
positive literals.

Unfortunately, the S1-method presented in this article is not absolutely local, as
demonstrated subsequently.

LEMMA 3.14
Let B be a set of formulas and let c 2 B be a clause containing only negative literals. If B 6�1

s �
then s must contain at least one atom in c.

PROOF. If c ¼ :q1 _ . . . _ :qd and all qi 62 s, 1 � i � d, then for any v1s , v
1
s ð:qiÞ ¼ f0, 1g and

v1s ðcÞ ¼ f0, 1g: Since c 2 B, there is no s1-valuation that strictly satisfies B, so it is not possible
that B 6�1

s �. g

So, in absolute terms, neither S1 nor s1 are local. For s1-approximations, clauses with
negative literals only can be seen as global constraints that have to be met at every
approximation step. However, this restriction to s1-approximations is much less restrictive
than that of S1 approximations.

We can then introduce a notion of relative locality that compares the two methods by
looking at the propositional letters that have to be considered and which are not in var(B�):

DEFINITION 3.15
A parameterized approximation method M is more local than a method M0 if and only if
whenever B 6�M0ðS0Þ �, B 6¼ 6 0, there exists an S such that S� varðB�Þ � S0 � varðB�Þ and
B 6�MðSÞ �

As S1 is an approximation of clausal logic, in the following we compare s1 versus S1 over
the clausal fragment of propositional logic. The relative locality of the methods will be
described in Corollary 4.5.

4 Clausal s1

To better compare s1 with S1, let us study how s1 behaves over clausal formulas. We are going
to show, as in the S1 case, s1 allows for simplifications which reduce the size of the decision
of B �1

s �, with the advantage of being a more local procedure.
Let s1 � simplify ðB, sÞ be the result of deleting from B all negative atoms outside s and

all clauses that contain positive atoms outside s.
We first show a result reducing s1-strict satisfiability to a smaller instance of classical

satisfiability.

LEMMA 4.1
B is s1-strictly satisfiable iff s1 � simplifyðB, sÞ is classically satisfiable.

PROOF. We first note that s1 � simplifyðB, sÞ 2 s and behaves classically, so all we have to
prove is that B is s1-strictly satisfiable iff s1-simplify ðB, sÞ is s1-strictly satisfiable.

Anytime Approximations of Classical Logic from Above 63



Second, if p 62 s is an atom, then v1s ð:pÞ ¼ f0, 1g :

(1) p 62 s¼)1 2 v1s ðpÞ¼)0 2 v1s ð:pÞ;
(2) p 62 s¼):p 62 s¼)1 2 v1s ð:pÞ.

It follows that if p 62 s then v1s ð:p _ �Þ ¼ f1g iff v1s ð�Þ ¼ f1g. So let B0 , be the result of
deleting from B all negative atoms outside s; it follows that B0 is S1-strictly satisfiable iff B is.

Now consider B00 obtained by deleting from B0 all clauses that contain positive atoms
outside s; clearly, B00 ¼ s1-simplify ðB, sÞ. Let � 2 B0 � B00 be a clause of the form q _ � with
q 62 s. Suppose B00 is s1-strictly satisfiable with valuation v1s ; now alter v1s so as v1s ðqÞ ¼ f1g,
which is an allowed S1-valuation. Then v1s ð�Þ ¼ f1g, and B0 is s1-strictly satisfiable. Conversely,
suppose B0 is S1-strictly satisfiable; since B00 � B0, it is immediate that B0 is S1-strictly
satisfiable, finishing the proof. g

We can thus reduce S1-entailment to a smaller instance of classical entailment, a result
analogous to [18, Theorems 5.2 and 5.4].

THEOREM 4.2
Let � 2 s be a clause. Then B �1

s � iff s1-simplify ðB, sÞ � �.

PROOF. Just note that if � 2 s, then it behaves classically and for any classical vp generating v1s
then vpð�Þ ¼ 0 iff v1s ð�Þ ¼ f0g. This fact together with Lemma 4.1 gives us the result. g

From the result above we can then show that, when restricted to formulas in clausal
form, we obtain the same complexity upperbound for S1 that was obtained for S1 in
[18, Theorem 4.3].

THEOREM 4.3
There is an algorithm for deciding whether B �1

S � in OðjBj:j�j:2jsjÞ time.

PROOF. It suffices to note that after applying the simplification, the only atoms left for which
a valuation must be found are those belonging to the set s. g

This means that for a fixed s, the decision of B �1
S � is done in time proportional to jBj:j�j,

as is the case for S1.
Since S1 does not have to consider all clauses, usually for a given pair B and �, if B 6� � the

refutation can be shown with a smaller context set than would be needed for S1. We can show
that the context set needed for S1 will be at most as large as the one for S1.

THEOREM 4.4
Let S be a set of propositional variables such that for given B 6¼ 6 0 and � in clausal form,
B 6�1

S �. Then, for s ¼ S , B 6�1
s �:

PROOF. The result is proved by looking at the simplification methods for S1 and S1. Consider
the S1 simplification method simplify-1 (B,S), B 6¼ 6 0, in which for each clause in B all literals
containing atoms outside of S are deleted. It is proved in [18] that simplify-1ðB,SÞ 6� � iff
B 6�1

S �.
Now let us compare simplify-1(B,S) and s1-simplifyðB, sÞ for S ¼ S. If a clause c 2 B

contains a negative literal l 62 S, l will be deleted from c in both methods. Now suppose c 2 B
contains a positive literal l 62 S. According to the definitions given earlier, l will be deleted
from c in simplify-1ðB,SÞ, but the whole clause c will be deleted in s1-simplifyðB, sÞ.
As a consequence, s1-simplifyðB, sÞ � simplify-1ðB,SÞ and hence, from classical logic, if
simplify-1ðB,SÞ 6� �, then s1-simplifyðB, sÞ 6� �. g

64 Anytime Approximations of Classical Logic from Above



According to the Definition 3.15, from the theorem above we have the following corollary.

COROLLARY 4.5
S1 is more local than S1.

The converse does not hold, as can be seen in the Example 4.6.

4.1 Examples

Here we examine some examples and compare S1 to Cadoli and Schaerf’s S1. We have already

seen that, unlike S1 entailment, s1 entailment truly approximates classical entailment from

above.
The following example was presented in [18]:

EXAMPLE 4.6
We want to check whether B 6� �, where � ¼ :child _ pensioner and

B ¼ f :person _ child _ young _ adult _ senior,

:adult _ student _ worker _ unemployed,

:pensioner _ senior,

:young _ student _ worker,

:senior _ pensioner _ worker,

:pensioner _ :student,

:student _ child _ young _ adult,

:pensioner _ :workerg:

Cadoli and Schaerf show that for S ¼ fchild, worker, pensionerg, B 6�1
S � and hence

B 6� �: The set S, in this case, cannot be smaller, for that would delete all atoms in a clause in

B, thus falsifying B, making it impossible to refute �.
However, in S1 we can choose a smaller s ¼ fchild, pensionerg, only adding the atoms of

�, and apply the s1-simplifyðB, sÞ, obtaining f:pensionerg, from which we can clearly see

that s1-simplifyðB, sÞ 6� �, soB 6�1
s � and hence B 6� �.

In terms of S1-valuations, this corresponds to taking a propositional valuation vp such that

vpðpensionerÞ ¼ 0 and vpðpÞ ¼ 1 for p any other propositional letter; the S1-valuation obtained

from vp strictly satisfies every formula in B but does not relaxedly satisfy �.
In S1 we would not obtain the same result for S ¼ fchild, pensionerg, for in

this case several clauses in B would have no atom in S and would thus be falsified,

yielding B �1
S �:

This example shows that we can obtain an answer to the question of whether B 6� � with a

set s smaller than the set S needed for S1. We used the smallest s possible, only containing the

atoms of �.
Another concern was the fact that S1 did not allow for local reasoning. Consider the

following example, borrowed from [1]:

EXAMPLE 4.7
The following represents beliefs about a young student, Hans.

B ¼ fstudent,:student _ young,:young _ :pensioner, worker, �worker

_:pensioner, blue-eyes, likes-dancing, six-feet-tallg:
We want to know whether Hans is a pensioner (� ¼ pensioner).

Anytime Approximations of Classical Logic from Above 65



We have seen that in order to use Cadoli and Schaerf’s S1, we had to start with

a set S containing at least one atom of each clause. This means that when we build S,

we have to take into account even clauses which are completely irrelevant to the query, as

likes-dancing.
However, using s1 we can have a truly local context set. If we choose the smallest possible

s¼{pensioner}, then s1-simplify (B,s) ¼ {:pensioner}, from which we conclude that B 6�1
s �

and hence B 6� �.
In this example, B� ¼ fstudent,:student _ young,:young _ :pensioner, worker;

:worker _ :pensionerg and varðB�Þ ¼ student, young, pensioner, workerg. We see that

for S1, the context set must contain atoms which are not in var(B�), while for s1, we can have a

context set which is a subset of the relevant atoms.

4.2 Approximating model-based diagnosis from above

In this section, we explore an application of both s1 and S1 to the area of model-based

diagnosis [7]. Approximate entailment has been applied to diagnosis in [20, 21]. Now we want

to show how our system compares to S1 in this domain.
The problem of diagnosis consists in, given an observation of an abnormal behavior,

finding the components of the system that may have caused the abnormality [17].
In the area known as model-based diagnosis [7], a model of the device to be diagnosed is

given in some formal language. For the sake of simplicity, we will adapt the definitions given

in [17] to only mention formulas in the propositional language LC. We follow the definitions

and the motivating example from [22].
The systems to be diagnosed will be described by a set of propositional formulas. For each

component X of the system, we use a propositional variable of the form okX to indicate

whether the component is working as it should. If there is no evidence that the system is not

working, we can assume that variables of the form okX are true.

DEFINITION 4.8
A system is a pair (SD,ASS), where:

(1) SD, the system description, is a finite set of formulas of L and
(2) ASS, the set of assumables, is a finite set of propositional variables of the form okX.

An observation is a formula of L. We will sometimes represent a system by (SD,ASS,OBS),

where OBS is an observation for the system (SD,ASS).
The need for a diagnosis arises when an abnormal behavior is observed, i.e., when

SD[ASS[{OBS} is inconsistent. A diagnosis is a minimal set of assumables that must be

negated in order to restore consistency.

DEFINITION 4.9
A diagnosis for (SD,ASS,OBS) is a minimal set ��ASS such that:

SD [ fOBSg [ASS n� [ f:okXjokX 2 �g is consistent:

A diagnosis for a system does not always exist:

PROPOSITION 4.10 [17]
A diagnosis exists for (SD,ASS,OBS) if and only if SD[{OBS} is consistent.

66 Anytime Approximations of Classical Logic from Above



Definition 4.9; can be simplified as follows:

PROPOSITION 4.11 [17]
The set ��ASS is a diagnosis for (SD,ASS,OBS) if and only if � is a minimal set such that

SD [ { OBS} [ (ASSn�) is consistent.

Consider the circuit in Figure 1. The system description of this circuit is given by (SD,ASS),

where2:

ASS ¼ fokX, okY, okZg

SD ¼ f:A _ :B _ :okX _D,

A _ :okX _ :D,B _ :okX _ :D,

:C _ :okY _ :E,

C _ :okY _ E,

:D _ :okZ _ F,

:E _ :okZ _ F,

D _ E _ :okZ _ :Fg

Suppose we have OBS ¼ :C ^ :F. This observation is inconsistent with SD [ASS.

According to Definition 4.9, there are two possible diagnoses: {okY} and {okZ}, that is, either

Y or Z is not working well.
Let us now examine the approximate results we can obtain applying S1 or s1.

The idea is to try different sets S and s and apply simplify-1(SD,S) and s1-simplify(SD,s)

to check whether the simplified system description is consistent with the observation.

If so, and if adding all the assumables gives rise to an inconsistency, then we can look

for diagnoses.
Table 1 shows the result of applying simplify-1 to SD with different sets S. For the first

seven options of S, the simplified SD is inconsistent, which means it is not possible to find a

diagnosis. Note that in five of these cases the problem is that there are clauses with no atom

is S. But in the third and seventh cases, even with at least one atom from each clause, the

resulting set is inconsistent. In the eighth case, the system can find two possible diagnoses,

2 The formulas in SD will be given clasual from so that S1 can be used.

x y

z

A B C

D E

F

FIGURE 1. Circuit

Anytime Approximations of Classical Logic from Above 67



but it adds okX to them which is not needed in the classical case. In order to get the classical

answer to the problem, we have to add A or B to S, but looking at the circuit in Figure 1 we
see that both atoms are completely irrelevant for the problem.

Table 2 shows the results of applying s1-simplify to SD using the same context sets

which were used in Table 1. In the three first cases we cannot find any diagnoses. The

first s yields and inconsistent simplified SD. In the second and third cases, the obtained

set is consistent, but not consistent with the observation. In the fourth, fifth and sixth cases,
we can find a partial answer and in the seventh case we already get the classical answer.

Note that, in order to obtain the correct answer, we did not have to add to s any

atom appearing only in the three first clauses of SD, which are intuitively irrelevant for the

problem.

TABLE 1. S1 diagnoses

S Simplify-1(SD, S) Diagnoses

6 0 {? } None
{C,F} {? , : C, C, F, : F} None
{C,D,E, F} {D, : D, : C_ : E, C _ E, : D _ F, :

E _ F, D _ E _ : F}
None

{C,F, okZ} {? , : C, C, : okZ _ F,: okZ _ : F} None
{C,F, okY, okZ} {? , : C _ : okY, C _ : okY, : okZ _

F, : okZ _ : F}
None

{C,E,F, okY, okZ} {? , : C _ : okY _ : E, C _ : okY _ E,
: okZ _ F, : E_ : okZ, E_ : okZ _ : F}

None

{C,D,E,F, okY, okZ} {D, : D, : C _ : okY _ : E, C _ : okY _ E,
: D _ : okZ _ F, : E_ : okZ _ F, D_

E_ : okZ _ : F}

None

{C,D,E,F, okX, okY, okZ} {: okX_ D, : okX _ : D, : C _ : okY _ : E,
C _ : okY _ E, : D _ : okZ _ F, : E_
: okZ _ F, D_ E_ : okZ _ : F}

{okX, okY} and
{okX, okZ}

TABLE 2. S1 diagnosis

s s1-simplify (SD,s) Diagnoses

6 0 {? } None
{C,F} {: C, F} None
{C,D,E,F} {D, : C_ : E, C _ E, : D _ F,

: E _ F, D _ E _ : F}
None

{C,F,okZ} {: C, : okZ _ F} {okZ}
{C,F,okY,okZ} {: C _ : okY, : okZ _ F} {okZ}
{C,E,F,okY,okZ} {: C _ : okY _ : E, C _ : okY _ E,

: okZ _ F, : E_ : okZ _ F}
{okZ}

{C,D,E,F,okY,okZ} {D, : C _ : okY _ : E, C _ : okY _ E,
: D _ : okZ _ F, : E_ : okZ _ F,
D_ E_ : okZ _ : F}

{okY} and {okZ}

{C,D,E,F,okX,okY,okZ} {: okX_ D, : okX _ : D, : C _ : okY _ : E,
C _ : okY _ E, : D _ : okZ _ F,
: E_ : okZ _ F, D_ E_ : okZ _ : F}

{okY} and {okZ}

68 Anytime Approximations of Classical Logic from Above



4.3 Refutations via s1-approximations

We note that B 6� � iff B ^ :� is classically satisfiable. Then, Theorem 4.2 suggests an
algorithm based on s1-approximation for clausal theorem refutation, as a sequence of
applications of (any) SAT algorithm to simpler problems:

ALGORITHM 4.12
Input: A set of clauses B and a clause �
Output: >, ifB 6� � ; ?, otherwise.
s :¼ atomsð�Þ;
while s 6¼ lettersðBÞ
if SAT(s1- simplifyðB, sÞ ^ :�Þ ¼ >, return >;
Expand s with atoms in B;

return ?;

The expansion of s can be done with several heuristics. For instance, a conservative strategy
would add atoms to s so as to include the smallest number of clauses. In the first iteration,
this expansion must cope with the fact that a clause containing only negative literals must
have at least one atom in s. Algorithm 4.12; becomes an approximation of SAT itself by
making � ¼ ?:

If we inspect with detail the nature of the approximation made in Algorithm 4.12;, we are
dealing, in classical terms, with an approximation that fixes all atoms p 62 s to a valuation
vðpÞ ¼ 1.

A dual approximation algorithm could then be obtained, by fixing vðqÞ ¼ 0 for q 62 s . Let
us call it the �s1 algorithm. Note that �s1 is also an approximation of classical logic from
above. It restricts the number of possible valuations for formulas, thus allowing for more
valid formulas. In this way, any classical theorem, which is satisfied by all classical valuations,
will also be satisfied by �s1 -valuations which are a restriction of classical valuations.

Finally, a combination of s1 and �s1 valuations can be constructed. In such a setting, the
approximation parameter consists of a partition of the set of propositional atoms into three
sets, hs, s0, s00i. As usual, the letters in s behave classically and accept any valuation. Atoms in s0

have their valuations fixed to 1; similarly, atoms in s00 have their valuation fixed to 0. We start
the approximation process with s ¼ 6 0. The approximation step consists of moving atoms from
s0 and or s00 into s. When s0 ¼ s00 ¼ 6 0 we are in classical logic. Since each step is a restriction on
classical valuations, this system also provides an approximation of classical logic from above.
This idea is close to work by Massacci [12], which will be described in Section 6.2.

Unfortunately, a complete investigation on such systems is outside the scope of this work.
We return now to analyse the full propositional language of s1, and present a sound and
complete tableau-based proof system for it.

5 Tableaux for s1

In this section, we turn back to the full propositional language and present a proof system for
s1-based on KE-tableaux, which will also provide a heuristic for approximations.

KE-tableaux were introduced by D’Agostino [2] as a principled computational improve-
ment over Smullyan’s Semantic Tableaux [19].

KE tableaux deal with T- and F-signed formulas: T � and F �. For each connective,
there are at least one T- and one F-linear expansion rules. Linear expansion rules always
have a main premise, and may also have an auxiliary premise. They may have one

Anytime Approximations of Classical Logic from Above 69



or two consequences. The only branching rule is the Principle of Bivalence, stating that

something cannot be true and false at the same time. Figure 2 shows KE-tableau expansion

rules for classical logic.
KEs1-Tableaux extend classical KE-tableaux. Besides employing signed formulas

with the usual T and F signs, KEs1-tableaux uses two new signs: 1, representing s1-formulas

whose valuations contain the value 1, and 0, representing s1-formulas whose valuations

contain the value 0.
The basic idea of the s1 extension to KE-tableaux is that:

T � ¼) vðAÞ ¼ f1g

F � ¼) vðAÞ ¼ f0g

1 � ¼) 1 2 vðAÞ

0 � ¼) 0 2 vðAÞ

These four signs are not mutually exclusive, for any formula that receives the T-sign may also

receive the 1-sign; and similarly, any formula that receives the F-sign may also receive

the 0-sign.
The new collection of connective rules for KEs1-tableau is illustrated in Figure 3. Note that

some classical rules, such as ðT !1, 2Þ, ðF^1, 2Þ and ðT_1, 2Þ are missing, but can be derived

from those in Figure 3. In this respect, KEs1 is an extension of classical KE tableaux.
As in the classical KE rules, we have one-premised and two-premised rules. In one-premised

rules, the premise is the rule‘s main formula; in two-premised rules, the top formula is the main

formula and the other is the auxiliary formula. Main formulas are always compound signed

formulas, but auxiliary formulas can be atomic.
In the KEs1-rules of Figure 3, if we replace 1 by T and 0 by F we obtain the classical rules.

In fact, such a replacement is allowed in a tableau when the formulas within the scope of

the signs 1 and 0 behave classically. This motivates the addition to KEs1-tableaux of the

Promotion Rules in Figure 4.

FIGURE 2. KE-rules for classical logic

70 Anytime Approximations of Classical Logic from Above



Because KEs1-tableau have four kinds of signs, we need actually to refine the branching
rule corresponding to the Principle of Bivalence. We now have two rules to cope for that,
(PB1F) and (PBT0), as illustrated in Figure 5.

Note that, as before, if we replace 1 by T and 0 by F the two branching rules collapse into
the classical one.

Also, due to the presence of four kinds of formula signs, we have new ways of closing
a tableau branch. Besides the usual contradictory pair T � and F �, a KEs1-branch can
also (strongly) close with the pair 1 � and F �, and with the pair 0 � and T �:

T� 1� 0�
F� F� T�
� � �

With this respect, we say that the formulas T � and 0 � are opposite formulas. Similarly,
F � and 1 � are also opposite formulas.

There is yet another branch closure rule in KEs1-tableaux. This rule differs from the
previous ones in that it is defeasible. That is, for a particular logic s1(s), this rule closes
a branch:

F �
�

� 62 s

FIGURE 3. Connective rules for KEs1-rules

FIGURE 4. KEs1 Promotion rules

FIGURE 5. KEs1 Branching rules based on the principle of Bivalence

Anytime Approximations of Classical Logic from Above 71



We use the symbol ‘�’ to represent strong closure and ‘�’ to represent defeasible closure.

It is sufficient for a branch to have a formula F � with � 62 s for it to defeasibly close.

However, when we increment the size of s by adding new propositional symbols to it, we

have shifted logics from s1(s) to s1 (s0), with s� s0. The process of enlarging s will reopen

some branches, so in s1(s
0), if �2s0, the branch is not closed anymore by the Defeasible

Closure Rule.
A KEs1-tableau closes for a given set s if all its branches are strongly or defeasibly closed.

It is not difficult to see that if all the branches are strongly closed, then the tableau also

closes classically. Just like in classical closed branches, we do not apply any more rules to a

defeasibly closed branch, at least until it is reopened; see discussion on reopening branches

ahead. Thus, the closing rules should be applied before all others.
A KEs1-tableau for the sequent �1, . . . ,�n ‘ � is a tree whose initial nodes are

T �1, . . . ,T �n,F� and whose subsequent nodes are obtained using one the s1-rules above.

If a KEs1-tableau closes for s we write �1, . . . ,�n ‘
1
s �.

As an initial example of the uses of KEs1, we derive in Figure 6 the classical KE-tableau

rules. Note that none of the derivations in Figure 6 depends on the elements of the

parameter set s.

5.1 Anytime sequent refutations or the incrementality
of KEs1-approximations

The KEs1-tableau provides an incremental method for approximating classical logic from

above. It is the defeasible closure rule that will guide the expansion of s, thus generating

FIGURE 6. Derivation of classical KE rules in KEs1

72 Anytime Approximations of Classical Logic from Above



an incremental procedure to disprove a sequent �1, . . . ,�n ‘
1
s �. The procedure of moving from

s1(s) to s1(s
0), with s� s0, in the construction of a KEs1-tableau is the following:

(1) Expand the tableau for �1, . . . ,�n ‘
1
s � until it closes or there is a saturated open branch;

the definition of saturation is given below in Section 5.2.
(2) If there is a saturated open branch that cannot be expanded, then the sequent has been

disproved, i.e., �1, . . . ,�n 6‘ �.
(3) If the tableau is closed and there are no defeasibly closed branches, then tableau is

classically closed and the sequent �1, . . . ,�n ‘ � is classically valid.
(4) If there are defeasibly closed branches, choose one such branch such that it contains F �

with � 62 s.
(5) Expand s with the atoms of �. We have thus moved to a logic ‘‘closer’’ to classical logic,

with a larger set of formulas that behave classically.
(6) Go to 1.

It may be that for s � P we already have an open branch of we have strongly closed the

KEs1-tableau. If no such situation occurs, eventually, all atoms in the sequent will be in s, so

the tableau will be a classical one, and we are guaranteed that either the tableau will close or

have an open saturated branch.
This process also provides an anytime refutation procedure. The process of approximation

proceeds normally. If a solution is found, no problem. Otherwise, at some point we may

decide to stop it, possibly because time or memory runs out. At this point, we are in logic s1(s),

and we know that for all the logics up to s1(s), �1, . . . ,�n 6‘
1
s �, which consists an anytime

answer for the classical problem �1, . . . ,�n ‘
? �. If more time or memory is provided, we may

eventually find the exact, that is, classical answer.
With regards to the complexity of this method with respect to classical logic, the method

above is as complex as a classical one in the worst case scenario, that is, the problem of

deciding the invalidity of a sequent remains NP-complete. Note, however, that at each step,

due to the defeasible closure of rules, the search space for a saturated open branch is

potentially smaller in the method above, which may lead to faster proofs in some cases.
Here are some examples of this incremental method:

EXAMPLE 5.1
We want to check whether p ! q, q ‘1

s p.

1: T p ! q by hypothesis, s ¼ 6 0
2: T q by hypothesis
3: F p by hypothesis
4: � defeasible closure from 3.

= n Reopen with s ¼ fpg
5: 0 q T q PB0T

6: F p by rule (0 !) on 1 and 5

There is no KEs1-rule which can be applied to the saturated branches, so both branches

remain open. The tableau does not close, which means that p ! q, q 6‘ p.
As usual, an open branch gives us a valuation that refutes the initial sequent. Both branches

give us v1s ðqÞ ¼ f1g, v1s ðpÞ ¼ f0g, which is a classical valuation.

Anytime Approximations of Classical Logic from Above 73



EXAMPLE 5.2
We want to check whether p ! q, q ! r ^ t ‘1

s r.
We will use the rule (T!F) derived in Figure 6:

T�! �
F �
F �

We have the following tableau:

1: Tp ! q by hypothesis, s ¼ 6 0
2: Tq ! r ^ t by hypothesis
3: Fr by hypothesis

/
�

n
reopen with s ¼ frg

40: Tr ^ t 400: 0 r ^ t PBT0

50: Tr ðT^Þ in 40 500: F q ðT !Þ in 2, 400

� 600: � reopen with s ¼ fq, rg
700: F p ðT ! F Þ in 1, 500

800: � reopen with s ¼ fp, q, rg

The right branch defeasibly closes three times. When it last reopens with an expansion

of s, it is saturated, so we conclude that p ! q, q ! r ^ t 6‘ r. The open branch gives us the

refuting valuation v1s ðpÞ ¼ v1s ðqÞ ¼ v1s ðrÞ ¼ f0g, which is also a classical valuation, that

refutes the classical tableau. This tableau illustrates well the incrementality of the method

of approximations, for the context set s had to be expanded three times.

In the following, we prove that KEs1-tableaux are sound and complete with respect to the

semantics of s1.

5.2 Soundness

A branch in a KEs1-tableau is saturated if:

(1) every possible linear rule has been applied; and
(2) for every main formula of a linear two-premised rule that cannot be the subject of

a promotion, the branch contains either the corresponding auxiliary formula or an

opposite of it.

A branch is partly expanded if it is not saturated. KEs1-tableau is saturated if every branch

is. A branch is open if it is neither strongly nor defeasibly closed.
A table is saturated if every branch is either closed or open saturated. To saturate a branch,

it suffices to employ a branching heuristics:

For each compound formula � such that X � occurs in a KEs1-tableau and X � is the

non-promotable main premise of a two-premised rule, one should branch over a formula

Y� such that it is the auxiliary premise for the two-premised rule.

It is clear that such a branching heuristics will lead to branches that either close or get

saturated. Note that it does not mean that all instances of branching must be according to

that rule. But its application guarantees that the tableau will eventually saturate.

74 Anytime Approximations of Classical Logic from Above



Given a s1-valuation v, we extend it to signed formulas so that v(X�) is either 0 or 1, in the

following way:

vðT�Þ ¼ 1 iff vðAÞ ¼ f1g
vðF�Þ ¼ 1 iff vðAÞ ¼ f0g
vð1�Þ ¼ 1 iff 1 2 vðAÞ
vð0�Þ ¼ 1 iff 0 2 vðAÞ

A branch � is satisfied if there exists a s1-valuation v such that for every signed formula

X� 2 �, v(X�)¼1. In this case we write v(�)¼1.

LEMMA 5.3
With respect to the expansion rules in Figures 3 and 4 we have the following properties:

(1) For one-premised rules, if a s1-valuation v satisfies its main formula then it satisfies its

consequences.
(2) For two-premised rules, if the premises are satisfied by v so is the consequence.
(3) If the premise of a promotion rule is satisfied by v and the formula is in s, then the

consequence is also satisfied.

PROOF. By inspection in all linear rules in Figures 3 and 4. Details omitted. g

LEMMA 5.4
Let �1 and �2 be the expansions of branch � using one of the branching rules PBT0 or PB1F.

Let v be a s1 valuation such that v(�)¼1. Then either v(�1)¼1 or v(�2)¼1.

PROOF. Simply note that PBT0 and PB1F are mutually excludent, and for any formula � and

any s1-valuation v, v must satisfy either T � or 0 �, and v must satisfy either F � or 1 �. g

THEOREM 5.5 (Soundness)
If �1, . . . ,�n ‘

1
s � then �1, . . . ,�n �

1
s �.

PROOF. We show the contrapositive. Suppose �1, . . . ,�n 6�
1
s �. Then there is a s1-valuation v

such that v(�1)¼ . . . ¼ v(�n)¼{1} but v(�)¼{0}. That is, v satisfies the initial tableau for

T�1,. . ., T�n,F �. By Lemma 5.3, every linear expansion generates only signed formulas

satisfied by v, and by Lemma 5.4 one of the branches remains satisfied by v after the

application of PB. Therefore, we must always have at least one open branch in this tableau,

for closed branches cannot be satisfied by any v. Therefore, �1, . . . ,�n 6‘
1
s �, as desired. g

5.3 Completeness

We first start showing the converse of Lemma 5.3.

LEMMA 5.6
With respect to the expansion rules in Figures 3 and 4 we have the following properties:

(1) For one-premised rules, if a s1-valuation v satisfies its consequences then it satisfies its

main formula.
(2) For two-premised rules, if the opposite of an auxiliary premise is satisfied by v, so is the

main premise.
(3) For two-premised rules, if the auxiliary premise and the consequence are satisfied by v, so

is the main premise.

Anytime Approximations of Classical Logic from Above 75



(4) If the consequence of a promotion rule is satisfied by v, so is the premise.

PROOF. By inspection in all linear rules in Figures 3 and 4. Details omitted. g

Let � be a saturated open branch of a KEs1-tableau for the sequent �1, . . . ,�n ‘ �.
Construct the branch valuation v� in the following way. For each atomic formula X p 2 �:

(1) if Tp 2� then v�(p)¼{1}.
(2) if Fp 2� then v�(p)¼{0}.
(3) if 0p 2� then

in case 1p 62 � and p2s, v�(p)¼f0g;
otherwise v�(p)¼{0,1}.

(4) if 1 p2� and 0 p 62 �, then v�(p)¼{1}.

LEMMA 5.7

(1) The branch valuation v� is a s1-valuation.
(2) If � is a saturated open branch of a KEs1-tableau, then v� (�)¼{1}.

PROOF.

(1) Note that, since � is open, v� cannot be contradictory, nor can it assign {0} to a formula
not in s. Also note that the rules of all conditions for a s1-propositional valuation are met
by the definition above.

(2) We show by induction on the structure of the formula � such that X�2�, that
v�(X �)¼{1}. If � is propositional, then v�(X �)¼{1}. Suppose � is a compound formula.
Then we have three possibilities:
� is the main formula of a one-premised rule. Then, by saturation, its consequences are in
� and are of lower complexity so that, by the induction hypothesis, they are satisfied by
v�. So by Lemma 5.6(a) v�(X �)¼{1}.
� is the main formula of a two-premised rule. By saturation, � contains either the
auxiliary premise of a rule or the opposite of one. If the former case, by saturation we
have that the consequence of the rule is in �. Since both the auxiliary premise and the
consequence are of lower complexity, it follows from the induction hypothesis that they
are satisfied by v�. Lemma 5.6(c) then yields v�(X �)¼{1}. In the latter case, by induction
hypothesis by, v� satisfies the opposite of an auxiliary premise, so Lemma 5.6(b) we have
that v�(X �)¼{1}.
X � was promoted. In this case, let Y � be the result of its promotion. By the previous two
cases, we must have v�(Y �)¼{1}, so by Lemma 5.6(d) we obtain v�(X �)¼{1}. g

THEOREM 5.8 (Completeness)
If �1, . . . ,�n �

1
s � then �1, . . . ,�n ‘

1
s �. In particular, all saturated KEs1-tableaux for

�1, . . . ,�n ‘
1
s � must close.

PROOF. Suppose �1, . . . ,�n �
1
s �. Then every valuation v such that v(�1)¼ . . . ¼ v(�n)¼{1} it

must be the case that 12v(�). Now suppose there is a saturated tableau for T �1,. . .,T �n, F �
with an open branch. By Lemma 5.7, there is a valuation v such that v(�1)¼ . . . ¼ v(�n)¼{1}
but v(�) ¼ {0}, which is a contradiction. So we cannot have a saturated KEs1-tableaux with an
open branch and therefore �1, . . . ,�n ‘

1
s �. g

76 Anytime Approximations of Classical Logic from Above



6 Related systems

In this section, we present three related systems and compare them to s1.

6.1 Kleene 3-valued logic

Kleene [8] has introduced a three-valued logic, given by the truth tables in Figure 7.
The tables are an extension of the truth tables for classical logics, in the sense that when we

delete the ‘u’ rows and columns, we get the classical tables. His main motivation was to extend
classical logic in order to formalize a decision procedure for partial recursive predicates. The
symbol ‘u’ stands for the value ‘undefined’.

LEMMA 6.1
Fix a Kleene valuation vK and let the parameter set s be such that P � s coincides with
Kleene’s and u-valued propositional letters. Consider a valuation v1s such that for every p 2 P,
v1s ðpÞ ¼ f1g iff vK ¼ t, v1s ðpÞ ¼ f0g iff vK¼ f and v1s ðpÞ ¼ f0, 1g iff vK¼ u. Then the s1(s) valuation
coincides with Kleene’s logic under that same interpretation.

PROOF. This setting makes v1s ðpÞ ¼ f0, 1g iff p 62 s. Then the proof is done by a simple
inspection. For example, let us examine the rules for the _ connective; when A and B are both
either t- or f-valued, both systems behave classically; when v1s ðAÞ ¼ f1g (¼ t), then
v1s ðA _ BÞ ¼ f1g (¼ t), and analogously for v1s ðBÞ ¼ f1g; finally, when v1s ðAÞ ¼ f0, 1g (¼ u)
and 0 2 v1s ðBÞ (¼ u or ¼ f), then v1s ðA _ BÞ ¼ f0, 1g (¼ u), and analogously for v1s ðBÞ ¼ f0, 1g
(¼ u) and 0 2 v1s ðAÞ (¼ u or ¼ f), so all cases for _ are covered.

Details are omitted for the other connectives. g

The converse of the Lemma above does not immediately hold, however. Indeed, suppose we
take s¼ {q} and a s1-valuation v1s such that v1s ðpÞ ¼ f1g and v1s ðqÞ ¼ f0g. The corresponding
Kleene valuation would be vK(p) ¼ t and vK(q) ¼ f. However, since p ^ q 62 s, we would have
v1s ðp ^ qÞ ¼ f0, 1g but vKðp ^ qÞ ¼ f.

If on the other hand, we accepted only s1-valuations v
1
s that for all p 62 s v1s ðpÞ ¼ f0, 1g, then

there would be a perfect match between s1 and Kleene semantics, as can be seen by the same
inspection as above.

6.2 Massacci’s approximations

Perhaps the work in the literature that is closer to ours in aims and techniques is the work on
Approximate Deduction by Fabio Massacci [10, 12] whose approach dealt not only with
propositional logic by also with modal logic approximations [11].

FIGURE 7. Kleene‘s three-valued logic

Anytime Approximations of Classical Logic from Above 77



In Massacci’s approach, the set of propositional letters P was partitioned into three sets:

(1) The set of interesting propositions, intðPÞ, which corresponds to our notion of context set

s, i.e., the set of propositional letters whose behaviour is classical.
(2) The set of unknown propositions, unkðPÞ, for which both the proposition and its negation

are false; this set correspond, in Schaerf’s and Cadoli’s system S1(S), to the propositions in

P � S.
(3) The set of incoherent propositions, incðPÞ, for which both the proposition and its negation

are true; this resembles (but is not an exact match) the set P � S of Schaerf’s and Cadoli’s

system S3(S).

Despite the fact that the set of propositional letters is partitioned in three, for the

approximation process it was only considered the case where either unkðPÞ ¼ 6 0 or

incðPÞ ¼ 6 0. This latter case corresponds to an approximation useful for refuting theorems,

so in what follows we will consider always incðPÞ ¼ 6 0. This corresponds to what Schaerf and

Cadoli called an approximation that is unsound but complete, for not all theorems are classical

ones, but all classical theorems are contemplated. In this sense, any approximation from

above is unsound but complete.
Massacci’s system starts considering a propositional interpretation, I , which is simply what

we called here a propositional valuation.3 The semantics of the system is then developed

for signed formulas only (not for pure formulas). If A is a propositional formula, there are

two signed versions of it, t:A and f:A, respectively the statement of A’s truth and falsity.

The semantics is worked up inductively, so if p 2 P we have that:

I / t:p iff p 2 intðPÞ and ðpÞI ¼ 1
I / f:p iff p 2 intðPÞ and ðpÞI ¼ 0

This means that, for p 2 unkðPÞ, neither I /t: p nor I /f: p. The signed formulas are then

divided into � and � formulas, in the fashion of Smullyan [19]:

� �1 �2

t:A ^ B t:A t:B
f:A _ B f:A f:B
f:A ! B t:A f:B
t::A f:A >

f::A t:A >

� �1 �2

f:A ^ B f:A f:B
t:A _ B t:A t:B
t:A ! B f:A t:B

Then the semantics of signed formulas can be simply put as:

I / � iff I / �1 and I / �2
I / � iff I / �1 or I / �2

With this definition at hand, the notion of an unknown formula can be extended to all

signed formulas. A signed propositional formula is unknown if the proposition is. An �

3We try to use Massacc’s notation when describing his system.

78 Anytime Approximations of Classical Logic from Above



formula is unknown if �1 is unknown or if �2 is unknown; a � formula is unknown if both �1
and �2 are unknown.

As a consequence, we have the following:

PROPOSITION 6.2
Let  be a signed formula. If all its propositional letters are unknown, then  is unknown.

It is interesting to note that in our system, it is enough that one propositional letter be
outside s for the whole formula to be outside s.

In the notation of [12], B is an approximate logical consequence of U, � U ) B where U is a

set of formulas and B a formula, if for every interpretation I such that I / t:Ai for each
Ai2U, then I 6 / f:B.

With this semantics based not on plain formulas but on f- and t-marked formulas, the next

obvious step is to define a tableau inference system for approximate reasoning. Such system is
based on Smullyan‘s formulation of semantic tableaux [19] with f- and t-marked formulas,

leading to a tableau system that is simpler than the KEs1-tableau. It is notable that such
tableau system contains a closing rule that is similar to our defeasible closure rule, which may

be used as a basis for incremental heuristics in approximate reasoning, in a similar fashion to
the incremental method of KEs1-tableaux.

However, we have to point the following property of Massacci’s formulation of the

approximation process.

LEMMA 6.3
Consider a partition of P in interesting and unknown formulas and a classical sequent

A1, . . . ,An ‘ B that we want to refute. Then the approximation process is non-local.

PROOF. This is a generalization of the argument that shows that S1(S) is non-local in Section
3.2. By Proposition 6.2, if some Ai has no interesting letters, I 6 / t:Ai for any I . So the set

intðPÞmust contain at least one propositional symbol of each Ai, even if Ai has no relevance to

the refutation of B. g

The fact that Massacci’s approximations are non-local comes as no surprise, for Massacci
claims that his system contains Schaerf’s and Cadoli’s systems as an instantiation. The fact

that we could not extend S1 and avoid the non-locality lies in the heart of our attempt to
propose a different approximate system for refuting sequents.

6.3 Probabilistic inference

In this section we present an inference system based on probabilistic logic that also

approximates classical logic from above. The difference, however, is that such system may
approximate the refutation of a sequent in infinitely many steps, while s1 reaches classical

logic in finitely many approximation steps.
Several probabilistic logics have been proposed in the literature [13–16]. The current

presentation is based on the probabilistic entailment of Knight [9].
Let P : L ! ½0, 1
 be a function that associates propositional formulas with real values in

the interval [0,1]. Let � be classical entailment. We say that P is an (admissible) probability
function over formulas if the following properties hold:

(1) if �� then P(�) ¼1;
(2) if � : (� ^ �) then P(� _ �) ¼ P(�) þ P(�).

Anytime Approximations of Classical Logic from Above 79



Several properties follow from this definition [15], among which:

(1) P(: �) ¼ 1�P(�);
(2) if � �� then P(�) � P(� );
(3) if � � $ � then P(�) ¼ P(�);
(4) P(� _ �) ¼ P(�) þ P(�)�P(� ^ �).

With this notion of probability function over formulas — as opposed to a valuation

function—a new definition of probability entailment is possible, /x, parameterized by a

probability threshold value x2 [0,1]:

We say that a formula �1, . . . ,�m probably entails � with probability x, represented by

�1, . . . ,�m /x �, if whenever P(�1) ¼ . . . ¼ P(�m) ¼ 1 then P(�) � x.

The original formulation of [Kni03] is more general. It defines a ~y, x-entailment such that

�1, . . . ,�m
~y /x �, if whenever P(�i) � yi for 1 �i�m then P(�) � x. Here we have fixed all

yi ¼ 1, and thus operate on a restricted version of Knight’s system. As a consequence, the

inference system presented in [Kni03] does not correspond to /x.
It has been shown in [Kni03] that the probabilistic inference ~y/x, and thus /x, is effectively

decidable; however, the decision procedure presented there has exponential complexity.
Some of the immediate properties of the /x-entailment are the following.

PROPOSITION 6.4

(1) if x¼ 1, then /x is classical entailment;
(2) if x¼ 0, then for any �1, . . . ,�m,� we have that �1, . . . ,�m /x �.
(3) if xi � xj then /xi � /xj .

From Proposition 6.4 above we obtain that if

0 � x1 � . . . � xn � . . . � 1

then,

/0 � /x1 � . . . � /xn � . . . � /1 ¼�

Since the sequence 0, x1, . . . , xn, . . . , 1 is possibly infinite, then we have constructed a

possibly infinite approximation from above of a classical entailment �1, . . . ,�m � �. Note

that, in theory, this approximation chain can be uncountable; however, for a fixed antecedent

B and xi 6¼ xj, the sets f�jB /xi �g and f�jB /xj �g can differ only in countably many formulas,

in such a way that the number of distinct approximation steps must be countable.
It is not known if there is a sound and complete inference system for each /xi nor if there is

an efficient decision procedure for /xi , xi 2 [0,1]. The possibility of an infinite approximation

sequence is just a theoretical curiosity. In practice, one would, for example, divide the interval

[0,1] into k elements and proceed to a finite approximation /1
k
� /2

k
� . . . � /k�1

k
� /1 ¼�.

7 Further work: approximating from both ends

The remaining challenge to the study of approximate inference systems is how to combine the

approximations from above described here with approximations from below.

80 Anytime Approximations of Classical Logic from Above



There are several proposals in the literature that corresponds to approximations from
below. That is, there is a family of logics L 1, . . . L n such that

�L1
��L2

� . . . ��Ln
¼�CL :

These systems are useful for proving theorems, in the following sense. We may try to
establish B �L1

�; if it succeeds, than we know that classically B � �; otherwise we proceed to
the next step in the approximation, until we either establish the result at some intermediary
logic, or we reach classical logic.

There are several examples of systems that approximate classical logic from below:

(1) Schaerf’s and Cadoli’s system S3(S) perform approximations for clausal form formulas.
(2) Dalal’s BCP-approximations [3], which present a family of approximate reasoners, each

of which is tractable, correct and incomplete with respect to classical semantics.
(3) Massacci’s approximation system [10, 12] for approximate reasoning, obtained by

partitioning the set of propositional letters in intðPÞ and incðPÞ, thus forcing unkðPÞ ¼ 6 0.
(4) Our own recent proposal of an extension of S3 to the full propositional fragment,

equipped with a tableau proof system, KES3(S), correct and complete with respect to each
approximation step [4, 5].

The very goal of approximating a sequent B ‘ � from both ends is present in Massacci’s
PhD thesis [12], but no explicit methodology on how to perform it has been presented.

This view of approximating from both ends corresponds to, on the one hand, trying
to prove the sequent in the approximations from below and, on the other hand, trying to
falsify it in the approximations from above. Just one of this approximations can
eventually succeed.

The challenge is to provide a method showing how these opposite processes feed each other.
That is, how a failed tentative to falsify a sequent in one approximate step from above may
provide a heuristic for the tentative to prove that sequent in an approximate step from below,
and vice versa.

8 Conclusion

In this article we have investigated the idea of approximating classical logic ‘from above’, i.e.
through intermediate logics which are complete but possibly unsound.

We have proposed the system s1, which is parameterized by a context set s. The larger s gets,
the closer we are to classical logic. Our system has a ternary valuation semantics which makes
it an extension of classical propositional logic. We also presented a proof method based
on tableaux which is sound and complete with respect to the semantics. The system was
compared with others in the literature and we have shown an application in the area of model-
based diagnosis. Future work includes implementing and testing the proof method and
combining the results obtained with those for approximations from below.

Acknowledgements

Marcelo Finger is partly supported by the Brazilian Research Council (CNPq), grant PQ
300597/95-5. Renata Wassermann is partly supported by CNPq grant PQ 300196/01-6. This
work has been supported by FAPESP project 03/00312-0.

Anytime Approximations of Classical Logic from Above 81



References

[1] S. Chopra, R. Parikh and R. Wassermann. Approximate belief revision. Logic Journal of
the IGPL, 9, 755–768, 2001.

[2] M. D’Agostino. Are tableaux an improvement on truth-tables? — cut-free proofs and
bivalence. Journal of Logic, Language and Information, 1, 235–252, 1992.

[3] M. Dalal. Anytime families of tractable propositional reasoners. In Proceedings of
the International Symposium of Artificial Intelligence and Mathematics AI/MATH-96,
pp. 42–45, 1996.

[4] M. Finger and R. Wassermann. Expressivity and control in limited reasoning.
In Proceeding of the 15th European Conference on Artificial Intelligence (ECAI02),
Frank van Harmelen, ed., pp. 272–276, Lyon, France, IOS Press Amsterdam, 2002.

[5] M. Finger and R. Wassermann. Logics for approximate reasoning: Approximating
classical logic ‘‘from above’’. In Proceedings of the XVI Brazilian Symposium on Artificial
Intelligence (SBIA’02), Volume 2507, Lecture Notes in Artificial Intelligence, pp. 21–30.
Springer-Verlag, Berlin, 2002.

[6] M. Finger and R. Wassermann. Approximate and limited reasoning: Semantics, proof
theory, expressivity and control. Journal of Logic and Computation, 14, 179–204, 2004.

[7] W. Console, L. Hamscher and J. de Kleer, eds, Readings in Model-Based Diagnosis.
Morgan Kaufmann, San Francisco, CA, 1992.

[8] S. C. Kleene. On a notation for ordinal numbers. Journal of Symbolic Logic, 3, 150–155, 1938.
[9] K. M. Knight. Probabilistic entailment and a non-probabilistic logic. Logic Journal of the

IGPL, 11, 353–365, 2003.
[10] F. Massacci. A proof theory for tractable approximations of propositional reasoning.

In Maurizio Lenzerini, ed., AI*IA-97, Volume 1321, LNAI, pp. 219–230 SV, 1997.
[11] F. Massacci. Anytime approximate modal reasoning. In Jack Mostow and Charles Rich,

eds, AAAI-98, pp. 274–279AAAIP.
[12] F. Massacci. Efficient Approximate Deduction and an Application to Computer Security.

PhD thesis, Dottorato in Ingegneria Informatica, Università di Roma I ‘‘La Sapienza’’,
Dipartimento di Informatica e Sistemistica, June 1998.

[13] N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28, 71–87, 1986.
[14] N. J. Nilsson. Probabilistic logic revisited. Artificial Intelligence, 59, 39–42, 1993.
[15] J. B. Paris. The Uncertain Reasoner’s Companion — a Mathematical Perspective,

Volume 39, Cambridge Tracts in Theoretical Computer Science, Cambridge University
Press, Cambridge, 1994.

[16] J. B. Paris and A. Vencovsk. A proof theory for probabilistic uncertain reasoning.
Journal of Symbolic Logic, 63, 1007–1039, 1998.

[17] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32, 57–95,
1987. Reprinted in [7].

[18] M. Schaerf and M. Cadoli. Tractable reasoning via approximation. Artificial Intelligence,
74, 249–310, 1995.

[19] R. M. Smullyan. First-Order Logic. Springer-Verlag, Berlin, 1968.
[20] A. ten Teije and F. van Harmelen. Computing approximate diagnoses by using approximate

entailment. In Proceedings of KR’96, Morgan Kaufmann, Cambridge, MA, 1996.
[21] A. ten Teije and F. van Harmelen. Exploiting domain knowledge for approximate

diagnosis. In M. Pollack, ed., Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence (IJCAI’97), pp. 454–459, Nagoya, Japan, August 1997.

[22] R.Wassermann.Local diagnosis.Journal ofAppliedNon-ClassicalLogics,11, 107–129, 2001.

82 Anytime Approximations of Classical Logic from Above


