
Theoretical Computer Science 355 (2006) 153–166
www.elsevier.com/locate/tcs

The universe of propositional approximations

Marcelo Finger∗,1, Renata Wassermann2

Departamento de Ciência da Computação, Universidade de São Paulo, São Paulo, Brazil

Abstract

The idea of approximate entailment has been proposed by Schaerf and Cadoli [Tractable reasoning via approximation, Artif.
Intell. 74(2) (1995) 249–310] as a way of modelling the reasoning of an agent with limited resources. In that framework, a family
of logics, parameterised by a set of propositional letters, approximates classical logic as the size of the set increases.

The original proposal dealt only with formulas in clausal form, but in Finger and Wassermann [Approximate and limited reasoning:
semantics, proof theory, expressivity and control, J. Logic Comput. 14(2) (2004) 179–204], one of the approximate systems was
extended to deal with full propositional logic, giving the new system semantics, an axiomatisation, and a sound and complete proof
method based on tableaux. In this paper, we extend another approximate system by Schaerf and Cadoli, presented in a subsequent
work [M. Cadoli, M. Schaerf, The complexity of entailment in propositional multivalued logics, Ann. Math. Artif. Intell. 18(1)
(1996) 29–50] and then take the idea further, presenting a more general approximation framework of which the previous ones are
particular cases, and show how it can be used to formalise heuristics used in theorem proving.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Automated reasoning; Deductive systems; Approximate reasoning; Non-classical logics; Knowledge representation

1. Introduction

Logic has been used in several areas of Artificial Intelligence as a tool for representing knowledge as well as a tool
for modelling agents’ reasoning. Ideal agents know all the logical consequences of their beliefs. However, real agents
are limited in their capabilities. Due to these limitations, a real rational agent must devise some strategy to make good
use of the available resources.

In this work, we propose a general framework for modelling limited reasoning, and show two systems which are
special cases of the more general framework. Several approximations of propositional classical logics have been
proposed in the literature with distinct properties. Our system is based on Cadoli and Schaerf’s approximate entailment
[25]. Their method consists in defining different logics for which satisfiability is easier to compute than classical logic
and treat these logics as upper and lower bounds for the classical problem. In [25], these approximate logics are defined
by means of valuation semantics and algorithms for testing satisfiability. The language they use is restricted to that of
clauses, i.e., negation appears only in the scope of atoms and there is no implication.

∗ Corresponding author. Tel.: +55 11 3091 6135; fax: +55 11 3091 6134.
E-mail addresses: mfinger@ime.usp.br (M. Finger), renata@ime.usp.br (R. Wassermann).

1 Partly supported by the Brazilian Research Council (CNPq), Grant PQ 300597/95-5.
2 Partly supported by CNPq Grant PQ 300196/01-6.

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.01.007

http://www.elsevier.com/locate/tcs
mailto:mfinger@ime.usp.br
mailto:renata@ime.usp.br

154 M. Finger, R. Wassermann / Theoretical Computer Science 355 (2006) 153 –166

Approximate entailment has been used to formalise approximate diagnosis [29] and belief revision [9]. However,
the knowledge had to be encoded in clausal form. It happens that each approximation step is characterised by a formal
logic. The final step of the approximations is classical logic, in which every formula is equivalent to one in clausal
form. However, in none of the intermediate systems such equivalence holds.

The original system has been extended to deal with full propositional logic in [21]. In this paper, we extend another
system, S∗

3 , which was introduced in [7]. We provide a proof method based on tableaux for extended S∗
3 and then show

that both S3 and S∗
3 are particular cases of a system that we call Se. We provide semantics and a tableaux method for

Se. We then show how this general system can be used to formalise different heuristics used in theorem proving.
The rest of the paper develops as follows: in the next section, we introduce the notion of classical logic approximation

and comment on some existing systems. We then present in more detail the two systems S3 and S∗
3 as proposed by

Cadoli and Schaerf and their extensions. In Section 5, we present the general system, of which the previous two are
particular cases and show how it can be used to simulate several heuristics of theorem proving.

Notation. Let P be a countable set of propositional letters. We concentrate on the classical propositional language LC

formed by the usual boolean connectives → (implication), ∧ (conjunction), ∨ (disjunction) and ¬ (negation).

Throughout the paper, we use lowercase Latin letters to denote propositional letters, lowercase Greek letters to denote
formulas, and uppercase letters (Greek or Latin) to denote sets of formulas.

Let S ⊂ P be a finite set of propositional letters. We abuse notation and write that, for any formula � ∈ LC , � ∈ S

if all its propositional letters are in S. A propositional valuation v is a function v : P → {0, 1}.
If � and � are any sets, by ‖�−�‖ we mean the symmetric difference of two sets, namely ‖�−�‖ = (�−�)∪(�−�).

2. The notion of logical approximation

The general notion of approximation is based on the following. If L is a logic, we say that the sequence of logics
L1, L2, . . . approximate L if

‖L − L1‖ ⊇ ‖L − L2‖ ⊇ · · · ⊇ ∅.

By a logic L we mean either:
• the set of theorems (or valid formulas) of L, T h(L); or
• the entailment relation �L ⊆ 2LL × LL, where LL is the set of formulas of L.
Furthermore, the approximation is finite if there exists a Ln in the sequence such that Ln = L.

There are two special cases of approximation worth of noting. We say that the sequence L1, L2, . . . is an approximation
from below if

L1 ⊂ L2 ⊂ · · · ⊂ L.

Approximations from below are useful for theorem proving. Each logic Li proves more theorems of the goal logic L.
On the other hand, we may have an approximation from above when

L1 ⊃ L2 ⊃ · · · ⊃ L.

Approximations from above are useful for disproving theorems, which in the case of propositional classical logic is
equivalent to the well-known SAT problem. The SAT problem consists in, given a set of propositional formulas �,
deciding whether � is satisfiable, i.e., whether a truth assignment can be found that makes each formula of � true.

We say that an approximation is parameterised if there exists a universe set U and parameter sets S ⊆ U such that
L(S) is defined for each set S ⊆ U . In this case, an approximation from below parameterised by sets of propositional
letters would be a sequence such that whenever ∅ ⊂ S1 ⊂ S2 ⊂ · · · ⊂ P we have

L(∅) ⊂ L(S1) ⊂ L(S2) ⊂ · · · ⊂ L(P) = L.

We can similarly define a parameterised approximation from above, or a generic parameterised approximation. Given
a parameterised approximation, an anytime algorithm is a procedure that allows us to expand the parameter set S in

M. Finger, R. Wassermann / Theoretical Computer Science 355 (2006) 153 –166 155

such a way that anytime the algorithm is stopped, it produces a partial answer and the longer the algorithm runs, the
better the quality of the partial answer. In case of approximated theorem proving from below, say of formula �, the
anytime algorithm would keep expanding S until a decision is made. Such decision would be that � ∈ T h(L(S)). If the
approximation is interrupted just after verifying that � /∈ T h(L(Si)) we have a partial answer that up to logic L(Si), �
is not a theorem; maybe, if not all of the propositional letters of � were in S and the algorithm proceeded further with
the approximations it would verify that � is a theorem.

We say that this process of approximation is incremental if the algorithm for testing whether � ∈ T h(L(Si+1)) can
be started from the state where the proof of � /∈ T h(L(Si)) stopped. A non-incremental algorithm would try to decide
whether � ∈ T h(L(Si+1)) as if it had never tried to decide if � ∈ T h(L(Si)). Analogously, anytime and incremental
behaviours can be defined for approximations from above.

In the literature we find many logics that approximate propositional classical logics from below, but a much smaller
number of approximations from above (see [20] for a discussion on why it is harder to approximate from above). In
this paper, we will focus on parameterised methods of approximating propositional classical logic from below with
incremental anytime algorithms.

We now examine some of the relevant proposals of logical approximations existing in the literature.

2.1. Selman and Kautz’s knowledge compilation

Perhaps the first proposal of approximation in the literature that fits the notion of approximation above is the work
of Selman and Kautz on knowledge compilation [26,27].

The idea of knowledge compilation can be applied to a large class of logic theories [27], but the instance that interests
us here is the compilation of Horn-clause approximations for a given propositional theory in clausal form [26]. In this
approach, a clausal-form theory � is compiled into two approximated theories, namely the greatest Horn lower-bound,
�glb and the least Horn upper-bound, �lub, such that �glb � � � �lub. While the theory �lub is unique, there may be
several greatest Horn lower-bounds.

The computation of �lub and �glb proceeds in steps, where each step computes a greater lower bound or a smaller
upper bound. The computation of �lub and �glb is NP-hard with the exact complexity studied in [4,5]; the computation
of �lub and �glb can be interrupted anytime, providing an anytime algorithm that generates theories �ub and �lb that
satisfy �lb � � � �ub. The chain of upper bounds thus computed can be thought of as an approximation from below,
for it can be used in theorem proving. Similarly, the chain of lower bound Horn theories can be thought of as an
approximation from above, and can be used to refuting inferences, that is, for showing that � � � which, in the case
where � = ⊥ is the problem of satisfying the set of formulas �, i.e., the SAT problem.

This method does not fit exactly to the notion of approximation above, for the approximation chains to not converge
exactly to the initial clausal theory �. That is, there may be a formula � such that � � � but �lub � �. Similarly, there
may be a � such that � � � but �glb � � for all �glb. The solution to the case where neither �lub � � nor �glb � � is to
fall back to the original theory �. Selman and Kautz performed practical experiments such that, on the average, the
knowledge compilation method compares positively against other propositional theorem proving methods in the sense
that the time of compilation into Horn LUBs and GLBs plus the time of answering a query using these approximations
was, on average, smaller than the time spent answering the query directly from the original theory.

Note that this approach is not parameterised. The semantics of Horn approximations �lub and �glb were studied in
[4,5], but the approximation steps �ub and �lb have no clear semantic status. So, if the anytime algorithm is interrupted
before reaching the upper or lower bound, the significance of this intermediary theory is unclear.

2.2. Cadoli and Schaerf’s approximate entailment

The notion of approximate entailment was initially proposed by Cadoli and Schaerf in [6] and was later extended
and detailed in [25]. Dealing with the clausal fragment of propositional logic (later extended to negation normal form
formulas [7]), they proposed two parameterised families of logics.

The family S3 takes a parameter set S ⊆ P and consists of a family of subclassical logics that are sound but
incomplete with respect to classical logic. The family S1 also takes a parameter set S ⊆ P and consists of a family of
unsound but complete logics with respect to classical logic. In the limit, when S = P , we have that the two families
converge to propositional classical logic LC , S3(S) = S1(S) = LC .

156 M. Finger, R. Wassermann / Theoretical Computer Science 355 (2006) 153 –166

The family S3(S) will be discussed in details in Section 3, and it does consist of an approximation of classical logic
from below, useful in theorem proving. The family of logics S1(S) is not strictly an approximation from above, as
defined in the beginning of this section, but it can also be used to approximately disprove theorems and SAT.

In this way, two approximated parameterised entailment relations were defined, �3
S and �1

S . Their definition was
done in semantic terms, so that an anytime algorithm was created and, if the approximations are interrupted before
normal termination, there is a clear semantics of the logics at which the search for proving or refuting a theorem failed.
However, no incremental proof-theoretical presentation was given for those logics. For a fixed parameter set S, the
families possess a polynomial-time decision procedure, but for the general case the decision problem is intractable.

The work of Cadoli and Schaerf really created a paradigm in approximated logics and will be further discussed in
Section 3.

2.3. Dalal’s BCP approximations

In [12] Dalal proposed a family of logics that approximate classical logic. Dalal’s proposal was based on clausal
Boolean constraint propagation (BCP) [24], which is a variant of unit resolution [8]. It also deals only with the clausal
fragment of propositional logic, and has the important property that all approximations are polynomial with respect to
the number of atoms, but for every approximation step the degree of the polynomial is incremented.

In this approach, a theory is a set of clauses and f is the empty clause. An equivalence relation is algebraically
imposed on terms:

{f} ∪ � =BCP �,

{l, ∼ l ∨ �} ∪ � =BCP {l, �} ∪ �,

where l is a literal (an atom or its negation) and ∼ l represents the literal with opposite polarity. It is then defined
that � �BCP � iff � ∪ {�} =BCP {f}. Such an inference is correct but incomplete with respect to classical logic. In
particular, it is possible that � �BCP l, � ∪ {l} �BCP � but � �BCP �. So Dalal defines the parametric family of anytime
approximations, �BCP

k , respecting two rules:

1.
� �BCP �

� �BCP
k �

2.
� �BCP

k �; �, � �BCP
k �

� �BCP
k �

for |�|�k.

This is clearly a parametric family of logics that approximates classical logic from below. No similar logical approxi-
mation was provided for refuting a formula. A many-valued semantics for those systems was provided in [13].

This approach has been recently extended to the full fragment of propositional logic [15,16]. This extension maintains
the property that all approximations are polynomial with respect to the number of atoms, but for every approximation
step the degree of the polynomial is incremented. A new, lattice-based semantics has been provided for this family of
approximations. Furthermore, an incremental proof-theory has been proposed based on KE-tableaux, with a heuristics
that guides the incremental approximations [15].

2.4. Massacci’s system

Massacci’s approach [23] was the first one to contemplate extending the notion of approximation to the full fragment
of propositional logics. In fact, Massacci actually extended Cadoli and Schaerf’s approach to the set of signed formulas,
where propositional formulas are signed with either a T or an F symbol, in the same way that signed formulas are
treated in Smullyan’s analytic tableaux [28].

As in Cadoli and Schaerf families, the logics are parameterised with two disjoint context sets, namely the set of
unknown atoms and the set of incoherent atoms. If an atom p is incoherent, then both signed formulas T p and F p are
true. Conversely, if an atom q is unknown, then both signed formulas T q and F q are false.

When both sets of incoherent and unknown atoms are empty, we are in classical logic so the approximation process
starts by making one context set empty and the other containing all atoms, and proceeds by removing atoms from this
set, thus generating a family that converges to classical logic.

Massacci provides a semantical extension of this notion to all signed formulas. A tableau system is given that is
correct and complete, for each pair of parameter sets, with respect to its semantics.

M. Finger, R. Wassermann / Theoretical Computer Science 355 (2006) 153 –166 157

2.5. Finger and Wassermann’s system

In [20] and [21], Finger and Wassermann have examined Cadoli and Schaerf’s systems S1 and S3 and based on them,
proposed systems to approximate the full propositional fragment from above and from below. This approach was able
to deal with pure, unsigned formulas. While Massacci’s approach was based on giving non-classical interpretation to
propositional formulas, this approach gives a non-classical interpretation to the negation symbol.

In Cadoli and Schaerf’s system S1, some theorems of classical logic do not hold, which prevents it from being called
an approximation from above according to the definitions in the beginning of this section. This problem is discussed
in [20], where a new system s1 is proposed.

The system which approximates from below will be described in the next section, and is a proper extension of Cadoli
and Schaerf’s S3, in the sense that they coincide when restricted to the clausal fragment. It is interesting to see that
these systems differ from classical logic only in the way they deal with negation. All the other connectives are handled
classically. In Section 5, we will see a generalisation of this idea which changes the way in which all connectives are
handled.

3. The family S3

In this section, we first present Cadoli and Schaerf’s system S3 and then Finger and Wassermann’s extended version
that deals with full propositional logic.

Schaerf and Cadoli [25] define two approximations of classical entailment: �1
S which is complete but not sound, and

�3
S which is classically sound but incomplete. These approximations are carried out over a set of atoms S ⊆ P which

determines their closeness to classical entailment. Here we will concentrate only in the latter, namely the S3 family of
logics.

In the trivial extreme of S3 approximate entailment, i.e., when S = P , classical entailment is obtained. At the other
extreme, �3

∅ corresponds to Levesque’s logic for explicit beliefs [22], which bears a connection to Relevance Logics
such as those of Anderson and Belnap [1].

In an S3 assignment, if p ∈ S, then p and ¬p get opposite truth values, while if p /∈ S, p and ¬p do not both get
0, but may both get 1. The name S3 comes from the possible truth assignments for literals outside S. If p /∈ S, there
are three possible S3 assignments, the two classical ones, assigning p and ¬p opposite truth values, and an extra one,
making them both true. The set of formulas for which we are testing entailments is assumed to be in clausal form.

Formally, the semantics of the logic S3(S) over clauses is constructed by defining an S3-valuation v3
S of literals into

{0, 1} such that
• v3

S(¬p) = 1 iff v3
S(p) = 0, if p ∈ S.

• if p /∈ S, we can have one of 3 possibilities:
◦ v3

S(¬p) = 1 and v3
S(p) = 0,

◦ v3
S(¬p) = 0 and v3

S(p) = 1,

◦ v3
S(¬p) = v3

S(p) = 1.
This valuation can be extended immediately to clauses. By varying S, we generate a family of logics. Also, satisfiability,
validity and entailment are defined in the usual way.

Although in classical logic any formula is equivalent to one in clausal form, the usual transformation does not
preserve truth-values under the non-standard S3 semantics. The S3 family of logics has been extended to propositional
formulas in [18], where a sound and complete incremental proof system for it was also provided.

The generalized semantics for S3 is the following:

Definition 1. An S3-valuation v3
S is a function, v3

S : LC → {0, 1}, that extends a propositional valuation v (i.e.,
v3
S(p) = v(p)), satisfying the following restrictions:

(i) v3
S(� ∧ �) = 1 ⇔ v3

S(�) = v3
S(�) = 1,

(ii) v3
S(� ∨ �) = 0 ⇔ v3

S(�) = v3
S(�) = 0,

158 M. Finger, R. Wassermann / Theoretical Computer Science 355 (2006) 153 –166

Fig. 1. KE-rules for S3.

(iii) v3
S(� → �) = 0 ⇔ v3

S(�) = 1 and v3
S(�) = 0,

(iv) v3
S(¬�) = 0 ⇒ v3

S(�) = 1,

(v) v3
S(¬�) = 1, � ∈ S ⇒ v3

S(�) = 0.

Rules (i)–(iii) are exactly those of classical logic. Rules (iv) and (v) restrict the semantics of negation: rule (iv) states
that if v3

S(¬�) = 0, then negation behaves classically and forces v3
S(�) = 1; rule (v) states that if v3

S(¬�) = 1, negation
must behave classically if � ∈ S. Formulas outside S may behave classically or paraconsistently, i.e., both the formula
and its negation may be assigned the truth value 1.

Note that an S3-valuation is not uniquely defined by the propositional valuation it extends. This is due to the fact that
if � /∈ S and v3

S(�) = 1, the value of v3
S(¬�) can be either 0, in which case � has a classical behaviour, or 1, in which

case � behaves paraconsistently. A comparison between S3 semantics and axiomatisation and da Costa’s Paraconsistent
Logic C1 was done in [17].

A formula � is S3-valid if v3
S(�) = 1 for any S3-valuation. A formula is S3-satisfiable if there is at least one v3

S such
that v3

S(�) = 1. The S3-entailment relationship between a set of formulas � and a formula � is represented as

� �3
S �

and holds if every valuation v3
S that simultaneously satisfies all formulas in � also satisfies �. A formula is S3-valid if

and only if it is entailed by ∅, represented as �3
S �.

An inference system for the full logic S3 based on the KE-tableau methodology was developed in [18] and further
developed in [19,21]. KE-tableaux were introduced by D’Agostino [10] as a principled computational improvement
over Smullyan’s Semantic Tableaux [28], and have since been successfully applied to a variety of logics [11,2,3].

KE-tableaux deal with T- and F-signed formulas. An expansion of a tableau is allowed when the premises of an
expansion rule are present in a branch; the expansion consists of adding the conclusions of the rule to the end of all
branches passing through the set of all premises of that rule.

For each connective, there are at least one T- and one F-linear expansion rules. Linear expansion rules always have a
main premise, and may also have an auxiliary premise. They may have one or two consequences. The only branching
rule is the Principle of Bivalence, stating that a formula has to be either true of false. Fig. 1 shows KE-tableau expansion
rules for the family S3.

M. Finger, R. Wassermann / Theoretical Computer Science 355 (2006) 153 –166 159

The only way in which such a tableau system differs from a classical one is in the (T ¬) rule, which comes with a
proviso

T ¬�
F �

provided that � ∈ S

(recall that, as mentioned in Section 1, � ∈ S means that all atoms in � are in S).
The meaning of this rule is that the expansion of a branch is only allowed if it contains the rule’s antecedent and the

proviso is satisfied, that is, all the atoms of the formula in question belong to S. This rule is actually a restriction of the
classical rule, stating that if � /∈ S the (T ¬)-rule cannot be applied. Let us call the system thus obtained KES3.

This makes the system immediately subclassical, for any tableau that closes for KES3 also closes for classical logic.
So any theorem we prove in KES3 are also classical theorems.

So KES3 is correct and incomplete with respect to classical logic. In fact, KES3 is complete and correct with respect
to the semantics above.

Theorem 2 (Finger and Wassermann [18]). �1, . . . , �n �3
S � iff any possible KES3 tableau for �1, . . . , �n�� closes.

Furthermore, if one S3 tableau for �1, . . . , �n � � closes, any such tableau closes.

4. The dual family S∗
3

Cadoli and Schaerf in a subsequent work [7] have proposed a dual family of logics which they called S∗
3 . An

S∗
3 -valuation of literals into {0, 1} such that:

• v3∗
S (¬p) = 1 iff v3∗

S (p) = 0, if p ∈ S.
• if p /∈ S, we can have one of 3 possibilities:

◦ v3∗
S (¬p) = 1 and v3∗

S (p) = 0,

◦ v3∗
S (¬p) = 0 and v3∗

S (p) = 1,

◦ v3∗
S (¬p) = v3∗

S (p) = 0.
Only this last line differs from the previous S3 family, in that for an atom p /∈ S, both p and ¬p may be false. As a
result, in such a logic, the formula p∨¬p is not valid for p /∈ S, which characterises such logics as paracomplete. This
logic was presented in [7] with the same setting as S3 was presented: formulas in clausal form only (in fact, negation
normal form was also accepted); no extension to full logic; no proof theory.

In an analogous way to the extension of S3, we extend here S∗
3 to full propositional logic.

Definition 3. An S∗
3 -valuation v3∗

S is a function, v3∗
S : LC → {0, 1}, that extends a propositional valuation v (i.e.,

v3∗
S (p) = v(p)), satisfying the following restrictions:

(i) v3∗
S (� ∧ �) = 1 ⇔ v3∗

S (�) = v3∗
S (�) = 1,

(ii) v3∗
S (� ∨ �) = 0 ⇔ v3∗

S (�) = v3∗
S (�) = 0,

(iii) v3∗
S (� → �) = 0 ⇔ v3∗

S (�) = 1 and v3∗
S (�) = 0,

(iv) v3∗
S (¬�) = 0, � ∈ S ⇒ v3∗

S (�) = 1,

(v) v3∗
S (¬�) = 1 ⇒ v3∗

S (�) = 0.

The definition of S∗
3 -logical consequence, �3∗

S is totally analogous to that of �3
S .

Also, in an analogous way, we define a KE-tableau proof system for the S-parameterised family of logics S∗
3 . The

rules for the connectives →, ∧ and ∨ are the same as in S3 (which are the same as the classical rules). The rules

160 M. Finger, R. Wassermann / Theoretical Computer Science 355 (2006) 153 –166

for negation are now

T ¬�
F �

and
F ¬�
T �

provided that � ∈ S.

The rule (T ¬) is the classical one, while (F ¬) comes with a proviso. This is dual to the situation in S3.
As an example we illustrate two tableaux. The first one is the principle of contradiction, p, ¬p � q, which was not

a theorem in paraconsistent S3 but is now a theorem in S∗
3 . The second example is the principle of excluded middle

�p ∨ ¬p, which was a theorem in S3, but which is not a theorem in paracomplete S∗
3 .

T p

T ¬p

F q

F p

×

F p ∨ ¬p

F p

F ¬p

–

In the first tableau, we simply apply (T ¬) to the second line to close the tableau. In the second tableau, we would
want to apply (F ¬), but when we consider S = ∅, the proviso precludes us from doing that, and the tableau remains
open. The approximation process consists in adding some propositional letters to S and trying to close the tableau. In
this example, if we add p to S, we can apply the F ¬� rule and the tableau closes. This shows that p ∨ ¬p is not a
theorem of S∗

3 (∅), but in the logic S∗
3 ({p}) the formula can be proved.

We have the following soundness and completeness result for KES∗
3 tableaux.

Theorem 4. �1, . . . , �n �3∗
S � iff any possible KES∗

3 tableau for �1, . . . , �n � � closes. Furthermore, if one S∗
3 tableau

for �1, . . . , �n � � closes, any such tableau closes.

The proof of this theorem is similar to the one for KES3 in [21] and will appear in a more general form is Section 5.
From the way KES∗

3 was built, it is clear that it is also an approximation of classical logic from below. Also, it appears
that S3 and S∗

3 are incompatible families, due to the following properties, that come straight from the definitions of v3
S

and v3∗
S , for every � /∈ S:

(a) In S3, if v3
S(�) = 1, then v3

S(¬�) may be either 0 or 1.

(b) In S∗
3 , if v3∗

S (�) = 1, then v3
S(¬�) = 0.

(c) In S∗
3 , if v3

S(�) = 0, then v3
S(¬�) may be either 0 or 1.

(d) In S3, if v3∗
S (�) = 0, then v3

S(¬�) = 1 .
However, as we are going to see, this does not consist in any kind of incompatibility, and we may have systems that
obey both rules.

If we concentrate on both tableau methods that approximate classical logic from below, we see that both consist of
a restriction of one rule in a classical tableaux.

With this view, it turns out that constructing a proof theoretical approximation of classical logic from below is a
trivial task!

Creating a family that approximates classical logic from below. It suffices to restrict the use of one (or a set of) rules
of one’s favourite proof method to a limited set a formulas, in a way that eventually the rule will be applicable to all
classical formulas.

It is interesting to see if a semantics can be provided for a limited inference system. In the following, we show that
if this limitation is done is a systematic way by restricting the connective rules in the KE-tableau method, it is possible
to provide a generic semantics for a very large class of approximated logics.

5. A generalised approximation inference

We have seen how to restrict (T ¬) in KES3 and how to restrict the use of (F¬) in KES∗
3 . We assumed that the

parameter set S governing both approximations was the same, but since there were no interactions between the S3-rule

M. Finger, R. Wassermann / Theoretical Computer Science 355 (2006) 153 –166 161

Fig. 2. KE-rules for the generalised system.

and the S∗
3 rule, this assumption had no consequences. Now, we are going for greater generality, and we assume different

context sets for each rule. This gives us a system where every connective can be assured to behave classically only
for formulas in which all propositional letters belong to the corresponding context set: ST∧ , SF∧ , ST∨ , SF∨ , ST→, SF→, ST¬
and SF¬ .

An initial step towards this generalisation was given in [19], with a system that dealt with ST¬ and ST→.
We present a generalisation of the KE-tableaux, which we call KESe, that deals with context sets for all the tableau

rules. The system is obtained by adding restrictions to each expansion rule, as illustrated in Fig. 2.

Lemma 5. KESe can simulate the dynamic evolution of both KES3 and KES∗
3 .

Proof. To see that KESe can simulate the dynamic evolution of KES3, it suffices to set S = ST¬ and all other S
parameters to the full set of propositional letters. In practice, this amounts to lifting the proviso of all rules except for
the (T ¬) rule. Similarly for KES∗

3 . �

As usual, we want our system to be based on a sound and complete subclassical semantics.

5.1. Semantics for generalised approximate inference

Definition 6. An Se-valuation ve
S is a function, ve

S : LC → {0, 1}, that extends a propositional valuation v (i.e.,
ve
S(p) = v(p)), satisfying the following restrictions:

(∧1) ve
S(� ∧ �) = 1, � ∈ ST∧ ⇒ ve

S(�) = 1,

(∧2) ve
S(� ∧ �) = 1, � ∈ ST∧ ⇒ ve

S(�) = 1,

(∧3) ve
S(� ∧ �) = 0, ve

S(�) = 1, � ∈ SF∧ ⇒ ve
S(�) = 0,

(∧4) ve
S(� ∧ �) = 0, ve

S(�) = 1, � ∈ SF∧ ⇒ ve
S(�) = 0,

(∨1) ve
S(� ∨ �) = 0, � ∈ SF∨ ⇒ ve

S(�) = 0,

162 M. Finger, R. Wassermann / Theoretical Computer Science 355 (2006) 153 –166

(∨2) ve
S(� ∨ �) = 0, � ∈ SF∨ ⇒ ve

S(�) = 0,

(∨3) ve
S(� ∨ �) = 1, ve

S(�) = 0, � ∈ ST∨ ⇒ ve
S(�) = 1,

(∨4) ve
S(� ∨ �) = 1, ve

S(�) = 0, � ∈ ST∨ ⇒ ve
S(�) = 1,

(→1) ve
S(� → �) = 0, � ∈ SF→ ⇒ ve

S(�) = 1,

(→2) ve
S(� → �) = 0, � ∈ SF→ ⇒ ve

S(�) = 0,

(→3) ve
S(� → �) = 1, ve

S(�) = 1, � ∈ ST→ ⇒ ve
S(�) = 1,

(→4) ve
S(� → �) = 1, ve

S(�) = 0, � ∈ ST→ ⇒ ve
S(�) = 0,

(¬1) ve
S(¬�) = 0, � ∈ SF¬ ⇒ ve

S(�) = 1,

(¬2) ve
S(¬�) = 1, � ∈ ST¬ ⇒ ve

S(�) = 0.

It is easy to see that the semantics of S3 is a particular case of the system above, where the sets ST∧ , SF∧ , ST∨ , SF∨ , ST→,

SF→, and SF¬ contain all the propositional letters of the language and S = ST¬ . Similarly, the semantics of S∗
3 corresponds

to S = SF¬ and ST∧ = SF∧ = ST∨ = SF∨ = ST→ = SF→ = ST¬ = P .
The notions of Se-validity, Se-satisfiability and Se-entailment are defined in the usual way.

5.2. Soundness and completeness

We say that KESe is sound with respect to the Se semantics if whenever a tableau closes for an input sequent, then
the sequent’s antecedent formulas entail its consequent in Se. Conversely, the KESe-tableau method is complete with
respect to the Se semantics if for all sequents such that the antecedent entails the consequent in Se, all KESe-tableaux
close.

We extend an Se-valuation to signed formulas making ve
S(T �) = 1 iff ve

S(�) = 1 and ve
S(F�) = 1 iff ve

S(�) = 0. A
valuation satisfies a branch in a tableau if it simultaneously satisfies all the signed formulas in the branch.

To prove soundness, we first show the correctness of all linear expansion rules of KESe.

Lemma 7. If the antecedents of the KESe linear expansion rules are S-satisfied in Se by ve
S so are its conclusions.

Proof. A simple inspection of the rules in Fig. 2 shows the result. �

We now show that the branching rule PB also preserves satisfiability.

Lemma 8. If a branch is satisfied by a valuation ve
S prior to the application of PB, then at least one of the two branches

generated is satisfied by a valuation ve
S after the application of PB.

Proof. Suppose the branching occurs over the formula �. Because ve
S is a function onto {0, 1}, we have that ve

S(T �) = 1
or ve

S(F �) = 1, so ve
S satisfies one of the two branches generated by the application of PB. �

Theorem 9 (Soundness). Suppose a tableau for �1, . . . , �n � � closes. Then �1, . . . , �n �e
S �.

Proof. We show the contrapositive. Suppose �1, . . . , �n �e
S �, so there is a valuation ve

S such that ve
S(�1) = · · · =

ve
S(�1) = 1 and ve

S(�) = 0. In this case, the initial tableau for �1, . . . , �n�� is such that all formulas T �1, . . . , T �n, F �
are satisfied by ve

S .
By Lemmas 7 and 8, we see that each application of an expansion rule preserves at least one satisfiable branch. As

closed branches are not satisfiable, at least one branch remains open and the tableau cannot close. �

We say that a branch of a tableau is complete if there are no more applicable expansion rules.

Lemma 10. An open complete branch in a KESe-tableau is S-satisfiable in Se.

M. Finger, R. Wassermann / Theoretical Computer Science 355 (2006) 153 –166 163

Proof. Let B be the set of formulas that occur in the open complete branch. We have to build an Se valuation that
satisfies it.

We start the construction of v by setting v(�) = 1 for every � such that T � ∈ B and v(�) = 0 for every �
such that F � ∈ B. Since the branch is open and complete, there is no formula � for which both T � and F �, hence v is a
partial function that satisfies the branch. We have to (i) extend v to a total function and (ii) show that v is an
Se-valuation.

(i) We can extend v by combining it with any classical propositional valuation, by randomly attributing values to
the undefined propositions and then extend it classically. So, if � = � ∧ � and v(�) undefined. We set v(�) to 1 iff
v(�) = v(�) = 1. Analogously for the other connectives.

(ii) To show that v is an Se-valuation, we must show that it satisfies the properties in Definition 6. For example, take
property (∧1):

ve
S(� ∧ �) = 1, � ∈ ST∧ ⇒ ve

S(�) = 1.

If T � ∧ � is in B, then since � ∈ ST∧ , by the rule (T∧), T � is also in B and hence, v(�) = 1. If T � ∧ � is not in B, then
v(� ∧ �) = 1 iff v(�) = 1 and v(�) = 1. Consider rule (¬1):

ve
S(¬�) = 0, � ∈ SF¬ ⇒ ve

S(�) = 1.

If F ¬� is in B and � ∈ SF¬ , then by the rule (F¬), T � is in B and hence, v(�) = 1. If F ¬� is not in B, then v(¬�) = 0
iff v(�) = 1.

In an analogous way, we can show that the valuation v satisfies the other twelve properties in Definition 6. �

Theorem 11 (Completeness). If �1, . . . , �n �e
S � then any possible KESe tableau for �1, . . . , �n � � closes.

Proof. Suppose for contradiction that there is a tableau for �1, . . . , �n � � with an open complete branch B. Then
by Lemma 10 there is an Se valuation that satisfies B, which includes T �1, . . . , T �n, F �, contradicting �1, . . . ,

�n �e
S �. �

5.3. Applications of Se

We examine here the use of Se as a formalisation of proof strategies using KE-tableaux. In a tableau expansion,
more than one rule may be applicable at a time, and the choice of which rule to use may have dramatic effects,
for a short proof may exist but the wrong choice of rule application may lead to an explosion in the number of
branches.

Let X ∈ {T , F } and • ∈ {∧, ∨, →, ¬}. The use of an SX• context set in KESe-tableaux may lead to a delay in
using the rule (X•). This works as follows: suppose the rule (X•) is classically applicable at one point in the branch
expansion, but the corresponding proviso, � ∈ SX• , is not met at that point. The use of the rule (X•) is then blocked. All
other applicable rules would take precedence, and will be applied. After their application, there are two possibilities:
either all branches passing through that (X•)-blocked point are closed, in which case there is nothing to be done, or
there is at least one open branch. In the latter case, the atoms of the formula � are inserted in SX• , the logic is changed
to one “closer” to classical logic, from Se(S

X•) to Se(S
X• ∪ {�}), so that the proviso is now met. The expansion of the

tableau can then proceed incrementally in the new logic, without having to restart from square 1.
In the systems S3 and S∗

3 we have seen that most of the sets SX• were equal to P . So the choice of which set SX• to
be chosen to be different from P has to do with which rule application we want to postpone.

Clearly, we do not want to postpone the application of one-premised linear rules. These rules, which correspond to
the �-rules in Smullyan’s analytic tableaux, never generate a new branch and are all commutative, for the application of
one rule does not invalidate the application of another. This means that for theorem proving purposes we would want
to have

SF→ = ST∧ = SF∨ = ST¬ = SF¬ = P.

Note that the context sets of S3 and S∗
3 are included in the sets above that we want to maintain fixed in P . In fact, this

is in accordance to some experiments made in [14] with the implementation of KES3 tableaux, in which a decrease in

164 M. Finger, R. Wassermann / Theoretical Computer Science 355 (2006) 153 –166

performance was noted from the use of KES3 strategy in respect to classical KE in which the one-premised rules were
given application precedence, as above.

The two-premised rules are normally associated with the branching process, which is the important point to con-
centrate on when trying to reduce the size of a proof. There are two premises in those rules. The main premise is the
main formula, which in Smullyan’s analytic tableaux are associated to �-rules and the branching process. The other
premise is the auxiliary formula, which is associated with the KE branching heuristics. According to such heuristics,
given a main formula of a two-premised rule where the auxiliary formula is absent, one should branch using PB so as
to generate, in one of the branches, the missing auxiliary formula.

As a result, a strategy for tableau branching based on Se should keep track of the formulas in the context sets SF∧ , ST∨
and ST→.

The resulting strategy goes in accordance with the general intuition of tableau expansion: first expand the formulas
that do not generate new branches, and only then expand the branching rules. Furthermore, our new strategy now places
further restrictions on the branching rule, for we are giving preference to branch over a formula with all its atoms
already on one of the sets SF∧ , ST∨ and ST→. That is, our strategy gives preference for branching over subformulas of
formulas over which there has already occurred a branching operation higher up in the tableau.

Example 12. In this example we will consider S = SF∧ = ST∨ = ST→. That is, if there is a branching over some formula,
subsequent branches over subformulas of it will be privileged. This strategy is good if there are irrelevant formulas, for
it helps to avoid using them for the branching heuristics.

To see that, consider the sequent

p, (p → q) ∨ (p → r), ((p ∧ (q ∨ r)) → s) ∨ (p ∧ (q ∨ r) → t), (x ∧ y) → (q ∨ r) � s ∨ t

which generates, with initially S = ∅, the initial tableau
1. T p

2. T (p → q) ∨ (p → r)

3. T (p ∧ (q ∨ r) → s) ∨ (p ∧ (q ∨ r) → t)

4. T (x ∧ y) → (q ∨ r)

5. F s ∨ t

Note that line 4 is totally irrelevant to the proof, and we want to avoid using it. After the first expansion of line 5 into
6. F s (F∨)5

7. F t (F∨)5

we have a choice of lines 2, 3 and 4 over which to apply the branching heuristics. As all those lines are T-marked, we
choose a formula that has some atoms in common with the F-marked formulas in tableau; this is justifiable, for the
F-marked formulas are those we are trying to prove, and so we choose formulas that are relevant to the goal.

This choice leads to a branch over 3, with branching formulas F p ∧ (q ∨ r) → s and T p ∧ (q ∨ r) → s. The
left-hand branch develops as follows:
8a. F p ∧ (q ∨ r) → s

9a. T p ∧ (q ∨ r) → t (T ∨) 3, 8a S := {p, q, r, s}
10a. T p ∧ (q ∨ r) (F →) 8a
11a. T t (T →) 9a, 10a

×
In line 9a the use of (T ∨) using 3 as main premise and 8a as auxiliary premise forces the insertion of all atoms of 8a
into S. Since S = SF∧ = ST∨ = ST→, this new S allows the use of (T →) to obtain line 12a, which closes the branch
with line 7.

On the right-hand branch, we obtain the following expansion:
8b. T p ∧ (q ∨ r) → s

9b. F p ∧ (q ∨ r) (T →) 8b, 6
10b. F(q ∨ r) (F∧) 9b, 1
11b. F q (F∨) 10b
12b. F r (F∨) 10b

M. Finger, R. Wassermann / Theoretical Computer Science 355 (2006) 153 –166 165

The fact that q, r ∈ S licenses the use on (T →) in line 9b; similarly, p ∈ S licenses (F∧) in line 10b. At this point
we have to branch over lines 2 or 4. But branching over line 4 is blocked, for some of its atoms are outside S, which
does not occur with line 2. So the expansion proceeds branching over p → q.

13ba. T p → q 13bb. F p → q

14ba. T q (T →) 13ba, 1 14bb. T p → r (T ∨) 2, 13bb
× 15bb. T r (T →) 14bb, 1

×
As all branches are closed, the tableau is proved in Se and also in classical logic.

6. Conclusions and future work

In this paper, we have extended the system S∗
3 [7] to deal with full propositional logic, obtaining a family of

paracomplete logics which is dual to the family of paraconsistent logics S3. Comparing the semantics and proof
methods of both systems, we noted that the idea behind those systems, namely restricting the application of a rule,
could be further generalised. This generalisation gave us the system Se, for which we gave a semantic and a sound
and complete proof method. We then showed how Se can be used to formalise different heuristics used for theorem
proving.

Future work includes extending the implementation of the theorem prover for KE and KES3 to KESe and testing it
extensively with different context sets.

References

[1] A. Anderson, N. Belnap, Entailment: The Logic of Relevance and Necessity, Vol. 1, Princeton University Press, NJ, 1975.
[2] K. Broda, M. Finger, KE-tableaux for a fragment of linear logic, in: Proc. Fourth Internat. Workshop on Analytic Tableaux and Related Methods,

Koblenz, 1995.
[3] K. Broda, M. Finger, A. Russo, Labelled natural deduction for substructural logics, Logic J. IGPL 7 (3) (1999) 283–318.
[4] M. Cadoli, Semantical and computational aspects of Horn approximations, in: Proc. 13th Internat. Joint Conf. Artificial Intelligence (IJCAI-93),

1993, pp. 39–44.
[5] M. Cadoli, F. Scarcello, Semantical and computational aspects of Horn approximations, Artif. Intell. 119 (1–2) (2000) 1–17.
[6] M. Cadoli, M. Schaerf, Approximation in concept description languages, in: Proc. Third Internat. Conf. on Principles of Knowledge

Representation and Reasoning (KR92), 1992, pp. 330–341.
[7] M. Cadoli, M. Schaerf, The complexity of entailment in propositional multivalued logics, Ann. Math. Artif. Intell. 18 (1) (1996) 29–50.
[8] C. Chang, R. Lee, Symbolic Logic and Mechanical Theorem Proving, Academic Press, London, 1973.
[9] S. Chopra, R. Parikh, R. Wassermann, Approximate belief revision, Logic J. IGPL 9 (6) (2001) 755–768.

[10] M. D’Agostino, Are tableaux an improvement on truth-tables?—cut-free proofs and bivalence, J. Logic Language Inform. 1 (1992) 235–252.
[11] M. D’Agostino, D. Gabbay, A generalization of analytic deduction via labelled tableaux, part I: basic substructural logics, J. Automated Reason.

13 (1994) 243–281.
[12] M. Dalal, Anytime families of tractable propositional reasoners, in: Internat. Symp. of Artificial Intelligence and Mathematics AI/MATH-96,

1996, pp. 42–45.
[13] M. Dalal, Semantics of an anytime family of reasoners, in: 12th European Conference on Artificial Intelligence, 1996, pp. 360–364.
[14] W. Dias, Tableaux implementation for approximate reasoning (in portuguese), Master’s Thesis, Department of Computer Science, University

of São Paulo, 2002.
[15] M. Finger, Polynomial approximations of full propositional logic via limited bivalence, in: Ninth European Conference on Logics in Artificial

Intelligence (JELIA 2004), Lecture Notes in Artificial Intelligence, Vol. 3229, Springer, Lisbon, Portugal, 2004, pp. 526–538.
[16] M. Finger, Towards polynomial approximations of full propositional logic, in: A.L.C. Bazzan, S. Labidi (Eds.), XVII Brazilian Symposium on

Artificial Intelligence (SBIA 2004), Lecture Notes in Artificial Intelligence, Vol. 3171, Springer, Berlin, 2004, pp. 11–20.
[17] M. Finger, R. Wassermann, Approximate reasoning and paraconsistency, in: Eighth Workshop on Logic, Language, Information and

Computation (WoLLIC’2001), 2001, pp. 77–86.
[18] M. Finger, R. Wassermann, Tableaux for approximate reasoning, in: L. Bertossi, J. Chomicki, (Eds.), IJCAI-2001 Workshop on Inconsistency

in Data and Knowledge, Seattle, 2001, pp. 71–79.
[19] M. Finger, R. Wassermann, Expressivity and control in limited reasoning, in: F. van Harmelen (Ed.), 15th European Conference on Artificial

Intelligence (ECAI02), IOS Press, Lyon, France, 2002, pp. 272–276.
[20] M. Finger, R. Wassermann, Logics for approximate reasoning: approximating classical logic “from above”, in: XVI Brazilian Symposium on

Artificial Intelligence (SBIA’02), Lecture Notes in Artificial Intelligence, Vol. 2507, Springer, Berlin, 2002, pp. 21–30.

166 M. Finger, R. Wassermann / Theoretical Computer Science 355 (2006) 153 –166

[21] M. Finger, R. Wassermann, Approximate and limited reasoning: semantics, proof theory, expressivity and control, J. Logic Comput. 14 (2)
(2004) 179–204.

[22] H. Levesque, A logic of implicit and explicit belief, in: Proc. AAAI-84, 1984, pp. 198–202.
[23] F. Massacci, Efficient approximate deduction and an application to computer security, Ph.D. Thesis, Dottorato in Ingegneria Informatica.

Università di Roma I “La Sapienza”, Dipartimento di Informatica e Sistemistica, 1998. URL〈http://www.ing.unitn.it/∼massacci/Publications/
Papers/mass-98-PHD.ps.gz〉.

[24] D. McAllester, Truth maintenance, in: Proc. Eighth National Conf. on Artificial Intelligence (AAAI-90), 1990, pp. 1109–1116.
[25] M. Schaerf, M. Cadoli, Tractable reasoning via approximation, Artificial Intelligence 74 (2) (1995) 249–310.
[26] B. Selman, H. Kautz, Knowledge compilation using Horn approximations, in: Proc. AAAI-91, 1991, pp. 904–909.
[27] B. Selman, H. Kautz, Knowledge compilation and theory approximation, J. ACM 43 (2) (1996) 193–224.
[28] R.M. Smullyan, First-Order Logic, Springer, Berlin, 1968.
[29] A. ten Teije, F. van Harmelen, Computing approximate diagnoses by using approximate entailment, in: Proc. of KR’96.

http://www.ing.unitn.it/massacci/Publications/Papers/mass-98-PHD.ps.gz
http://www.ing.unitn.it/massacci/Publications/Papers/mass-98-PHD.ps.gz

