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Abstract

Real agents (natural or artificial) are limited in their reasoning capabilities. In this paper, we present a general framework for
modelling limited reasoning based on approximate reasoning and discuss its properties. We start from Cadoli and Schaerf’s
approximate entailment. Wefirst extend their system to deal with the full language of propositional logic. A tableau inference
system is proposed for the extended system together with a subclassical semantics; it is shown that this new approximate
reasoning system is sound and complete with respect to this semantics. We show how this system can be incrementally
used to move from one approximation to the next until the reasoning limitation is reached. We also present a sound and
complete axiomatization of the extended system. We note that although the extension is more expressive than the origina
system, it offers less control over the approximation process. We then propose a more general system and show that it keeps
the increased expressivity and recovers the control. A sound and complete formulation for this new system is given and its
expressivity and control advantages are formally proved.

Keywords Automated reasoning, deductive systems, approximate reasoning, limited reasoning, non-classical logics,
knowledge representation.

1 Introduction

Ideal agents know all the consequences of their beliefs. However, real agents are limited in their
capabilities. In this paper, we present a general framework for modelling limited reasoning based on
approximate reasoning and discuss its properties.

Cadoli and Schaerf have proposed the use of approximate entailmeras away of reaching at least
partia results when solving a problem completely would be too expensive. Their method consists
in defining different logics for which satisfiability is easier to compute than classical logic and treat
these logics as upper and lower bounds for the classical problem. In[14], these approximate logics
are defined by means of valuation semantics and algorithms for testing satisfiability. The language
they useis restricted to that of clauses, i.e. negation appears only in the scope of atoms and thereis
no implication.

The approximations are based on the idea of acontext set S of atoms. Theatomsin S arethe only
ones whose consistency is taken into account in the process of verifying whether a given formulais
entailed by a set of formulas. Aswe increase the size of the context set S, we get closer to classical
entailment, but the computational complexity also increases.

Oneof the systems proposedin[14] isthesystem S3. S5 isin fact afamily of logics parameterized
by aset S of relevant propositionsThese logics approximate classical logic (CL) in the following
sense. Let P be a set of propositionsand S° C S! C ... C P; let Th(L) indicate the set of
theorems of alogic. Then:
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Th(S3(0)) € Th(S3(S°)) € Th(S3(S*)) C ... C Th(S3(P)) = Th(CL).

In thiswork, we study Cadoli and Schaerf’s family of logics S 3, which we call here CSS3. Their
system only deals with formulas in negation normal form. In this paper, we generalize Cadoli and
Schaerf’s semantics to deal with full propositional logic. We present a tableaux system, which we
call KES3, for the extended logic which is sound and complete with respect to the semantics. The
main feature of our system is that the tableaux method gives a clear way of constructing the context
set S in order to obtain the classical answer.

In S3, atoms which are not part of the context set S may have a paraconsistent behaviour. Para-
consistent logics were introduced by da Costain the end of the 1950sto avoid awell-known problem
of classical logic, that of triviaization in the presence of inconsistency [8]. If we happen to have
both aformulaand its negation in aset, classical logic can infer from this set just any formulaof the
language. Thisis not very reasonable if we think of realistic systems storing information. Suppose
we update, by mistake, a database with inconsistent information about a product in a shop. It does
not seem reasonable to say that now all information about other productsis ‘ contaminated’ by the
inconsistency. The inconsistency damages the database only localy, i.e. only for reasoning about
that particular product.

DaCosta's system C avoidstrivialization by changing the behaviour of negation. Some formulas
are said to be well behavedind for them, negation behaves classically. For formulas which are not
well behaved, it may happen that both the formulaand its negation are assigned the value true.

In this paper, we relate a formalism developed by computer scientists aiming at computational
efficiency (Cadoli and Schaerf’s system) and another developed by logicians aiming to deal with
inconsistency (da Costa’'s C4).

Asaresult, we can adapt the proof method that we have devel oped for .S 3 to use with C,. We also
give a sound and complete axiomatization for S5, based on the axiomatization of the calculus C .
In Cadoli and Schaerf’swork, the treatment of S'; is purely semantical. An axiomatization was still
missing.

In[14], approximate |logics are defined by means of valuation semantics and algorithmsfor testing
satisfiability. Here we consider CSS5 equipped with a resolution-style inference system and KES 5
equipped with a KE-tableaux system [11]. The set S plays the role of the limitation in reasoning
capabilities In such a setting, two questions naturally arise:

e Given S, what isT'h(S3(S))? Thisiswhat we call the expressivityof S3(S).
e How doweexpand S to .S’ O S intrying to prove atheorem? In other words, how do we control
theorem proving before we exhaust our limited resourcesin reasoning?

Thefirst property isastatic property of the system, and the second isadynamicone. The dynamic
issue is to have an anytimemethod: one that can be stopped at any time, whenever we reach a limit
for S-expansion.

We are going to show that, on the static side, the expressivity of CSS;3(.S) is smaller than that
of KES3(S). As a compensation, we are going to show that CSS3(S) offers more control than
KES;3(S) even when operating over clausal form formulas. We then are going to extend KES 3(S)
to recover the controlling capability. We end up constructing an inference system KES . with much
finer control than both systems, and which still has a sound and compl ete semantics.

To summarize, the main contributions of the present paper are: an extension of Schaerf and
Cadoli’s semanticsto full propositional logic, asound and complete proof method based on tabl eaux,
heuristics for increasing the context set .S, a sound and compl ete axiomatization, a comparison to da
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Costa's system for paraconsistent logic and a formal analysis of the trade-off between expressivity
and control in the approximation process.

It isinteresting to note that the tableaux system proposed here can also be restricted to the clausal
fragment, keeping the good complexity results of Schaerf and Cadoli and at the sametime, providing
heuristics that guide the approximation.

The paper proceeds as follows: in the next section, we introduce Cadoli and Schaerf’s Approx-
imate Entailment and our extension of their semantics to full propositional logic. A sound and
complete axiomatization of the full S3 is given in Section 3, where the system is compared to da
Costa's Paraconsistent Logics [8]. We then turn to a more computational proof method based on
K E-tableaux, presented in Section 4. In Section 5, we discuss the gains and | osses of the new system
with respect to the original formulation of S3. Finaly, in Section 5.3, we present a generaliza-
tion of the underlying ideas of S5, ending with a system that allows for much more control in the
approximation process.

NOTATION. Let P be a countable set of propositional letters. We concentrate on the classical
propositional language £~ formed by the usual boolean connectives — (implication), A (conjunc-
tion), v (digunction) and — (negation).

Throughout the paper, we use lowercase Latin letters to denote propositional |etters, lowercase
Greek letters to denote formulas, and uppercase letters (Greek or L atin) to denote sets of formulas.

Let S C P be afinite set of propositiona letters. We abuse notation and write that, for any
formulaa € Lo, a € S if dl its propositional letters arein S. A propositional valuatiorv,, is a
functionwv, : P — {0,1}.

2 Approximateinference

In this section, we present Cadoli and Schaerf’s system and extend it to deal with full propositional
logic.

2.1 Cadoli and Schaerf’s proposal

We briefly present here the notion of approximate entailmerdand summarize the main results ob-
tainedin [14].

Schaerf and Cadoli define two approximations of classical entailment: |= & which is complete but
not sound, and =% which is classically sound but incomplete. Here we deal only with the latter. In
thetrivial extreme of approximate entailment, i.e. when S = P, classical entailment is obtained. At
the other extreme, when S = ), =% correspondsto Levesque'slogic for explicit beliefs [13], which
bears a connection to relevance logics such as those of Anderson and Belnap [1].

Inan S5 assignment, if p € S, then p and —p get opposite truth values, whileif p € S, p and —p
do not both get O, but may both get 1. The name .S 3 comes from the three possible truth assignments
for pairs p, —p outside S. The set of formulas for which we are testing entailment is assumed to be
in clausal form. Satisfiability, entailment, and validity are defined in the usual way.

The following example illustrates the use of approximate entailment. Since =% is sound but
incomplete, it can be used to approximate |=, i.e. if for some S we havethat B |=% «, then B = «.

ExAMPLE 2.1 ([14])
We want to check whether B |: a, wherea = —cow V molar-teeth and
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B= {ﬂcow V grass-eater, —dogV carnivore,
—grass-eater V —canine-teeth, —carnivore V mammal,
—mammal V canine-teeth V molar-teeth, —grass-eater V mammal,
—mammal V vertebrate, —vertebrate V animal}.

For S = {grass—eater, mammal, canine—teeth}, we havethat B ':?é a, hence B ': Q.

Note that in the example above, S isasmall part of the language. The approximation of classical
inference is made via a simplification of the set of clauses B as follows (for a given conclusion «
and context set S):

LEMMA 2.2 ([14])

Let simplify-3 B, S) betheresult of deleting all clauses of B which contain an atom outside.S. Then
Bis Ss-satisfiableif and only if simplify-3 B, S) is classicaly satisfiable.

THEOREM 2.3 ([14])

Leta € S. Then B =% «iff BU {~a} isnot S; satisfiable.

Lemma 2.2 and Theorem 2.3 together provide a constructive method for testing S 5 entailment.
Consider the Example 2.1, where S = {grass-eater, mammal, canine-teeth} and we want to
test whether B |=%—cow V molar-teeth. In order to use Theorem 2.3 we must add cow and
molar-teeth to S, then add the clauses cow and —molar-teeth to B. We can then use Lemma
2.2 to simplify the expanded base, obtaining:

B'= {-cow V grass-eater,
—grass-eater V —canine-teeth,
—-mammal V canine-teeth V molar-teeth,
—“grass-eater V mammal,
cow, - molar-teeth}

Thisset is classically unsatisfiable, thus, B =% —cow V molar-teeth.
Schaerf and Cadoli then obtain the following results for approximate inference:

THEOREM 2.4 ([14])
Thereis an algorithm for deciding whether B =% o in O(| B|.|a.2!51) time!

This agorithm can be seen as a resolution method applied only to clauseswhere al literalsarein
S.

The good point of Schaerf and Cadoli’s system is that they present an incremental agorithm to
test for S3 entailment as new elements are added to S. But there are two major limitations in their
results:

1. The system is restricted to —-free formulas and in negation normal form. In [6] it is noted that
the standard translation of formulas into clausal form does not preserve truth-values under the
non-standard semantic of S;.

2. The set S must be guessed at each step of the approximation; no method is given for the atoms
to be added to .S. Some heuristics for a specific application are presented in [16], but nothing is
said about the general case.

In this paper, we extend their system to full propositional logic, giving semantics, a sound and
compl ete axiomatization and a sound and compl ete tableaux system. The tableaux system gives us
some heuristics for increasing the size of the set S..

1The result above depends on a polynomial time satisfiability algorithm for formulasin clausal form. This result has been
extended in [4] for formulas in negation normal form, but is not extendable to formulasin arbitrary forms[5].
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2.2 Extending approximate inference

In this section, we extend S5 to full propositional logic. We present a binary semantics for the full
fragment of Ss.
The two-valued semanticsfor S5 is based on a propositional valuation, as defined bel ow.

DEFINITION 2.5
An Ss-valuationv? isafunction, v¥ : Lo — {0, 1}, that extends a propositional valuation v, (i.e.
v (p) = v, (p)), satisfying the following restrictions:

(i) vi(aApB) =1 & vile)=0vi(B) =1

(i1) vi(avp)=0 < vila)=0vi(B)=0

(iii) vi(a—pB)=0 < vi(a)=1land
v3(8) = 0

(iv) vi(-a)=0 = vi(a)=1

(v) vi(ta)=1l,a€S = vi(a)=0

Rules (i)—(7i7) are exactly those of classical logic. Rules (iv) and (v) restrict the semantics of
negation: rule (iv) statesthat if v (—a) = 0, then negation behaves classically and forces v (o) =
1; rule (v) states that if v¥(—a) = 1, negation must behave classically only if a € S. Formulas
outside S may behave classically or paraconsistently, i.e. both the formula and its negation may be
assigned the truth value 1.

Note that an Ss3-valuation is not uniquely defined by the propositional valuation it extends. This
isdueto thefact that if o ¢ S and v (a) = 1, the value of v (-« can be either O (in which case «
has a classical behaviour) or 1 (in which case o behaves paraconsistently).

LEMMA 2.6
Thevaluation v is determined by its valueon the set P U {—a|a & S A v (a) = 0}.

PROOF. For the connectives A, V and —, it isimmediate that the value of v 2, is determined by that
of the subformulas. If v%(a) = 0, then by rule (iv) v3(-a) = 1. If a € S the value of v (-a) is
the opposite to that of v (). If & & S but v(a) = 0, then necessarily v (—a) = 1. We are left
with only the formulasin P U {=a|a € S A v (a) = 1} to determine v, ||

We define a formula o to be S-valid in S if v3(a) = 1 for any S;-vauation. A formulais
S-satisfiablein S if thereis at least one v such that v (a) = 1. The Ss-entailmentrelationship
between a set of formulasT" and aformula « is represented as

I a

and holds if every valuation v% that simultaneously satisfies all formulasin I' also satisfies a. A
formulais S-validif it is entailed by 0, represented as =% .

Lemma 2.6 suggests a translation between a formulain S3 and one in classical logic, such that
every formula of the form —a with a ¢ S is mapped into aformulaa *S — p_,, where p_, isa
new propositional symbol. Let a*° bethe tranglation of «, defined as:

*S

p
(aoﬂ)*s = a*SOB*S, o€ {/\7\/7_>}
*S i
oS =(a*) , ifaesS
(=) o { a*® = pg, ifads.
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LEMMA 2.7
A formulaca is S-satisfiablein S iff ()** isclassicaly satisfiable.

PROOF. As seen in the proof of Lemma 2.6, we want to assure that if o ¢ S but v (a) = 0, then
necessarily v (—a) = 1. Thisis taken care of by the last line of the trandlation. The rest of the
translation keeps the classical properties of the other connectives and of formulasin S. [ |

COROLLARY 2.8
For any S C P, the complexity of S3(S)-satisfiability isin NP,

PROOF. Since the size of o*“ islinear with the size of a, by Lemma 2.6 the complexity of S3(S)-
satisfiability is upper-bounded by the complexity of classical satisfiability.

Corollary 2.8 shows that the complexity of an approximation step is never more complex than the
complexity of propositional classical logic. However, there are classes of formulas whose complex-
ity is much simpler.

LEMMA 2.9

Let Prop(a) represent the propositional symbolsin «. Every formulaa with Prop(a) NS = 0 is
satisfiablein Ss.

PROOF. Since Prop(a) NS = (), the trandation (a)*° leads into the —-free fragment of classical
logic (without falsity, L), and any formulain such a fragment is satisfiable (just make al atoms 1),
so Lemma 2.7 makes a satisfiablein Ss. [ |

Note that for Cadoli and Schaerf’s S, the condition Prop(a) € S is sufficient, since they only
deal with clauses. If any literal of aclauseis notin S, it can be assigned the value 1, making the
whole clause (adigunction of literals) satisfiable.

We now show that family of logics S isindeed an approximation of classical logic, as defined in
theintroduction.

LEMMA 2.10 (Approximation of Classical Logic)

Forany S C P:

(i) Ss(S)-validity issubclassical; that is, any S3(S)-valid formulais classicaly valid.

(i) For S C S',Th(S3(S)) C Th(S5(S")).

(iii) S3(P) isclassical logic.

PROOF.

(i) Any classical valuation satisfies the Ss-restrictions for any .S. Therefore, the set of all classical

valuations is contained in the set of all S;-valuations (but there are S'3-valuations that are not
classic). Soif aformulais satisfied by all Ss-valuations, it will be satisfied by all classical ones.

(i) If pe S"— S, theformulap — ——p isatheorem of S3(S") (classically) but not in S3(S), by
making v%(p) = v%(—'p) =1and v%(—'—'p) =0.
(iii) Trivial.
[ |
The deduction theorem holds for the S'3 semantics, as can be seen directly from the definitions.

LEMMA 2.11 (Deduction Theorem)
Let T be afinite set of formulas. Then

I =% aiff |=3S/\F—>a.
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Now we examine afew examples of S3 entailment.

EXAMPLE 2.12
Consider the formulaa vV —a. We show that itisavalid formulain S forany S.

Indeed, if @ € S, wearein aclassical setting, so any valuation makes o V -« true.

If ¢ S, let v} be avauation. If v¥(—a) = 1, then a V —« clearly is true. If, however,
v3(—a) = 0, by rule (iv) abovev(a) = 1,s0a V ~a isaso true.

EXAMPLE 2.13

We now show that the S5 semantics is paraconsistent. For that, consider the two propositions p and
q and suppose that p ¢ S; take avaluation v, such that v%(p) = 1 and v (g) = 0, and consider the
formula(pA-p) — q. By Lemma2.6, thevalueof v2 isnot fully determined, sowefix v (—-p) = 1.
Itis simple to verify now that the valuation thus constructed is such that v % ((p A =p) — ¢) = 0, that
isthe logic does not always triviaize in the presence of inconsistency.

EXAMPLE 2.14

We now analyse the validity of Modus Ponens in S3. The usual formulation of Modus Ponens,
a = B,a E% B,isvdidin Ss; indeed, if v satisfies a, the only possible way that it also satisfies
«a — [Bisthatit satisfies 3, thus proving the entailment. Note that since no —-formulawas involved,
the reasoning istotally classical.

However, if we consider the version of Modus Ponens consisting of the trandation of « — 3 into
—a V § (the only possible version of Modus Ponens in [14]), the situation changes completely if
a ¢ S, for then we can have a valuation that satisfies both oz and —« (and thus -« Vv 3), but that
falsifies 3, sothat —a V 3, % B.

A sound and compl ete axiomatization of thefull S5 isgivenin Section 3, whereit isalso compared
with da Costa's Paraconsistent L ogics[8]. We then turn to amore computational proof method based
on K E-tableaux.

3 Approximate Inference and Par aconsistency

In this section, we present a sound and complete axiomatization for S5, based on the axiomatization
of the paraconsistent logic C; [8]. We then compare the systems S3 and C; .

3.1 An axiomatization fof;

Thefollowing is an axiomatization for .S 3, based on the axiomatization given in [8]:

Consider the axioms in Figure 1. The Positive Axiomsre precisely the classical axioms for the
connectives —, A and V; the rule of Modus Ponens is presented as (— 3). Our system differs from
classical logic in the Negation Axioms

In fact, without the proviso in axioms (neg;) and (neg-), the negation axioms are precisely the
classical —-axioms. The —-introduction of axiom (neg) is restricted to the consequencesof a in S.
The trivialization of axiom (negs) is restricted to the members of S, that is, non-membersof S can
behave paraconsistently. Axiom (negs) tells us that the excluded middleis accepted unconditionally
inour logic.

THEOREM 3.1
The axiomatization of Figure 1 is sound with respect to the S3 semantics. That is, al formulas
inferred from the S5 axiomatization aretrue in al Sz-valuations.
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Positive Axioms:

(—=1) a—=(8—a)

(=2) (a=pB)=(a=(B—=7) = (@a—=9)
(A1) alf =«

(A2)  aAp—=p

(A3) a—=(8—=anp)

(V1) a—=aVp

(V2) B—aVp

(Va)  (a=7) = ((B—=7) > (@VB—=7)

Negation Axioms:

(neg) (a— B) = ((a = =B) = —a), provideds € S
(negz) (aA-—a)— 3, provideda € S
(negs) aV-a

Inference Rule:
(MP)  a,a— B/B

FIGURE 1. An axiomatization for S3

PROOF. By a straightforward, but tedious, verification of the validity of the axioms. The positive
axioms are dealt with by the classical part of the S3 semantics. Axiom (negs) is dealt with in
Example 2.13, and Modus Ponensis dealt with in Example 2.14. The validity of axioms (neg,) and
(negs,) are easily verified. [ |

A formulaca is S-inconsistenitf it is provablethat « — (8 A—3) forsome g € S. Similarly, aset
X of formulasis S-inconsistentf there are formulas x 1, ..., xn € X suchthat A x; — (8 A —f)
forsome 8 € S. A formulaor set is S-consistentf it is not S-inconsistent.

The axiomatization aboveis S-completeff for any S-consistent formulaa thereisan S ;3 valuation
v}, such that v¥(«) = 1. The proof of completeness follows a Lindenbaum construction.

A maximalS-consistent sefMSCS) isa set of formulas X such that:

e X isS-consistent; and
e thereisnoMSCS X' D X.

LEMMA 3.2
For every S-consistent formulaa thereisaMSCS X suchthat o« € X.

PrROOF. Consider an enumeration of the formulas 3, 51, - . -, 8i, - - . . Construct a sequence of sets
X; such that

X() = «

X, XZU{ﬂZ}, if XZU{BZ} is S-consistent
il X;, otherwise.

Let X = J;°, X;. Weclaimthat X isaMSCS, for the following reasons:

e X isS-consistent. Otherwiselet X, bethefirst element in the sequencethat is S-inconsistent.
Thenwe must have X1 # X, S0 Xp+1 = Xi U {8}, but thisisonly possibleif X U {51}
is S-consistent, contradicting the fact that X ;. is S-inconsistent.
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e X ismaximal. Otherwise thereisaMSCS X’ D X. Inthiscasethereisa g, € X' — X.
Consider theset X, U{ 8y }; if itisS-consistent, then X, U{f)} = Xi4+1 D X, which contradicts
Br & X. If X3, U{pB} is S-inconsistent, then X' isinconsistent because X, > X D X' and
Br € X', which contradicts the consistency of X '. Hence X must be maximal.

Itisobviousthat a € X, so the proof is finished. [ |

LEMMA 3.3
Let X beaMSCS. Letv : Lo — {0,1} suchthat v(a) = 1iff @ € X. Thenwv isa.Ss valuation.

PrRoOOF. We have to show that v satisfies the restrictions of Definition 2.5. Conditions (i)—iii) are
classical semantical conditions and are accounted for by the positive axioms, which are the classical
ones.

We then show that: (x) wv(a) = 0 = v(—a) = 1. For that, suppose v(a) = 0. Then
a ¢ X. Dueto the maximality of X, there must be x1,...,x» € X such that it is provable that
((Axi) ANa) = (B A—p) forsome s € S. Therefore:

F((Axi)ANa) = B=F(Axi)) > (a=p8)=a—=p3eX
F((Axi)ANa) = =8 =F(Axi) = (= ) = a— X

It followsthat botha — g € X anda — =5 € X. From Axiom (neg,), it follows that -« € X,
sov(—a) = 1, proving ().

From (*) it follows that v obeys property (iv) of Definition 2.5. Indeed, suppose that v(—a) = 0;
if v(a) = 0, then by (x) we have that v(—«a) = 1, a contradiction. So we must have v(a) = 1,
satisfying (iv).

We then show that: (xx) v(a) = 1,a € S = v(—a) = 0. For that, suppose v(«) = 1 and
a € S. Thena € X. Suppose now, for contradiction that ~« € X. From Axiom (neg-) we have
that any 5 € X, contradicting the consistency of X. So ~a ¢ X and v(—a) = 0, thus proving (xx).

From (xx) we see that v obeys property (v) of Definition 2.5. Indeed, supposethat v(—«) = 1 and
a € S;ifv(a) = 1, by (xx) we have that v(—«a) = 0, a contradiction. So we must have v(a) = 0,
satisfying (v). [ |

THEOREM 3.4
The axiomatization of Figure 1 is complete with respect to the S 3 semantics.

PROOF. By Lemma3.2thereisaMSCS X witha € X. Then, by Lemma3.3, thereisa S s-vauation
v suchthat v¥(3) = 1iff 8 € X. Inparticular, v¥(a) = 1. [ |

3.2 RelatingS; to Da Costa’sC’y

In this section, we introduce Da Costa's calculus C'; by means of axioms and valuation semantics.
We then show how our system relates to this calculus.

DEFINITION 3.5
A formula « is said to be well behavedf the principle of non-contradiction holds for «, i.e. if
—(a A —a) holds. We use a° to denote ~(a A —av).

Da Costa's calculus [8] was introduced in order to deal with possible inconsistencies that should
not damage reasoning by trivializing it. Theideaisto block derivationsfrom formulaswhich are not
well behaved, isolating inconsistencies.

Thefollowing is an axiomatization of C'; :
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(—=1) a—=(—a)

(=2) (@a=pB)=(a=(B—=17) = (a—=9)
(N) aAB = a

(N2) anB =8

(N3) a—=(B—=>anp)

Vi) a—avp

(V2) B—aVvp

(Vi) (a=7)=(B—=7)—=(aVB—=7)
(1) B2 = (a—= ) = ((a = —B) = ~a)
(m2) @’ AB° = ((a—= B A(aAB)°A(aVB)°)
(—|3) aV -«

(—4) ——a — aflem]

Inference Rule:

(MP) a,a— /B
A semantic for this system was givenin [7]:

DEFINITION 3.6
An N -valuationv s isafunction, vy : Lo — {0, 1}, that extends a propositional valuation v, (i.e.
va(p) = vp(p)), satisfying the following restrictions:

(i)  wlaAnp)=1 & on(a) =w(B) =

(i)  won(aVvp)=0 & on(a) =w(B) =

(ti1) ova(a—B)=0 < wun(a)=1and
ov(B) =0

(iv)  wva(a) =0 = wn(na)=1

(v) oy (—a) =1 = wv(a)=1

(i) wwv(B)=wnv(la—=p)=vny(a—=-0)=1 = wv(a)=0

(vit) vy (a®) =vn(B%) =1 = ov((axp)°?) = 1,x €
{=,A,V}

An N -vauation has the following properties:

LEMMA 3.7
Loy(a) =1 uvy(-aAna®) =0.
2.vx(a%) =0 & vy (a) = vy (—a).

It is not hard to see that the systems are very similar, although not equivalent. There aretwo main
differences. First, the set of formulas for which v or(a®) = 1 does not correspond exactly to S:

LEMMA 3.8
If a € S, thenvp(a®) = 1. The converse does not dways hold, i.e. we may have an A/-valuation v
suchthat v(a®) =landa ¢ S.

PRrRoOF. Followsdirectly from the definitions. « € S meansthat o and —~« must have opposite truth
values, but o ¢ S does not necessarily mean that a: and —« have the same truth values.

The second difference between the two systems is in the behaviour of double negation. In C'y,
double negation may be eliminated (but not introduced), whilein S 3, a does not follow from ——a.

Since we have sound and complete semantics for both systems, we can show how the systems
relate to each other by checking the semantics.
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PrROPOSITION 3.9
Every N -valuation is an Ss-valuation.

Proor. Conditions (i), (ii), (iii), and (iv) are the same. We only have to check whether
vi(-a) = L,a € S = vi(a) = 0 follows from the definition of A -valuation. We know that
a € Simpliesvi(a®) = 1. And from v (-a) = v¥(a®) = 1 it follows by part (2) of Lemma 3.7
that v (a) = 0.

ProPOSITION 3.10
Not every Ss-valuation is an A/-vauation.

PROOF. It suffices to see that we may have an S3-valuation v so that for some formula o such that
a ¢ S, wehavev(——a) = v(—a) = 1 and v(a) = 0. Thisvaluation fails to satisfy item (v) of the
definition of \/-valuation. [ |

The two propositions show that S is actually more general than C'; .

COROLLARY 3.11
Let S beafixed set of formulas closed under formulaconstruction and let C' ¥ be C; with an added
axiom a° for each a € S. Then Theorems(S3) C Theorems(C{’) C Theorems(L¢).

4 Tableaux for approximate inference

We develop an inference system for the full logic S3 based on the KE-tableau methodology. KE-
tableaux were introduced by D’ Agostino [10, 12, 11] as a principled computational improvement
over Smullyan’s Semantic Tableaux [15], and have since been successfully applied to a variety of
logics|9, 2, 3].

KE-tableaux deal with T- and F'-signed formulas. So if e isaformula, T « and F' « are signed
formulas. T « isthe conjugate formulaf F' o, and vice versa. In classical logicitis possibleto have
an unsigned version of tableaux [15], but in non-classical logicsin general, and in KES 5 in particular,
the use of signed formulais crucial.?> An expansion of atableau is allowed when the premisses of an
expansion rule are present in a branch; the expansion consists of adding the conclusions of the rule
to the end of al branches passing through the set of all premisses of that rule.

For each connective, there are at least one T'- and one F'-linear expansion rules. Linear expansion
rules always have a main premiss, and may also have an auxiliary premiss. They may have one or
two consequences. The only branching rule is the Principle of Bivalencestating that something
must be either true or false. Figure 2 shows K E-tableau expansion rules for classical logic.

In Figure 2 we see that each of the binary connectives —, A and Vv are associated to two two-
premissed rules and one one-premissed rule. The two-premissed rules have a main premissand an
auxiliary premiss the one-premissed rules have two consequences. Classical negation is associated
to two one premissed rules, each with a single conclusion. The fina line presents the Principle of
Bivalenceg(PB), stating that any formulac is either true or false. The application of PB transformsa
single branch into two branches with the same prefix, differing only by the final formula, each new
branch getting one of the two conjugates.

PB is used according to abranching rule PB is used to generate the auxiliary premiss for atwo-
premissed rule; this guarantees that PB is only used over subformulas of some complex formula
occurring in the tableau. This also guarantees the subformula propertyi.e. an expansion aways
introducesin the tableau a subformulaof some previously occurring formula.

2|n unsigned tableaux, F-marks are replaced by the connective —; this artifice only works for classical-like negation, but
S3 has anon-classical negation semantics, and F'-marks and —-marks are not interchangeable.
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Ta—p Ta—p Fa—8
Ta (75 FB 15y Ta (F-)
T Fa Fp
Fanp Fanp Tanp
Ta (Fay) TB  (FAs) Ta (Tr)
F B Fa T B
Tavp Tavp Favp
Fa (v FpB o (1vy) Fa (Fv)
T3 T a FB

T — . F -« ”

I3 (T-) T o (F=)

Ta Fa o

FIGURE 2. KE-rulesfor classical logic

Asin semantic tableaux, to show that a1, . . ., a, F 5 we start with the initial tableau

TOél

T ap
Fp

and devel op the tableau by applying the expansionrulesin Figure 2. A branchisclosed if it contains
both F o and T' «, for some formulaa.. The sequent above is shown if we can closeall branchesin
the tableau, in which case the tableau is said to be closed.

EXAMPLE 4.1
We know that classically, a — (3 isequivaent to -« Vv . Thisis shown by means of the two KE-
tableaux in Figure 3, where the boxed formulas indicate the closure condition for each branch. The
left tableau shows o — 8+ —a V 5 and theright one shows —a vV g+ a — f.

Note that both tableaux would branch in a semantic tableau version of this proof. The fact that
KE-tableaux do not branch is an indication that they are more efficient than traditional semantic
tableaux. In fact, KE-tableaux can p-simulate semantic tableaux, but the converseis not true [10].
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1. Ta—p 1. T-aVvp

2. F-aVp 2. Fa=p

3. F-a from2 3. from 2
4. from 2 4. FpB  from2
5. T a from 3 5. T-a froml4
6. from 1,5 6. from5

X

X

FIGURE 3. Theclassical equivalenceof « — f and —a V 8

EXAMPLE 4.2
To show the use of PB, we present a KE-tableau now showing that ——a V =—3, —~a .

T -«

Fa
T -« | F -«

T ~=f

X Fﬂﬂ

X

After expanding T —«, no more linear expansion rules are applicable, so we branch over ——a in
T ——a V =3 according to the branching rule, so that the negative branch on the right can be used
as an auxiliary premissto 7' =—a V ——f generating T' ——/. On the left branch, a single expansion
of T ——a leads usto F' -, which closes that branch and the tableau.

4.1 Tableaux forS;

In order to construct a KE-tableau system for S5, we keep almost all the classical rules, changing
only the rule (T —), by adding a side condition. The old rule (7' —) isremoved and its S 3 version
becomes:

T -«
F«

providedthat o € S.

The meaning of thisrule isthat the expansion of a branch is only allowed if it containstherule’s
antecedent and the proviso is satisfiethat is, the formulain question belongsto S. Thisruleis
actually arestriction of the classical rule, stating that if a ¢ S the (T —)-rule cannot be applied. Let
us call the system thus obtained KES's.

This makes our system immediately subclassical, for any tableau that closesfor KES 3 also closes
for classical logic. So any theorems we provein KES3 are also classical theorems. The converse
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is not the case, as the examples below will show that there are classical theorems which are not
KES;-theorems.

So KESj is correct and incompl ete with respect to classical logic. The actual proof of correctness
and completeness of KES'5 with respect to the semantics presented in Section 2.2 will be presented
in Section 4.3. Firgt, let us examine afew examples.

EXAMPLE 4.3
We first show that — is no longer definablein terms of v and A, by redoing the tableaux of Figure 3
in Figure4.

1. Ta—p 1. T-aVvp

2. F-avVvp 2. Fa—p

3. F -« from 2 3. T« from 2
4. from 2 4, F ﬂ from 2
5. T o from 3 5. T -« from 1,4
6. from 1,5 :

X

FIGURE 4. — isnot definableinterms of vV and — in KES3

In Figure 4 we are assuming that S = (). Note that the left tableau for « — S F —a Vv S isexactly
the same as for classical logic.

However, the tableau on the right for ~a VvV 8 F a — (3 cannot be closed for theruleon T' -«
cannot be applied for a ¢ S. We get stuck, as there are no further rules to be applied, meaning that
the input sequent is not provable.

This showsthat — can no longer be definedintermsof v and —in S'3.

One important feature of the open tableau in Figure 4 is that if, at the point that it gets stuck, we
insert the propositional letters of « in the set S, the tableau expansion can proceed as in classica
logic. Infact, the tableau then closes after asingle step. This showsthat the sequent —aVvVg F a — 3
isdeducibleif a € S (and nothing needs to be said about 3).

What we have actually done is to change the logic we are operating with during the KE-tableau
expansion by adding aformulato S. That formulawas chosen so that a stuck tableau could proceed
classically. Thisactually makes us move one step closer to classical logic. Classical logic is reached
when all atomsarein S.

This simple procedure suggests an incremental way of doing approximate theorem proving.

4.2 The incrementality of the method

Theidea of approximate reasoning foundin [14] consistsintrying to proveaclassical formulain S 3
for increasingly large sets S. Apart from considering an —-free fragment, the work in [14] did not
provideaway of choosing S or how to increment it. Our theorem proving method for a given input
sequent is intended to fill this gap. It is summarized in the following:

1.5:=0.
2. Transform the input sequent in an initial KES 5-tableau.
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3. Expand the tableau until it is closed or stuck.

4. If the tableau is closed, terminate with success.

5. If the tableau contains a branch that cannot be classically expanded, terminate with failure.
6. If the tableau is stuck dueto aformulaT—a, make S := S U {«} and go back to 3.

By S := SU {a} wemeanthat al atomsin o areadded to S. It is clear that if an atom does not
appear inside the scope of a negation, it will not beinserted in S. However, that does not mean that
if it appearsinside anegation it will end up in S, asthe tableau for - p vV —p shows:

FpVv-p
Fp
F-p
Tp
X

which showsthat - p VvV —p is S3-valid for S = (). Note that in step 6 above, there may be more then
one stuck point in the tableau, so we need to choose one formulato proceed. If there are two stuck
formulas in the same branch of the tableau, the contents of S may differ according to the choice of
formulawe make at step 6. Thisisillustrated by the following tableau for p A g F =—p vV —=—q¢:

TpAhg
F —==pV g

At this point we have both T" —p and T' —¢ blocking the branch development. If we choose the first
one, S becomes {p} and the tableau closes; if we choose the second one, S becomes {¢} and the
tableau also closes.

An interesting fact is that we can only prove =(p A —p) in KES3 for p € S, which shows the
paraconsistency of the system:

F =(p A —p)
TpA-p

T-p
ifpes
X

We now show the correctness of the proposed incremental method.

THEOREM 4.4 (Correctness of the Method)
Givenaninput sequent ay, . . ., a, F [ then the method above aways terminates. It terminateswith
successiff the sequent is classically valid.
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1. T —cow V g-e

2 T —dogV carnivore

3. T -g-eV —c-t

4. T —carnivore V mammal
5. T —mammal V c-t V m-t
6. T —g-e V mammal

7 T —mammal V vertebrate
8. T —wvertebrate V animal
9. F -cow V m-t

10. F —cow from9
11. Fm-t from9
12. from 1,10
13. F —g-e 3. —g-e

3. T PB
14. T —c-t from 3,13 | 14 g-ecS
15. from6,13 [ 15’  x

16. T —mammal V c-t from 5,11
17. Fc-t from14,c-t € S
18. T —mammal from 16,17
19. from 18, mammal € S
20. X

FIGURE 5. KES; tableau for clauses

PrRoOF. Note that the set S can only increase at each cycle, so if the tableau does not close, S
will eventually contain all propositional symbolsin the input sequent that occur within a T-marked
negation, in which case the tableau will be a classical one; by the termination property of KE-
tableau, it will terminate. Because any closing KES'3 tableau also classically closes, a successful
terminating tableau must be classically valid. On the other hand, if asequent is classically valid, its
corresponding KES 3-tableau, when it becomes classical, will eventually close.

EXAMPLE 4.5

The following example illustrates the use of the system KES'3. Consider the problem of Example
2.1, where we want to know whether —cow V molar-teeth follows from a set of clauses B. We
start by labelling theinitial clauseswith T' (lines 1-8) and the formulawe want to refute with F (line
9). Figure 5 shows the complete tableau (g-e stands for grass-eater, c-t for canine-teeth,
andm-t for molar-teeth).

B= {-cow V grass-eater,
—dogV carnivore,
—grass—eater V —canine-teeth,
—carnivore V mammal,
—mammal V canine-teeth V molar-teeth,
—grass—eater V mammal,
—mammal V vertebrate,
—vertebrate V animal}.

We start with S = (). When we get to line 14’, we need to add grass-eater to S in order to
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close the right branch. We can then proceed applying rules until line 17, where one more atom,
canine-teeth, must be added to S. What happensis that the tableau does not close if these atoms
arenot in S. During the development of the tableau we get clues about which atoms must be in
S. When the atom mammal is added to .S, the tableau closes and we have that B |=%-cow V
molar-teethfor S= {grass-eater, canine-teeth, mammal}.

EXAMPLE 4.6

This example shows that formulasthat are classically equivalent may have different behaviour under
S3. We transform the set B from Example 2.1 into aset B’ whichisclassically equivalent to B but
isnot in clausal form. Then wetry to check whether B’ |=%cow — molar-teeth. Figure 6 shows
the complete tableau. Note that this time, we can close the tableau adding only one atomto S, i.e.
B' E¥cow — molar-teethfor S={canine-teeth}.

B'= {cow — grass-eater,
dog— carmnivore,
grass—eater — -—icanine-teeth,
carnivore — mammal,
mammal — canine-teeth V molar-teeth,
grass—eater — mammal,
mammal — vertebrate,
vertebrate — animal}l.

1. T cow — g-e

2. T dog— carnivore

3. Tg-e =+ —c-t

4. T carnivore — mammal

5. T mammal — c-t V m-t

6. T g-e — mammal

7. T mammal — vertebrate

8. T vertebrate — animal

9. F cow — m-t

10. T cow from9
11. Fm-t from9
12. T g-e from 1,10
13. T —c-t from 3,12
14. T mammal from 6,12
15. Tc-t V mt from 5,14
16. Tc-t from 11,15
17. Fc-t from13,c-t € S
18. X

FIGURE 6. KES3 tableau with implication

4.3 Soundness and completeness af KE

It is very important to note that we are not proposing a simple ad hocmodification of a KE-tableau
for doing theorem proving, but we are building a mechanism for approximate reasoning with a solid
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logical basis. To sustain such aclaim, we have to prove the soundness and compl eteness of the KES 5
tableau method of Section 4 with respect to the .S 3 two-valued semantics of Section 2.2.

First, we need to define the notions of soundness and completeness. So KES 3 is sound with
respect to theS; semanticsf whenever a tableau closes for an input sequent, then the sequent’s
antecedent formulas entail its consequent in S3. Conversely, the KES;-tableau method is complete
with respect to theSs semanticsf for all sequents such that the antecedent entails the consequent in
S3, al KES;-tableaux close.

We extend the val uation to signed formulasin the obviousway, that is, v 2 (T'a) = 1iff vi(a) =1
and vi(Fa) = 1iff v¥(a) = 0. A valuation satisfies a branch in a tableau if it smultaneously
satisfies al the signed formulasin the branch.

To prove soundness, we first show the correctness of all linear expansion rules of KES ;.

LEMMA 4.7
If the antecedents of the KES; linear expansion rules are S-satisfied in S3 by v2, so are its conclu-
sions.

ProoF. A simpleinspection of the rulesin Figure 2 with the modificationin (T —) for KES' 5 shows
the result. [ |

We now show that the branching rule PB also preserve satisfiability.

LEMMA 4.8
If abranch is satisfied by a valuation v prior to the application of PB, then at least one of the two
branches generated is satisfied by avaluation v after the application of PB.

PROOF. Suppose the branching occurs over the formulaa. Because v  isafunctiononto {0, 1}, we
have that v%(T «) = 1 or v (F ) = 1, so v} satisfies one of the two branches generated by the
application of PB.

THEOREM 4.9 (Soundness)

Suppose atableau for a1, ..., a, F B closes. Thenay, ..., a, E% 8.
PROOF. We show the contrapositive. So supposea, . . ., a;, 3 3, so thereisavaluation v such
that v¥(a1) = ... = v¥(a1) = 1andvi(B3) = 0. Inthiscase, theinitia tableau for a1, ..., a, + 3

issuchthat al formulasT «vy, ..., T an, F 3 are satisfied by v3.

By Lemmas 4.7 and 4.8, we see that each application of an expansion rule preserves at least one
satisfiable branch. As closed branches are not satisfiable, at least one branch remains open and the
tableau cannot close. [ |

We say that a branch of atableau is completeif there are no more applicable expansion rules.

LEMMA 4.10
An open complete branchin aKES 3-tableau is S-satisfiablein S;.

PROOF. Given an open complete branch B, we construct the following valuation v £, based on the
propositional and negated formulasin B:

vi(p)=1 if TpeB
vi(p)=0 if FpeB
vi(ma) =1 if T -a€ B,anda ¢ S.

Since the tableau is open, we do not have that for the same atom ¢, both 7' g and F' ¢ arein B, s0
the valuation above is a partial function. To obtain a complete function, according to Lemma 2.6,
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we need to define the value of v for propositions and formulas of the form —a not occurringin B
and not in .S. We can set them all to true, respecting the semantics.
A simple structural induction on the signed formulasin B shows that v 3 satisfies the branch. [ |

THEOREM 4.11 (Completeness)
If ag,...,a, F% B then any possible KES; tableau for ay, ... ., a,, b /3 closes.

PROOF. Suppose for contradiction that there is a tableau for a4,...,a, + B8 with an open com-
plete branch B. Then by Lemma 4.10 there is a S3 valuation that satisfies B, which includes
T ai,...,T ay, F B, contradicting ay, . .., an, =% 5. [ |

We can adapt the tableaux system proposed here for extended S 3 to build a proof method for C.
In the rule where we had the proviso o € S we now have a?, and we have to add arule to deal with
double negation. The study of this tableaux system is left for future work.

5 Thedynamics of approximations. expressivity versus control

In this section we compare KES; with the Cadoli-Schaerf (CSS3) method with regardsto expressiv-
ity (i.e. the theorems proved for the same set S) and with the control that the set S exerts over the
proof development.

5.1 Dynamic properties

A property that tells us in which direction to expand our limited resource to achieve a god is a
dynamicproperty of the method. KES; provides a method for expanding S in trying to prove a
theorem, namely: ‘If a branch is closed due to a blocked usg®@*-), add the blocking formula to
S, so as to unblock that branch!

Cadoli and Schaerf did not provide a dynamic extension for their system. However, to be honest
with their excellent work, such a dynamic behaviour can easily be provided in analogy to ours. In
CSS;, wecanresolvea VI with =l v g only if I € S, which givesusthe dynamic rule: ‘If resolution
is blocked due to the absence of resolventSjmdd a potential resolveritto S, so as to unblock
resolution!

With that formulation, we compare the dynamics of KES' 5 and CSS; for conjunctive normal form
formulas. We note that both methods are highly non-deterministic in their behaviour of choosing
branch expansion rules and resolvents.

Supposethe size of a CSS3 proof is measured by the number of resolution steps, and the size of a
KESj3 is measured by the number of expansion rules applied.

THEOREM 5.1
Let B,a be aset of clauses and a clause. In a proof of B + «, KES3 can linearly simulate the
dynamics of CSS3, generating the same S.

PROOF. Every clause 8 € B in CSS; isassociated with T' 8 in KES3 and « is associated with F' a.
In[14] every atomin o wasimplicitly considered part of S, so in order to compare both systems, we
have to start by putting those atomsin S. Thisisimportant for KES 3 to simulate CSS3, for suppose
—pisadisjunct in « and the final step of aCSS; isto resolve —p with p. Thiswould correspond to
an expansion involving T —p and T' p, and the tableau can only closeif p € S, with an intermediate
step taking 7' —p into F' p, which closeswith T" p.

Having that in mind, it suffices to show that the three possible CSS'; resolution steps can be
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simulated in KES3; in classical presentations, there is only a single resolution rule; in non-classica
ones, all non-equivalent formats need to be considered:

aVl =V a =V«
=l l Ivp
a(les) a(les) aVp(les)

can be simulated in KES’; as:

Tavl T-lVa T-lVa
T =l TI TIVE
Fa« Fa FaVvp

Fl(les) T -l F o

T« Fi(lesS) Fg

X X T -l
Fl(les)

TI

X

Only aconstant number of stepswas used, independent of the form of o and 5 (so asto achievelinear
simulation), without multiplying the number of branches and by adding exactly the same formulas
to S in each step. [ |

The proof above showsthat every possible approximation S° C ... ¢ S*¥ inCSS; isaso possible
in KES5. However, because KES3 deals with alarger language, several transformational tricks can
be used in KESj3 to improveits static expressivityhich cannot be smulated by CSS;.

5.2 Static expressivity

The static expressivitgf a method is the set of theoremsit can prove with afixed limited resource.
In our case, we are going to compare the set of theorems that can be proweith agiven S.
Theideaisto use thelarger language of KES3 torewrite—l VvV a asl — «. Since a may bealarge
disiunction, we may not know a priori which negative litera to transform, so this transformationis
assumed to be applied ‘on the fly’ during theorem proving.
We can now show that for a fixed S, and formulas in —-clausal form, KES'3 can prove more
theorems.

THEOREM 5.2

Let B, a beaset of formulas and aformulain CNF. Suppose CSS'; proves B + « with S. Suppose
KE appliesthe transformation aboveto clauses with one or more negativeliteral. Then KES 3 proves
B+ «aintimelinear w.r.t. the time needed by CSS;, withan S’ C S; itispossiblethat S’ C S.

PRrROOF. It suffices to note that, in the simulation of CSS3-resolution, because ! — « contains no
negated literal and need not be converted to —I V «, one need not alwaysadd / to S’ (see Figure 7).

This does not only mean that the static expressivity of KES 3 is higher, but also that CSS's may not
simulate any expansion S° C ... C S* in KES;: KES3; may proceed without the addition of new
elementsto S at points where CSS; is surely blocked and needs S to be expanded.
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TV« TI—> «
TIVB TIVS

FaVvp FaVvp
F « Fa
Fp Fp

T -l Fl

Fl(leS) TI
Tl X
X

FIGURE 7. Simulation of CSS3 by KES3

As an example for thisresult, consider the tableaux in Figure 5 and Figure 6. The V-clauses have
been a priori transformed to —, but the same could have been done on-the-fly. The tableau shown
in Figure 6 endsup with S ={canine-teeth}, asubset from the .S computed in Example 2.1.

What was the price payed for such anincrease of static expressivity? Theanswer is: loss of control
in the deduction process.

The sensitivityof a proof method depends on the set of new theorems AT we get when we move
from S to .S U AS. Proof method 1 has more controthan method 2 if it has more sensitivity, that is,
if for thesame AS, AT, C AT,. Note that sensitivity and control are also dynamic properties.

In CSSs, the set S has an effect over (i.e. controls) the set of atoms over which resolution can be
applied. In KES3, the set S controls the formulas over which (7'—) can be applied; by applying the
transformation above, we eliminate —-formulas and thus reduce the control of S on KES 5 proofs. If
weadd to S an atom that only occurs non-negatedin B + «, no new theoremsare obtained in KES 3.
We have thus shown the following:

THEOREM 5.3
e KES3 is more expressive than CSS.

e CSS3 has more control than KES;.

5.3 Recovering control

We have seen that although the extension proposed to S5 allows for more expressivity, we end up
losing control over the resources used. Cadoli and Schaerf use resolution as the only inference rule
and the set S determines the set of atoms over which resolution may be applied. In our system,
modus ponensisvalid evenif S isempty,i.e. a — 3,8 Fxgs; 5.

If we want to regain control, we can add a restriction to the application of modus ponens, so that
we always need part of the formulasto bein S. We end up with ruleslike these:

TO(—>B T -
Ta Faifac St

TRifaeST

where S = STUST . Thisblocksthe use of transformationrulein Theorem 5.2, and the two systems
can clearly simulate each other.

EXAMPLE 5.4

If we apply the new rule (T' —) to the tableau in Figure 6, every linein which (T" —) was applied
would cause an expansionin ST, at each such ling, namely:
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e cowisadded at line 12

e grass-eater isadded at line 13
e mammal is added at line 15

e canine-teethisadded at line 17

And since in [14] every atom in o was implicitly considered part of S, we end up with the same
S-set asin Example 2.1.

We should not stop here at gaining control over the approximation process. It is clear that we can
get a deduction system with a much finer control over deductions, finer then either KES 5 or CSSs.

6 A generalized approximation inference

We have moved from restricting (7'—) in KES'3, to restricting the use of both (T—) and (T' —). If
we are willing to have the size of the set S as an indication of the inference rules allowed, we could
go even further and add restrictions to every rule of our system. And still further: we may have
different context sets for each rule. This would give us a system where every connective behaves
classically only for formulas which belong to the corresponding context set: S 7, SI', ST, ST, ST,
SF . ST and SF.

We propose here ageneralization of the KES 3 tableaux, that wecall KES,. Thesystemisobtained
by adding restrictions to each expansion rule, asillustrated in Figure 8.

Ta—pf Taoa—pf Fa—p
T o (T —1) Fp (T —2)  Taifa€eSE (F-)
T Bifa e ST, Faifge st FBifge Sk
FaAp FaAp TaAp
Ta (FAy) TR (FAz) Taifae SE (TA)
FBifac St Faifge St TBifg e St
TaVvp TaVvp FavVvp
Fa (TVv1) FpB (TV2) FaifaeSv1 (FV)
T Bifac ST Taifge sy FBitpe sy
T —« F -«
FaifacsT 77 Tafaecsr U
Ta Fa (PB)

FIGURE 8. KE-rulesfor the generalized system

THEOREM 6.1
KES, can simulate the dynamic evolution of both CSS'; and KES;3. Also, for agiven S, the expres-
sivity of KES3(S) can be simulated by a suitable instantiation of the S-parameters of KES..

PrROOF. To see that KES, can simulate the dynamic evolution of KES3, it sufficesto set S = ST
and all other S parametersto the full set of propositional letters. In practice, this amounts to lifting
the proviso of al rules except for the (7-) rule. Since KES'3 simulates the dynamics of CSS;3, we
have that KES, can simulate the dynamic evolution of both CSS'; and KES3.
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For afixed S, we can simulate the expressivity of KES3(S) by setting SZ = S and all other S
parametersto thefull set of propositional letters (actualy, it is enough to take the set of propositional
lettersthat appear in the initial tableau).

As expected, there is a tradeoff between expressivity and control. KES. gives us a very fine
control, but a limited expressivity for a given collection of S ;-sets. Basically, we may need to add
to some S¥-set at amost every expansion step in the tableau. As usual, we want our system to be
based on a sound and compl ete subclassical semantics

6.1 Semantics for generalized approximate inference

DEFINITION 6.2
An S.-valuationv§ isafunction, vg : L& — {0, 1}, that extends a propositional valuation v,, (i.e.
vg(p) = vp(p)), satisfying the following restrictions:

(A1) vi(aAB)=1,a€ ST = v§(a)=1
(N2) vi(aAnp)=1 BES/T = v§(B) =1
(A3)  v§(aAp)=0,v5(e)=1,a €S = v§(8) =0
(A1) v5(anp)=005(8)=1,8€ S, = wv5(a)=0
(Vi) vi(aVvp)=0,aeSt = v§(a) =0
(Vo) vi(aVvp)=0,8€eSy = v5(8) =0
(Va) vs(aVvp)=1Lovi(a)=0,aeS) = v5(B)=1
(Vo) v(aVp)=10v5(B) =0,8€ ST = v§(a)=1
(=1) vi(a—B)=0,a€SE = v§(a)=1
(=2) vi(a—B)=0,8€SE = v§(B)=0
(=3) vi(a—B)=1Lvi(a)=1ae St = viB) =1
(=1) vi(a—=B)=10v5B)=0,eSL = v4(a)=0
(71) vi(-a)=0,a€ SE = v§(a)=1
(m2)  v§(ma) =1,a€ ST = v§(a) =0

It is easy to see that the extension of S3 given in Sections 2.2 and 4 is a particular case of the
system above, wherethesets ST, ST, ST SE ST ' SE 'and SE contain all the propositional letters
of thelanguageand S = SZ.

6.2 Soundness and completeness

We say that KES, is sound with respect to th€. semanticdf whenever a tableau closes for an
input sequent, then the sequent’s antecedent formulas entail its consequent in S.. Conversely, the
KES,-tableau method is complete with respect to the, semanticsf for all sequents such that the
the antecedent entails the consequent in S, all KES,-tableaux close.

We extend an S..-valuation to signed formulasmaking v (T'a) = 1 iff v§(a) = 1 and v (Fa) =
liff vg(a) = 0. A valuation satisfies abranch in atableau if it ssimultaneously satisfies all the signed
formulasin the branch.

To prove soundness, we first show the correctness of al linear expansion rules of KES ..

LEMMA 6.3
If the antecedents of the KES. linear expansion rules are S-satisfied in S. by vg so are its conclu-
sions.
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PrROOF. A simpleinspection of the rulesin Figure 8 shows the result. [ |

We now show that the branching rule PB also preserve satisfiability.

LEMMA 6.4
If abranch is setisfied by a valuation v¢ prior to the application of PB, then at least one of the two
branches generated is satisfied by avaluation v g after the application of PB.

ProoF. Suppose the branching occurs over the formulac. Becausev § isafunctiononto {0, 1}, we
have that v§ (T «) = 1 or v (F a) = 1, so vg satisfies one of the two branches generated by the
application of PB.

THEOREM 6.5 (Soundness)

Suppose atableau for aq, ..., a, F g closes. Thenay,. .., o, =% 5.
PrOOF. We show the contrapositive. So supposeay, . .., an g §, S0 thereisavaluation v§ such
that vg (o) = ... = vg(an) = 1andvg(B) = 0. Inthiscase, theinitial tableau for a1,...,a, F 3

issuchthat al formulesT oy, ..., T ay, F' § aresatisfied by v§.

By Lemmas 6.3 and 6.4, we see that each application of an expansion rule preserves at least one
satisfiable branch. As closed branches are not satisfiable, at least one branch remains open and the
tableau cannot close.

We say that a branch of atableau is completeif there are no more applicable expansion rules.

LEMMA 6.6
An open complete branchin aKES .-tableau is S-satisfiablein S..

PROOF. Let B be the set of formulas that occur in the open complete branch. We have to build an
Se valuation that satisfiesiit.

We start the construction of v by setting v(a) = 1 for every a suchthat T« € B andv(a) = 0
for every a such that F' « € B. Since the branch is open and complete, there is no formula « for
which both T« and F' «, hencewv isapartia function that satisfies the branch. We haveto (i) extend
v to atotal function and (ii) show that v isan S.-valuation.

(i) We can extend v by combining it with any classical propositional valuation. Let v, be a
propositional valuation. If v(p) is undefined, then set v(p) to v, (p). We then extend v by combining
it with a classical extension of v,,. Supposey = a A # and v(vy) undefined. We set v(y) to 1 iff
v(a) = v(B) = 1. Analogously for the other connectives.

(ii) To show that v is an S.-valuation, we must show that it satisfies the propertiesin Definition
6.2. For example, take property (A1):

vi(anpB)=1,8€ S =vi(a) =1.

If T a A Bisin B, thensincea € ST, by therule (7)), T aisdsoin B and hence, v(a) = 1. If
T aABisnotin B, thenv(a A 8) = 1iffv(a) = 1andv(8) = 1. Consider rule (—1):

v§(—a) = 0,a € ST = v§(a) = 1.

If F=aisin Banda € ST, thenby therule (F), T acisin B and hence, v(a) = 1. If F =« is
notin B, then v(—a) = 0 iff v(a) = 1.

In an analogous way, we can show that the valuation v satisfies the other twelve properties in
Definition 6.2.
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THEOREM 6.7 (Completeness)
If aq,...,«a, =S B thenany possible KES., tableau for o, ..., a, - § closes.

PROOF. Suppose for contradiction that there is a tableau for «4,...,a, + B8 with an open com-
plete branch B. Then by Lemma 6.6 there is an S, valuation that satisfies B, which includes
T ay,...,T an, F B, contradicting oy, . . ., o, =5 B. [ |

7 Conclusionsand future work

We have extended Schaerf and Cadoli’s system .S 3 of approximate entailment to deal with full propo-
sitional logic. We extended their semantics, provided a sound and complete axiomatization and a
sound and compl ete proof method based on acomputationally efficient version of semantic tableaux.

Extending the system from the clausal fragment to full propositional logic does not preserve the
good complexity bounds provided by Schaerf and Cadoli. But as can easily be seen from the proof
method, KES3 isto classical logic as S5 wasto the clausal fragment, i.e. the approximation proceeds
in an incremental way and in the worst case a proof is as hard as in classical logic. Moreover, the
tableaux system can be easily restricted to the clausal fragment, putting together the complexity
upper bound provided by Schaerf and Cadoli and the heuristics given here for augmenting the set S

We have analysed our extension and the gains and losses with respect to the original system.
While being more expressive than Schaerf and Cadoli’s, our system alows for less control in the
approximation process.

We have then devel oped ageneral framework for modelling limited reasoning that extendstheidea
of having a context set even further. Instead of a single set, we have now several contexts that have
to be set in order to determine the logic in which we are working. Having all these different context
sets for different inference rules gives us the possibility of setting limits to each sort of inference.
The application of each rule of inference may have different costs.

What is missing now is a work of logical engineering: for particular applications, determine the
costs and parameter sets for each inferencerule.

The implementation of a theorem prover based on KES 3 has been completed. Ongoing work
consists of parameter and strategy testing of this prover, as well as an adaptation of the prover to
KES,.
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