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Abstract
Real agents (natural or artificial) are limited in their reasoning capabilities. In this paper, we present a general framework for
modelling limited reasoning based on approximate reasoning and discuss its properties. We start from Cadoli and Schaerf’s
approximate entailment. We first extend their system to deal with the full language of propositional logic. A tableau inference
system is proposed for the extended system together with a subclassical semantics; it is shown that this new approximate
reasoning system is sound and complete with respect to this semantics. We show how this system can be incrementally
used to move from one approximation to the next until the reasoning limitation is reached. We also present a sound and
complete axiomatization of the extended system. We note that although the extension is more expressive than the original
system, it offers less control over the approximation process. We then propose a more general system and show that it keeps
the increased expressivity and recovers the control. A sound and complete formulation for this new system is given and its
expressivity and control advantages are formally proved.

Keywords: Automated reasoning, deductive systems, approximate reasoning, limited reasoning, non-classical logics,

knowledge representation.

1 Introduction

Ideal agents know all the consequences of their beliefs. However, real agents are limited in their
capabilities. In this paper, we present a general framework for modelling limited reasoning based on
approximate reasoning and discuss its properties.

Cadoli and Schaerf have proposed the use of approximate entailmentas a way of reaching at least
partial results when solving a problem completely would be too expensive. Their method consists
in defining different logics for which satisfiability is easier to compute than classical logic and treat
these logics as upper and lower bounds for the classical problem. In [14], these approximate logics
are defined by means of valuation semantics and algorithms for testing satisfiability. The language
they use is restricted to that of clauses, i.e. negation appears only in the scope of atoms and there is
no implication.

The approximations are based on the idea of a context set � of atoms. The atoms in � are the only
ones whose consistency is taken into account in the process of verifying whether a given formula is
entailed by a set of formulas. As we increase the size of the context set �, we get closer to classical
entailment, but the computational complexity also increases.

One of the systems proposed in [14] is the system ��. �� is in fact a family of logics parameterized
by a set � of relevant propositions. These logics approximate classical logic (CL) in the following
sense. Let � be a set of propositions and � � � �� � � � � � � ; let ����� indicate the set of
theorems of a logic. Then:
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In this work, we study Cadoli and Schaerf’s family of logics ��, which we call here CS��. Their
system only deals with formulas in negation normal form. In this paper, we generalize Cadoli and
Schaerf’s semantics to deal with full propositional logic. We present a tableaux system, which we
call KE��, for the extended logic which is sound and complete with respect to the semantics. The
main feature of our system is that the tableaux method gives a clear way of constructing the context
set � in order to obtain the classical answer.

In ��, atoms which are not part of the context set � may have a paraconsistent behaviour. Para-
consistent logics were introduced by da Costa in the end of the 1950s to avoid a well-known problem
of classical logic, that of trivialization in the presence of inconsistency [8]. If we happen to have
both a formula and its negation in a set, classical logic can infer from this set just any formula of the
language. This is not very reasonable if we think of realistic systems storing information. Suppose
we update, by mistake, a database with inconsistent information about a product in a shop. It does
not seem reasonable to say that now all information about other products is ‘contaminated’ by the
inconsistency. The inconsistency damages the database only locally, i.e. only for reasoning about
that particular product.

Da Costa’s system �� avoids trivialization by changing the behaviour of negation. Some formulas
are said to be well behavedand for them, negation behaves classically. For formulas which are not
well behaved, it may happen that both the formula and its negation are assigned the value true.

In this paper, we relate a formalism developed by computer scientists aiming at computational
efficiency (Cadoli and Schaerf’s system) and another developed by logicians aiming to deal with
inconsistency (da Costa’s ��).

As a result, we can adapt the proof method that we have developed for � � to use with ��. We also
give a sound and complete axiomatization for ��, based on the axiomatization of the calculus ��.
In Cadoli and Schaerf’s work, the treatment of �� is purely semantical. An axiomatization was still
missing.

In [14], approximate logics are defined by means of valuation semantics and algorithms for testing
satisfiability. Here we consider CS�� equipped with a resolution-style inference system and KE��

equipped with a KE-tableaux system [11]. The set � plays the role of the limitation in reasoning
capabilities. In such a setting, two questions naturally arise:

� Given �, what is ���������? This is what we call the expressivityof �����.

� How do we expand � to � � � � in trying to prove a theorem? In other words, how do we control
theorem proving before we exhaust our limited resources in reasoning?

The first property is a staticproperty of the system, and the second is a dynamicone. The dynamic
issue is to have an anytimemethod: one that can be stopped at any time, whenever we reach a limit
for �-expansion.

We are going to show that, on the static side, the expressivity of CS����� is smaller than that
of KE�����. As a compensation, we are going to show that CS����� offers more control than
KE����� even when operating over clausal form formulas. We then are going to extend KE� ����
to recover the controlling capability. We end up constructing an inference system KE� � with much
finer control than both systems, and which still has a sound and complete semantics.

To summarize, the main contributions of the present paper are: an extension of Schaerf and
Cadoli’s semantics to full propositional logic, a sound and complete proof method based on tableaux,
heuristics for increasing the context set �, a sound and complete axiomatization, a comparison to da
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Costa’s system for paraconsistent logic and a formal analysis of the trade-off between expressivity
and control in the approximation process.

It is interesting to note that the tableaux system proposed here can also be restricted to the clausal
fragment, keeping the good complexity results of Schaerf and Cadoli and at the same time, providing
heuristics that guide the approximation.

The paper proceeds as follows: in the next section, we introduce Cadoli and Schaerf’s Approx-
imate Entailment and our extension of their semantics to full propositional logic. A sound and
complete axiomatization of the full �� is given in Section 3, where the system is compared to da
Costa’s Paraconsistent Logics [8]. We then turn to a more computational proof method based on
KE-tableaux, presented in Section 4. In Section 5, we discuss the gains and losses of the new system
with respect to the original formulation of ��. Finally, in Section 5.3, we present a generaliza-
tion of the underlying ideas of ��, ending with a system that allows for much more control in the
approximation process.

NOTATION. Let � be a countable set of propositional letters. We concentrate on the classical
propositional language �� formed by the usual boolean connectives � (implication), � (conjunc-
tion), � (disjunction) and 	 (negation).

Throughout the paper, we use lowercase Latin letters to denote propositional letters, lowercase
Greek letters to denote formulas, and uppercase letters (Greek or Latin) to denote sets of formulas.

Let � � � be a finite set of propositional letters. We abuse notation and write that, for any
formula � 
 �� , � 
 � if all its propositional letters are in �. A propositional valuation�� is a
function �� � � � ��� ��.

2 Approximate inference

In this section, we present Cadoli and Schaerf’s system and extend it to deal with full propositional
logic.

2.1 Cadoli and Schaerf ’s proposal

We briefly present here the notion of approximate entailmentand summarize the main results ob-
tained in [14].

Schaerf and Cadoli define two approximations of classical entailment: � �
� which is complete but

not sound, and ��
� which is classically sound but incomplete. Here we deal only with the latter. In

the trivial extreme of approximate entailment, i.e. when � � � , classical entailment is obtained. At
the other extreme, when � � �, ��

� corresponds to Levesque’s logic for explicit beliefs [13], which
bears a connection to relevance logics such as those of Anderson and Belnap [1].

In an �� assignment, if 	 
 �, then 	 and 		 get opposite truth values, while if 	 �
 �, 	 and 		
do not both get 0, but may both get 1. The name � � comes from the three possible truth assignments
for pairs 	, 		 outside �. The set of formulas for which we are testing entailment is assumed to be
in clausal form. Satisfiability, entailment, and validity are defined in the usual way.

The following example illustrates the use of approximate entailment. Since � �
� is sound but

incomplete, it can be used to approximate �, i.e. if for some � we have that 
 � �
� �, then 
 � �.

EXAMPLE 2.1 ([14])
We want to check whether 
 � �, where � = ���� � �������		�
 and
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 = ����� � ������	��	�, ���� ��������	,
�������	��	� � ������	��		�
, ���������	 � ������,
������� � �����	��		�
 � �������		�
, �������	��	� � ������,
������� � �	��	����	, ��	��	����	 � �������.

For � = �������	��	�, ������, �����	��		�
�, we have that 
 ��
� �, hence 
 � �.

Note that in the example above, � is a small part of the language. The approximation of classical
inference is made via a simplification of the set of clauses 
 as follows (for a given conclusion �
and context set �):

LEMMA 2.2 ([14])
Let simplify-3�
��� be the result of deleting all clauses of 
 which contain an atom outside �. Then

 is ��-satisfiable if and only if simplify-3�
��� is classically satisfiable.

THEOREM 2.3 ([14])
Let � 
 �. Then 
 ��

� � iff 
 � �	�� is not �� satisfiable.

Lemma 2.2 and Theorem 2.3 together provide a constructive method for testing � � entailment.
Consider the Example 2.1, where � = ������������, ������, 	�
�
�������� and we want to
test whether 
 ��

�		� � ����������. In order to use Theorem 2.3 we must add 	� and
���������� to �, then add the clauses 	� and 	���������� to 
. We can then use Lemma
2.2 to simplify the expanded base, obtaining:


� = �		� � �����������,
	����������� � 		�
�
�������,
	������ � 	�
�
������� � ����������,
	����������� � ������,
	�, 	 �����������

This set is classically unsatisfiable, thus, 
 ��
�		� � ����������.

Schaerf and Cadoli then obtain the following results for approximate inference:

THEOREM 2.4 ([14])
There is an algorithm for deciding whether 
 ��

� � in ��
�������� time.1

This algorithm can be seen as a resolution method applied only to clauses where all literals are in
�.

The good point of Schaerf and Cadoli’s system is that they present an incremental algorithm to
test for �� entailment as new elements are added to �. But there are two major limitations in their
results:

1. The system is restricted to �-free formulas and in negation normal form. In [6] it is noted that
the standard translation of formulas into clausal form does not preserve truth-values under the
non-standard semantic of ��.

2. The set � must be guessed at each step of the approximation; no method is given for the atoms
to be added to �. Some heuristics for a specific application are presented in [16], but nothing is
said about the general case.

In this paper, we extend their system to full propositional logic, giving semantics, a sound and
complete axiomatization and a sound and complete tableaux system. The tableaux system gives us
some heuristics for increasing the size of the set �.

1The result above depends on a polynomial time satisfiability algorithm for formulas in clausal form. This result has been
extended in [4] for formulas in negation normal form, but is not extendable to formulas in arbitrary forms [5].
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2.2 Extending approximate inference

In this section, we extend �� to full propositional logic. We present a binary semantics for the full
fragment of ��.

The two-valued semantics for �� is based on a propositional valuation, as defined below.

DEFINITION 2.5
An ��-valuation��� is a function, ��� � �� � ��� ��, that extends a propositional valuation �� (i.e.
����	� � ���	�), satisfying the following restrictions:

��� ����� � � � � � ������ � ����� � �
���� ����� � � � � � ������ � ����� � �
����� ������ � � � � ������ � � and

����� � �
���� ����	�� � � � ������ � �
��� ����	�� � �� � 
 � � ������ � �

Rules ���–����� are exactly those of classical logic. Rules ���� and ��� restrict the semantics of
negation: rule ���� states that if ����	�� � �, then negation behaves classically and forces � ����� �
�; rule ��� states that if ����	�� � �, negation must behave classically only if � 
 �. Formulas
outside � may behave classically or paraconsistently, i.e. both the formula and its negation may be
assigned the truth value 1.

Note that an ��-valuation is not uniquely defined by the propositional valuation it extends. This
is due to the fact that if � �
 � and ������ � �, the value of ����	�� can be either 0 (in which case �
has a classical behaviour) or 1 (in which case � behaves paraconsistently).

LEMMA 2.6
The valuation ��� is determined by its value on the set � � �	�� �
 � � ������ � ��.

PROOF. For the connectives �, � and �, it is immediate that the value of � �� is determined by that
of the subformulas. If ������ � �, then by rule ���� ����	�� � �. If � 
 � the value of ����	�� is
the opposite to that of ������. If � �
 � but ������ � �, then necessarily ����	�� � �. We are left
with only the formulas in � � �	�� �
 � � ������ � �� to determine ��� .

We define a formula � to be �-valid in �� if ������ � � for any ��-valuation. A formula is
�-satisfiablein �� if there is at least one ��� such that ������ � �. The ��-entailmentrelationship
between a set of formulas � and a formula � is represented as

� ��
� �

and holds if every valuation ��� that simultaneously satisfies all formulas in � also satisfies �. A
formula is �-valid if it is entailed by �, represented as ��

� �.
Lemma 2.6 suggests a translation between a formula in �� and one in classical logic, such that

every formula of the form 	� with � �
 � is mapped into a formula � �� � 	��, where 	�� is a
new propositional symbol. Let ��� be the translation of �, defined as:

	�� � 	
�� Æ ��� � ��� Æ �� � Æ 
 �������

�	���� �

�
	����� � if � 
 �
��� � 	��� if � �
 ��
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LEMMA 2.7
A formula � is �-satisfiable in �� iff ����� is classically satisfiable.

PROOF. As seen in the proof of Lemma 2.6, we want to assure that if � �
 � but � ����� � �, then
necessarily ����	�� � �. This is taken care of by the last line of the translation. The rest of the
translation keeps the classical properties of the other connectives and of formulas in �.

COROLLARY 2.8
For any � � � , the complexity of �����-satisfiability is in NP.

PROOF. Since the size of ��� is linear with the size of �, by Lemma 2.6 the complexity of �����-
satisfiability is upper-bounded by the complexity of classical satisfiability.

Corollary 2.8 shows that the complexity of an approximation step is never more complex than the
complexity of propositional classical logic. However, there are classes of formulas whose complex-
ity is much simpler.

LEMMA 2.9
Let ���	��� represent the propositional symbols in �. Every formula � with ���	��� � � � � is
satisfiable in ��.

PROOF. Since ���	��� � � � �, the translation ����� leads into the 	-free fragment of classical
logic (without falsity, �), and any formula in such a fragment is satisfiable (just make all atoms 1),
so Lemma 2.7 makes � satisfiable in ��.

Note that for Cadoli and Schaerf’s ��, the condition ���	��� �� � is sufficient, since they only
deal with clauses. If any literal of a clause is not in �, it can be assigned the value 1, making the
whole clause (a disjunction of literals) satisfiable.

We now show that family of logics �� is indeed an approximation of classical logic, as defined in
the introduction.
LEMMA 2.10 (Approximation of Classical Logic)
For any � � � :

(i) �����-validity is subclassical; that is, any �����-valid formula is classically valid.

(ii) For � � � �, ��������� � �������
���.

(iii) ����� is classical logic.

PROOF.

(i) Any classical valuation satisfies the ��-restrictions for any �. Therefore, the set of all classical
valuations is contained in the set of all ��-valuations (but there are ��-valuations that are not
classic). So if a formula is satisfied by all ��-valuations, it will be satisfied by all classical ones.

(ii) If 	 
 � � � �, the formula 	 � 			 is a theorem of ������ (classically) but not in �����, by
making ����	� � ����		� � � and ����			� � �.

(iii) Trivial.

The deduction theorem holds for the �� semantics, as can be seen directly from the definitions.

LEMMA 2.11 (Deduction Theorem)
Let � be a finite set of formulas. Then

� ��
� � �� ��

�

�
�� ��
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Now we examine a few examples of �� entailment.

EXAMPLE 2.12
Consider the formula � � 	�. We show that it is a valid formula in �� for any �.

Indeed, if � 
 �, we are in a classical setting, so any valuation makes � � 	� true.
If � �
 �, let ��� be a valuation. If ����	�� � �, then � � 	� clearly is true. If, however,

����	�� � �, by rule ���� above ������ � �, so � � 	� is also true.

EXAMPLE 2.13
We now show that the �� semantics is paraconsistent. For that, consider the two propositions 	 and
� and suppose that 	 �
 �; take a valuation ��� such that ����	� � � and ������ � �, and consider the
formula �	�		�� �. By Lemma 2.6, the value of � �� is not fully determined, so we fix ����		� � �.
It is simple to verify now that the valuation thus constructed is such that � ����	�		�� �� � �, that
is the logic does not always trivialize in the presence of inconsistency.

EXAMPLE 2.14
We now analyse the validity of Modus Ponens in ��. The usual formulation of Modus Ponens,
� � � � ��

� , is valid in ��; indeed, if ��� satisfies �, the only possible way that it also satisfies
��  is that it satisfies , thus proving the entailment. Note that since no 	-formula was involved,
the reasoning is totally classical.

However, if we consider the version of Modus Ponens consisting of the translation of ��  into
	� �  (the only possible version of Modus Ponens in [14]), the situation changes completely if
� �
 �, for then we can have a valuation that satisfies both � and 	� (and thus 	� � ), but that
falsifies , so that 	� � � � ���

� .

A sound and complete axiomatization of the full �� is given in Section 3, where it is also compared
with da Costa’s Paraconsistent Logics [8]. We then turn to a more computational proof method based
on KE-tableaux.

3 Approximate Inference and Paraconsistency

In this section, we present a sound and complete axiomatization for � �, based on the axiomatization
of the paraconsistent logic �� [8]. We then compare the systems �� and ��.

3.1 An axiomatization for��

The following is an axiomatization for ��, based on the axiomatization given in [8]:
Consider the axioms in Figure 1. The Positive Axiomsare precisely the classical axioms for the

connectives �, � and �; the rule of Modus Ponens is presented as ����. Our system differs from
classical logic in the Negation Axioms.

In fact, without the proviso in axioms (neg�) and (neg�), the negation axioms are precisely the
classical 	-axioms. The 	-introduction of axiom (neg�) is restricted to the consequences of � in �.
The trivialization of axiom (neg�) is restricted to the members of �, that is, non-members of � can
behave paraconsistently. Axiom (neg�) tells us that the excluded middle is accepted unconditionally
in our logic.

THEOREM 3.1
The axiomatization of Figure 1 is sound with respect to the �� semantics. That is, all formulas
inferred from the �� axiomatization are true in all ��-valuations.



186 Approximate and Limited Reasoning: Semantics, Proof Theory, Expressivity and Control

Positive Axioms:

(��) �� � � ��
(��) ��� �� ��� � � ���� ��� ��
(��) � �  � �
(��) � �  � 
(��) �� � � � � �
(��) �� � � 
(��)  � � � 
(��) ��� ��� �� � ��� �� �  � ���

Negation Axioms:

(neg�) ��� �� ���� 	�� 	��, provided  
 �
(neg�) �� � 	��� , provided � 
 �
(neg�) � � 	�

Inference Rule:

(MP) �� �� �

FIGURE 1. An axiomatization for ��

PROOF. By a straightforward, but tedious, verification of the validity of the axioms. The positive
axioms are dealt with by the classical part of the �� semantics. Axiom (neg�) is dealt with in
Example 2.13, and Modus Ponens is dealt with in Example 2.14. The validity of axioms (neg �) and
(neg�) are easily verified.

A formula � is �-inconsistentif it is provable that �� ��	� for some  
 �. Similarly, a set
� of formulas is �-inconsistentif there are formulas ��� � � � � �� 
 � such that

�
�� � � � 	�

for some  
 �. A formula or set is �-consistentif it is not �-inconsistent.
The axiomatization above is �-completeiff for any�-consistent formula� there is an � � valuation

��� such that ������ � �. The proof of completeness follows a Lindenbaum construction.
A maximal�-consistent set(MSCS) is a set of formulas � such that:

� � is �-consistent; and

� there is no MSCS � � � � .
LEMMA 3.2
For every �-consistent formula � there is a MSCS � such that � 
 � .

PROOF. Consider an enumeration of the formulas �� �� � � � � �� � � � . Construct a sequence of sets
�� such that

�� � �

���� �

�
�� � ���� if �� � ��� is �-consistent
��� otherwise�

Let � �
��
�����. We claim that � is a MSCS, for the following reasons:

� � is �-consistent. Otherwise let ���� be the first element in the sequence that is �-inconsistent.
Then we must have ���� �� ��, so ���� � �� � ���, but this is only possible if �� � ���
is �-consistent, contradicting the fact that ���� is �-inconsistent.
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� � is maximal. Otherwise there is a MSCS � � � � . In this case there is a � 
 � � � � .
Consider the set ������; if it is �-consistent, then������ � ���� � � , which contradicts
� �
 � . If �� � ��� is �-inconsistent, then � � is inconsistent because �� � � � � � and
� 
 � �, which contradicts the consistency of � �. Hence � must be maximal.

It is obvious that � 
 � , so the proof is finished.

LEMMA 3.3
Let � be a MSCS. Let � � �� �� ��� �� such that ���� � � iff � 
 � . Then � is a �� valuation.

PROOF. We have to show that � satisfies the restrictions of Definition 2.5. Conditions (i)–(iii) are
classical semantical conditions and are accounted for by the positive axioms, which are the classical
ones.

We then show that: ��� ���� � � �� ��	�� � �. For that, suppose ���� � �. Then
� �
 � . Due to the maximality of � , there must be ��� � � � � �� 
 � such that it is provable that
��
�
��� � ��� � � 	� for some  
 �. Therefore:

� ��
�
��� � ���  ��� �

�
���� ��� � �� ��  
 �

� ��
�
��� � ��� 	 ��� �

�
���� ��� 	� �� �� 	 
 ��

It follows that both � �  
 � and � � 	 
 � . From Axiom (neg�), it follows that 	� 
 � ,
so ��	�� � �, proving ���.

From (*) it follows that � obeys property ���� of Definition 2.5. Indeed, suppose that ��	�� � �;
if ���� � �, then by ��� we have that ��	�� � �, a contradiction. So we must have ���� � �,
satisfying ����.

We then show that: ���� ���� � �� � 
 � �� ��	�� � �. For that, suppose ���� � � and
� 
 �. Then � 
 � . Suppose now, for contradiction that 	� 
 � . From Axiom (neg �) we have
that any  
 � , contradicting the consistency of � . So 	� �
 � and ��	�� � �, thus proving ����.

From ���� we see that � obeys property ��� of Definition 2.5. Indeed, suppose that ��	�� � � and
� 
 �; if ���� � �, by ���� we have that ��	�� � �, a contradiction. So we must have ���� � �,
satisfying ���.

THEOREM 3.4
The axiomatization of Figure 1 is complete with respect to the �� semantics.

PROOF. By Lemma 3.2 there is a MSCS� with � 
 � . Then, by Lemma 3.3, there is a ��-valuation
��� such that ����� � � iff  
 � . In particular, ������ � �.

3.2 Relating�� to Da Costa’s��

In this section, we introduce Da Costa’s calculus �� by means of axioms and valuation semantics.
We then show how our system relates to this calculus.

DEFINITION 3.5
A formula � is said to be well behavedif the principle of non-contradiction holds for �, i.e. if
	�� � 	�� holds. We use �� to denote 	�� � 	��.

Da Costa’s calculus [8] was introduced in order to deal with possible inconsistencies that should
not damage reasoning by trivializing it. The idea is to block derivations from formulas which are not
well behaved, isolating inconsistencies.

The following is an axiomatization of ��:
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(��) �� � � ��
(��) ��� �� ��� � � ���� ��� ��
(��) � �  � �
(��) � �  � 
(��) �� � � � � �
(��) �� � � 
(��)  � � � 
(��) ��� ��� �� � ��� �� �  � ���

(	�) � � ��� �� ��� � 	�� 	��
(	�) �� � � � ���� �� � �� � �� � �� � ���
(	�) � � 	�
(	�) 		� � �[1em]
Inference Rule:

(MP) �� �� �

A semantic for this system was given in [7]:

DEFINITION 3.6
An � -valuation�� is a function, �� � �� � ��� ��, that extends a propositional valuation �� (i.e.
�� �	� � ���	�), satisfying the following restrictions:

��� �� �� � � � � � �� ��� � �� �� � �
���� �� �� � � � � � �� ��� � �� �� � �
����� �� ��� � � � � �� ��� � � and

�� �� � �
���� �� ��� � � � �� �	�� � �
��� �� �		�� � � � �� ��� � �
���� �� ��� � �� ��� � � �� ��� 	� � � � �� ��� � �
����� �� ���� � �� ��� � � � �� ��� � ��� � �� � 


�������

An � -valuation has the following properties:

LEMMA 3.7
1. �� ��� � �� �� �	� � ��� � �.

2. �� ���� � �� �� ��� � �� �	��.

It is not hard to see that the systems are very similar, although not equivalent. There are two main
differences. First, the set of formulas for which �� ���� � � does not correspond exactly to �:

LEMMA 3.8
If � 
 �, then �� ���� � �. The converse does not always hold, i.e. we may have an � -valuation �
such that ����� � � and � �
 �.

PROOF. Follows directly from the definitions. � 
 � means that � and 	� must have opposite truth
values, but � �
 � does not necessarily mean that � and 	� have the same truth values.

The second difference between the two systems is in the behaviour of double negation. In � �,
double negation may be eliminated (but not introduced), while in � �, � does not follow from 		�.

Since we have sound and complete semantics for both systems, we can show how the systems
relate to each other by checking the semantics.
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PROPOSITION 3.9
Every� -valuation is an ��-valuation.

PROOF. Conditions (i), (ii), (iii), and (iv) are the same. We only have to check whether
����	�� � �� � 
 � � ������ � � follows from the definition of � -valuation. We know that
� 
 � implies �����

�� � �. And from ����	�� � �����
�� � � it follows by part (2) of Lemma 3.7

that ������ � �.

PROPOSITION 3.10
Not every ��-valuation is an � -valuation.

PROOF. It suffices to see that we may have an ��-valuation � so that for some formula � such that
� �
 �, we have ��		�� � ��	�� � � and ���� � �. This valuation fails to satisfy item ��� of the
definition of � -valuation.

The two propositions show that �� is actually more general than ��.

COROLLARY 3.11
Let � be a fixed set of formulas closed under formula construction and let � �

� be �� with an added
axiom �� for each � 
 �. Then Theorems(��) � Theorems(��

� ) � Theorems(��).

4 Tableaux for approximate inference

We develop an inference system for the full logic �� based on the KE-tableau methodology. KE-
tableaux were introduced by D’Agostino [10, 12, 11] as a principled computational improvement
over Smullyan’s Semantic Tableaux [15], and have since been successfully applied to a variety of
logics [9, 2, 3].

KE-tableaux deal with � - and � -signed formulas. So if � is a formula, � � and � � are signed
formulas. � � is the conjugate formulaof � �, and vice versa. In classical logic it is possible to have
an unsigned version of tableaux [15], but in non-classical logics in general, and in KE� � in particular,
the use of signed formula is crucial.2 An expansion of a tableau is allowed when the premisses of an
expansion rule are present in a branch; the expansion consists of adding the conclusions of the rule
to the end of all branches passing through the set of all premisses of that rule.

For each connective, there are at least one � - and one � -linear expansion rules. Linear expansion
rules always have a main premiss, and may also have an auxiliary premiss. They may have one or
two consequences. The only branching rule is the Principle of Bivalence, stating that something
must be either true or false. Figure 2 shows KE-tableau expansion rules for classical logic.

In Figure 2 we see that each of the binary connectives ��� and � are associated to two two-
premissed rules and one one-premissed rule. The two-premissed rules have a main premissand an
auxiliary premiss; the one-premissed rules have two consequences. Classical negation is associated
to two one premissed rules, each with a single conclusion. The final line presents the Principle of
Bivalence(PB), stating that any formula � is either true or false. The application of PB transforms a
single branch into two branches with the same prefix, differing only by the final formula, each new
branch getting one of the two conjugates.

PB is used according to a branching rule: PB is used to generate the auxiliary premiss for a two-
premissed rule; this guarantees that PB is only used over subformulas of some complex formula
occurring in the tableau. This also guarantees the subformula property, i.e. an expansion always
introduces in the tableau a subformula of some previously occurring formula.

2In unsigned tableaux, � -marks are replaced by the connective �; this artifice only works for classical-like negation, but
�� has a non-classical negation semantics, and � -marks and �-marks are not interchangeable.
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�	 ���

� �� 
� 

� �
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���
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�	���
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�
��
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� �

�	��
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� �

�
��

� � � �
(PB)

FIGURE 2. KE-rules for classical logic

As in semantic tableaux, to show that ��� � � � � �� �  we start with the initial tableau

� ��
...

� ��
� 

and develop the tableau by applying the expansion rules in Figure 2. A branch is closed if it contains
both � � and � �, for some formula �. The sequent above is shown if we can closeall branches in
the tableau, in which case the tableau is said to be closed.

EXAMPLE 4.1
We know that classically, � �  is equivalent to 	� � . This is shown by means of the two KE-
tableaux in Figure 3, where the boxed formulas indicate the closure condition for each branch. The
left tableau shows ��  � 	� �  and the right one shows 	� �  � �� .

Note that both tableaux would branch in a semantic tableau version of this proof. The fact that
KE-tableaux do not branch is an indication that they are more efficient than traditional semantic
tableaux. In fact, KE-tableaux can p-simulate semantic tableaux, but the converse is not true [10].
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�� � �� 
�� � 	� � 
�� � 	� from 2

	� �  from 2

� � � from 3
�� �  from 1,5

�

�� � 	� � 
�� � �� 

�� � � from 2
	� �  from 2

� � 	� from 1,4
�� � � from 5

�

FIGURE 3. The classical equivalence of ��  and 	� � 

EXAMPLE 4.2
To show the use of PB, we present a KE-tableau now showing that 		� � 		�	� � .

� 		� � 		

� 	�

� 

� �

� 		� � 		�

� 	� � 		
� � 	

� 

�

After expanding � 	�, no more linear expansion rules are applicable, so we branch over 		� in
� 		� � 		 according to the branching rule, so that the negative branch on the right can be used
as an auxiliary premiss to � 		� � 		 generating � 		. On the left branch, a single expansion
of � 		� leads us to � 	�, which closes that branch and the tableau.

4.1 Tableaux for��

In order to construct a KE-tableau system for ��, we keep almost all the classical rules, changing
only the rule �� 	�, by adding a side condition. The old rule �� 	� is removed and its � � version
becomes:

� 	�
� �

provided that � 
 ��

The meaning of this rule is that the expansion of a branch is only allowed if it contains the rule’s
antecedent and the proviso is satisfied, that is, the formula in question belongs to �. This rule is
actually a restriction of the classical rule, stating that if � �
 � the �� 	�-rule cannot be applied. Let
us call the system thus obtained KE��.

This makes our system immediately subclassical, for any tableau that closes for KE� � also closes
for classical logic. So any theorems we prove in KE�� are also classical theorems. The converse
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is not the case, as the examples below will show that there are classical theorems which are not
KE��-theorems.

So KE�� is correct and incomplete with respect to classical logic. The actual proof of correctness
and completeness of KE�� with respect to the semantics presented in Section 2.2 will be presented
in Section 4.3. First, let us examine a few examples.

EXAMPLE 4.3
We first show that � is no longer definable in terms of � and �, by redoing the tableaux of Figure 3
in Figure 4.

�� � �� 
�� � 	� � 
�� � 	� from 2

	� �  from 2

� � � from 3

�� �  from 1,5
�

�� � 	� � 
�� � �� 
�� � � from 2
	� �  from 2

� � 	� from 1,4

�

FIGURE 4. � is not definable in terms of � and 	 in KE��

In Figure 4 we are assuming that � � �. Note that the left tableau for ��  � 	��  is exactly
the same as for classical logic.

However, the tableau on the right for 	� �  � � �  cannot be closed for the rule on � 	�
cannot be applied for � �
 �. We get stuck, as there are no further rules to be applied, meaning that
the input sequent is not provable.

This shows that � can no longer be defined in terms of � and 	 in � �.

One important feature of the open tableau in Figure 4 is that if, at the point that it gets stuck, we
insert the propositional letters of � in the set �, the tableau expansion can proceed as in classical
logic. In fact, the tableau then closes after a single step. This shows that the sequent	�� � �� 
is deducible if � 
 � (and nothing needs to be said about ).

What we have actually done is to change the logic we are operating with during the KE-tableau
expansion by adding a formula to �. That formula was chosen so that a stuck tableau could proceed
classically. This actually makes us move one step closer to classical logic. Classical logic is reached
when all atoms are in �.

This simple procedure suggests an incremental way of doing approximate theorem proving.

4.2 The incrementality of the method

The idea of approximate reasoning found in [14] consists in trying to prove a classical formula in � �

for increasingly large sets �. Apart from considering an �-free fragment, the work in [14] did not
provide a way of choosing � or how to increment it. Our theorem proving method for a given input
sequent is intended to fill this gap. It is summarized in the following:

1. � �� �.

2. Transform the input sequent in an initial KE��-tableau.
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3. Expand the tableau until it is closed or stuck.

4. If the tableau is closed, terminate with success.

5. If the tableau contains a branch that cannot be classically expanded, terminate with failure.

6. If the tableau is stuck due to a formula �	�, make � �� � � ��� and go back to 3.

By � �� � � ��� we mean that all atoms in � are added to �. It is clear that if an atom does not
appear inside the scope of a negation, it will not be inserted in �. However, that does not mean that
if it appears inside a negation it will end up in �, as the tableau for � 	 � 		 shows:

� 	 � 		
� 	
� 		
� 	
�

which shows that � 	� 		 is ��-valid for � � �. Note that in step 6 above, there may be more then
one stuck point in the tableau, so we need to choose one formula to proceed. If there are two stuck
formulas in the same branch of the tableau, the contents of � may differ according to the choice of
formula we make at step 6. This is illustrated by the following tableau for 	 � � � 			 � 		�:

� 	 � �
� 			 � 		�

� 	
� �

� 			
� 		�
� 		
� 	�

At this point we have both � 		 and � 	� blocking the branch development. If we choose the first
one, � becomes �	� and the tableau closes; if we choose the second one, � becomes ��� and the
tableau also closes.

An interesting fact is that we can only prove 	�	 � 		� in KE�� for 	 
 �, which shows the
paraconsistency of the system:

� 	�	 � 		�
� 	 � 		

T p

� 		

F p if 	 
 �

�

We now show the correctness of the proposed incremental method.

THEOREM 4.4 (Correctness of the Method)
Given an input sequent ��� � � � � �� �  then the method above always terminates. It terminates with
success iff the sequent is classically valid.
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�� � 		� � ���

�� � 	��� 	��
����

�� � 	��� � 		��
	� � 		��
���� � ������


� � 	������ � 	�� � ���

�� � 	��� � ������

� � 	������ � ����������

�� � 	���������� � �
����

�� � 		� � ���

��� � 		� from 9
��� � ��� from 9
��� T ��� from 1,10

��� � 	��� ���� � 	��� �


�	� � 		�� from 3,13 �	� F ��� ��� 
 �

�
� T ������ from 6,13 �
� �

��� � 	������ � 	�� from 5,11
�� � 	�� from 14� 	�� 
 �
��� � 	������ from 16,17

��� F ������ from 18� ������ 
 �

��� �

FIGURE 5. KE�� tableau for clauses

PROOF. Note that the set � can only increase at each cycle, so if the tableau does not close, �
will eventually contain all propositional symbols in the input sequent that occur within a � -marked
negation, in which case the tableau will be a classical one; by the termination property of KE-
tableaux, it will terminate. Because any closing KE�� tableau also classically closes, a successful
terminating tableau must be classically valid. On the other hand, if a sequent is classically valid, its
corresponding KE��-tableau, when it becomes classical, will eventually close.

EXAMPLE 4.5
The following example illustrates the use of the system KE��. Consider the problem of Example
2.1, where we want to know whether 		� � ���������� follows from a set of clauses 
. We
start by labelling the initial clauses with � (lines 1-8) and the formula we want to refute with � (line
9). Figure 5 shows the complete tableau (��� stands for �����������, 	�� for 	�
�
�������,
and ��� for ����������).


 = �		� � �����������,
	��� 	��
����,
	����������� � 		�
�
�������,
		��
���� � ������,
	������ � 	�
�
������� � ����������,
	����������� � ������,
	������ � ����������,
	���������� � �
�����.

We start with � � �. When we get to line 14�, we need to add ����������� to � in order to
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close the right branch. We can then proceed applying rules until line 17, where one more atom,
	�
�
�������, must be added to �. What happens is that the tableau does not close if these atoms
are not in �. During the development of the tableau we get clues about which atoms must be in
�. When the atom ������ is added to �, the tableau closes and we have that 
 ��

�		� �
���������� for �= ������������, 	�
�
�������, �������.

EXAMPLE 4.6
This example shows that formulas that are classically equivalent may have different behaviour under
��. We transform the set 
 from Example 2.1 into a set 
 � which is classically equivalent to 
 but
is not in clausal form. Then we try to check whether 
 � ��

�	� � ����������. Figure 6 shows
the complete tableau. Note that this time, we can close the tableau adding only one atom to �, i.e.

� ��

�	� � ���������� for �=�	�
�
��������.


� = �	� � �����������,
��� 	��
����,
����������� � 		�
�
�������,
	��
���� � ������,
������ � 	�
�
������� � ����������,
����������� � ������,
������ � ����������,
���������� � �
�����.

�� � 	� � ���

�� � ��� 	��
����

�� � ��� � 		��
	� � 	��
���� � ������


� � ������ � 	�� � ���

�� � ��� � ������

� � ������ � ����������

�� � ���������� � �
����

�� � 	� � ���

��� � 	� from 9
��� � ��� from 9
��� � ��� from 1,10
��� � 		�� from 3,12
�	� � ������ from 6,12
�
� � 	�� � ��� from 5,14
��� T 	�� from 11,15
�� F 	�� from 13� 	�� 
 �
��� �

FIGURE 6. KE�� tableau with implication

4.3 Soundness and completeness of KE��

It is very important to note that we are not proposing a simple ad hocmodification of a KE-tableau
for doing theorem proving, but we are building a mechanism for approximate reasoning with a solid
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logical basis. To sustain such a claim, we have to prove the soundness and completeness of the KE� �

tableau method of Section 4 with respect to the �� two-valued semantics of Section 2.2.
First, we need to define the notions of soundness and completeness. So KE� � is sound with

respect to the�� semanticsif whenever a tableau closes for an input sequent, then the sequent’s
antecedent formulas entail its consequent in ��. Conversely, the KE��-tableau method is complete
with respect to the�� semanticsif for all sequents such that the antecedent entails the consequent in
��, all KE��-tableaux close.

We extend the valuation to signed formulas in the obvious way, that is, � ������ � � iff ������ � �
and ������� � � iff ������ � �. A valuation satisfies a branch in a tableau if it simultaneously
satisfies all the signed formulas in the branch.

To prove soundness, we first show the correctness of all linear expansion rules of KE� �.

LEMMA 4.7
If the antecedents of the KE�� linear expansion rules are �-satisfied in �� by ��� so are its conclu-
sions.

PROOF. A simple inspection of the rules in Figure 2 with the modification in �� 	� for KE� � shows
the result.

We now show that the branching rule PB also preserve satisfiability.

LEMMA 4.8
If a branch is satisfied by a valuation ��� prior to the application of PB, then at least one of the two
branches generated is satisfied by a valuation ��� after the application of PB.

PROOF. Suppose the branching occurs over the formula �. Because � �� is a function onto ��� ��, we
have that ����� �� � � or ����� �� � �, so ��� satisfies one of the two branches generated by the
application of PB.

THEOREM 4.9 (Soundness)
Suppose a tableau for ��� � � � � �� �  closes. Then ��� � � � � �� ��

� .

PROOF. We show the contrapositive. So suppose ��� � � � � �� ���
� , so there is a valuation ��� such

that ������� � � � � � ������� � � and ����� � �. In this case, the initial tableau for ��� � � � � �� � 
is such that all formulas � ��� � � � � � ��� �  are satisfied by ��� .

By Lemmas 4.7 and 4.8, we see that each application of an expansion rule preserves at least one
satisfiable branch. As closed branches are not satisfiable, at least one branch remains open and the
tableau cannot close.

We say that a branch of a tableau is complete if there are no more applicable expansion rules.

LEMMA 4.10
An open complete branch in a KE��-tableau is �-satisfiable in ��.

PROOF. Given an open complete branch 
, we construct the following valuation � �� , based on the
propositional and negated formulas in 
:

����	� � � �� � 	 
 

����	� � � �� � 	 
 

����	�� � � �� � 	� 
 
� ���� �
 ��

Since the tableau is open, we do not have that for the same atom �, both � � and � � are in 
, so
the valuation above is a partial function. To obtain a complete function, according to Lemma 2.6,
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we need to define the value of ��� for propositions and formulas of the form 	� not occurring in 

and not in �. We can set them all to true, respecting the semantics.

A simple structural induction on the signed formulas in 
 shows that � �� satisfies the branch.

THEOREM 4.11 (Completeness)
If ��� � � � � �� ��

�  then any possible KE�� tableau for ��� � � � � �� �  closes.

PROOF. Suppose for contradiction that there is a tableau for ��� � � � � �� �  with an open com-
plete branch 
. Then by Lemma 4.10 there is a �� valuation that satisfies 
, which includes
� ��� � � � � � ��� � , contradicting ��� � � � � �� ��

� .

We can adapt the tableaux system proposed here for extended � � to build a proof method for ��.
In the rule where we had the proviso � 
 � we now have ��, and we have to add a rule to deal with
double negation. The study of this tableaux system is left for future work.

5 The dynamics of approximations: expressivity versus control

In this section we compare KE�� with the Cadoli-Schaerf (CS��) method with regards to expressiv-
ity (i.e. the theorems proved for the same set �) and with the control that the set � exerts over the
proof development.

5.1 Dynamic properties

A property that tells us in which direction to expand our limited resource to achieve a goal is a
dynamicproperty of the method. KE�� provides a method for expanding � in trying to prove a
theorem, namely: ‘If a branch is closed due to a blocked use of��	�, add the blocking formula� to
�, so as to unblock that branch.’

Cadoli and Schaerf did not provide a dynamic extension for their system. However, to be honest
with their excellent work, such a dynamic behaviour can easily be provided in analogy to ours. In
CS��, we can resolve �� � with 	�� only if � 
 �, which gives us the dynamic rule: ‘If resolution
is blocked due to the absence of resolvents in�, add a potential resolvent� to �, so as to unblock
resolution.’

With that formulation, we compare the dynamics of KE�� and CS�� for conjunctive normal form
formulas. We note that both methods are highly non-deterministic in their behaviour of choosing
branch expansion rules and resolvents.

Suppose the size of a CS�� proof is measured by the number of resolution steps, and the size of a
KE�� is measured by the number of expansion rules applied.

THEOREM 5.1
Let 
�� be a set of clauses and a clause. In a proof of 
 � �, KE�� can linearly simulate the
dynamics of CS��, generating the same �.

PROOF. Every clause  
 
 in CS�� is associated with �  in KE�� and � is associated with � �.
In [14] every atom in � was implicitly considered part of �, so in order to compare both systems, we
have to start by putting those atoms in �. This is important for KE� � to simulate CS��, for suppose
		 is a disjunct in � and the final step of a CS�� is to resolve 		 with 	. This would correspond to
an expansion involving � 		 and � 	, and the tableau can only close if 	 
 �, with an intermediate
step taking � 		 into � 	, which closes with � 	.

Having that in mind, it suffices to show that the three possible CS�� resolution steps can be
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simulated in KE��; in classical presentations, there is only a single resolution rule; in non-classical
ones, all non-equivalent formats need to be considered:

� � �
	�
� �� 
 ��

	� � �
�
� �� 
 ��

	� � �
� � 
� �  �� 
 ��

can be simulated in KE�� as:

� � � �
� 	�
� �

� � �� 
 ��
� �
�

� 	� � �
� �
� �
� 	�

� � �� 
 ��
�

� 	� � �
� � � 
� � � 
� �
� 
� 	�

� � �� 
 ��
� �
�

Only a constant number of steps was used, independent of the form of � and  (so as to achieve linear
simulation), without multiplying the number of branches and by adding exactly the same formulas
to � in each step.

The proof above shows that every possible approximation� � � � � � � �� in CS�� is also possible
in KE��. However, because KE�� deals with a larger language, several transformational tricks can
be used in KE�� to improve its static expressivitywhich cannot be simulated by CS��.

5.2 Static expressivity

The static expressivityof a method is the set of theorems it can prove with a fixed limited resource.
In our case, we are going to compare the set of theorems that can be provedwith a given �.

The idea is to use the larger language of KE�� to rewrite 	��� as �� �. Since � may be a large
disjunction, we may not know a priori which negative literal to transform, so this transformation is
assumed to be applied ‘on the fly’ during theorem proving.

We can now show that for a fixed �, and formulas in �-clausal form, KE� � can prove more
theorems.

THEOREM 5.2
Let 
�� be a set of formulas and a formula in CNF. Suppose CS�� proves 
 � � with �. Suppose
KE applies the transformation above to clauses with one or more negative literal. Then KE� � proves

 � � in time linear w.r.t. the time needed by CS��, with an � � � �; it is possible that � � � �.

PROOF. It suffices to note that, in the simulation of CS��-resolution, because � � � contains no
negated literal and need not be converted to 	� � �, one need not always add � to � � (see Figure 7).

This does not only mean that the static expressivity of KE�� is higher, but also that CS�� may not
simulate any expansion �� � � � � � �� in KE��: KE�� may proceed without the addition of new
elements to � at points where CS�� is surely blocked and needs � to be expanded.
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� �� � �

� � � �

� � � �

� �

� �

� ��

� � �� � ��
� �

�

� �� �

� � � �

� � � �

� �

� �

� �

� �

�

FIGURE 7. Simulation of CS�� by KE��

As an example for this result, consider the tableaux in Figure 5 and Figure 6. The �-clauses have
been a priori transformed to �, but the same could have been done on-the-fly. The tableau shown
in Figure 6 ends up with � ��	�
�
��������, a subset from the � computed in Example 2.1.

What was the price payed for such an increase of static expressivity? The answer is: loss of control
in the deduction process.

The sensitivityof a proof method depends on the set of new theorems �� we get when we move
from � to � ���. Proof method 1 has more controlthan method 2 if it has more sensitivity, that is,
if for the same ��, ��� � ���. Note that sensitivity and control are also dynamic properties.

In CS��, the set � has an effect over (i.e. controls) the set of atoms over which resolution can be
applied. In KE��, the set � controls the formulas over which ��	� can be applied; by applying the
transformation above, we eliminate 	-formulas and thus reduce the control of � on KE� � proofs. If
we add to � an atom that only occurs non-negated in 
 � �, no new theorems are obtained in KE� �.
We have thus shown the following:

THEOREM 5.3
� KE�� is more expressive than CS��.

� CS�� has more control than KE��.

5.3 Recovering control

We have seen that although the extension proposed to �� allows for more expressivity, we end up
losing control over the resources used. Cadoli and Schaerf use resolution as the only inference rule
and the set � determines the set of atoms over which resolution may be applied. In our system,
modus ponens is valid even if � is empty, i.e. �� �  �	
�� .

If we want to regain control, we can add a restriction to the application of modus ponens, so that
we always need part of the formulas to be in �. We end up with rules like these:

� �� 
� �

�  if � 
 �	�

� 	�
� � if � 
 �	�

where� � �	���
	
�. This blocks the use of transformation rule in Theorem 5.2, and the two systems

can clearly simulate each other.

EXAMPLE 5.4
If we apply the new rule �� �� to the tableau in Figure 6, every line in which �� �� was applied
would cause an expansion in �	

� at each such line, namely:
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� 	� is added at line 12

� ����������� is added at line 13

� ������ is added at line 15

� 	�
�
������� is added at line 17

And since in [14] every atom in � was implicitly considered part of �, we end up with the same
�-set as in Example 2.1.

We should not stop here at gaining control over the approximation process. It is clear that we can
get a deduction system with a much finer control over deductions, finer then either KE� � or CS��.

6 A generalized approximation inference

We have moved from restricting ��	� in KE��, to restricting the use of both ��	� and �� ��. If
we are willing to have the size of the set � as an indication of the inference rules allowed, we could
go even further and add restrictions to every rule of our system. And still further: we may have
different context sets for each rule. This would give us a system where every connective behaves
classically only for formulas which belong to the corresponding context set: � 	

� , �
� , �	� , �
� , �	�,
�
�, �	� and �
� .

We propose here a generalization of the KE�� tableaux, that we call KE��. The system is obtained
by adding restrictions to each expansion rule, as illustrated in Figure 8.

� �� �

� �

� � if � � ��
�

�	 ���

� �� �

� �

� � if � � ��
�

�	 ���

� �� �

� � if � � ���
� � if � � ���

�
 ��

� � � �

� �

� � if � � ��
�

�
���

� � � �

� �

� � if � � ��
�

�
���

� � � �

� � if � � ��
�

� � if � � ��
�

�	��

� � � �

� �

� � if � � ���

�	���

� � � �

� �

� � if � � ���

�	���

� � � �

� � if � � ���
� � if � � ���

�
��

� ��

� � if � � ��
�

�	��
� ��

� � if � � ��
�

�
��

� � � �
(PB)

FIGURE 8. KE-rules for the generalized system

THEOREM 6.1
KE�� can simulate the dynamic evolution of both CS�� and KE��. Also, for a given �, the expres-
sivity of KE����� can be simulated by a suitable instantiation of the �-parameters of KE� �.

PROOF. To see that KE�� can simulate the dynamic evolution of KE��, it suffices to set � � �	�
and all other � parameters to the full set of propositional letters. In practice, this amounts to lifting
the proviso of all rules except for the ��	� rule. Since KE�� simulates the dynamics of CS��, we
have that KE�� can simulate the dynamic evolution of both CS�� and KE��.
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For a fixed �, we can simulate the expressivity of KE����� by setting �	� � � and all other �
parameters to the full set of propositional letters (actually, it is enough to take the set of propositional
letters that appear in the initial tableau).

As expected, there is a tradeoff between expressivity and control. KE� � gives us a very fine
control, but a limited expressivity for a given collection of � �

� -sets. Basically, we may need to add
to some ���-set at almost every expansion step in the tableau. As usual, we want our system to be
based on a sound and complete subclassical semantics

6.1 Semantics for generalized approximate inference
DEFINITION 6.2
An ��-valuation��� is a function, ��� � �� � ��� ��, that extends a propositional valuation �� (i.e.
����	� � ���	�), satisfying the following restrictions:

���� ����� � � � �� � 
 �	� � ������ � �
���� ����� � � � ��  
 �	� � ����� � �
���� ����� � � � �� ������ � �� � 
 �
� � ����� � �
���� ����� � � � �� ����� � ��  
 �
� � ������ � �
���� ����� � � � �� � 
 �
� � ������ � �
���� ����� � � � ��  
 �
� � ����� � �
���� ����� � � � �� ������ � �� � 
 �	� � ����� � �
���� ����� � � � �� ����� � ��  
 �	� � ������ � �
���� ������ � � �� � 
 �
� � ������ � �
���� ������ � � ��  
 �
� � ����� � �
���� ������ � � �� ������ � �� � 
 �	� � ����� � �
���� ������ � � �� ����� � ��  
 �	� � ������ � �
�	�� ����	�� � �� � 
 �
� � ������ � �
�	�� ����	�� � �� � 
 �	� � ������ � �

It is easy to see that the extension of �� given in Sections 2.2 and 4 is a particular case of the
system above, where the sets �	

� , �
� , �	� , �
� , �	�, �
�, and �
� contain all the propositional letters
of the language and � � �	

� .

6.2 Soundness and completeness

We say that KE�� is sound with respect to the�� semanticsif whenever a tableau closes for an
input sequent, then the sequent’s antecedent formulas entail its consequent in � �. Conversely, the
KE��-tableau method is complete with respect to the�� semanticsif for all sequents such that the
the antecedent entails the consequent in ��, all KE��-tableaux close.

We extend an ��-valuation to signed formulas making � ������ � � iff ������ � � and ������� �
� iff ������ � �. A valuation satisfies a branch in a tableau if it simultaneously satisfies all the signed
formulas in the branch.

To prove soundness, we first show the correctness of all linear expansion rules of KE� �.

LEMMA 6.3
If the antecedents of the KE�� linear expansion rules are �-satisfied in �� by ��� so are its conclu-
sions.
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PROOF. A simple inspection of the rules in Figure 8 shows the result.

We now show that the branching rule PB also preserve satisfiability.

LEMMA 6.4
If a branch is satisfied by a valuation ��� prior to the application of PB, then at least one of the two
branches generated is satisfied by a valuation � �� after the application of PB.

PROOF. Suppose the branching occurs over the formula �. Because � �� is a function onto ��� ��, we
have that ����� �� � � or ����� �� � �, so ��� satisfies one of the two branches generated by the
application of PB.

THEOREM 6.5 (Soundness)
Suppose a tableau for ��� � � � � �� �  closes. Then ��� � � � � �� ��

� .

PROOF. We show the contrapositive. So suppose ��� � � � � �� ���
� , so there is a valuation ��� such

that ������� � � � � � ������� � � and ����� � �. In this case, the initial tableau for ��� � � � � �� � 
is such that all formulas � ��� � � � � � ��� �  are satisfied by ��� .

By Lemmas 6.3 and 6.4, we see that each application of an expansion rule preserves at least one
satisfiable branch. As closed branches are not satisfiable, at least one branch remains open and the
tableau cannot close.

We say that a branch of a tableau is complete if there are no more applicable expansion rules.

LEMMA 6.6
An open complete branch in a KE��-tableau is �-satisfiable in ��.

PROOF. Let 
 be the set of formulas that occur in the open complete branch. We have to build an
�� valuation that satisfies it.

We start the construction of � by setting ���� � � for every � such that � � 
 
 and ���� � �
for every � such that � � 
 
. Since the branch is open and complete, there is no formula � for
which both � � and � �, hence � is a partial function that satisfies the branch. We have to (i) extend
� to a total function and (ii) show that � is an ��-valuation.

(i) We can extend � by combining it with any classical propositional valuation. Let � � be a
propositional valuation. If ��	� is undefined, then set ��	� to ���	�. We then extend � by combining
it with a classical extension of ��. Suppose � � � �  and ���� undefined. We set ���� to 1 iff
���� � ��� � �. Analogously for the other connectives.

(ii) To show that � is an ��-valuation, we must show that it satisfies the properties in Definition
6.2. For example, take property ����:

����� � � � ��  
 �	� � ������ � ��

If � � �  is in 
, then since � 
 �	
� , by the rule (��), � � is also in 
 and hence, ���� � �. If

� � �  is not in 
, then ��� � � � � iff ���� � � and ��� � �. Consider rule �	��:

����	�� � �� � 
 �
� � ������ � ��

If � 	� is in 
 and � 
 �
� , then by the rule (��), � � is in 
 and hence, ���� � �. If � 	� is
not in 
, then ��	�� � � iff ���� � �.

In an analogous way, we can show that the valuation � satisfies the other twelve properties in
Definition 6.2.
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THEOREM 6.7 (Completeness)
If ��� � � � � �� ��

�  then any possible KE�� tableau for ��� � � � � �� �  closes.

PROOF. Suppose for contradiction that there is a tableau for ��� � � � � �� �  with an open com-
plete branch 
. Then by Lemma 6.6 there is an �� valuation that satisfies 
, which includes
� ��� � � � � � ��� � , contradicting ��� � � � � �� ��

� .

7 Conclusions and future work

We have extended Schaerf and Cadoli’s system �� of approximate entailment to deal with full propo-
sitional logic. We extended their semantics, provided a sound and complete axiomatization and a
sound and complete proof method based on a computationally efficient version of semantic tableaux.

Extending the system from the clausal fragment to full propositional logic does not preserve the
good complexity bounds provided by Schaerf and Cadoli. But as can easily be seen from the proof
method, KE�� is to classical logic as �� was to the clausal fragment, i.e. the approximation proceeds
in an incremental way and in the worst case a proof is as hard as in classical logic. Moreover, the
tableaux system can be easily restricted to the clausal fragment, putting together the complexity
upper bound provided by Schaerf and Cadoli and the heuristics given here for augmenting the set �.

We have analysed our extension and the gains and losses with respect to the original system.
While being more expressive than Schaerf and Cadoli’s, our system allows for less control in the
approximation process.

We have then developed a general framework for modelling limited reasoning that extends the idea
of having a context set even further. Instead of a single set, we have now several contexts that have
to be set in order to determine the logic in which we are working. Having all these different context
sets for different inference rules gives us the possibility of setting limits to each sort of inference.
The application of each rule of inference may have different costs.

What is missing now is a work of logical engineering: for particular applications, determine the
costs and parameter sets for each inference rule.

The implementation of a theorem prover based on KE� � has been completed. Ongoing work
consists of parameter and strategy testing of this prover, as well as an adaptation of the prover to
KE��.
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