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Matemática e Estat́ıstica, Universidade de São Paulo, Rua do Matão
1010, 05508-090 São Paulo, SP, Brazil. E-mail: weiss@ime.usp.br

Abstract

This paper generalises and complements the work on combining temporal logics started by Finger
and Gabbay [11, 10]. We present proofs of transference of soundness, completeness and decidability
for the temporalisation of logics T(L) for any flow of time, eliminating the original restriction that
required linear time for the transference of those properties through logic combination. We also
generalise such results to the external application of a multi-modal system containing any number
of connectives with arbitrary arity, that respect normality.

This generalisation over generic flows of time propagates to other combinations of logics that
can be interpreted in terms of temporalisations. In this way, the independent combination (also
called fusion) of temporal logics is studied over generic flows of time. We show the transfer of
soundness, completeness and decidability for independent combination of temporal logics. Finally,
we also discuss the independent combination of any finite number of normal multi-modal logics.

Keywords: Temporal Logics, Combinations of Logical Systems, Completeness of Combination of

Logical Systems, Decidability of Combination of Logical Systems.

1 Introduction

This paper is concerned with the study of methods for combining temporal logics. In
its first part, we extend the study of the temporalisation of logic systems introduced by
Finger and Gabbay in [11]. There, the temporalisation process was restricted to linear
flows of time. Here, we aim to generalise it to any flow of time. We are interested in
studying the transference of properties from the logic system L into its temporalised
version T(L). In the case of linear flows of time, temporalisation was shown to be
a useful building block in obtaining the independent combination of two temporal
logics [10]. In the second part of this paper, we show that the same construction is
applicable to any class of flows of time.

The logic system T(L) combines two logics: a temporal logic T, which is applied
externally to a given logic system L. This combination process, called temporalisation,
involves the combination of the languages, inference systems, and model structures
of T and L into a language, inference system and model structure of T(L). We show
that if the logic systems T and L are sound, complete or decidable, then T(L) is also
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sound, complete or decidable; no constraints are imposed on the nature of the flow of
time.

To show the transference of completeness and decidability via temporalisation, we
maintain the same general proof strategy of Finger and Gabbay [11]. However, be-
cause here we can no longer rely on the linearity of the flow of time in T, the underlying
proof construction has to be almost fully reworked in Section 2.1. For that, we in-
troduce a bound associated to the number of steps in “the past” and the number of
steps in “the future” one must take to evaluate a given formula ψ in a temporalised
model. This construction allows us to select the “relevant” time points in the evalua-
tion of a formula. As is explained in Section 2.2, the set of “relevant” time points may
be infinite, but each point can be reached in finitely many steps. This construction
allows us to do without the original restriction of linearity. Our approach naturally
leads us to decision procedures. In Section 2.3 we show that provided that L and T
are decidable, so is T(L).

We then use these transference results as a building block in the transference of
similar properties for the independent combination of two temporal logics (also called
fusion of temporal logics) over any class of flows of time. Section 3 shows that the
transference of completeness and decidability can be obtained in terms of unions
of alternating temporalisation of two temporal logics; furthermore, we show that
such transference occurs even in temporal logics containing the highly expressive
binary temporal operators “until” and “since”. The mere temporalisation of two
US-logics gives us a very limited logic, US1(US2), which does not allow the nesting
of US2-operators inside the temporal operators of US1; the independent combina-
tion US1 ⊕ US2 does allow for any nesting of temporal operators. We explore a
property that was initially noted in [10], namely that the independent combination
US1 ⊕US2 can be seen as the infinite union of several temporalisations US1,US1(US2)
and US1(US2(US1)), . . ., and thus we show how the temporalisation results can be
employed to obtain the transference of soundness, completeness and decidability for
US1 ⊕ US2 over generic flows of time.

Combination of logics have been previously analysed in the literature. The first
property of independently combined modal logics, namely its conservativity, was pre-
sented by Thomason in [25]. Fine and Schurz [7] and Kracht and Wolter [22] have
studied the transfer properties of systematically combining independently axiomatis-
able monomodal systems. The work of Fine and Schurz [7] is applicable to more than
two independent normal modalities. A generalisation of such results for many-place
multi-modal systems is presented by Wolter in [28]; we discuss in more detail some of
Wolter’s results in Section 3.

Finger and Gabbay [11, 10] were the first to address the issue of combining logics
with two-place modalities, S (“since”) and U (“until”), and with modalities that
were not all independent, for “since” and “until” interact with each other. The results
of [11, 10], however, are restricted to the case of linear flows of time and, because non-
linear flows, e.g. over trees or over some other partially ordered sets, often appear in
Mathematics as well as in Computer Science, our approach is needed.
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1.1 Applications of combinations of temporal logics

Since it was initially proposed, temporalisation has been applied in several systems.
Its initial application was the description of the evolution of a temporal database [8, 9],
which needed two temporal references, one external (evolution) and one internal (the
actual temporal database). The two-dimensional view of temporal database evolution
is detailed in [15].

In temporal databases, time is generally considered to be linear, which explains the
initial focusing on linear flows of time only. Also, linearity simplified the proofs of
transference of completeness and decidability, for on a linear time one is allowed to
express that “a formula A holds at all times”.

Another application of linear temporalisation, involving two-dimensional time, is
the work on temporal logic programming within the paradigm of imperative future [19,
3]. Such paradigm permitted both the specification of formally verifiable programs as
well as the execution of such specifications as a temporal logic program. Its original
formulation involved only one temporal dimension, which meant that no update on
past states could be done, ie no temporal reasoning was carried on the program itself.
To deal with temporal programs, the imperative dimension was applied externally to
a system, generating a temporalised two-dimensional version of the imperative future
in [12, 13].

Besides temporal databases and software specification, temporalisation was applied
in the combination of grammar logics in the work of Blackburn et al. [4]. Here,
however, the limitations of linearity started to show and the use of temporalisation
for grammar formalisms lost preference in the face of other formalisms. Still in the
realm of grammar formalisms, Blackburn’s and Meyer-Viol’s tree logics [5] is one
possible formalism that can be externally applied to other logics with the results
below, but not with the linearity restriction.

More recently, the work of Montanari and Franceschet [17, 16] on the study of
structures representing time with multiple granularities has shown that temporalisa-
tion can be used to generate logics for several classes of granular structures, even with
the linear restriction. It would be interesting to see if new logics would arise if we
have more flexibility on the structure of the external flow of time.

As for the independent combination (or fusion) of two modal/temporal logics, sev-
eral applications arise when combining two logics, the most common of which are
the combinations of temporal and knowledge logics for the specification of algorithms
and protocols, which are best described in [6]. Of course, the logics needed for prac-
tical purposes usually demand a stronger interaction between the component logics
than that provided by the independent combination. So the logic obtained by the
independent combination is in a sense a minimal logic and the addition of further
properties and stronger interaction has to be analysed separately. This fact has been
noted already in the first works of fusion of logics in [7, 22].

1.2 The organisation of this paper

This paper addresses several generalisations. As described above, we aim to generalise
the notions of temporalisation and independent combination for generic flows of time.
Once such generalisations are done, it is normal to ask if these methods also apply
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to multi-modal modal and temporal logics, where the connectives may have arbitrary
arity. It is our aim here to show how the methods applied here can be extended to
this generalised case.

The rest of this paper is organised as follows. Extended temporalisations are studied
in Section 2. The basic notions are initially described in Section 2.1, and transfer-
ence of soundness, completeness and decidability is proven in Sections 2.2 and 2.3.
In Section 2.4 it is explained why and how those results are applicable to iterated
temporalisations, as a prelude to the analysis of the independent combination in Sec-
tion 3. Those results all concern temporal US-logics, and generalising them form
multi-modal logics is the aim of Section 2.5.

The study of the independent combination of temporal logics starts with general
definitions in 3 and the transference of basic properties in Sections 3.2, 3.3 and 3.4.
Finally, the generalisation of the independent combination of any number of multi-
modal logics is discussed in 3.5.

Section 4 concludes with a discussion on the relationship between the constructions
of Sections 2.1 and 3, and an open problem is reported.

2 The temporalised system T(L)

2.1 Definition of a temporalised system

In this section we describe the system T(L) introduced in [11]. By a logic system we
mean a quadruple S = (LS ,`S ,KS , |=S), where LS is the system’s language, `S is
an inference system, KS is a class of models for the system and |=S ⊆ KS × LS is a
semantic relation such that M |=S A means that the formula A ∈ LS is satisfied in
the model M ∈ KS .

The language of T(L)
The language LUS of the temporal system T is built from a denumerable set of atoms
A, applying the two-place modalities U (until) and S, (since), and the Boolean con-
nectives ¬ (negation) and ∧ (conjunction).

Very little is required of the internal logic L, except that its language is described
from a denumerable set of atoms and that it has the classical Boolean connectives ¬
and ∧. We also demand that the connectives of T and L be disjunct. Apart from
that, any other type of modalities or predicates are accepted in the language.

Before we define the language of the temporalised system T(L) we need to introduce
a few definitions.

The language LL of L is partitioned into the sets BCL and MLL, where:

• BCL, the set of Boolean combinations consists of the formulas built up from any
other formulas with the use of the Boolean connectives ¬ or ∧;

• MLL, the set of monolithic formulas is the complementary set of BCL in LL.

If the external logic L does not contain the classical connectives ¬ and ∧, we assume
that MLL = LL and BCL = ∅, so every formula in L is considered monolithic.

The set of temporalised formulas, LT(L), is defined as the smallest set closed under
the rules
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1. If A ∈MLL, then A ∈ LT(L);
2. If A,B ∈ LT(L), then ¬A ∈ LT(L) and A ∧B ∈ LT(L);
3. If A,B ∈MLL, then S(A,B) ∈ LT(L) and U(A,B) ∈ LT(L).

We say that a formula in LT(L) is monolithic if it is a formula that is in the language
of L that is monolithic in L.

Note that the atoms of LUS are not elements of LT(L). As an example of a tempo-
ralised language, consider the atoms p, q ∈ LL and � is a modal symbol in L, then
�p and �(p∧ q) are monolithic formulas whereas ¬�p and �p∧�q are two Boolean
combinations.

The mirror image of a given formula is given by replacing U by S and vice-versa.
We will use the connectives ∨ and → and the constants > and ⊥ in its usual meaning.
Also, the formulas PA, FA, GA and HA abbreviate respectively S(A,>), U(A,>),
¬F (¬A) and ¬P (¬A). The complexity of a formula A is the cardinality of its subfor-
mulas.

The semantics of T(L)
A flow of time is a pair (T,<) where T is a set of time points and < is a binary
relation on T . By imposing restrictions on < we generate classes of flows of time, e.g.
the class Klin of all transitive, irreflexive and linear flows of time.

When dealing with a simple temporal logic, a model is a triple (T,<, h), where
(T,<) is a flow of time and h : T → 2P is a mapping that associates every time point
t ∈ T with a set of propositions, namely with the set of propositions that are true at
that point. If we restrict the class of flows of time to K′, we also restrict the class of
models; it is usual practice to also call this class of models K′, leaving the context to
disambiguate whether we mean the class of flows of time or the class of models.

This definition of temporal model indicates that every time point is mapped into a
classical propositional model, and such a view will be generalised in the temporalised
case.

For that, we have to specify some restrictions on the semantic relation |=L for the
logic L, whose class of models will be called KL. The basic restriction imposes that,
for each M ∈ KL and A ∈ LL we have

either M |= A or M |= ¬A. (∗)
This may need some adaptation on the notion of class of model. For instance, if
L is modal logic S5, it is not the case that, for each Kripke frame (W,R) where
R is an equivalence relation and every modal valuation V , either W,R, V |= A or
W,R, V |= ¬A. However, this problem is solved if we consider as the class of models
the set of pairs 〈M, w〉, where M is an S5 model (W,R, V ) and w ∈ W . For that
class of models the property (∗) above holds.

Let (T,<) be a flow of time and let g be a mapping from T into KL, such that
(∗) holds for g(t), for all t ∈ T . A triple MT(L) = (T,<, g) is a temporalised model
of T(L). We say that a temporal model (T,<, g) belongs to a class K iff (T,<) ∈ K.
In general, we will use the term temporalised model to refer to a model of T(L) and
temporal model to refer to a model of T.

The satisfaction relation |= is defined recursively over structure of temporalised
formulas:
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1. MT(L), t |= A, A ∈MLL, iff g(t) = ML and ML |= A;
2. MT(L), t |= ¬A iff MT(L), t 6|= A;
3. MT(L), t |= A ∧B iff MT(L), t |= A and MT(L), t |= B;
4. MT(L), t |= S(A,B) iff there exists s < t such that MT(L), s |= A and for all r,
s < r < t, MT(L), r |= B;

5. MT(L), t |= U(A,B) iff there exists t < s such that MT(L), s |= A and for all r,
t < r < s, MT(L), r |= B.

A formula is valid in a class K if it is verified at all times at all models over that
class.

The inference system of T(L)
We assume that an inference system for a generic logic system is a mechanism capable
of recursively enumerating the set of all provable formulas of the system, here called
theorems of the logic system.

An inference system is sound with respect to a class of models C if all its theorems
are valid over C. Conversely, it is complete if all valid formulas are theorems. We
assume that L’s inference system is sound and complete.

We will assume that the temporal logic T’s inference system is given in an axiomatic
form, consisting of a set of axioms and a set of inference rules. For example, consider
the possible axiomatisations of US over several classes of flows of time presented in [29]
or in [20]. When a temporal logic T is sound and complete over the class K of flows,
we write T/K.

Given T/K, the inference system of T(L) is denoted by T(L)/K and consists of the
following elements:

• The axioms of T/K;
• The inference rules of T/K;
• The inference rule Preserve: For every formula ϕ in LL, if `L ϕ then `T (L) ϕ.

In [11] it is shown that if T/K and L have a sound inference system, then the
inference system of T(L)/K is sound; no extra restrictions are made on the nature of
K. Also, in case L has a complete inference system and Klin is a class of linear flows
of time, then the inference system of if T(L)/Klin is complete. We want to eliminate
this restriction on linearity.

2.2 Completeness of T(L)

To show the transference of completeness we maintain the same proof strategy of [11],
but we introduce a new technique and rework its underlying constructions. In the
presence of linearity, one can write a formula that expresses the fact that a formula A
“is true everywhere” in a model. This simplifies life a lot, but cannot be reproduced
in a generic model. So we introduce a technique that picks up the “relevant” worlds
in a model for the evaluation of a given formula, and we construct a formula that
forces A to be true over all such relevant worlds.

The strategy of the proof is illustrated in Figure 1. We start with a consistent
LT(L)-formula ϕ, translate it into a pure LUS-temporal logic consistent formula A; then
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Fig. 1. Completeness proof strategy

completeness of LUS/K gives us a model for A; after some model manipulation using
the completeness of L, we obtain a T(L)/K-model for ϕ, thus deriving the completeness
for T(L)/K. The more sophisticated bit of the proof is the initial translation step,
which in the generic case has to deal with the nesting of temporal operators in ϕ
instead of the simpler translation used for the linear case. Such initial elaboration
allows us later to do a straightforward model manipulation to construct a model for
ϕ.

To deal with the nesting of temporal operators in a formula, we define the operator
nesting tree of a temporal or temporalised formula ψ, Dψ. A tree is represented
here as a set of strings of 0’s and 1’s, with the symbol ∗ representing concatenation of
strings; the empty string is represented by ε. The tree is closed under prefix formation
of its strings, that is, if 101 ∈ Dψ, then ε, 1, 10 ∈ Dψ as well. The 0 represents a past
operator (a step to the past) and the 1 represents a future operator (or a step to the
future).

Notation 2.1 In the following we will use the Greek letters ϕ, ψ and χ to indicate
T(L) formulas, and the letters A, B and C to indicate temporal US formulas. We
use the Greek letters ϕ, ψ and χ also to refer to either a temporal or temporalised
formula.

Definition 2.2 Given a formula ψ ∈ LUS ∪ LT(L) we build its operator nesting tree
Dψ recursively over the structure of ψ:

1. If ψ is a literal or monolithic, then Dψ = {ε};
2. If ψ = ϕ1 ∧ ϕ2, then Dψ = Dϕ1 ∪Dϕ2 ;

3. If ψ = ¬ϕ, then Dψ = Dϕ;

4. If ψ = S(ϕ1, ϕ2), then Dψ = {ε} ∪ {0 ∗ s|s ∈ Dϕ1 ∪Dϕ2};
5. If ψ = U(ϕ1, ϕ2), then Dψ = {ε} ∪ {1 ∗ s|s ∈ Dϕ1 ∪Dϕ2}.

This definition implies that ε ∈ Dψ for any ψ and, as a consequence, the prefix of
any string in Dψ will also be a member of Dψ. For example, consider the US formula

A = S(U(p, S(p, q)), S(p, p)) ∧ U(¬U(p, q), S(p, q))
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It’s associated operator nesting tree will be:

DA = DS(U(p,S(p,q)),S(p,p)) ∪DU(¬U(p,q),S(p,q)),
DA = {ε} ∪ {0 ∗ s|s ∈ DU(p,S(p,q)) ∪DS(p,p)} ∪ {1 ∗ r|r ∈ DU(p,q) ∪DS(p,q)},
DA = {ε, 0, 1} ∪ {01 ∗ s′|s′ ∈ Dp ∪DS(p,q)} ∪ {00 ∗ s′′|s′′ ∈ Dp}∪
{11 ∗ r′|r′ ∈ Dp ∪Dq} ∪ {10 ∗ r′′|r′′ ∈ Dp ∪Dq},
DA = {ε, 0, 1, 01, 00, 11, 10}∪ {010 ∗ s′′′|s′′′ ∈ ∪Dp ∪Dq} ,
DA = {ε, 0, 1, 01, 00, 11, 10, 010}.

Let 1m represent a string of m 1’s, and similarly for 0m. Let 00 and 10 repre-
sent the empty string. So each string in the nesting operator can be represented as
1m10m2 . . .1mn−10mn , where all mi > 0, except for m1 and mn, that can be 0. Note
that n is always an even number.

Each such string is then associated to a temporal operator over H and G. Let
H0ψ = G0ψ = ψ; let Gn+1ψ = G(Gnψ); and Hn+1ψ = H(Hnψ). So each string
1m10m2. . .1mn−10mn is associated with the temporal operator Gm1Hm2 . . . Gmn−1Hmn ,
which we abbreviate as �m1,m2,...,mn−1,mn .

As an example, �0,2(�0,3,1,0ψ) ≡ �0,5,1,0ψ instead of �0,2,0,3,1,0ψ.
We can now start defining the translation of consistent formulas in T(L) into con-

sistent formulas in US. The first step is the correspondence mapping.

Definition 2.3 Let {p1, p2,. . .} be an enumeration of the set of atoms of US, and let
{ψ1, ψ2, . . .} be an enumeration of MLL, the set of monolithic formulas of T(L). Define
the correspondence mapping σ from LT(L) into LUS, inductively over a formula as:

(∀ψi ∈MLL)(σ(ψi)) = pi
σ(¬χ) = ¬σ(χ)

σ(χ1 ∧ χ2) = σ(χ1) ∧ σ(χ2)
σ(S(χ1, χ2)) = S(σ(χ1), σ(χ2))
σ(U(χ1, χ2)) = U(σ(χ1), σ(χ2))

The following two lemmas are shown in [11]:

Lemma 2.4 (The correspondence Lemma) The correspondence mapping σ is a
bijection.

Lemma 2.5 For all T(L)-consistent χ ∈ LT(L), σ(χ) is US-consistent.

The reverse of Lemma 2.5 is not true, as we can see in this example:

Example 2.6 In a modal normal logic with the modality �, for all atoms ϕ, ψ,

χ ≡ �(ϕ→ ψ) → (�ϕ→ �ψ)

is a theorem in L. The formulas �(ϕ → ψ), �ϕ and �ψ are monolithic, so they are
mapped by σ into some atoms of US, say p1, p2 and p3, respectively.

Thus, σ(χ) = p1 → (p2 → p3), that is not a theorem in T.

For the model manipulation in the final part of the proof of completeness, we will
need also the converse of Lemma 2.5, that is, T(L) theorems must be mapped into
US theorems. To achieve that, we define the transformation η(ψ), which makes use
of the operator nesting tree Dψ, and preserves ψ’s consistency; such transformation
will guarantee that T(L)-theorems are mapped into US-theorems.
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Definition 2.7 Given two formulas ϕ, ψ ∈ LT(L), define:

1. Mon(ϕ) is the set of monolithic subformulas of ϕ.
2. Lit(ϕ) = Mon(ϕ) ∪ {¬ψ|ψ ∈Mon(ϕ)};
3. Inc(ϕ) = {∧F |F ⊆ Lit(ϕ) and F `L⊥}; that is Inc(ϕ) is the set of L-inconsistent

formulas that can be built using the monolithic subformulas of ϕ;
4. �ϕψ is the conjunction of all formulas of the form �m1,...,mnψ such that �m1,...,mn

is a temporal operator associated to a string in the operator nesting tree Dϕ;
5. η(ϕ) =

∧{�ϕ¬ψ|ψ ∈ Inc(ϕ)}.
Example 2.8 If ϕ = S(p, q), then Dϕ = {ε, 0}. So, for any formula ψ, �ϕψ =
�0,0ψ ∧�0,1ψ = ψ ∧Hψ.

The terminology used in Definition 2.7 was introduced in [11]. The modification
for the general case we had to make here is restricted to the definition of �ϕψ (used
in the definitions of η(ϕ)).

The following Lemma is an adaptation of [11] for a the case of generic flows of time.

Lemma 2.9 `T(L) η(ψ).

Proof. Every formula ϕ in Inc(ψ) is a contradiction, and therefore its negation is a
theorem of T(L). Now, if ¬ϕ is a theorem, so are H¬ϕ and G¬ϕ; by induction we get
that �m1,...,mn¬ϕ is a theorem too, for any m1, . . . ,mn.

Using Lemmas 2.5 and 2.9, we have that if ψ is T(L)-consistent, then σ(ψ ∧ η(ψ))
is US-consistent. We can apply completeness of US/K and obtain a US-model MUS

for σ(ψ ∧ η(ψ)) over K. Furthermore, the theoremhood of the monolithic L-formulas
in ψ is captured in η(ψ) and will guarantee that its translation will be true in the
“relevant part” of MUS. It is this notion of “relevant part” of a temporal model that
we define next by associating subflows of time to binary trees (not very surprisingly).
At this part of the proof we will be working at the US level.

Let (T,<) ∈ K be a flow of time, and let t, s ∈ T . We say that s is 1-related to t
if t < s (s is in the future of t); similarly, s is 0-related to t if s < t (s is in the past
of t). Let t1, . . . , tn ∈ T be a sequence of time points such that each pair ti, ti+1 is
0- or 1-related. Such a sequence can then be associated to a string of 0’s and 1’s of
length n− 1, where the ith position is 1 if ti and ti+1 are 1-related, and 0 otherwise;
we represent it as string(t1, . . . , tn).

The “relevant part” of a flow of time (T,<), with respect to a temporal formula A
at a point t, is formally defined as the range of A at t over (T,<), Rg(A, t):

Rg(A, t) = {t} ∪ {s ∈ T | string(t, t1, . . . , tn, s) ∈ DA for some t1, . . . , tn ∈ T }
Note that since DA = D¬A, it follows that Rg(A, t) = Rg(¬A, t).
It is important to highlight that we are not constructing a submodel of a given

model generated by Rg(A, t). Our aim is to construct a model that belongs to a class
K. If we start in a model over K and generate a submodel based on Rg(A, t), there
is no way to guarantee that the generated submodel belongs to K, and in general it
does not. So Rg(A, t) will be used to focus on a relevant part of the model. The
satisfaction of a formula A at a point t in a temporal model depends only on the
temporal valuation at points in Rg(A, t), as shown below.
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Lemma 2.10 Consider a temporal model M = (T,<, g), a formula A ∈ LUS, and a
point t ∈ T . Then for any model M′ = (T,<, g′) such that g′(s) = g(s) for every
s ∈ Rg(A, t),

M, t |= A iff M′, t |= A.

Proof. Initially note that, both M and M′ are based on the same flow of time, so
for every subformula B of A and for every s ∈ T , Rg(B, s) is the same set for both
models. We proceed by structural induction over A.

• If A is atomic, then g(t) = g′(t).
• If A = ¬B, then Rg(A, t) = Rg(B, t), so the induction hypothesis directly gives

us the result.
• If A = B1 ∧ B2, then Rg(A, t) = Rg(B1, t) ∪ Rg(B2, t), and therefore for every
s ∈ Rg(Bi, t), g(t) = g′(t) [i = 1, 2], so the induction hypothesis applies and gives
us that M, t |= Bi iff M′, t |= Bi, from which the result follows immediately.

• If A = S(B,C), then M, t |= A iff there exists a t′ < t with M, t′ |= B and for
every t′′ such that t′ < t′′ < t, M, t′′ |= C. Note that both t′, t′′ ∈ Rg(A, t).
Furthermore, because the temporal nesting of B and C is smaller than that of A,
we have Rg(B, t′) ⊆ Rg(A, t) and therefore g(s) = g(s′) for every s ∈ Rg(B, t′), so
the induction hypothesis applies and yields M, t′ |= B iff M′, t′ |= B; analogously,
we get that for every t′′ such that t′ < t′′ < t, M, t′′ |= C iff M′, t′ |= C, and
therefore the result follows.

• If A = U(B,C) the reasoning is totally analogous to the previous case, finishing
the proof.

The following lemma shows that the definition of η(ψ) preserves ψ’s truth value
over that “relevant part” of a model.

Lemma 2.11 Let MUS = (T,<, g) be a temporal model over K and ϕ, ψ ∈ LT(L).
Let t ∈ T so that MUS, t |= σ(�ϕψ). Then for every s ∈ Rg(σ(ϕ), t), MUS, s |= σ(ψ).

Proof. We know that

�ϕψ =
∧

1m1 ...0mn∈Dϕ

�m1,...,mnψ.

A simple induction shows that Dϕ = Dσ(ϕ), and therefore

σ(�ϕψ) =
∧

1m1 ...0mn∈Dσ(ϕ)

�m1,...,mnσ(ψ).

Consider s ∈ Rg(σ(ϕ), t). Then either s = t or there are t1, . . . , tn ∈ Rg(σ(ϕ), t)
such that string(t, t1, . . . , tn, s) ∈ Dσ(ϕ). If s = t, since ε ∈ Dσ(ϕ), it follows that
MUS, s |= σ(ψ). In the latter case, we show the result by induction on n.

For n = 0, we have that either s < t, in which case we have that MUS, t |= Hσ(ψ)
so MUS, s |= σ(ψ), or t < s, in which case we have that MUS, t |= Gσ(ψ) so MUS, s |=
σ(ψ).
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For the inductive case, we have that string(t, t1, . . . , tn, s) ∈ Dσ(ϕ). Again we have
two possibilities. If tn < s then the rightmost operator in �m1,...,mn is a G, and the
induction hypothesis gives us that MUS, tn |= Gσ(ψ) so MUS, s |= σ(ψ). If s < tn
then the rightmost operator in �m1,...,mn is an H , and the induction hypothesis gives
us that MUS, tn |= Hσ(ψ) so MUS, s |= σ(ψ).

This finishes the induction and the proof.

We can now finally glue the pieces of the completeness proof.

Theorem 2.12 If the logical system L is complete and US is complete over a class of
flows of time K, then the logical system T(L) is complete over K.

Proof. Let ψ be a T(L)/K-consistent formula. We will construct a T(L)-model for
ψ over the class K.

By Lemma 2.9, ψ ∧ η(ψ) is also a T(L)-consistent formula. So, by Lemma 2.5,
σ(ψ ∧ η(ψ)) is a T-consistent formula. As we assume that US/K is complete, then
there exists a temporal model MUS = (T,<, g) with (T,<) ∈ K such that for some
t ∈ T , MUS, t |= σ(ψ ∧ η(ψ)). For every s ∈ Rg(ψ, t), define:

Gψ(s) = {ϕ ∈ Lit(ψ)|MUS, s |= σ(ϕ)}
Claim: For every s ∈ Rg(ψ, t), Gψ(s) is finite and L-consistent.
Indeed, Gψ(s) is finite because Lit(ψ) is finite. To prove consistency, suppose by

absurd that for some s ∈ T , Gψ(s) is L-inconsistent. Then there exists a subset of
Gψ(s), {ϕ1, . . . , ϕn} such that `L

∧
1≤i≤n ϕi → ⊥. Thus

∧
1≤i≤n ϕi ∈ Inc(ψ).

Let ξ = �ψσ(¬∧
1≤i≤n ϕi). By the definition of η and σ, it follows that ξ is a

conjunct of σ(ψ ∧ η(ψ)). From MUS, t |= σ(ψ ∧ η(ψ)) it follows MUS, t |= ξ, so by
Lemma 2.11 MUS, s |= ¬σ(

∧
1≤i≤n ϕi). However, by the definition of Gψ(s) we have

that MUS, s |=
∧

1≤i≤n σ(ϕi) = σ(
∧

1≤i≤n ϕi), which is clearly a contradiction.
Therefore Gψ(s) is always L-consistent, proving the claim.
This claim is then used to build a model for ψ in the following way. By Lemma 2.11,

for each s ∈ Rg(ψ, t), MUS, s |= σ(Gψ(t)). By hypothesis, L is complete, so for each
s ∈ Rg(ψ, t) there exists a model for the L-consistent set Gψ(s), Ms

L. So, we can
define a valuation h as:

h(s) = Ms
L

for every s ∈ Rg(ψ, t); for s ∈ T −Rg(ψ, t), h(s) can be any model of L.
Consider MT(L) = (T,<, h). To obtain completeness, all we have to do is to prove

that MT(L), t |= ψ. First, note that for every s ∈ Rg(ψ, t), and every monolithic
subformulaB of ψ, MT(L), t |= ϕ iff MUS, t |= σ(ϕ). Then a straightforward structural
induction on ϕ generalises this to show that MT(L), t |= ψ iff MUS, t |= σ(ψ); details
omitted.

But since we have that MUS, t |= σ(ψ), it follows that MT(L) is a temporalised
model for ψ over K, finishing the proof.

The following is a nice consequence of soundness and completeness. Let Th(L) be
the set of all theorems of logic L. A logic L′ is an extension of logic L if Th(L) ⊆ Th(L′).
Furthermore, such an extension is said to be conservative if the language of L′ is a
superset of the language of L and for every formula A in the language of L, A ∈ Th(L′)
only if A ∈ Th(L).
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Lemma 2.13 If the systems US and L are sound and complete, with disjoint sets of
connectives, then the temporalised system US(L) is a conservative extension of both
US and L.

Proof. It is obvious from the definition of US(L) that it is an extension of both US
and L.

For conservativeness, suppose A is a formula of US that is a theorem of US(L).
Suppose for contradiction that A is not a theorem of US, 6`US A. Then, since US
extends classical logic, we have that ¬A is a consistent formula, and by completeness,
we have a model M for ¬A. We construct a temporalised model MT(L) = (T,<, g)
such that g(t) = M for every t ∈ T . Such a model is indeed T(L)-countermodel of A,
contradicting the soundness of T(L). So A is a theorem of US.

If A is a formula of L, because the sets of connectives are disjoint, the only way
it can be deduced is via the inference rule of Preserve, in which case it clearly is a
theorem of L. Which finishes the proof.

Remark 2.14 Note that the last step of the proof above relies on the fact that the
languages of L and US are disjoint. If there is a connective of L that also appears in US,
the result above would not hold. This seems a vacuous assertion, since we have always
assume the disjunction of the languages in this section, but it will be particularly
important when we discuss the decomposition of the independent composition in
several temporalisations.

2.3 Decidability of T(L)

Transference of decidability is shown in [11] conditioned to the underlying flow of time
being linear. We extend here that result to any class of flows of time. Recall that
a given system L is decidable if for any formula ψ ∈ L, there exists a procedure that
outputs “yes” if ψ is a theorem and “no” otherwise. So, if L is complete then L is
decidable if for any formula ψ ∈ L, it is possible to decide whether ψ is valid or not.

Let us suppose that both the temporal system T and the external system L are
decidable. We assume that both T and L are sound and complete. Then, T(L) is also
sound and complete, decidability is obtainable if we can decide the validity of a T(L)
formula ψ in any temporalised model.

The transference of decidability is obtained through a construction similar to that
used for completeness. The definitions of η(ψ) and the mapping σ are the same. We
have:

Lemma 2.15 Let L and T be sound and complete systems. A formula ψ is T(L)-valid
iff σ(η(ψ) → ψ) is US-valid.

Proof. If σ(η(ψ) → ψ) US-valid, by US-completeness it is also a theorem, then we
can simply mimic the US-proof at the temporalised level, since all US axioms and
inference rules are present at T(L), so η(ψ) → ψ is also a T(L)-theorem. And since,
by construction, η(ψ) is always a theorem, so is ψ. By derived soundness, it is also
T(L)-valid.

Suppose by contradiction that ψ is T(L)-valid and σ(η(ψ) → ψ) is not valid. From
Lemmas 2.10 and 2.11 follows that if there was a countermodel for σ(η(ψ) → ψ), we
would be able to construct a countermodel for η(ψ) → ψ, and thus also a countermodel
for ψ, which contradicts completeness. So σ(η(ψ) → ψ) must be US-valid.
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It is simple now to see the transference of decidability.

Theorem 2.16 If T and L are sound, complete and decidable, T(L) is decidable.

Proof. From the definition of η(ψ), if L is decidable then we have a direct way to
construct η(ψ). From Lemma 2.15, it follows that the decision of ψ is equivalent to
the decision of σ(η(ψ) → ψ). Since such a formula is constructible, we can apply the
decision procedure of T, thus deciding ψ.

It is straightforward to show the following complexity result:

Lemma 2.17 Let N be the size of a formula, and let O(cL(N)) and O(cUS(N))
be upper bounds of the complexity of the decision procedures of L and T, respec-
tively. Then an upper bound of the complexity of the decision procedure for T(L) is
O(cT(2N) + 2N × cL(N)).

Proof. The complexity of the decision procedure for T(L) is divided in two parts.
The first corresponds to the computation of η(ψ), where N is the size of ψ. This this
process consists of computing Lit(ψ), which is O(N) and then testing all subset of
it for inconsistency. Since there is O(2N ) potential subsets, this part has complexity
O2N × cL(N)).

The second part is to apply the decision procedure of T to σ(η(ψ) → ψ). The
size of η(ψ) is O(2N ), so this part has complexity O(cT(2N )), leading to the overall
complexity O(cT(2N) + 2N × cL(N)).

2.4 Iterated temporalisations

This section serves as a prelude to the independent combinations of logics to be
presented in Section 3. Here we analyse what happens when we apply US to a logic
L = T(US), where T may contain a renaming of U and S. This violates the initial
assumption that the set of connectives from the external US and the internal L are
disjoint, for U and S, without renaming, now appear in both systems.

To be a little bit more generic, let us consider a temporalisation US1(Ln), where
Ln = US2(US1(. . .)) corresponds to n iterated temporalisations having US2 as the out-
ermost external application.

It is important to note, however, that the internal and external occurrence of the
connectives obey the same logic rules (inference rules and semantics).

We now analyse how the results obtained so far can be brought to US1(Ln).

Completeness and decidability of US1(Ln)
The main problem here is what is considered a monolithic subformula. For example,
if we find a subformula of the format G1p in a formula of US1(Ln), is it considered
monolithic, for it is part of Ln, or is it considered part of US1, and thus not monolithic?

This question affects the constructions of the proofs of completeness and decidabil-
ity in that it affects is how to compute η(ψ).

The answer to this problem is: for the purpose of computing η(ψ) a monolithic
subformula is any subformula that is a member of the language of Ln that is not a
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Boolean combination. This is in the spirit of the way η(ψ) was defined and preserves
its properties for the case of US1(Ln).

As defined for a normal temporalisation of T(L) where T and L have disjoint sets
of operators,

η(ψ) =
∧ {

�ψ¬ϕ|ϕ ∈ Inc(ψ)
}

where each ϕ consists of a Boolean combination of formulas of L only.
In US1(Ln), ϕ may contain now subformulas that belong to the language of US1.

This, however, does not pose a problem anywhere on the proofs. Let us clarify this
point with an example.

Consider the following formula ψ in US1(US2(US1))1.

ψ = G1(p ∧ F2H2G1¬p)
Such a formula is inconsistent if US1 is complete in transitive flows of time with no
end-points. In fact:

• ` FHA→ A is a theorem of any temporal logic, so ψ implies G1(p ∧G1¬p).
• By normality we get G1p∧G1G1¬p and, by transitivity, we get G1G1p∧G1G1¬p.
• By normality, this implies that G1G1(p∧¬p). which contradicts the no-endpoints

property of US1.

One may, by mistake, construct a temporalised model for ψ, if one considers
Mon(ψ) = {p, F2H2G1¬p,H2G1¬p}, ignoring G1¬p. Indeed, in this case, η(ψ) = >,
so σ(η(ψ) ∧ ψ)) = G1(qp ∧ qF2H2G1¬p), which clearly has a model. And since we
can get models to p ∧ F2H2G1¬p, we have constructed a temporalised model to an
inconsistent formula!

The problem with the construction above is that what we have to consider now as
monolithic subformulas is the set.

Mon(ψ) = {p, F2H2G1¬p,H2G1¬p,G1¬p}
With suchMon(ψ), we see that F2H2G1¬p and ¬G1¬p contradict (because F2H2A→
A is a theorem of any temporal logic). We see that a formula of US1, namely G1¬p
occurs in σ(η(ψ) ∧ ψ)). So among the conjuncts of σ(η(ψ) ∧ ψ)) we find:

G1(qp ∧ qF2H2G1¬p), qF2H2G1¬p → G1¬qp
The first is σ(ψ) and the second is σ(�0(F2H2G1¬p → G1¬p)) These two formulas
imply inconsistency, in the same pattern as we derived the inconsistency of ψ above,
and by soundness of US1, no model can be built for it.

With this in mind, the proof of completeness of Section 2.2 applies immediately
to US1(Ln). This can be seen by an inspection on the proof. We see that nowhere
else in that construction was it necessary to use the fact that the set of connectives
of the external US1 and those of internal logic Ln is disjoint. In particular, any
occurrence of a connective of US1 inside Ln always occurred within the scope of a US2

connective, avoiding any interaction between the external and internal occurrences of
a US1 connective.

Similarly, the proof of decidability also applies to US1(Ln).

1This example was suggested by Massimo Franceschet.
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Conservativeness of US1(Ln)
The proof of Lemma 2.13, stating that US(L) is a conservative extension of both US
and L uses the fact that the sets of connectives are disjoint.

However, in the case of US1(Ln), because the internal and external occurrences of
connectives of US1 respect the same semantic rules and inference rules, it is possible
to adapt the of Lemma 2.13 to US1(Ln). For that, we have to assume that US1 and
US2 are sound and complete, which gives us the soundness of Ln.

In fact, the interesting case arises when we prove A in US1(Ln) and A is a formula
of Ln. Then we have to analyse two cases:

• If A is not in the language of US1, then the only way A could have been derived
is by the use of Preserve rule. In which case A is also a theorem of Ln.

• Suppose A is in the language of US1. This means that A is a pure US1 formula.
As in Lemma 2.13, we show that A is a theorem of US1. Suppose for contradiction
that it is not. Then ¬A is a consistent formula, and by completeness of US1,
¬A has a model MA. We construct a temporalised model MT(L) = (T,<, g)
such that, for every t ∈ T , g(t) = MA, thus building a T(L)-countermodel for
A, contradicting the soundness of T(L). So A is a theorem of US. But since the
temporalisation is an extension of its components, any theorem of US1 is also a
theorem of Ln.

So if A is a theorem in US1(Ln) that is in the language of Ln, it is a theorem of Ln.
The second item above also showed that if A is in the language of US1, it is a theorem
of US1. We have thus proved the following.

Lemma 2.18 If US1 and US2 are sound and complete, then US1(Ln) is a conservative
extension of both US1 and Ln.

2.5 Extension to multimodal, non-temporal logics

Before we move to the independent combination of logics, we would like to discuss
how the results presented so far generalise when in the external logic T the connectives
may have any arity, and instead of only two (U and S) we may have n connectives
41, . . . ,4n, such that the arity of 4i is ri > 0.

On the semantical side, we assume that each connective 4i is associated with a
binary relation Ri. The semantics of formulas is based on a multidimensional frame
(W,R1, . . . , Rn). We have, however, to impose certain semantic restrictions:

• The semantics of 4i(p1, . . . , pri) is a monadic first-order formula (or connective
truth table in the sense of [20, Chapter 8]) build from predicates P1(·), . . . , Pri(·),
the relational symbols R1, . . . , Rn, and equality.

• For each relational symbol Ri, we must be able to express a derived connective
�i such that �ip expresses ∀x(t Ri x⇒ P (x)). Furthermore, the inference system
must be able to derive that if ` A then ` �iA, 1 ≤ i ≤ n.

This second restriction correspond to the notion of normality. Note, however, that
the demand of normality made here is weaker than that made in [28], for there it
is required that every argument position in 4i(p1, . . . , pri) be normal, a requirement
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that even U and S fail to keep, for they are only normal in the first position and not
in the second. A weaker requirement, however, can be found in [2].

Let us call the resulting system a generalised modal/temporal logic. The process of
applying it externally to a logic L will be called a generalised modalisation of L.

In the case of US-temporal logic, each connective has arity 2, U is associates with
binary relation R1 = < and S with R2 = >; also, �1 = G and �2 = H are derivable
connectives. The fact that R1 and R2 are related is no limitation for this setting.
This setting allows for many well-known modal logics, including the branching time
modalities in CTL and CTL∗ and multi-arity connectives. The restriction (*) for the
internal logics, however, remains.

We can then examine how our proof of completeness can be adapted. The definition
of the operator nesting tree Dψ of a formula ψ is simply extended to :

1. If ψ is a literal or monolithic, then Dψ = {ε};
2. If ψ = ϕ1 ∧ ϕ2, then Dψ = Dϕ1 ∪Dϕ2 ;
3. If ψ = ¬ϕ, then Dψ = Dϕ;
4. If ψ = 4i(ϕ1, . . . , ϕri), then Dψ = {ε} ∪ {i ∗ s|s ∈ Dϕi ∪ . . . ∪Dϕri

}.
This implies that the strings that compose our strings take as atoms the elements

of the interval [1, i] and that each node in the tree can be at most i-branching. A
temporal operator can then be associated with each string in a straightforward way,
that is, each j ∈ [1, i] is associated with the derived operator �j and a string j1 · · · jp
is associated with the string of connectives �j1 · · ·�jp .

The definition of �ϕψ remains the same as before, namely the conjunction of all
formulas of the form�m1,...,mnψ such that�m1,...,mn is a temporal operator associated
to a string in the operator nesting tree Dϕ.

Given a multi-dimensional frame (W,R1, . . . , Rn) and t1, . . . tm ∈ W , such that tk
is related with tk+1 by some Ri, we represent by string(t1, . . . tm) the string of length
m− 1 obtained by a path through all those points.

Finally, the correspondence mapping σ can be modified, remaining a homomor-
phism, so as to deal with generic modalities of the form 4i(ϕ1,. . ., ϕri):

σ
( 4i(ϕ1,. . ., ϕri)

)
= 4i

(
σ(ϕ1),. . ., σ(ϕri)

)
.

The monolithic and Boolean cases remain the same.
Given those constructions all others constructions remain exactly the same. In

particular, this way preserves the central notion of Rg(A, t) as the “relevant part”
of a multi-dimensional frame (W,R1, . . . , Rn) with respect to a formula A at a point
t ∈ W , which plays a crucial role in the proof of transference of completeness. With
such generalised construction, all lemmas and theorems are straightforwardly gener-
alised and the transference of completeness and decidability follows for the temporal-
isation/modalisation of a logic with n connectives of arbitrary arity that respect the
semantical restrictions above. The reader is invited to verify the details.

What deserves note is the fact that in our construction the fact that U and S
are mirror images is taken care by the definition of η(ψ). In the same way, in the
generalised modalisation, if there is any iteration between the connective and their
respective semantical relations, this remains hidden in the construction of η(ψ), and
the proof generalises smoothly. We can then state the following result.
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Theorem 2.19 The properties of completeness and decidability are transferred via
generalised modalisation/temporalisation.

3 The independent combination of temporal systems

Once we have generalised the transference results for the unrestricted temporalisation
of a logic system over any class of flows of time, the next obvious question is whether
such results generalise for the independent combination of two temporal logics.

Such an investigation was pursued for the linear case in [10], in which the transfer-
ence of completeness was obtained by the “unravelling” of the independent combina-
tion in a finite number of temporalisations. Here we investigate if such technique is
still applicable for the unrestricted case.

The work of Frank Wolter [28] on independent combination of logics (there called
fusion of logics) is perhaps the work in the literature that more closely relates to the
goals of the present work. That work explores the fusion of any number of logics
containing any number of operators, of arbitrary arity. One restriction of such work
was that each modality had to respect a restriction of normality in every argument,
and it turns out the U and S do not respect such condition. Such a restriction was
only eliminated as a side effect in a later work [2].

The present work compares with Wolter’s in the following ways:

• We present a proof of transfer of decidability for US over any class of flows of time.

• Wolter’s presentation is algebraic, while ours is based on Kripke semantics.

• Our construction shows how the independent combination can be seen as an infi-
nite union of alternating temporalisations.

3.1 Definitions

We now deal with the independent combination of two temporal logic systems, US1

and US2. If we temporalise US1 with US2, we obtain a very weakly expressive system;
in such a system, if US1 is the internal temporal logic (F1 is a derived connective in
US1), and US2 is the external one (F2 is also derived in US2), we cannot express that
vertical and horizontal future operators commute,

F1F2A↔ F2F1A.

In fact, the subformula F1F2A is not even in the temporalised language of US2(US1),
nor is the whole formula. In other words, the interplay between the two-dimensions
is not expressible in the language of the temporalised US2(US1).

The idea is then to define a method for combining temporal logics that is symmetric.
As usual, we combine the languages, inference systems and classes of models.

Definition 3.1 Let Op(T) be the set of non-Boolean operators of a generic temporal
logic T. Let T1 and T2 be two temporal logic systems such that Op(T1) ∩Op(T2) =
∅. The fully combined language of logic systems T1 and T2 over the set of atomic
propositions P is obtained by the union of the respective set of connectives and the
union of the formation rules of the languages of both logic systems.
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Let the operators U1 and S1 be in the language of US1 and U2 and S2 be in that of
US2. Their fully combined language over a set of atomic propositions P is given by

• every atomic proposition is in it;

• if A,B are in it, so are ¬A and A ∧B;

• if A,B are in it, so are U1(A,B) and S1(A,B).

• if A,B are in it, so are U2(A,B) and S2(A,B).

The two languages taken to be independent of each other and the set of axioms of
the two systems are supposed to be disjoint. The following combination method is
the independent combination of two temporal logics. An axiomatisation is given by a
pair (Σ, I), where Σ is a set of axioms and I is a set of inference rules.

We have very few limitations on the axiomatisations, namely:

• US1 and US2 are extensions of classical logic, so classical manipulations are ad-
missible in the system; ie. if they are not primitive, they can be derived.

• Because the we are assuming a Kripke-style semantics, the logics have to be nor-
mal. This means that the axioms of normality (ie, the K-axioms) must be derivable
for G1, H1, G2 and H2.

• The rule of necessitation has to be admissible: from ` A derive ` G1A, ` H1A,
` G2A and ` H2A.

Note that, since the set of operators of the two logics is disjoint, the set of axioms
and inference rules referring to those operators will be disjoint.

Definition 3.2 Let US1 and US2 be two US-temporal logic systems defined over the
same set P of propositional atoms such that their languages are independent. The
independent combination US1 ⊕ US2 is given by the following:

• The fully combined language of US1 and US2.

• If (Σ1, I1) is an axiomatisation for US1 and (Σ2, I2) is an axiomatisation for US2,
then (Σ1 ∪ Σ2, I1 ∪ I2) is an axiomatisation for US1 ⊕ US2.

• The class of independently combined flows of time is K1 ⊕ K2 composed of bi-
ordered flows of the form (T,<1, <2) where the connected components of (T,<1)
are in K1 and the connected components of (T,<2) are in K2, and T is the (not
necessarily disjoint) union of the sets of time points that constitute each connected
component.
A model structure for US1 ⊕ US2 over the combined class K1 ⊕ K2 is a 4-tuple
(T,<1, <2, g), where (T,<1, <2) ∈ K1 ⊕ K2 and g is an assignment function g :
T → 2P .

• The semantics of a formula A in a model M = (T,<1, <2, g) is defined as the
union of the rules defining the semantics of US1/K1 and US2/K2. The expression
M, t |= A reads that the formula A is true in the (combined) model M at the
point t ∈ T . The semantics of formulas is given by induction in the standard way:
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M, t |= p iff p ∈ g(t) and p ∈ P .
M, t |= ¬A iff it is not the case that M, t |= A.
M, t |= A ∧B iff M, t |= A and M, t |= B.
For i = 1, 2:
M, t |= Si(A,B) iff there exists an s ∈ T with s <i t and M, s |=

A and for every u ∈ T , if s <i u <i t then
M, u |= B.

M, t |= Ui(A,B) iff there exists an s ∈ T with t <i s and M, s |=
A and for every u ∈ T , if t <i u <i s then
M, u |= B.

The independent combination of two logics also appears in the literature under the
names of fusion or join. The language of such a logic is referred to in the literature
as a two-dimensional temporal language, even though its semantics is based on the
evaluation of formulas at a single point (thus still one dimensional). The topic of
two-dimensional modal/temporal languages and logics has been extensively discussed
in the literature, e.g. [21, 23, 1, 26, 27, 20, 18].

We now proceed to examine the transference of properties through the independent
combination.

3.2 Soundness of T1 ⊕ T2

Before we show the transference of soundness, it is worth noting an early result by
Thomason [25], which is indeed more general than the independent combination of
two US-logics. This result is useful in the proof of both soundness and completeness.

Proposition 3.3 (Thomason [25]) With respect to the validity of formulas, the
independent combination of two modal logics is a conservative extension of the original
ones.

In algebraic presentations, Proposition 3.3 is considered a kind of soundness result.
However, for our purposes, soundness has to do with the validity of all deductions. We
present soundness as a consequence of Proposition 3.3, but it could also be obtained
by verifying the validity of axioms and inference rules.

Theorem 3.4 (Soundness Transference) If US1/K1 and US2/K2 are sound logic
systems, so is US1 ⊕ US2/K1 ⊕K2.

Proof. By induction of the length of a deduction. For the base case, we have to
establish the validity of all axioms, which follows directly from the soundness of
US1/K1 and US2/K2 and the fact that by Proposition 3.3, all US1/K1- and US2/K2-
valid formulas are valid in the combined system (alternatively, their validity could be
verified directly).

For the inductive case, all we are left to do is to verify that the inference rules
transform valid formulas into valid formulas, which is a routine, straightforward task.
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3.3 Completeness

In the proof of completeness, just as in [10], we will use the temporalisation as an
inductive step in the construction of a combined model. However, as discussed in
the presentation of the semantics of temporalised logics in Section 2.1, the class of
temporal models of the internal logic must also include the evaluation time point, so
that a member of the class of models of US1 or US2 is a quadruple (T,<, g, t), where
t ∈ T .

Let us first define the degree of alternation of a (US1 ⊕ US2)-formula A, dg(A), as
the maximum number of alternate times a connective of one of the temporal logics
occurs inside a connective of the other temporal logic. In this way, formulas of US1

and of US2 all have degree of alternation 0. If we take a temporal formula of US1, say
F1p and place it inside a connective of US2, say H2, the formula H2F1p has degree 1;
similarly, U1(H2F1p, q) has degree 2, and so on.

The main idea of the completeness proof is based on the fact that any formula
A of US1 ⊕ US2 can be seen as a formula of some finite number of alternating
temporalisations of the form US1(US2(US1(. . .))); more precisely, A can be seen
as a formula of US1(Ln), where dg(A) = n, US1(L0) = US1, US2(L0) = US2, and
Ln−2i = US2(Ln−2i−1), Ln−2i−1 = US1(Ln−2i−2), for i = 0, 1, . . . , dn2 e − 1.

The following Lemma actually allows us to obtain transference of completeness to
the independent combination via finite number of alternating temporalisations of US1

and US2.

Lemma 3.5 Let US1 and US2 be sound and complete. A is a theorem of US1 ⊕ US2

iff it is a theorem of US1(Ln), where dg(A) = n.

Proof. IfA is a theorem of US1(Ln), all the inferences in its deduction can be repeated
in US1 ⊕ US2, so it is a theorem of US1 ⊕ US2.

Suppose A is a theorem of US1 ⊕ US2; let B1, . . . , Bm = A be a deduction of A in
US1 ⊕US2 and let n′ = max{dg(Bi)}, n′ ≥ n. We claim that each Bi is a theorem of
US1(Ln′). In fact, by induction onm, if Bi is obtained in the deduction by substituting
into an axiom, the same substitution can be done in US1(Ln′); if Bi is obtained by
some inference rule from Bj1 , . . . , Bjk , j1, . . . , jk < i, then by the induction hypothesis,
each Bj` is a theorem of US1(Ln′) and so is Bi.

So A is a theorem of US1(Ln′). It follows from the semantic definitions that the
set of valid formulas in US1(Ln′) is a subset of the valid formulas in US1 ⊕ US2.
Since US1 and US2 are two complete logic systems, by Theorem 2.12 we know that
US1(Ln′) is complete for each n′. So Lemma 2.18 yields that each of the alternating
temporalisations in US1(Ln′) is a conservative extension of Ln′ ; it follows that A is a
theorem of US1(Ln), as desired.

Theorem 3.6 (Completeness of US1 ⊕ US2) Let US1/K1 and US2/K2 be two sound
and complete logic systems. Then their independent combination US1 ⊕US2 is sound
and complete over the class K1 ⊕K2.

Proof. Soundness is given by Theorem 3.4. For completeness, suppose that A is a
consistent formula in US1 ⊕ US2; by Lemma 3.5, A is consistent in US1(Ln), so we
construct a temporalised model for it, and we obtain a model (T 1, <1

1, g
1, o1), where

o1 ∈ T 1 is the “current time” considered as part of a model to respect the restriction
(∗) of Section 2.1. We show now how it can be transformed into a model over K1⊕K2.
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Without loss of generality, suppose that US1 is the outermost logic system in the
multi-layered temporalised system US1(US2(US1(. . .))), and let n be the number of
alternations. The construction is recursive, starting with the outermost logic. Let
i ≤ n denote the step of the construction; if i is odd, it is a US1-temporalisation,
otherwise it is a US2-temporalisation. At every step i we construct the sets T i+1,
<i+1

1 and <i+1
2 and the function gi+1.

We start the construction of the model at step i = 0 with the temporalised model
(T 1, <1

1, g
1, o1) such that (T 1, <1

1) ∈ K1, and we take <1
2= ∅. At step i < n, consider

the current set of time points T i; according to the construction, each t ∈ T i is
associated to:

• a temporalised model gi(t) = (T i+1(t), <i+1
1 (t), gi+1(t), oi+1(t)) ∈ K1 and take

<i+1
2 (t) = ∅, if i is even; or

• a temporalised model gi(t) = (T i+1(t), <i+1
2 (t), gi+1(t), oi+1(t)) ∈ K2 and take

<i+1
1 (t) = ∅, if i is odd.

The point t is made identical to oi+1(t) ∈ T i+1(t), so as to add the new model to
the current structure; note that this preserves the satisfiability of all formulae at t.
Let T i+1 be the (possibly infinite) union of all T i+1(t) for t ∈ T i; similarly, <i+1

1 and
<i+1

2 are generated. And finally, for every t ∈ T i+1, the function gi+1 is constructed
as the union of all gi+1(t) for t ∈ T i.

Repeating this construction n times, we obtain a combined model over K1 ⊕ K2,
M = (T n, <n1 , <

n
2 , g

n), such that for all t ∈ T n, gn(t) ⊆ P . Since satisfiability of for-
mulae is preserved at each step, it follows that M is a model for A, and completeness
is proved.

3.4 Decidability

We are going to show the transference of decidability by a recursive application of the
temporalisation, generalising the proof of decidability of T(L) in Section 2.3.

The idea of the recursive proof is to consider a formula ψ of the independent
language US1 ⊕ US2 of alternation depth n as a temporalised formula US(Ln). By
Lemma 3.5, ψ is a US1⊕US2-theorem iff it is a US(Ln)-theorem. Thus the decidability
of ψ in US1 ⊕ US2 reduces to its decidability in US(Ln). The following is the basic
result in the transference of decidability.

Lemma 3.7 Let US1/K1 and US2/K2 be two sound, complete and decidable temporal
logics. Then for every formula ψ of US1 ⊕ US2, there exists a US1 formula A that is
effectively constructible such that ψ is US1 ⊕ US2-valid iff A is US1-valid.

Proof. Let ψ be a US1 ⊕ US2 formula of alternation depth n. We propose the
following decision procedure, US1 ⊕ US2-Decide(ψ):

Let n be ψ’s alternation degree. If n = 0, then ψ is a US-formula and we apply
the US1- or US2-decision procedure to decide ψ, according to which language
ψ belongs to.
Otherwise, we construct the formula η(ψ) → ψ in the following way:
• Let Lit(ψ) = Mon(ψ) ∪ {¬φ|φ ∈ Mon(ψ)}, where Mon(ψ) is the set of

monolithic subformulas of ψ.
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• Let Inc(ψ) be set of inconsistent conjunctions φi in Lit(ψ); this inconsistency
is obtained by a recursive call to US1 ⊕ US2-Decide(φi), where each φi now
has alternation degree at most n− 1.

• Build η(ψ) from Inc(ψ) as in Definition 2.7.
Apply US1-decision procedure to σ(η(ψ) → ψ) and return its output.

The recursive construction of η(ψ) always terminates, for in each recursive call of
the decision process, the degree of alternation decreases, and the procedure stops
when it reaches a degree of alternation 0.

The correctness of the procedure is proven by induction on n. For n = 0 we simply
apply the temporal decision procedure of the corresponding temporal logic.

For n > 0 we claim that deciding φ is equivalent to deciding σ(η(ψ) → ψ). In fact:

• ψ is US1 ⊕ US2-valid iff it is US(Ln)-valid by completeness and Lemma 3.5.
• ψ is US(Ln)-valid iff σ(η(ψ) → ψ) is US1-valid by Lemma 2.15 and η(ψ) is con-

structed deciding the validity of a set of formulas with alternation degree at most
n− 1, so by induction hypothesis η(ψ) is constructible.

Thus we have a correct, terminating decision procedure for US1 ⊕ US2.

The transference of decidability directly follows from the previous Lemma.

Theorem 3.8 Let US1/K1 and US2/K2 be two sound, complete and decidable tem-
poral logics. Then US1 ⊕ US2 is decidable.

Proof. Let ψ be a US1 ⊕ US2-formula. By Lemma 3.7, we construct a US1-formula
whose decision problem is equivalent to ψ and then apply US1’s decision procedure.

With regards to the complexity of the decision problem, the algorithm outlined
above does not give us a good starting point. However, a very detailed analysis of the
complexity of such systems was done in [24].

3.5 Extension to an arbitrary number of multimodal logics

In Section 2.5 we showed how the process of applying a logic externally to another
could be generalised to modal logics with n connectives of arbitrary arity. In the case
of the independent combination, we can go even further. For the temporalisation (or
the extended modalisation) is a combination process that involves only two logics:
the external T and the internal L.

However, in the independent combination of logics, this limitation does not hold.
For in a generalised independent combination any number of logics may be taken as
input, each with any number of connectives of arbitrary arity.

Does the transference of properties hold is such a generalised form?
Let us first concentrate on the a combination of two generalised modal logics, M1

and M2. We start noting that the format of the combined model (T,<1, <2) in
the independent combination is basically the same of that of the generalised frame
(W,R1, . . . , Rn). As usual, we assume that the connectives of M1 are distinct from
those of M2. Combining the languages and inferences systems poses no problems.
In combining the two classes of frames, we would end up with frames of the form
(W,R1

1, . . . , R
1
n1
, R2

1, . . . , R
2
n2

), which has the same format of a generalised frame.
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This means that M1 ⊕M2 has the same format of a generalised modal logic, so the
process can be iterated once more. That is we can independently combine M1 ⊕ M2

with a generalised modal logic M3 obtaining yet another generalised modal logic,
(M1 ⊕ M2) ⊕ M3. Of course, this process can be iterated any number of time. And
its not hard to see that the process, at least on the level of combining language and
inference systems, is associative and commutative. On the semantic level, note that
we do not distinguish, say, the frames (W,R1, R2) from (W,R2, R1), so the resulting
frame will have a single set of points and the disjoint union of all relations involved
which of course is associative and commutative.

This shows that if we can independently combine two generalised modal logics, we
can easily independently combine any number of such logics. It remains to be shown
that the generalised modalisation/temporalisation can still be used as a building block
for the independent combination of M1 and M2.

To show that this is indeed the case, we will show how the construction above can
be modified for multimodal logics.

The main thing to note here is that, no matter what the modal connectives are, the
independent combination of two modal systems can be decomposed in a successive
number of modalisations/temporalisations, for a formula of M1 ⊕ M2 can always be
seen as a formula of some finite number of temporalisations: M1(M2(M1(. . .))).

The notion of degree of alternation in this case is exactly the same as in the US
case. The core of the completeness proof remains the same, namely the proof of the
following lemma.

Lemma 3.9 Let M1 and M2 be two sound and complete generalised modal logics.
The formula A is a theorem of M1 ⊕ M2 iff it is a theorem of some modalised system
M1(M2(M1(. . .))).

The depth of the temporalised system, as before, is bounded by the degree of
alternation d in A of the nesting modal of M1 inside M2 operators, and vice-versa.
Such a notion is exactly as it was in the US case. Also, the remarks made in Section 2.4
as to what should be a monolithic formula in M1(M2(M1(. . .))) also apply here.

With Lemma 3.9 all there is to do now is to mimick the construction of the model in
Theorem 3.8. IfA is a consistent M1⊕M2 formula, by Lemma 3.9 it is also consistent in
some temporalised logic M1(M2(M1(. . .))) with at most d alternations. We apply the
generalised modalisation transference of completeness to obtain a modalised model for
A and then mimick the steps of Theorem 3.8 to transform such a model into a model
of the independent combination. This is straightforward and we ommit the details.
This shows that completeness is transferred through independent combination.

To obtain the transference of decidability we hardly have to make any changes to
the proof in Section 3.4. There the decision procedure is based on the fact that a
formula of T1 ⊕ T2 is valid iff it is valid in some temporalised system. But the same
result was generalised in Lemma 3.9. So the decision procedure for the generalised
case is the same as the decision procedure for the US case, with barely any difference,
for we have already shown in Section 2.5 how to extend the mappings σ and η to the
generalised case, which are all that is needed in the decision procedure. So decidability
is transferred.

And since soundness is transferred by the result of Thomason [25], we can then
conclude the following.
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Theorem 3.10 Let M1 and M2 be two sound, complete and decidable extended modal
logics. Then M1 ⊕ M2 is sound, complete and decidable.

4 Conclusion

We have extended the original results on temporalisation of [11] to any class of flows
of time, extending the original result for linear classes only. This results was also
extended to multi-modal logics with n-ary connectives.

Recursive temporalisations were used in [10] to show the transference of complete-
ness and decidability for the independent combination of two linear US-temporal
logics. Such construction was shown to generalise to the unrestricted case and was
developed inside the traditional Kripke semantics for temporal logics. The same tech-
nique could also be applied to the independent combination of arbitrary number of
multi-modal logics with n-ary connectives.

Recently, the work in [2] has generalized Wolter’s algebraic results in [28] for the
independent combination of US-logics in the algebraic tradition. That work was
developed independently from ours, and did not have in mind US-logics, but was
developed for Description Logics; The generalization of Wolter’s result for decidability
developed in [2] also applies to US-logic. So the relevant points of the results in here are
the fact the independent combination was achieved using kripke-style semantics and
that we can consistently see any kind of independent combinations as an iterations of
modalisations/temporalisations. Note that in all such works, including ours, at least
some form of normal behaviour was assumed from the connectives.

It remains an open problem whether the decidability of the logics with arbitrary
operators (normal or non-normal) is transferred by their independent combination.
The investigation of non-normal temporalisations/modalisations remains a viable way
to explore such a question and is a path to be explored in the future.
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