
Adding a temporal dimension to a logicsystemMARCELO FINGER and DOV M. GABBAYImperial College, Department of ComputingJanuary 11, 1993Abstract. We introduce a methodology whereby an arbitrary logic system L can be en-riched with temporal features to create a new system T(L). The new system is constructedby combining L with a pure propositional temporal logic T (such as linear temporal logicwith \Since" and \Until") in a special way. We refer to this method as \adding a temporaldimension to L" or just \temporalising L".We show that the logic system T(L) preserves several properties of the original tempo-ral logic like soundness, completeness, decidability, conservativeness and separation overlinear 
ows of time.We then focus on the temporalisation of �rst-order logic, and a comparison is madewith other �rst-order approaches to the handling of time.1. IntroductionWe are interested in describing the way that a system S, speci�ed in a logicL, changes over time. There are two main methods for doing so. In theexternal method, snapshots of S are taken at di�erent moments of time asdescribing the state of S at those times. We can write St for the way S is attime t, and use L to describe St. We then externally add a temporal systemthat allows us to relate di�erent St at di�erent times t.In the internal method, instead of considering S as a whole, we observehow S is built up from internal components and we transform these compo-nents into time dependent building blocks. The internal temporal descriptionof each component will give us the temporal description of the whole systemS. We can assume that S can be completely described through its compo-nents and that the way the components are put together to make S into awhole is also a (possibly time varying) component.Both the external and the internal methods have their counterpart inlogic as well. A temporal logical systems with temporal connectives such as\Since" and \Until" is the result of externally turning classical logic intoa temporal (time varying) system. The use of a two-sorted predicate logicwith one time variable in which atoms are of the form A(t; x), with t timeand x an element of a domain, is an internal way of making classical logicinto a temporal system.The purpose of this paper is to investigate the external way of tempo-ralising a logic system. In the external approach, we do not need to have



2 MARCELO FINGER AND DOV M. GABBAYdetailed knowledge about the components of the system S or about the logi-cal components of its description in L. We introduce a methodology wherebyan arbitrary logic system L can be enriched with temporal features to createa new system T(L). The new system is constructed by combining L witha pure propositional temporal logic T (e.g. linear-time temporal logic with\Since" and \Until") in a special way. We refer to this method as \adding atemporal dimension to L" or just \temporalising L". The method we use isnot con�ned to temporal features only, but is a methodology of combiningtwo logics by substituting one in another. Thus in the general case we cancombine any two logic systems L1 and L2 to form L1(L2).In classical propositional temporal logic we add to the language of clas-sical propositional logic the connectives P and F and we are able to expressstatements like \in the future a certain proposition a will hold" by construct-ing sentences of the form Fa: The idea we develop here is to apply temporaloperators not only to propositions but also to sentences from an arbitrarylogic system L.Our aim can be viewed as describing both the \statics" and the \dy-namics" of a logic system, while still remaining in a logical framework. The\statics" is given by the properties of the underlying logic system L; inpropositional temporal logic T, we already have the ability to describe the\dynamics", i.e. changes in time of a set of atomic propositions. This pointof view leads us to combine the upper-level temporal T system with an un-derlying logic system L so as to describe the evolution in time of a theoryin L and its models.Another more general point of view comes from the work in (Gabbay1991d) about networks of logic databases. A database is considered to bea model of a theory in some logic system L2 and the interaction betweendatabases is modelled by another logic system L1; therefore, two basic logiclevels can be identi�ed, namely the local logic L2 and the global logic L1.The two systems are illustrated in Figure 1 with a temporal upper-levelsystem T in the place of L1 and an arbitrary underlying logic system L inthe place of L2. �
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 �	##@@����(((((����HHH.......................... -Temporal logic system TLogic system L(Local) (Global)Figure 1: Two logic levels in a database networkWe consider a network of databases distributed in time, as an extension



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 3of the more usual idea of a network of databases distributed in space. Theunderlying logic system L characterises the local behaviour of a database, i.e.the way queries are answered by a single element of the network. The upper-level logic system describes how one local system (at some moment in time)relates to another local system (at some other moment in time). We combinethose two logic systems to be able to reason about the \temporal network"as a whole, creating a logic system T(L). The result of this combination isthe addition of a temporal dimension to system L, as illustrated in Figure 2.##@@����(((((����HHH..........................##@@����(((((����HHH..........................##@@����(((((����HHH.......................... -Figure 2: The logic system T(L)The above point of view is not yet the most general setting for our op-erations. One may ask a general question: given two logics L1 and L2, canwe combine them into one logic? Suppose we take a disjoint union of thetwo systems, for example a modal logic system K, with modality 21, anda modal logic system S4, with modality 22. Here L1 = K and L2 = S4.Form a language with f21;22g and the separate axioms on 21 (K axioms)and on 22 (S4 axioms). What do we know about the union? What is thesemantics? These questions have been recently investigated by Fine andSchurz (1992) and by Kracht and Wolter (1991), in a framework in whichseveral independently axiomatisable monomodal systems were syntacticallycombined. The temporal case, however, di�ers from those since temporallogic is a bimodal system where the two modalities, one for the past and onefor the future, always interact. The methods in (Kracht and Wolter 1991)do not immediately apply. This paper di�ers from the above papers in tworespects. First we are dealing with binary connectives Since (S) and Until(U). Secondly and most importantly, we are not arbitrarily combining twologics but rather embedding one logic inside the other. If we were to embedone modality within another in the framework above we would syntacticallycombine them ruling out the formulae containing 21 within the scope of 22.This yields what we call L1(L2) (21 is externally applied to L2). The specialcase where L1 is a temporal logic T and L2 is an arbitrary logic L, gives usT(L), that we study in this paper.General combinations of logics have been addressed in the literaturein various forms. Combinations of tense and modality were discussed in(Thomason 1984), without explicitly providing a general methodology for



4 MARCELO FINGER AND DOV M. GABBAYdoing so. A methodology for constructing logics of belief based on existingdeductive systems was proposed by Konolige (1986); in this case, the lan-guage of the original system was the base for the construction of a new modallanguage, and the modal logic system thus generated had its semantics de-�ned in terms of the inferences of the original system. The model theoryused by Konolige, called a deductive model , was the connection between theoriginal system and the modal one. Here we present a quite di�erent method-ology, in which the language, inference system and semantics of T(L) arebased on, respectively, the language, the inference system and the semanticsof T and L. Recently we have developed a general methodology for combin-ing any two logics through �bring their semantics (Gabbay 1991a; Gabbay1992); the assumptions on the semantics of the candidate logics are verygeneral and yield many known results.Extensions of temporal logic are also found in the literature. In (Casanovaand Furtado 1982) a family of formal languages was generated by means ofcertain mechanisms to de�ne temporal modalities; the approach there wasbased on grammars and the resulting family of languages was claimed tobe useful in expressing transition constraints for databases. Gabbay (1991b)mixes two predicate languages G and L, generating the language L�k(G),a two-sorted predicate language in which one sort comes from terms origi-nated in G and the other sort comes from terms originated in L; in the casethat the original language G is supposed to describe an order relation <,the resulting system L�k(G) can be seen as a predicate logic like approachto temporal logic. Such a construction corresponds to an internal way ofadding a temporal dimension to a logic system. We propose in this worka di�erent approach, in which temporal modalities are applied to an ex-isting logic system and thence a temporal dimension is added. Eventually,we are going to informally compare the internal and external approaches inSection 7.The rest of the paper is organised as follows. In Section 2 we formalize theidea of temporalising a logic system L in terms of the S; U -temporal logic andwe show the soundness and completeness of the resulting system T(L) overlinear time. Section 3 shows that T(L) preserves the decidability propertyof system L over linear time, and the complexity of the decision procedureis estimated. Section 4 shows that T(L) is a conservative extension of L.Section 5 shows that T(L) has the separation property, which is usefulto specify how the past states of a database in
uence its future states. InSection 6 we discuss the temporalisation of �rst-order logic as a particularlyinteresting application; two di�erent temporalisations of �rst-order logic areshown, yielding two expressively di�erent logics. Finally, in Section 7 weshow how the added temporal dimension can be internalised in �rst-orderlogic and we compare the temporalised approach with the internalised �rst-order one.



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 52. Temporalising an Existing LogicThis section will construct T(L) out of T and L. Our T is the temporalsystem with \Since" and \Until", described below. Our L is in general anylogic and in particular it can be classical predicate logic. We construct T(L)by allowing substitution of formulae of L for the atoms of formulae of T.We are not allowing the substitution of formulae of T or even formulae ofT(L) for atoms of L. Thus the temporal connectives of T are never withinthe scope of connectives of L.Next we �rst de�ne T, both syntactically and semantically. Then wede�ne T(L) syntactically and semantically and we prove soundness andcompleteness for T(L).2.1. Propositional Temporal LogicsWe present here several propositional temporal logics of \Since" and \Un-til"; these logics are de�ned over the same language but vary in the nature ofthe 
ow of time they describe. So the language is de�ned starting from a setof propositional letters P and then formulas are built up from the proposi-tional letters using the boolean operators : (negation) and ^ (conjunction)and the two-place temporal operators S (since) and U (until). Other booleanconnectives such as _ (disjunction), ! (material implication) and $ (ma-terial biconditional), as well as the abbreviations > (constant true) and ?(constant false), can be de�ned in terms of : and ^; similarly for other tem-poral operators like P (sometime in the past), F (sometime in the future),H (always in the past) and G (always in the future) with respect to U andS. In the following, propositional letters are represented by p, q, r and s,and temporal formulae are represented by upper case letter A, B, C and D.DEFINITION 2.1. Syntax of propositional temporal logicsLet P be a denumerably in�nite set of propositional letters. The set LS;U oftemporal propositional formulas is the smallest set such that:� P � LS;U;� If A and B are in LS;U, then :A and (A ^ B) are in LS;U;� If A and B are in LS;U, then S(A;B) and U(A;B) are in LS;U.The mirror image of a formula is obtained by changing U by S and vice-versa. �The outermost pair of brackets of a formulas are sometimes omitted whenno ambiguity is implied. Boolean connectives are de�ned in the standard



6 MARCELO FINGER AND DOV M. GABBAYway, while temporal operators can be de�ned by:FA=defU(A;>)PA=defS(A;>)GA=def:F:AHA=def:P:AA 
ow of time is an ordered pair F = (T;<), where T is a nonempty setof time points and < is a binary relation over T . A valuation g is a functionassigning to every time point t in T a set of propositional letters g(t) � P ,namely the set of proposition letters that are true at the time point t. Amodel M is a 3-tuple (T;<; g), where (T;<) is the underlying 
ow of timeand g is a valuation. M; t j= A reads the formula A holds over model M attime point t and is de�ned recursively as follows.DEFINITION 2.2. Semantics of propositional temporal logicM; t j= p; p 2 P i� p 2 g(t):M; t j= :A i� it is not the case that M; t j= A.M; t j= A ^ B i� M; t j= A and M; t j= B.M; t j= S(A;B) i� there exists an s 2 T with s < t and M; s j= Aand for every u 2 T , if s < u < t thenM; u j= B.M; t j= U(A;B) i� there exists an s 2 T with t < s and M; s j= Aand for every u 2 T , if t < u < s thenM; u j= B. �A formula A is valid over a class K of 
ows of time, indicated by K j= A,if for everyM whose underlying 
ow of time is in K and for every time pointt 2 T , M; t j= A. If � is a set of formulae, we write K j= � to indicate thatK j= A for every A 2 �. Therefore, for di�erent classes K we have di�erentsets of valid formulae.A minimal axiomatic system for the S; U -temporal logic over a classK,`S;U, contains the following axioms:A0 all classical tautologiesA1a G(p! q)! (U(p; r)! U(q; r))A1b H(p! q)! (S(p; r)! S(q; r))A2a G(p! q)! (U(r; p)! U(r; q))A2b H(p! q)! (S(r; p)! S(r; q))A3a (p ^ U(q; r))! U(q ^ S(p; r); r)A3b (p ^ S(q; r))! S(q ^ U(p; r); r)Note that the axioms above come in pairs, represented by a and b, suchthat one is the mirror image of the other. The inference rules are:



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 7Subst Uniform Substitution, i.e. let A(q) be an axiom containingthe propositional letter q and let B be any formula, then from `A(q) infer ` A(qnB) by substituting all appearances of q in A byB.MP Modus ponens: from ` A and ` A! B infer ` B.TG Temporal Generalisation: from ` A infer ` HA and ` GA.A deduction is a �nite string of formulae each of which is either an axiomor follows from earlier formulae by a rule of inference. A theorem is anyformula A appearing as a last element of a deduction, and we indicate by`S;U A. The axioms of `S;U can be extended by a set of axioms � so as toimpose restrictions on the 
ow of time, therefore generating the inferencesystem `S;U(�). When � is the empty set we have `S;U=`S;U(?). A set offormulae is consistent if we cannot deduce falsity (?) from it.We say that an inference system is sound and complete with respect toa class K of 
ows of time ifK j= A i� ` A;or equivalently,A is consistent i� A has a model over K;soundness corresponding to the if part and completeness 1 to the only ifpart. We write S,U/K to indicate that fact.If we consider K0, the class of all 
ows of time, we have the following wellknown result.THEOREM 2.1. (Soundness and Completeness of S,U/K0)The inference system `S;U is sound and complete with respect to the classK0.An elegant proof of the above is given by Xu (1988). A proof of com-pleteness for the class of transitive linear 
ows of time, Klin, is given byBurgess (1982) adding the following set � of axioms together with theirmirror images (b axioms).A4a U(p; q)! U(p; q ^ U(p; q))A5a U(q ^ U(p; q); q)! U(p; q)A6a (U(p; q) ^ U(r; s))!(U(p ^ r; q ^ s) _ U(p ^ s; q ^ s) _ U(q ^ r; q ^ s))1 This is sometimes called weak completeness; strong completeness says that for any(possibly in�nite) set of formula �, if � is consistent then � has a model. Strong complete-ness implies weak completeness but the converse is not true.



8 MARCELO FINGER AND DOV M. GABBAYBurgess actually used an extra axiom, but Xu (1988) proved the sameresult omitting it and axiom A5b. Axioms A4ab and A5a are responsiblefor restricting the class of 
ows of time to a transitive one. The pair ofaxioms A6ab are responsible for restricting the class of 
ows of time to alinear one. Adding the axiomA7a (p ^H p)! F H pand its mirror image restricts the 
ow of time to a discrete one. Extendingoriginal proofs of completeness to include new axioms over a more restricted
ow of time is discussed by Burgess (1984). With axioms A0{A7 we havesoundness and completeness results for a class of linear, discrete and transi-tive 
ows of time. There are also complete axiomatisations S,U/R over thereals (Gabbay and Hodkinson 1990; Reynolds 1992) and S,U/Z over theintegers (Reynolds 1992).2.2. Logic Systems and Their Temporalised FormHaving de�ned a family of S; U -temporal logics, we now externally applysuch logic systems to any other logic system L, i.e. we \temporalise" L.A logical system is a pair L = hLL;`Li, where LL is its language and `Lis its inference system; the set LL must be countable. A model for the logicsystem L is a structureML and we denoteML j= � when a formula � 2 LLis true under the model ML. The class of all models of L is denoted by KLand a formula � is said to be valid if ML j= � for all ML 2 KL.A logical system L is said to be sound if, whenever `L �, we haveML j= �for all ML 2 KL. The logical system L is said to be complete if, wheneverML j= � for all ML 2 KL, we have that `L �.We constrain the logic system L to be an extension of classical logic, i.e.all propositional tautologies must be valid in it. This constraint is due to thefact that all S; U -temporal logics presented above are extensions of classicallogic and any of them can be taken as the logic T in which we base thetemporalisation. We discuss later in this section what should be the case ifL is not an extension of classical logic.DEFINITION 2.3. Boolean combinations and monolithic formulaeThe set LL is partitioned in two sets, BCL and MLL. A formula A 2 LLbelongs to the set of boolean combinations , BCL, i� it is built up from otherformulae by the use of one of the boolean connectives : or ^ or any otherconnective de�ned only in terms of those; it belongs to the set of monolithicformula MLL otherwise. �We can proceed then to the de�nition of the temporalised language. Inthe following we will use �, �, 
, : : : , to range over formulae of T(L).



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 9The result of temporalising the logic system L is the logic system T(L)= hLT(L);`T(L)i and its models byMT(L). The alphabet of the temporalisedlanguage uses the alphabet of L plus the two-place operators S and U , ifthey are not part of the alphabet of L; otherwise, we use S2 and U2 or anyother proper renaming.DEFINITION 2.4. Temporalised formulaeThe set LT(L) of formulae of the logic system L is the smallest set such that:1. If � 2 MLL, then � 2 LT(L);2. If �; � 2 LT(L) then :� 2 LT(L) and (� ^ �) 2 LT(L);3. If �; � 2 LT(L) then S(�; �) 2 LT(L) and U(�; �) 2 LT(L).The set of maximal monolithic subformulae of �, Mon(�), is the set of allmonolithic subformulae of � that are used to build � up by the rules above.�It is obvious from the de�nition above that the set LT(L) is denumerablyin�nite. Note that from item 1 and 2 of the de�nition above, it followsthat LL � LT(L). The reason to de�ne the base case in item 1 in terms ofmonolithic formulae of L instead of simply de�ning it in terms of any formulain LL is that we would have a double parsing problem. In fact, suppose anitem 10 that would state that:10. If � 2 LL, then � 2 LT(L).Suppose we want to de�ne a function over the set of formulae, e.g. the depthof the parsing tree of a formula. Consider the formula (�^�) 2 LL; it wouldbelong to LT(L) both by items 10 and 2. If we parse it by 10, then its depthwill be 0, but if we parse it by 2, its depth will be 1, i.e. depth is not awell de�ned function. To avoid such problem we introduce the restrictionto monolithic formulae in item 1. We also note that, for instance, if 2 isan operator of the alphabet of L and � and � are two formulae in LL, theformula 2U(�; �) is not in LT(L).There is nothing to prevent us from de�ning the temporalisation in termsof some F; P -temporal language, but since the language with S and U is moreexpressive it received our preference.If L is an extension of classical logic, we must pay attention to somedetails before being able to describe the semantics of T(L). First, if ML isa model in the class of models of L, for every formula � 2 LL we must haveeitherML j= � orML j= :�. For example, if L is a modal logic system, e.g.S4, we must consider a \current world" o as part of its model to achievethat condition. Second, we must be careful about the semantics of booleanconnectives in the temporalised system. The construction of temporalisedformulae based on monolithic formulae of LL guarantees that the semanticsof the boolean connectives is the same in both the upper-level temporal logicsystem T and in the temporalised system T(L).



10 MARCELO FINGER AND DOV M. GABBAYThe language of T(L) is independent of the underlying 
ow of time, butnot its semantics and inference system, so we must �x a class K of 
ows oftime over which the temporalisation is de�ned; this is equivalent to �xingone logic T among the family of temporal logics presented above. We arethen in a position to de�ne the semantics of the temporalised logic systemT(L).DEFINITION 2.5. Semantics of the temporalised logicConsider a 
ow of time (T;<) 2 K and a function g : T ! KL, mappingevery time point in T to a model in the class of models of L. A model ofT(L) is a triple MT(L) = (T;<; g) and the fact that � is true in the modelMT(L) at time point t is represented by MT(L); t j= �. The semantics ofT(L) is given by:MT(L); t j= �, � 2 MLL i� g(t) =ML and ML j= �.MT(L); t j= :� i� it is not the case thatMT(L); t j= �.MT(L); t j= (� ^ �) i� MT(L); t j= � and MT(L); t j= �.MT(L); t j= S(�; �) i� there exists s 2 T such that s < t andMT(L); s j= � and for every u 2 T , ifs < u < t then MT(L); u j= �.MT(L); t j= U(�; �) i� there exists s 2 T such that t < s andMT(L); s j= � and for every u 2 T , ift < u < s then MT(L); u j= �. �We write T(L) j= � if, for every model MT(L) whose underlying 
owof time (T;<) 2 K and for every time point t 2 T , it is the case thatMT(L); t j= �.The inference system of T(L)/K is given by the following:DEFINITION 2.6. Axiomatisation for T(L)� The axioms of T/K;� The inference rules of T/K;� For every formula � in LL, if `L � then `T(L) �. �The third item above constitutes a new inference rule needed to preservethe theoremhood of formulae of the logic system L. Therefore we call itPreserve. The only inference rules we are considering in this paper areSubst, MP and TG, but other rules such as the irre
exivity rule IRR,(Gabbay and Hodkinson 1990), can also be added.The �rst concern about the axiomatisation is its soundness, i.e. if when-ever `T(L) � we have T(L) j= �.



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 11THEOREM 2.2. (Soundness of T(L)) If the logic system L is sound andS,U/K is sound over the class of 
ows of time K, then so is the logic systemT(L)/K.Proof. Soundness of S,U/K gives us the validity of the axioms overK. As for the inference rules, soundness of L guarantees that all formulaegenerated by Preserve are valid; soundness of S,U/K guarantees that theother inference rules, when applied to valid formulae, always generate validformulae. �Completeness is discussed later in 2.4. Let us �rst present a few examplesof the temporalisation of an existing logic system.EXAMPLE 2.1. Temporalising modal logic of beliefSuppose we have a propositional modal logic of belief B = hLB;`Bi withthe modal operator B, in which Bp is intended to mean that p is aproposition that is believed by an agent. The axiomatisation, `B, is givenby the basic modal logic system K plus the transitivity axiom 4 as oneof the introspective properties of belief systems in (Hintikka 1962):K8<:All propositional tautologiesB(p! q)! (Bp! Bq)Rules: Subst, MP, Generalisation + Bp! BBpThe transitivity axiom means that, if some fact is believed, it is be-lieved to be believed, which represents a positive introspection of thebelieving agent; for a discussion on modal logics of belief, see (Halpernand Moses 1985). This system is provided with a standard Kripke seman-tics for modal logics (Hughes and Cresswell 1968), with a set of possibleworlds W , an accessibility relation R and a valuation function V , so thatMB = (W;R; V ) is a model structure in which the accessibility relationR is transitive. Actually, we are considering MB = (W;R; V; o), where ois a \current world" from which the observations are made, so that wemay have both validity and satis�ability in the model theory of B.Consider the temporalised logic system T(B) over the class K0 ofall 
ows of time. Its inference system `T(B), for example, gives us astheoremsB(p! q)! (Bp! Bq):(Bp ^ :Bp)GB:(Bp ^ :Bp)G(Bp! q)! (U(Bp;Bq)! U(q; Bq)):If we have a theory � = fGBp;Bp ! Fp; U(q; Bp)g. We constructone possible modelMT(B) by choosing a 
ow of time with T = fa; b; c; dgand the partial order < = f(a; b); (b; c); (a; c); (a; d)g. We construct theassignment g such that:



12 MARCELO FINGER AND DOV M. GABBAYg(b) =MaB j= pg(b) =MbB j= Bp ^ p,g(c) =McB j= Bp ^ q andg(d) =MdB j= BpIn the resulting model MT(B) we have MT(B); a j= � as illustratedbelow. #" ! #" ! #" !#" !
JĴJĴJĴ-JĴ HHHHHHH����������- ��� ���-���-a dBpp Bp; qBp; p cb

EXAMPLE 2.2. Temporalising propositional logicConsider classical propositional logic PL = hLPL;`PLi. Its temporalisa-tion generates the logic system T(PL) = hLT(PL);`T(PL)i.It is not di�cult to see that LT(PL) = LS;U and `T(PL)=`S;U, i.e. thetemporalised version of PL over any K is actually the temporal logic T= S,U/K. With respect to MT(L), the function h actually assigns, forevery time point, a PL model.EXAMPLE 2.3. Temporalising S; U -temporal logicIf we temporalise over K the one-dimensional logic system S,U/K we getthe logic system T(S;U) = hLT(S;U);`T(S;U)i = T2(PL)=K. In this casewe have to rename the two-place operators S and U of the temporalisedalphabet to, say, S2 and U2.In order to obtain a model for T(S,U), we must �x a \current time",o, inMS;U = (T1; <1; g1) , so that we can construct the modelMT(S;U) =(T2; <2; g2) as previously described. Note that, in this case, the 
ows oftime (T1; <1) and (T2; <2) need not to be the same. (T2; <2) is the 
ow oftime of the upper-level temporal system whereas (T1; <1) is the 
ow oftime of the underlying logic which, in this case, happens to be a temporallogic.



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 13The logic system we obtain by temporalising S; U -temporal logic isthe two-dimensional temporal logic described in (Finger 1992).EXAMPLE 2.4. N-dimensional temporal logicIf we repeat the process started in the last two examples, we can constructan n-dimensional temporal logic Tn(PL)=K (its alphabet including Snand Un) by temporalising a (n� 1)-dimensional temporal logic.Every time we add a temporal dimension, we are able to describechanges in the underlying system. Temporalising the system L once, weare creating a way of describing the history of L; temporalising for thesecond time, we are describing how the history of L is viewed in di�erentmoments of time. We can go on inde�nitely, although it is not clear whatis the purpose of doing so.The assumption that the underlying logic system L is an extension ofclassical logic allows us to make a clear distinction between boolean andmonolithic formulae, avoiding double parsing and reconstructing the booleanformulae and its semantics in the temporalised system T(L). If we were totemporalise a logic system that is not an extension of classical logic, or anysystem in which we do not have the notion of satis�ability, only validity,we could consider all its formulae as being monolithic. The problem wouldthen be the di�erent semantics of the boolean connectives in the underlyingsystem and in the upper-level (classical) temporal system, if those symbolsare identical in both systems. The solution would be renaming the booleanconnectives, say, in the underlying system. The applications of such a hybridlogic system are not clear so, to avoid extra di�culties in the results we aregoing to prove, we will stick to the constraint on L being an extension ofclassical logic.2.3. The correspondence mappingWe are now going to relate the temporalised logic system T(L) with theoriginal S; U -temporal logic used as a base for the temporalisation process.Consider P, a denumerably in�nite set of propositional letters, and let S,Ube the propositional temporal logic system induced by P . The followingde�nes a relationship between a temporalised language LT(L) and a propo-sitional temporal language LS;U.DEFINITION 2.7. The correspondence mappingConsider an enumeration p1, p2, : : :, of elements of P and consider an enu-meration �1, �2, : : :, of formulae in MLL. The correspondence mapping



14 MARCELO FINGER AND DOV M. GABBAY� : LT(L) ! LS;U is given by:�(�i) =pi for every �i 2MLL; i = 1; 2 : : :�(:�) =:�(�)�(� ^ �) =�(�) ^ �(�)�(S(�; �))=S(�(�); �(�))�(U(�; �))=U(�(�); �(�)) �The following is the correspondence lemma.LEMMA 2.1. The correspondence mapping is a bijectionProof. By two straighforward structural inductions we can prove that� is both injective and surjective. Details are omitted. �As a consequence, we can always refer to an element Q of LS;U as �(�),because there is guaranteed to be a unique � 2 LT(L) such that � is mappedinto Q by �. We can then establish a connection between consistent formulaein T(L)/K and in S,U/K.LEMMA 2.2. If � is T(L)-consistent then �(�) is S,U-consistent.Proof. Suppose �(�) is inconsistent. Since all axioms and inferencerules in S,U/K are also in T(L)/K, the derivation of `S;U �(�)! ? can beimitated to derive `T(L) �! ?, which contradicts � being T(L)-consistent.�The results above are very useful for the proof of completeness and de-cidability of T(L).2.4. Completeness of T(L)We are going to show here that whenever there exists complete axiomati-sation for S,U/K and for L, where K � Klin is any linear class of 
ows oftime, then the temporalised logic system T(L)/K is also complete.The strategy of the completeness proof is illustrated in Figure 3. Weprove the completeness of T(L)/K indirectly by transforming a consistentformula of T(L) and then mapping it into a consistent formula of S,U.Completeness of S,U/K is used to �nd a model for the mapped formulathat is used to construct a model for the original T(L) formula.The transformation function " is introduced to deal with the di�erencesbetween deductions in S,U and T(L) due to the presence of the inferencerule Preserve in T(L). This inference rule states that theorems in L arealso theorems in T(L). The model theoretic counterpart of this propertythat valid formulae in L are also valid in T(L). The idea behind the trans-formation " is to extract \valid and contradictory content" that formulae
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-
-"(�) consistent�("(�))consistent

model for �
model for �("(�))

� consistent"� derivedcompleteness of T(L)T(L)
S,U completeness of S,U of LcompletenessFig. 3. Strategy for the proof of completenessof T(L) may have due to the validity or unsatis�ability of some set of itssubformulae in L.DEFINITION 2.8. The transformations � and "Given a formula � 2 LT(L), consider the following sets:Lit(�)=Mon(�) [ f:� j � 2Mon(�)gInc(�)=f^� j � � Lit(�) and � `L ?gwhereMon(�) is the set of maximal monolithic subformulae of �. We de�nethen the operator � (always) and the formulae �(�) and "(�):�� =� ^ G� ^ H��(�)= ^�2Inc(�)�:�"(�)=� ^ �(�) �Since �(�) is a theorem of T(L), we have the following lemma.LEMMA 2.3. `T(L) "(�)$ �If K is a subclass of linear 
ows of time, we also have the followingproperty:LEMMA 2.4. Let MS;U be a temporal model over K � Klin such that forsome o 2 T , MS;U; o j= �(��). Then, for every t 2 T , MS;U; t j= �(��).



16 MARCELO FINGER AND DOV M. GABBAYTherefore, if some subset of Lit(�) is inconsistent, the transformed for-mula "(�) puts that fact in evidence so that, when � maps it into S,U,inconsistent subformulae will be mapped into falsity.To prove the completeness of T(L)/K given the completeness of S,U/K,we �x an � and assume it is a T(L)-consistent formula. We have then toconstruct a model for � over K.By lemma 2.3, "(�) is T(L)-consistent and, by Lemma 2.2, �("(�)) isS,U-consistent. Then, by the completeness of S,U/K, there exists a modelMS;U = (T;<; h) with (T;<) 2 K such that for some o 2 T , MS;U; o j=�("(�)).For every t 2 T , de�ne G�(t):G�(t)=f� 2 Lit(�) j MS;U; t j= �(�)gLEMMA 2.5. If � is T(L)-consistent, then for every t 2 T , G�(t) is �niteand L-consistent.Proof. Since Lit(�) is �nite, G�(t) is �nite for every t. Suppose G�(t)is inconsistent for some t, then there exist f�1; : : : ; �ng � G�(t) such that`L V�i ! ?. So V�i 2 Inc(�) and �:(V �i) is one of the conjuncts of"(�). Applying Lemma 2.4 toMS;U; o j= �("(�)) we get that for every t 2 T ,MS;U; t j= :(V�(�i)) but by, the de�nition of G�,MS;U; t j= V�(�i), whichis a contradiction. �We are �nally ready to prove the completeness of T(L)/K.THEOREM 2.3. (Completeness for T(L)) If the logical system L is com-plete and S,U/K is complete over a subclass of linear 
ows of time K � Klin,then the logical system T(L)/K is complete over K.Proof. Assume that � is T(L)-consistent. By Lemma 2.5, we have(T;<) 2 K and associated to every time point in T we have a �nite and L-consistent set G�(t). By (weak) completeness of L, every G�(t) has a model,so we de�ne the temporalised valuation function g:g(t)=fMtL j MtL is a model of G�(t)gConsider the model MT(L) = (T;<; g) over K. By structural inductionover �, we show that for every � that is a subformula of � and for everytime point t,MS;U; t j= �(�) i� MT(L); t j= �We show only the basic case, � 2 Mon(�). Suppose MS;U; t j= �(�); then� 2 G�(t) and MtL j= �, and hence MT(L); t j= �. Suppose MT(L); t j= �and assume MS;U; t j= :�(�); then :� 2 G�(t) and MtL j= :�, which



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 17contradicts MT(L); t j= �; hence MS;U; t j= �(�). The inductive cases arestraightforward and details are omitted.So, MT(L) is a model for � over K and the proof is �nished. �Theorem 2.3 gives us sound and complete axiomatisations for T(L) overmany interesting classes of 
ows of time, such as the class of all linear 
owsof time, Klin, the integers, Z, and the reals, R. These classes are, in theirS,U versions, decidable and the corresponding decidability of T(L) is dealtin Section 3. Integer and real 
ows of time also have the separation property,which is discussed in Section 5.3. The Decidability of T(L) and its ComplexityThe main goal of this section is to show that, if the logic system L is decidableand the logic system S,U is decidable over K � Klin, then the logic systemT(L) is also decidable over K. We assume throughout this section thatS,U/K is complete.DEFINITION 3.1. Decidability of a Logic SystemA logic system L is said to be decidable if there exists an algorithm (adecision procedure) that, for every formula � 2 LL, outputs \yes" if � is atheorem in the logic system L and \no" otherwise. �There are several results of decidability of S,U over several linear classesof 
ows of time, among which the classKlin of all linear 
ows of time (Burgess1984), the integer and the real 
ows of time, (Burgess and Gurevich 1985).As in the proof of completeness, we are going to prove the decidabilityresult using the correspondence mapping � and the transformation �. RecallDe�nition 2.8, in which the sets Mon(�), Lit(�) and Inc(�) were all �nite,so that we have the following result about �(�).LEMMA 3.1. For any � 2 LT(L), if the logic system L is decidable then thereexists an algorithm for constructing �(�).The relationship between T(L) and S,U that we need to prove the de-cidability of T(L) is the following:LEMMA 3.2. Over a linear 
ow of time, for every � 2 LT(L),`T(L) � i� `S;U �(�(�)! �):Proof. The if case comes trivially from the de�nition of `T(L). For theonly if part, suppose `T(L) �. We prove by induction on the deduction of �that `S;U �(�(�)! �).Basic cases:



18 MARCELO FINGER AND DOV M. GABBAY1. � is obtained using the inference rule Preserve. Then �(�) = ::� and`S;U �(::�! �).2. � is obtained using the inference rule Subst. Suppose � was obtainedby substituting pi by �i in some axiom A. Then `S;U � can be obtainedby substituting �(pi) by �(�i) in axiom A.Inductive cases:1. � = G� is obtained using the inference rule TG. Note that �(�) = �(�).Then`S;U �(�(�))! �(�) by induction hypothesis`S;U G(�(�(�))! �(�)) by T(G)`S;U G(�(�(�)))! �(�) by temporal logic and � = G�`S;U �(�(�))! G(�(�(�)))by the de�nition of � and K linear`S;U �(�(�)! �) from the two previous linesSimilarly for � = H�.2. � is obtained from � and � ! � by MP. Then`S;U �(�(�))! �(�) by induction hypothesis`S;U �(�(�! �))! �(� ! �)by induction hypothesis`S;U �(�(�! �))! �(�(�)) by the de�nition of �`S;U �(�(�! �))! �(�) from the 3rd and 1st lines`S;U �(�(�! �))! �(�) from the 4th and 2nd linesLet p be a proposition that occurs in �(�) but not in �(�). If we eliminatefrom �(�(�! �)) all the conjuncts in which p occurs, obtaining �(
),using the completeness of S,U/K we can get `S;U �(
) ! �(�). If wedo that for all such propositions, we end up with `S;U �(�(�)! �). �THEOREM 3.1. (Decidability of T(L)) If L is a decidable logic system,and S,U is decidable over K � Klin, then the logic system T(L) is alsodecidable over K.Proof. Consider � 2 LT(L). Since L is decidable, by Lemma 3.1 there isan algorithmic procedure to build �(�). Since � is a recursive function, wehave an algorithm to construct �(�(�)! �), and due to the decidability ofS,U over K, we have an e�ective procedure to decide if it is a theorem ornot. Since K is linear, by Lemma 3.2 this is also a procedure for decidingwhether � is a theorem or not. �Once we have a decidability result, the next natural question is aboutthe complexity of the decision procedure. We brie
y discuss here an upperbound for the complexity analysis. Let N be the number of (boolean andmodal) connectives in a formula, let the complexity of the decision procedurein L be O(fL(N)) and in S,U be O(fS;U(N)). The decision procedure forT(L) as given by the proof above consists of basically two steps:1. constructing �(�);



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 192. deciding whether �(�(�)! �) is a theorem or not;The construction of �(�) involves generating all subsets of Lit(�) andapplying the decision procedure for each subset, therefore its complexity isO(2N � fL(N)). The second step is dominated by the decision procedure ofS,U since the application of � can be done in polynomial time; in the worstcase, when all tests in L succeed, the size of �(�) is O(2N) and therefore thedecision is O(fS;U(2N)). So an upper bound for the decision procedure forT(L) is given by the dominating term of O(2N � fL(N)) and O(fS;U(2N)).As for a lower bound for the decision procedure of T(L), it cannot be anylower than the highest of the lower bounds for S,U and L.4. Conservativeness of T(L)Conservativeness can be easily derived from a the soundness of S,U and thecompleteness of L, without any assumptions on the 
ow of time.DEFINITION 4.1. Conservative extensionA logic system L1 is an extension of a logic system L2 if LL2 � LL1 and if`L2 � then `L1 �. A logic L1 is a conservative extension of L2 if it is anextension of L2 such that if � 2 LL2 , then `L1 � only if `L2 �. �We know that all complete S,U are conservative extensions of predicatelogic PL. Clearly, T(L) is an extension of L. We prove that it is also con-servative.THEOREM 4.1. (Conservativeness of T(L)) Let L be a complete logicsystem and S,U be sound over K. The logic system T(L) is a conservativeextension of L.Proof. Let � 2 LL such that `T(L) �. Suppose by contradiction that6`L �, so by completeness of L, there exists a modelML such thatML j= :�.We construct a temporalised modelMT(L) = (T;<; g) by making g(t) =MLfor all t 2 T .MT(L) clearly contradicts the soundness of T(L) and thereforethat of S,U, so `L �. �5. Separation over the Added DimensionThe separation property of the S; U -temporal logic allows us to rewrite anytemporal formula into a conjunction of formulae of the formpast formula and present formula ! future formula.Once a formula is in the format above, it can be imperatively interpretedagainst a partial temporal model according to (Gabbay 1987), so that if the



20 MARCELO FINGER AND DOV M. GABBAYantecedent holds in the past and present in the model, then we must executethe consequent in the future so as to make the formula true in the model.The imperative interpretation of a formula (also called the execution of atemporal speci�cation) is based on an asymmetric view of the 
ow of time;in a symmetric view of time, whenever the antecedent is true in the past andpresent, we could either make the consequent true in the future or we couldtry to falsify the antecedent itself, in both cases maintaining the validity ofthe temporal speci�cation. In this asymmetric view of time, we discard thelatter possibility and remain with the former as the only possibility for theexecution of a temporal speci�cation.In this section we want to extend this imperative interpretation of atemporal formula over a logic system L so that, after temporalising L overa 
ow of time that is like the integers or reals, we can execute temporalspeci�cations in T(L). The concept of a separated formula is based on thenotion of a pure formula, so we present the de�nitions of pure formula andseparated formula for the S,U logic.DEFINITION 5.1. Pure formulae in S,U1. A pure present formula is a boolean combination of propositional letters.2. A pure past formula is a boolean combination of formulae of the formS(�; �) where � and � are either pure present or pure past formulae.3. A pure future formula is a boolean combination of formulae of the formU(�; �) where � and � are either pure present or pure future formulae.A separated formula is a formula that is a boolean combination of pureformulae only. �Once we have a separated formula, it can be brought to a conjunctivenormal form, i.e. a conjunction of disjuncts, so that each conjunct can be�nally brought to the form:pure-present and pure-past ! pure-future.The following is the basic result about separation over the integers.THEOREM 5.1. (Separation Theorem) For any formula A 2 LS;U thereexists a separated formula B 2 LS;U such that A is equivalent to B over aninteger-like 
ow of time.A proof of the separation theorem can be found in (Gabbay 1987; Gabbay1991c). It also holds for the reals.The generalisation of pure formula for a temporalised logic system T(L)is given below.DEFINITION 5.2. Pure temporalised formulae



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 216--? equivalence� preservesand separationseparation for T(L)separation for S,UAny � Separated �Separated �(�)�(�) derived�T(L)S,UFig. 4. Separation of T(L)-formulae via separation of S,U-formulae1. every formula � 2 LL is a pure present temporalised formula.2. A pure past temporalised formula is a boolean combination of formulaeof the form S(�; �) where � and � are either pure present or pure pasttemporalised formulae.3. A pure future temporalised formula is a boolean combination of formulaeof the form U(�; �) where � and � are either pure present or pure futuretemporalised formulae.A separated temporalised formula is a boolean combination of pure for-mulae of T(L). �EXAMPLE 5.1. Temporalising a modal logic of beliefSuppose L is the modal logic system of belief, with the modal operatorB. Here are some examples of pure temporalised formulae in T(L):1. Pure present: Bp! p, :(p^ :p), and any other formula of the logicL.2. Pure past: P (Bp)! S(Bp;:p).3. Pure future: F (Bp)! :Fp _G(Bp! :p).In order to prove the separation theorem for the temporalised logic T(L)we will use the correspondence mapping. The basic strategy of the proof isillustrated in �gure 4.The following is a helpful result that will lead us to the proof of separationfor the temporalised logic T(L).LEMMA 5.1. Let � be a correspondence mapping between LT(L) and LS;U.�(�) is a separated formula in the logic S,U i� � is a separated formula inT(L).



22 MARCELO FINGER AND DOV M. GABBAYProof. From the de�nition of the correspondence mapping it followsthat if � is a boolean combination of �1; : : :�n 2 LT(L) then �(�) is a booleancombination of �(�1); : : : ; �(�) 2 LS;U. The converse is also true since � isa bijection.Therefore, fo show that � is separated in T(L) i� �(�) is separated inS,U, all we have to do is to prove that �(�) is a pure formula i� � is a pureformula. We show the proof for the only if case; the if part is completelyanalogous.Suppose �(�) is a pure present, then it is a boolean combination of propo-sitional letters. Therefore � is a boolean combination of monolithic formulaeof L, therefore � is a formula of L, and pure present in T(L).Suppose �(�) is pure past, then it is a boolean combination of formulaein LS;U of the form S(�(�); �(
)) where �(�) and �(
) are pure present orpure past. Therefore � must be a boolean combination of formulae in LT(L)of the form S(
; �), where 
 and � are, by induction hypothesis, either purepresent and pure past. Therefore � is a pure past formula in LT(L).Suppose �(�) is pure future, then by an argument analogous to the pre-vious case, � is a pure future formula. Therefore we have proved that if �(�)is a pure formula in LS;U, � is a pure formula in LT(L). �THEOREM 5.2. (Separation Theorem for T(L)) If � is any formula inLT(L), then there exists a separated formula � 2 LT(L) such that � is equiv-alent to � over an integer-like 
ow of time.Proof. All we have to do is to prove that if � and � are formulae ofT(L) and `S;U �(�)$ �(�) then `T(L) �$ �. In fact, since all axioms andinference rules of S,U also belong to T(L), the deduction of `S;U �(�) $�(�) also leads to `T(L) �$ �.Let then � be any formula of T(L). From the separation theorem of S,U,we know that there exist a separated �, such that `S;U �(�) $ �(�) and�(�) is separated. So by Lemma 5.1, � is also a separated formula equivalentto �. �Once we have the separation property for the temporalised system T(L),we can rewrite any temporalised formula into a separated equivalent one ofthe formpure temporalised past and present ! pure temporalised future.The imperative interpretation of such a formula is the following. If the an-tecedent holds in past and present models of the logic system L, then weexecute the temporalised formula by constructing a future model (or a seriesor future models) of L so as to make the consequent true.Since the separation property also holds for a real 
ow of time, the proofabove can be trivially adapted to a real 
ow of time. Note that the separation



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 23property for the temporalised system was obtained without any assumptionson the underlying logic system L, as opposed to the results of soundness,completeness and decidability, all of which depend on whether the propertyholds for the underlying logic system L.6. Temporalising First-Order LogicIn this section we examine in more detail the addition of a temporal di-mension to a �rst-order language. We will consider a �rst-order languagewith the quanti�er 8, an equality symbol =, a countable set of variablesX = fx1; x2; : : :g, a countable set of predicate symbols P = fp1; p2; : : :gsuch that every predicate symbol has an associated natural number n > 0,called its arity, a set C of constant symbols and a set F of functional sym-bols; C and F are possibly empty. The quanti�er 9 can be de�ned in thenormal way as 9 = :8:. A term is either a variable, a constant symbol oran n-ary function symbol applied to n terms. The notion of the set of freevariables of a formula is the usual one. A sentence is a formula with no freevariables.A �rst-order domain D is a non-empty set. An interpretation I is amapping that associates, for every constant in the language an element inthe domain, and for every n-place predicate symbol an n-ary relation overDn. An assignment function A is a mapping that associates every variablewith an element of the domain. A �rst-order model is a pair M = (D; I).If t is a term, [[t]]I;A 2 D represents its extension over the domain D underinterpretation I and assignment A. The semantics of a �rst-order languageis then de�ned in the usual way, where M;A j=FOL � reads \M is a modelof the formula � under assignment A":M;A j=FOL pi(t1; : : : ; tn) i� h[[t1]]I;A; : : : ; [[tn]]I;Ai 2 I(pi), forall n-ary predicate symbols pi 2 P .M;A j=FOL :� i� M;A 6j=FOL �:M;A j=FOL � ^ � i� M;A j=FOL � and M;A j=FOL �:M;A j=FOL t1= t2 i� [[t1]]I;A = [[t2]]I;A.M;A j=FOL 8x� i� for any assignment A0 which agreeswith A, except possibly on variablex, M;A0 j=FOL �.We say that � has a model M, and write M j=FOL �, if M;A j=FOL �for all assignments A (this is always the case when � is a sentence).The derivability relation, ` FOL, can be any of the existent ones for �rst-order logic. It can be an axiomatic system, but it need not.Since in �rst-order logic we have a basic distinction between sentencesand ordinary formulae, we have to consider both cases of adding a temporaldimension to monolithic sentences and to monolithic formulae in general.



24 MARCELO FINGER AND DOV M. GABBAYElement Fixed VariableDomain constant variabledomains domainsConstant and rigid non-rigidFunctional Symbols or 
exiblePredicate Symbols rigid non-rigidor 
exibleAssignment global localTABLE IDegrees of freedom in temporalising �rst-order models.6.1. Temporalising First-Order SentencesIf we temporalise �rst-order sentences, we have no problems in followingthe methodology we have developed so far. We �rst identify the monolithicsentences as those that are not in the format �^� or :�. For instance, 8xp(x)and 8x:(q(x) ^ :q(x)) are monolithic sentences, whereas 9xp(x) (implicitnegation) and 8xp(x) ^ 8y:q(y) are boolean combinations. We then followthe procedure described in Section 2, obtaining the logic system T(FOs).Note that in T(FOs) a temporal operator never occurs inside the scope ofa quanti�er.The structure of the �rst-order models that compose the temporalisedmodel deserves some special attention, since one model may di�er formanother in several di�erent ways, as if we had various \degrees of freedom"in generating a temporalised version of �rst-order models. Those degrees offreedom are illustrated in Table I.If all �rst-order models that compose a temporalised modelMT(FOs) referto the same domain, a constant domain assumption is satis�ed; otherwise,we have varying domains. We may have rigid constant and rigid functionalsymbols, i.e. they have the same interpretation in every model of the tem-poralised structure; they are called non-rigid or 
exible otherwise. A rigidpredicate symbol has the same interpretation at all time; otherwise it isa 
exible predicate symbol. And �nally, the assignment function may beglobal, i.e. all variables are assigned the same domain element in all modelsof the temporalised structure (global assignments make sense only under aconstant domain assumption); otherwise, it is a local assignment.In fact, constant domains or rigid terms or predicates are not a conse-quence of the temporalisation; they are, actually, further assumptions on



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 25the temporalised �rst-order model made so as to impose some external in-tended meaning of adding a temporal dimension to a logic system. All thepreviously established results of soundness, completeness and separation arevalid for unconstrained T(FOs); decidability is obviously not applicable.Nevertheless, there is no quanti�cation over the temporal operators inT(FOs), which means that the expressivity of this logic is clearly limited.In the following, we examine one step further in increasing this expressivity,while still keeping the original idea of adding a temporal dimension to alogic system.6.2. Temporalising First-Order FormulaeWe take now general monolithic �rst-order formulae as a basis for the addi-tion of a temporal dimension, i.e. all �rst-order formulae that are not of theform :� or � ^ �. We generate thus the logic system T(FOf). Note thatthe language of T(FOs) is contained in the language of T(FOf).The particular feature that distinguishes this system from all the previ-ously considered systems is that, since we are considering �rst-order formulaethat may contain free variables, monolithic formulae with free variables onlyhave a de�ned semantics over a �rst-order modelMFOL if a variable assign-ment function is provided, and the free variables of a �rst-order formulaused to build a temporalised formula � remain free in �.Therefore, while constructing a model for the system T(FOf), we mustconsider the existence of a global assignment function, Ag, to cope with thefree variables. A global assignment function makes sense only in a constantdomain context, so we must have this assumption as well; we further assumethat all terms are rigid. The e�ect of the global assignment Ag is to groundall the free variables of a temporalised formula �. Only the interpretationof predicate symbols changes among the models of L in the temporalisedmodel structure. We writeMT(FOf ) j= � i� MT(FOf );Ag j= � for any Ag:Since the construction of its temporalised model and inference systemdoes not follow exactly the way other temporal systems were constructed,the results previously established of soundness, completeness and separationcannot be applied directly.We know that the more expressive full �rst-order temporal logic has nopossible �nite axiomatisation over several useful classes of linear 
ows oftime like fRg, fZg and fNg, e.g. see (Garson 1984), but we do have a �niteaxiomatisation for T(FOs). The logic system T(FOf) has an intermedi-ary expressive power and it can be shown that T(FOf) cannot be �nitelyaxiomatised over linear 
ows of time that contain the natural numbers, al-



26 MARCELO FINGER AND DOV M. GABBAYthough we will not do it here. Perhaps more interesting is that separationcan be achieved for this logic through model theory.Since the concept of separated formula is purely syntactic and does notdepend on the model or the inference system, the de�nition of a separatedtemporalised formulae given by De�nition 5.2 is also valid for T(FOf). Forthe same reasons, the de�nition of a correspondence mapping � and thecorrespondence lemma 2.1 stating that � is a bijection are also valid inT(FOf).DEFINITION 6.1. Corresponding ModelLet MT(FOf) = (T;<; g) be a model of T(FOf), and let A be a globalassignment. We construct the valuation function g� such that, for everytime point t 2 T and for every propositional letter p = �(�) 2 P we have�(�) 2 g�(t) i� MT(FOf);A; t j= �:A model of the temporal logic system S,U,M�S;U = (T;<; g�), is then calledthe corresponding model of MT(L) under the corresponding mapping � andassignment A. �LEMMA 6.1. If M�S;U is the corresponding model of MT(FOf) under � andA thenM�S;U; t j= �(�) i� MT(FOf);A; t j= �for every � 2 LT(L) and for every t 2 T .Proof. Straightforward by structural induction on �. �THEOREM 6.1. (Separation for T(FOf)) For every � 2 LT(FOf) thereexists a separated formula � 2 LT(FOf) such that � is equivalent to � overan integer-like 
ow of time.Proof. Let � be a correspondence mapping and A an arbitrary globalassignment . Consider a temporalised model MT(FOf ) = (T;<; h), (T;<) 2Z, and let M�S;U = (T;<; g�) be its correspondent model under � and A.By Lemma 6.1, we haveM�S;U; t j= �(�) i� MT(FOf );A; t j= � (1)for every � 2 LT(FOf) and for every t 2 T .By the separation theorem for S,U we get that, for every formula �(�) 2LS;U there exists a separated formula �(�) 2 LS;U such thatM�S;U; t j= �(�) i� M�S;U; t j= �(�) (2)



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 27for all time points t 2 T .By Lemma 5.1, we have that the corresponding mapping preserves sepa-ration, i.e. � is a separated formula i� �(�) is a separated formula and, byapplication of (1)M�S;U; t j= �(�) i� MT(FOf );A; t j= � (3)for all time points t 2 T .Combining (1), (2) and (3) we get that, for every � 2 LT(FOf) there existsa separated � 2 LT(FOf) such that, for all t 2 TMT(FOf );A; t j= � i� MT(FOf );A; t j= � (4)Since the assignment A was arbitrarily chosen and the separated � doesnot depend on the particular choice of A, expression (4) holds for any globalassignment A, and separation for T(FOf) remains proved. �We note that if we �x a current time, o, and a global assignment Ag, wecan apply the temporalisation process to the logic systemT(FOf), obtaininga two-dimensional temporal predicate system, T2(FOf), as a predicate ver-sion of the two-dimensional propositional system described in example 2.3.7. Internalising the Temporal DimensionThere are three basic approaches to adding a temporal dimension to a logicsystem, namely:1. The temporal operators approach.2. The �rst-order internalisation of the temporal dimension.3. A mixed approach combining the two approaches above.Those three di�erent approaches are discussed in detail in (Gabbay 1990)in the context of propositional temporal logic. The �rst approach is the onewe have been following so far. Here we brie
y present the other ones in thecontext of temporalised formulae.Consider the temporalised �rst-order formula in T(FOf)believed(x)! F happens(x)expressing that whatever is believed now will become true in the future.This statement could actually be completely coded in the original �rst-order language by adding a temporal argument to the predicates believedand happens. The resulting formulation would bebelieved�(t; x)! 9s(t < s ^ happen�(s; x)):This process of getting rid of the temporal operators by adding a newtemporal argument to the predicates plus some extra conditions on those ar-guments can be done systematically by an internalisation function � de�ned



28 MARCELO FINGER AND DOV M. GABBAYinductively over the structure of a formula of T(FOf) and also taking asargument a reference time point, generating a two-sorted predicate formula,one sort over time and the other sort over domain elements. We call thisprocess the internalisation of the temporal dimension. The internalisationof the temporal dimension is basically obtained by the standard translationof temporal logic into predicate logic, e.g. (Benthem 1983), with an extraargument to incorporate the temporal reference; this extra argument can beinterpreted as the result of Quine's \eternalisation" of �rst-order sentences(Quine 1960).In the internalised version it is necessary to incorporate a theory express-ing the properties of the 
ow of time K = (T;<) to restore the deductivecapability of temporal formulae. However, there are several 
ows of time overwhich there are complete temporal axiomatisations that are not de�nablein �rst-order logic, e.g. the integers and the reals.Another way of getting to a �rst-order predicate logic approach to tem-poral logic, as proposed by Gabbay (1991b), is by mixing two predicate logiclanguages in the following way. Let G (for global) and L (for local) be two�rst-order languages. The two-sorted predicate language L�k(G) is the resultof mixing the G and L (in our present notation it would be G(L�k)). If weconsider the language L�1(G), then a formula of the form P �(t; x1; : : : ; xn)means that P (x1; : : : ; xn) holds at time t. This language is the same languageof the internalised temporal dimension system. But this approach gives usa way of creating an internalised logic system in a very similar way to thatin which a temporalised system was created, i.e. as a result of putting twolanguages together. In fact, the original languages G and L can be seen astwo linked languages \sharing variables" in the language L�1(G). One of theoriginal languages, G, has the exclusivity of dealing with temporal facts,as the upper-level S; U -temporal logic system, whereas the language L isresponsible only for the local behaviour at each point in the 
ow of time.The temporal operators approach to a temporalised formula can be seenas treating time points implicitly, always referring to a current time. The�rst-order internalisation refers explicitly to the points in the 
ow of time. Ahybrid form of internalisation of the temporal dimension can be obtained bycombining temporal operators with �rst-order internalised formulae, mixingthe explicit reference with the implicit reference of time.In the combined approach, every temporalised formula � is associatedwith a �rst-order atomic formula holds(t; �), where � is now treated as a�rst-order term, and the free variables of � are considered free in holds(t; �).A set of axioms is added to combine the holds(t; �) formulae with the �rst-order internalised formulae, for example:



ADDING A TEMPORAL DIMENSION TO A LOGIC SYSTEM 29holds(t; �) $(�)�[t], for all monolithic � 2 LLholds(t; �^ �)$holds(t; �) ^ holds(t; �)holds(t; �^ �)$9s[s < t ^ holds(s; �) ^ 8u(s < u < t! holds(u; �))]etc.As in the internalised approach, in the combined approach we still haveto provide axioms for the 
ow of time.ConclusionWe have shown in this paper a way of composing an upper-level tempo-ral logic system with a generic underlying logic system L and the resultinglogic system T(L) was called the temporalisation of system L. We used thecorrespondence mapping method to prove soundness, completeness, decid-ability, conservativeness and separation for the temporalised logic systemover linear 
ows of time. All those properties were initially properties of thetemporal logic system. Many other properties remain to be analised, suchas compactness, �nite model property and interpolation among others; theproperties discussed here over classes of linear 
ows of time remain to beexpanded for all classes of 
ows of time.We need by no means restrict the upper-level logic system to temporallogic. In fact, the temporalisation presented in this paper can be generalisedto any propositional modal logic systemM in the role of the upper-level logicsystem, so as to create a modalised logic system M(L). Its language andinference system can be obtained following the method we used to derivethe those of T(L), based on the monolithic formulae of L. If the logic Lhas a possible world semantics, each possible world may be substituted bya model of L, so as to construct a model for the system M(L) in the sameway a model was built for T(L). The correspondence mapping method maythen be used to study how the properties of the modal logic system M arepreserved in the modalised logic system M(L).AcknowledgementsThis work bene�ted from the comments of Jose Fiadero, Ian Hodkinson,Tony Hunter, Leonardo Lazarte, Mark Reynolds, Ben Strulo and the ref-eree. The work was supported by the ESPRIT project under Basic ResearchAction 3096 (SPEC). Marcelo Finger was supported by the CAPES-Brazil,grant 1481/89.ReferencesJohan van Benthem. The Logic of Time. Reidel, Dordrecht, 1983.
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