Adding a temporal dimension to a logic

system

MARCELO FINGER and DOV M. GABBAY
Imperial College, Department of Computing

January 11, 1993

Abstract. We introduce a methodology whereby an arbitrary logic system L can be en-
riched with temporal features to create a new system T (L). The new system is constructed
by combining L with a pure propositional temporal logic T (such as linear temporal logic
with “Since” and “Until”) in a special way. We refer to this method as “adding a temporal
dimension to L” or just “temporalising L”.

We show that the logic system T (L) preserves several properties of the original tempo-
ral logic like soundness, completeness, decidability, conservativeness and separation over
linear flows of time.

We then focus on the temporalisation of first-order logic, and a comparison is made
with other first-order approaches to the handling of time.

1. Introduction

We are interested in describing the way that a system §, specified in a logic
L, changes over time. There are two main methods for doing so. In the
external method, snapshots of § are taken at different moments of time as
describing the state of S at those times. We can write &, for the way S is at
time ¢, and use L to describe §;. We then externally add a temporal system
that allows us to relate different S, at different times ?.

In the internal method, instead of considering § as a whole, we observe
how & is built up from internal components and we transform these compo-
nents into time dependent building blocks. The internal temporal description
of each component will give us the temporal description of the whole system
S. We can assume that & can be completely described through its compo-
nents and that the way the components are put together to make § into a
whole is also a (possibly time varying) component.

Both the external and the internal methods have their counterpart in
logic as well. A temporal logical systems with temporal connectives such as
“Since” and “Until” is the result of externally turning classical logic into
a temporal (time varying) system. The use of a two-sorted predicate logic
with one time variable in which atoms are of the form A(t,z), with ¢ time
and z an element of a domain, is an internal way of making classical logic
into a temporal system.

The purpose of this paper is to investigate the external way of tempo-
ralising a logic system. In the external approach, we do not need to have
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detailed knowledge about the components of the system & or about the logi-
cal components of its description in L. We introduce a methodology whereby
an arbitrary logic system L can be enriched with temporal features to create
a new system T(L). The new system is constructed by combining L with
a pure propositional temporal logic T (e.g. linear-time temporal logic with
“Since” and “Until”) in a special way. We refer to this method as “adding a
temporal dimension to L” or just “temporalising L”. The method we use is
not confined to temporal features only, but is a methodology of combining
two logics by substituting one in another. Thus in the general case we can
combine any two logic systems Ly and Lz to form Ly(Lz).

In classical propositional temporal logic we add to the language of clas-
sical propositional logic the connectives P and F’ and we are able to express
statements like “in the future a certain proposition a will hold” by construct-
ing sentences of the form Fa. The idea we develop here is to apply temporal
operators not only to propositions but also to sentences from an arbitrary
logic system L.

Our aim can be viewed as describing both the “statics” and the “dy-
namics” of a logic system, while still remaining in a logical framework. The
“statics” is given by the properties of the underlying logic system Lj; in
propositional temporal logic T, we already have the ability to describe the
“dynamics”, i.e. changes in time of a set of atomic propositions. This point
of view leads us to combine the upper-level temporal T system with an un-
derlying logic system L so as to describe the evolution in time of a theory
in L and its models.

Another more general point of view comes from the work in (Gabbay
1991d) about networks of logic databases. A database is considered to be
a model of a theory in some logic system L; and the interaction between
databases is modelled by another logic system L;; therefore, two basic logic
levels can be identified, namely the local logic L, and the global logic L;.
The two systems are illustrated in Figure 1 with a temporal upper-level
system T in the place of L; and an arbitrary underlying logic system L in
the place of L.

+ | | |
(Local) (Global)
Logic system L Temporal logic system T

Figure 1: Two logic levels in a database network

We consider a network of databases distributed in time, as an extension
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of the more usual idea of a network of databases distributed in space. The
underlying logic system L characterises the local behaviour of a database, i.e.
the way queries are answered by a single element of the network. The upper-
level logic system describes how one local system (at some moment in time)
relates to another local system (at some other moment in time). We combine
those two logic systems to be able to reason about the “temporal network”
as a whole, creating a logic system T(L). The result of this combination is
the addition of a temporal dimension to system L, as illustrated in Figure 2.

Figure 2: The logic system T(L)

The above point of view is not yet the most general setting for our op-
erations. One may ask a general question: given two logics L; and Ls, can
we combine them into one logic? Suppose we take a disjoint union of the
two systems, for example a modal logic system K, with modality O;, and
a modal logic system S4, with modality O,. Here L; = K and L, = S4.
Form a language with {O0;,0,} and the separate axioms on O; (K axioms)
and on O, (S4 axioms). What do we know about the union? What is the
semantics? These questions have been recently investigated by Fine and
Schurz (1992) and by Kracht and Wolter (1991), in a framework in which
several independently axiomatisable monomodal systems were syntactically
combined. The temporal case, however, differs from those since temporal
logic is a bimodal system where the two modalities, one for the past and one
for the future, always interact. The methods in (Kracht and Wolter 1991)
do not immediately apply. This paper differs from the above papers in two
respects. First we are dealing with binary connectives Since (5) and Until
(U). Secondly and most importantly, we are not arbitrarily combining two
logics but rather embedding one logic inside the other. If we were to embed
one modality within another in the framework above we would syntactically
combine them ruling out the formulae containing O; within the scope of O,.
This yields what we call Ly(Ly) (O, is externally applied to Ly). The special
case where L; is a temporal logic T and L, is an arbitrary logic L, gives us
T(L), that we study in this paper.

General combinations of logics have been addressed in the literature
in various forms. Combinations of tense and modality were discussed in
(Thomason 1984), without explicitly providing a general methodology for
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doing so. A methodology for constructing logics of belief based on existing
deductive systems was proposed by Konolige (1986); in this case, the lan-
guage of the original system was the base for the construction of a new modal
language, and the modal logic system thus generated had its semantics de-
fined in terms of the inferences of the original system. The model theory
used by Konolige, called a deductive model, was the connection between the
original system and the modal one. Here we present a quite different method-
ology, in which the language, inference system and semantics of T(L) are
based on, respectively, the language, the inference system and the semantics
of T and L. Recently we have developed a general methodology for combin-
ing any two logics through fibring their semantics (Gabbay 1991a; Gabbay
1992); the assumptions on the semantics of the candidate logics are very
general and yield many known results.

Extensions of temporal logic are also found in the literature. In (Casanova
and Furtado 1982) a family of formal languages was generated by means of
certain mechanisms to define temporal modalities; the approach there was
based on grammars and the resulting family of languages was claimed to
be useful in expressing transition constraints for databases. Gabbay (1991b)
mixes two predicate languages G and L, generating the language L} (G),
a two-sorted predicate language in which one sort comes from terms origi-
nated in G and the other sort comes from terms originated in L; in the case
that the original language G is supposed to describe an order relation <,
the resulting system L}(G) can be seen as a predicate logic like approach
to temporal logic. Such a construction corresponds to an internal way of
adding a temporal dimension to a logic system. We propose in this work
a different approach, in which temporal modalities are applied to an ex-
isting logic system and thence a temporal dimension is added. Eventually,
we are going to informally compare the internal and external approaches in
Section 7.

The rest of the paper is organised as follows. In Section 2 we formalize the
idea of temporalising a logic system L in terms of the 5, U-temporal logic and
we show the soundness and completeness of the resulting system T(L) over
linear time. Section 3 shows that T(L) preserves the decidability property
of system L over linear time, and the complexity of the decision procedure
is estimated. Section 4 shows that T(L) is a conservative extension of L.
Section 5 shows that T(L) has the separation property, which is useful
to specify how the past states of a database influence its future states. In
Section 6 we discuss the temporalisation of first-order logic as a particularly
interesting application; two different temporalisations of first-order logic are
shown, yielding two expressively different logics. Finally, in Section 7 we
show how the added temporal dimension can be internalised in first-order
logic and we compare the temporalised approach with the internalised first-
order one.
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2. Temporalising an Existing Logic

This section will construct T(L) out of T and L. Our T is the temporal
system with “Since” and “Until”, described below. Our L is in general any
logic and in particular it can be classical predicate logic. We construct T(L)
by allowing substitution of formulae of L for the atoms of formulae of T.
We are not allowing the substitution of formulae of T or even formulae of
T(L) for atoms of L. Thus the temporal connectives of T are never within
the scope of connectives of L.

Next we first define T, both syntactically and semantically. Then we
define T(L) syntactically and semantically and we prove soundness and
completeness for T(L).

2.1. ProprosSITIONAL TEMPORAL LOGICS

We present here several propositional temporal logics of “Since” and “Un-
til”; these logics are defined over the same language but vary in the nature of
the flow of time they describe. So the language is defined starting from a set
of propositional letters 7 and then formulas are built up from the proposi-
tional letters using the boolean operators = (negation) and A (conjunction)
and the two-place temporal operators S (since) and U (until). Other boolean
connectives such as V (disjunction), — (material implication) and < (ma-
terial biconditional), as well as the abbreviations T (constant true) and L
(constant false), can be defined in terms of = and A; similarly for other tem-
poral operators like P (sometime in the past), F' (sometime in the future),
H (always in the past) and G (always in the future) with respect to U and
S.

In the following, propositional letters are represented by p, ¢, r and s,
and temporal formulae are represented by upper case letter A, B, C' and D.

DEFINITION 2.1. Syntax of propositional temporal logics

Let P be a denumerably infinite set of propositional letters. The set Lg  of
temporal propositional formulas is the smallest set such that:

- PCLsu;

— If Aand B arein Lg v, then =4 and (A A B) are in Lg v;

— If Aand B arein Lg v, then S(A, B) and U(A, B) are in Ly .

The mirror image of a formula is obtained by changing U by S and vice-
versa. 0

The outermost pair of brackets of a formulas are sometimes omitted when
no ambiguity is implied. Boolean connectives are defined in the standard
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way, while temporal operators can be defined by:

FA :def U(A, T)
PA —def S(A, T)
GA —def _|F_|A
HAIdef _|P_|A

A flow of time is an ordered pair F = (7, <), where T" is a nonempty set
of time points and < is a binary relation over T'. A valuation ¢ is a function
assigning to every time point ¢ in 7" a set of propositional letters ¢g(¢) C P,
namely the set of proposition letters that are true at the time point ¢. A
model M is a 3-tuple (T, <, g), where (T, <) is the underlying flow of time
and g is a valuation. M, t |= A reads the formula A holds over model M at
time point ¢ and is defined recursively as follows.

DEFINITION 2.2. Semantics of propositional temporal logic

M,tl=p,pe P iff peg(t)

M, tl=-A iff it is not the case that M, ¢t = A

MtEANB it M,tl= Aand M,t|=B

M.t = S(A, B) iff there exists an s € T' with s <t and M,s = A
and for every w € T, if s < uw < t then
M,ul= B

M.t = U(A, B) iff there exists an s € T' with ¢t < s and M,s = A
and for every w € T, if t < uw < s then
M,u = B. O

A formula A is valid over a class K of flows of time, indicated by K = A
if for every M whose underlying flow of time is in K and for every time point
teT, M,t]= A. If ¥ is a set of formulae, we write K |= X to indicate that
K = A for every A € Y. Therefore, for different classes K we have different
sets of valid formulae.

A minimal axiomatic system for the S, U-temporal logic over a class
K.ts v, contains the following axioms:

A0 all classical tautologies

Ala G(p— q) — (U(p,7) — U(q,7)
Alb H(p— ¢) — (S(p.7) — S(g¢,7)
A2a G(p—q) — (U(r,p) = U(r,q)
A2b H(p— q) — (S(r,p)— S(r,q)
A3a (pAU(q,r)) — U(gNS(p,r),7
A3b (pAS(q,r))— S(gAU(p,r),r

Note that the axioms above come in pairs, represented by a and b, such
that one is the mirror image of the other. The inference rules are:

\_/\_/\_/\_/\ o
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Subst Uniform Substitution, i.e. let A(g) be an axiom containing
the propositional letter ¢ and let B be any formula, then from +
A(q) infer - A(¢\B) by substituting all appearances of ¢ in A by
B.

MP Modus ponens: from - A and F A — B infer - B.

TG Temporal Generalisation: from - A infer F H A and - G A.

A deduction is a finite string of formulae each of which is either an axiom
or follows from earlier formulae by a rule of inference. A theorem is any
formula A appearing as a last element of a deduction, and we indicate by
Fs,u A. The axioms of kg  can be extended by a set of axioms X so as to
impose restrictions on the flow of time, therefore generating the inference
system kg y(s). When X is the empty set we have g y=Fg ys). A set of
formulae is consistent if we cannot deduce falsity (L) from it.

We say that an inference system is sound and complete with respect to
a class K of flows of time if

KEAiff - A,
or equivalently,
A is consistent iff A has a model over K,

soundness corresponding to the if part and completeness ' to the only if
part. We write S,U/K to indicate that fact.

If we consider Ky, the class of all flows of time, we have the following well
known result.

THEOREM 2.1. (Soundness and Completeness of S,U/K,)
The inference system g v is sound and complete with respect to the class

Ko.

An elegant proof of the above is given by Xu (1988). A proof of com-
pleteness for the class of transitive linear flows of time, Ky, is given by
Burgess (1982) adding the following set ¥ of axioms together with their
mirror images (b axioms).

Ada U(p,q) = Up,q A U(p,q))
Ab5a U(qAU(p,q).q) — U(p,q)
A6a (U(p,q) AU(r,s)) —
(UpAr,ghs)VU((pAs,ghs)VU(GAT,qAs))
! This is sometimes called weak completeness; strong completeness says that for any

(possibly infinite) set of formula T', if I' is consistent then I' has a model. Strong complete-
ness implies weak completeness but the converse is not true.
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Burgess actually used an extra axiom, but Xu (1988) proved the same
result omitting it and axiom A5b. Axioms A4ab and Ab5a are responsible
for restricting the class of flows of time to a transitive one. The pair of
axioms A6ab are responsible for restricting the class of flows of time to a
linear one. Adding the axiom

A7a (pANHp)— FHp

and its mirror image restricts the flow of time to a discrete one. Extending
original proofs of completeness to include new axioms over a more restricted
flow of time is discussed by Burgess (1984). With axioms A0—A7 we have
soundness and completeness results for a class of linear, discrete and transi-
tive flows of time. There are also complete axiomatisations S,U/R over the
reals (Gabbay and Hodkinson 1990; Reynolds 1992) and S,U/Z over the
integers (Reynolds 1992).

2.2. Logic SYSTEMS AND THEIR TEMPORALISED FORM

Having defined a family of 5, U-temporal logics, we now externally apply
such logic systems to any other logic system L, i.e. we “temporalise” L.

A logical system is a pair . = (L, ), where £y, is its language and F,
is its inference system; the set £y, must be countable. A model for the logic
system L is a structure My, and we denote My, |= @ when a formula o € £,
is true under the model M. The class of all models of L is denoted by Ky,
and a formula « is said to be valid if My, | a for all My, € K.

A logical system L is said to be sound if, whenever -, «, we have My, = «
for all My € K. The logical system L is said to be complete if, whenever
My, = a for all My, € Ky, we have that -, a.

We constrain the logic system L to be an extension of classical logic, i.e.
all propositional tautologies must be valid in it. This constraint is due to the
fact that all 5, U-temporal logics presented above are extensions of classical
logic and any of them can be taken as the logic T in which we base the
temporalisation. We discuss later in this section what should be the case if
L is not an extension of classical logic.

DEFINITION 2.3. Boolean combinations and monolithic formulae

The set Ly is partitioned in two sets, BC;, and ML;. A formula A € L,
belongs to the set of boolean combinations, BCy, iff it is built up from other
formulae by the use of one of the boolean connectives = or A or any other
connective defined only in terms of those; it belongs to the set of monolithic
formula ML, otherwise. 0

We can proceed then to the definition of the temporalised language. In
the following we will use «, 3, 7, ..., to range over formulae of T(L).
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The result of temporalising the logic system L is the logic system T(L)
= (L), Fray) and its models by Myq,. The alphabet of the temporalised
language uses the alphabet of L plus the two-place operators 5 and U, if
they are not part of the alphabet of L; otherwise, we use S5 and U, or any
other proper renaming.

DEFINITION 2.4. Temporalised formulae

The set Ly, of formulae of the logic system L is the smallest set such that:
1. If o« € MLy, then o € Lyqy;
2. If a, € Ly, then na € Lyg,y and (a A B) € Loywy;
3. If a, 3 € Ly, then S(a, ) € Lyq,y and U(a, B) € Lyw,).
The set of mazimal monolithic subformulae of o, Mon(a), is the set of all
monolithic subformulae of a that are used to build a up by the rules above.
a

It is obvious from the definition above that the set Ly, is denumerably
infinite. Note that from item 1 and 2 of the definition above, it follows
that £;, C Lrq,. The reason to define the base case in item 1 in terms of
monolithic formulae of L instead of simply defining it in terms of any formula
in £y is that we would have a double parsing problem. In fact, suppose an
item 1’ that would state that:

1. If a € Ly, then a € Ly,.

Suppose we want to define a function over the set of formulae, e.g. the depth
of the parsing tree of a formula. Consider the formula (a A 3) € Ly; it would
belong to L, both by items 1’ and 2. If we parse it by 1’, then its depth
will be 0, but if we parse it by 2, its depth will be 1, i.e. depth is not a
well defined function. To avoid such problem we introduce the restriction
to monolithic formulae in item 1. We also note that, for instance, if O is
an operator of the alphabet of L and a and 8 are two formulae in Ly, the
formula OU(a, 3) is not in Lyq,).

There is nothing to prevent us from defining the temporalisation in terms
of some F, P-temporal language, but since the language with 5 and U is more
expressive it received our preference.

If L is an extension of classical logic, we must pay attention to some
details before being able to describe the semantics of T(L). First, if My, is
a model in the class of models of L, for every formula o € £, we must have
either My, |= a or My, |E —a. For example, if L is a modal logic system, e.g.
S4, we must consider a “current world” o as part of its model to achieve
that condition. Second, we must be careful about the semantics of boolean
connectives in the temporalised system. The construction of temporalised
formulae based on monolithic formulae of £y, guarantees that the semantics
of the boolean connectives is the same in both the upper-level temporal logic
system T and in the temporalised system T(L).
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The language of T(L) is independent of the underlying flow of time, but
not its semantics and inference system, so we must fix a class K of flows of
time over which the temporalisation is defined; this is equivalent to fixing
one logic T among the family of temporal logics presented above. We are
then in a position to define the semantics of the temporalised logic system

T(L).
DEFINITION 2.5. Semantics of the temporalised logic

Consider a flow of time (7', <) € K and a function ¢ : 7" — Ky, mapping
every time point in T to a model in the class of models of L. A model of
T(L) is a triple Myq, = (1, <,g) and the fact that « is true in the model
Mo, at time point ¢ is represented by Myq,,t |= a. The semantics of
T(L) is given by:

MT(L),t |I a, & € MLL iff g(t) = ML and ML |: Q.

Mrw),t = ~a iff it is not the case that My, t |= a.
'MT(L)7t |: (O[ /\ ﬁ) lﬁ -MT(L)7t |: (83 and -MT(L)7t |: ﬁ
Morw),t = S, ) iff there exists s € T such that s < ¢t and

Mrw),s = o and for every v € T, if
s < u <tthen Myq,,u = B.

Mrw),t = Ule, ) iff there exists s € T such that ¢t < s and
Mrw),s = o and for every v € T, if
t<u<sthen Myqy),ul=p.

O

We write T(L) |= a if, for every model My, whose underlying flow
of time (7,<) € K and for every time point ¢ € T, it is the case that
'MT(L)7t |: .

The inference system of T(L)/K is given by the following:

DEFINITION 2.6. Axiomatisation for T(L)

—  The axioms of T/K;
—  The inference rules of T/K;
— For every formula o in Ly, if by, a then by, .

O

The third item above constitutes a new inference rule needed to preserve
the theoremhood of formulae of the logic system L. Therefore we call it
Preserve. The only inference rules we are considering in this paper are
Subst, MP and TG, but other rules such as the irreflexivity rule IRR,
(Gabbay and Hodkinson 1990), can also be added.

The first concern about the axiomatisation is its soundness, i.e. if when-
ever by o we have T(L) = a.
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THEOREM 2.2. (Soundness of T(L)) If the logic system L is sound and
S, U /K is sound over the class of flows of time K, then so is the logic system
T(L)/K.

Proor. Soundness of S,U/K gives us the validity of the axioms over
K. As for the inference rules, soundness of L guarantees that all formulae
generated by Preserve are valid; soundness of S,U/K guarantees that the
other inference rules, when applied to valid formulae, always generate valid
formulae. O

Completeness is discussed later in 2.4. Let us first present a few examples
of the temporalisation of an existing logic system.

EXAMPLE 2.1. Temporalising modal logic of belief

Suppose we have a propositional modal logic of belief 8 = (Lg,g) with
the modal operator B, in which Bp is intended to mean that p is a
proposition that is believed by an agent. The axiomatisation, g, is given
by the basic modal logic system K plus the transitivity axiom 4 as one
of the introspective properties of belief systems in (Hintikka 1962):

B(p — q) — (Bp — Bq) + Bp— BBp
Rules: Subst, MP, Generalisation

The transitivity axiom means that, if some fact is believed, it is be-
lieved to be believed, which represents a positive introspection of the
believing agent; for a discussion on modal logics of belief, see (Halpern
and Moses 1985). This system is provided with a standard Kripke seman-
tics for modal logics (Hughes and Cresswell 1968), with a set of possible
worlds W, an accessibility relation R and a valuation function V', so that
Mg = (W, R,V) is a model structure in which the accessibility relation
R is transitive. Actually, we are considering Mg = (W, R, V,0), where o
is a “current world” from which the observations are made, so that we
may have both validity and satisfiability in the model theory of B.

Consider the temporalised logic system T(B) over the class Ko of
all flows of time. Its inference system bFp), for example, gives us as
theorems

B(p —q) — (Bp — Bq)

=(Bp A~ Bp)

G B-(Bp A =Bp)

G(Bp — q) — (U(Bp, Bq) — Ul(q, Bq)).

If we have a theory I' = {GBp, Bp — Fp,U(q, Bp)}. We construct
one possible model Mg, by choosing a flow of time with 7' = {a, b, ¢, d}
and the partial order < = {(a,b),(b,c),(a,c),(a,d)}. We construct the
assignment g such that:

{AH propositional tautologies
K
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9(b) = My = p
g(b) = My |= Bp A p,
g(c)= Mgz |E BpAqand

g(d) = M, |: Bp
In the resulting model Mg, we have Mgy, a |= I' as illustrated

below.
b c
N N
a Bp,p Bp,q
P d
Bp

EXAMPLE 2.2. Temporalising propositional logic

Consider classical propositional logic pr = (Lpyr,Fpr). Its temporalisa-
tion generates the logic system t(rr) = (Lrer), Frer))-

It is not difficult to see that Lypr) = Ls v and Fypry=Fs u, i.e. the
temporalised version of PL over any K is actually the temporal logic T
= S,U/K. With respect to Myq,, the function h actually assigns, for
every time point, a PL model.

EXAMPLE 2.3. Temporalising S, U-temporal logic

If we temporalise over K the one-dimensional logic system S,U/K we get
the logic system T(S,U) = (Ls, uys Fas,vy) = T?(PL)/K. In this case
we have to rename the two-place operators S and U of the temporalised
alphabet to, say, 55 and Us.

In order to obtain a model for T(S,U), we must fix a “current time”,
0,in Mg v = (T1,<1,61) , so that we can construct the model My vy =
(15, <2, g2) as previously described. Note that, in this case, the flows of
time (77, <) and (1%, <2) need not to be the same. (15, <5) is the flow of
time of the upper-level temporal system whereas (77, <) is the flow of
time of the underlying logic which, in this case, happens to be a temporal
logic.
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The logic system we obtain by temporalising 5, U-temporal logic is
the two-dimensional temporal logic described in (Finger 1992).

EXAMPLE 2.4. N-dimensional temporal logic

If we repeat the process started in the last two examples, we can construct
an n-dimensional temporal logic T*(PL)/K (its alphabet including 5,
and U, ) by temporalising a (n — 1)-dimensional temporal logic.

Every time we add a temporal dimension, we are able to describe
changes in the underlying system. Temporalising the system L once, we
are creating a way of describing the history of L; temporalising for the
second time, we are describing how the history of LL is viewed in different
moments of time. We can go on indefinitely, although it is not clear what
is the purpose of doing so.

The assumption that the underlying logic system L is an extension of
classical logic allows us to make a clear distinction between boolean and
monolithic formulae, avoiding double parsing and reconstructing the boolean
formulae and its semantics in the temporalised system T(L). If we were to
temporalise a logic system that is not an extension of classical logic, or any
system in which we do not have the notion of satisfiability, only validity,
we could consider all its formulae as being monolithic. The problem would
then be the different semantics of the boolean connectives in the underlying
system and in the upper-level (classical) temporal system, if those symbols
are identical in both systems. The solution would be renaming the boolean
connectives, say, in the underlying system. The applications of such a hybrid
logic system are not clear so, to avoid extra difficulties in the results we are
going to prove, we will stick to the constraint on L being an extension of
classical logic.

2.3. THE CORRESPONDENCE MAPPING

We are now going to relate the temporalised logic system T(L) with the
original 5, U-temporal logic used as a base for the temporalisation process.
Consider P, a denumerably infinite set of propositional letters, and let S,U
be the propositional temporal logic system induced by P. The following
defines a relationship between a temporalised language Ly, and a propo-
sitional temporal language Lg .

DEFINITION 2.7. The correspondence mapping

Consider an enumeration p;, ps, ..., of elements of P and consider an enu-
meration «;, @, ..., of formulae in ML;. The correspondence mapping
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0 : Lywy — Ls, v is given by:

o(ay) =p, for every a; € MILy,0=1,2...
o(~a)  =-o(a)
olaANB) =o(a)ha(p)

(
a(S(a, B))=5(c(a),0(5))
a(U(a, B))=U(o(a),a(5))

The following is the correspondence lemma.
LEMMA 2.1. The correspondence mapping is a bijection

Proor. By two straighforward structural inductions we can prove that
o is both injective and surjective. Details are omitted. O

As a consequence, we can always refer to an element @ of Ls v as o(a),
because there is gunaranteed to be a unique a € Ly, such that a is mapped
into @ by . We can then establish a connection between consistent formulae

in T(L)/K and in S,U/K.
LEMMA 2.2. If a is T(L)-consistent then o(a) is S,U-consistent.

ProoF. Suppose o(a) is inconsistent. Since all axioms and inference
rules in S,U/K are also in T(L)/K, the derivation of -5 y o(a) — L can be
imitated to derive Fyqy o — L, which contradicts a being T(L)-consistent.

a

The results above are very useful for the proof of completeness and de-
cidability of T(L).

2.4. CoMPLETENESs oF T(L)

We are going to show here that whenever there exists complete axiomati-
sation for S,U/K and for L, where K C K;, is any linear class of flows of
time, then the temporalised logic system T(L)/K is also complete.

The strategy of the completeness proof is illustrated in Figure 3. We
prove the completeness of T(L)/K indirectly by transforming a consistent
formula of T(L) and then mapping it into a consistent formula of S,U.
Completeness of S,U/K is used to find a model for the mapped formula
that is used to construct a model for the original T(L) formula.

The transformation function ¢ is introduced to deal with the differences
between deductions in S,U and T(L) due to the presence of the inference
rule Preserve in T(L). This inference rule states that theorems in L are
also theorems in T(L). The model theoretic counterpart of this property
that valid formulae in L are also valid in T(L). The idea behind the trans-
formation ¢ is to extract “valid and contradictory content” that formulae
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) derived
T(L) « consistent ™ model for o
completeness of T(L)
e
completeness

e(a) consistent of L

o
) completeness of S,U
S, U |o(e(a))consistent model for o(e(a))

Fig. 3. Strategy for the proof of completeness

of T(L) may have due to the validity or unsatisfiability of some set of its
subformulae in L.

DEFINITION 2.8. The transformations  and ¢

Given a formula o € Ly, consider the following sets:
Lit(a)=Mon(a) U{=-3 | f € Mon(a)}
Inc(a):{/\F |I' C Lit(a) and I' b, L}

where Mon(a) is the set of maximal monolithic subformulae of a. We define
then the operator O (always) and the formulae n(«a) and ¢(a):

08 =3 A G3 A HS
n(a)= A\ O-4

BeInc(ao)
(a)=a A(a)

Since n(«) is a theorem of T(L), we have the following lemma.

If £ is a subclass of linear flows of time, we also have the following
property:

LEMMA 2.4. Let Mg v be a temporal model over K C Ky, such that for
some o €T, Mg y,o0 = o(Oa). Then, for everyt € T, Mg u,t |F o(Oa).
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Therefore, if some subset of Lit(a) is inconsistent, the transformed for-
mula e(a) puts that fact in evidence so that, when ¢ maps it into S,U,
inconsistent subformulae will be mapped into falsity.

To prove the completeness of T(L)/K given the completeness of S,U/K,
we fix an o and assume it is a T(L)-consistent formula. We have then to
construct a model for a over K.

By lemma 2.3, ¢(a) is T(L)-consistent and, by Lemma 2.2, o(¢(a)) is
S,U-consistent. Then, by the completeness of S,U/K, there exists a model
Ms v = (T, <, h) with (T, <) € K such that for some 0 € T, Mg y,0 =
o(e(a)).

For every ¢t € T', define G, (1):
Ga(t)={p € Lit(a) | Ms u,T |5 o(5)}

LEMMA 2.5. If a is T(L)-consistent, then for every t € T', G,(t) is finite
and L-consistent.

Proor. Since Lit(a) is finite, G, (t) is finite for every ¢. Suppose G, (1)
is inconsistent for some ¢, then there exist {fy,...,8,} C G4(?) such that
Fo, ABi — L. So ABi € Inc(a) and O—(A ;) is one of the conjuncts of
e(a). Applying Lemma 2.4 to Mg y,0 |= o(e(a)) we get that for every t € T',
Mg u,t |E (A o(B:)) but by, the definition of G, Ms u,t |= A o(5;), which

is a contradiction. O

We are finally ready to prove the completeness of T(L)/K.

THEOREM 2.3. (Completeness for T(L)) If the logical system L is com-
plete and S,U /K is complete over a subclass of linear flows of time K C Ky,
then the logical system T(L)/K is complete over K.

Proor. Assume that a is T(L)-consistent. By Lemma 2.5, we have
(T,<) € K and associated to every time point in 7" we have a finite and L-
consistent set G, (t). By (weak) completeness of L, every G, (¢) has a model,
so we define the temporalised valuation function g:

g(t)={ M, | M}, is a model of G, (1)}

Consider the model My, = (T, <, g) over K. By structural induction
over (, we show that for every § that is a subformula of « and for every
time point {,

MS,th |: U(ﬁ) iff MT(L)vt |: B

We show only the basic case, § € Mon(a). Suppose My y,t |= o(f); then
B € Gu(t) and My, = B, and hence My, = 3. Suppose My, t |= 3
and assume Mg y,t = —o(f); then =3 € G,(t) and M| = =3, which
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contradicts My, t |= §; hence Mg u,t |= o(3). The inductive cases are
straightforward and details are omitted.
50, My, is a model for a over K and the proof is finished. O

Theorem 2.3 gives us sound and complete axiomatisations for T(L) over
many interesting classes of flows of time, such as the class of all linear flows
of time, Ky;,, the integers, Z, and the reals, R. These classes are, in their
S,U versions, decidable and the corresponding decidability of T(L) is dealt
in Section 3. Integer and real flows of time also have the separation property,
which is discussed in Section 5.

3. The Decidability of T(L) and its Complexity

The main goal of this section is to show that, if the logic system L is decidable
and the logic system S,U is decidable over K C Ky;,, then the logic system
T(L) is also decidable over K. We assume throughout this section that
S, U/K is complete.

DEFINITION 3.1. Decidability of a Logic System

A logic system L is said to be decidable if there exists an algorithm (a
decision procedure) that, for every formula o € Ly, outputs “yes” if a is a
theorem in the logic system L and “no” otherwise. O

There are several results of decidability of S,U over several linear classes
of flows of time, among which the class Ky;,, of all linear flows of time (Burgess
1984), the integer and the real flows of time, (Burgess and Gurevich 1985).

As in the proof of completeness, we are going to prove the decidability
result using the correspondence mapping ¢ and the transformation 5. Recall
Definition 2.8, in which the sets Mon(a), Lit(a) and Inc(a) were all finite,
so that we have the following result about n(a).

LEMMA 3.1. For any a € Ly, if the logic system L is decidable then there
exists an algorithm for constructing n(«).

The relationship between T(L) and S,U that we need to prove the de-
cidability of T(L) is the following:

LEMMA 3.2. Qver a linear flow of time, for every a € Ly,
Frw @ iff Fs o o(n(a) — a).

Proor. The if case comes trivially from the definition of Fy,). For the
only if part, suppose Fr,, a. We prove by induction on the deduction of «
that Fg v o(n(a) — a).

Basic cases:
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1. a is obtained using the inference rule Preserve. Then n(a) = ==« and
Fs v o(m—a — a).

2. a is obtained using the inference rule Subst. Suppose a was obtained
by substituting p; by 3; in some axiom A. Then 5 @ can be obtained
by substituting o(p;) by o(8;) in axiom A.

Inductive cases:
1. @ = G is obtained using the inference rule TG. Note that n(a) = n(f).

Feuvo(n(a)) — o(8) by induction hypothesis
) by T(G)
) by temporal logic and o = G3
(a)))by the definition of  and K linear
a)— a) from the two previous lines
Similarly for o = Hp.
2. « is obtained from § and 8 — a by MP. Then
Fsu o(n(B)) — o(p) by induction hypothesis
Fsu o(n(f — @)) — o(8 — a)by induction hypothesis
Fsuvon(B— a))— a(n(B)) by the definition of n
Fsu o(n(f — a)) — a(f) from the 3" and 1** lines
Fsu o(n(f — a)) — o(a) from the 4" and 2" lines
Let p be a proposition that occurs in ¢(3) but not in o(«). If we eliminate
from o(n(a — 3)) all the conjuncts in which p occurs, obtaining o(7),
using the completeness of S,U/K we can get Fg v 0(7) — o(a). If we
do that for all such propositions, we end up with ks ¢ o(n(a) — a).
a

THEOREM 3.1. (Decidability of T(L)) If L is a decidable logic system,
and S,U is decidable over K C Ky, then the logic system T(L) is also
decidable over K.

Proor. Consider a € Ly ,. Since L is decidable, by Lemma 3.1 there is
an algorithmic procedure to build 7(a). Since o is a recursive function, we
have an algorithm to construct o(n(a) — a), and due to the decidability of
S,U over K, we have an effective procedure to decide if it is a theorem or
not. Since K is linear, by Lemma 3.2 this is also a procedure for deciding
whether « is a theorem or not. O

Once we have a decidability result, the next natural question is about
the complexity of the decision procedure. We briefly discuss here an upper
bound for the complexity analysis. Let N be the number of (boolean and
modal) connectives in a formula, let the complexity of the decision procedure
in L be O(f,(N)) and in S,U be O(fs u(N)). The decision procedure for
T(L) as given by the proof above consists of basically two steps:

1. constructing n(a);
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2. deciding whether o(n(a) — «) is a theorem or not;

The construction of n(«) involves generating all subsets of Lit(a) and
applying the decision procedure for each subset, therefore its complexity is
O2N x fu(N)). The second step is dominated by the decision procedure of
S,U since the application of ¢ can be done in polynomial time; in the worst
case, when all tests in L succeed, the size of n(«a) is O(2") and therefore the
decision is O(fs,v(2")). So an upper bound for the decision procedure for
T(L) is given by the dominating term of O(2" x fi,(N)) and O( fs v(2V)).
As for a lower bound for the decision procedure of T(L), it cannot be any
lower than the highest of the lower bounds for S,U and L.

4. Conservativeness of T(L)

Conservativeness can be easily derived from a the soundness of S,U and the
completeness of L, without any assumptions on the flow of time.

DEFINITION 4.1. Conservative extension

A logic system Lj is an extension of a logic system Ly if £y, C £y, and if
Fr, a then F; a. A logic L, is a conservative extension of Ly if it is an
extension of Ly such that if o € £y, then -, a only if Fp, a. O

We know that all complete S,U are conservative extensions of predicate
logic PL. Clearly, T(L) is an extension of L. We prove that it is also con-
servative.

THEOREM 4.1. (Conservativeness of T(L)) Let L be a complete logic
system and S,U be sound over K. The logic system T(L) is a conservative
extension of L.

Proor. Let a € L, such that Fyy) a. Suppose by contradiction that
/L @, so by completeness of L, there exists a model My, such that My, |= —a.
We construct a temporalised model My, = (T, <, g) by making ¢(t) = M.,
for all t € T. Mo, clearly contradicts the soundness of T(L) and therefore
that of S,U, so , a. O

5. Separation over the Added Dimension

The separation property of the §, U-temporal logic allows us to rewrite any
temporal formula into a conjunction of formulae of the form

past formula and present formula — future formula.

Once a formula is in the format above, it can be imperatively interpreted
against a partial temporal model according to (Gabbay 1987), so that if the
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antecedent holds in the past and present in the model, then we must execute
the consequent in the future so as to make the formula true in the model.
The imperative interpretation of a formula (also called the execution of a
temporal specification) is based on an asymmetric view of the flow of time;
in a symmetric view of time, whenever the antecedent is true in the past and
present, we could either make the consequent true in the future or we could
try to falsify the antecedent itself, in both cases maintaining the validity of
the temporal specification. In this asymmetric view of time, we discard the
latter possibility and remain with the former as the only possibility for the
execution of a temporal specification.

In this section we want to extend this imperative interpretation of a
temporal formula over a logic system L so that, after temporalising L over
a flow of time that is like the integers or reals, we can execute temporal
specifications in T(L). The concept of a separated formula is based on the
notion of a pure formula, so we present the definitions of pure formula and
separated formula for the S,U logic.

DEFINITION 5.1. Pure formulae in S,U

1. A pure present formula is a boolean combination of propositional letters.

2. A pure past formula is a boolean combination of formulae of the form
S(a, #) where a and [ are either pure present or pure past formulae.

3. A pure future formula is a boolean combination of formulae of the form

U(a, 5) where a and [ are either pure present or pure future formulae.

A separated formula is a formula that is a boolean combination of pure

formulae only. O

Once we have a separated formula, it can be brought to a conjunctive
normal form, i.e. a conjunction of disjuncts, so that each conjunct can be
finally brought to the form:

pure-present and pure-past — pure-future.

The following is the basic result about separation over the integers.

THEOREM 5.1. (Separation Theorem) For any formula A € Lg v there
exists a separated formula B € Lg v such that A is equivalent to B over an
integer-like flow of time.

A proof of the separation theorem can be found in (Gabbay 1987; Gabbay
1991c). It also holds for the reals.

The generalisation of pure formula for a temporalised logic system T(L)
is given below.

DEFINITION 5.2. Pure temporalised formulae
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derived
T(L) Any o - > Separated (3
separation for T(L)
o preserves
o equivalence
and separation
separation for S,U
S, U o(a) Separated o(f3)

Fig. 4. Separation of T(L)-formulae via separation of S,U-formulae

1. every formula o € Ly is a pure present temporalised formula.

2. A pure past temporalised formula is a boolean combination of formulae
of the form S(a,3) where a and 3 are either pure present or pure past
temporalised formulae.

3. A pure future temporalised formula is a boolean combination of formulae
of the form U(a, 3) where a and § are either pure present or pure future
temporalised formulae.

A separated temporalised formula is a boolean combination of pure for-
mulae of T(L). O

EXAMPLE 5.1. Temporalising a modal logic of belief

Suppose L is the modal logic system of belief, with the modal operator
B. Here are some examples of pure temporalised formulae in T(L):
1. Pure present: Bp — p, =(p A =p), and any other formula of the logic
L.
2. Pure past: P(Bp) — S(Bp,-p).
3. Pure future: F(Bp) — = FpV G(Bp — —p).

In order to prove the separation theorem for the temporalised logic T(L)
we will use the correspondence mapping. The basic strategy of the proof is
illustrated in figure 4.

The following is a helpful result that will lead us to the proof of separation
for the temporalised logic T(L).

LEMMA 5.1. Let 0 be a correspondence mapping between Lyq,y and Ls .
o(a) is a separated formula in the logic S,U iff o is a separated formula in

T(L).
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Proor. From the definition of the correspondence mapping it follows
that if ais a boolean combination of a1, ..., € Ly, then o(a)is a boolean
combination of o(ay),...,0(a) € Lg . The converse is also true since o is
a bijection.

Therefore, fo show that a is separated in T(L) iff o(a) is separated in
S,U, all we have to do is to prove that o(«) is a pure formula iff & is a pure
formula. We show the proof for the only if case; the if part is completely
analogous.

Suppose o(a) is a pure present, then it is a boolean combination of propo-
sitional letters. Therefore a is a boolean combination of monolithic formulae
of L, therefore « is a formula of L, and pure present in T(L).

Suppose o(a) is pure past, then it is a boolean combination of formulae
in Lg ¢ of the form S(o(3),0(7)) where o(f) and o(~y) are pure present or
pure past. Therefore o must be a boolean combination of formulae in Ly,
of the form S(v,d), where v and ¢ are, by induction hypothesis, either pure
present and pure past. Therefore a is a pure past formula in Ly q,,.

Suppose o(«) is pure future, then by an argument analogous to the pre-
vious case, a is a pure future formula. Therefore we have proved that if o(a)
is a pure formula in Lg vy, @ is a pure formula in Lyq,. O

THEOREM 5.2. (Separation Theorem for T(L)) If a is any formula in
Lra,y, then there exists a separated formula 8 € Lyq,, such that (3 is equiv-
alent to « over an integer-like flow of time.

Proor. All we have to do is to prove that if @ and § are formulae of
T(L) and kg v o(a) < () then by, a < 3. In fact, since all axioms and
inference rules of S,U also belong to T(L), the deduction of F¢ ¢ o(a) <
o(3) also leads to Fyu) a < 3.

Let then « be any formula of T(L). From the separation theorem of S,U,
we know that there exist a separated 3, such that ks v o(a) < o(5) and
o() is separated. So by Lemma 5.1, 3 is also a separated formula equivalent
to . O

Once we have the separation property for the temporalised system T(L),
we can rewrite any temporalised formula into a separated equivalent one of
the form

pure temporalised past and present — pure temporalised future.

The imperative interpretation of such a formula is the following. If the an-
tecedent holds in past and present models of the logic system L, then we
execute the temporalised formula by constructing a future model (or a series
or future models) of L so as to make the consequent true.

Since the separation property also holds for a real flow of time, the proof
above can be trivially adapted to a real flow of time. Note that the separation
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property for the temporalised system was obtained without any assumptions
on the underlying logic system L, as opposed to the results of soundness,
completeness and decidability, all of which depend on whether the property
holds for the underlying logic system L.

6. Temporalising First-Order Logic

In this section we examine in more detail the addition of a temporal di-
mension to a first-order language. We will consider a first-order language
with the quantifier V., an equality symbol =, a countable set of variables
X = {&1,2,,...}, a countable set of predicate symbols P = {pi,ps,...}
such that every predicate symbol has an associated natural number n > 0,
called its arity, a set (' of constant symbols and a set F' of functional sym-
bols; ' and F are possibly empty. The quantifier 3 can be defined in the
normal way as 3 = =V-. A term is either a variable, a constant symbol or
an n-ary function symbol applied to n terms. The notion of the set of free
variables of a formula is the usual one. A sentence is a formula with no free
variables.

A first-order domain D is a non-empty set. An interpretation 7 is a
mapping that associates, for every constant in the language an element in
the domain, and for every n-place predicate symbol an n-ary relation over
D". An assignment function A is a mapping that associates every variable
with an element of the domain. A first-order model is a pair M = (D, 7).
If t is a term, [{]J5* € D represents its extension over the domain D under
interpretation 7 and assignment A. The semantics of a first-order language
is then defined in the usual way, where M, A=« reads “M is a model
of the formula o under assignment A”:

M, AR pilty, .o t,) iff ([t 54, .. L [ta]5Y € Z(ps), for
all n-ary predicate symbols p; € P.

,/\/l,.A |:FOL Qo iff M,.A |7£FOL Q.
MARE, anp iff M, A=, aand M, A f.
M,A |:FOL tlz tz iff [[tl]]I’A = [[tz]]I’A.
M, A, Vra iff for any assignment A’ which agrees
with A, except possibly on variable
r, M,A' = a.
We say that a has a model M, and write M |= _ a,if M, AR«

for all assignments A (this is always the case when « is a sentence).

The derivability relation, F ., can be any of the existent ones for first-
order logic. It can be an axiomatic system, but it need not.

Since in first-order logic we have a basic distinction between sentences
and ordinary formulae, we have to consider both cases of adding a temporal
dimension to monolithic sentences and to monolithic formulae in general.
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FElement Fized Variable
Domain constant | variable
domains | domains
Constant and rigid non-rigid
Functional Symbols or flexible
Predicate Symbols | rigid non-rigid
or flexible
Assignment global local
TABLE 1

Degrees of freedom in temporalising first-order models.

6.1. TEMPORALISING FIRST-ORDER SENTENCES

If we temporalise first-order sentences, we have no problems in following
the methodology we have developed so far. We first identify the monolithic
sentences as those that are not in the format aAf or —a. For instance, Vap(z)
and Vz-(g¢(2) A ~g(z)) are monolithic sentences, whereas Jap(z) (implicit
negation) and Vap(z) A Yy—q(y) are boolean combinations. We then follow
the procedure described in Section 2, obtaining the logic system T(FOs).
Note that in T(FOs) a temporal operator never occurs inside the scope of
a quantifier.

The structure of the first-order models that compose the temporalised
model deserves some special attention, since one model may differ form
another in several different ways, as if we had various “degrees of freedom”
in generating a temporalised version of first-order models. Those degrees of
freedom are illustrated in Table I.

If all first-order models that compose a temporalised model My(pos, refer
to the same domain, a constant domain assumption is satisfied; otherwise,
we have varying domains. We may have rigid constant and rigid functional
symbols, i.e. they have the same interpretation in every model of the tem-
poralised structure; they are called non-rigid or flexible otherwise. A rigid
predicate symbol has the same interpretation at all time; otherwise it is
a flexible predicate symbol. And finally, the assignment function may be
global, i.e. all variables are assigned the same domain element in all models
of the temporalised structure (global assignments make sense only under a
constant domain assumption); otherwise, it is a local assignment.

In fact, constant domains or rigid terms or predicates are not a conse-
quence of the temporalisation; they are, actually, further assumptions on
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the temporalised first-order model made so as to impose some external in-
tended meaning of adding a temporal dimension to a logic system. All the
previously established results of soundness, completeness and separation are
valid for unconstrained T(FOs); decidability is obviously not applicable.

Nevertheless, there is no quantification over the temporal operators in
T(FOs), which means that the expressivity of this logic is clearly limited.
In the following, we examine one step further in increasing this expressivity,
while still keeping the original idea of adding a temporal dimension to a
logic system.

6.2. TEMPORALISING FIRST-ORDER FORMULAE

We take now general monolithic first-order formulae as a basis for the addi-
tion of a temporal dimension, i.e. all first-order formulae that are not of the
form —a or a A 3. We generate thus the logic system T(FOf). Note that
the language of T(FOs) is contained in the language of T(FOf).

The particular feature that distinguishes this system from all the previ-
ously considered systems is that, since we are considering first-order formulae
that may contain free variables, monolithic formulae with free variables only
have a defined semantics over a first-order model Mgy, if a variable assign-
ment function is provided, and the free variables of a first-order formula
used to build a temporalised formula a remain free in a.

Therefore, while constructing a model for the system T(FOf), we must
consider the existence of a global assignment function, A,, to cope with the
free variables. A global assignment function makes sense only in a constant
domain context, so we must have this assumption as well; we further assume
that all terms are rigid. The effect of the global assignment .4, is to ground
all the free variables of a temporalised formula a. Only the interpretation
of predicate symbols changes among the models of L in the temporalised
model structure. We write

Mryror) |F o iff Mryror), Ay = a for any A,.

Since the construction of its temporalised model and inference system
does not follow exactly the way other temporal systems were constructed,
the results previously established of soundness, completeness and separation
cannot be applied directly.

We know that the more expressive full first-order temporal logic has no
possible finite axiomatisation over several useful classes of linear flows of
time like {R}, {Z} and {N}, e.g. see (Garson 1984), but we do have a finite
axiomatisation for T(FOs). The logic system T(FOf) has an intermedi-
ary expressive power and it can be shown that T(FOf) cannot be finitely
axiomatised over linear flows of time that contain the natural numbers, al-
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though we will not do it here. Perhaps more interesting is that separation
can be achieved for this logic through model theory.

Since the concept of separated formula is purely syntactic and does not
depend on the model or the inference system, the definition of a separated
temporalised formulae given by Definition 5.2 is also valid for T(FOf). For
the same reasons, the definition of a correspondence mapping ¢ and the
correspondence lemma 2.1 stating that o is a bijection are also valid in

T(FOf).
DEFINITION 6.1. Corresponding Model

Let Mywory = (T,<,g) be a model of T(FOf), and let A be a global
assignment. We construct the valuation function ¢, such that, for every
time point ¢t € T" and for every propositional letter p = o(«) € P we have

o(a) € g,(t) iff Mywor), At |E a.

A model of the temporal logic system S,U, ./\/l;U =(T,<,¢,),1s then called
the corresponding model of My, under the corresponding mapping ¢ and
assignment A. 0

LEMMA 6.1. If ./\/l;U is the corresponding model of Mywor, under o and
A then

Ms,th = U(a) iff MT(FOf)vAvt Fa
Jor every a € Ly, and for everyt € T.

Proor. Straightforward by structural induction on a. O

THEOREM 6.1. (Separation for T(FOf)) For every o € Lywor, there
evists a separated formula 3 € Lywory such thal 3 is equivalent to o over
an integer-like flow of time.

Proor. Let ¢ be a correspondence mapping and A an arbitrary global
assignment . Consider a temporalised model Mypog) = (1, <,h), (T, <) €

Z, and let ./\/l;U = (T,<,g,) be its correspondent model under o and A.
By Lemma 6.1, we have

M;Uat |: O'(Oé) iff MT(FOf),.A7t |: I} (1)

for every a € Lyror, and for every ¢ € T'.
By the separation theorem for S,U we get that, for every formula o(a) €
Ls v there exists a separated formula o(f) € L ¢ such that

M;,th |: O'(Oé) iff M;,th |: U(ﬁ) (2)
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for all time points t € T'.

By Lemma 5.1, we have that the corresponding mapping preserves sepa-
ration, i.e. 3 is a separated formula iff ¢(3) is a separated formula and, by
application of (1)

Mgyt F o(B) iff Mrror), At (3)

for all time points t € T'.
Combining (1), (2) and (3) we get that, for every a € Lyror) there exists
a separated 8 € Lypor) such that, forall ¢ € T

Mrror), A, t = a iff Mo, At = 3 (4)

Since the assignment .4 was arbitrarily chosen and the separated § does
not depend on the particular choice of A, expression (4) holds for any global
assignment A, and separation for T(FOf) remains proved. O

We note that if we fix a current time, o, and a global assignment A,, we
can apply the temporalisation process to the logic system T(FOf), obtaining
a two-dimensional temporal predicate system, T?(FOf), as a predicate ver-
sion of the two-dimensional propositional system described in example 2.3.

7. Internalising the Temporal Dimension

There are three basic approaches to adding a temporal dimension to a logic
system, namely:

1. The temporal operators approach.

2. The first-order internalisation of the temporal dimension.

3. A mixed approach combining the two approaches above.

Those three different approaches are discussed in detail in (Gabbay 1990)
in the context of propositional temporal logic. The first approach is the one
we have been following so far. Here we briefly present the other ones in the
context of temporalised formulae.

Consider the temporalised first-order formula in T(FOf)

believed(z) — F happens(z)

expressing that whatever is believed now will become true in the future.
This statement could actually be completely coded in the original first-
order language by adding a temporal argument to the predicates believed
and happens. The resulting formulation would be

believed™(t,z) — Is(t < s A happen™(s,z)).

This process of getting rid of the temporal operators by adding a new
temporal argument to the predicates plus some extra conditions on those ar-
guments can be done systematically by an internalisation function * defined
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inductively over the structure of a formula of T(FOf) and also taking as
argument a reference time point, generating a two-sorted predicate formula,
one sort over time and the other sort over domain elements. We call this
process the internalisation of the temporal dimension. The internalisation
of the temporal dimension is basically obtained by the standard translation
of temporal logic into predicate logic, e.g. (Benthem 1983), with an extra
argument to incorporate the temporal reference; this extra argument can be
interpreted as the result of Quine’s “eternalisation” of first-order sentences

(Quine 1960).

In the internalised version it is necessary to incorporate a theory express-
ing the properties of the flow of time K = (7', <) to restore the deductive
capability of temporal formulae. However, there are several flows of time over
which there are complete temporal axiomatisations that are not definable
in first-order logic, e.g. the integers and the reals.

Another way of getting to a first-order predicate logic approach to tem-
poral logic, as proposed by Gabbay (1991b), is by mixing two predicate logic
languages in the following way. Let G (for global) and L (for local) be two
first-order languages. The two-sorted predicate language L} (G) is the result
of mixing the G and L (in our present notation it would be G(L})). If we
consider the language L;(G), then a formula of the form P*(¢,zy,...,2,)
means that P(zy,...,z,) holds at time ¢. This language is the same language
of the internalised temporal dimension system. But this approach gives us
a way of creating an internalised logic system in a very similar way to that
in which a temporalised system was created, i.e. as a result of putting two
languages together. In fact, the original languages G and L can be seen as
two linked languages “sharing variables” in the language L;(G). One of the
original languages, G, has the exclusivity of dealing with temporal facts,
as the upper-level S, U-temporal logic system, whereas the language L is
responsible only for the local behaviour at each point in the flow of time.

The temporal operators approach to a temporalised formula can be seen
as treating time points implicitly, always referring to a current time. The
first-order internalisation refers explicitly to the points in the flow of time. A
hybrid form of internalisation of the temporal dimension can be obtained by
combining temporal operators with first-order internalised formulae, mixing
the explicit reference with the implicit reference of time.

In the combined approach, every temporalised formula « is associated
with a first-order atomic formula holds(t,a), where « is now treated as a
first-order term, and the free variables of o are considered free in holds(t, o).
A set of axioms is added to combine the holds(t, o) formulae with the first-
order internalised formulae, for example:
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holds(t,a) < (a)*[t], for all monolithic a € Ly,
holds(t, o A B)«holds(t,a) N holds(t, 3)
holds(t,o N B)«=3s[s < t A holds(s,a) ANVu(s < u < t — holds(u, 3))]

etc.

As in the internalised approach, in the combined approach we still have
to provide axioms for the flow of time.

Conclusion

We have shown in this paper a way of composing an upper-level tempo-
ral logic system with a generic underlying logic system L and the resulting
logic system T(L) was called the temporalisation of system L. We used the
correspondence mapping method to prove soundness, completeness, decid-
ability, conservativeness and separation for the temporalised logic system
over linear flows of time. All those properties were initially properties of the
temporal logic system. Many other properties remain to be analised, such
as compactness, finite model property and interpolation among others; the
properties discussed here over classes of linear flows of time remain to be
expanded for all classes of flows of time.

We need by no means restrict the upper-level logic system to temporal
logic. In fact, the temporalisation presented in this paper can be generalised
to any propositional modal logic system M in the role of the upper-level logic
system, so as to create a modalised logic system M(L). Its language and
inference system can be obtained following the method we used to derive
the those of T(L), based on the monolithic formulae of L. If the logic L
has a possible world semantics, each possible world may be substituted by
a model of L, so as to construct a model for the system M(L) in the same
way a model was built for T(L). The correspondence mapping method may
then be used to study how the properties of the modal logic system M are
preserved in the modalised logic system M(L).
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