
Equal Rights for the Cut:
Computable Non-analytic Cuts in
Cut-based Proofs

MARCELO FINGER,University of Sao Paulo, Brazil.
E-mail: mfinger@ime.usp.br

DOV GABBAY, King’s College, London. E-mail: dg@dcs.kcl.ac.uk

Abstract
This work studies the structure of proofs containing non-analytic cuts in the cut-based system, a sequent inference
system in which the cut rule is not eliminable and the only branching rule is the cut. Such sequent system is
invertible, leading to the KE-tableau decision method. We study the structure of such proofs, proving the existence
of a normal form for them in the form of a comb-tree proof.
We then concentrate on the problem of efficiently computing non-analytic cuts. For that, we study the gener-

alisation of techniques present in many modern theorem provers, namely the techniques of conflict-driven formula
learning.

Keywords: Proof Theory, non-analytic cuts, sequent calculus, tableaux.

1 Introduction

Cut elimination is one of the best known and best studied proof theoretical properties of
sequent-based inference systems. Its importance and centrality cannot be overemphasised.
It provides a normal form for sequent proofs, namely cut-free proofs, which have the sub-
formula property. That is, any formula occurring in the proof is a subformula of the sequent
at the root of the proof. As can easily be seen in the cut rule,

�1��1,A A,�2��2
(Cut)

�1,�2��1,�2

the cut formula A is not necessarily a subformula of �i or �i , i=1,2. Systems with the
subformula property are analytic, in the sense that no formula enters the proof that is
not a subformula of the final sequent. This implies the impossibility of inferring the empty
sequent (∅�∅) in the logic, which is taken to be the definition of the consistency of a
sequent calculus.
Since the seminal work of Gentzen on sequent calculi [Sza69], the presence of the cut rule
in a logic system has been accompanied with the urge to eliminate it, where elimination
consists in showing that all sequents derivable with cut can also be derivable without it.
Cut elimination has since been linked with several logical and computational properties of
a logic system; a well-known example is the Curry-Howard isomorphism [CF58, How80],
which led to the Intuitionistic Type Theory of Martin Löf [ML79], in which cut elimination
is shown to correspond to a β-elimination form of computation in typed λ-calculus.

© The Author, 2007. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
doi:10.1093/jigpal/jzm040

554 Computable Non-analytic Cuts

It has been noted that the real importance of cut-free proofs is not the absence of cuts per
see, but the fact that those proofs possess the subformula property [Smu68a]. Based on such
observation, a few authors have started to explore the proof theory of analytic cuts, which
allows cuts but limit their application so that the resulting proofs still have the subformula
property [DM94]. The class of proofs thus obtained had interesting properties, such as ana-
lycity, the subformula property, and the irredundancy of proofs. However, the computational
problem remained, namely, there exists some theorems with polynomially-sized proofs with
general cuts, but for which only exponentially large analytic proofs are possible.
The urge for eliminating cut has stayed in the logic community. Cut elimination was
introduced as a tool to prove the consistency of the sequent calculus, but only very few
newly proposed logics have its consistency proved this way. The preferred road to proofs
of consistency today is to provide a sound and complete semantics, which accounts for
consistency. Nevertheless, the existence of a cut-free formulation for logics such as modal S5
remains a much studied open problem since its proposal [Fit83], despite the fact that there
are elegant and efficient proof systems for S5, e.g. [Mas00].
However, even if cut can be eliminated, this is only a property of the logic system, from
which one should not infer that it must be eliminated. The role of the cut rule is absolutely
central in foundational issues, for it corresponds to the use of auxiliary lemmas in the con-
struction of large proofs of theorems, and Mathematics as we know it would be unimaginable
without it.
All the power and elegance coming from cut elimination has a price. Cut free proofs tend
to be redundant, with identical subtrees occurring in several parts of the proof. In classical
propositional logic, there are several theorems for which small proofs can be easily obtained
with cuts, but only exponentially large cut-free proofs exist [Boo84, CS00].
But there remains a myth, which states that computing non-analytical cuts is very hard.
The intuition behind the statement against non-analytics cuts is that if they are allowed, the
search space for cut formulas is in principle infinite. So, even though there may be shorter
proofs in such a proof system, it may be much harder to find them.
The aim of this paper is to show that this is a false myth.
To motivate our position, we note that modern propositional theorem provers, which are
generally called SAT-solvers, are becoming faster, with impressive practical results [MSS99,
BM96, MMZ+01, GN02]. The majority of these SAT-solvers implement an improved version
of the DPLL method (also called the Davis-Putnam method [DLL62]). It is known that the
DPLL method can be seen as a clausal calculus based on a very limited version of analytic
cut [D’A90], where the cut formula is always a literal. To obtain orders of magnitude of
efficiency improvement, modern SAT solvers extend the basic DPLL with special heuristics,
very smart data types, but also with techniques containing considerable proof insight, such
as conflict-driven learning [ZMMM01] and backjumping [Dec90, NOT05]. It is our belief that
those techniques used by SAT solvers are not simple, ad hoc hacks to obtain performance
gains, but that they can be analysed and generalised in proof-theoretical terms.
In this paper, we wish to study proofs containing efficiently computable non-analytic
cuts. For that, we show that any propositional classical sequent proof can be converted
into a proof in a fixed format, the comb-tree proof. The comb-tree proof has exactly the
same number of branches as the original proof, and each branching point is a cut that
is potentially non-analytic. To show this result we start from a particular formulation of
the sequent calculus in which the cut rule is not eliminable; we call it the cut-based sequent
calculus. The presentation here is restricted to propositional classical logic, but can certainly

Computable Non-analytic Cuts 555

be extended to its extensions, such as first-order or modal and temporal logic, as well as to
non-classical logic. In the cut-based calculus, the only branching rule is the cut so its use
controls the structure of the proof.
It must be noted that to compute a sequent proof, one actually starts from the root
sequent and proceeds towards the leaves, which is normally done using a tableau method.
The results concerning non-analytic cuts in this paper are formulated in terms of tableaux
and tableau methods. The tableau system corresponding to the cut-based calculus is the
KE-tableau [DM94].
We show that there are other ways of introducing computable non-analytics cuts in a
proof, which can be computed as one goes along building the proof. We show that this can
be obtained by learning formulas when conflicts (tableau branch closures) are detected. The
resulting proof may be a lot smaller that an analytic of cut-free proof, and is guaranteed to
be polynomially bounded in the size of the initial proof.
KE-tableaux are the basis for our study of two forms of conflict-driven learning of formulas,
namely decision-based learning and inference-based learning. We will show how these meth-
ods relate to the presence of non-analytic cuts in a proof and why the latter is a method
more likely to reduce the size of a proof.
The rest of the paper develops as follows. Section 2 presents the cut-based calculus and

its relation to KE-tableaux. The comb-tree normal form for KE-proofs is proven in Section 3.
Conflict-driven learning and its relation to non-analytic cuts is explored in Section 4.
We finalise with some conclusions and pointer to further work in Section 5.

2 Preliminaries

We deal here with a propositional language, LP , constructed from a countable set of atomic
symbols P ={p0,p1,...}, and the usual classical connectives ¬, ∧, ∨ and →. The size of
a formula A, ||A||, is the total number of symbol occurrences in A, defined inductively
as ||pi ||=1, ||¬A||=1+||A|| and ||A◦B||=1+||A||+||B|| for ◦∈{∧,∨,→}. A valuation is
a function v :P →{0,1} that is extended to all formulas in the usual way: v :LP→{0,1}.
A formula A is satisfied by v if v(A)=1; A is satisfiable if there exists a v that satisfies A;
A is valid if it is satisfied by all valuations v. Let � and � be sets of formulas, then we write
� |=� if every valuation that satisfies every A∈� satisfies some B∈�.

2.1 A Cut-based System for Classical Logic
We present here a version of the sequent calculus in which cut is not eliminable, inspired by
the ideas of D’Agostino and Mondadori [D’A92, DM94], which has been explored in [FG06].
Our presentation follows the discipline of Kleene’s G4 sequent system for classical logic
[Kle67], such that a sequent is a pair ���, where � and � are sets of formulas, with the
intended meaning that the conjunction of the formulas in � prove the disjunction of the
formulas in �. The structural rules, i.e. the rules that manipulate sequents independently
of the connectives in their formulas, are presented in Figure 1. Note that since both the
antecedent and consequent of a sequent are sets, there is no need for the usual rules of
commutativity and contraction. Also, the usual rule of monotonicity or weakening is taken
care by the Axiom rule. The cut rule is crucial here, as it cannot be eliminable. In the Axiom
rule, we call the distinguished formula A the main formula and any formula in � and � is
a weak formula; in the cut rule, the distinguished formula A is called the cut formula.

556 Computable Non-analytic Cuts

FIG. 1. Classical structural rules for the sequent calculus

FIG. 2. Connective rules for the cut-based sequent calculus

The connective rules of the sequent calculus are different from the usual ones, so as to
block cut elimination. Those connective rules are presented in Figure 2. Instead of being a
cut-free calculus, this is a cut-based calculus.
A deduction of proof in the cut-based sequent calculus is a tree whose nodes are sequents,
where the leaf nodes are instances of the Axiom rule, and the internal nodes are derived from
other nodes using the inference rules in Figures 1 and 2. A sequent is deducible or derivable
if it is the root of a deduction tree; if ��� is deducible in the cut-based sequent calculus,
we write ��CB�.
Note that a node has two parent nodes only if it is a result of applying the Cut Rule.
Otherwise the node is a linear successor of it single parent. A supernode is a maximal
sequence of linear successors. It is easy to see that a deduction tree can be seen as binary
tree of supernodes.
All sequent rules in Figures 1 and 2, like those of Kleene’s G4 system, are invertible, that
is, the provability of a rule’s conclusion implies the provability of all the rule’s premisses.
This important property can be easily verified in semantic terms.

PROPOSITION 2.1 (Soundness and Completeness of the Cut-based Calculus)
��CB� iff � |=�.
Soundness can be proved directly, by showing that axioms are valid and if the inference
in rules in Figures 1 and 2 are applied to valid sequents the derived sequent is always valid.
Completeness can be shown in many ways; in particular, it was shown in [FG06] that the
rules in the cut-based calculus can simulate those of a traditional sequent calculus and thus
inherits its completeness.
We next show that cut cannot be eliminated in the cut-based systems.

LEMMA 2.2
There are classically valid sequents which are not deducible without the use of the cut rule
in the cut-based calculus.

Computable Non-analytic Cuts 557

FIG. 3. A Cut-based Deduction

PROOF. Consider the classically valid sequent p∨q,p∨¬q,¬p∨q,¬p∨¬q |=r . By complete-
ness, we know that p∨q,p∨¬q,¬p∨q,¬p∨¬q�CB r (*). We argue that the last rule applied
in the deduction of such theorem has to be the cut rule.
In fact, (*) is not an axiom. There are no connectives in its consequent and all formulas in
its antecedent have ∨ as the main connective. The only connective rules that introduce an
∨ in the antecedent are (∨�1) and (∨�2), so the last rule applied in the sequents deduction
must have been either (∨�1) or (∨�2) or cut. However, rules (∨�1) and (∨�2) also add one
of the disjuncts to the consequent. As the consequent of (*) is an atom not occurring in its
antecedent, (∨�1) and (∨�2) cannot have been applied. So cut was applied last.
A cut-based deduction of sequent (*) is shown in Figure 3. The last step is a cut over ¬p.

The dashed boxes indicate the supernodes of the proof.
Given a cut-based proof� of a sequent ��CB�, we define the size of�, |�|, as the number
of sequents in�. Let c(�) be the number of cuts in�; then the number of supernodes in� is
2c(�)+1, and the number of branches is c(�)+1. For example, with regards to the sequent
proof �0 in Figure 3, we have that |�0|=7, the number of cuts c(�0)=1, the number of
supernodes is 3 and the number of branches is 2.

2.2 KE Tableaux
KE-tableaux correspond directly to cut-based systems. This form of tableau was proposed by
D’Agostino and Mondadori as a way of incorporating directly the cut principle in tableau
proofs, which they argue correspond to the principle of excluded middle, also called the
principle of bivalence (PB) [DM94, D’A99]. Furthermore, it was shown that, in comparison
with Smullyan’s analytic tableau based on cut-free sequents [Smu68b], KE-tableau have
better computational properties [D’A92]. We note, however, that D’Agostino’s presentation
of KE-tableaux was based on semantical considerations of non-redundancy over Kleene’s
G4 sequent system; here, we show that the same tableau system can be obtained simply by
inverting the sequent rules of the cut-based calculus.
KE-tableaux deal with T - and F -signed formulas. So if α is a formula, T α and F α

are signed formulas. T α is the conjugate formula of F α, and vice versa; consider the
conjugate operator that applies to formula sings such that T̄=F and F̄=T . Each connective
is associated with a set of linear expansion rules. Linear expansion rules always have a main
premiss; two-premissed rules also have an auxiliary premiss. Figure 4 shows KE-tableau
linear connective expansion rules for classical logic. It is no coincidence that there is a one-
to-one correspondence with the cut-based sequent rules in Figure 2.
The only branching rule in KE is the Principle of Bivalence (PB), stating that a formula
A must be either true or false, as illustrated in Figure 5, which corresponds directly to the

558 Computable Non-analytic Cuts

FIG. 4. KE Expansion Rules

FIG. 5. Principle of Bivalence

cut rule. D’Agostino [D’A92] restricted the use of PB to the insertion of auxiliary premisses
of two-premissed rules; This restriction was called the branching heuristics and corresponds
to allow only analytic cuts in a proof. Analycity limits the potentially infinite search space
for a cut formula, without loss of completeness.
A tableau for sequent A1,...,An �B1,...,Bm starts with a single branch containing TA1,...,
TAn,FB1,...,FBm . An expansion of a tableau branch is allowed when the premisses of an
expansion rule are present in the branch; the expansion consists of adding the conclusions
of the rule to the end of all branches passing through the set of all premisses of that rule.
The PB branching rule splits a branch into two.
A branch is closed if it contains F A and T A for some A. The tableau is closed if all

its branches are closed. The inference �KE is defined for A1,...,An �KE B1,...,Bm iff there is a
closed KE-tableau T for TA1,...,TAn,FB1,...,FBm .
A KE tableau proof is therefore a tree, whose nodes are signed formulas. There are two
measures of complexity of a tableau. The size of a tableau T , |T |, is the number of nodes in
T , and c(T) is the number of applications of PB in T . The number of symbols of T , ||T ||,
is the sum of the sizes of all formulas in all nodes of T : ||T ||=∑

XA∈T ,X∈{T ,F} ||A||. We define
a supernode as a maximal sequence of nodes resulting from applications of linear expansion
rules only.
We call a sequent proof cut-free if it employs no cuts; it is analytic if all cuts are analytic,

that is, if the cut formula is a subformula of some formula in the sequent; it is non-analytic
if there is no restriction on cuts. A similar terminology is used for tableaux.
We establish the correspondence between cut-based sequent deductions and KE tableaux.

LEMMA 2.3
For every cut-based proof � for A1,...,An �CBB1,...,Bm there corresponds a tableau T for
A1,...,An �KE B1,...,Bm .
PROOF. Let Sn be a sequent in � such that Sn=S1 ···Sn is the sequence of sequents in �
from the root sequent S1 to Sn . Define Bn={TA|�,A��∈Sn}∪{FB|��B,�∈Sn}. We prove
by induction that B is a well formed partially expanded KE tableau branch. In fact, this is
indeed the case if we consider the root tableau, for then B={TA1,...,TAn,FB1,...,FBm}.

Computable Non-analytic Cuts 559

TABLE 1. Sequent-Tableau Correspondence

Correspondence Between Sequent Rules and Tableau Expansion Rules

(∧�)—(T∧) (∨�1)—(T∨1) (→�1)—(T→1) (¬�) —(T¬)
(�∧1)—(F∧1) (∨�2)—(T∨2) (→�2)—(T→2) (�¬) —(F¬)
(�∧2)—(F∧2) (�∨)—(F∨) (�→)—(F→)

If Sn was obtained from Sn+1 by a linear inference rule R, let E be the tableau rule
corresponding to R in Table 1. Consider the sequence Sn+1=S1 ···SnSn+1; it is easy to note
that Bn+1 is obtained from Bn by an application of E , so Bn+1 is a well formed partially
expanded branch.
If Sn=�1,�2��1,�2 was obtained by a cut from Sn1 =�1��1,A and Sn2 =A,�2��2,
then we construct the corresponding Bn1 =Bn∪{FA} and Bn2 =Bn∪{TA} as the two branches
obtained from Bn by an application of PB, so both Bn1 and Bn2 are well formed partially
expanded branches, which finishes the induction.
As all branches in � end in an axiom node Sn=�,A�A,�, a fully extended branch Bn

contains both FA and TA, so every branch closes. Two branches that have a common prefix
can be merged, thus forming a binary tree; a branch can be merged into a tree by merging
it to one of its branches, generating a larger tree. By the construction above, two branches
of � that are separated by a cut correspond to two fully expanded tableau branches that
share a common prefix. The tableau T is then the merge of all fully expanded branches.

The converse of Lemma 2.3 also holds.

LEMMA 2.4
For every KE tableau proof T for A1,...,An �KE B1,...,Bm there corresponds a cut-based
sequent proof � for A1,...,An �CBB1,...,Bm .
PROOF. By induction on the construction of T . The idea is to associate, for every partially
expanded branch B, the sequent {A|TA∈B}�{B|FB∈B}. In this way, the initial sequent
corresponds to the initial tableau. Suppose the tableau has been expanded up to a certain
point in a branch B, and the sequent proof has been constructed up to sequent ���.
In case a linear expansion rule E is applied to B generating B′, we form a new sequent

�′ ��′ based on B′; clearly �⊆�′ and �⊆�′. Let R be the sequent rule corresponding to
E in Table 1. It is easy to verify that if E is applied to B′ generating B′, then R applied to
�⊆�′ generates ���, so the sequent proof was expanded in a sound way.
In case the PB branching rule is applied to B on formula A, generating B1=B∪{FA} and

B2=B∪{TA}, a cut rule is inserted in the sequent proof with premisses ���,A correspond-
ing to B1 and A,��� corresponding to B2. As the cut generates ���, the sequent proof
is expanded in a sound way.
Finally, if B is closed, then there are FA,TA∈B, so the correspondent sequent is an axiom

of the form �′′,A�A,�′′, and the sequent proof has a sound branch. As all branches in T
close, we have a correct sequent proof for the initial sequent.

One important aspect of the transformations of Lemmas 2.3 and 2.4 is that they preserve
the shape of the proof, that is, the number of branches, the branching points and the number
of rule applications in each branch is preserved. Suppose
 represents the transformation of

560 Computable Non-analytic Cuts

Lemma 2.3, and � represents the transformation of Lemma 2.4. Note that if we start with
a KE tableau T , then

T
��T ,

that is, if one applies the transformation in Lemma 2.4 and then applies the transformation
of Lemma 2.3, one ends up with the same original tableau T ; however, if one starts with a
sequent proof �, and apply the transformations

��T
�′,

one ends up with a sequent proof �′ possibly different from �. However, � and �′ are very
similar, due to the following:

• The root nodes of � and �′ are identical; that is � and �′ prove the same sequent.
• Every leaf node �,A�A,� in � corresponds to a sequent node �′ ��′ in �′, such that
�⊆�′ and �⊆�′; this is due to the fact that both such nodes correspond to the closing
of a tableau branch with TA and FA, but the
-transformation may add extra formulas
to the axiom sequents.
• If sequent S was obtained from S1,...Sn in � with rule R, then in �′ this corresponds
to a node S ′ obtained from S ′

1,...S ′
n with the same rule R.

• As a consequence, every sequent node ��� in � corresponds to a sequent node �′ ��′

in �′, such that �⊆�′ and �⊆�′.

COROLLARY 2.5
�KE -inference is sound and complete w.r.t. classical logic.
As an example, Figure 6 presents a KE tableau for p∨q,p∨¬q,¬p∨q,¬p∨¬q�r , corre-

sponding to the sequent deduction in Figure 3. The dashed boxes indicate the supernodes
of the proof.

FIG. 6. A KE-Tableau Deduction

Computable Non-analytic Cuts 561

3 Normal Form for Non-Analytic Proofs

As there is a direct correspondence between KE-tableaux and cut-based sequent proofs, we
restrict our attention only to KE-tableaux.
A deduction is a binary tree, but trees can degenerated in linear-like structures which we
call combs. A right-branching comb is a binary tree in which, at every branching point the
left node is always a leaf; similarly, in a left-branching tree, at every branching point the
right node is always a leaf.

3.1 A Normal Form for KE-Tableaux
We say that T is a comb tableau if the supernodes of T form a comb tree. As KE trees
correspond to sequent proofs turned upside-down, a left-branching comb tree sequent proof
corresponds to a right-branching comb tree KE tableau, and vice-versa.
We start with an example of how an analytic tableau proof, can be transformed into a
comb tableau. Consider the valid sequent p∨q,q→p,(p∧t)→s,p→(t∨s)�¬(¬p∨¬s). A
first, analytic KE-tableau for it is shown in Figure 7.
A comb tree KE-tableau proof for the same sequent is shown in Figure 8. Node 22 was
obtained with rule (T∧→), described below. We stress that the proofs correspond to each
other; in fact, the proof in Figure 8 was obtained from the proof in Figure 7 by means of
Algorithm 3.1, to be presented below.

THEOREM 3.1
For every closed tableau T for ��KE� there corresponds a comb tree closed tableau T ′ for
��KE�, such that c(T ′)=c(T) |T ′|=O(|T |2) and ||T ′||=O(||T ||3). Furthermore, there is an
algorithm for constructing T ′ from T .

PROOF. To obtain a one-to-one correspondence between the branches of T and T ′, we will
assume as primitive the following rules (T∧→) and (T→∨), which are generalisations,

FIG. 7. A Tableau Proof

562 Computable Non-analytic Cuts

FIG. 8. A Corresponding Comb Tableau

respectively, of (T→1) and (T→2):

T (A1∧ ...∧A�)→B
TAi
T (A1∧ ...∧Ai−1∧Ai+1∧ ...∧A�)→B

(T∧→)

TA1→(B1∨ ...∨Bk)
FBj
TA→(B1∨ ...∨Bj−1∨Bj+1∨ ...∨Bk)

(T→∨)

Rules (T∧→) and (T→∨) can be easily derived using a single application of PB, which
guarantees that the comb-tree structure will not be affected even if they are not assumed to
be primitive. In fact, the formula X :

X=((A1∧ ...∧A�)→B)→(Ai→((A1∧ ...∧Ai−1∧Ai+1∧ ...∧A�)→B))

Computable Non-analytic Cuts 563

is a classical theorem that can be proved first thing in a tableau proof T ′′, such that if T ′ is
comb-like, the resulting tableau T ′′ remains comb-like:

Note that in the right branch, due to the presence of TX , if the premisses of (T∧→) are
in the branch, so is its conclusion. An analogous construction can be done with respect to
(T→∨), so that the proof T ′ can be prefixed as many instances of the construction above as
are the instances of (T∧→) and (T→∨) in T ′ such that, if T ′ comb-like so is the resulting
tableau, as desired.
Let T be a closed tableau proof tree; an order is imposed on the sub-trees of T such that
at every branching point, the left subtree is ordered before the right subtree. This ordering
is supposed to encode the fact that tableau trees are usually constructed as a depth-first
search, where the application of PB-branching over A is usually the result of the application
of some heuristic method, which chooses both the formula A over which the branching will
occur and the polarity that will be explored first, that is, if TA or FA will be the “first to be
explored”. We call the top node of the first sub-tree to be explored as the left choice formula
of that PB application, and the top node of the other sub-tree is the right choice formula.
Given a branch B in T , let lChoice(B) and rChoice(B) represent, respectively, the set of
all left choice signed formulas in B, and the set of all right choice formulas in B. Also, let
Choice(B)=lChoice(B)∪rChoice(B).
The order on subtrees also imposes an order on the branches of T , B1,...,Bb, such that

Bi precedes Bj if at some branching point in T , Bi contains the left choice formula and Bj
contains the corresponding right choice formula.
Suppose T is a closed tableau for A1,...,An �KE B1,...,Bm . All branches in T extend the
initial branch B0={TA1,...,TAn,FB1,...,FBm}, and every branch Bi in T can be recon-
structed from B0 and Choice(Bi). In fact, we can expand B0∪Choice(Bi) applying all pos-
sible linear expansion rules; let us call the resulting set LinearExpand(B0∪Choice(Bi)).
Clearly, Bi⊆LinearExpand(B0∪Choice(Bi)), so if the former closes the latter will certainly
close.
The main idea of the proof is that, through successive uses of PB a branch B can be

obtained not from Choice(Bi), but from lChoice(Bi), i.e. only the left choice formulas in
B, which will yield a right-branching comb. A left-branching comb could be obtained by
considering rChoice(Bi) in a similar way.
For each branch Bi , let lChoice(Bi)=�Ti ∪�Fi be a partition of the set lChoice(Bi),
where �Ti ={A|TA∈lChoice(Bi)} and �Fi ={A|FA∈lChoice(Bi)}. Define the formula,

564 Computable Non-analytic Cuts

for 1≤ i≤b−1:

λPBi =



∧
�Ti , if �Fi =∅∨
�Fi , if �Ti =∅(∧
�Ti

)→(∨
�Fi

)
otherwise

As we cannot have simultaneously �Ti =∅=�Fi , λPBi is a well-formed propositional
formula; as �Tb =∅=�Fb , λPBb is not defined. Consider the left polarity, Lp, of λPBi to be
Lp=F if �Fi �=∅, and Lp=T otherwise. The idea is that, if we consider the signed formula
LpλPBi , LinearExpand({LpλPBi })⊇lChoice(Bi). We are now in a position to prove the cor-
rectness of Algorithm 3.1.
Algorithm 3.1 shows how to construct a closed, comb-tree tableau T ′ starting from a
closed T . For every branch Bi in T there corresponds a branch B′

i in T ′; all those branches
extend B0. Each B′

i , 1≤ i≤b−1 contains a single left polarity formula, namely Lp λPBi , so T ′

is a comb tree. We now prove by induction that B′
i⊇Choice(Bi), which entails that B′

i is a
closed branch.
For the base case, consider B′

1 which, according to line 3 in Algorithm 3.1, contains
{Lp λPB1 }, so that its linear expansion will contain all left choice formulas in B1, which
contains no right choice formulas, so the result is proved.
Now suppose B′

j⊇Choice(Bj) for 1≤ j< i and prove that the same holds for B′
i . We first

note that the linear expansion of LpλPBi contains all left choice formulas in Bi and, from
line 5 in Algorithm 3.1, so does B′

i . So we need to show that B′
i also contains the right choice

formulas in Bi . Let Choice(Bi)=
〈
X1λ1,...,Xβiλβi

〉
be the ordered sequence of Bi ’s signed

choice formulas, Xk ∈{T ,F},1≤k≤βi . Let Xr1λr1 be the first right choice in that sequence.
Then in T we have the following configuration:

We see that at some point in T , there is a PB-branching over λr1 , such that Bi extends
the branch containing Xr1λr1 . On the left subtree, there is guaranteed to exist a branch Bj
where all subsequent branching choices, if any, are right choices; in fact, this is true of all
left branches in a KE-tableau proof. Suppose Xr1 =F . Then, on branch B′

j in T ′ the left
branch choice is F(λr1∧A1∧ ...∧A�)→(B1∨ ...∨Bk), where A1,...,A� and B1,...,Bk are a
regrouping of λ1,...,λr1−1 according to the polarity of Xa , 1≤a<r1. Therefore B′

i contains
T (λr1∧A1∧ ...∧A�)→(B1∨ ...∨Bk). As we know that the linear expansion of λPBi contains
X1λ1,...,Xr1−1λr1−1, by �+k applications of the rules (T∧→), (T→∨), (T→1) and (T→2)
leads to Fλr1 ∈B′

i . A totally analogous argument shows that if Xr1 =T , then Fλr1 ∈B′
i .

We have thus shown that the first right branching point of Bi is in B′
i . Similarly, we can

prove now that if the (r−1) first right branching points of Bi are in B′
i , so is the r-th right

branching point. The argument is totally analogous to the above, so we omit the details.

Computable Non-analytic Cuts 565

This finishes the induction, and we have thus proved that B′
i⊇Choice(Bi), so for 1≤ i≤

b−1, B′
i closes and the comb-tree tableau T ′ computed by algorithm 3.1 closes; it follows

that Algorithm 3.1 is correct.
We now see that for every application of PB in T there corresponds exactly one application
of PB in T ′, so c(T ′)=c(T). Note that, if we had not used rules (T∧→) and (T→∨) as
primitive, but had to derive them, we would need one such a derivation for each branching
point in T ′, which would give us c(T ′)=O(c(T)).
With regards to the number of nodes of T ′, we see that each B′

i is basically Bi , enlarged
with the presence of {Lp λPBi }∪{Lp λPBj |1≤ j< i}, according to line 5 in Algorithm 3.1. The
computation of the choice formulas in B′

i takes
∑
1≤j≤i |λPBj | and since |λPBj |=O(|Bj |), it

follows that |T ′|=O(|T |2). Finally, for the number of symbols in T ′, it suffices to note that,
as |λPBj |=O(|Bj |), the number of symbols in a branch B′

j is at most |B′
j |2, so it follows that

||T ′||=O(||T ||3).

Algorithm 3.1 NormalFormTableau(T , ��KE�)
Input: T , a closed tableau proof for ��KE�.
Output: T ′, a closed, right-branching comb-tree tableau proof for ��KE�.
1: Let B1,...,Bb be the branches of T , whose initial branch is B0;
2: We construct T ′ with branches B′

1,...,B′
b extending B0;

3: B′
1=LinearExpand(B0∪{Lp λPB1 });

4: for i=2 to b−1 do
5: B′

i=LinearExpand(B0∪{Lp λPBi }∪{Lp λPBj |1≤ j< i});
6: end for
7: B′

b=LinearExpand({Lp λPBi |1≤ i≤b−1}∪B0);
8: The tree T ′ is the result of the merge of B′

1,...,B′
b.

9: return T ′;

4 Learning

D’Agostino has noted that KE systems can be viewed as a generalised form of Davis-Putnam
procedure [D’A90]. The Davis-Putnam procedure [DLL62], despite being restricted to clausal
logic, is widely used in many theorem provers, and has received several improvements over
the years. It is our goal here to understand those improvements in a principled way and see
how they can be applied to KE tableaux.
The Davis-Putnam procedure is usually associated with the construction of a SAT-solver,
which aims at finding a valuation that satisfies a formula; a tableaux for SAT-solving would
search for an open branch, considering closed branches as dead-ends. On the other hand,
theorem proving searches for a proof of a formula, and if tableaux are viewed as theorem
provers, closed branches are the sub-goals. There is, in fact, no contradiction between these
two points of view, as tableaux (as well as the Davis-Putnam procedure, or resolution, among
many others) and are decision procedures, whose design must aim at finding an open branch
as soon as possible, if one exists; otherwise, the methods should find a small proof tree if all
branches will eventually close. In particular, pure analytic tableaux fail for the latter goal, as

566 Computable Non-analytic Cuts

there are no small (i.e., polynomial) proofs for several theorems which are known to possess
polynomial non-analytic proofs.
In automated theorem proving, several techniques have been applied to obtain smaller
proof graphs and quicker proof searches. One of the techniques most largely employed is
called learning. In the context of proof search, learning means the inference of new formulas
during the search process, which are then added to the set of given formulas, and which can
be later discarded.
Typically, learning takes places in refutation-style proof constructions, when a conflict is
reached in a search path; in a tableau, a conflict is in fact the presence of a contradiction
in a branch, which corresponds to the closing of this branch. One then computes some
information, in the form of a new formula to be added to the root of the tableau, that will
be used by the search engine to avoid reaching again the same conflict. We explore here two
techniques used to that effect:

• Learning based on the (bad) decisions that led to the conflict; we call this decision-based
learning.
• Learning is based on some form of inference involving the formulas that took part in
the production of the conflict, typically resolving the two main formulas that produced
the contradiction; we call this inference-based learning.

It must be clear that those learning techniques could be applied to analytic tableaux as
well, simply as methods for adding new formulas every time a branch closes. The difference
is that, unlike analytic tableaux, each learning method can be reconstructed (or simulated)
as a KE-tableau proof.
We now explore these two learning techniques in the context of KE-tableaux.

4.1 Decision-based Learning
Most inference systems are non-deterministic, in the sense that at several points during the
proof construction a decision has to be taken about which inference to choose. Normally, the
correctness of the proof is not affected by this choice, but it can have a dramatical influence
on the proof size.
In KE-tableaux, one tries to apply all possible linear expansion rules, and then, if the
branch is not closed nor saturated, the only possibility is to apply the PB branching rule.
But then comes the real choice, namely, which signed formula will be on the left branch.
The left choice formula is the only choice formula at a branching point with a depth-first
search strategy, for the right choice formula will only be explored if the left branch is closed,
at which point no choice is left.
Decision-based learning adds the learned signed formula to the root of the tableau, as if
it were a “new” hypothesis, as follows. The same notation used in Section 3.1 is applied,
so let lChoice(B) be the set of signed left-choice formulas in branch B; consider a parti-
tion of this set, lChoice(B)=�T ∪�F , where �T ={A|TA∈lChoice(B)} and �F ={A|FA∈
lChoice(Bi)}. Define the formula λB:

λB =


F

∧
�T , if �F =∅

T
∨
�F , if �T =∅

T
(∧
�T

)→(∨
�F

)
otherwise

Computable Non-analytic Cuts 567

FIG. 9. Left-most closed branch in Figure 7

Note that λB is precisely the right branching formula computed in the comb normal form
for branch B in Theorem 3.1.
This is perhaps better understood by means of an example. Consider a depth-first con-
struction of the tableau proof in Figure 7. Consider the proof when it reaches the first closed
branch, i.e. the left-most closed branch. This situation is illustrated in Figure 9.
The cut formulas in this tableau are the decisions made in the search of an open branch,
namely Tp,Tp∧t and F¬p. With this point of view, this was a set of bad decisions that
should be avoided. That is, if Tp and Tp∧t are to be found in a branch, than one must
have T¬p in it. This corresponds to learning T (p∧(p∧t))→¬p. Note that this is exactly
the formula present in the right branch of the first use of PB in Figure 8 and, similarly, the
left branch corresponds to the left-most branch of Figure 8. If we add this learned formula
to the top of the tableau, one can then proceed the search with that extra formula added,
as illustrated in Figure 10.
The second closed branch is basically the same as in Figure 7. It must be noted that the

right PB formula T¬p can, in fact, be inferred from the learned formula T (p∧(p∧t))→¬p
and the remaining choice formulas Tp and Tp∧t with two successive applications of (T∧→).
This is due to the fact that, in the presence of the choice formulas, the learned formula is
equivalent to the right PB formula.
At this point, we know that the choice formulas Tp and Tp∧t did not lead to an open

branch, so those two labelled formulas should not occur again in a branch. This statement
implies the learning of Fp∧(p∧t); of course, one could simplify and simply learn Fp∧t, but
we will not do it here. Note that Fp∧(p∧t) is the second right PB formula in Figure 8,
which is no coincidence since the method for obtaining both are exactly the same.
We could go on and add the learned formula Fp∧(p∧t) to the top of the tableau, but not

much would be changed in the original proof of Figure 7. There is a repeated pattern here,
in which the learned formulas are basically the same as the right PB formulas in Figure 8.
If every time a new formula is learned we would restart the tableau from the beginning,
but maintaining all learned formulas, the proof obtained by this successive restarts would
be exactly the comb-tree proof of Figure 8. For example, if instead of proceeding to the
right branch in Figure 10, we had restarted the tableau, using the top learned formula

568 Computable Non-analytic Cuts

FIG. 10. Next left-most closed branch in Figure 7

T (p∧(p∧t))→¬p, we could branch over Tp∧(p∧t), thus generating T¬p, which is exactly
what happens in the comb tree proof of Figure 8. In this sense, we can consider this learning
expansion as an on-line construction of the comb-proof.
The truth is, not much is gained by this form of learning, due to the equivalence between
learned formulas and right PB formulas pointed above. In fact, let ψ1,...,ψn be an enumer-
ation of the left choice formulas in a branch B; then, in the presence of ψ1,...,ψn−1, λB and
the learned right PB formula (which we called λ̄n) are equivalent. This means that when B
closes, adding λB to the set of premisses provides exactly the same information as λ̄n , which
is next right choice formula to be added to the first remaining open branch.
It is no surprise that the first SAT-solvers to deal with the learning of clauses reported
worse efficiency results when learning was enabled.
However, there is a practical application of this form of learning in the presence of random
restarts. This is a technique applied in many SAT-solvers (e.g. in Chaff [MMZ+01]) such that
when a branch closes there is a probability of the process of theorem proving restarting. This
does not mean that all the work done so far is lost, precisely because the formulas learned
are not deleted at restart. The restart allows the prover to recover from bad initial branching
choices, keeping all the learned knowledge so far. This remains true even for other kinds of
learning, one of which we detail next.

4.2 Inference-based Learning
In general, SAT-solvers use clausal representation, so that at each conflict detection, i.e. at
branch closing, a new clause is inferred. A broad investigation on several methods for clause
learning based on implication graphs can be found in [ZMMM01], in which empirical tests
have indicated that the learning technique generating smaller proofs is resolution-based,
where the learned clause is obtained by resolving a set of clauses involved in the generation
of the conflict. In the simpler case, the two clauses that contain the pair of literals that
generated the conflict are resolved; more sophisticated methods are presented in [ZMMM01]

Computable Non-analytic Cuts 569

TABLE 2. Signed Formulas Learned by General Resolution at Branch Closing

Origin of TX Origin of FX Learned Formula Justification

T A[X] T B[X] T A[X/⊥]∨B[X/�] A[X],B[X]�A[X/⊥]∨B[X/�]
T A[X] F B[X] T B[X/�]→A[X/⊥] A[X]�B[X],B[X/�]→A[X/⊥]
F A[X] T B[X] T A[X/⊥]→B[X/�] B[X]�A[X],A[X/⊥]→B[X/�]
F A[X] F B[X] F A[X/⊥]∧B[X/�] A[X/⊥]∧B[X/�]�A[X],B[X]

That method is resolution based, and hence clausal. However, it can be generalised to any
formula by using Bachmair-Ganzinger general resolution rule [BG01]:

A[B] A′[B]
A[B/⊥]∨A′[B/�]

where X [Y] designates the formula X in which Y is a subformula, and X [Y /Z] designates
the same formula X with all occurrences of Y replaced by Z .
Now suppose we are in a branch that closes due to the presence of TX and FX , and that
at this moment a new formula is to learned using general resolution. As all connective rules
are analytic, we can trace back the origin of TX and FX either to an original hypothesis or
to a PB (decision) formula; if PB is analytic, then TX and FX can always be traced back
to some hypothesis, respectively designated as A[X] and B[X]. The formula learned is the
result of general resolution applied to signed formula, as indicated in Table 2.
The justification column in Table 2 is always an instance of the general resolution prin-

ciple, adapted to the tableau rules. In fact, the generalised tableau rule requires that both
hypothesis be positive, that is T -marked. This only occurs in line 1. In lines 2–4, some clas-
sical transformation was applied. For instance, in line two the hypotheses are T A[X] and
F B[X], which is classically equivalent to having T A[X] and T ¬B[X]; so if we applied
general resolution to the latter hypotheses, we would obtain T A[X/⊥]∨¬B[X/�], which
is classically equivalent to T B[X/�]→A[X/⊥], as desired. Lines 3 and 4 of Table 2 were
obtained analogously.
In Table 2, the justification sequent always contains the origins of TX and FX and also
the opposite of the leaned formula. By assuming this justification sequent as a valid sequent,
we can derive a new inference rule which allows us to add the learned formula to the end
of an expanding branch whenever it contains particular point of the tableau. For instance,
the sequent in the justification column of the first line of Table 2 is A[X],B[X]�A[X/⊥]∨
B[X/�], implies that the following tableau always closes:

1. TA[X] hyp.

2. TB[X] hyp.

3. FA[X/⊥]∨B[X/�] general resolution

×

In fact, the general resolution is a valid rule, so by completeness we know that the tableau
above always closes, but by considering general resolution as a derived rule so be selectively
using at branch closing, we may be able to generate smaller proofs. In this way, the closed

570 Computable Non-analytic Cuts

tableau above can be used to derive the inference rule (GR)1

TA[X]
TB[X]

TA[X/⊥]∨B[X/�]
(GR)1

due to the following tableau, whose left branch is precisely the closed tableau above:

Similarly, we can derive rules (GR)2,(GR)3 and (GR)4, corresponding to the other lines
of Table 2. When we use those derived inference rules, we cannot always add the learned
formula to the root of the tableau, for the resolvents (that is, the origins of TX and FX)
must be present in the branch. The insertion point of the learned formula is just after the
lowest of A[X] and B[X] in a tableau branch, as shown in Figure 11 for the first case in
Table 2.
Figure 12 presents the tableau of Figure 7 transformed with resolution-based learning of

formulas at branch closing.
The boxed formulas are the learned formula. Formula (1) was learned at the closing of
the branch 1, with A[s]=T (p∧t)→s and B[s]=T¬p∨¬s. Formula (2) was learned at
the closing of branch 2, with A[p]=Tp and B[p]=T¬p∨¬s. No formula was added at the
closing of branch 3, although this is also possible. Some trivial simplifications were employed
in Figure 12 so as to eliminate � and ⊥ from the learned formulas.
Note that the addition of the learned formula is made a posteriori, that is, the use of the
derived inference is made only after the branch closes. So formula (1) was not present when
branch 1 closes, as is indicated by the node number 15. After branch 1 closes (node 14)
and before backtracking to expand branch 2 (node 16), formula (1) is added at that precise
point in the tableau, and it remains available for further expansions. In this particular case,
it was inserted at a point high enough so that it remains available for all further expansions.
This is not the case of the learned formula (2), which was inserted at node 19 after branch
2 closes at node 18. Formula (2) was available to branch the expansion of branch 3, and in
fact, it was used there to derive Fs (node 21), but due to its insertion position, it was not
available to the expansion of branch 4.

FIG. 11. Insertion point of resolution-based learning

Computable Non-analytic Cuts 571

FIG. 12. Proof of sequent using inferential learning

Note that formula (1) was not employed in the proof, but formula (2) enabled the closing
of branch 3, thus reducing the number of branches and formulas in the proof. If we compare
Figure 12 with the proof of Figure 7 of the same sequent, we see that the learning of formula
(2) allowed us to avoid some extra branching, and in fact reduced the size of the proof.
In this respect, we see that the learned formulas are always of size polynomial with the
original hypothesis, and are added at most one for each branch, so that the tableau using
learned formulas is at most polynomially larger (in the number of symbols) than the tableau
without the use of this form or learning. As seen in the example, the tableau with learning
has the potential of having fewer branches, and thus of generating smaller proofs.

LEMMA 4.1
Adding the formulas learned according to Table 2 generates only sound proofs.

PROOF. Suppose we want to prove ���. Suppose we have a closed branch that adds a new
formula. Without loss of generality, suppose the first line of Table 2 was used. As usual with
tableau reading of sequent rules, we have to read rules bottom-up.
Consider initially the case where the formulas that cause the closure of the branch can be
traced back to the hypothesis; in this case, let �=�′,A[X],B[X], so that the sequent to be
shown is �′,A[X],B[X]��. By adding the learned formula and closing the tableau, we have
actually proved that �′,A[X],B[X],A[X/⊥]∨B[X/�]��. Then, with a cut application
with the justification sequent A[X],B[X]�A[X/⊥]∨B[X/�], which is a simple application
of general resolution, we obtain �′,A[X],B[X]�� as desired.
Now suppose that when we closed the branch, the formulas that caused the closure cannot
be traced back to � or �, but trace back to some branching formula. However, the same
reasoning as above applies. When the KE branch is closed, we have actually proved

�,C1,...,Cn �D1,...Dm,�,
where Ci are the T -marked branching formulas and Dj are the F -marked branching formulas

572 Computable Non-analytic Cuts

in the branch. Suppose the last PB was over Dm so that closing the next branch would be
equivalent to proving

�,C1,...,Cn,Dm�D1,...Dm−1,�.

However, as we assume that (GR)1 is applicable, A[X],B[X]∈{�,C1,...,Cn}, so that we end
up proving

�,C1,...,Cn,Dm,A[X/⊥]∨B[X/�]�D1,...Dm−1,�.

Again, with a cut with justification A[X],B[X]�A[X/⊥]∨B[X/�], we obtain the desired
sequent.
The other three cases are totally analogous. We omit the details.

The use of extra tableau inference rules (GR)1−4 is not restricted to KE-type of tableaux.
In fact, the same enhancement is possible, for instance, in analytic tableaux. However, unlike
analytic tableaux, the use of those rules can be polynomially simulated in KE-tableaux.

THEOREM 4.2
Inference-based learning corresponds to the employment of non-analytic branchings in proofs.

PROOF. First note that the learned formulas in Table 2 are not, in general, a subformula of
any other formula in the tableau, so that if there is a branching over one of those formulas,
the proof is, in general, non-analytic.
So, if the premisses of one of (GR)1−4 is present in a partially expanded branch B, we
can branch over the learned formula, generating Bl and Br ; suppose the learned formula
is on Br .
Due to the validity of general resolution and the completeness of KE-tableaux, the left
branch Bl closes.
The expansion of Br proceeds as normally, and now it has an added formula, which
increases the chances of new inferences and thus of closing the branch.

The peculiarity of this non-analytic branching is that it is an a posteriori branching only
added after the branch is closed. In practice, this a posteriori branching does not occur,
and is used only to justify the a posteriori addition of an extra formula at a particular
place. When the learned formulas is added at the root of the tableau, this corresponds to
an application of PB at the very opening of the tableau.
Finally, we present in Figure 13 another version of the tableau in Figure 12 in which all
non-analytic branchings are presented explicitly.
Figure 13 indicates how the learned formulas can be proved, but the rest of the tableau,

being identical to Figure 12, is omitted. It is no coincidence that in Figure 13 the left branches
corresponding to learned formulas (1) and (2) close in the same fashion that branches 1 and
2 in Figure 12. In this sense, the use of the derived rules based on general resolution (GR)1−4
avoid duplication.
It is clear that using (GR)1−4 only a polynomial number of formulas (of polynomially
bounded size) can be added to the original proof, so the size of the transformed proof is
polynomially bounded on the size of the proof without learning. Furthermore, the addition
of the learned formula has the potential of actually reducing the size of the original proof,
i.e. the proof without employing learning.

Computable Non-analytic Cuts 573

FIG. 13. Proof of sequent deriving learned formulas

We have thus shown that one possible way of computing non-analytic branchings is by
learning formulas using generalised resolution at branch closing.

5 Conclusion

We have opened this paper by stating that it is a myth the usually accepted statement that
computing non-analytic cuts in sequent proofs is hard.
To achieve this goal, we have provided a way of transforming any cut-free, analytic or
non-analytic proof into a normal form non-analytic proof, such that the transformed proof
is polynomially bounded by the size of the original proof. This normal form consisted of
a degenerated comb-tree proof with the same number of branches as the original formula.
We have also shown that such proof can be built during proof construction by using decision-
based learning.
We have also provided another method based on generalised resolution that computes
(a posteriori) non-analytic cuts during proof construction based on the learning formulas
from closed branches.
Several future paths of research are indicated by the present work. One is actually an
appreciation of how much proofs are shrunk, if at all, using the learning technique described
above.
Another path of research would be to try to obtain other methods for computing non-
analytic cuts, for the methods described here by no means exhaust the subject.
The computation of non-analytic cuts for other logics (modal, first-order and non-classical
logics) is also a possibility. Possibly, many techniques already employed by practical theorem
provers can be rendered as non-analytic cuts. One candidate in this direction is backjumping,
a search pruning technique employed in a variety of areas.

Acknowledgements

Marcelo Finger is partly supported by CNPq grant PQ 301294/2004-6 and FAPESP project
04/14107-2.

574 Computable Non-analytic Cuts

References
[BG01] L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson

and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 2,
pages 19–99. Elsevier Science, 2001.

[BM96] R. J. Bayardo and D. P. Miranker. A complexity analysis of space-bounded learning
algorithms fofr the constraint satisfaction problem. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pages 508–522, 1996.

[Boo84] George Boolos. Don’t eliminate cut. Journal of Philosophical Logic, 13:373–378,
1984.

[CF58] H. B. Curry and R. Feys. Combinatory Logics, volume 1. North Holland, 1958.
[CS00] Alessandra Carbone and Stephen Semmes. A Graphic Apology for Symmetry and

Implicitness. Oxford Mathematical Monographs. Oxford University Press, 2000.
[D’A90] Marcello D’Agostino. Investigations into the complexity of some propositional cal-

culi. Technical Report PRG Technical Monograph 88, Oxford University Computing
Laboratory, 1990.

[D’A92] Marcello D’Agostino. Are tableaux an improvement on truth-tables? — Cut-free
proofs and bivalence. Journal of Logic, Language and Information, 1:235–252, 1992.

[D’A99] Marcello D’Agostino. Tableau methods for classical propositional logic. In Marcello
D’Agostino, Dov Gabbay, Rainer Haehnle, and Joachim Posegga, editors, Handbook of
Tableau Methods, pages 45–124. Kluwer, 1999.

[Dec90] Rina Dechter. Enhancement schemes for constraint processing: Backjumping, learn-
ing, and cutset decomposition. Artificial Intelligence, 41(3):273–312, January 1990.

[DLL62] M. Davis, G. Longemann, and D. Loveland. A machine program for theorem prov-
ing. Communications of the ACM, 5:394–397, 1962.

[DM94] Marcello D’Agostino and Marco Mondadori. The taming of the cut. Classical refu-
tations with analytic cut. Journal of Logic and Computation, 4(285–319), 1994.

[FG06] Marcelo Finger and Dov Gabbay. Cut and pay. Journal of Logic, Language and
Information, 15(3):195–218, October 2006.

[Fit83] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logic. Reidel, 1983.
[GN02] E. Goldberg and Y. Novikov. Berkmin: A Fast and Robust SAT Solver. In Design

Automation and Test in Europe (DATE2002), pages 142–149, 2002.
[How80] W. Howard. The formulae-as-types notion of constructuion. In J. R. Hinchley and

J. P. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda-Calculus
and Formalism, pages 479–490. Academic Press, 1980.

[Kle67] Stephen C. Kleene. Mathematical Logic. John Wiley & Sons, 1967.
[Mas00] Fabio Massacci. Single step tableaux for modal logics: Methodology, computations,

algorithms. Journal of Automated Reasoning, 24(3):319–364, 2000.
[ML79] P. Martin-Löf. Constructive mathematics and computer programming. In Logic,

Methodology and Philosophy of Science, volume VI, pages 153–175. North Holland,
1979.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th
Design Automation Conference (DAC’01), pages 530–535, 2001.

[MSS99] J. P. Marques-Silva and K. A. Sakallah. Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48:506–521, 1999.

Computable Non-analytic Cuts 575

[NOT05] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract DPLL and
abstract DPLL modulo theories. In F. Baader and A. Voronkov, editors, Proceedings of
the 11th International Conference on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR’04), Montevideo, Uruguay, volume 3452 of Lecture Notes in Computer
Science, pages 36–50. Springer, 2005.

[Smu68a] Raymond M. Smullyan. Analytic Cut. Journal of Symbolic Logic, 33:560–564,
1968.

[Smu68b] Raymond M. Smullyan. First-Order Logic. Springer-Verlag, 1968.
[Sza69] M. E. Szabo, editor. Collected papers of Gerhard Gentzen. Studies in Logic,

Amsterdam, 1969.
[ZMMM01] L. Zhang, C. F. Madigan, M. H. Moskewitz, and S. Malik. Efficient con-

flict driven learning in a boolean satisfiability solver. In International Conference on
Computer-Aided Design (ICCAD2001), 2001.

	Equal Rights for the Cut: Computable Non-analytic Cuts in Cut-based ProofsM. Finger and D. Gabbay
	1 Introduction
	2 Preliminaries
	2.1 A Cut-based System for Classical Logic
	2.2 KE Tableaux

	3 Normal Form for Non-Analytic Proofs
	3.1 A Normal Form for KE-Tableaux

	4 Learning
	4.1 Decision-based Learning
	4.2 Inference-based Learning

	5 Conclusion

