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Abstract

Inconsistency measures have recently been put forward to manage in-

consistent knowledge bases in the AI community. For conditional proba-

bilistic logics, rationality postulates and computational complexity have

driven the formulation of inconsistency measures. Independently, inves-

tigations in formal epistemology have used the betting concept of Dutch

book to measure an agent’s degree of incoherence. In this paper, we argue

for the unsatisfiability of the proposed postulates and put forward alter-

native ones. Problematic desirable properties are weakened by analyzing

the underlying consolidation process. Inconsistency measures suggested

in the literature and computable with linear programs are shown to sat-

isfy the postulates. Additionally, it is given a gambling interpretation for

these practicable measures, showing they correspond to incoherence mea-

sures via Dutch books. Finally, we propose a general linear programming

framework, allowing for confidence factors and encompassing measures

from both communities that satisfy the reconciled postulates.

keywords: Probabilistic reasoning, Probabilistic logic, Inconsistency mea-
sures

1 Introduction

Representing real world knowledge and performing inference usually demand
formalisms that cope with uncertainty. Probabilistic logics combine the deduc-
tive power of logical systems with the well-founded Theory of Probability to
attend to this need. Typically, to perform inference in probabilistic logic, it
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is required the consistency of the set of premises, but many are the possible
sources of inconsistency in a probabilistic knowledge base: it may contain sta-
tistical data from different samples, it could have been formed by the opinion
of different experts, or even a single expert could lack the resources to check
his own consistency while building the base, etc. To restore consistency in such
cases, the inconsistency may be analyzed, which calls for a way to measure
it. This work investigates measures of inconsistency for knowledge bases over
probabilistic logic.

The problem of measuring inconsistency in knowledge bases over logical
languages has increasingly received attention during the last years. Knight pro-
posed a way to measure inconsistency in classical logic by attaching probabilities
to formulas [24]. Hunter and Konieczny combined measures based on how many
formulas are required to produce a contradiction with measures based on the
proportion of the language affected by it [17]. The probabilistic version of mea-
suring inconsistency has more recently been tackled by Thimm [38], Muino [26]
and Potyka [29]. All three authors developed measures based on distance min-
imization, tailored to the probabilistic case. Potyka focused on computational
aspects, looking for efficiently computable measures [29]. Muino was driven
by the real knowledge base CADIAG-2, showing its infinitesimal inconsistency
degree, based on a different semantics [26]. Thimm [38] adapted Hunter and
Konieczny’s [17] desirable properties for inconsistency measures, searching for
measures that satisfy a set of postulates.

Instead of the probabilistic conditional logic [32] used by Thimm [38], we
adopt a probabilistic logic with imprecise probabilities (like [10] and [25]).
Knowledge bases are defined as sets whose elements have the form (ϕ|ψ)[

¯
q, q̄],

with the intended meaning: “the probability of ϕ being true given that ψ is true
is between

¯
q and q̄”. An inconsistency measure is a function taking knowledge

bases to non-negative numbers, which must obey some postulates. The first
one, introduced by Hunter [17] for classical logic, is consistency, which claims
that an inconsistency measure is zero if, and only if, the corresponding base is
consistent. Another desirable property suggested by Hunter and Konieczny [17]
is independence, stating that the withdrawal of a free formula of the base — i.e.,
a formula that does not belong to any minimal inconsistent set — should not
change the inconsistency measure. Thimm [38] adopts these postulates, among
others, adding continuity to the list, which intuitively says small changes in
probabilities lead to small changes at the value of the inconsistency measure.
We argue that consistency, independence and continuity cannot hold together,
and some of these postulates must be abandoned or exchanged for other ones
that restore joint satisfiability.

While computer scientists are investigating the problem of measuring incon-
sistency in probabilistic knowledge bases, philosophers have been interested in
degrees of incoherence for formal agents that assign probability to events. Nau
was concerned with reconciling incoherent probabilities and studied methods
similar to Potyka’s [27]. Schervish, Seidenfeld and Kadane measure incoherence
of agents through the operational interpretation of probabilities as relative prices
for gambles, quantifying the agent’s incoherence as the maximum sure loss she
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would be exposed to through a Dutch book [34]. Staffel also uses Dutch books to
measure incoherence, with a different restriction on the gambling setting [37].
To the best of our knowledge, these proposals for measuring incoherence of
Bayesian agents have been ignored within the Artificial Intelligence community,
even though they correspond to measures on probabilistic knowledge bases.

This work has two main contributions: firstly, we identify and fix the pos-
sible problem with the postulates proposed by Thimm [38] for inconsistency
measures in probabilistic logic; in a second moment, we show how practicable
inconsistency measures from the Computer Science community [29] correspond
to justified measures from formal epistemology research [34, 37]. We put forward
a way to weaken the postulate of independence in order to reach compatibility
with consistency and continuity. However, more than one measure can fulfil
these compatible postulates, so computational aspects are taken into account.
We review the work of Potyka, presenting two inconsistency measures that can
be computed with linear programs. We show a gambling interpretation for
such measures, analyzing incoherence quantification for agents via Dutch books.
Furthermore, the betting interpretation not only justifies these two practicable
measures but also suggests different ways of quantifying inconsistency, which are
shown to be encompassed by a linear programming generalization of Potyka’s
framework.

The rest of the paper is organized as follows. In Section 2, probabilistic
knowledge bases are defined after fixing notation on propositional classical logic.
Postulates suggested in the literature for inconsistency measures are reviewed in
Section 3, and it is argued against the compatibility of such desirable properties.
We propose a way to circumvent this seeming incompatibility in Section 4, by
refining concepts central to the postulates. Inconsistency measures computable
via linear programming are presented in Section 5, where they are shown to
correspond to measures based on Dutch books.

2 Preliminaries

A propositional logical language is a set of formulas formed by atomic propo-
sitions combined with logical connectives, possibly with punctuation elements.
We assume a finite set of symbols Xn = {x1, x2, x3, . . . , xn} corresponding to
atomic propositions (atoms). Formulas are constructed inductively with con-
nectives (¬,∧,∨,→) and atomic propositions as usual. The set of all these
well-formed formulas is the propositional language over Xn, denoted by LXn

.
Additionally, ⊤ denotes xi ∨ ¬xi for some xi ∈ Xn, and ⊥ denotes ¬⊤.

Given a signature Xn, a possible world w is a conjunction of |Xn| = n
atoms containing either xi or ¬xi for each xi ∈ Xn. We denote by WXn

=
{w1, . . . , w2n} the set of all possible worlds over Xn and say a w ∈ WXn

entails
a xi ∈ Xn (w |= xi) iff xi is not negated in w. This entailment relation can be
extended to all ϕ ∈ LXn

as usual.
A probabilistic conditional (or simply conditional) is a statement of the form

(ϕ|ψ)[
¯
q, q̄], with the underlying meaning “the probability that ϕ is true given
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that ψ is true lies within the interval [
¯
q, q̄]”, where ϕ, ψ ∈ LXn

are propositional
formulas and

¯
q, q̄ ∈ [0, 1] are real numbers. Note that we do not assume

¯
q ≤ q̄,

since we are going to measure inconsistency. If ψ is a tautology, a conditional like
(ϕ|ψ)[

¯
q, q̄] is called an unconditional probabilistic assessment, usually denoted

by (ϕ)[
¯
q, q̄]. We say a conditional in the format (.)[q, q] is precise and denote it

by (.)[q].
A probabilistic interpretation π : WXn

→ [0, 1], with
∑

j π(wj) = 1, is a
probability mass over the set of possible worlds, which induces a probability
measure Pπ : LXn

→ [0, 1] by means of Pπ(ϕ) =
∑{π(wj)|wj |= ϕ}. A condi-

tional (ϕ|ψ)[
¯
q, q̄] is satisfied by π iff Pπ(ϕ∧ψ) ≥

¯
qPπ(ψ) and Pπ(ϕ∧ψ) ≤ q̄Pπ(ψ).

Note that when Pπ(ψ) > 0, a probabilistic conditional (ϕ|ψ)[
¯
q, q̄] is constraining

the conditional probability of ϕ given ψ; but any π with Pπ(ψ) = 0 trivially satis-
fies the conditional (ϕ|ψ)[

¯
q, q̄] (this semantics is adopted by Halpern [13], Frisch

and Haddawy [10] and Lukasiewicz [25], for instance). A knowledge base is a
finite set Γ of probabilistic conditionals such that, if (ϕ|ψ)[

¯
q, q̄], (ϕ|ψ)[

¯
q′, q̄′] ∈ Γ,

then [
¯
q, q̄] = [

¯
q′, q̄′]. That is, for each pair ϕ, ψ, only one probability interval

can be assigned to (ϕ|ψ) in a knowledge base1. A knowledge base Γ is con-
sistent (or satisfiable) if there is a probability mass satisfying all conditionals
(ϕ|ψ)[

¯
q, q̄] ∈ Γ. It is precise if all intervals are singletons.

The problem of verifying the consistency of a knowledge base is called prob-
abilistic satisfiability (or PSAT ) [11]. Probabilistic satisfiability has been redis-
covered several times, and an analytical and unconditional version was actually
proposed by Boole [2]. Hailperin [12], Bruno and Gilio [3], and Nilsson [28]
suggested solutions via linear programs. This linear programming approach can
be easily extended to handle conditional probabilities under the semantics we
are using [14]. Recent advances in algorithms for PSAT solving can be found in
[15, 8, 23].

If any probability mass π satisfying (ϕ|ψ)[
¯
q, q̄] implied Pπ(ψ) > 0, in an

alternative semantics, the latter restriction could be added to the program, al-
though losing the linear program standard format; this is the semantics adopted
by Muino [26], for instance. De Finetti proposed an alternative setting in which
the conditional probability is fundamental [7] and the satisfaction of probabilis-
tic conditionals does not trivialize when the conditioning event has null prob-
ability. In such scenario, the consistency is called coherence, and its checking
demands solving a sequence of linear programs [5].

When all interval bounds are rational numbers, PSAT is an NP-complete
problem [11]; if there is a solution, there is a solution with only m+ 1 possible
worlds receiving positive probability mass, where m is the knowledge base size.
Nevertheless, column generation methods can handle large problems [22, 21],
and several approaches have recently appeared [23, 8, 15, 6]. Note that this
linear programming approach can be applied to other probabilistic logics (see,
for instance, [1] and [20]).

1Note that this requirement is not too restrictive. Since nothing was said about logically
equivalent propositions, a knowledge base may contain different probability intervals assigned
to ϕ and ϕ ∧ ⊤, for instance.
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3 Basic Desirable Properties for Inconsistency

Measures

Approaches to measuring inconsistency in probabilistic knowledge bases have
been put forward by Muino [26], Thimm [38] and Potyka [29], with different se-
mantics for the conditionals. We follow the one adopted by Thimm and Potyka,
in which a conditional is also satisfied by any measure assigning null probabil-
ity to the conditioning formula. Thimm has done a groundlaying work [38],
extending Hunter’s postulates for inconsistency measures to the probabilistic
case, which is our starting point. Potyka suggests practicable measures [29] we
will review in Section 5.1, after investigating carefully the postulates. In this
section, we begin with some desirable properties proposed by Thimm and then
argue against their joint satisfiability.

3.1 Postulates

Let K (Kprec) be the set of all (precise) knowledge bases. An inconsistency mea-
sure for knowledge bases is a function I : K → [0,∞). Thimm’s investigation
is restricted to measures I : Kprec → [0,∞) over knowledge bases with precise
probabilities, to what we narrow our focus in this section. The author proposes
some desirable properties such a function should satisfy, following Hunter and
Konieczny’s work for classical logic [17]. Although Thimm investigates a total
of ten postulates, we describe in this section only four of these properties that
we consider problematic. The first one claims that an inconsistency measure
must at least discriminate between consistent and inconsistent bases:

Postulate 3.1 (Consistency). I(Γ) = 0 iff Γ is consistent.

A second desirable property has to do with probabilistic conditionals one
can ignore while measuring inconsistency, since they are not involved with the
unsatisfiability, in some sense. Some notation is needed to formalize it.

Definition 3.2. A set Γ of probabilistic conditionals is a minimal inconsistent
set (MIS) if Γ is inconsistent and every set Γ′ ( Γ is consistent.

Minimal inconsistent sets can be considered the purest form of inconsistency
[18], capturing its causes. The focus on MISes is derived from the seminal work
of Reiter [31] on the diagnosis problem. Reiter investigated how formulas from
a base could be ruled out in order to restore consistency, by choosing at least
one element from each MIS, computing thusly a hitting set of their collection.

Let MIS(Γ) denote the collection of all MISes in Γ. Now we can define the
central concept of free probabilistic conditional, following Thimm [38]:

Definition 3.3. A free probabilistic conditional of Γ is a probabilistic condi-
tional α ∈ Γ such that, for all ∆ ∈MIS(Γ), α /∈ ∆.

Analogously, a free probabilistic conditional of Γ is in all its maximal consis-
tent subsets. The postulate of independence then claims that ruling out a free
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probabilistic conditional from a knowledge base should not change its inconsis-
tency degree [38].

Postulate 3.4 (Independence). If α is a free probabilistic conditional of Γ,
then I(Γ) = I(Γ \ {α}).

A stronger condition, also introduced by Hunter and Konieczny and adopted
by Thimm, deals with a sort of decomposability of the inconsistency measure
through its minimal inconsistent sets. We call it a property, saving the name
“postulate” to the most basic properties required from every measure. The
version we present is tailored from Hunter and Konieczy’s work [17], where
Thimm claims to have adapted his postulate from [38].

Property 3.5 (MIS-Separability). If Γ = ∆∪Ψ, ∆∩Ψ = ∅ and MIS(Γ) =
MIS(∆) ∪MIS(Ψ), then I(Γ) = I(∆) + I(Ψ).

The idea behind this property is that the inconsistency of the whole knowl-
edge base should be the sum of the inconsistency of its parts, whenever the
partition does not break any minimal inconsistent set. For instance, consider
∆ = {(x1)[0.5], (¬x1)[0.6]}, Ψ = {(x2)[0.7], (x2 ∧ x3)[0.8]} and Γ = ∆ ∪Ψ. It is
clear that ∆ and Ψ are the only minimal inconsistent sets in Γ. MIS-separability
posits that the measure of inconsistency of Γ is obtained by summing the mea-
sures of ∆ and Ψ; formally, I(Γ) = I(∆) + I(Ψ). MIS-separability is stronger
than independence [38]:

Proposition 3.6. If I satisfies MIS-separability, then I satisfies independence.

These properties can be found in Hunter and Konieczny’s work [18], in the
definition of a “MinInc” separable basic inconsistency measure for knowledge
bases over classical propositional logic. The measures they introduce are shown
to fit such desiderata. Thimm revises the adaptation of these classical inconsis-
tency measures to the probabilistic case and convincingly argues that they are
not suitable to the quantitative nature of probabilities, since classical logic is
qualitative.

To motivate the search for new inconsistency measures for probabilistic
knowledge bases, while dispensing with measures from classical logic, Thimm
puts forward the postulate of continuity. Intuitively, one expects that small
changes in the probabilities of a knowledge base yield small changes in its de-
gree of inconsistency. To formalize the continuity concept in precise knowledge
bases, we introduce some notation, following Thimm [38].

That work studies precise knowledge bases of the form Γ = {(ϕi|ψi)[qi]|1 ≤
i ≤ m}. For each precise knowledge base Γ, there is a characteristic function
ΛΓ : [0, 1]|Γ| → Kprec that, roughly speaking, changes the probabilities qi in
the base; i.e., ΛΓ(〈q′1, q′2, . . . , q′m〉) = {(ϕi|ψi)[q

′
i]|1 ≤ i ≤ m}. To handle the

(consistent) empty knowledge base, we define Λ∅ : {∅} → {∅}. Thimm im-
poses some order on the set Γ, building a sequence, for the function ΛΓ be
unique and well-defined. For simplicity, we just suppose there is some order
(say, lexicographic) over the probabilistic conditionals used to uniquely specify
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ΛΓ
2. Now the continuity postulate can be enunciated, with ◦ denoting function

composition:

Postulate 3.7 (Continuity (for precise probabilities)). For all Γ ∈ Kprec, the
function I ◦ ΛΓ : [0, 1]|Γ| → [0,∞) is continuous.

To find inconsistency measures holding the desirable properties, including
continuity, Thimm introduces a family of measures based on distance minimiza-
tion, taking in account the numerical value of the probabilities. The basic idea
is to quantify the inconsistency through the minimum changes, according to
some distance, one has to apply on the probabilities to make the base consis-
tency. The compatibility of consistency, independence and continuity is implic-
itly stated when it is proved that this whole family of inconsistency measures
based on distance minimization satisfies them; and another family is proved to
hold MIS-separability as well [38].

3.2 The Postulates’ Incompatibility

The work done by Thimm [38] has carefully analyzed the problem of measuring
inconsistency in knowledge bases over probabilistic logic. Desirable properties
were borrowed from classical logic [17], and the crucial postulate of continuity
was added. To attend theses properties, measures based on distance minimiza-
tion were introduced and some important results were proved. However, under
a closer examination, the proposed postulates seem to be incompatible.

Theorem 3.8. There is no inconsistency measure I : Kprec → [0,∞) that
satisfies consistency, independence and continuity.

Proof. To prove by contradiction, suppose there is a measure I satisfying con-
sistency, independence and continuity. Consider the following knowledge bases:

Γ = {(x1 ∧ x2)[0.5 + ε], (x1 ∧ ¬x2)[0.5]} for some 0 < ε ≤ 0.1 (1)

∆ = Γ ∪ {α}, α = (x1)[0.8] (2)

We are going to use I to measure the inconsistency of ∆ when ε→ 0. To apply
independence, we are going to show that α free in ∆; we prove that Γ is the
only MIS in ∆. To note that {(x1 ∧ x2)[0.5 + ε], (x1)[0.8]} is consistent for any
ε ∈ (0, 0.1], see that such set is satisfied by the probability measure induced
by the following probability mass: π1(x1 ∧ x2) = 0.5 + ε, π1(x1 ∧ ¬x2) = 0.3−
ε, π1(¬x1∧x2) = π1(¬x1∧¬x2) = 0.1. To prove that {(x1∧¬x2)[0.5], (x1)[0.8]}
is consistent, consider the following probability mass: π2(x1∧x2) = 0.3, π2(x1∧
¬x2) = 0.5, π2(¬x1 ∧ x2) = π2(¬x1 ∧ ¬x2) = 0.1. Hence, all MISes of ∆
must contain Γ = {(x1 ∧ x2)[0.5 + ε], (x1 ∧ ¬x2)[0.5]}, for other subsets are all
consistent. Furthermore, note that Γ is inconsistent and minimal, so it is a MIS.

2Technically, we could use the lexicographic order over the pairs (ϕi|ψi) to construct a
function Lex taking each set Γ to the corresponding sequence Ψ = Lex(Γ), uniquely specifying
a function Λ′

Ψ
that changes the probabilities of the sequence Ψ. Then it could be defined

ΛΓ(q) = Lex−1(Λ′
Ψ
(q)).
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We can conclude that Γ is the only MIS in ∆, for any value of 0 < ε ≤ 0.1. As
α is a free probabilistic conditional of ∆, we can apply independence:

I(∆) = I(Γ) ,

for any 0 < ε ≤ 0.1.
To exploit the continuity of I, we need the characteristic function of ∆, Λ∆ :

[0, 1]3 → Kprec, to be well-defined; so, we need an order over the probabilistic
conditionals. Suppose that Γ and ∆ are ordered as they were defined in (1) and
(2). Let q∗ be the vector 〈0.5, 0.5, 0.8〉. It follows that Λ∆(q

∗) differs from ∆ only
in its first conditional, which becomes (x1∧x2)[0.5]. Now we prove that Λ∆(q

∗) is
inconsistent. For any probability measure Pπ, Pπ(x1∧x2) = Pπ(x1∧¬x2) = 0.5
implies Pπ(x1) = 1, contradicting α = {(x1)[0.8]}. As I satisfies consistency,

I ◦ Λ∆(q
∗) > 0. (3)

By the continuity of I, the function I◦Λ∆ : [0, 1]3 → [0,∞) must be continuous,
so there must be a limit at the point q∗, and such limit must be unique for any
path approaching q∗:

lim
q→q∗

I ◦ Λ∆(q) = lim
ε→0+

I ◦ Λ∆(〈0.5 + ε, 0.5, 0.8〉) = lim
ε→0+

I(∆) .

By independence, we also have:

lim
ε→0+

I(∆) = lim
ε→0+

I(Γ) .

As I satisfies continuity and {(x1 ∧ x2)[0.5], (x1 ∧ ¬x2)[0.5]} is satisfiable, the
consistency of I implies

lim
ε→0+

I(Γ) = I({(x1 ∧ x2)[0.5], (x1 ∧ ¬x2)[0.5]}) = 0 = lim
q→q∗

I ◦ Λ∆(q) . (4)

The continuity of I requires that I ◦ ΛΓ(q
∗) = limq→q∗ I ◦ ΛΓ(q), which by (3)

and (4) is a contradiction, finishing the proof.

Corollary 3.9. There is no inconsistency measure I : Kprec → [0,∞) that
satisfies consistency, MIS-separability and continuity.

Looking at the counterexample given in the proof of Theorem 3.8 may shed
some light on what is the cause of such conflict among the desirable properties.
The only minimal inconsistent set in ∆ is Γ, and so independence forces the
degree of inconsistency of ∆ to be the same as that of Γ, but this is not generally
the case when inconsistency is measured via probability changing. This happens
due to the fact that changing the probabilities in Γ to some consistent setting
does not in general imply that ∆ becomes consistent. Although Γ is the only
minimal inconsistent set of ∆, there is another way to prove the contradiction.
Note that Γ implies (x1)[1.2], which contradicts a probability axiom, but also
contradicts α = (x1)[0.8]. While ε = 0 consolidates Γ, consolidating ∆ requires a
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bigger change in probabilities, which is ignored by independence. By demanding
I(∆) = I(Γ) for ε > 0, the postulate of consistency forces a descontinuity on ε =
0. When ε→ 0, the inconsistency degree of Γ tends to zero (by continuity), and
independence requires the same from ∆. But this contradicts continuity, given
consistency, for {(x1 ∧ x2)[0.5], (x1 ∧ ¬x2)[0.5]} would still contradict (x1)[0.8],
and ∆ would be inconsistent.

4 Reconciling the Postulates

The findings from the previous section suggest that in order to drive the rational
choice of an inconsistency measure for knowledge bases, we must abandon at
least one postulate among consistency, independence and continuity. We claim
that a weakening of the desired properties can restore their compatibility, and
in this section we investigate paths to achieve that goal. After reconciling the
problematic postulates, we review other proposed properties for inconsistency
measures and extend them to the general case of knowledge bases with imprecise
probabilities, showing some measures to satisfy them.

The consistency postulate seems to be indisputable, since the least one can
expect from an inconsistency measure is that it separates inconsistent from con-
sistent cases, or some inconsistency from none. The answer to the question of
which property we should relax to restore compatibility is thus reduced to either
independence or continuity. Hunter and Konieczny have already noted problems
with independence in knowledge bases over classical logic, proposing to relax it
[19]. Intuition shall be inclined towards keeping continuity, for it reflects the
particular quantitative nature of probabilistic reasoning. A pragmatic reason
to give up independence (and so MIS-separability) is simply to keep continuity,
given consistency, to save inconsistency measures based on distance minimiza-
tion. In the sequel, the withdrawal of independence within probabilistic logic is
argued for in a more compelling way.

The notion of free conditional and the postulate of independence are strongly
related to the idea that minimal inconsistent sets are the causes of inconsisten-
cies, as suggested by Hunter and Konieczny [17]. Thimm says that free condi-
tionals are “harmless”, in some sense, to the consistency of a knowledge base
[38]. What is behind these notions is the classical way of handling inconsistency
through ruling out formulas, as Reiter proposed in his diagnosis problem [31]
and as the standard AGM paradigm of belief revision defines base contraction
(see [16] for a general view of the AGM paradigm). Reiter’s hitting sets tech-
nique views a repair of some inconsistency set of formulas as giving up of at
least one element from each minimal inconsistent set. For such repair to be
minimal, no free formula should be discarded. In the AGM paradigm, the con-
solidation process of a belief base can be interpreted as the contraction of ⊥, the
contradiction. The inclusion postulate claims that the result of a contraction
is a subset of the belief base in question, and the relevance postulate forces the
contraction of ⊥ to contain all free formulas of the base.

When we move from classical to probabilistic logic, there is a natural way to
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relax formulas without completely losing their information. Note that ruling out
a probabilistic conditional (ϕ|ψ)[

¯
q, q̄] is semantically equivalent to changing it to

(ϕ|ψ)[0, 1], so it is a particular (and extreme) case of widening the probability
interval. If we need to give up the belief on (ϕ|ψ)[

¯
q, q̄] to restore consistency,

perhaps there are some
¯
q′ ≤

¯
q and q̄′ ≥ q̄ such that (ϕ|ψ)[

¯
q′, q̄′] can still be

consistently believed. When inconsistency is measured continuously, through
changes in probabilities, it is this more general kind of consolidation process that
is being suggested. As it is indicated in the proof of Theorem 3.8, consolidating
all minimal inconsistent sets (Γ) through probability changing does not imply
consolidating the whole base (∆). We can conclude that the concepts of free
conditional and minimal inconsistent set are not suitable to analyze continuous
inconsistency measures based on distance minimization.

Furthermore, it seems that the definition of free conditional, and so in-
dependence, can be refined to be suitable for analyzing continuous measures,
while continuity is a harder definition to be contrived to be compatible with
independence. Hence, we can try to weaken independence, and perhaps MIS-
separability, by modifying the notion of free conditional, instead of fully forget-
ting this postulate.

As both independence and MIS-separability are defined via minimal incon-
sistent sets, in order to weaken these properties to reach compatibility with
consistency and continuity, it seems reasonable to replace MIS by an alterna-
tive concept that could reconcile the desirable properties altogether. However,
to do it in a principled way, we first analyze the concept of free probabilistic
conditional as to the corresponding consolidation procedure and then modify it
to save independence. Afterwards, a related notion of conflict that also fixes
MIS-separability is introduced.

4.1 Refining the Free Probabilistic Conditional Concept

A weaker form of independence has already been suggested in the literature.
Thimm [38] defines a safe conditional as one whose atomic propositions are
disjoint from those in the rest of the base. We also demand that the condi-
tional be satisfiable in order to be safe3. The weak independence postulate then
posits that ruling a (satisfiable) safe conditional out should not change the in-
consistency measure of a base. Hunter and Konieczny have suggested the same
weakening for independence, in the classical setting, when they acknowledge
that independence may be too strong a property to require [19]. Weak indepen-
dence is compatible with consistency and continuity, since Potyka’s measures
satisfy them [29]. Although safe conditionals are easily recognizable, we expect
that they be rare in practice, due to the natural logical dependencies among
propositions within a base. We are looking for a stronger, more useful notion
of independence, between the safe-based and the free-based ones, hence we look
for a concept between safe and free.

3Thimm [38] only considers conditionals (ϕ|ψ)[
¯
q, q̄] such that ϕ ∧ ψ and ¬ϕ ∧ ψ are (clas-

sically) satisfiable, so the conditional is also satisfiable.
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Besides defining free probabilistic conditional through minimal inconsistent
sets, one could equivalently do it via the notion of consolidation as giving up
conditionals to restore consistency. Let us formalize this concept.

Definition 4.1. Let Γ be a knowledge base in K. An abrupt repair of Γ is any
set ∆ ⊆ Γ such that Γ′ = Γ\∆ is consistent — we call Γ′ an abrupt consolidation.
If an abrupt repair ∆ is such that, for every Ψ ( ∆, Γ \Ψ is inconsistent, ∆ is
a minimal abrupt repair — and Γ′ = Γ \∆ is a maximal abrupt consolidation.

We can now prove4 a result that states different ways to define a free proba-
bilistic conditional, as being part of no minimal abrupt repairs (of all maximal
consistent sets) or being consistent with any abrupt repair. We say a conditional
α is consistent with a knowledge base Γ if there is a probability mass π that
satisfies α and Γ.

Theorem 4.2. Consider a knowledge base Γ ∈ K and a probabilistic conditional
α ∈ Γ. The following statements are equivalent:

1. There is no minimal abrupt repair ∆ of Γ such that α ∈ ∆.

2. For all maximal abrupt consolidation Γ′ of Γ, α ∈ Γ′.

3. If Γ′ = Γ \∆ is an abrupt consolidation of Γ (equivalently, ∆ is an abrupt
repair of Γ), then α is consistent with Γ′.

4. There is no minimal inconsistent set ∆ ⊆ Γ such that α ∈ ∆.

Note that the fourth statement above is the definition of free probabilistic
conditional given in Section 3.1. The first and the second statements are clearly
dual to each other, so we have presented two new ways of equivalently defining
a free probabilistic conditional without mentioning minimal inconsistent sets,
but using abrupt repair and abrupt consolidation. As it is suggested in the
previous section, ruling a conditional out is equivalent to widening the corre-
sponding interval to [0, 1] — that is why we call it an abrupt repair. However, a
probabilistic logic allows for a more general notion of consolidation, formalized
below. To save notation, we write (ϕ|ψ)[

¯
q, q̄] ⊆ (ϕ|ψ)[

¯
q′, q̄′] if

¯
q′ ≤

¯
q and q̄′ ≥ q̄;

and ( is defined from ⊆ as usual.

Definition 4.3. Let Γ be a knowledge base in K. Γ′ ∈ K is a widening of Γ if
there is a bijection f : Γ→ Γ′ such that α ⊆ f(α) for all α ∈ Γ; furthermore, if
a widening Γ′ is consistent, we say it is a consolidation of Γ.

In other words, a consolidation of Γ is the result of widening the probability
intervals of its conditionals to a consistent setting. Analogously to the maximal
abrupt consolidation, related to a minimal abrupt repair, we can define a sort
of consolidation with minimal changes, we call dominant.

Definition 4.4. A consolidation Γ′ of Γ is a dominant consolidation (or simply
a d-consolidation) of Γ if, for all consolidations Ψ of Γ, if Γ′ is a widening of Ψ,
then Γ′ = Ψ.

4For the remaining technical results, proofs are given in a separate Appendix.
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A d-consolidation Γ′ of Γ is such that if some probability interval of Γ were
less widened, fixing the others, the resulting base would not be consistent. In
other words, it is not possible to give up strictly less information than a d-
consolidation while restoring consistency; for a interval to be less widened, an-
other must be more enlarged. In these sense, the changes in the probability
bounds are minimal, and the consolidation is maximal.

From these concepts, two new definitions for free probabilistic conditional
could be derived: a conditional is free if it is in any d-consolidation; or a con-
ditional is free if it is consistent with any consolidation. We can prove these
definitions are actually equivalent:

Lemma 4.5. Consider a knowledge base Γ ∈ K and a probabilistic conditional
α ∈ Γ. The following statements are equivalent:

1. For all d-consolidation Γ′ of Γ, α ∈ Γ′.

2. If Γ′ is a consolidation of Γ, then α is consistent with Γ′.

A modification of the free probabilistic conditional concept is suggested by
the comparison of Lemma 4.5 with Theorem 4.2, which would yield a different
postulate of independence. To not overload the concept of free conditional, we
say these probabilistic conditionals are innocuous, for they are consistent with
any consolidation of the knowledge base.

Definition 4.6. An innocuous probabilistic conditional of Γ is a probabilistic
conditional α ∈ Γ such that, for every dominant consolidation Γ′ of Γ, α ∈ Γ′.

The difference between free and innocuous conditionals can be seen in the
knowledge base from the proof of Theorem 3.8, as the following example shows.

Example 4.7. Consider the following knowledge base:

∆ = {(x1 ∧ x2)[0.6], (x1 ∧ ¬x2)[0.5], (x1)[0.8]} .

As it was claimed in the proof of Theorem 3.8, {(x1 ∧ x2)[0.6], (x1 ∧ ¬x2)[0.5]}
is the only minimal inconsistent set of ∆; so α = (x1)[0.8] is a free probabilistic
conditional. Nonetheless, ∆ has no innocuous probabilistic conditional. This
can be noted through the following dominant consolidation of ∆:

∆′ = {(x1 ∧ x2)[0.55, 0.6], (x1 ∧ ¬x2)[0.45, 0.5], (x1)[0.8, 1]} .

∆′ is consistent and any consolidation Ψ 6= ∆′ has at least one wider probability
interval; so ∆′ is dominant. But no original conditional of ∆ is in ∆′, so none is
innocuous. Equivalently, any β ∈ ∆ is inconsistent with ∆′. An example of in-
nocuous conditional can be given in the knowledge base Ψ = ∆∪{(x2)[0.3, 0.8]},
since (x2)[0.3, 0.8] would be consistent with any consolidation of Ψ.

An innocuous probabilistic conditional of Γ is consistent with any abrupt
consolidation of Γ, since it is semantically equivalent to a consolidation with [0, 1]
probability intervals; furthermore, a safe conditional of Γ is clearly consistent
with any consolidation of Γ:

12



Proposition 4.8. Consider a probabilistic conditional α ∈ Γ. If α is safe, it is
innocuous; if α is innocuous, it is free.

As to the independence postulate, we modify it in a corresponding way:

Postulate 4.9 (i-Independence). If α is an innocuous probabilistic condi-
tional of Γ, then I(Γ) = I(Γ \ {α}).

From Proposition 4.8 follows the relation among weak independence, i-independence
and independence:

Corollary 4.10. If I satisfies independence, then I satisfies i-independence.
If I satisfies i-independence, then I satisfies weak independence.

4.2 Refining the Minimal Conflict Concept

To redefine MIS-separability, we need a new notion of minimal conflict, related
to the consolidation we introduced. Note that the union of minimal inconsistent
sets is equal to the union of minimal abrupt repairs of a knowledge base, so that
it forms the complement of the set of free probabilistic conditionals. To be
consistent, we should provide a definition of conflicting sets such that their
union is complementary to the set of innocuous conditionals. A set with all
probabilistic conditionals that are not innocuous would be inconsistent when
not empty, but would not have the minimality we are looking for. Such a set
would be analogous to the union of all minimal inconsistent sets, but we search
for a more fundamental notion of conflict, that can be derived by analyzing the
consolidation properties of minimal inconsistent sets.

A minimal inconsistent set is minimal regarding set inclusion, and this is
related to the abrupt consolidation:

Proposition 4.11. A knowledge base Γ is a minimal inconsistent set iff Γ is
inconsistent and there are no ∆1, . . . ,∆k ( Γ, with k ≥ 1, such that:

1.
⋃k

i=1
∆i = Γ;

2. For every Γ′ ⊆ Γ, if Γ′ ∩ ∆i is an abrupt consolidation of ∆i for all
1 ≤ i ≤ k, then Γ′ is an abrupt consolidation of Γ.

Intuitively, a minimal inconsistent set Γ is a conflict that cannot be ana-
lyzed in smaller subsets such that abruptly consolidating them implies abruptly
consolidating Γ. Starting with a single inconsistent base Γ, we can find smaller
subsets ∆i satisfying both items of 4.11. We can do this recursively on the
inconsistent sets ∆i until we reach unanalyzable conflicts, which happens to
be minimal inconsistent sets. So, abruptly consolidating these sets is abruptly
consolidating Γ. Substituting consolidation for abrupt consolidation, we have
an analogous definition of conflict:

Definition 4.12. A knowledge base Γ is an inescapable conflict if Γ is incon-
sistent and there are no ∆1, . . . ,∆k ( Γ, with k ≥ 1, such that:
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1.
⋃k

i=1
∆i = Γ;

2. If ∆′
i is a consolidation of ∆i for all 1 ≤ i ≤ k and

⋃k
i=1

∆′
i is a widening

of Γ, then
⋃k

i=1
∆′

i is a consolidation of Γ.

The extra condition in the second item of Definition 4.12 forces consolida-
tions of different knowledge bases ∆i,∆j ( Γ with some probabilistic conditional

in common to agree in that probability interval; otherwise,
⋃k

i=1
∆′

i would not
be a knowledge base. In other words, the second item says that if we widen the
probability intervals of Γ making each ∆i consistent, then Γ becomes consis-
tent. As it happens with abrupt consolidation and MISes, to consolidate Γ, one
only needs to widen its probability intervals in such a way that each inescapable
conflict is solved.

Lemma 4.13. Consider two knowledge bases Γ,Γ′ ∈ K such that Γ′ is a widen-
ing of Γ. If for every inescapable conflict ∆ ⊆ Γ the base {β ∈ Γ′ |α ∈
∆ and α ⊆ β} is consistent, then Γ′ is a consolidation of Γ.

As all abrupt consolidations can be viewed as consolidations, an inescapable
conflict is something weaker than a minimal inconsistent set:

Proposition 4.14. If ∆ is a minimal inconsistent set, then ∆ is an inescapable
conflict.

Example 4.15. Consider again the knowledge base from Example 4.7:

∆ = {(x1 ∧ x2)[0.6], (x1 ∧ ¬x2)[0.5], (x1)[0.8]} .

As it was already shown, {(x1 ∧ x2)[0.6], (x1 ∧ ¬x2)[0.5]} is the only minimal
inconsistent set of ∆ — and, by Proposition 4.14, it is an inescapable conflict.
Nevertheless, it can be proved that the whole ∆ is an inescapable conflict as
well.

Suppose, by contradiction, there are ∆1, . . . ,∆k ( ∆ such that
⋃k

i=1
∆i =

∆ and, if ∆′
i is a consolidation of ∆i for all 1 ≤ i ≤ k and

⋃k
i=1 ∆

′
i is a

widening of ∆, then
⋃k

i=1
∆′

i is a consolidation of ∆. To build
⋃k

i=1
∆′

i, we pick
a consolidation ∆′

i for each ∆i ( ∆. There are two cases: (a) (x1∧x2)[0.6] ∈ ∆i;
and (b) (x1 ∧ x2)[0.6] /∈ ∆i. In case (a), we construct ∆′

i by widening the
probability interval of the conditional (x1∧x2)[0.6] to (x1∧x2)[0.5, 0.6]; formally,
∆′

i = (∆i \ {(x1 ∧ x2)[0.6]}) ∪ {(x1 ∧ x2)[0.5, 0.6]}. In case (b), we choose the
trivial consolidation ∆′

i = ∆i. Even though the proof is omitted, we claim that
each ∆′

i is consistent. Consider then the following knowledge base:

∆′ =
k
⋃

i=1

∆′
i = {(x1 ∧ x2)[0.5], (x1 ∧ ¬x2)[0.5], (x1)[0.8]} .

By the premises, ∆′ is a consolidation of ∆, but it is inconsistent, since ∆′ \
{(x1)[0.8]} implies (x1)[1] (as shown in Section 3.2). Finally, there cannot exist
such ∆1, . . . ,∆k ( ∆, and ∆ is an inescapable conflict.
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We can now change MIS-separability to respect inescapable conflicts (IC)
instead of minimal inconsistent sets. Let IC(Γ) denote the collection of all
inescapable conflicts of Γ.

Property 4.16 (IC-Separability). If Γ = ∆ ∪ Ψ, ∆ ∩ Ψ = ∅ and IC(Γ) =
IC(∆) ∪ IC(Ψ), then I(Γ) = I(∆) + I(Ψ).

As inescapable conflict is a weaker concept than MIS, MIS-separability is
stronger than IC-separability.

Corollary 4.17. If I satisfies MIS-separability, then I satisfies IC-separability.

Recall that a free probabilistic conditional is defined in the standard way as
not belonging to any minimal inconsistent set. We prove the analogous result for
innocuous conditionals and inescapable conflicts, linking all concepts introduced
in this section.

Theorem 4.18. The following statements are equivalent:

1. For all d-consolidation Γ′ of Γ, α ∈ Γ′.

2. If Γ′ is a consolidation of Γ, then α is consistent with Γ′.

3. There is no inescapable conflict ∆ in Γ such that α ∈ ∆.

4. α is an innocuous probabilistic conditional in Γ.

A result analogous to Proposition 3.6 follows:

Corollary 4.19. If I satisfies IC-separability, then I satisfies i-independence.

As already mentioned, inescapable conflicts are to consolidations as minimal
inconsistent sets are to abrupt consolidations. If consolidation via conditionals
withdrawal, as in Reiter’s and AGM approaches, can focus on the collection
of minimal inconsistent sets (ignoring free conditionals), consolidation through
widening probability intervals can be done by watching only for the inescapable
conflicts (ignoring innocuous conditionals). All these relations among free and
innocuous probabilistic conditionals, minimal inconsistent sets and inescapable
conflicts argue in favor of the new proposed postulates, whose compatibility
with consistency and continuity we will prove.

4.3 Compatible Postulates for Imprecise Probabilities

To replace the postulate of independence and the property of MIS-separability,
we propose the weaker pair of i-independence and IC-separability towards build-
ing a compatible package together with consistency and continuity. Before
proving such compatibility, the postulates have to be generalized to imprecise
knowledge bases. To generalize consistency, i-independence and IC-separability
is straightforward, we just enlarge their intended scope from knowledge bases
in Kprec to bases in K, but the continuity postulates demands some notation.
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Let Γ = {(ϕi|ψi)[
¯
qi, q̄i]|1 ≤ i ≤ m} be a knowledge base. The characteristic

function of Γ can be generalized as a function ΛΓ : [0, 1]2m → K that changes
both upper and lower bounds of each probabilistic conditional in Γ; formally,
ΛΓ(〈

¯
q′1, q̄

′
1, . . . ,

¯
q′m, q̄

′
m〉) = {(ϕi|ψi)[

¯
q′i, q̄

′
i] |1 ≤ i ≤ m}. Now the continuity pos-

tulate can be generalized, with ◦ denoting function composition:

Postulate 4.20 (Continuity). For all Γ ∈ K, the function I ◦ΛΓ : [0, 1]2|Γ| →
[0,∞) is continuous.

Note that the postulate above implies Postulate 3.7, which defines continuity
for precise probabilities. Given a base Γ of size m, Postulate 3.7 considers
a function f : [0, 1]m → Kprec (the characteristic function when probabilities
are precise) such that f(〈q′1, q′2, . . . , q′m〉) = ΛΓ(〈q′1, q′1, q′2, q′2, . . . , q′m, q′m〉) and
requires that I ◦ f be continuous. But note that, if I ◦ ΛΓ is continuous, so is
I ◦ f . Therefore, Theorem 3.8 and Corollary 3.9 also hold within the imprecise
probability framework.

Hunter and Konieczny proposed another basic postulate for inconsistency
measures [17] that was also adopted by Thimm [38].

Postulate 4.21 (Monotonicity). For any knowledge bases Γ, (Γ ∪ {α}) ∈ K,
I(Γ ∪ {α}) ≥ I(Γ).

Thimm actually suggests a stronger principle, super-additivity, which implies
monotonicity. Since super-additivity is incompatible with normalization [38] —
as also is IC-separability —, we state them as properties, and not postulates.

Property 4.22 (Super-additivity). For any knowledge base Γ ∪ ∆ ∈ K, if
Γ ∩∆ = ∅, then I(Γ ∪∆) ≥ I(Γ) + I(∆).

Property 4.23 (Normalization). For any knowledge base Γ ∈ K, I(Γ) ∈
[0, 1].

To attend the desirable properties, we generalize the inconsistency measures
based on distance minimization proposed by Thimm [38] to the case of imprecise
probabilities. Muino introduced similar ideas under a different semantics for
conditional probabilities [26]. Firstly, we define a family of p-norms.

Definition 4.24. Consider a (positive) m ∈ N>0 and a p ∈ N>0 ∪ {∞}. Given
a vector q = 〈q1, q2, . . . , qm〉 over the real numbers, the p-norm of q is

‖q‖p = p

√

m
∑

i=1

|qi|p if p is finite; otherwise it is ‖q‖∞ = maxi |qi|.

Thimm defines a family Ip of inconsistency measures based on the p-norms,
which we modify to also consider p =∞ and handle the empty base.

Definition 4.25. Consider a p ∈ N>0 ∪ {∞} and a Γ ∈ K. The function
Ip : K→ [0,∞) is the dp-inconsistency measure, defined as

Ip(Γ) = min{‖q − q′‖p |ΛΓ(q) = Γ and ΛΓ(q
′) is consistent} ,

for any non-empty Γ, and Ip(∅) = 0.
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Finally, we are in a position to show inconsistency measures satisfying the
wanted properties. We extend Thimm’s results to prove that all dp-inconsistency
measures satisfy the reconciled postulates and that some of them hold additional
properties. Muino have similar results, though under a different semantics [26].

Theorem 4.26. For any p ∈ N>0 ∪ {∞}, Ip is well-defined and satisfies the
postulates of consistency, continuity, i-independence and monotonicity.

The compatibility of IC-separability and super-additivity with consistency,
continuity, monotonicity and i-independence is confirmed by the I1 measure:

Lemma 4.27. Ip satisfies super-additivity and IC-separability iff p = 1.

And, if normalization is required, we can use the following Muino’s result
[26]:

Lemma 4.28. Ip satisfies normalization iff p =∞.

5 Practicable Principled Inconsistency Measures

Although we have compatible postulates to drive the rational choice of inconsis-
tency measures, these desirable properties are satisfied by a myriad of functions.
We may use other arguments to pick some particular inconsistency measures
among those attending to the postulates. This section investigates computa-
tional aspects of measuring inconsistency through distance minimization, re-
viewing and generalizing measures proposed by Potyka [29] that can be handled
via linear programming. In a second moment, we show how the introduced
measures can be justified by Dutch books, giving the maximum guaranteed loss
an agent would be exposed to, if stakes are limited somehow. We also show that
Dutch books offer other interesting measures.

5.1 Measuring Inconsistency with Linear Programs

To check the consistency of a knowledge base, one can use the well-known
formulation of PSAT as a linear program [14]. Consider a knowledge base
Γ = {(ϕi|ψi)[

¯
qi, q̄i]|1 ≤ i ≤ m}. Under the semantics adopted, each assess-

ment (ϕi|ψi)[
¯
qi, q̄i] is equivalent to the pair Pπ(ϕi ∧ ψi) −

¯
qiPπ(ψi) ≥ 0 and

Pπ(ϕi ∧ψi)− q̄iPπ(ψi) ≤ 0 of restrictions on Pπ . The knowledge base is consis-
tent iff these 2m restrictions can be jointly satisfied by a probability measure Pπ

induced by a probability mass π. Consider two (m×2n)-matrices, A = [aij ] and
B = [bij ], with aij = Iwj

(ϕi∧ψi)−
¯
qiIwj

(ψi) and bij = Iwj
(ϕi∧ψi)−q̄iIwj

(ψi), in
which Iwj

: LXn
→ {0, 1} is the indicator function of the set {ϕ ∈ LXn

|wj |= ϕ}
— Iwj

is the valuation relative to the possible world wj . The knowledge base Γ
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is satisfiable iff there is a (2n × 1)-vector π satisfying the system:

Aπ ≥ 0 (5)

Bπ ≤ 0 (6)
∑

π = 1 (7)

π ≥ 0 . (8)

Restrictions in (5) correspond to Pπ(ϕi|ψi) ≥
¯
qi, and those in (6) codify

Pπ(ϕi|ψi) ≤ q̄i; Constraints (7) and (8) force π to be a probability mass over
the possible worlds w1, w2, . . . , w2n . As all constraints are linear, this system
can be solved by linear programming techniques as Simplex. Despite the expo-
nential number of columns, column generation methods can be used to handle
them implicitly [22, 21], keeping the computation efficient enough to solve large
knowledge bases (thousands of probabilities in [15, 9]).

To measure inconsistency using distance minimization with Ip, we can add to
the system variables

¯
εi ≥ 0 (ε̄i ≥ 0) corresponding to decrements (increments) in

lower (upper) bounds of each probability interval. Any conditional (ϕi|ψi)[
¯
qi, q̄i]

yields a pair of restrictions Pπ(ϕi∧ψi)−
¯
qiPπ(ψi) ≥ −

¯
εiPπ(ψi) and Pπ(ϕi∧ψi)−

q̄iPπ(ψi) ≤ ε̄iPπ(ψi). Computing the Ip measure is so reduced to minimizing the
p-norm of the vector 〈̄ε1, ε̄1, . . . ,

¯
εm, ε̄m〉.5 Nonetheless, the constraints contain

non-linear terms (from
¯
εiPπ(ψi) and ε̄iPπ(ψi)), and Potyka points out that these

programs have (non-global) local optima [29], so convex optimization techniques
cannot be directly applied. Thus, computing Ip is typically less efficient than
deciding PSAT, as empirical results indicate [29].

Potyka emphasizes this impracticability and suggests a new family of incon-
sistency measures, the minimal violation measures [29], which we adapt here to
the case of imprecise probabilities. In order to keep constraints linear, “error”
variables

¯
εi, ε̄i ≥ 0 are inserted in the right-hand side of Pπ(ϕi∧ψi)−

¯
qiPπ(ψi) ≥

0 and Pπ(ϕi ∧ ψi) − q̄iPπ(ψi) ≤ 0, yielding Pπ(ϕi ∧ ψi) −
¯
qiPπ(ψi) ≥ −

¯
εi and

Pπ(ϕi ∧ ψi)− q̄iPπ(ψi) ≤ ε̄i. Potyka’s minimal violation measures are obtained
when the p-norm of 〈̄ε1, ε̄1, . . . ,

¯
εm, ε̄m〉 is minimized with such constraints. We

denote by Iεp the optimal value from the following program, where
¯
ε = [

¯
εi] and

ε̄ = [ε̄i] are (m× 1)-vectors:

min‖〈̄ε1, ε̄1, . . . ,
¯
εm, ε̄m〉‖p subject to: (9)

Aπ ≥ −
¯
ε (10)

Bπ ≤ ε̄ (11)
∑

π = 1 (12)

π,
¯
ε, ε̄ ≥ 0 . (13)

The restrictions are all linear, and non-linear terms may appear only within
the objective function. We can ignore the monotone function p

√
. within the

5Note that if we allow
¯
εi < 0 (and ε̄i < 0), it would represent the tightening of a bound,

useless when searching for consistency, and the minimization would avoid it anyway.
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p-norm definition, applying it only after the minimization stops. The degree of
each term in the new objective function is p, and for p = 1 a linear program
is recovered, since ‖〈̄ε1, ε̄1, . . . ,

¯
εm, ε̄m〉‖1 =

∑m
i=1 ¯

εi + ε̄i. Hence, one can ap-
ply the standard Simplex and column generation methods to compute Iε1 with
practically the same efficiency as deciding PSAT [29].

For any finite p different from 1, the system (9)–(13) has non-linear terms
in its objective function, but this is not the case when we consider p =∞. The
∞-norm is equivalent to take the maximum of the vector 〈̄ε1, ε̄1, . . . ,

¯
εm, ε̄m〉,

but this is the same as considering all
¯
εi, ε̄i equal to a single scalar ε ≥ 0. The

measure Iε∞ is the solution of the following program [29], in which
¯
ε = ε̄ =

[ε ε . . . ε]T are (m× 1)-vectors:

min ε subject to: (14)

Aπ ≥ −
¯
ε (15)

Bπ ≤ ε̄ (16)
∑

π = 1 (17)

π, ε ≥ 0 . (18)

The system (14)–(18) is also a linear program, like (9)–(13) when p = 1, but
has a lesser number of variables. However, Potyka remarks that the variable
ε in (14)–(18) is involved in 2m restrictions, while each variable

¯
εi, ε̄i appears

in only one constraint in (9)–(13); therefore, the computation of Iε∞ may in
practice be slightly less efficient than computing Iε1 [29].

For sets of unconditional probabilistic assessments, when all conditioning
events ψi are equivalent to ⊤, the inconsistency measures Ip and Iεp are exten-
sionally identical for all p. The reason is that the restriction on Pπ and

¯
εi, ε̄i

corresponding to a conditional is the same when computing both measures.
For instance, any constraint Pπ(ϕi ∧ ψi)− q̄iPπ(ψi) ≤ 0 becomes equivalent to
Pπ(ϕi)− q̄i ≤ 0 when ψi is a tautology, and inserting an error to the probability
bound, Pπ(ϕi)− (q̄i + ε̄i) ≤ 0, is the same as placing it in the right-hand side.

Potyka has proved that these measures, Iεp with p ∈ N>0 ∪ {∞}, besides
being computable via linear programming, satisfy the postulates of consistency,
continuity and monotonicity for the case of precise probabilities [29]:

Proposition 5.1. For any p ∈ N>0 ∪ {∞}, Iεp : Kprec → [0,∞) is well-defined
and satisfies consistency, continuity, weak independence and monotonicity. Iε1
also satisfies super-additivity.

We can generalize the result above to encompass probability intervals and
the new postulates we introduced:

Lemma 5.2. For any p ∈ N>0∪{∞}, Iεp : K→ [0,∞) is well-defined and satis-
fies consistency, continuity, i-independence and monotonicity. Iε1 also satisfies
super-additivity and IC-separability; and Iε∞ satisfies normalization.
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Now we have a set of compatible postulates for inconsistency measures and
two particular measures satisfying them that can be computed rather efficiently
using linear programming techniques. On the one hand, Iε1 also satisfies super-
additivity and IC-separability; on the other hand, Iε∞ additionally satisfies nor-
malization. Nonetheless, one can argue that these measures lack some proper
justification, despite satisfying some postulates and being practicable, as Capo-
torti, Regoli and Vattari did [4]. They claim that distances between conditional
probabilities are meaningless, being only geometrical measures. This might be
the case, but it would only undermine the Ip family. For Iεp measures, distances
between probabilities are computed weighting by the probabilities of the condi-
tioning formulas, so to speak, allowing some operational interpretation. In the
next section, we provide a rational for Iε1 and Iε∞ based on Dutch books.

5.2 Inconsistency Measures and Dutch Books

In formal epistemology, there is an interest in measuring the incoherence of an
agent whose beliefs are given as probabilities or lower previsions over propo-
sitions or random variables. If we have propositions from classical logic, the
formalized problem at hand is exactly the one we are investigating. When the
agent’s degrees of belief are represented by a knowledge base, then to measure
the agent incoherence is to measure the inconsistency of such knowledge base.
Schervish, Kadane and Seidenfeld [33, 34] and Staffel [36, 37] have proposed
ways to measure incoherence of an agent based on Dutch books.

Dutch book arguments are based on the agent’s betting behavior, typically
used to show the irrationality of her set of degrees of belief. Roughly speaking,
consider a “conditional” gamble on ϕ|ψ with stake λ and relative price q, which
is a contract between the agent and a gambler such that: if ψ is not the case,
the gamble is called off, causing neither profit nor loss for the involved parts; if
ψ is the case, then the agent receives (1− q)λ from the gambler if ϕ is also the
case, otherwise the gambler receives qλ from the agent. Now suppose that, if
an agent believes that the probability of a proposition ϕ being true given that
another proposition ψ is true lies within [

¯
q, q̄], she finds acceptable gambles on

ϕ|ψ with λ ≥ 0 and q =
¯
q and gambles with λ ≤ 0 and q = q̄. A Dutch book is

a set of gambles that the agent sees as fair that causes her a guaranteed loss, no
matter which possible world is the case. We assume Dutch books contain exactly
two gambles on (ϕi|ψi) per each each conditional (ϕi|ψi)[

¯
qi, q̄i] ∈ Γ, the base

formalizing the agent’s beliefs: one with stake
¯
λi ≥ 0 and the other with stake

−λ̄i ≤ 0. This is not restrictive, since gambles on the same (ϕi|ψi) with the
same relative price can be merged by summing the stakes. We can thus denote
a Dutch book only by the absolute value of its stakes

¯
λ1, λ̄1, . . . ,

¯
λm, λ̄m ≥ 0,

where m = |Γ|.
If the agent has an epistemic state represented by a set of probabilistic

conditionals that turns out to be inconsistent, then she is exposed to a Dutch
book [27]. In this way, Dutch book arguments were introduced to show that
degrees of belief must obey the axioms of probability and are a standard proof of
incoherence (introductions to Dutch books can be found in [35] and [7]). Thus,
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a natural approach to measuring an agent’s degree of incoherence is through the
magnitude of the sure loss she is vulnerable to. With no bound on the stakes,
such loss would also be unlimited for incoherent agents, and different strategies
to circumvent this in order to measure incoherence as a finite loss are found in
the formal epistemology literature.

Schervish et al. propose three ways of limiting these stakes and measuring
incoherence for upper and lower previsions on bounded random variables [34],
which we simplify here to our case. Consider a gamble on ϕi|ψi with stake

¯
λi ≥ 0 and relative price

¯
qi. The agent might lose

¯
qi
¯
λi with this gamble, while

the gambler is exposed to a loss of (1−
¯
qi)

¯
λi. Now consider a gamble on the same

conditional with stake −λ̄i ≤ 0 and relative price q̄i. The agent might have to
pay (1− q̄i)λ̄i to the gambler — who would “lose” −(1− q̄i)λ̄i < 0 —; whilst the
gambler might lose q̄iλ̄i ≥ 0 to the agent. Schervish et al. call these quantities
the agent’s and the gambler’s escrows. In other words, the agent’s (or gambler’s)
escrow for a gamble is how much she has to commit from her resources to cover
an eventual lost. The first incoherence degree Schervish et al. introduce is
the maximum guaranteed loss an agent is exposed to if her escrows sum up
to one (she has limited resources). The second way they propose to measure
incoherence is as the gambler’s maximum guaranteed profit (agent’s loss) when
the gambler’s escrows sum up to one. The third measure arises when the sum
of all escrows, both agent’s and gambler’s, is limited to one, and the guaranteed
loss is maximized.6 This is the same as limiting the sum of the absolute values
of the stakes,

∑

i ¯
λi + λ̄i = 1. We denote by IaSSK(Γ), IgSSK(Γ) and ItSSK(Γ)

the inconsistency measures corresponding to these three incoherence measures,
respectively, when a knowledge base Γ codifies the agent’s belief state.

Staffel argues that the measures introduced by Schervish et al. give no
reasonable results in a number of cases and proposes to fix the stakes in each
gamble instead of the agent’s resources, the gambler’s or their sum [37]. Her
work is tailored to precise, unconditional probabilities. Firstly, it is assumed
that, without loss of generality, only one gamble can be made on ϕ for each
(ϕ)[q] in the base representing the agent’s belief state. Then stakes are limited
to λi ∈ {−1, 0, 1}. What Staffel calls the maximum Dutch book measure [37]
is defined as the maximum guaranteed loss the agent would be vulnerable to in
such a setting. Unfortunately, this approach does not allow a Dutch book to be
set in all cases of incoherence:

Proposition 5.3. There is an inconsistent knowledge base Γ = {(ϕi)[qi]|1 ≤
i ≤ m} ∈ Kprec such that no Dutch book is possible against an incoherent agent
whose belief state is represented by Γ if there is one gamble on ϕi per conditional
(ϕi)[qi] ∈ Γ and stakes are limited to λi ∈ {−1, 0, 1}.

To satisfy the consistency postulate, we can adapt Staffel’s incoherence mea-
sure to be the maximum guaranteed loss an agent is exposed to when stakes

6Schervish et al. [34] actually measure the incoherence as maximum rates between the
guaranteed loss and the limited resources of the agent, the gambler or their sum. Clearly, this
is equivalent to maximizing the guaranteed loss when such resources are no greater than 1 —
or, equivalently, equal to 1.
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are limited to λi ∈ [−1, 1] (equivalently, |λi| ≤ 1). With this modification,
we have a consistent measure for all precise knowledge bases, including those
with conditional assessments. To cope with imprecise probabilities, we need
to allow two gambles on (ϕi|ψi) per conditional (ϕi|ψi)[

¯
qi, q̄i] ∈ Γ to be in a

Dutch book (with stakes
¯
λi ≥ 0 and −λ̄i ≤ 0). The obtained incoherence mea-

sure is the the maximum sure loss the agent is exposed to when
¯
λi, λ̄i ≤ 1 for

each (ϕi|ψi)[
¯
qi, q̄i] ∈ Γ. We denote by IStaffel the corresponding inconsistency

measure on the knowledge base representing the agent’s belief state.
Even though incoherence measures based on Dutch books from the formal

epistemology community and inconsistency measures based on distance mini-
mization from Artificial Intelligence researchers seem unrelated at first, they are
actually two sides of the same coin. The maximum guaranteed loss an agent
is exposed to can generally be computed with linear programs that are techni-
cally dual to those that minimize distances to measure inconsistency. Though
Potyka seems unaware of this connection, Nau has already investigated this
matter, mentioning results similar to the following [27], which is proved in the
Appendix:

Theorem 5.4. For any Γ ∈ K, ItSSK(Γ) = Iε∞(Γ).

Recall that Iε∞ is exactly one of the two practicable measures proposed
by Potyka [29]. Far from meaningless, such measure quantifies the maximum
sure loss an agent is exposed to when the sum of the stakes is fixed at one.
As to Potyka’s other proposal, Iε1 , duality in linear programming provides a
correspondence with the measure we have adapted from Staffel.

Lemma 5.5. For any Γ ∈ K, IStaffel (Γ) = Iε1(Γ).
Lemma 5.5 states the extensional identity between Iε1 and IStaffel . Within

the unconditional probabilities scenario, this means that the Manhattan dis-
tance between the agent’s probabilities and the closest consistent probabilities
is equal to the maximum sure loss she is exposed to when (absolute values of)
stakes are not higher than one.

Theorem 5.4 and Lemma 5.5 give an operational interpretation for the in-
consistency measures Iε∞ and Iε1 based on betting behavior. It was remarked
in Section 5.1 that Iεp and Ip give the same inconsistency degrees to uncondi-

tional knowledge bases. Thus, the Dutch book with limited stakes (
¯
λi, λ̄i ≤ 1 or

∑

i ¯
λi + λ̄i ≤ 1) can be used to rationalize also I1 and I∞ in the unconditional

setting. However, when we take into account conditional probabilities, only Iε∞
and Iε∞ measure the maximum guaranteed loss an agent would be exposed to,
when stakes are limited via

¯
λi, λ̄i ≤ 1 or

∑

i ¯
λi + λ̄i ≤ 1, respectively.

Different strategies for bounding stakes can lead to different inconsistency
measures, but our motivation in this section was not to use Dutch books to
determine which measures should be adopted — that is the reason of the postu-
lates. The point here is that these two measures (Iε1 and Iε∞), besides satisfying
the postulates and being computable through linear programs, have a meaning-
ful interpretation. In the next section, we show that other measures based on
Dutch books have these qualities as well.
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5.3 Other Practicable Principled Measures

The measures IaSSK and IgSSK , which maximize sure loss via Dutch books when
the agent’s or the gambler’s resources are respectively limited, can also be related
to Potyka’s minimal violation measures. Recall that Iεp minimizes the p-norm
of 〈̄ε1, ε̄1, . . . ,

¯
εm, ε̄m〉 in the program given in (9)–(13). Generalizing it, we

could associate confidence factors
¯
δi, δ̄i > 0 to probability bounds

¯
qi, q̄i in the

conditionals, as Nau proposes [27]. The intuition says the more confident an
agent is about a bound, the higher the penalty for changing it. We could use

¯
δi, δ̄i as coefficients to

¯
εi, ε̄i within the objective function of the program in

(9)–(13), but we choose an option equivalent to dividing the errors within the
constraints by the confidence factors.

For reasons that will be clearer soon, we think in terms of volatility fac-
tors

¯
γi, γ̄i, which intuitively are inversely proportional to the confidence de-

grees associated to the probability bounds
¯
qi, q̄i within a conditional. That

is, the higher the volatility factor of a probability bound, the smaller is the
penalty for changing it. We define

¯
γ ≥ 0 and γ̄ ≥ 0 as functions taking con-

ditionals to the volatility factors associated to their lower and upper bounds
— with Γ = {(ϕi|ψi)[

¯
qi, q̄i]|1 ≤ i ≤ m} fixed, we denote

¯
γ((ϕi|ψi)[

¯
qi, q̄i]) and

γ̄((ϕi|ψi)[
¯
qi, q̄i]) simply by

¯
γi and γ̄i. Combining the functions

¯
γ and γ̄, the

function γ ≥ 0, taking knowledge bases to vectors of volatility factors, is de-
fined as γ(Γ) = 〈

¯
γ1, γ̄1, . . . ,

¯
γm, γ̄m〉, with m = |Γ|. We rewrite the program

from (9)–(13) to include these factors, where
¯
εγ (ε̄γ) is a (m× 1)-vector whose

elements are
¯
εi
¯
γi (ε̄iγ̄i), for 1 ≤ i ≤ m.

min‖〈̄ε1, ε̄1, . . . ,
¯
εm, ε̄m〉‖p subject to: (19)

Aπ ≥ −
¯
εγ (20)

Bπ ≤ ε̄γ (21)
∑

π = 1 (22)

π,
¯
ε, ε̄ ≥ 0 . (23)

Given a knowledge base Γ, Iγp (Γ) denotes the solution to the program above.
It works as an inconsistency measure when it is well-defined, but some extreme
γ may turn the program infeasible — for instance, when γ(Γ) is the null vector
and Γ is inconsistent. Intuitively, the penalty for changing any probability
bound in Γ would be infinite, and at least one bound should be relaxed, for Γ
is inconsistent. We define Iγp (Γ) =∞ in such cases, relaxing in this section the
definition of an inconsistency measure to a function I : K → [0,∞) ∪ {∞}, in
order to analyze the properties of Iγp .

When p = 1, (19)–(23) is a linear program. Again, any finite p > 1 leads
to non-linear terms within the objective function, but this is not the case for
p = ∞. Considering all

¯
εi, ε̄i equal to a single scalar ε ≥ 0, we can modify the

linear program (14)–(18) to allow for the volatility factors. The measure Iγ∞ is
the solution of the following program, in which

¯
εγ (ε̄γ) is a (m×1)-vector whose

elements are ε
¯
γi (εγ̄i), for 1 ≤ i ≤ m:
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min ε subject to: (24)

Aπ ≥ −
¯
εγ (25)

Bπ ≤ ε̄γ (26)
∑

π = 1 (27)

π, ε ≥ 0 . (28)

From the Iγp family, Potyka’s measures are recovered when
¯
γ and γ̄ are

constant functions taking any conditional to one, so γ(Γ) is a vector whose all
elements are equal to 1. Properties from Lemma 5.2 also hold for the generalized
measures:

Theorem 5.6. For any functions
¯
γ, γ̄ ≥ 0 and p ∈ N>0 ∪ {∞}, Iγp : K →

[0,∞)∪{∞} is well-defined and satisfies consistency, i-independence and mono-
tonicity. Iγ1 also satisfies super-additivity and IC-separability.

Conditions on which Iγp is finite, continuous and normalized are stated below:

Lemma 5.7. If
¯
γ and γ̄ are such that, for any conditional α = (ϕ|ψ)[

¯
q, q̄],

¯
γ(α) = 0 implies

¯
q = 0 and γ̄(α) = 0 implies q̄ = 1, then Iγp (Γ) is finite for any

Γ ∈ K.

Lemma 5.8. Let γ ◦ ΛΓ : [0, 1]2m → [0, 1]2m be continuous for all Γ ∈ K and
consider a p ∈ N>0 ∪ {∞}. If γ ◦ ΛΓ : [0, 1]2m → [0, 1]2m is positive for all
Γ ∈ K, then Iγp satisfies continuity; if γ ◦ΛΓ : (0, 1)2m → [0, 1]2m is positive for
all Γ ∈ K, then Iγp ◦ ΛΓ(q) is continuous for q ∈ (0, 1)2m.

Lemma 5.9. If
¯
γ and γ̄ are such that, for any conditional α = (ϕ|ψ)[

¯
q, q̄],

¯
γ(α) ≥

¯
q and γ̄(α) ≥ 1− q̄, then Iγ∞ satisfies normalization.

After generalizing Potyka’s measures based on distance minimization, their
correspondence to the measures based on Dutch books follows, as Nau has
already mentioned [27]:

Theorem 5.10. If
¯
γ and γ̄ are such that, for any conditional α = (ϕ|ψ)[

¯
q, q̄],

¯
γ(α) =

¯
q and γ̄(α) = 1− q̄, then IaSSK(Γ) = Iγ∞(Γ) for any Γ ∈ K and both are

finite.

Note that 1− q̄i is the lower bound the agent indirectly assigns to ¬ϕi given
ψi. Each conditional (ϕi|ψi)[

¯
qi, q̄i] is equivalent to a pair (ϕi|ψi)[

¯
qi, 1], (¬ϕi|ψi)[1−

q̄i, 1] of lower bounds. When probabilities are assigned only through uncondi-
tional lower bounds, Γ = {(ϕi|⊤)[qi, 1]|1 ≤ i ≤ m}, IaSSK minimizes maxi |qi −
q′i|/qi such that {(ϕi|⊤)[q′i, 1]|1 ≤ i ≤ m} is consistent, which is to compute the
least relative decrement in all lower bounds to reach consistency. If we interpret
probability intervals as a pair of upper bounds, there is the dual result:

Theorem 5.11. If
¯
γ and γ̄ are such that, for any conditional α = (ϕ|ψ)[

¯
q, q̄],

¯
γ(α) = 1−

¯
q and γ̄(α) = q̄, then IgSSK(Γ) = Iγ∞(Γ) for any Γ ∈ K.
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For unconditional probabilities, this means that maximizing sure loss when
the gambler’s resources are limited to one is equivalent to minimizing the relative
increment in all upper bounds one has to perform in order to consolidate the
base. For instance, if Γ contains only unconditional probabilities and intervals
are expressed as pairs of upper bounds, IgSSK(Γ) = 0.05 means that an increase
of 5% in each upper bound is needed to restore consistency.

Schervish et al. acknowledge the fact that IgSSK may be unbounded [33]. For
instance, consider an agent whose belief state is given by Γ = {(ϕ)[1], (¬ϕ)[1]}.
The agent finds acceptable pairs of gambles on ϕ and ¬ϕ in which the gambler
has escrows equal to zero, and sure loss can be scaled arbitrarily up. In such
cases, the program (19)–(23) is unfeasible for any p, being IgSSK and Iγ∞ defined
as ∞. That is, either both measures are finite and equal, or IgSSK = Iγ∞ =∞.

Since IaSSK and IgSSK are particular cases of Iγ∞, as Theorems 5.10 and
5.11 claim, these measures also satisfies the postulates listed in Theorem 5.6.
Both functions are continuous for probabilities within (0, 1), by Lemma 5.8. By
Lemma 5.9, IaSSK also satisfies normalization. Additionally, IaSSK and IgSSK can
be computed by linear programs and have a meaningful betting interpretation
as well. Thus, IaSSK seems a good alternative for measuring inconsistency when
normalization is demanded, and each of these measures might be the most
suitable in some contexts, such as the market scenarios described by Schervish
et al. [33].

It is worth noting that 1−IaSSK, 1−ItSSK and 1−I∞ can be seen as possible
generalizations of Knight’s measure of consistency for classical propositional
logic [24]. Roughly speaking, a set Γ ( LXn

of propositions is said to be η-
consistent if the knowledge base Γη = {(ϕ)[η, 1] |ϕ ∈ Γ} is satisfiable. Knight
defines Γ as maximally η-consistent if η is the maximum value such that Γ is
η-consistent. If we assign probability one to each element of Γ, building the
base Γ′ = {(ϕ)[1] |ϕ ∈ Γ}, then Γ is maximally η-consistent iff IaSSK(Γ′) =
ItSSK(Γ′) = Iε∞(Γ′) = I∞(Γ′) = 1 − η. Note that IaSSK(Γ) and ItSSK(Γ)
are equal for all probabilities in Γ′ are 1. Hence, Theorems 5.4 and 5.10 can
rationally support the use of Knight’s measure in the classical setting as well.
Suppose an agent’s belief base Γ contains ϕ iff she sees as fair a gamble on
ϕ with q = 1, then Γ is maximally η-consistent iff the agent is exposed to a
maximum sure loss of 1 − η when her resources are fixed at one (equivalently,
absolute values of stakes sum up to one).

In general, Iγ∞ measures the maximum guaranteed loss an agent is exposed
to through a Dutch book when we limit to one the sum of the stakes’ absolute
values (

¯
λi, λ̄i) weighted by

¯
γi and γ̄i. A more meaningful interpretation to the

volatility factors in Iγ∞ can be given by considering the coverage ratios
¯
ci =

¯
γi/

¯
qi

and c̄i = (1 − γ̄i)/q̄i. The number
¯
ci (c̄i) is the ratio between how much the

agent has to commit from her resources to cover a gamble on ϕi|ψi with positive
(negative) stake and how much she can lose in that bet. So Iγ∞ maximizes the
sure loss when her resources (the total she can commit) are fixed at 1 and her
coverage ratios are

¯
ci and c̄i. Analogously, if we define

¯
c′i = (1 −

¯
γi)/

¯
qi and

c̄′i = γ̄i/q̄i, Iγ∞ maximizes sure profit for the gambler when his resources are
limited to 1 and his coverage ratios are

¯
c′i and c̄

′
i. When coverage ratios

¯
ci and
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c̄i (
¯
c′i and c̄

′
i) are all equal to one, we recover the measure IaSSK (IgSSK).

When p = 1, the generalization of Potyka’s measure can be brought to the
measure IStaffel . Consider a knowledge base Γ = {(ϕi|ψi)[

¯
qi, q̄i]|1 ≤ i ≤ m}

representing an agent’s belief state and a vector δ = 〈̄δ1, δ̄1, . . . ,
¯
δm, δ̄m〉 > 0.

We define IδStaffel (Γ) as the maximum sure loss such an agent would be exposed
to when gambles on ϕi|ψi, for each (ϕi|ψi)[

¯
qi, q̄i] ∈ Γ, have stakes

¯
λi ∈ [0,

¯
δi]

and −λ̄i ∈ [−δ̄i, 0]. Each element of δ can be seen again as a confidence factor,
since the greater it is, the higher the amount the agent accepts to risk at a
gamble on the corresponding probability bound.

Theorem 5.12. For any Γ = {(ϕi|ψi)[
¯
qi, q̄i]|1 ≤ i ≤ m} in K, if

¯
γi = 1/

¯
δi and

γ̄i = 1/δ̄i for all 1 ≤ i ≤ m, then IδStaffel (Γ) = I
γ
1 (Γ) and both are finite.

We could even permit elements of δ to be ∞, the corresponding elements
of γ becoming zero. In such a case, the sure loss could be unbounded, and the
program that compute Iγ1 (Γ), infeasible — Iγ1 (Γ) = IδStaffel (Γ) would then be
defined as ∞.

Properties from Theorem 5.6 are satisfied by IδStaffel , including super-additivity
and IC-separability. Furthermore, it is computable by means of a linear pro-
gram and has a meaningful interpretation in the gambling scenario. Therefore,
the measure IδStaffel might be appropriate to handle cases where super-additivity
and IC-separability are desirable and confidence factors are available. Further-
more, if normalization is required, we coud followMuino’s ideas [26] to normalize
IδStaffel , although super-additivity and IC-separability would not hold anymore.

6 Conclusions and Future Work

In this work, we studied different ways of measuring inconsistency in proba-
bilistic knowledge bases. Three aspects were discussed: postulates the measures
should satisfy, the efficiency of the methods used to compute the measures, and
possible meaningful interpretations for them. As it was argued for, the indepen-
dence postulate shall be abandoned in favor of continuity. The causes of such
incompatibility were analyzed, and a modification of independence was pro-
posed to restore compatibility. Inconsistency measures that can be computed
using linear programs were reviewed and proved to satisfy the postulates, and
we gave them a rational by means of Dutch books. We showed how measures
based on distances could be generalized to encompass other measures based on
Dutch books, possibly considering confidence factors. In the end, we have two
families of inconsistency measures, Iγ1 and Iγ∞, that satisfy the postulates, can
be computed through linear programs, have a meaningful interpretation and
allow for confidence factors. In a given context, what might settle the case in
favor of using a particular measure is its distinct properties: one family satisfies
super-additivity and IC-separability, and the other satisfies normalization under
some conditions.

The introduced concepts of innocuous conditional and inescapable conflict
might have practical use in measuring inconsistency only if their instances are
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recognizable in a reasonable time. Nothing was said here about the complex-
ity of the computational task of finding innocuous conditionals and inescapable
conflicts within a knowledge base, but they are clearly very hard problems.
Thus, future work includes investigating these problems aiming at devising al-
gorithms to solve them. A possible path may involve proofs of contradiction
one can build using as premises the conditionals in an inconsistent knowledge
base. Intuitively, it seems that if a conditional is not essential to any proof of
the contradiction, then it is innocuous. Equivalently, an inescapable conflict is
apparently the set of essential conditionals used in such a proof. Hence, an iso-
morphism like Curry-Howard’s tailored to a probabilistic logic might be needed
to formalize a normal form for these proofs.

Analyzing inconsistency in knowledge bases is only a step towards restoring
their consistency, required by standard methods of inference. As future work, it
would be interesting to propose concrete procedures to consolidate knowledge
bases, as done in [30] for instance. To achieve that, one could rely on the
same triplet: rationality postulates, efficiency of computation and meaningful
interpretation. Another intended continuation of this work is to study principled
ways of inferring probabilistic conclusions from inconsistent bases, using the
ideas here presented. For instance, this could be done by taking the models of a
base to be those of the closest consistent bases, construed as the consolidations
corresponding to some inconsistency measure here studied.
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Appendix: Proofs of Technical Results

Proposition 3.6 . If I satisfies MIS-separability, then I satisfies independence.

Proof. Let Γ be a knowledge base and α ∈ Γ a free conditional. By MIS-
separability, as α is free and all MISes of Γ are in Γ \ {α}, we have I(Γ) =
I(Γ \ {α}) + I(α).

Corollary 3.9 . There is no inconsistency measure I : Kprec → [0,∞) that
satisfies consistency, MIS-separability and continuity.

Proof. It follows directly from Theorem 3.8 and Proposition 3.6.

Theorem 4.2 . Consider a knowledge base Γ ∈ K and a probabilistic conditional
α ∈ Γ. The following statements are equivalent:

1. There is no minimal abrupt repair ∆ of Γ such that α ∈ ∆.

2. For all maximal abrupt consolidation Γ′ of Γ, α ∈ Γ′.

3. If Γ′ = Γ \∆ is an abrupt consolidation of Γ (equivalently, ∆ is an abrupt
repair of Γ), then α is consistent with Γ′.

4. There is no minimal inconsistent set ∆ ⊆ Γ such that α ∈ ∆.

Proof. The first two items are clearly dual, and the fourth one is the definition of
free conditional. Suppose α is free in Γ. Note that all abrupt consolidations Γ′ of
Γ are consistent with α. As Γ′ is consistent, it has no MIS, and adding α cannot
create a MIS, for it is free. Thus, if an abrupt consolidation does not contain
α, it is not maximal. Now suppose there is a maximal abrupt consolidation Γ′

such that α /∈ Γ′. For Γ′ is maximal, α cannot be consistent with it. As Γ′ is
consistent, it has no MIS, and adding α creates a MIS (that contains α), which
also is a MIS of Γ — hence, α cannot be free.

Lemma 4.5 . Consider a knowledge base Γ ∈ K and a probabilistic conditional
α ∈ Γ. The following statements are equivalent:

1. For all d-consolidation Γ′ of Γ, α ∈ Γ′.

2. If Γ′ is a consolidation, then α is consistent with Γ′.

Proof. Suppose all d-consolidations of Γ contain α. For any consolidation Ψ,
there is a d-consolidation Ψ′ such that, for each β′ ∈ Ψ′, there is a β ∈ Ψ
such that β′ ⊆ β. Therefore, any probability mass π satisfying Ψ′ must also
satisfies Ψ, and α ∈ Ψ′ implies π satisfies α as well. Now suppose there is a
d-consolidation Ψ that does not contain α. As α ∈ Γ, there is a β ∈ Ψ such
that α ( β. For Ψ is dominant, (Ψ \ {β}) ∪ {α} cannot be a consolidation and
thus is inconsistent. Finally, α is not consistent with Ψ.

Proposition 4.8 . Consider a probabilistic conditional α ∈ Γ. If α is safe, it
is innocuous; if α is innocuous, it is free.
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Proof. If Γ = {α}, then α is safe, innocuous and free iff it is satisfiable, thus
we focus on Γ 6= {α}. Let Γ be built over the set of atoms Xn = {x1, . . . , xn}.
Suppose α is safe and, without loss of generality, the set of atoms appearing in α
is Xα = {x1, . . . , xm}, for some m < n. As α is satisfiable, there is a probability
mass πα : WXα

→ [0, 1] satisfying it, where WXα
is the set containing the 2m

possible worlds with atoms fromXα. The base Γ
′ = Γ\{α} is built over the set of

atoms XΓ′ = Xn \Xα. Any consolidation Ψ of Γ′ must also be formed by atoms
inXΓ′ . If ∆ is a consolidation of Γ, there is a consolidation Ψ of Γ′ such that ∆ =
Ψ∪{β}, for some β such that α ⊆ β. Let πΨ :WXΓ′

→ [0, 1] be the probability
mass satisfying Ψ, where WXΓ′

is the set containing the 2n−m possible worlds
with atoms from XΓ′ . Consider the probability mass π : WXn

→ [0, 1] such that
π(wi ∧wj) = πα(wi)× πΨ(wj) for any pair (wi, wj) ∈WXα

×WXΓ′
. Note that

π satisfies Ψ and α, thus π satisfies Ψ and β. Therefore, α is consistent with
any consolidation ∆ = Ψ ∪ {β} of Γ and is innocuous by Lemma 4.5.

Now suppose α is innocuous. Any abrupt consolidation ∆ ⊆ Γ is equiv-
alent (and equisatisfiable) to a consolidation ∆′ ∈ Γ such that ∆′ = ∆ ∪
{(ϕ|ψ)[0, 1]|(ϕ|ψ)[

¯
q, q̄] ∈ Γ \ ∆}. As α is innocuous, it is consistent with any

consolidation ∆′ and, consequently, any abrupt consolidation ∆. Finally, by
Theorem 4.2, α is free.

Corollary 4.10 . If I satisfies independence, then I satisfies i-independence.
If I satisfies i-independence, then I satisfies weak independence.

Proof. It follows directly from the definitions and Proposition 4.8.

Proposition 4.11 . A knowledge base Γ is a minimal inconsistent set iff Γ is
inconsistent and there are no ∆1, . . . ,∆k ( Γ, with k ≥ 1, such that:

1.
⋃k

i=1
∆i = Γ;

2. For every Γ′ ⊆ Γ if Γ′ ∩∆i is an abrupt consolidation of ∆i for all 1 ≤
i ≤ k, then Γ′ is an abrupt consolidation of Γ.

Proof. (→) Suppose Γ is a MIS and there are ∆1, . . . ,∆k ( Γ satisfying both
items. For any 1 ≤ i ≤ k, as ∆i ( Γ is consistent, Γ ∩ ∆i is an abrupt
consolidation of ∆i. Thus, by the second item, Γ is an abrupt consolidation of
itself, which contradicts the fact that Γ is inconsistent.

(←) Now suppose Γ is inconsistent but not a MIS. LetMIS(Γ) = {∆1, . . . ,∆m}
be the set of MISes in Γ, for some m ≥ 1. Let ∆m+1 denote the set of free for-
mulas in Γ. Clearly,

⋃m+1

i=1
∆i = Γ. Now consider a set Γ′ ⊆ Γ such that Γ′ ∩∆i

is consistent for any 1 ≤ i ≤ m + 1. If Γ′ was inconsistent, it would contain a
MIS ∆i ∈MIS(Γ) and Γ′ ∩∆i would be inconsistent — a contradiction. Thus
Γ′ is an abrupt consolidation of Γ.

Lemma 4.13 . Consider two knowledge bases Γ,Γ′ ∈ K such that Γ′ is a
widening of Γ. If for every inescapable conflict ∆ ⊆ Γ the base {β ∈ Γ′ |α ∈
∆ and α ⊆ β} is consistent, then Γ′ is a consolidation of Γ.

31



Proof. Consider a set C0 = {Γ} and let IC(Γ) be the set of inescapable conflicts
of Γ. For any Cj , define Cj⊥ = {∆ ∈ Cj |∆ is inconsistent and ∆ /∈ IC(Γ)}. Let

sj denote the size of the largest set ∆ ∈ Cj⊥, or sj = 0 if Cj⊥ = ∅. Starting with

C0, we define a Cj+1 from Cj for any j such that sj > 0: select a ∆ ∈ Cj⊥ ⊆ Cj
such that |∆| = sj ; as ∆ is inconsistent but not an inescapable conflict, there
are ∆1, . . . ,∆k ( ∆ satisfying both items of Definition 4.12; define Cj+1 =
(Cj \ {∆}) ∪ {∆1} ∪ · · · ∪ {∆k}. By Definition 4.12, any Cj defined in this
way is such that, if Γ′ is a widening of Γ and for every ∆ ⊆ Cj the base
{β ∈ Γ′ |α ∈ ∆ and α ⊆ β} is consistent, then Γ′ is a consolidation of Γ. There
is a Ch such that Ch⊥ = ∅ — i.e., all conflicts in Ch are inescapable. Formally, let

#(sj) be the number of sets with size sj in Cj⊥, or #(sj) = 0 if Cj⊥ = ∅. Consider
the partial order R< ( N × N such that 〈a, b〉R<〈c, d〉 iff a < c or a = c and
b < d. Note that 〈sj ,#(sj)〉 ∈ N× N and 〈sj ,#(sj)〉R<〈sj+1,#(sj+1)〉 for any
j, thus 〈sh,#(sh)〉 = 〈0, 0〉 for some h ∈ N. Let Γ′ be a widening of Γ such that,
for every inescapable conflict ∆ ∈ IC(Γ), the base {β ∈ Γ′ |α ∈ ∆ and α ⊆ β}
is consistent. Let ChIC ⊆ IC(Γ) denote the set of (inescapable) conflicts in Ch.
Note that every ∆ ∈ Ch \ ChIC is consistent. So, for every ∆ ∈ Ch, the base
{β ∈ Γ′ |α ∈ ∆ and α ⊆ β} is consistent. Finally, Γ′ is a consolidation of Γ.

Proposition 4.14 . If ∆ is a minimal inconsistent set, then ∆ is an inescapable
conflict.

Proof. Suppose ∆ is inconsistent but not an inescapable conflict. Thus, there
are ∆1, . . . ,∆k ( ∆ such that

⋃k
i=1

∆i = ∆ and, if ∆′
i is a consolidation of

∆i for all 1 ≤ i ≤ k and
⋃k

i=1
∆′

i is a knowledge base, then
⋃k

i=1
∆′

i = ∆′ is
a consolidation of ∆. Now consider a Γ ⊆ ∆ such that Γ ∩∆i is consistent of
all 1 ≤ i ≤ k. Note that ∆′

i = (Γ ∩∆i) ∪ {(ϕ|ψ)[0, 1]|(ϕ|ψ)[
¯
q, q̄] ∈ ∆i \ Γ} is a

consolidation of ∆′
i. Hence,

⋃k
i=1

∆′
i = Γ′ = Γ∪{(ϕ|ψ)[0, 1]|(ϕ|ψ)[

¯
q, q̄] ∈ ∆ \Γ}

is a knowledge base and a consolidation of ∆. Finally, as Γ ⊆ ∆ is equivalent
to Γ′, Γ is an abrupt consolidation, and ∆ is not a MIS, by Theorem 4.11.

Corollary 4.17 . If I satisfies MIS-separability, then I satisfies IC-separability.

Proof. If follows directly from the definitions and Proposition 4.14.

Theorem 4.18 . The following statements are equivalent:

1. For all d-consolidation Γ′ of Γ, α ∈ Γ′.

2. If Γ′ is a consolidation of Γ, then α is consistent with Γ′.

3. There is no inescapable conflict ∆ in Γ such that α ∈ ∆.

4. α is an innocuous probabilistic conditional in Γ.

Proof. By the definition of innocuous conditionals and Lemma 4.5, the first, the
second and the fourth statements are equivalent. It remains to prove that α is
innocuous iff there is no inescapable conflict ∆ in Γ such that α ∈ ∆.
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(→) Let α be innocuous in Γ. Suppose there is an inescapable conflict ∆ ⊆ Γ
such that α ∈ ∆. Consider the base Ψ = ∆ \ {α}. Let Ψ′ be a consolidation
of Ψ. Thus, Γ′ = Ψ′ ∪ {(ϕ|ψ)[0, 1]|(ϕ|ψ)[

¯
q, q̄] ∈ Γ \ Ψ} is consistent and it

is consolidation of Γ. Due to the fact that α is innocuous, α is consistent
with Γ′ (by Lemma 4.5) and, therefore, with Ψ′. Consequently, Ψ′ ∪ {α} is
a consolidation of ∆ for any consolidation Ψ′ of Ψ. Furthermore, if {β} is
a consolidation of {α} (i.e., α ⊆ β), Ψ′ ∪ {β} is a consolidation of ∆. As
Ψ, {α} ( ∆ are such that Ψ ∪ {α} = ∆, and any consolidations Ψ′ and {β} of
theirs are such that Ψ′ ∪ {β} is a consolidation of ∆, ∆ is not an inescapable
conflict, which is a contradiction.

(←) Suppose there is no inescapable conflict ∆ in Γ such that α ∈ ∆.
Consider the base Ψ = Γ \ {α}. Every consolidation Γ′ of Γ can be written as
Γ′ = Ψ′ ∪ {β}, where Ψ′ is a consolidation of Ψ and α ⊆ β. As all inescapable
conflicts of Γ are in Ψ, by Lemma 4.13, Ψ′ ∪ {α} is a consistent. Hence, α is
consistent with any consolidation Γ′ = Ψ′ ∪ {β} and α is innocuous by Lemma
4.5.

Corollary 4.19 . If I satisfies IC-separability, then I satisfies i-independence.

Proof. Let Γ be a knowledge base and α ∈ Γ an innocuous conditional. As α
is innocuous, all inescapable conflicts of Γ are in Γ \ {α} by Lemma 4.18. By
IC-separability, we have I(Γ) = I(Γ \ {α}) + I(α).

Theorem 4.26 . For any p ∈ N>0 ∪ {∞}, Ip is well-defined and satisfies the
postulates of consistency, continuity, i-independence and monotonicity.

Proof. To show that Ip is well-defined, we use results from the proof of The-
orem 1 in [38]. For any Γ = {(ϕi|ψi)[

¯
qi, q̄i]|1 ≤ i ≤ m}, Thimm shows

that the set QΓ = {〈q1, . . . , qm〉 ∈ Rm|ΛΓ(〈q1, q1, . . . , qm, qm〉) is consistent}
is compact and closed, where ΛΓ : [0, 1]2m → K is the characteristic func-
tion of Γ. Let h : R2 → R be a function such that h(a, b) = max(0, a − b)
for any a, b ∈ R. The measure Ip is the minimum of ‖f

¯
q,q̄(q)‖p with q ∈

QΓ, where f
¯
q,q̄ : Rm → R2m is a function such that f

¯
q,q̄(〈q1, . . . , qm〉) =

〈h(
¯
q1 − q1), h(q1 − q̄1), . . . , h(

¯
qm − qm), h(qm − q̄m)〉. Intuitively, f

¯
q,q̄(q) mea-

sures, for each point qi, how much the lower and the upper bounds have to
change for we have qi ∈ [

¯
qi, q̄i]. Finally, Ip is well defined, for QΓ is closed and

compact [38].
Consistency: By definition, a p-norm is never negative, thus Ip(Γ) ≥ 0.

Suppose Γ = ΛΓ(q) is consistent. A vector q′ = q is such that ‖q′ − q‖p = 0 for
any p ∈ N>0∪{∞}, thus Ip(Γ) = 0. Now suppose Γ = ΛΓ(q) is inconsistent. For
every q′ ∈ QΓ, q

′ 6= q, then ‖q′− q‖p > 0 and Ip(Γ) > 0 for any p ∈ N>0 ∪{∞}.
Continuity: Given a base Γ = {(ϕi|ψi)[

¯
qi, q̄i]|1 ≤ i ≤ m}, its charac-

teristic function ΛΓ : [0, 1]2m → K and a fixed q ∈ QΓ, define the function
gq : R2m → R such that gq(〈

¯
q1, q̄1, . . . ,

¯
qm, q̄m〉) = ‖f

¯
q,q̄(q)‖p. Note that Ip ◦

ΛΓ(〈
¯
q1, q̄1, . . . ,

¯
qm, q̄m〉) is computed as the minimum of {gq(〈

¯
q1, q̄1, . . . ,

¯
qm, q̄m〉)|q ∈

QΓ}. Each gq is continuous, and the minimum of continuous functions is con-
tinuous, hence Ip ◦ ΛΓ is continuous.
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Monotonicity: Let ΛΓ(q
′) be a consolidation of Γ = ΛΓ(q) such that ‖q′−

q‖p is minimized, for a p ∈ N>0 ∪ {∞}, and Ip(Γ) = ‖q′ − q‖p. To prove
by contradiction, suppose I(Γ ∪ {α}) < Ip(Γ), for some Ψ = Γ ∪ {α} ∈ K.
Hence, there is a consolidation Ψ′ = ΛΨ(r

′) of Ψ = ΛΨ(r) such that ‖r′ −
r‖p < ‖q′ − q‖p. Consider the base Γ′ = Ψ′ \ {β}, such that α ⊆ β. As
Ψ′ is consistent, Γ′ = ΛΓ(q

′′) also is, and it is a consolidation of Γ. Since q
and q′′ are projections (subsets, in sense) of r and r′, q′′ − q is a projection of
r′ − r and ‖q′′ − q‖p ≤ ‖r′ − r‖p < ‖q′ − q‖p. Finally, it would follow that
Ip(Γ) ≤ ‖q′′ − q‖p < ‖q′ − q‖p = Ip(Γ), which is a contradiction.

i-Independence: Consider the bases Γ = ΛΓ(r) and Ψ = Γ \ {α} in
K, where α = (ϕ|ψ)[

¯
q, q̄] is innocuous in Γ. We are going to prove that

Ip(Γ) ≤ Ip(Ψ), and the desired result follows from monotonicity. Let ΛΨ(q
′)

be a consolidation of Ψ = ΛΨ(q) such that ‖q′ − q‖p is minimized, for a
p ∈ N>0 ∪ {∞}, and Ip(Ψ) = ‖q′ − q‖p. Note that Γ′Ψ′ ∪ {(ϕ|ψ)[0, 1]} is a
consolidation of Γ. As α = (ϕ|ψ)[

¯
q, q̄] is innocuous, α is consistent with Γ′ and

Ψ′. Hence, Ψ′ ∪ {α} = ΛΓ(r
′) is a consolidation of Γ. Note that r′ − r is q′ − q

with two extra 0’s (from alpha). Finally, Ip(Γ) ≤ ‖r′−r‖p = ‖q′−q‖p = Ip(Ψ).

Lemma 4.27 . Ip satisfies super-additivity and IC-separability iff p = 1.

Proof. (→) To note that super-additivity and IC-separability do not hold if
p > 1, consider the bases Ψ = {(⊤)[0.9]},∆ = {(⊥)[0.1]},Γ = Ψ ∪ ∆. By the
definition of d-consolidation, if Ip(Γ) = d, then there is d-consolidation ΛΓ(q

′)
of Γ = ΛΓ(q) such that ‖q′ − q‖p = d. The only d-consolidations of Ψ,∆,Γ
are Ψ′ = {(⊤)[0.9, 1]},∆′ = {(⊥)[0, 0.1]},Γ′ = Ψ′ ∪∆′, for changing the lower
bound in Ψ and the upper bound in ∆ is useless to reach consistency. For any
finite p, Ip(Ψ) = Ip(∆) = p

√
0.1p = 0.1, and Ip(Γ) = p

√
0.1p + 0.1p = 0.1 p

√
2.

For p =∞, Ip(Ψ) = Ip(∆) = max〈0.1〉 = 0.1 and Ip(Γ) = max〈0.1, 0.1〉 = 0.1.
Therefore, for any p > 1 ∈ N ∪ {∞}, Ip(Γ) < 0.2 = Ip(Ψ) + Ip(∆), and both
super-additivity and IC-separability fail.

(←) Now fix p = 1. To prove that super-additivity holds, suppose there are
bases Ψ,∆,Γ = Ψ ∪ ∆ in K such that Ψ ∩ ∆ = ∅. Let Ψ′ = ΛΨ(q

′),∆′ =
Λ∆(r

′),Γ′ = ΛΓ(s
′) be d-consolidations of Ψ = ΛΨ(q),∆ = Λ∆(r),Γ = ΛΓ(s)

that minimize ‖q′−q‖1, ‖r′−r‖1, ‖s′−s‖1, corresponding to I1(Ψ), I1(∆), I1(Γ).
Clearly, Γ′ can be partitioned into Ψ′′∪∆′′ in such a way that Ψ′′ = ΛΨ(s

′
Ψ),∆

′′ =
Λ∆(s

′
∆) are consolidations of Ψ,∆. By the construction of s′Ψ and s′∆, ‖s′−s‖1 =

‖s′Ψ − q‖1 + ‖s′∆ − r‖1. Hence, for I1(Ψ) ≤ ‖s′Ψ − q‖1 and I1(∆) ≤ ‖s′∆ − r‖1,
it follows that I(Γ) = ‖s′ − s‖1 ≥ I1(Ψ) + I1(∆).

To prove that IC-separability holds, suppose there are bases Ψ,∆,Γ = Ψ∪∆
in K such that Ψ ∩∆ = ∅, IC(Γ) = IC(Ψ) ∪ IC(∆). Let Ψ′ = ΛΨ(q

′),∆′ =
Λ∆(r

′), be consolidations of Ψ = ΛΨ(q),∆ = Λ∆(r) that minimize ‖q′−q‖1, ‖r′−
r‖1, corresponding to I1(Ψ), I1(∆). As Γ′ = Ψ′ ∪ ∆′ = ΛΓ(s

′) is a widening
of Γ = ΛΓ(s) such that, for each Φ ∈ IC(Γ) = IC(Ψ) ∪ IC(∆), the base
{β ∈ Γ′ |α ∈ Φ and α ⊆ β} is consistent (all inescapabable conflicts are solved),
Γ′ is a consolidation of Γ by Lemma 4.13. As ‖s′− s‖1 = ‖q′− q‖1+ ‖r′− r‖1 =
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I1(Ψ) + I1(∆), it follows that I1(Γ) ≤ I1(Ψ) + I1(∆). By super-additivity,
I1(Γ) ≥ I1(Ψ) + I1(∆), thus I1(Γ) = I1(Ψ) + I1(∆).

Lemma 4.28 . Ip satisfies normalization iff p =∞.

Proof. (→) To note that normalization does not hold if p is finite, consider the
base Γ = {(⊤)[0], (⊥)[1]}. The only d-consolidation of Γ is Γ′ = {(⊤)[0, 1], (⊥)[0, 1]},
for changing the lower bound in (⊤)[0] and the upper bound in (⊥)[1] is use-
less to reach consistency. For any finite p, Ip(Γ) = p

√
1p + 1p = p

√
2 > 1, and

normalization fails.
(←) By definition, I∞(Γ) is the minimum of ‖q′− q‖∞ subject to Γ = ΛΓ(q)

and ΛΓ(q
′) being consistent. As the vectors q, q′ are in [0, 1]2|Γ|, ‖q′ − q‖∞ ∈

[0, 1], since |q′i − qi| ∈ [0, 1] for all elements qi, q
′
i of q, q

′.

Proposition 5.1 . For any p ∈ N>0 ∪ {∞}, Iεp : K → [0,∞) is well-defined
and satisfies consistency, continuity, weak independence and monotonicity. Iε1
also satisfies super-additivity.

Proof. See Section 4 in [29].

Lemma 5.2 . For any p ∈ N>0∪{∞}, Iεp : K→ [0,∞) is well-defined and satis-
fies consistency, continuity, i-independence and monotonicity. Iε1 also satisfies
super-additivity and IC-separability; and Iε∞ satisfies normalization.

Proof. As Iε1 and Iε∞ are particular cases of Iγ1 and Iγ∞, see the proof of Theorem
5.6. For continuity and normalization properties, see Lemmas 5.8 and 5.9.

Proposition 5.3 . There is an inconsistent knowledge base Γ = {(ϕi)[qi]|1 ≤
i ≤ m} ∈ Kprec such that no Dutch book is possible against an incoherent agent
whose belief state is represented by Γ if there is one gamble on ϕi per conditional
(ϕi)[qi] ∈ Γ and stakes are limited to λi ∈ {−1, 0, 1}.

Proof. We prove by constructing such knowledge base. Let Γ = {(x1)[0.3], (x2)[0.3], (x1∧
x2)[0.3], (x1∧¬x2∨¬x1∧x2)[0.2]}. Let x1⊕x2 denote x1∧¬x2∨¬x1∧x2. For any
probability mass π, it must hold Pπ(x1)+Pπ(x2) = 2Pπ(x1 ∧x2)+Pπ(x1⊕x2),
thus Γ is inconsistent. As any proper subset of Γ is consistent, any Dutch book
against an agent whose belief state is represented by Γ must have all gambles
with non-zero stakes, λi ∈ {−1, 1}. We are left with 24 possible sets of gambles,
since Γ has 4 conditionals. Let λi ∈ {−1, 1} be the stake of a gamble on the
ith conditional of Γ, in the order we have presented it (λ1 refers to a gamble
on (x1)[0.3]). For each λ = 〈λ1, . . . , λ4〉, we show in the table below a possible
world wj where there is no loss for the agent, in which x̄i denotes ¬xi.

35



λ wj λ wj

〈−1,−1,−1,−1〉 x̄1 ∧ x̄2 〈+1,−1,−1,−1〉 x1 ∧ x̄2
〈−1,−1,−1,+1〉 x̄1 ∧ x̄2 〈+1,−1,−1,+1〉 x1 ∧ x̄2
〈−1,−1,+1,−1〉 x̄1 ∧ x̄2 〈+1,−1,+1,−1〉 x1 ∧ x2
〈−1,−1,+1,+1〉 x̄1 ∧ x̄2 〈+1,−1,+1,+1〉 x1 ∧ x2
〈−1,+1,−1,−1〉 x̄1 ∧ x̄2 〈+1,+1,−1,−1〉 x1 ∧ x2
〈−1,+1,−1,+1〉 x̄1 ∧ x̄2 〈+1,+1,−1,+1〉 x1 ∧ x2
〈−1,+1,+1,−1〉 x1 ∧ x2 〈+1,+1,+1,−1〉 x1 ∧ x2
〈−1,+1,+1,+1〉 x1 ∧ x2 〈+1,+1,+1,+1〉 x1 ∧ x2

For instance, consider the set of gambles 〈−1,−1,+1,−1〉 and the possible
world x̄1 ∧ x̄2. In the gamble on (x1), the agent earns 0.3, on (x2), she earns
0.3, on (x1 ⊕ x2), she earns 0.2. The only gamble in which the agent loses is on
(x1 ∧ x2), but she loses only 0.3 < 0.3 + 0.3 + 0.2 and has no net loss.

Theorem 5.4 . For any Γ ∈ K, ItSSK(Γ) = Iε∞(Γ).

Proof. We are going to show a linear program that computes ItSSK(Γ) by max-
imizing the sure loss via Dutch books when the sum of stakes is limited to 1.
Consider a knowledge base Γ = {(ϕi|ψi)[

¯
qi, q̄i]|1 ≤ i ≤ m}. Let

¯
λi, λ̄i ≥ 0

denote gambles on (ϕi|ψi), one with qi =
¯
qi and stake

¯
λi ≥ 0, the other one

with qi = q̄i and stake −λ̄i ≤ 0. A set of gambles G can then be represented by
the vector λ = 〈

¯
λ1, λ̄1, . . . ,

¯
λm, λ̄m〉. Given a gamble on (ϕi|ψi) with stake

¯
λi

(−λ̄i), the agent’s net profit in a possible word wj is
¯
λi(Iwj

(ϕi∧ψi)−
¯
qiIwj

(ψi))

(−λ̄i(Iwj
(ϕi ∧ ψi) − q̄iIwj

(ψi))), in which Iwj
: LXn

→ {0, 1} is the indicator
function of the set {ϕ ∈ LXn

|wj |= ϕ} — a valuation. Recall (from (5)–(8))
that aij = Iwj

(ϕi∧ψi)−
¯
qiIwj

(ψi) and bij = Iwj
(ϕi ∧ψi)− q̄iIwj

(ψi). If a given

possible world wj is the case, the set of gambles 〈
¯
λ1, λ̄1, . . . ,

¯
λm, λ̄m〉 gives the

agent a profit of
∑m

i=1
aij

¯
λi +

∑m
i=1
−bij λ̄i. Let ℓ ≥ 0 be the sure loss a set of

gambles yields to the agent, no matter which possible world is the case. Thus,
ℓ is such that

∑m
i=1

aij
¯
λi +

∑m
i=1
−bijλ̄i ≤ −ℓ for all possible world wj . To find

the set of gambles 〈
¯
λ1, λ̄1, . . . ,

¯
λm, λ̄m〉 that maximizes the sure loss is to solve

the following linear program:

max ℓ subject to: (29)











1 a11 . . . am1 −b11 . . . −bm1

1 a12 . . . am2 −b12 . . . −bm2

...
...

. . .
...

...
. . .

...
1 a12n . . . am2n −b12n . . . −bm2n



































ℓ

¯
λ1
...

¯
λm
λ̄1
...
λ̄m

























≤

























0
0
...
0
0
...
0

























(30)

¯
λ1, λ̄1, . . . ,

¯
λm, λ̄m ≥ 0 . (31)

The program above is the dual of that in lines (5)–(8), which checks the con-
sistency of Γ. Note that Bπ ≥ 0 is equivalent to −Bπ ≤ 0, π = 1 in (5)–(8)
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can be inserted into A as a line of 1’s, and 0 is the function being minimized in
(5)–(8). By the duality theory, as the program above is feasible, it is unbounded
iff (5)–(8) is unfeasible (for duality theory, see, for instance, [39]). That is, if Γ
is inconsistent, sure loss via Dutch book is unlimited . If we add the restriction

¯
λ1 + λ̄1 + · · ·+

¯
λm + λ̄m ≤ 1 to the system above, we are maximizing sure loss

when the sum of stakes is limited to one — that is, computing ItSSK(Γ). The
dual of this new program would become the program (14)–(18), which com-
putes Iε∞(Γ). So, by the strong duality theorem, ItSSK(Γ) = Iε∞(Γ), for both
programs are always feasible.

Lemma 5.5 . For any Γ ∈ K, IStaffel (Γ) = Iε1(Γ).

Proof. See the proof of Theorem 5.12, since IStaffel is a particular case of IδStaffel .

Theorem 5.6 . For any functions
¯
γ, γ̄ ≥ 0 and p ∈ N>0 ∪ {∞}, Iγp : K →

[0,∞)∪{∞} is well-defined and satisfies consistency, i-independence and mono-
tonicity. Iγ1 also satisfies super-additivity and IC-separability.

Proof. Note that the linear restrictions in the program (19)–(23), when it is
feasible, define a convex, closed region of feasible points (a simplex). The p-
norm is a continuous function, so the minimum of the objective function in (19)
is well-defined for any p ∈ N>0 ∪{∞}. If the program (19)–(23) is infeasible for
some Γ ∈ K, Iγp (Γ) is defined as ∞.

Consistency: Note that a p-norm is never negative. The base Γ is consis-
tent iff the program (5)–(8) is feasible; and such program is feasible iff the pro-
gram (19)–(23) has a feasible solution with 〈̄ε1, ε̄1, . . . ,

¯
εm, ε̄m〉 = 〈0, 0, . . . , 0〉;

which is the case iff ‖〈̄ε1, ε̄1, . . . ,
¯
εm, ε̄m〉‖p = 0 is the minimum of the objective

function in (19).
Monotonicity: Consider the program P from lines (19)–(23), correspond-

ing to the computation of Iγp (Γ), for some Γ ∈ K. Let Ψ = Γ∪ {α} be a knowl-
edge base. For any p ∈ N>0 ∪ {∞}, the program (19)–(23) whose solution gives
Iγp (Ψ) has two extra constraints in comparison with P . Thus, the program that
computes Iγp (Ψ) cannot reach a smaller value for ‖〈̄ε1, ε̄1, . . . ,

¯
εm, ε̄m〉‖p, the ob-

jective function being minimized by P . Furthermore, ‖〈̄ε1, ε̄1, . . . ,
¯
εm+1, ε̄m+1〉‖p ≥

‖〈̄ε1, ε̄1, . . . ,
¯
εm, ε̄m〉‖p, for any p ∈ N>0 ∪ {∞}. Hence, Iγp (Γ ∪ {α}) ≥ Iγp (Γ),

for any p ∈ N>0 ∪ {∞}.
i-independence: Let Γ = {(ϕi|ψi)[

¯
qi, q̄i]|1 ≤ i ≤ m} be a knowledge base

in K and α = (ϕm|ψm)[
¯
qm, q̄m] be an innocuous conditional in Γ, and define

Ψ = Γ \ {α}. Suppose Iγp (Ψ) is finite. The solution on 〈̄ε1, ε̄1, . . . ,
¯
εm−1, ε̄m−1〉

to the program (19)–(23) that computes Iγp (Ψ) corresponds to a consolidation
of Ψ given by Ψ′ = {(ϕi|ψi)[

¯
qi −

¯
γi
¯
εi, q̄i + γ̄iε̄i]|1 ≤ i ≤ m − 1}. For α is

innocuous in Γ, it is consistent with Ψ′ ∪ (ϕm|ψm)[0, 1] (a consolidation of Γ)
and Ψ′ ∪ {α} is a consolidation of Γ. Hence, 〈̄ε1, ε̄1, . . . ,

¯
εm−1, ε̄m−1, 0, 0〉 cor-

reponds to a feasible solution to the program (19)–(23) computing Iγp (Γ). As
‖〈̄ε1, ε̄1, . . . ,

¯
εm−1, ε̄m−1〉‖p is equal to ‖〈̄ε1, ε̄1, . . . ,

¯
εm−1, ε̄m−1, 0, 0〉‖p for any

p ∈ N>0 ∪ {∞}, Iγp (Γ) ≤ Iγp (Ψ). By monotonicity, Iγp (Γ) = Iγp (Ψ).
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Now suppose Iγp (Ψ) is infinite. Thus, the program (19)–(23) that computes
Iγp (Ψ) is infeasible. Constraints in such program are inherited by the pro-
gram that computes Iγp (Γ) = Iγp (Ψ∪ {α}) together with the infeasibility, hence
Iγp (Γ) =∞ by definition.

Super-additivity: Suppose there are bases Ψ,∆,Γ = Ψ ∪ ∆ in K such
that Ψ ∩ ∆ = ∅. Without loss of generality, let Ψ = {(ϕi|ψi)[

¯
qi, q̄i]|1 ≤

i ≤ k}, ∆ = {(ϕi|ψi)[
¯
qi, q̄i]|k + 1 ≤ i ≤ m} and Γ = {(ϕi|ψi)[

¯
qi, q̄i]|1 ≤

i ≤ m}. If Iγ1 (Γ) = ∞, super-additivity trivially holds, then consider Iγ1 (Γ)
is finite. Let 〈̄ε1, ε̄1, . . . ,

¯
εm, ε̄m〉 be part of a solution (that includes π) to

the program (19)–(23) that computes Iγ1 (Γ), minimizing the objective func-
tion. As Γ′ = {(ϕi|ψi)[

¯
qi −

¯
εi
¯
γi, q̄i + ε̄iγ̄i]|1 ≤ i ≤ m} is consistent, so

are Ψ′ = {(ϕi|ψi)[
¯
qi −

¯
εi
¯
γi, q̄i + ε̄iγ̄i]|1 ≤ i ≤ k} and ∆′ = {(ϕi|ψi)[

¯
qi −

¯
εi
¯
γi, q̄i + ε̄iγ̄i]|k + 1 ≤ i ≤ m}, which are consolidations of Ψ and ∆. Thus,
〈̄ε1, ε̄1, . . . ,

¯
εk, ε̄k〉 and 〈̄εk+1, ε̄k+1, . . . ,

¯
εm, ε̄m〉 correspond to feasible solutions

to the programs that compute Iγ1 (Ψ) and Iγ1 (∆), respectively. It follows that
Iγ1 (Ψ) ≤ ‖〈̄ε1, ε̄1, . . . ,

¯
εk, ε̄k〉‖1 and Iγ1 (∆) ≤ ‖〈̄εk+1, ε̄k+1, . . . ,

¯
εm, ε̄m〉‖1. Fi-

nally, Iγ1 (∆)+Iγ1 (Ψ) ≤ (
∑k

i=1 ¯
εi+ε̄i)+(

∑m
i=k+1 ¯

εi+ε̄i) =
∑m

i=1 ¯
εi+ε̄i = Iγ1 (Γ).

IC-separability: To prove that IC-separability holds, suppose there are
bases Ψ,∆,Γ = Ψ∪∆ inK such that Ψ∩∆ = ∅, IC(Γ) = IC(Ψ)∪IC(∆). With-
out loss of generality, let Ψ = {(ϕi|ψi)[

¯
qi, q̄i]|1 ≤ i ≤ k}, ∆ = {(ϕi|ψi)[

¯
qi, q̄i]|k+

1 ≤ i ≤ m} and Γ = {(ϕi|ψi)[
¯
qi, q̄i]|1 ≤ i ≤ m}. If Iγ1 (Ψ) = ∞ or Iγ1 (∆) = ∞,

then Iγ1 (Γ) = ∞ by monotonicity, and IC-separability holds, considering that
∞ plus any non-negative number yields∞; thus, we assume Iγ1 (Ψ), Iγ1 (∆) <∞.
Let 〈̄ε1, ε̄1, . . . ,

¯
εk, ε̄k〉 and 〈̄εk+1, ε̄k+1, . . . ,

¯
εm, ε̄m〉 be solutions (on

¯
ε, ǭ) to the

programs in the form (19)–(23) that compute Iγ1 (Ψ) and Iγ1 (∆), respectively,
minimizing their objective functions. As all inescapable conflicts of Γ are ei-
ther in Ψ or in ∆, the union of consolidations of Ψ and ∆ is a consolidation
of Γ, by Lemma 4.13. Hence, 〈̄ε1, ε̄1, . . . ,

¯
εm, ε̄m〉 correspond to a feasible so-

lution to the program in the form (19)–(23) that computes Iγ1 (Γ) and Iγ1 (Γ) ≤
‖〈̄ε1, ε̄1, . . . ,

¯
εm, ε̄m〉‖1 = (

∑k
i=1 ¯

εi + ε̄i) + (
∑m

i=k+1 ¯
εi + ε̄i) = Iγ1 (Ψ) + Iγ1 (∆).

By super-additivity, Iγ1 (Γ) = Iγ1 (Ψ) + Iγ1 (∆)

Lemma 5.7 . If
¯
γ and γ̄ are such that, for any conditional α = (ϕ|ψ)[

¯
q, q̄],

¯
γ(α) = 0 implies

¯
q = 0 and γ̄(α) = 0 implies q̄ = 1, then Iγp (Γ) is finite for any

Γ ∈ K.

Proof. Consider the knowledge base Γ = {(ϕi|ψi)[
¯
qi, q̄i]|1 ≤ i ≤ m} and the

vector q = 〈
¯
q1, q̄1, . . . ,

¯
qm, q̄m〉. Suppose γ(Γ) > 0. Consider the restrictions

Pπ(ϕi ∧ ψi)−
¯
qiPπ(ψi) ≥ −

¯
εi
¯
γi and Pπ(ϕi ∧ ψi)− q̄iPπ(ψi) ≤ ε̄iγ̄i in the linear

program (19)–(23) that computes Iγp (Γ). As both left-hand sides have values in
[−1, 1] and

¯
γi, γ̄i > 0, taking

¯
εi > 1/

¯
γi and

¯
εi > γ̄i for 1 ≤ i ≤ m relaxes all such

constraints. Thus, with any probability mass π we have a feasible solution with
the (finite) value for the objective function ‖〈̄ε1, ε̄1, . . . ,

¯
εm, ε̄m〉‖p, and Iγp (Γ)

is finite for any p ∈ N>0 ∪ {∞}.
Now suppose γ(Γ) contains zeros. For any conditional α = (ϕ|ψ)[

¯
q, q̄] ∈ Γ,

¯
γ(α) = 0 implies

¯
q = 0 and γ̄(α) = 0 implies q̄ = 1. Hence, the linear inequalities
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corresponding to the probability bounds
¯
qi = 0, q̄j = 1 with

¯
γi = γ̄j = 0 are

trivially satisfied, and can be ignored. The remaining constraints can be relaxed
as explained above, linear program becomes feasible, and Iγp (Γ) is finite.

Lemma 5.8 . Let γ ◦ ΛΓ : [0, 1]2m → [0, 1]2m be continuous for all Γ ∈ K and
consider a p ∈ N>0 ∪ {∞}. If γ ◦ ΛΓ : [0, 1]2m → [0, 1]2m is positive for all
Γ ∈ K, then Iγp satisfies continuity; if γ ◦ΛΓ : (0, 1)2m → [0, 1]2m is positive for
all Γ ∈ K, then Iγp ◦ ΛΓ(q) is continuous for q ∈ (0, 1)2m.

Proof. Consider the knowledge base Γ = {(ϕi|ψi)[
¯
q′i, q̄

′
i]|1 ≤ i ≤ m} and a

vector q = 〈
¯
q1, q̄1, . . . ,

¯
qm, q̄m〉. Every probability mass π :WXn

→ [0, 1] defines
a vector επ(q) = 〈̄ε1, ε̄1, . . . ,

¯
εm, ε̄m〉 for each q in the following way:

¯
εi =

−min{0, (1/
¯
γi)(Pπ(ϕi ∧ψi)−

¯
qiPπ(ψi))} and ε̄i = max{0, (1/γ̄i)(Pπ(ϕi ∧ψi)−

¯
qiPπ(ψi))} for every 1 ≤ i ≤ m and q ∈ [0, 1]2m (or q ∈ (0, 1)2m). Note that
the pair π, επ(q) is a feasible solution to the program (19)–(23) that computes
Iγp (ΛΓ(q)) for any q ∈ [0, 1]2m (or q ∈ (0, 1)2m), since Pπ(ϕi ∧ ψi)−

¯
qiPπ(ψi) ≥

−
¯
εi
¯
γi and Pπ(ϕi ∧ ψi) − q̄iPπ(ψi) ≤ ε̄iγ̄i for all 1 ≤ i ≤ m. Thus, every π

yields a value for the objective function hπ(q) = ‖επ(q)‖ of the program (19)–
(23), for any q ∈ [0, 1]2m (or q ∈ (0, 1)2m). As γ ◦ ΛΓ : [0, 1]2m → [0, 1]2m

(γ ◦ΛΓ : (0, 1)2m → [0, 1]2m) is continuous and positive, επ(q) is also continuous
on q ∈ [0, 1]2m (or q ∈ [0, 1]2m), and as any p-norm is a continuous function,
hπ : [0, 1]2m → [0,∞) (hπ : (0, 1)2m → [0,∞)) also is for any π. To compute
Iγp (ΛΓ(q)) for a particular q, one needs to take the minimum in π of {hπ(q)|π :
WXn

→ [0, 1] is a probability mass}. As the minimum of continuous functions
is continuous, Iγp ◦ ΛΓ : [0, 1]2m → [0,∞) ∪ {∞} (or Iγp ◦ ΛΓ : (0, 1)2m →
[0,∞) ∪ {∞}) is continuous for any p ∈ N>0 ∪ {∞}.

Lemma 5.9 . If
¯
γ and γ̄ are such that, for any conditional α = (ϕ|ψ)[

¯
q, q̄],

¯
γ(α) ≥

¯
q and γ̄(α) ≥ 1− q̄, then Iγ∞ satisfies normalization.

Proof. Note that when
¯
γ(α) =

¯
q and γ̄(α) = 1 − q̄, we are limiting the agent’s

escrows to one, computing IaSSK by Theorem 5.10. As the agent cannot lose
more her total escrow in a Dutch book, IaSSK is normalized. But when

¯
γ(α) ≥

¯
q

and γ̄(α) ≥ 1 − q̄, we are strengthening the restriction over the stakes in the
program that maximizes sure loss (see Theorem 5.10), and it cannot have a
higher maximum. Formally, when

¯
γ(α) ≥

¯
q and γ̄(α) ≥ 1−q̄,∑m

i=1
¯
γi
¯
λi+γ̄iλ̄i ≤

1 implies
∑m

i=1
¯
qi
¯
λi+(1− q̄i)λ̄i ≤ 1, thus Iγ∞ ≤ IaSSK in this case, and both are

normalized.

Theorem 5.10 . If
¯
γ and γ̄ are such that, for any conditional α = (ϕ|ψ)[

¯
q, q̄],

¯
γ(α) =

¯
q and γ̄(α) = 1− q̄, then IaSSK(Γ) = Iγ∞(Γ) for any Γ ∈ K and both are

finite.

Proof. Consider a knowledge base Γ = {(ϕi|ψi)[
¯
qi, q̄i]|1 ≤ i ≤ m}. To compute

IaSSK(Γ), we need to maximize sure loss with the agent’s resources limited up
to one. Remember that the agent’s escrow is how much she can lose in a
gamble. For gambles with non-negative stake, represented by

¯
λi, the agent’s
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escrow is
¯
qi
¯
λi; for gambles with negative stake −λ̄i < 0, her escrow is (1− q̄i)λ̄i.

Consider the linear program (29)–(31) that maximizes sure loss via Dutch books
when the agent’s beliefs are represented by Γ. Instead of adding the constraint

¯
λ1 + λ̄1 + · · ·+

¯
λm + λ̄m ≤ 1 to limit the stakes sum, we limit the agent’s total

escrow with the restriction
¯
q1
¯
λ1 + (1 − q̄1)λ̄1 + · · ·+

¯
qm

¯
λm + (1 − q̄m)λ̄m ≤ 1.

Now, as
¯
γi =

¯
qi and γ̄i = 1 − q̄i for all 1 ≤ i ≤ m, such constraint is equal

to
∑m

i=1
¯
γi
¯
λi + γ̄iλ̄i ≤ 1. Taking the dual of this linear program we recover

exactly the program (24)–(28). Note that the sure loss cannot be greater than
the agent’s total escrow, thus it is always finite in this setting. Hence, by the
strong duality theorem, IaSSK(Γ) = Iγ∞(Γ) and both are finite.

Theorem 5.11 . If
¯
γ and γ̄ are such that, for any conditional α = (ϕ|ψ)[

¯
q, q̄],

¯
γ(α) = 1−

¯
q and γ̄(α) = q̄, then IgSSK(Γ) = Iγ∞(Γ) for any Γ ∈ K.

Proof. Consider a knowledge base Γ = {(ϕi|ψi)[
¯
qi, q̄i]|1 ≤ i ≤ m}. We need

to add a restriction to the program (29)–(31) (which maximizes sure loss) in
order to limit the gambler’s total escrow up to one. For gambles with non-
negative stake, represented by

¯
λi, the gambler’s escrow is (1−

¯
qi)

¯
λi; for gambles

with negative stake −λ̄i, his escrow is q̄iλ̄i. With
¯
γi =

¯
qi and γ̄i = 1− q̄i for all

1 ≤ i ≤ m, such constraint is equal to
∑m

i=1
¯
γi
¯
λi+γ̄iλ̄i ≤ 1. Once again, the dual

of this linear program is the program (24)–(28). By the strong duality theorem,
IgSSK(Γ) = Iγ∞(Γ) if both are finite. When IgSSK(Γ) is unbounded, the program
(24)–(28) is infeasible, and, by our definition, Iγ∞(Γ) =∞ = IgSSK(Γ).

Theorem 5.12 . For any Γ = {(ϕi|ψi)[
¯
qi, q̄i]|1 ≤ i ≤ m} in K, if

¯
γi = 1/

¯
δi

and γ̄i = 1/δ̄i for all 1 ≤ i ≤ m, then IδStaffel (Γ) = I
γ
1 (Γ) and both are finite.

Proof. Consider the linear program (29)–(31) that maximizes sure loss via Dutch
books when the agent’s beliefs are represented by Γ. We can limit the stakes

¯
λ1, λ̄1, . . . ,

¯
λm, λ̄m through restrictions

¯
λi/

¯
δi ≤ 1 and λ̄i/δ̄i ≤ 1 in order to

compute IδStaffel . But then the resulting program would be exactly the dual of

that in lines (19)–(23) when
¯
γi = 1/

¯
δi and γ̄i = 1/δ̄i for all 1 ≤ i ≤ m and

p = 1. By the strong duality theorem, IδStaffel (Γ) = I
γ
1 (Γ) <∞ in such case, as

both programs are feasible.
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