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Abstract: This article develops a new class of distributions by introducing skewness in the multivariate
elliptically symmetric distributions. The class is obtained by using transformation and conditioning. The
class contains many standard families including the multivariate skew normal and ¢ distributions. Analyt-
ical forms of the densities are obtained and distributional properties are studied. These developments are
followed by practical examples in Bayesian regression models. Results on the existence of the posterior
distributions and moments under improper priors for the regression coefficients are obtained. The methods
are illustrated using practical examples.

A new class of multivariate skew distributions with applications to Bayesian regression mod-
els

Résumé : This article develops a new class of distributions by introducing skewness in the multivariate
elliptically symmetric distributions. The class is obtained by using transformation and conditioning. The
class contains many standard families including the multivariate skew normal and ¢ distributions. Analyt-
ical forms of the densities are obtained and distributional properties are studied. These developments are
followed by practical examples in Bayesian regression models. Results on the existence of the posterior
distributions and moments under improper priors for the regression coefficients are obtained. The methods
are illustrated using practical examples.

1. INTRODUCTION

Advances in Bayesian computation and Markov chain Monte Carlo have extended and broadened the scope
of statistical models that can be fit for practical data. Surprisingly the methodologies and techniques of data
augmentation and computation can also be used for developing new sets of flexible models for data. The
main motivation of this article comes from this observation. A simple but powerful method of generating
a class of multivariate skew elliptical distribution is obtained with a view to finding easily implementable
fitting methods.

The class of elliptical distributions, introduced by Kelker (1970), includes a vast set of known sym-
metric distributions, for example, normal, ¢ and Pearson type II distributions. These ideas are quite well
developed, see for example Fang et al. (1990). A major focus of the current paper is to propose skewed
versions of these distributions which are suitable for practical implementations. A general transformation
technique together with a conditioning argument is used to obtain skewed versions of the multivariate dis-
tributions. In univariate cases similar ideas have been studied by many authors, see for example, Aigner
et al. (1977) and Chen et al. (1999).

The conditioning arguments on some un-observed variables used to develop the models are commonly
used in regression models. The resulting models are often called the hidden truncation models, see e.g.
Arnold and Beaver (2000, 2002). Consider the following motivating example. In order to gain admissions



in a medical school applicants are often screened by both academic and non-academic criteria. Only the
candidates meeting several academic criteria (e.g. overall grades and grades in science) are evaluated by
non-academic criteria such as commitment and caring, sense of responsibility etc. A response variable,
called the non-academic total obtained by summing the scores from seven such non-academic headings,
is used to screen applicants for the next stage of the admission process. Thus ‘meeting the academic
criteria’ acts as a conditioning variable for the response non-academic total. Moreover, some variables
(components) in ‘meeting the academic criteria’ are yet un-observed since the admission process is often
initiated much before the applicants take their final qualifying examinations. This example is discussed in
more detail in Section 6.

The methodology developed here is also useful in modeling stock market returns. The expected rate
of returns on risky financial assets like stocks, bonds, options and other securities are often assumed to be
normally distributed but are subject to shocks in either positive or negative directions; positive shocks lead
to positively skewed models and negative shocks lead to negatively skewed models, see e.g. Adcock (2002).
In the related area of capital asset pricing models the assumption of multivariate normality is often hard
to justify in real life examples (Huang and Litzenberger, 1988) and the proposed skew models can be used
instead.

In many practical regression problems a suitable transformation for symmetry is often considered
for skewed data. The proposed models eliminate the need for such ad-hoc transformations. Instead of
transforming the data our methods transform the error distributions to accommodate skewness.

In the case of normal distributions our setup provides a new family of multivariate skew normal
distributions. The distributions are different from the ones obtained by Azzalini and his colleagues, see
for example, Azzalini and Dalla Valle (1996) and Azzalini and Capitanio (1999). See also Arnold and
Beaver (2000) for a generalization. They obtain the multivariate distribution by conditioning on one
suitable random variable being greater than zero while we condition on as many random variables as the
dimension of the multivariate distribution. Thus in the univariate case the new distributions are same as
the ones obtained by Azzalini and Dalla Valle (1996). However, in the multivariate setup the two sets of
distributions are quite different. Also our method extends to other distributions, for example the ¢t and
the Pearson type II distributions.

There are some other variants of skewed distributions available in the literature. For example, Jones
(2000) (and references to his other work therein) provides an alternative skew ¢ distribution which in
the limiting case is a scaled inverse x distribution. Fernandez and Steel (1998) consider an alternative
form where two ¢t distributions (with different scale parameters) in the positive and negative domains are
combined to form a skew t distribution. The distributions developed in this article, however, are much
easier to work with and implement than others.

Bayesian analysis of regression problems under heavy tailed error distributions has received considerable
attention in recent statistical literature. A pioneering work in this area is due to Zellner (1976), in
which a study based on multivariate ¢ distribution is considered. Extensions of those results for elliptical
distributions are considered in Chib et al. (1988), Osiewalski and Steel (1993) and Branco et al. (2000).
More about Bayesian regression under heavy tailed error distribution can be seen in Geweke (1993),
Fernandez and Steel (1998) and references therein. However, the methodologies do not generally extend
to multivariate skew distributions.

The plan of the remainder of this paper is as follows. Section 2 develops the multivariate skew elliptical
distributions. Sections 3 and 4 consider the particular cases of normal and ¢ distributions. In Section 5
we develop regression models for the skewed distributions obtained in the preceding sections. Results on
the propriety of the associated posterior distributions in the univariate case are also obtained here. In
Section 6.2 we illustrate our methods when the response variable is univariate. A multivariate example is
discussed in Section 6.3. We give few summary remarks in Section 7. Technical proofs of our results are
placed in the Appendix.

2. MULTIVARIATE DISTRIBUTIONS
2.1 Elliptical distribution

Let Q be a positive definite matrix of order k¥ and 8 € R*¥. Consider a k-dimensional random vector X



having probability density function (pdf) of the form
1
£ (x16.2:9%) = 1077 [(x-0)"2 7 (x - 0)], xR (1)

where g*)(u) is a function from R* to R* defined by

ey _ L(k/2) g(u; k)
g * (U) - ﬂ-k/2 fooo ’l"k/271g(’l"; ]i})d’l"’ (2)

where g(u; k) is a function from Rt to Rt such that the integral I 7*/2=1g(r; k)dr exists. In this paper
we shall always assume the existence of the pdf (1). The function g™ is often called the density generator
of the random vector X. Note that the function g(u;k) provides the kernel of X and other terms in g
constitute the normalizing constant for the density f. In addition the function g, hence g™, may depend
on other parameters which would be clear from the context. For example, in case of ¢ distributions the
additional parameter will be the degrees of freedom. The density f defined above represents a broad class

of distributions called the elliptically symmetric distribution and we will use the notation
X ~ EI(8,94),

henceforth in this article. Let F (x|0, Q; g(k)) denote the cumulative density function (cdf) of X where

X ~ El (0, o g(k)).
We consider two examples, namely the multivariate normal and t distributions, which will be used
throughout this paper.

EXAMPLE 1. Multivariate normal
Let g(u; k) = exp(—u/2). Then straightforward calculation yields

—u/2
R () = &
g (u) - (27r)k/2

Then 1 L
7 (x16,0:97) = 510072 exp [~ 5 (x - 077 (x - 0)] . xR,

which is the pdf of the k-variate normal distribution with mean vector @ and covariance matrix 2. We
denote this distribution by N(8,2) and the pdf by N (x|0, ) henceforth.

EXAMPLE 2. Multivariate ¢

Let —(v+k)/2
g(u;kzy): [1+%] ,v > 0. (3)

Here g depends on the additional parameter v, the degrees of freedom. Then straightforward calculation
yields

(k)( V) = P(”;k) (u; k, v)
TTTIE) e
Hence . (k)2
I (4E) _1 x—-0"0 ' [x—-0]]"
(k)Y _ 2 k
£(x0.9:0) = Frgy Lyl [ xeR, @)

which is the density of the k-variate ¢ distribution with parameters €, Q and degrees of freedom v. We
denote this distribution by tx,,(0,2) and the density by t,. (x|, 2) henceforth. The subscript k£ will be
omitted when it is equal to 1.



2.2 Skew elliptical distribution

Let € and Z denote m-dimensional random vectors. Let p be an m-dimensional vector and ¥ be an m x m
positive definite matrix. Assume that

e (3) =m0 (£) 2= (5 £) )

where 0 is the null matrix and I is the identity matrix. We consider a skew elliptical class of distributions
by using the transformation
Y = DZ +e, (5)

where D is a diagonal matrix with elements 41, ..., dn, though we can work with any non-singular square
matrix. Let 87 = (d1,...,0m). The class is developed by considering the random variable [Y|Z > 0] where
Z > 0 means Z; > 0fori=1,...,m. Note that if § = 0 then we retrieve the original elliptical distribution.
The construction (5) with the conditioning introduces skewness. For positive values of components of §
we obtain positively (right) skewed distributions and for negative values we obtain negatively (left) skewed
distributions. The conditional density of Y is obtained in the following theorem.

THEOREM 1. Let y. =y — u. Then the pdf of Y|Z > 0 is given by

f (Y|N: 3, D; g(m)) = 2" fy (ylu, S+ D*; g(m)) x
: - m
F ([I — D(S+D*'D] 2 D(T + D*)'y.l0, I; gé(y)*)> , (6)
where I(m/2) ( om)
(m) o m gla + u;2m
N = R >0, 7
ga"" (u) o/ [ pm/2-1g(a + r; 2m)dr ¢ @
and

a(y.) =y: (Z+D?) 'y..

This density matches with the one obtained by Branco and Dey (2001) only in the univariate case.
We denote the random variable Y by using the notation Y ~ SE (u, 3, D; g(m)). In Sections 3 and 4 we

provide two examples of the density (6). In general, the cdf in (6) can be hard to evaluate. However, for
practical MCMC model fitting the cdf need not be calculated, see Section 5.
In the univariate case, i.e., when m = 1 we take ¥ = o2 and D = §. The density (6) then simplifies to

2 1 2 y (((y=w? b y—p
e e T <U2+52> F(;TZ—W
where g()(u) is given in (2), a = (;’__if‘f and g{" (u) is given in (7).
Using the arguments in the proof of Theorem 1 we can obtain the marginal distribution of subsets of
components of Y. The marginal distributions are derived using the construct [¥;|Z > 0] and not using the
construct [Y;|Z; > 0]. Suppose that it is desired to obtain the marginal density of first m; components of
Y. The marginal density will be,

0, Lgé”) (8)

f <y(1)|u(1),En,Dn;g(ml)) = 2" fya (y(l)lu(l),zn +Df1;g(m1)) x

1
T2

g <[I — D (S0 + D1) ' D] 2 Du(2n + Di) " 'yiV10, 147 ) :

av{M)
where the symbols have their usual meanings. It is straightforward to observe that the above marginal
density is of the same form as (6). Hence coherence with respect to marginalization is preserved under (6).
The conditional density of any subset of variables can be obtained from the joint and marginal densities.



3. THE SKEW NORMAL DISTRIBUTION
8.1 Density

Let g(u;m) = exp(—u/2). Then it is easy to see that g™ (u) = (27) "™ 2 exp(—u/2) and gér(';)*) is free of
q(y«), see equation (7). Now the pdf of the skew normal distribution is given by

FIm D) = 27T+ D g [(2+D2>*%<y—u)] x
. [(I—D(E 1+ D*)"'D)"ID(z +D2)_1(y—u)] , (9)

where ¢, and ®,, denote the density and cdf of m dimensional normal distribution with mean 0 and
covariance matrix identity. (We drop the subscript m in ¢,, and ®,, when m = 1.) We denote the above
distribution by SN(u, X, D). An appealing feature of (9) is the fact that it gives independent marginals
when ¥ = diag(o?,...,0%). The density (9) then reduces to

m

flw,o®, D) =]

i=1

(10)

. i — i & Yi— i
o2 +62) V2 | YK Oi Y T Hi
( ) ¢ Voi+ 62 Oi \Jo? + b}
8.2 Moments and skewness

For the multivariate distribution SN(u, X, D) we provide the first two moments. These are obtained by
using the moment generating function

My (t) = 2™t #HT (3HDM2g (D). (11)

The appendix contains the derivation of this. The mean and variance of of SN(u, X, D) are given by,

9 1/2 9
E(Y)=p+ (;) d and Cov(Y) =X+ (1 - ;) D2

Since the matrix D is assumed to be diagonal the introduction of skewness does not affect the correlation
structure. It changes the values of correlations but the structure remains the same. Thus the mutual
independence of the components, when X is diagonal, is preserved under (5) for the normal distribution.
However, this is not true for the skew normal distribution of Azzalini and Capitanio (1999). Introduction
of skewness in their setup changes the correlation structure.

As mentioned previously SN (u, X, D) coincides with the skew normal distribution obtained by Azzalini
and Dalla Valle (1996), and Azzalini and Capitanio (1999) in the univariate case only. Hence, the skewness
properties of the univariate distributions are not investigated here. We instead consider the bivariate
distributions for comparison. We use the skewness measure (1,2 introduced by Mardia (1970) for such
comparisons. We choose the bivariate densities where each component has zero mean and unit variance.
We achieve this by linear transformation which does not change the skewness measure (3, 2, that is, the
1,2 for the original y variables is the same as the fi,» for the linearly transformed variables, z in the
following discussion.

We consider the following simpler form of (9),

o= e (s ) () (i) ). 0

The two components are independent and the marginal distributions are identical with mean

(o) = 5\/§, and variance o”(8) =1 + (1 _ 2) 52,
i ™



Mardia’s skewness measure is given by
> 5 ’
) =4(4— _
pra0) =4 -7 { o
We use the standardization transformation
Zi = %Tf;)(), 1= ]., 2,

and use the density of Z = (Z1, Z2) for comparison purposes.
A version of the bivariate skew normal distribution obtained by Azzalini and Dalla Valle (1996) is the
following,

F51e) =26 ()6 32) @ (s n +10)). (13)

where « is the skewness parameter. This distribution also provides identical marginal distributions each
with mean

2 9
m(a) = ay/—, and variance o’la)=1— ;oﬂ_
™

The correlation coefficient between the two components is given by

_ 2
pla) = (m —2a2?)’

The skewness measure f31,2 is given by

a? ?
=164 —m)>{ —— % .
uate) =106 - { 215 }

When 6§ = o we have u(§) = p(a), but the variances 0?(§) and o?(«) fail to coincide. A fair graphical
comparison between two densities is not possible if they have un-equal variances because the variance also
affects the tail of the density. We apply the above standardization transformation to have components
with zero mean and unit variance, that is, we set

el GO NP

o(@)
This transformation does not remove the correlation p(a) between the components. The editor and an
anonymous AE have pointed out that the densities of the standardized random variables corresponding to
(12) and (13) are still not comparable because of the presence of correlation p(c) in the latter. That is
why we also compare the linearly orthogonalized version of (13) using the following transformation:

_y1 —u(a) _ 1 y2 — pla) y1 — p(a)
o= N err ( ) ) ) .

o(a)
This linear transformation does not change the skewness measure 31,2, see Mardia (1970).

We first plot the density (12) linearly transformed to have zero mean and unit variance for each
component for § = 1,3,5 and 10. The corresponding values of the skewness measure (1,2(4) are 0.04,
0.89, 1.45 and 1.82 as labeled in the plot. Clearly, the bivariate distribution gets more right skewed as ¢
increases.

It now remains to compare the shape of (12) with that of the Azzalini and Dalla Valle (1996) skew
normal density (13). We plot the densities of the transformed random variables in Figure 2 for 81,2(8) =
B1,2(a) = 0.72 and 0.98. These values were obtained by first choosing o = 0.48 and 0.4995. Note that
the constraint 0 < a? < 0.5 is required by (13).

The two plots in the first column correspond to the skew normal density (12) and the plots in the
second and third column correspond to (13). The second column plots the standardized density without
orthogonalization and the plots in the third column are for the orthogonalized version. The implied values
of § and « are labeled in the plot. The differences in the plots are explained by the fact that the density
(13) is resulted by conditioning on one random variable while (12) is obtained by conditioning on two
random variables. The two conditioning random variables in (12) allow two lines to effectively bound the
left tail of the bivariate distribution while the only conditioning random variable limits the left tail of (13)
by using only one line.
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Figure 1: Contour plots of bivariate skew normal distribution (12) linearly transformed to have
components with zero mean and unit variance.
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Figure 2: Contour plots of standardized versions bivariate skew normal distributions. The first
column corresponds to the density (12). The last two columns correspond to the density (13). The
two plots in the second column are for the non-orthogonalized version while the two plots in the
last column are for the orthogonalized version.



4. THE SKEW ¢ DISTRIBUTION
4.1 Density

Let (v+2m)/2
[T v m
g(u; 2m,v) = [1 + ;] .
Note that the two ingredients of (6) requires a marginal and a cumulative conditional density. For an
m-dimensional marginal density we have

I'(m/2) g9(u;m,v)
o/ [ pm/2=1g(rym, v)dr’

o (w) =

following Theorem 3.7 in Fang et al. (1990, p83). Therefore, in (6) the marginal density is t,,. (y|p, Z+D?).
For the cumulative conditional density we first obtain gc(lm). From (7) and ingredients in Lemma A.1 we
have,

—1
g((lm)(u; v) = T(m/2)x" ™ %g(a+ u;2m,v) [fooo ™2 g(a + 7;2m, V)dr]

m m —(v+2m)/2
= T(3)rw+m)% (52)" (1+ 755 552) :

Hence, the conditional density is given by

v+q(y*)(

bt (2ID( + D7)y, LY.

I—D(+ D2)_1D)) .

After standardization the cumulative conditional density is

1
v+q(ys)) 2 P13 2y—1
Trvim _ I—-DX+D D) 2D(X+D -

vt ( v+m ) ( (% +D%) ) (E+D)"y

where Ty, +m(-) denote cdf of . 4+m(0,1) and ¢(y«) = yX (X + D*)"'y.. The generator function cal-
culation gave two extra quantities which were not present in the multivariate skew normal distribution,

1
. . L y +e3)\ 77
namely (i) degrees of freedom of the conditional density is ¥ + m and (ii) the factor (%) in the

argument of the cdf.
Summarizing the preceding discussion we have the density of the multivariate skew ¢ distribution given
by

fylu, 2, D,v) = thm,,,(y|u,E+D2)X
1
v4q(ys)) 2 Il oy — o o1
T,vtm —_— 7 I-DX+D D) 2D(X+D wl - 14
vt ( v m ) (I-D(Z+D%)"'D) *D(Z+D*)"y (14)

We denote this distribution by ST, (u, X, D). For £ = ¢*I and D = 61 the above simplifies to

T (u+m) T —(v+m)/2
2 _ my 2 2\—m/2 2 Yi¥x
flylp,o%,6,v) = 2™ (0" +47) T(v/2)(vm)m/2 [1+ y(0.2+52):|
1
v+q(y)) 24 y-
T vt+m — — | - 1
. ( v+m ) o \o? + 42 (1%)

However, unlike the skew normal case the above density cannot be written as the product of univariate
skew t densities. It is to be noted that, here Y;’s are not independent but they are uncorrelated.

4.2 Moments and skewness

The moments of the skew t distribution, ST, (u, X, D) are not straightforward to obtain using the density
(14). Here we derive the first two moments by viewing ST, (u, X, D) as a scale mixture of SN(u, X, D).



We obtain the following results by using the expression for the moment generating function given in the
appendix.
The mean and variance of the skew ¢ distribution ST, (u, X, D) are given by

BY) =+t (;)1/2 Il(v—1)/2] 5,

I'(v/2)
and
Cov(¥) = (2 + D)2 -~ (F[(I’f(;/;))ﬂ])z D’
when v > 2.

We have calculated the multivariate skewness measure 31,, (Mardia, 1970) in analytic form for the
skew t distribution. The expression does not simplify and involves non-linear interactions between the
degrees of freedom (v) and the skewness parameter 6 where D = §I. However, 31,m approaches +1 as
6 — Foo.

5. REGRESSION MODELS WITH SKEWNESS
5.1 Models for univariate response

We consider regression model where the error distribution follows the skew elliptical distribution. Let X be
an n X p design matrix (with full column rank) and 3 be a vector (dimension p) of regression parameters.

Suppose that we have n independent observed one-dimensional response variables y;. Further y; ~
SE(pi,0?,6; g(l)) independently. Let g = (1, ..., n)T. For the regression model we assume that g, =
x7 8 where x7 denote the ith row of the matrix X. Thus the assumed regression model is g = X3. The
likelihood function of 3,0> and § and any other parameter involved in SE(u;, o2, d; g(l)) is given by the
product of densities of the form (8). Hence we write,

n

L(B,0*, 0,95y, .. op) = £ (yilm,a2,5;9(1))
i=1

where f <y| w2, 8; g(l)) is given in (8). The above likelihood may also depend on additional parameters.

For example, for the ¢ distributions the additional parameter is v.

Often the error distribution in a regression model is taken to have mean zero. The regression model
developed here can be forced to satisfy this requirement by suitably adjusting the intercept parameter.
See Section 6.2 for particulars.

To completely specify the Bayesian model we need to specify prior distributions for all the parameters.
As a default prior for B we take the constant prior mg o 1in RP. For 7 = 1/0” we assume a gamma, prior
distribution I'(k, x) where the parameterization has mean 1 and & is assumed to be a known parameter.
In other words o2 is given an inverse gamma distribution. The parameter § is given a normal prior
distribution. Specific parameter values of this prior distribution will be discussed in particular examples.
When the ¢ models are considered we need prior distribution for the degrees of freedom parameter v. For
this, we use the exponential distribution with parameter 0.1 truncated in the region v > 2, so that the
underlying ¢ distribution (skew or not) has finite mean and variance.

Now the joint posterior density is given by,

7r(,8,02,5, VY1, ..y Yn) X L(,B,az, 6,9(1); Yly- ey Yn) TG Wp2 W T, (16)

where 7. on the right hand side denote the prior density of its argument. Note that the parameter v is
omitted for the normal distributions.

In many practical examples it is possible to decide the type of skewed distributions appropriate for
data a-priori. For example either the positively skewed or the negatively skewed distributions may be
considered to be appropriate for data. Thus it is reasonable to assume proper prior distributions for the
skewness parameter.

In many examples, however, we may not have precise information about 8 and ¢° and we will be
required to use the default prior distributions, as is often done in practice. A natural question in such

2



a case is whether the full posterior distribution is proper. In the following theorem we answer this in
affirmative for the skew normal or skew-t error distributions.

THEOREM 2. Suppose that ws and w, are proper distributions and ng o 1. Then the posterior (16) is proper
under the skew normal or skew t model if n > p.

In the appendix we provide a proof of this theorem. In fact a more general theorem is proved and the
above result is obtained under the special cases of normal and ¢ distributions. As a consequence of the
proof of Theorem 2 we have the following result on the existence of the posterior moments of o2.

THEOREM 3. Suppose that ms and m, are proper distributions and and =g o« 1. Then E[(0®)*|y] emists
under the skew normal or skew t model if n — p > 2k.

A similar result is obtained by Geweke (1993) for the ¢ model with unequal variance assumption.
Theorem 3 extends his result to the skewed models which include several other distributions.

5.2 MCMC specification

In order to specify the model (5) for MCMC computation we use the hierarchical setup of f(y|z) and
f(z)I(z > 0) where f is used as a generic notation denoting the density of the random variable in the
argument. We obtain these two distributions from (A.1) which is,

()es-(8)2-(3 )om) o

Y|Z=z~ EIl (u.—l— Dz, E;gé?z)))
where ¢(z) = z” z. For the skew normal model this is simply a multivariate normal distribution with mean
i+ Dz and covariance matrix X, since géz)) is independent of g(z). However, for the skew ¢ model this is

not so and

Here we have

1/+sz
Y|Z=2~tmoim Dz, —/ = %%
| z vt (N+ Z i m )

The marginal specification for Z for the skew normal case is simply the N,, (0, ) distribution. The same
for the skew t case is tm,» (0, I). Lastly, the distribution of Z is truncated in the space z > 0.

5.8 Multivariate response

Regression models for multivariate response variables are constructed as follows. Let Y; ~ SE (p,i, X, D; g(m))
for 4 = 1,...,n. For each data point with covariate information assumed in a p x m matrix X;, we can
specify the linear model

B, = XiT B,
where 3 is a p-vector of regression coefficients. The coefficients are given a multivariate normal N, (8,,A)
prior distribution, where A is a known positive definite matrix and 3, is a vector of constants to be chosen
later. The matrix ¥ is assigned independent conjugate Wishart prior distribution as follows:

Y = Q ~ Wi (21, 2k)

where 2r is the assumed prior degrees of freedom (> m) and & is a positive definite matrix. We say that
X has the Wishart distribution W, (k, A) if its density is proportional to

|A|k/2|y|%(k—p—l)e—%tr(Ax) (18)
if x is an mxm positive definite matrix. (Here tr(A) is the trace of a matrix A.) This is the parameterization

used by for example, the BUGS (Spiegelhalter et al., 1996) software. The skewness parameters in D,
vectorized as 4, are given a normal prior distribution N,,(0,I") where I is a positive definite matrix.

10



In the remainder of this section we develop computational procedure for the multivariate skew ¢ dis-
tribution and obtain the methods for multivariate skew normal as a special case. The full likelihood
specification is given as follows. We introduce n i.i.d. random variables w; for each data point to obtain
the t models. For the normal distributions each of these will be set at 1.

Non (X8 + Dz, 2)

Yilzin@,XhEaDawi ~ w;
Zi ~ Nn(0,1)I(z > 0)

B8 ~ NP(ﬂO:A)

Q=x" ~  Wn(2r2k)

p ~ Nn(0,T)

w; ~ T(v/2,v/2)

v ~ I(1,0.D)I(v > 2),

the last two distributional specifications are omitted in the normal distribution case. All of the full
conditional distributions for Gibbs sampling are straightforward to derive and sample from except for z;
and d. Their full conditional distributions are given by

Zi|--+ ~ Np(A7'a;, A7Y)I(zi > 0)
6|~ ~ Nn(B 'b,B71)

where
A; =1+ w;DQD and a; = w; DQ(y; — X7 B),

B=Tr"1'+ Zdiag(zi) Q diag(z;) and b = Zdiag(zi) Q(yi — XiT,B),

i=1 i=1

where diag(a) is a diagonal matrix with diagonal elements being the components of a.
6. EXAMPLES
6.1 Interview data

In order to gain admissions in a certain medical school the applicants are screened using both academic
qualifications and non-academic characteristics. Each applicant meeting some observed and some predicted
academic criteria receives a non-academic total which is the sum of seven scores. The seven scores are
assigned on the basis of work experience, sense of responsibility, commitment and caring, motivation, study
skills, interest and referees comments. Applicants are subsequently selected for interviews based on their
non-academic totals. The interviewed applicants are given scores which are sums of two individual scores
given by each member of a two-member interview committee.

In our univariate skewed regression model set-up the non-academic totals are considered to be real-
izations of the response variable. Here the academic scores from the final qualifying examination called
the A-level examination in Great Britain of the applicants work as the un-observed conditioning variables
leading to our regression model. The true academic scores of applicants are yet un-observed because the
admission process takes place much before the applicants sit for the A-level examination in Great Britain.

The data set to be analyzed here is obtained as part of a large cohort data giving the details of candidates
who applied for a medical degree in a certain medical school in Great Britain. For the univariate analysis
we have the non-academic totals of 584 applicants categorized by race and sex. We work with a larger
dataset for our bivariate analysis. The response variables are the non-academic total and a composite
score in secondary science examination for each of 731 applicants. The 584 applicants for the univariate
analysis are the applicants who were called for interviews among the 731 initial applicants.

6.2 Univariate regression
The response variable non-academic total is influenced by several academic, socio-economic and demo-
graphic factors as expected. In our current study we only consider the influence of race and gender of the

applicants; these characteristics of the applicants were known to their evaluators. Although the applicants
are classified to come from 6 combined ethnic types viz. white, black, Indian, Pakistani and Bangladeshi,
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other Asian and others, for our purposes we classify candidates whether they were white or non-white. We
are then interested to compare four groups of applicants: white female, white male, non-white female and
non-white male. The first group has higher average non-academic totals than the other groups. Simple ¢
tests on the data also show significant differences between the groups.

The data are not expected to be heavily skewed since the individual data points are sum of components
as mentioned previously. However, the observations are sum of only seven components so the central limit
theorem does not ensue for such a small sample size. Initial exploratory plots (not shown) confirm that left
tail of the underlying distribution descends more slowly than the right tail. Our explicit skew-regression
models will estimate and test for the skewness in the data more formally.

Let y; denote the non-academic total of the ith applicant for ¢ = 1,...,n = 584. In order to compare
between the four groups, white female, white male, non-white female and non-white male we code three
binary regressors taking the values 0 and 1 as described below. The first regressor takes the value 1 for
white male, the second takes the value 1 for non-white female, while the third takes the value 1 for non-
white female. The resulting regression coeflicients allow comparison of the last three groups keeping the
white female as the base group. Thus we have the regression model

3
y,'=o:’+Zﬂj$ij+(5zi+ei,i=1,...,n. (19)

i=1

We calculate the true intercept a = o’ —§E(z;) which corresponds to the regression model where the error
distribution has mean zero. For the normal and ¢ models expressions for E(z;) are given in the preceding
sections.

Throughout we assume independent diffuse prior distribution NV (0,10%) for the regression parameters
o' and B;. For 7 = 1/0?, we assume a limiting non-informative gamma, prior distribution T'(0.01, 0.01)
where the parameterization has mean 1. When § is not assumed to be zero, it is given a normal prior
distribution with mean zero and variance 100. Thus § is assigned a proper prior distribution which is a
requirement of Theorems 2 and 3.

1. Normal linear model: We take § = 0 and € ~ N(0,02).

2. Skew Normal model: We assume that z; given all the other random quantities in the model follows
the standard half-normal distribution.

3. t-model: We assume that € ~ ¢, where ¢, is the standard ¢-distribution with v degrees of freedom.
We further assume ¢ = 0. Although the parameter v is traditionally taken as an integer, it can
be treated as a continuous parameter taking positive values since the associated densities are well
defined in this case. We assume a truncated (v > 2) exponential distribution with parameter 0.1.
The truncation assures the finiteness of the mean and variance of the associated ¢ error distribution.

4. Skew t-model: We assume that € ~ t, where ¢, is the t—distribution with v degrees of freedom. We
also assume that z; follows i.i.d. |t,| conditional on other random quantities in the model. The prior
distributions for the remaining parameters are assumed the same as in the previous cases.

The Gibbs sampler has been implemented using the BUGS software, the codes are available from the
authors upon request. We use the 10,000 iterates after discarding first 5000 iterates to make inference.
The regression model has an intercept o and three regression parameters: 31 for white male applicants, (32
for non-white female applicants and 33 for the non-white male applicants. Resulting parameter estimates
(posterior means) are given in Table 1.

The estimates of the regression parameters across the models agree broadly. All three regression
parameters j3; are significant in all the models since the associated 95% probability intervals do not include
the value zero. The negative estimates show that the base group of white female receives significantly
higher average non-academic totals than the remaining three groups. The difference between the white
female and non-white male is the most significant. Thus the latter group seems to perform most poorly
non-academically even though they all met the academic criteria.

The estimates of the parameter o2 are smaller for the corresponding skewed model. This is expected
because high variability, heaviness of the tails and skewness are interchangeable to a certain extent. The
non-skewed symmetric error models endeavor to capture skewness by having larger tails. The important
question is that whether high variability can completely replace skewness. In the next paragraph we answer
this in negative.
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Table 1: Posterior mean, sd and 95% probability intervals for the parameters under the four fitted
models in the univariate example.

Normal model Skew normal model
Mean sd  25% 97.5% Mean sd  25% 97.5%

a 2618 0.14 2590 26.47 3040 0.62 2896 31.44
B8 —-065 024 -113 -0.18 -0.63 024 -1.10 -0.15
B —0.87 036 —-1.58 —-0.17 -0.89 0.35 —-1.58 —0.19
Bs —-0.98 0.39 -1.74 -0.21 -1.11 0.39 -1.86 —-0.33
o? 6.46 0.38 5.75 7.25 3.88 0.65 2.77 5.34
1) —-2.64 038 -3.28 -—-1.77
t model Skew-t model
a 2621 0.14 2593 26.49 2647 2.75 23.11 30.80
B8 —0.57 024 -—-1.04 -0.10 -0.56 0.24 -1.04 -0.07
B —0.89 035 -—-1.58 —-0.19 -0.89 0.35 —-1.57 -—0.21
B3 -=0.97 037 -1.70 -0.25 -1.00 0.38 -1.72 -0.23
o? 5.39 0.44 4.54 6.29 4.10 0.98 2.28 5.72
v 13.85 5.61 6.71 28.74 9.99 3.95 5.17  20.69
1) —-0.16 1.58 —2.70 1.76

The skewness parameter § is estimated to be negative in both the skew normal and skew-t model; this
confirms the left skewness of the response mentioned previously. Moreover, ¢ is significant under the skew
normal model since the 95% probability interval is (—3.28, —1.77). Thus we can conclude that significant
skewness is required to model the data.

The parameter § does not turn out to be significant under the skew-t model. This is explained as
follows. Observe that the fitted symmetric ¢-error distribution is lighter tailed (estimated df =13.85) with
larger dispersion parameter o2 than the fitted skew-t model (estimated df =9.99). With such heavy tailed
error distribution, it was not possible to see significant skewness in the data. This, however, does not
necessarily reduce the predictive power of the skew-¢ model.

To compare the four models informally we compute the effective number of parameters pp and the
deviance information criterion (DIC) as presented by Spiegelhalter et al. (2002). They claim that the
(DIC) as implemented in the BUGS software can be used to compare complex models and large differences
in the criterion can be attributed to real predictive differences in the models, although there are many
critics. Using the DIC values shown in Table 2, we see that the skewed models improve the corresponding
symmetric models; the symmetric normal and ¢ models are very similar; the skew-t model is the best
model for the data. For the symmetric normal and ¢ models the effective number of parameters pp roughly
indicates the number of parameters in the regression model. Spiegelhalter et al. (2002) mention that pp
can be negative for non-log-concave densities, the present example with skewed distributions provides a
case in point. Thus pp is not meaningful in our example.

Table 2: The effective number of parameters, pp and DIC for the four fitted models.

PD Dic
Normal 4.9 2750.6
Skew-N 217.8 2658.1
t 5.6 2742.1
Skew-t —187.5 2387.4
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The same conclusions, e.g. the skewed models are better and the skew-¢t model is the best are also
arrived at using more formal Bayesian predictive model choice criteria, e.g. the Bayes factors (DiCiccio
et al., 1997). We, however, omit the details. Instead, we compare the residuals from the symmetric and
the corresponding skew models to examine if indeed the skew models were able to improve upon the
symmetric models. In Figure 3 we plot kernel density estimates of the standardized residuals with the
same smoothing parameter. Clearly the density plots for the skewed models have thinner tails than the
corresponding symmetric models. We also provide normal Q-Q plots of the residuals to examine the four
fitted distributions in Figure 4. All four plots show the existence of outliers, however, the skew-¢t model is
seen to be the best fitted model. This confirms the model choice and diagnostic results obtained using the
DIC criterion and the kernel density plot provided in Figure 3.
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Figure 3: Kernel density estimates of the residuals under four regression models.
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Figure 4: Normal Q-Q plots of residuals.
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6.3 A multivariate illustration

The non-academic totals and the scores in science from their secondary examination of 731 candidates are
plotted in Figure 5. From the plot it is clear that symmetric distributions should not be fitted to this data
set. We proceed with the multivariate models of Section 5.3. We adopt the following values of the hyper-
parameters. Let & be the two component vector where each element is the mid-point of the corresponding
component of the bivariate data. Further, let R denote the diagonal matrix where each diagonal entry is
the squared range of the corresponding component in the data. Since we do not consider any covariate
for this example the regression parameter G is the mean parameter pu. For this we assume a normal prior
distribution with mean 3, = € and covariance matrix A = 100 x R. The degrees of freedom parameter 2r
in the Wishart distribution is set at 3 which corresponds to the non-informative prior distribution, see the
Wishart density in (18). The matrix  in the Wishart distribution is taken as 100/(2r)R™". Finally, each
component of § is given an independent normal prior distribution with mean zero and variance 100.

The estimates of the marginal likelihood using the approach of Gelfand and Dey (1994) are —3502.1, —
3439.7, —3493.9 and —3443.5 for the normal, skew normal, ¢t and the skew-t model respectively. The skewed
bivariate models are large improvements over the corresponding symmetric models. However, the data
favor the skew normal model when compared against the skew-t model. Other model comparison criteria
can also be used. We, however, use the Gelfand and Dey (1994) method for this multivariate example
since it is reasonably easy to implement and provides a quick comparison between competing models.
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Figure 5: Scatter plot of the bivariate data used in model fitting.

7. CONCLUSION

The new class of skewed distributions obtained in this article is very general, quite flexible and widely
applicable. The skewed distributions are shown to provide an alternative to symmetric distributions often
assumed in regression. Although the associated density functions are quite difficult to handle, we show
that the models can be easily fit using MCMC methods. Moreover, the univariate models are fitted using
publicly available software BUGS. This makes our approach quite powerful and accessible to the practicing
statisticians. Other variants of skewed distributions currently available are not so easy to implement.

In this article we obtain the skewed distributions by transformation and then conditioning on the same
number random variables, m in Theorem 1. As mentioned in the introduction, Azzalini and Capitanio
(1999) condition on one random variable being positive. It is certainly possible to impose the non-negativity
condition on any other number of random variables, although we have not pursued this.

Observe that the exact form of the densities of skewed distributions obtained in Theorem 1 need not
be calculated if the sole purpose is to perform model fitting. However, model comparison using the Bayes
factors can be performed easily if it was possible to calculate the density. The augmented variables used
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in model fitting can be ignored when calculating the marginal likelihood since the marginal density of the
data is available analytically.

Although we have not discussed, the Bayes factors can be used to solve the associated problems of
variable selection. Moreover, other existing Bayesian techniques of variable selection and model averaging
can be implemented with the models developed here.

Appendix: Theorem Proofs
Before proving Theorem 1 we consider the following Lemma which is Theorem 2.18 in Fang et al.
(1990, p45). Partition X, 6, into

x@® o Q1 Qo
x= ( X 0= 0 = Qo1 Q22
where x and x® are respectively k1 and k2 dimensional random vectors, and k1+k2 = k. The parameters
0 and (2 are partitioned accordingly.

LEMMA A.1. Let X ~ EI(0,9;g®). Then

XDX® =x ~ Bl (012, Qu10192).)

where
012 = 6% +01,05 (x? —0”)
Qe = Qi — Q205 Qo
g(x?) = (X(Z) _ 9(2>)T 0y (x<2) _ 9(2))
oD () = P(]zl/Z) _ g(a +u; k) _
wki/2 [ rk1/2=1g(a + 7 k)dr

Proof of Theorem 1: Consider the transformation

(v)=(o 7)(5)

where 0 is the null matrix. Using Theorem 2.16 of Fang et al. (1990) we see that

(§)~El(9=(ﬁ>,QZ(EED2 11_)>;g<2m>>_ (A1)

From this joint distribution we aim to obtain the conditional density of Y|V > 0. Since V ~ EI(0, I; (™)
marginally, we have that Pr(V > 0) = 2~ ™. By using standard arguments,

f¥IV > 0) = 2" fy (ylu, = + D% g™ Pr(V > 0ly).

In order to calculate Pr(V > 0O|y), we first obtain the conditional density of V|Y = y from the joint
distribution (A.1). Using Lemma A.1 we have that

VIY =y ~ El (0 =D(X+ D% 'y.,Q=1—D(Z + D*)"'D; g™ )

a(y+)

where ¢(y.) = yI(X + D*)"'y.. Consider the standardization

W=(1I-D(+ Dz)—lp)—%(v —D(Z+ D*)7'y.).
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Now W|Y =y ~ El <O,I;g(m) ) Therefore,

a(y«)

1
Pr(V>0ly) = Pr(W>—(I—D(Z+D’'D)"2D(S + Dz)—ly*)
1
= Pr{wc (I—D(E+D2)—1D)*§D(E+D2)—1y*>
= F((I-D(S+D*"'D)"2D(S + D*)"'y.|0, I; g™
- Yol 559y, ) -
Hence the proof is complete. -

LEMMA A.2. If Y ~ SN(u, X, D), then it has the moment generating function (11).
Proof of Lemma A.2: Note that
M~y (t) = e‘T”Mx(t), where X ~ SN(0, %, D).
Let Q = (24 D?) ™! and B = I — DQD for notational convenience. Now,
Mx(t) = 2™ [ |QIY2(2m) /22X AxitTxg (B-1/2DQx) dx
= etTQtzgm |Q|1/2(27r)*7n/26—%(x—Q_lt)TQ(x—Q_lt)Qm (371/2DQX) dx

—1, . 1
= T [ QI em) T e 2 e, { BT 2DQa+ Q') | dz
= t'Q7't/29me, (Dy)

using the following result. m|
PROPOSITION A.1. IfZ ~ N, (0,%), then

Ez[®m(a+GZ)] = & {(I +G2G")"/"a}.

The following Lemma obtains the moment generating function of scale mixture of skew normal distribution.

LEMMA A.3. Let X ~ SN(0,%,D) and Y = w /%X given W = w where W ~ ['(v/2,v/2) where the
parameterization has mean 1. Then the moment generating function of the marginal distribution of Y is
given by

My (t) = 2™ / et QTG (D2 t)dG (w),
0

where G(w) denote the cumulative distribution function of T'(v/2,v/2).

THEOREM A.l. Assume that

n T 3\2
h(w,y, X) :/ H g(l) (M) dﬂ'ﬁ < M(y,X)wP/Z,
RP =1

w

where M(y, X) is a constant free of w, § and v. Also assume that ws and w, are proper distributions.
Then the posterior (16) is proper under the skew normal or skew t model if n > p.

LEMMA A.4. Under the skew normal model

h(w,y, X) < M(y, X)w"”.
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1 n
Proof of Lemma A.4.: Here g")(u) = e™*/?/(2m)"/?. Hence [}, ¢ (u:) = (2m)""/%e™ 2 Yi=1vi | How-
ever, note that

Il

vy -XB)'(y - XB)
= B-B)'X"X)B-PB)+y"(I-X(X"X)'X )y,

where B = (XTX)"'XTy. Let H=1—- X(X7X) 'XT and Q = X7 X. By assumption on X we have
that @ is a positive definite matrix. Also H is idempotent (and hence a non-negative definite) matrix. Let
g =1. Now we have,

i1y —xi B)?

i—TB)
f (Zr)—n/%*ﬁ{(ﬁ*B)TQ(ﬂ*ﬁHyTHy}dﬂ
RP
)P/2 — _ 1T

G (@ e Y

w?’? x M(y, X),
since y” Hy is a non-negative definite quadratic form. Hence the proof is complete. O
LEMMA A.5. Under the skew t model

h(w,y, X) < M(y, X)w"’.
Proof of Lemma A.5.: Let

L_T(sY
T3 e
Here (w+1)/2
w1l 14
g(l)(u; v)=J [1 + ;] .
Now,
Ty W) = T [T, {1+ %3]
< g frg Bl O
= Jn [1 4 Simi =By l(yz—xTﬂ) ]_(”“)/2
—(v+1)/2
= [ 4 B- ﬂ)TQ(B By+yTry]|
—(v+1)/2
<

b

g [1 . (ﬁ—ﬂ)ig(ﬁfﬁ)]

where the first inequality follows by considering [T, (1 +wu;) > 1+ 37, u; for u; > 0,i=1,...,n. Now
we have,

By, X) = fo Tl (222

dﬂ'ﬁ
—(v+1)/2

e (B—B)is(ﬂ—ﬂ)] 8

IA

v )P/2 .
= Jn ( )’E+p) p/2|Q|—1/2
= w’?a ()IQI 2,
r(4t) 1" o(s) o
B e | T
< C

where C is a constant free of v. The last in-equality follows by using the following bound for the gamma
function, see for example Whittaker and Watson (1927, chapter 12),

where

alv) =

T(z) = (2m)/227712e7* ) for 2> 0
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with 0 < b(z) < K/z for some positive constant K. Hence the proof is complete. m|
Proof of Theorem A.1l.: We first consider the integral of the likelihood times the prior. Let

A= /---/L(ﬁ,0'2,6,1/;y)d71"3d7r62d7r,5d7ry.
In the following derivation the value of the constant C may not be the same in every line.

A

n wi==xFB)? vi—xIB
SRR (02+522)_"/2 i=1 {g(l) ( iz ) F (2 o5 10,1,9{" ) ¢ dngdnm,2dmsdm,

—n n ( i—x;-r )2
Cf--[(e?+8%)™ /2, {9(1) y—ama'g—

Cff[(e®+8%) "2 IIM e, {gm (%) } dnﬁ] dr s drsdr,
clf 1(0'2 + 62)_n 2(0'2 + 52)p/2d7r02d7r5d7r,,

Cl[ [+ 52)7712;pd7r(,2d7r5d7r,,

Cfff(UQ)_nz;pdﬂazdmdm,

n—

0 1 1[I (o) P+ e 7] angan,

IN

drgdm, 2dmsdm,

ININ AN IN A

Now as k — 0 the innermost integral is finite if n > p. Also it is assumed that 75 and =, are proper.

Hence A is finite and the result follows. m|
Proof of Theorem 2: The proof follows by using Lemma A.4., Lemma A.5. and Theorem A.1. O
Proof of Theorem 3: Follows from the last displayed inequality in the proof of Theorem A.1. m|
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