TEORIA DOS MODELOS: ULTRAPRODUTOS

RICARDO BIANCONI

Sumário

Parte I: Teoria Básica	1
1. Introdução	1
2. Filtros e Ultrafiltros	2
3. Ultraprodutos de Estruturas	3
4. Exercícios	5
Parte II: Teoria Avançada	6
5. Extensões da Lógica de Primeira Ordem	6
5.1. Linguagens de Segunda Ordem	6
5.2. Linguagens Infinitárias	9
6. Cardinais Mensuráveis	11
7. Mais exercícios	18
Índice Remissivo	22

PARTE I: TEORIA BÁSICA

1. Introdução

Vamos estudar neste texto outra construção de modelos, os chamados ultraprodutos, que são quocientes (ou imagens homomórficas) de produtos de estruturas obtidos por uma relação de congruência.

Date: Esta versão: agosto de 2016.

2. Filtros e Ultrafiltros

Dado um conjunto não vazio I, um filtro F sobre I é um conjunto não vazio de subconjuntos de I tal que $\varnothing \not\in F$; se $A, B \in F$, então $A \cap B \in F$; se $A \in F$ e $A \subseteq B \subseteq I$ então $B \in F$. Um ultrafiltro é um filtro maximal com respeito à inclusão, isto é, se U é ultrafiltro e F é filtro tais que $U \subseteq F$ então U = F.

Um conjunto não vazio A de subconjuntos de I tem a **pif (pro-priedade da intersecção finita)** se, para cada parte finita $A_0 \subset A$, $\bigcup A_0 \neq \emptyset$.

Lema 1. Se o conjunto não vazio A de partes de I tem a pif, então existe um filtro $F \supset A$.

Demonstração: Seja $F = \{X \subset I : \text{ existem } n \in \mathbb{N} \text{ e } X_0, \dots, X_n \in A_0, \text{ tais que } X_0 \cap \dots \cap X_n \subset X\}.$

Observe que, por definição, $\emptyset \notin F$ e que $I \in F \neq \emptyset$. Sejam $X, Y \in F$, e sejam $X_0, \ldots, X_n, Y_0, \ldots, Y_m \in A$, tais que $\bigcap_i X_i \subseteq X$ e $\bigcap_i Y_j \subseteq Y$. Então $\bigcap_i X_i \cap \bigcap_i Y_j \subseteq X \cap Y \in F$.

Por fim, sejam $X \in F$, $X \subseteq Y \subseteq I$, e sejam X_0, \ldots, X_n , tais que $\bigcap_i X_i \subseteq X$. Então $\bigcap_i X_i \subseteq Y \in F$.

Ou seja, F é um filtro.

Lema 2. Para todo filtro F em I, existe um ultrafiltro U em I, tal que $F \subset U$.

Demonstração: Seja $W=\{F': \text{tal que } F' \text{ \'e filtro em } I \text{ e } F\subseteq F'\}$. Então $F\in W\neq\varnothing$. Seja Λ um conjunto linearmente ordenado e sejam $F_\lambda\in W$ tais que, se $\alpha,\beta\in\Lambda$ e $\alpha\leq\beta$, então $F_\alpha\subseteq F_\beta$. Então $F^*=\bigcup_{\lambda\in\Lambda}F_\lambda$ é um filtro, pois, claramente $\varnothing\not\in F^*\neq\varnothing$; se $X,Y\in F^*$, existe $\lambda\in\Lambda$, tal que $X,Y\in F_\lambda$ e, portanto, $X\cap Y\in F_\lambda\subseteq F^*$; e, finalmente, se $X\in F^*$ e $X\subseteq Y\subseteq I$, existe λ tal que $X\in F_\lambda$, donde segue que $Y\in F_\lambda\subseteq F^*$. Ou seja, F^* também é filtro. Com isto, pelo Lema de Zorn, existe (pelo menos) um elemento maximal (pela ordem parcial da inclusão) $U\in W$. Então U é ultrafiltro, pois se $U\subseteq U'$ e U' é ultrafiltro, teríamos que $F\subseteq U'$, donde $U'\in W$. Como U é elemento maximal de W, U=U'.

Lema 3. O filtro U é ultrafiltro se, e só se, para todo $A\subseteq I$, ou $A\in U$, ou $I\setminus A\in U$.

Demonstração: Se U é ultrafiltro, $A \subseteq I$ e $A \notin U$, então $U \cup \{A\}$ não tem a pif, pois senão poderia ser estendido a um filtro maior,

contradição. Portanto, existem $X_0, \ldots, X_n \in U$ tal que $\bigcup X_i \cap A = \emptyset$. Isto quer dizer que $\bigcup X_i \subseteq I \setminus A$. Como U é filtro, $I \setminus A \in U$.

Reciprocamente, se U é filtro tal que para todo $A \subseteq I$, ou $A \in U$, ou $I \setminus A \in U$, seja $W = \{B \subseteq I : B \notin U\}$. Se U' é filtro tal que $U \subseteq U'$, seja $A \in U'$. Então $A \notin W$, pois senão, $I \setminus A \in U \subseteq U'$ e $A \cap (I \setminus A) = \emptyset \in U'$, contradição. Portanto U = U', e u é ultrafiltro. \square

3. Ultraprodutos de Estruturas

Dada uma família de \mathcal{L} -estruturas $\{\mathcal{M}_i : i \in I\}$, indexada num conjunto não vazio I, e dado um filtro F em I, definimos como o **produto reduzido** (ou **ultraproduto**, quando F for ultrafiltro) desta família como a estrutura $\mathcal{M} = \prod_{i \in I} \mathcal{M}_i / F$ cujo domínio é o conjunto das classes de equvalência de $\prod_{i \in I} M_i$ pela relação $f \sim_F g$ se $\{i \in I : f(i) = g(i)\}$ está em F. Denotaremos a classe de f por $[f]_F$ ou simplesmente [f] quando F for subentendido. Sobre este conjunto interpretamos \mathcal{L} assim:

- se c é constante, $c^{\mathcal{M}}$ é a classe de $\{c^{\mathcal{M}_i}: i \in I\};$
- se f é função n-ária, $f^{\mathcal{M}}([x_1], \ldots, [x_n]) = [f^{\mathcal{M}_i}(x_1(i), \ldots, x_n(i))];$
- se P é relação n-ária, $([x_1], \ldots, [x_n]) \in P^{\mathcal{M}}$ se, e só se, $\{i \in I : (x_1(i), \ldots, x_n(i)) \in P^{\mathcal{M}_i}\}$ estiver em F.

Teorema 1. (Łoś) Dada uma família de \mathcal{L} -estruturas $\{\mathcal{M}_i : i \in I\}$, atribuições de valores $s_i : \text{Var} \to M_i$, fórmula φ , e ultrafiltro U em I, então

$$\prod_{i \in I} M_i / U \models \varphi[s] \Leftrightarrow \{i : M_i \models \varphi[s_i]\} \in U,$$

sendo que s é a atribuição de valores $s(x) = [s_i(x) : i \in I]$ (classe dos $s_i(x)$).

Demonstração: Por indução na complexidade de φ , sendo que o passo inicial, para fórmulas atômicas, é imediato pela definição de ultraproduto.

Denotemos o ultraproduto $\prod_{i \in I} M_i / U$ por M.

Se φ é $\phi_1 \wedge \phi_2$ então $M \models \varphi[s]$ se, e só se, $M \models \phi_1[s]$ e $M \models \phi_2[s]$. Por hipótese de indução $\{i: M_i \models \phi_1[s_i]\} \in U$ e $\{i: M_i \models \phi_2[s_i]\} \in U$. Como U é filtro, $\{i: M_i \models \varphi[s_i]\} = \{i: M_i \models \phi_1[s_i]\} \cap \{i: M_i \models \phi_2[s_i]\} \in U$.

Se φ é $\phi_1 \vee \phi_2$ então $M \models \varphi[s]$ se, e só se, $M \models \phi_1[s]$ ou $M \models \phi_2[s]$. Por hipótese de indução $\{i : M_i \models \phi_1[s_i]\} \in U$ ou $\{i : M_i \models \phi_2[s_i]\} \in U$ U. Suponhamos que $\{i: M_i \models \phi_1[s_i]\} \in U$. Como U é filtro, $\{i: M_i \models \varphi[s_i]\} \supseteq \{i: M_i \models \phi_1[s_i]\}$ e portanto $\{i: M_i \models \varphi[s_i]\} \in U$. A recíproca é análoga.

Se φ é $\exists x \phi$ então $M \models \varphi[s]$ se, e só se, existe $b \in M$ tal que se s'(x) = b e s'(y) = s(y) nas outras variáveis, $M \models \phi[s']$. Por hipótese de indução, $\{i : M_i \models \phi[s'_i]\} \in U$. Mas daí, $\{i : M_i \models \exists x \phi[s_i]\} \in U$.

O caso do quantificador \forall é tratado de modo análogo.

Finalmente tratemos da negação. É aqui que entra a necessidade do filtro U ser maximal. Se φ é $\neg \phi$, $M \models \varphi[s]$ se, e só se, $M \not\models \phi[s]$. Por hipótese de indução, $\{i: M_i \models \phi[s_i]\} \not\in U$. Como U é filtro maximal, $\{i: M_i \models \neg \phi[s_i]\} = \{i: M_i \not\models \phi[s_i]\} \in U$.

Como corolário da demonstração, temos o seguinte resultado. Nele, **fórmula positiva** refere-se a qualquer fórmula em que não ocorra o símbolo da negação, ¬.

Teorema 2. (Łoś para fórmulas positivas) Dada uma família de \mathcal{L} -estruturas $\{\mathcal{M}_i : i \in I\}$, atribuições de valores $s_i : \text{Var} \to M_i$, fórmula positiva φ , e filtro F em I, então

$$\prod_{i \in I} M_i / F \models \varphi[s] \Leftrightarrow \{i : M_i \models \varphi[s_i]\} \in U,$$

sendo que s é a atribuição de valores $s(x) = [s_i(x) : i \in I]$ (classe dos $s_i(x)$).

Outro corolário é o muito útil é o Teorema da Compacidade, que será demonstrado agora usando ultraprodutos. Mais adiante veremos outra demonstração.

Teorema 3. (Compacidade) Seja Γ um conjunto de sentenças, tal que, para cada parte finita $\Sigma \subset \Gamma$, exite um modelo $M_{\Sigma} \models \Sigma$. Então existe modelo $M \models \Gamma$.

Demonstração: Seja $I = \{\Sigma : \Sigma \subset \Gamma \text{ \'e finito}\}$. Para cada $\Sigma \in I$, seja $J_{\Sigma} = \{\Sigma' : \Sigma \subseteq \Sigma'\}$. Sejam $\Sigma_i \in I$, $i = 0 \dots, n$. Então $\Sigma \in \bigcap_i J_{\Sigma_i}$ se, e só se, $\Sigma_i \subseteq \Sigma$, para cada $i = 0, \dots, n$. Ou seja, $\bigcap_i J_{\Sigma_i} = J_{\bigcup_i \Sigma_i} \neq \emptyset$. Portanto o conjunto $A = \{J_{\Sigma} : \Sigma \in I\}$ tem a pif e, portanto, existe um ultrafiltro $U \supset A$ em I.

Sejam $M_{\Sigma} \models \Sigma$, $\Sigma \in I$ e $M = \prod_{i \in I} M_i / U$. Seja $\varphi \in \Gamma$. Então $\{\Sigma \in I : \varphi \in \Sigma\} \supseteq J_{\{\varphi\}} \in U$, ou seja, $\{\Sigma \in I : \varphi \in \Sigma\} \in U$. Pelo teorema de Łoś, $M \models \varphi$. Portanto $M \models \Gamma$.

4. Exercícios

Exercício 1. (Filtros e Ultrafiltros) Mostre que todo filtro pode ser estendido a um ultrafiltro. O filtro de Fréchet F sobre o conjunto I é o conjunto dos subconjuntos cofinitos de I. Mostre que F é filtro. Um ultrafiltro U sobre I é principal se existe $i \in I$ tal que $\{i\} \in I$. Mostre que um ultrafiltro é não principal se, e só se, contém o filtro de Fréchet.

Exercício 2. Mostre que se U é ultrafiltro principal (suponha que $\{i\} \in I$) então $\prod_{i \in I} M_i/U$ é isomorfo a M_i .

Exercício 3. Mostre que finitude (sem especificar tamanho) não é prorpiedade de primeira ordem, ou seja, se Γ é conjunto de sentenças que tem modelos finitos M_i de cardinalidades finitas $n_i \geq i, i \in \mathbb{N}$, então Γ tem modelo infinito.

Um conjunto linearmente ordenado (X, <) é **bem ordenado** se para todo $A \subseteq X$, $A \neq \emptyset$, existe $a \in A$, tal que $a = \min A$ (ou seja, $x \ge a$, para todo $x \in A$).

Exercício 4. Mostre que (X, <) é bem ordenado se, e só se, para todos $x_n \in X$, $n \in \mathbb{N}$, tais que $x_{n+1} \leq x_n$, existe $N \in \mathbb{N}$, tal que $x_n = x_N$, para todo $n \geq N$.

Exercício 5. Mostre que se (X, <) é bem ordenado e infinito, existe um ultraproduto de X que não é bem ordenado. (Para isto, use $I = \mathbb{N}$, tome U não principal em I, e olhe para as classes das sequências $F_k(n) = \max(0, n - k)$.)

Um filtro é ω -completo se, para toda sequência $X_n \in F$, $n \in \mathbb{N}$, $\bigcap_n X_n \in F$.

Exercício 6. Mostre que todo ultrafiltro ω -completo em $\mathbb N$ é principal. (Lembre-se do filtro de Fréchet.)

Exercício 7. Mostre que se U é ultrafitro não principal ω -completo em I e (X, <) é bem ordenado, então $M = \prod_I X/U$ também é bem ordenado. (Suponha que não obtenha sequencia de classes $[f_n] \in M$ estritamente decrescente; use que U é ω -completo, para obter um índice $i \in I$, tal que $f_n(i)$ froma uma sequência estritamente decrescente em X.)

Exercício 8. Mostre que se o ultrafiltro U não é ω -completo em I, então não é principal.

Exercício 9. Mostre que se o ultrafiltro U não é ω -completo em I, então existem $X_n \in U$, tais que $X_{n+1} \subsetneq X_n$, $n \in \mathbb{N}$, e $\bigcap_n X_n = \emptyset$.

Exercício 10. Mostre que se o ultrafiltro U não é ω -completo em I, e (X,<) é bem ordenado e infinito, então $M=\prod_I X/U$ não é bem ordenado. (Para isto, sejam $x_n\in X$, tais que $x_n< x_{n+1}, n\in \mathbb{N}$ –como obtê-los?– sejam $X_n\in U$, como no exercício acima, tomando $X_0=I$; sejam $f_m\in \prod_I X$, tais que $f_m(i)=x_{\max(0,n-m)}$, sendo que n=n(i) é tal que $i\in X_n\setminus X_{n+1}$; etc.)

PARTE II: TEORIA AVANÇADA

5. Extensões da Lógica de Primeira Ordem

5.1. Linguagens de Segunda Ordem. Uma linguagem de segunda ordem consiste num alfabeto que contém os símbolos lógicos \land , \lor , \neg , \exists e \forall , e também o da igualdade = será considerado como símbolo lógico; um conjunto enumerável de símbolos de variáveis (de primeira ordem) $\operatorname{Var}^1 = \{x_n : n \in \omega\}$; um conjunto enumerável de símbolos de variáveis funcionais (de segunda ordem) $\operatorname{Var}_F^2 = \{f_{m,n} : m, n \in \omega\}$; um conjunto enumerável de símbolos de variáveis relacionais (de segunda ordem) $\operatorname{Var}_R^2 = \{P_{m,n} : m, n \in \omega\}$; símbolos não lógicos são os de uma assinatura L; além disso a linguagem tem regras (gramaticais) de formação de expressões bem fundadas, ou fórmulas e sentenças.

Para descrever as regras gramaticais, comecemos pelos **termos de** L (ou L-termos):

Somente serão considerados termos as sequências de símbolos s de L para as quais existe uma sequência finita s_1, \ldots, s_m tal que s é s_m e cada s_i deve satisfazer uma das condições abaixo:

- s_i é uma variável, ou
- um símbolo de constante, ou
- s_i é $f(s_{i_1}, \ldots, s_{i_n})$ sendo que f é um símbolo de função n-ária, ou $f = f_{m,n} \in \operatorname{Var}_F^2$, e $i_1, \ldots, i_n < i$ (isto é, já foram obtidos anteriormente).

Com isto também podemos definir a **complexidade do termo** s, c(s), como o menor m tal que existe uma sequência como acima (do mesmo modo como em primeira ordem).

Agora podemos definir **fórmula de** L (ou L-fórmula).

Somente serão consideradas fórmulas as sequências de símbolos φ de L para as quais existe uma sequência finita ϕ_1, \ldots, ϕ_m tal que φ é ϕ_m e cada ϕ_i deve satisfazer uma das condições abaixo:

- ϕ_i é $t_1 = t_2$, sendo que t_1 e t_2 são termos, ou
- $R(t_1, \ldots, t_n)$, sendo que R é símbolo relacional n-ário de L, ou $P = P_{m,n} \in \operatorname{Var}_R^2$, e t_1, \ldots, t_n são termos, ou
- $\phi_j \wedge \phi_k$, ou $\phi_j \vee \phi_k$, ou $\neg \phi_j$, em que j, k < i, ou
- (quantificação de primeira ordem) $\exists x \phi_k$ or $\forall x \phi_k$, sendo que $x \in \text{Var}^1$ é uma variável e k < i, ou
- (quantificação de segunda ordem funcional) $\exists f \phi_k$ or $\forall f \phi_k$, sendo que $f \in \operatorname{Var}_F^2$ é uma variável e k < i, ou
- (quantificação de segunda ordem relacional) $\exists X \phi_k$ or $\forall X \phi_k$, sendo que $X \in \operatorname{Var}^2_R$ é uma variável e k < i.

As fórmulas do tipo $t_1 = t_2$ e do tipo $R(t_1, \ldots, t_n)$ são chamadas de **fórmulas atômicas**.

Com isto também podemos definir a **complexidade da fórmula** φ como o menor m tal que existe uma sequência como acima.

Vamos definir agora a extensão da relação de **satisfação** para esta lógica, \models , que relaciona estruturas e fórmulas. Vamos definir esta relação por indução na complexidade das fórmulas. Dadas uma estrutura M, **atribuições de valores** $s_1: \operatorname{Var}^1 \cup \operatorname{Var}^2_R \to M$, $s_F: \operatorname{Var}^2_F \to \bigcup_{n\geq 1} \operatorname{Fun}(M^n, M)$, $(s_F(f_{m,n}) \in \operatorname{Fun}(M^n, M))$, $s_R: \operatorname{Var}^2_R \to \bigcup_{n\geq 1} P(M^n)$, $(s_R(P_{m,n} \in P(M^n)))$ e uma fórmula φ , definimos $M \models \varphi[s_1, s_F, s_R]$ por etapas.

Primeiramente, definiremos **interpretação de termos** em M dada $s = (s_1, s_F, s_R)$, $t^M[s]$ ou apenas s(t), como:

- se t é a constante c, $t^M[s] = c^M$;
- se t é uma variável x, $t^{M}[s] = s(x)$;
- se t é da forma $f(t_1, \ldots, t_n)$, com $f \in L$ n-ária, $t^M[s] = f^M(t_1^M[s], \ldots, t_n^M[s])$;
- se t é da forma $f(t_1, ..., t_n)$, com $f = f_{m,n} \in \text{Var}_F^2$, n-ária, $t^M[s] = s_F(f_{m,n})(t_1^M[s], ..., t_n[s])$.

Usaremos apenas a notação s(t) no lugar de $t^M[s]$, reservando esta última quando for necessária.

Agora definiremos **interpretação das fórmulas** em M, isto é, a relação $M \models \varphi[s]$ (leia-se M satisfaz φ em s, ou que M é **modelo** de φ):

- se φ é atômica, $P(t_1,\ldots,t_n)$, com $P\in L$, (incluindo o caso $t_1 = t_2$, $M \models \varphi[s] \text{ se } (s(t_1), \dots, s(t_n)) \in P^M$;
- se φ é atômica, $X(t_1, \ldots, t_n)$, com $X = P_{m,n} \in \operatorname{Var}_R^2$, $M \models \varphi[s]$ se $(s(t_1), ..., s(t_n)) \in s_R(X);$
- se φ é $\phi_1 \wedge \phi_2$, $M \models \varphi[s]$ se $M \models \phi_1[s]$ e $M \models \phi_2[s]$;
- se φ é $\phi_1 \vee \phi_2$, $M \models \varphi[s]$ se $M \models \phi_1[s]$ ou $M \models \phi_2[s]$;
- se φ é $\neg \phi$, $M \models \varphi[s]$ se não ocorrer que $M \models \phi[s]$ (ou $M \not\models$ $\phi[s]$;
- se φ é $\exists x \phi$, $M \models \varphi[s]$ se existir $a \in M$ tal que se $s' : \text{Var} \to M$ satisfaz s'(x) = a e s'(y) = s(y) para todas as outras variáveis, então $M \models \phi[s'];$
- se φ é $\forall x \phi$, $M \models \varphi[s]$ se para cada $a \in M$, se $s' : \text{Var} \to M$ satisfaz s'(x) = a e s'(y) = s(y) para todas as outras variáveis, então $M \models \phi[s'];$
- se φ é $\exists f_{m,n}\phi$, $M \models \varphi[s]$ se existir $g \in mathrmFun(M^n, M)$ tal que se $s': \operatorname{Var}_F^2 \to \bigcup_{n>1} \operatorname{Fun}(M^n, M)$ satisfaz $s'(f_{m,n}) = g$ e s'(y) = s(y) para todas as outras variáveis, então $M \models \phi[s']$;
- se φ é $\forall f_{m,n}\phi$, $M \models \varphi[s]$ se para cada $g \in mathrmFun(M^n, M)$, se $s': Var \to M$ satisfaz $s'(f_{m,n}) = g$ e s'(y) = s(y) para todas as outras variáveis, então $M \models \phi[s']$;
- se φ é $\exists P_{m,n}\phi$, $M \models \varphi[s]$ se existir $R \in P(M^n)$ tal que se $s'_R: \operatorname{Var}^2_R \to \bigcup_{n>1} P(M^n)$ satisfax $s'_R(P_{m,n}) = R \ e \ s'(y) = s(y)$ para todas as outras variáveis, então $M \models \phi[s']$;
- se φ é $\forall x \phi$, $M \models \varphi[s]$ se para cada $R \in P(M^n)$, se $s'_R : \operatorname{Var}^2_R \to$ $\bigcup_{n>1} P(M^n)$ satisfaz $s'_R(x) = R$ e s'(y) = s(y) para todas as outras variáveis, então $M \models \phi[s']$.

Diremos que ϕ e ψ são logicamente equivalentes se para toda Lestrutura $M, M \models \phi \rightarrow \psi \in M \models \psi \rightarrow \phi$.

Classificamos as fórmulas conforme a quantidade de alternâncias de quantificadores da seguinte forma (veja o exercício 11):

- se ψ não tem quantificadores, dizemos que ela é Σ_0^0 , Π_0^0 e Δ_0^0 , e escrevemos $\psi \in \Sigma_0^0 = \Pi_0^0 = \Delta_0^0$;
- para $n \ge 0$, se $\psi \in \Sigma_n^0$ e $x \in \text{Var}^1$, então $\exists x \psi \in \Sigma_n^0$ e $\forall x \in \Pi_{n+1}^0$;
- para $n \ge 0$, se $\psi \in \Pi_n^0$ e $x \in \text{Var}^1$, então $\exists x \psi \in \Sigma_{n+1}^0$ e $\forall x \in \Pi_n^0$;
- se ψ for equivalente a uma fórmula Π_n^0 e a uma Σ_n^0 , então dize-
- mos que $\psi \in \Delta_n^0$; se $\psi \in \Pi_n^0 \cup \Sigma_n^0$, e $X \in \operatorname{Var}_F^2 \cup \operatorname{Var}_R^2$, então $\exists X \psi \in \Sigma_1^1$ e
- para $n \ge 1$, se $\psi \in \Sigma_n^1$ e $X \in \operatorname{Var}_F^2 \cup \operatorname{Var}_R^2$, então $\exists X \psi \in \Sigma_n^1$ e $\forall X \in \Pi_{n+1}^1;$

- para $n \ge 0$, se $\psi \in \Pi_n^0$ e $X \in \operatorname{Var}_F^2 \cup \operatorname{Var}_R^2$, então $\exists X \psi \in \Sigma_{n+1}^1$ $e \ \forall X \in \Pi_n^1;$
- se ψ for equivalente a uma fórmula Π_n^1 e a uma Σ_n^1 , então dizemos que $\psi \in \Delta_n^1$.

Temos a seguinte extensão do Teorema de Łoś, cuja prova fica como exercício:

Teorema 4. (Łoś para
$$\Sigma_1^1$$
-fórmulas) Se $\psi \in \Sigma_1^1$, então $\prod_{i \in I} M_i/U \models \psi[s]$, se e só se, $\{i \in I : M_i \models \psi[s(i)]\} \in U$.

Observe-se que este resultado já não vale no caso de $\psi \in \Pi_1^1$: $\forall f(\forall x \forall y (x \neq x \forall y))$ $y \to f(x) \neq f(y) \to \forall y \exists x (f(x) = y)$ só é válida em estruturas finitas (de qualquer tamanho).

- 5.2. Linguagens Infinitárias. Dada assinatura L e cardinais infinitos $\beta \leq \alpha$, definimos a linguagem infinitária $L_{\alpha\beta}$ como sendo a seguinte extensão da linguagem de primeira ordem. O conjunto de variáveis agora é indexado em ordinais menores que α , $Var = \{x_{\eta} : \eta < \alpha\}$. As fórmulas atômicas são as mesmas da linguagem de primeira ordem (usando também essas variáveis). A negação e a implicação também são as mesmas. Só o que muda são:
 - se $\lambda < \alpha$ e $\{\phi_{\eta} : \eta < \lambda\}$ são fórmulas, então $\bigwedge_{\eta < \lambda} \phi_{\lambda}$ e $\bigvee_{\eta < \lambda} \phi_{\lambda}$ são fórmulas;
 - se $X \subset \text{Var for tal que } |X| < \beta$, então $\exists X \phi \in \forall X \phi$ são fórmulas.

Observe-se que, com essa notação $L_{\omega\omega}$ é a lógica de primeira ordem.

A interpretação em L-estruturas é a mesma para fórmulas atômicas, para \rightarrow e para \neg , e, levando em conta que as fórmulas agora podem ter infinitas variáveis livres, temos que:

- $M \models \bigwedge_{\eta < \lambda} \phi_{\lambda}[s]$ se, e só se, $M \models \phi_{\eta}[s]$, para todo $\eta < \lambda$; $M \models \bigvee_{\eta < \lambda} \phi_{\lambda}[s]$ se, e só se, $M \models \phi_{\eta}[s]$, para algum $\eta < \lambda$;
- se $X \subset \text{Var e } |X| < \beta$, $M \models \exists X \phi[s]$, se existir $s' : \text{Var} \to M$, tal que s'(x) = s(x) para toda variável $x \notin X$ e $M \models \phi[s']$;
- se $X \subset \text{Var e } |X| < \beta$, $M \models \forall X \phi[s]$, se para todo $s' : \text{Var} \rightarrow$ M, tal que s'(x) = s(x) para toda variável $x \notin X$, vale que $M \models \phi[s'].$

A versão do Teorema de Łoś para estas linguagens depende do ultrafiltro.

Seja $\kappa \geq \omega$ um cardinal. Dizemos que o ultrafiltro U é

- κ -completo se para todo cardinal $\lambda < \kappa$ e toda família $\{X_{\eta} : \eta < \lambda\} \subseteq U, \bigcap_{\eta < \lambda} X_{\eta} \in U;$
- κ -incompleto se existe uma família $\{X_{\eta} : \eta < \kappa\} \subseteq U$, tal que $\bigcap_{\eta < \kappa} X_{\eta} \notin U$.

Observe-se que, pela definição de filtro, todo (ultra)filtro é ω -completo. Também deve ser observado que se U é α -completo e $\beta \leq \alpha$, então U é β -completo.

Lema 4. Seja U um ultrafiltro sobre o conjunto I de cardinalidade $|I| = \alpha$. Se U for α^+ -completo, então U é principal.

Demonstração: Seja $E = \{X_i = I \setminus \{i\} : i \in I \text{ e } X_i \in U\}$. Como $|E| \leq |I| < \alpha^+, Y = \bigcap E \in U$. Seja $W \in U$. Mostraremos que $Y \subseteq W$ e, portanto, que U é principal. Se $i \notin W$, então $W \subseteq X_i \in U$ e, consequentemente, $i \notin Y$, ou seja $Y \subseteq W$, como queríamos mostrar. Observe-se que, por U ser ultrafiltro, $Y = \{i_0\}$, para algum $i_0 \in I$. \square

Como consequencia, todo ultrafiltro não principal sobre I é |I|-incompleto.

Outra caracterização útil de ultrafiltro κ -completo.

Lema 5. Sejam $\lambda < \kappa$ e $\{X_{\eta} : \eta < \lambda\}$ uma família de subconjuntos de I, dois a dois disjuntos e cuja união seja todo I, e U um ultrafiltro κ -completo sobre I. Então para algum $\eta_0 < \lambda$, $X_{\eta_0} \in U$.

Demonstração: Como U é ultrafiltro, se $X_{\eta} \notin U$, então $I \setminus X_{\eta} \in U$. Assim, dado que $\bigcap_{\eta < \lambda} (I \setminus X_{\eta}) = I \setminus \bigcup_{\eta < \lambda} X_{\eta} = \emptyset$ e que U é κ-completo, devemos ter que, para algum $\eta_0 < \lambda$, $I \setminus X_{\eta_0} \notin U$, ou $X_{\eta_0} \in U$.

Teorema 5. (Loś para $L_{\alpha\beta}$) Se o ultrafiltro U for α -completo, então $\prod_{i\in I} M_i/U \models \phi[s]$ se, e só se, $\{i\in I: M_i \models \phi[s(i)]\} \in U$, para toda ϕ em $L_{\alpha\beta}$.

Demonstração: Por indução na complexidade das fórmulas, sendo que os casos não triviais referem-se às fórmulas $\bigwedge_{\eta<\lambda}\phi_{\lambda}[s]$ e $\bigvee_{\eta<\lambda}\phi_{\lambda}[s]$, $\lambda<\alpha$, onde o fato de U ser α -completo é necessário.

Então, $\prod_{i\in I} M_i/U \models \bigwedge_{\eta<\lambda} \phi_{\lambda}[s]$ se, e só se, para cada $\eta<\lambda$, $\prod_{i\in I} M_i/U \models \phi_{\eta}[s]$. Por hipótese de indução, para cada $\eta<\lambda$, $X_{\eta}=\{i\in I: M_i\models \phi_{\eta}[s(i)]\}\in U$ e, como U é α -completo, temos que $\bigcap_{\eta<\lambda} X_{\eta}=\{i\in I: M_i\models \bigwedge_{\eta<\lambda} \phi_{\lambda}[s(i)]\}\in U$. A recíproca é análoga.

O caso da fórmula $\bigvee_{\eta<\lambda}\phi_\lambda$ usa a caracterização de ultrafiltros α -completos dada pelo lema anterior.

6. Cardinais Mensuráveis

Vamos ver que a existência de ultrafiltros não principais κ -completos, para κ não enumerável, transcende a usual Teoria dos Conjuntos.

Dizemos que um cardinal $\kappa \geq \omega$ é **mensurável** se existe um ultrafiltro não principal e κ -completo U sobre um conjunto I de cardinalidade κ (usualmente usamos o próprio conjunto de ordinais κ como sendo I).

Obviamente ω é mensurável. Veremos que o próximo cardinal mensurável é de certa forma gigantesco.

Lembremos que uma ordem parcial (X, \leq) é **bem fundada** se não existirem $x_n \in X$, $n \in \mathbb{N}$, tais que sejam distintos e $x_{n+1} \leq x_n$. Uma ordem total (X, \leq) bem fundada é chamada de boa ordem, e X é chamado de **conjunto bem ordenado**. Lembramos que os ordinais são conjuntos transitivos bem ordenados pela relação de pertinência.

Lema 6. Sejam U um ultrafiltro κ -completo sobre I, $\kappa > \omega$, e (X, \leq) uma ordem parcial bem fundada. Então $\prod i \in IX/U$ é ordem parcial bem fundada. Se (X, \leq) for bem ordenado, então $\prod i \in IX/U$ também é bem ordenado.

Demonstração: Isso decorre do Teorema de Łoś para $L_{\omega_1\omega_1}$ aplicado à fórmula $\neg(\exists (x_1, x_2, x_3, \dots) \bigwedge_{n \in \mathbb{N}} (x_{n+1} \neq x_n \wedge x_{n+1} \leq x_n))$.

Façamos uma análise mais apurado do que esses ultraprodutos fazem com ordinais.

Teorema 6. Seja U um ultrafiltro κ -completo sobre $I = \kappa > \omega$ e seja α um ordinal. Então, se $\alpha < \kappa$, $\prod_{\eta < \kappa} \alpha/U$ é isomorfo a α ; se $\alpha = \kappa$, então a inclusão canônica de κ em $\prod_{\eta < \kappa} \kappa/U$ leva-o num segmento inicial próprio; se $\alpha > \kappa$, então a inclusão canônica $j: \alpha \to \prod_{\eta < \kappa} \alpha/U$, identificando o ultraproduto com o ordinal λ correspondente à boa ordem, satisfaz $j(\eta) = \eta$ se $\eta < \kappa$ e $j(\kappa) > \kappa$ em λ .

Demonstração: Trabalharemos com a assinatura estendida $L = \{ < \} \cup \{ c_{\eta} : \eta < \kappa \}$ usando a ordem estrita e símbolos de constantes para cada ordinal $\eta < \kappa$, na linguagem $L_{\kappa\kappa}$.

No caso de $\alpha < \kappa$, usando o Teorema de Łoś para $L_{\kappa\kappa}$, Teorema 5, com a fórmula $\forall x \bigvee_{\eta < \alpha} (x = c_{\eta})$, obtemos que $\prod_{\eta < \kappa} \kappa/U$ é isomorfo a α .

No caso de $\alpha = \kappa$, usamos o argumento anterior para todo $\beta < \kappa$, usando a fórmula $\forall x((x < c_{\beta}) \to \bigvee_{\eta < \beta} (x = c_{\eta}))$. Observe-se que a classe de $id : \kappa \to \kappa$, $id(\eta) = \eta$ no ultraproduto é maior do que qualquer

classe de funções constantes e, por isso, o ordinal correspondente ao ultraproduto é maior do que κ .

Por fim, no caso de $\alpha > \kappa$, observe que as classes da função constante igual a κ , $g: \kappa \to \alpha$, e da função de inclusão de κ como segmento inicial de α , $h: \kappa \to \alpha$, satisfazem [g] < [h]. Daí, segue que $j(\kappa) = [h] > [g] > \kappa$, na identificação do ultraproduto com o ordinal λ correspondente. \square

Lembramos que um cardinal infinito κ é um cardinal regular se não existem $\lambda < \kappa$ e $\alpha_{\eta} < \kappa$, $\eta < \lambda$, tais que $\kappa = \sup_{\eta < \lambda} \alpha_{\eta}$ (ou, equivalentemente, $\kappa = \bigcup_{\eta < \lambda} \alpha_{\eta}$). Caso contrário, chamamos κ de cardinal limite (fraco). Um cardinal κ é sucessor se existe um cardinal $\alpha < \kappa$, tal que nenhum ordinal β entra α e κ é um cardinal. Um cardinal κ é um cardinal fracamente inacessível se for regular e não for sucessor. Um cardinal κ é um cardinal fortemente inacessível se for reular e, para todo cardinal $\alpha < \kappa$, vale que $2^{\alpha} < \kappa$ (esta última condição num cardinal diz que ele é um cardinal limite forte).

Teorema 7. Se $\kappa > \omega$ é cardinal mensurável, então κ é fortemente inacessível.

Demonstração: Temos que mostrar que κ é regular e que $2^{\alpha} < \kappa$, para todo cardinal $\alpha < \kappa$. Faremos uma prova combinatória e deixamos como exercício uma prova usando teoria dos modelos (veja exercício 14).

Primeiramente, observe-se que se U é ultrafiltro não principal e κ -completo sobre $I=\kappa$, todo $X\in U$ tem cardinalidade κ , pois se $|Y|<\kappa$, cada $Y_i=\kappa\setminus\{i\}\in U$ e, daí, $\kappa\setminus Y=\bigcap_{i\in Y}Y_i\in U$. Assim, se $\lambda<\kappa$ e $\alpha_\eta<\kappa$, $\eta<\lambda$, então $\alpha_\eta\not\in U$ e $\bigcup_{\eta<\lambda}\alpha_\eta\not\in U$. Assim, $\bigcup_{\eta<\lambda}\alpha_\eta<\kappa$, ou seja, κ é regular.

Agora suponhamos, por via de contradição, que exista um cardinal $\lambda < \kappa$, tal que $2^{\lambda} \geq \kappa$ e seja $F: \kappa \to P(\lambda)$ uma função injetora, testemunhando o fato de que $2^{\lambda} \geq \kappa$. Podemos supor que \varnothing não pertence à imagem de F.

Se U é ultrafiltro não principal e κ -completo sobre $I = \kappa$, seja $V = \{A \in P(\lambda) : F^{-1}(P(A)) \in U\}$. Mostraremos que tal conjunto é ultrafiltro sobre $J = \lambda$ que é κ -completo (e, portanto, λ ⁺-completo, ou seja, principal).

De fato, sejam $A, B \in V$. Então $F^{-1}(P(A)), F^{-1}(P(B)) \in U$ e, como $F^{-1}(P(A \cap B)) = F^{-1}(P(A)) \cap F^{-1}(P(B)) \in U, A \cap B \in V$. Se $A \in V$ e $A \subseteq B \subseteq \lambda$, então $F^{-1}(P(B)) \supseteq F^{-1}(P(A)) \in U$, ou seja $B \in V$. Se $A \notin V$, então $F^{-1}(P(A)) \notin U$, mas então $\kappa \setminus F^{-1}(A) = F^{-1}(P(\lambda)) \setminus V$

P(A)) $\in U$, ou seja $\lambda \setminus A \in V$. Portanto V é ultrafiltro. Sejam $A_{\eta} \in V$, $\eta < \lambda$. Então $\bigcap_{\eta < \lambda} F^{-1}(P(A_{\eta})) = F^{-1}(P(\bigcap_{\eta < \lambda} A_{\eta})) \in U$, ou seja, V é λ^+ -completo e, portanto, principal. Digamos que $\{\eta_0\} \in V$, para algum $\eta_0 < \lambda$. Daí, $F^{-1}(P(\{\eta_0\})) = F^{-1}(\{\{\eta_0\},\varnothing\}) = \{\xi_0\}$ (usando que $F^{-1}(\{\varnothing\}) = \varnothing$), para algum $\xi_0 < \kappa$, ou seja, U também é principal e κ não pode ser mensurável.

Na verdade, um cardinal mensurável é muito grande, no sentido do seguinte teorema.

Teorema 8. Se $\kappa > \omega$ é cardinal mensurável, então o conjunto dos cardinais inacessíveis menores do que κ tem cardinalidade κ .

Demonstração: Aqui usaremos o teorema de Łoś para fórmulas Σ_1^1 , Teorema 4.

Queremos provar que, para todo $\gamma < \kappa$, existe cardinal fortemente inacessível δ , $\gamma < \delta < \kappa$. Assim, como κ é regular, o conjunto de tais δ tem cardinalidade κ .

Suponhamos, por via de contradição, que exita $\gamma < \kappa$, tal que, se δ é ordinal entre γ e κ , então não é cardinal regular ou não é limite forte. Vamos expressar esta hipótese por uma fórmula Σ_1^1 .

Primeiramente, expressar que δ não é cardinal regular é dizer que exista $y < \delta$ e função $F: y \to \delta$, cuja imagem seja cofinal em δ . Considere a fórmula $\phi(x)$:

$$\exists f \,\exists y (y < x \land \forall z (z < x \rightarrow \exists w (w < y \land z < f(w))))$$

A seguir, para expressar que δ não é limite forte, precisamos expressar que existe $y < \delta$ e função injetora $F: \delta \to P(y)$. Tal função será representada por uma relação $R \subset \delta \times y$, como feito acima, ou seja, escreveremos a fórmula $\psi(x)$:

$$\exists R \exists y (y < x \land (\forall z \, w (R(z, w) \to w < y)) \land \\ \forall z \, w (z \neq w \to \exists v \neg (R(z, t) \leftrightarrow R(w, t))))$$

Então a fórmula $\Phi(x)$ dada por $x < c_{\gamma} \lor \phi \land \psi(x)$ é uma Σ_1^1 -fórmula que expressa que $x > \gamma$ não é cardinal fortemente inacessível.

Temos que, por hipótese, $(\kappa, <, \gamma) \models \forall x \Phi$. Seja U um ultrafiltro não principal e κ -completo sobre κ e seja $\prod_{\eta < \kappa} (\kappa, <, \gamma) \cong (\lambda, <, \gamma)$. Pelo Teorema 4, $(\lambda, <, \gamma) \models \forall x \Phi$. No entanto, $\kappa < \lambda$ é fortemente inacessível e, portanto $(\lambda, <, \gamma) \models \neg \Phi(\kappa)$, uma contradição. \square

Existe uma caracterização de cardinais mensuráveis usando modelos, que veremos a seguir.

Teorema 9. As seguintes condições sobre o cardinal κ são equivalentes:

- (1) κ é um cardinal mensurável;
- (2) suponha que Γ_{η} seja um conjunto de $L_{\kappa\kappa}$ -sentenças, $\eta < \kappa$, e que, para cada $\gamma < \kappa$, $\bigcup_{\eta < \gamma} \Gamma_{\eta}$ tenha um modelo; então $\bigcup_{\eta < \kappa} \Gamma_{\eta}$ tem modelo;
- (3) toda estrutura M de cardinalidade $|M| = \kappa$ tem um extensão elementar própria como $L_{\kappa\kappa}$ -estruturas;

Demonstração:

 $1. \Rightarrow 2.$

Sejam $M_{\gamma} \models \bigcup_{\eta < \gamma} \Gamma_{\eta}$, $\gamma < \kappa$ e seja U um ultrafiltro não principal e κ -completo sobre κ . Pelo Teorema de Łoś 5, o ultraproduto $\prod_{\gamma < \kappa} M_{\gamma}$ é modelo de $\bigcup_{\eta < \kappa} \Gamma_{\eta}$.

 $2. \Rightarrow 3.$

Seja M uma L-estrutura de cardinalidade $|M| = \kappa$. estendemos a assinatura L por novas constantes $C = \{c_{\eta} : \eta < \kappa\}$, e expandimos M a uma L(C)-estrutura, interpretando as novas constantes como (todos) os elementos de M. Seja Γ_0 a $L_{\kappa\kappa}(C)$ -teoria de M e sejam $\Gamma_{\alpha} = \Gamma \cup \{d \neq c_{\eta} : \eta < \alpha\}$, para todo $\alpha < \kappa$, sendo que d é um novo símbolo de constante. Observe que M pode ser expandido a um modelo de cada Γ_{α} , simplesmente interpretando d de modo conveniente. Por 2, existe um modelo \overline{M} de $\bigcup_{\eta < \kappa} \Gamma_{\eta}$, que é extensão elementar de M e, $d^{\overline{M}} \notin M$.

 $3. \Rightarrow 1.$

Seja $(\lambda, <, T_S)_{S \subseteq \kappa}$ uma $L_{\kappa\kappa}$ extensão elementar de $(\kappa, <, S)_{S \subseteq \kappa}$. Seja $\delta < \lambda$, $\kappa < \delta$ um ordinal. Seja $U = \{S \subset \kappa : \delta \in T_S\}$. Como $T_S \cap T_{S'} = T_{S \cap S'}, S \subseteq S' \to T_S \subseteq T_{S'} \text{ e } T_{\kappa \setminus S} = \lambda \setminus T_S, \text{ por ser extensão elementar, } U$ é ultrafiltro. Como $S = \{\eta\}$ implica que $T_S = \{\eta\}$, U não é principal. Sejam $\gamma < \kappa$ e $X_{\eta} \in U$, $\eta < \gamma$. Queremos mostrar que $\bigcap_{\eta < \gamma} X_{\eta} \in U$, ou seja, que $\lambda \in T_{(\bigcap_{\eta < \gamma} X_{\eta})}$. Mas isso decorre do Teorema de Łoś 5 para a fórmula $x \in (\bigcap_{\eta < \gamma} X_{\eta}) \leftrightarrow \bigvee_{\eta < \gamma} (x \in X_{\eta})$. \square

A próxima equivalência demanda uma demonstração um pouco mais elaborada. Lembramos a seguinte construção em teoria dos conjuntos: $V_0 = \varnothing$, $V_{\alpha+1} = P(V_{\alpha})$ e $V_{\gamma} = \bigcup_{\eta < \lambda} V_{\eta}$, se λ for ordinal limite. Além disso temos a função $\eta \mapsto |V_{\eta}| = \beth_{\eta}$, dada por $\beth_0 = \aleph_0$, $\beth_{\alpha+1} = 2^{\beth_{\alpha}}$ e $\beth_{\lambda} = \sup_{\eta < \lambda} \beth_{\eta}$, no caso de λ ser ordinal limite. Observe-se que, se κ é cardinal fortemente inacessível, então $\kappa = \beth_{\kappa}$.

Teorema 10. As seguintes afirmações acerca do cardinal $\kappa > \omega$ são equivalentes:

- (1) κ é cardinal mensurável;
- (2) a estrutura $\mathbb{V} = (V_{\kappa}, \in, S)_{S \subseteq V_{\kappa}}$ tem uma extensão elementar própria $\mathbb{B} = (B, E, T_S)_{S \subseteq V_{\kappa}}$, tal que se $a \in V_{\kappa}$ e $b \in B$ satisfazem b E a, então $b \in V_{\kappa}$

Demonstração:

$1. \Rightarrow 2.$

Seja U um ultrafiltro não principal e κ -completo sobre κ e seja $\mathbb{B}=(B,E,T_S)_{S\subseteq V_\kappa}$ o ultraproduto $\prod_{\eta in\kappa}(V_\kappa,\in,S)_{S\subseteq V_\kappa}/U$. Como $\kappa\subset V_\kappa$, $(B,E,T_S)_{S\subseteq V_\kappa}$ é uma extensão elementar própria de $\mathbb{V}=(V_\kappa,\in,S)_{S\subseteq V_\kappa}$. Se $a\in V_\kappa$, então sua cardinalidade $|a|<\kappa$, então vale em \mathbb{V} a $L_{|a|+|a|+1}$ fórmula $\forall y\in a\bigvee_{c\in a}(x_c=y)$, com a atribuição de valores s que associa a cada variável x_c o elemento $c\in a$ correspondente. Tal fórmula também é válida em \mathbb{B} , pelo Teorema de Łoś 5. Ou seja, se $b\in B$ e $a\in V_\kappa$ são tais que $b\to a$, então $b\in V_\kappa$.

$2. \Rightarrow 1.$

Esta parte parece-se com a prova da implicação $3. \Rightarrow 1.$ do teorema anterior. No entanto, a hipótese de que $\mathbb B$ é extensão elementar de $\mathbb V$ refere-se apenas a fórmulas de primeira ordem finitárias, impedindo que sejam usados diretamente argumentos que envolvam linguagens infinitárias. Para sobrepujar tal dificuldade, precisamos extrair algumas propriedades dessas estruturas.

O primeiro passo é provar que em \mathbb{B} existe um ordinal correspondente ao cardinal κ (que não pertence a V_{κ}). Considere a função altura (ou rank, em inglês) $\rho(x) = \min\{\eta : x \in V_{\eta}\}$, que é representada em \mathbb{V} pelo conjunto S_{ρ} de pares ordenados $(x, \rho(x))$. Como κ é cardinal, para cada $x \in V_{\kappa}$ existe $\eta < \kappa$ tal que $\eta = \rho(x)$. Seja $b \in B \setminus V_{\kappa}$ e seja $\bar{\eta} \in B$, tal que $(b, \bar{\eta}) \in T_{S_{\rho}}$. Se $\bar{\eta} < \kappa$, teríamos como consequência da hipótese sobre \mathbb{B} que $b \in V_{\bar{\eta}} \subset V_{\kappa}$, contradizendo a suposição de que $b \notin V_{\kappa}$. Assim, em particular, como a imagem de ρ é κ , existem mais ordinais em B, maiores ou iguais a κ .

Agora construímos o ultrafiltro não principal $U = \{S \subset \kappa : \kappa \in T_S\}$, como na prova da implicação 3. \Rightarrow 1. do teorema anterior. Para mostrarmos que esse ultrafiltro é κ -completo, não podemos lançar mão da linguagem $L_{\kappa\kappa}$, devendo aplicar outra estratégia. Assim, sejam $\gamma < \kappa$ e $X_{\eta} \in U$, $\eta < \gamma$. Seja S_{γ} o conjunto dos pares (ξ, x) , tais que $x \in \bigcap_{\xi < \eta} X_{\xi}$, para $0 \le \eta \le \gamma$. Então vale em \mathbb{V} que $x \in \bigcap_{\xi < \gamma} X_{\xi}$ se, e

somente se, $(\gamma, x) \in S_{\gamma}$, e também se, e somente se, $x \in X_{\xi}$ para cada $\xi < \gamma$. Transferindo essas fórmulas para \mathbb{B} , temos que $x \in T_{(\bigcap_{\xi < \gamma} X_{\xi})}$ se, e somente se, $(\gamma, x) \in T_{S_{\gamma}}$, e também se, e somente se, $x \in T_{X_{\xi}}$ para cada $\xi < \gamma$. Aplicando-as a $x = \kappa$, obtemos que $\kappa \in T_{(\bigcap_{\xi < \gamma} X_{\xi})}$, ou seja, que U é κ -completo. \square

Para finalizar esta parte, vamos tratar de **ultrafiltros normais**, que são ultrafiltros U não principais e κ -completos sobre $\kappa > \omega$, tais que em $\prod_{\eta < \kappa} (\kappa, <) \cong (\lambda, <)$, [id] corresponde a κ , sendo $id : \kappa \to \kappa$ a função identidade.

Lema 7. Seja U um ultrafiltro não principal e κ -completo sobre κ . Então U é normal se, e somente se, para toda função $g: \kappa \to \kappa$, tal que $\{\eta: g(\eta) < \eta\} \in U$, existe $\gamma < \kappa$, tal que $\{\eta < \kappa: g(\eta) = \gamma\} \in U$.

Demonstração: Suponha, por via de contradição, que exista $g: \kappa \to \kappa$, satisfazendo $\{\eta: g(\eta) < \eta\} \in U$, mas que não exista $\gamma < \kappa$, tal que $\{\eta < \kappa: g(\eta) = \gamma\} \in U$. Então em $\prod_{\eta < \kappa} (\kappa, <) \cong (\lambda, <), [g] < [id]$ e $[g] > j(\gamma), (\gamma < \kappa)$ onde j é a inclusão de $(\kappa, <)$ em seu ultraproduto. Portanto U não pode ser normal.

Reciprocamente, se para toda função $g: \kappa \to \kappa$, tal que $\{\eta: g(\eta) < \eta\} \in U$, existe $\gamma < \kappa$, tal que $\{\eta < \kappa: g(\eta) = \gamma\} \in U$, então em $\prod_{\eta < \kappa} (\kappa, <) \cong (\lambda, <), [g] < [id]$ implica que $[g] = j(\gamma)$, para algum $\gamma < \kappa$, ou seja, id] é o κ -ésimo elemento do ultraproduto e, portanto, U é normal.

Teorema 11. Se $\kappa > \omega$ é mensurável, então existe um ultrafiltro normal sobre κ .

Demonstração: Seja U um ultrafiltro não principal e κ -completo sobre κ , e seja $f: \kappa \to \kappa$, tal que a classe [f] em $\prod_{\eta < \kappa} (\kappa, <)$ seja o κ -ésimo elemento. Seja $V = \{X \subseteq \kappa : f^{-1}(X) \in U\}$. Então V é ultrafiltro κ -completo e não principal sobre κ (detalhar, como exercício).

Vamos mostrar que V é normal, usando o lema anterior. Seja $g: \kappa \to \kappa$, tal que $X = \{\eta: g(\eta) < \eta\} \in V$. Seja $h = g \circ f$. Então $h(\eta) = g(f(\eta)) < f(\eta)$, para todo $\eta \in f^{-1}(X)$. Como $X \in V$, $f^{-1}(X) \in U$ e, portanto, [h] < [f] em $\prod_{\eta < \kappa} (\kappa, <)$, o que implica que existe $\gamma < \kappa$, tal que $[h] = \gamma$, ou seja, $\{\eta < \kappa: h(\eta) = \gamma\} \in U$. Entretanto,

$$\{\eta: h(\eta) = g(f(\eta)) = \gamma\} = f^{-1}(\{\xi: g(\xi) = \gamma\},\$$

do que concluímos que $f^{-1}(\{\xi : g(\xi) = \gamma\} \in U$, ou seja, que $\{\xi : g(\xi) = \gamma\} \in V$, provando que V é normal, pelo lema anterior.

Vamos apresentar duas aplicações de ultrafiltros normais.

Teorema 12. Seja $\kappa > \omega$ um cardinal mensurável e U um ultrafiltro normal sobre κ . Então

$$(V_{\kappa+1}, \in) \cong \prod_{\eta < \kappa} (V_{\eta+1}, \in)/U$$

e este isomorfismo tem a expressão $\pi(x)=[f],$ sendo que $f(\eta)=x\cap V_\eta\in V_{\eta+1},\ \eta<\kappa.$

Demonstração: Denotaremos o ultraproduto $\prod_{\eta < \kappa} (V_{\eta+1}, \in)/U$ por (B, E). Temos que mostrar que a função π é bijetora e que $x \in y$ se, e somente se, $\pi(x) E \pi(y)$.

Provemos primeiramente que π é injetora. Sejam $x,y \in V_{\kappa+1}, x \neq y$. Então existe z em um deles mas fora do outro, digamos $z \in x$, mas $z \notin y$. Então $z \in V_{\kappa}$ e, como κ é também um ordinal limite, existe $\eta < \kappa$, tal que $z \in V_{\eta}$. Daí, segue que $z \in x \cap V_{\xi}$ e $z \notin y \cap V_{\xi}$, para todo ξ , $\eta \leq \xi < \kappa$ e, dado que U é não principal e κ completo, o conjunto $\{\xi : z = z \cap V_{\xi}, z \in x \cap V_{\xi}, \max z \notin y \cap V_{\xi}\} \in U$. Assim, vale em (B, E) que $\pi(z) \in \pi(x)$ e que $\pi(z) \notin \pi(y)$. Como vale o axioma da extensionalidade em $(V_{\kappa+1}, \in)$, também vale em (B, E) e, portanto $\pi(x) \neq \pi(y)$.

A seguir, provaremos que se $x \in y$, então $\pi(x) E \pi(y)$. Supondo que $x \in y \in V_{\kappa+1}$, temos que $x \in V_{\kappa}$ e, portanto, existe $\gamma < \kappa$, tal que $x \in V_{\gamma}$. Daí, segue que, para todo $\eta, \gamma \leq \eta < \kappa, x = x \cap V_{\eta}$ e $x \in y \cap V_{\eta}$, do que decorre a relação $\pi(x) E \pi(y)$ em (B, E).

Por fim, provaremos que π é sobrejetora. Seja $[f] \in B$. Obteremos $x \in V_{\kappa+1}$, tal que $\pi(x) = [f]$.

Consideremos, em primeiro lugar, o caso em que [f] E[h], para alguma $[h] \in B$. Como, neste caso, $\{\eta : f(\eta) \in h(\eta) \in V_{\eta+1}\} \in U$, podemos supor, então, que $X = \{\eta < \kappa : f(\eta) \in V_{\eta}\} \in U$, e definamos $g(\eta) = \min\{\gamma : f(\eta) \in V_{\gamma+1}\}$. Tal função satisfaz $g(\eta) < \eta$, se $\eta \in X$, porque se η é ordinal limite, então $f(\eta) \in V_{\gamma} \subset V_{\gamma+1}$, para algum $\gamma < \eta$ e se $\eta = \xi + 1$, então $g(\eta) \leq \xi < \eta$. Usando o fato de que U é normal, concluímos que existe $\gamma < \kappa$, tal que $Y = \{\eta : g(\eta) = \gamma\} \in U$. Vamos particionar o ordinal κ em várias classes, sendo que uma delas é $\kappa \setminus Y$. Resta priticionar a parte contida em Y, definindo para cada $u \in V_{\gamma}$ o conjunto $Y_u = \{\eta : f(\eta) = u\}$. Como κ é também um cardinal fortemente inacessível e $\gamma < \kappa$, existem no maáximo $\beth_{\gamma} < \beth \kappa = \kappa$ classes desta partição e, devido ao fato que U é κ completo, uma dessas classes deve pertencer a u. Dado que $Y \in U$, para um $u \in V_{\gamma}$, $Y_u \in U$. Observe-se que se $\gamma < \xi < \kappa$, $u \cap V_{\xi} = u$, o que implica $\{\eta : f(\eta) = u \cap V_{\eta}\} \in U$, ou seja, $\pi(u) = [f]$.

Note-se que a argumentação acima aplicada às funcões f eventualmente constantes demonstra que se $\pi(x) E \pi(y)$, então $x \in y$.

Para finalizar, falta considerar o caso de uma $[f] \in B$ arbitrária. Para isso, considere o conjunto $x = \{y \in V_{\kappa} : \pi(y) E[f]\}$. Então $x \in V_{\kappa+1}$ e mostraremos que $\pi(x) = [f]$, usando o axioma da extensionalidade, que vale em ambas as estruturas. Seja $[h] \in B$. Se [h] E[f], então, pelo primeiro caso considerado, vale que $[h]\pi(u)$, para algum $u \in V_{\kappa}$, e disso segue que $u \in x$ e $\pi(u) E \pi(x)$. Reciprocamente, suponhamos que $[h] E \pi(x)$ e, novamente usando o argumento anterior, seja $u \in V_{\kappa}$, tal que $[h] = \pi(u)$. Mas daí decorre que $\pi(u) E \pi(x)$ e, portanto, $u \in x$, pela observação logo acima. Desta forma fica provado que $\pi(x) = [f]$, ou seja, que π é também sobrejetora.

Como consequência imediata deste teorema, obtemos o seguinte.

Teorema 13. Seja $\kappa > \omega$ um cardinal mensurável e U um ultrafiltro normal sobre κ . Dada uma fórmula $\phi(x_1, \ldots, x_n)$ e elementos $S_1, \ldots, S_n \in V_{\kappa+1}$, temos que

$$(V_{\kappa+1}, \in) \models \phi(S_1, \dots, S_n)$$

se, e somente se,

$$\{\eta < \kappa : (V_{\eta+1}, \in) \models \phi(S_1 \cap V_{\eta}, \dots, S_n \cap V_{\eta})\} \in U.$$

Em particular, se ϕ for uma sentença, $(V_{\kappa+1}, \in) \models \phi$ se, e somente se, $\{\eta < \kappa : (V_{\eta+1}, \in) \models \phi\} \in U$.

Com isto, obtemos a seguinte propriedade dos ultrafiltros normais sobre um cardinal mensurável. (Veja abaixo o exercício 16 para mais uma propriedade.)

Teorema 14. Seja $\kappa > \omega$ um cardinal mensurável e U um ultrafiltro normal sobre κ . Então $\{\gamma < \kappa : \gamma \text{ \'e fortemente inacess\'ivel}\} \in U$.

Demonstração: Basta formalizar a propriedade de um cardinal ser fortemente inacessível e usar os dois teoremas anteriores.

7. Mais exercícios

Exercício 11. Mostre que toda fórmula de segunda ordem ϕ é logicamente equivalente a uma fórmula $QX\psi$, em que ψ é sem quantificadores e QX é uma sequência de quantificadores de segunda ordem seguida de uma sequência de quantificadores de primeira ordem.

Exercício 12. Mostre que não se ganha nada se fizermos $L_{\alpha\beta}$ com $\beta > \alpha$.

Exercício 13. Se a L-estrutura M tem cardinalidade $|M| = \alpha < \kappa$ infinita e U é ultrafiltro não principal e κ -completo sobre $I = \kappa$, então $\prod_{\eta < \kappa} M/U$ é isomorfa a M.

Exercício 14. O objetivo deste exercício é novamente demonstrar que um cardinal mensurável é fortemente inacessível, mas agora usando ultraprodutos. Seja $\kappa > \omega$ um cardinal mensurável e U um ultrafiltro não principal e κ -completo sobre κ , e seja L a assinatura contendo a ordem estrita < e símbolos de constantes c_{η} , $\eta < \kappa$. Seja λ o ordinal correspondente ao ultraproduto $\prod_{\eta < \kappa} \kappa/U$. Observe que já provamos que κ é incluído canonicamente como um segmento inicial de λ .

- (1) Para provar que κ é regular, suponha que não seja, e considere $F \subset \beta \times \kappa$ uma relação em κ que represente o gráfico de uma função $\beta \mapsto \kappa$ cuja imagem seja cofinal em κ (ou seja, o supremo da imagem é todo κ). Considere o ultraproduto $\prod_{\eta < \kappa} (\kappa, F)/U \cong (\lambda, G).$ Use o Teorema de Łoś para as fórmulas $\exists x \, \forall y (y < c_{\eta} \to F(y) < x) \ (\eta < \kappa) \ e \, \forall x \, \exists y (y < c_{\eta} \wedge x < F(y))$ e chegue a uma contradição.
- (2) Para provar que $2^{\alpha} < \kappa$, para todo $\alpha < \kappa$, suponha que exista $\gamma < \kappa$, tal que $2^{\gamma} \ge \kappa$ e seja $F : \kappa \to P(\gamma)$ uma função injetora, e seja $R \subset \kappa \times \gamma$ representando F da seguinte maneira: $R(\eta, \delta)$ se, e só se, $\delta \in F(\eta)$. Forme o ultraproduto $\prod_{\eta < \kappa} (\kappa, R)/U \cong (\lambda, S)$. Considere as fórmulas $\forall xy(R(x, y) \to y < c_{\eta}) \ (\eta < \kappa)$ e $\forall xy[x \ne y \to \exists z \neg (R(x, z) \leftrightarrow R(y, z))]$; o conjunto $X = \{\delta < \gamma : S(\kappa, \delta)\}$ e a $L_{\gamma\gamma}$ -fórmula $\exists x \forall y(R(x, y) \leftrightarrow \bigvee_{\delta \in X} (y = c_{\delta}))$.

Exercício 15. Mostre que se κ é um cardinal mensurável, então existe um ultrafiltro κ -completo sobre cada cardinal $\lambda > \kappa$.

Exercício 16. (Cardinais Fracamente Compactos) Um cardinal $\kappa > \omega$ é um cardinal fracamente compacto se vale a seguinte propriedade para $L_{\kappa\kappa}$: Se Γ é um conjunto de $L_{\kappa\kappa}$ -sentenças de cardinalidade $|\Gamma| = \kappa$, tal que cada $\Gamma_0 \subseteq \Gamma$ de cardinalidade $|\Gamma_0| < \kappa$ tem modelo, então todo Γ tem um modelo.

Prove que se κ é mensurável, então é também fracamente compacto.

Exercício 17. Uma relação binária T num conjunto X é chamada de **árvore** se T é transitiva, bem fundada (ou seja, não existe sequência infinita $x_n \in X$, tal que $x_{n+1}Tx_n$, para todo $n \in \mathbb{N}$), dirigida (isto é, se yTx e zTx, entaão ou yTz, ou zTy, ou ainda y = z) e possui um elemento r mínimo (a **raiz** da árvore), ou seja rTx, para todo $x \in X$.

(1) Prove que, dado $x \in X$, o conjunto $\{y \in X : yTx\}$ é bem ordenado.

- (2) Um **ramo** da árvore T é um subconjunto $R \subseteq X$, tal que se $x \in R$ e yTx, então $y \in R$. Mostre que um ramo é um conjunto bem ordenado por T.
- (3) Seja o(R) o ordinal correspondente ao ramo R da árvore T, e seja o(T), a **ordem de** T, o supremo dos ordinais correspondentes a todos os ramos de T. Dizemos que um cardinal κ tem a **propriedade da ramificação** (ou mesmo, a **propriedade de árvore**) se, e somente se,

para toda árvore T em κ de ordem $o(T) = \kappa$, tal que, para cada ordinal $\eta < \kappa$, vale que $|\{R : o(R) = \eta\}| < \kappa$, existe ramo R em T tal que $o(R) = \kappa$.

Prove que o cardinal fortemente inacessível κ é fracamente compacto se, e somente se, possuir a propriedade da ramificação.

(4) Suponha que $\kappa > \omega$ seja um cardinal mensurável e que U seja um ultrafiltro normal sobre κ . Mostre que o conjunto $\{\gamma < \kappa : \gamma \text{ é um cardinal fracamente compacto}\} \in U$.

Exercício 18. (Cardinais Fortemente Compactos) Um cardinal $\kappa > \omega$ é um cardinal fortemente compacto se vale a seguinte propriedade para $L_{\kappa\kappa}$: Se Γ é um conjunto de $L_{\kappa\kappa}$ -sentenças, tal que cada $\Gamma_0 \subseteq \Gamma$, cuja cardinalidade $|\Gamma_0| < \kappa$, tem modelo, então todo Γ tem um modelo.

- (1) Prove que se κ é fortemente compacto, então κ é mensurável.
- (2) Um ultrafiltro U sobre $I = P_{\kappa}(\lambda) = \{X \subset \lambda : |X| < \kappa\} \ (\kappa \leq \lambda \text{ cardinais})$ é chamado de **ultrafiltro fino** se for não principal, κ -completo e, para todo $\alpha < \lambda$, o conjunto $\{X \subset \lambda : \alpha \in X\} \in U$. Mostre que κ é supercompacto se, e somente se, existe um ultrafiltro fino sobre $P_{\kappa}(\lambda)$, para todo cardinal $\lambda \geq \kappa$.

Exercício 19. (Cardinais Supercompactos) Um ultrafiltro U sobre $P_{\kappa}(\lambda)$ é normal se for não principal, κ -completo, para todo $\alpha < \lambda$, o conjunto $\{X \subset \lambda : \alpha \in X\} \in U$, e para todo $X \in U$ e toda $f: X \to \lambda$, se $\{x \in X : f(x) \in x\} \in U$, então para algum $\alpha < \lambda$ vale que $\{x: f(x) = \alpha\} \in U$. Um cardinal κ é um cardinal supercompacto se para todo cardinal $\lambda \geq \kappa$, existe um ultrafiltro normal sobre $P_{\kappa}(\lambda)$.

- (1) Mostre que se U é um ultrafiltro normal sobre $P_{\kappa}(\lambda)$, então dada a inclusão elementar $j:(V_{\kappa+1},\in)\to(B,E), (B,E)=\prod_{a\in P_{\kappa}(\lambda)}(V_{\kappa+1},\in)/U$, então $j(\kappa)>\lambda$ em (B,E) (identificando os ordinais no sentido de (B,E) com os ordinais usuais) e que toda κ -sequência de elementos de B pertencem a B.
- (2) Mostre que κ é um cardinal supercompacto se, e somente se, para todo cardinal $\lambda \geq \kappa$ existe extensão elementar $j: (V_{\kappa+1}, \in) \rightarrow$

(B,E), tal que $j(\kappa) > \lambda$ em (B,E) (identificando os ordinais no sentido de (B,E) com os ordinais usuais) e que toda κ -sequência de elementos de B pertencem a B. [Sugestão: para obter U de (B,E), seja $U=\{X\in P_{kappa}(\lambda):\kappa\in j(X)\}$.]

ÍNDICE REMISSIVO

$L_{\alpha\beta}, 9$ $M \models \varphi[s], 7$ $P_{\kappa}(\lambda), 20$ $V_{\alpha}, 14$ $\Delta_{n}^{0}, 8$ $\Delta_{n}^{1}, 8$ $\Pi_{n}^{0}, 8$ $\Pi_{n}^{1}, 8$ $\Sigma_{n}^{0}, 8$ $\Sigma_{n}^{1}, 8$ $\Sigma_{n}^{1}, 8$ $\Sigma_{n}^{1}, 8$ $\Sigma_{n}^{1}, 8$ $\Sigma_{n}^{1}, 8$	fórmula, 6 atômica, 7 complexidade, 7 positiva, 4 segunda ordem logicamente equivalentes, 8 filtro ω -completo, 5 de Fréchet, 4 função $rank$, 15
$t^{\widetilde{M}}[s], 7$ $s(t), 7$	altura, 15
árvore, 19 ordem, 20 raiz, 19 ramo, 20 atômica	$egin{aligned} & ext{interpreta} & ext{a} \ & ext{formulas} \ & M \models \varphi[s], 7 \ & ext{termos}, 7 \ & ext{s}(t), 7 \ & ext{t}^M[s], 7 \end{aligned}$
fórmula, 7	
boa ordem, 11	$L_{lphaeta},~9 \ ext{fórmula},~6$
cardinal compacto fortemente, 20 fracamente, 19	símbolos lógicos, 6 infinitária, 9 segunda ordem, 6 termo, 6
inacessí vel fortemente, 12 fracamente, 12	$\begin{array}{c} \text{modelo} \\ \text{de } \varphi, 7 \end{array}$
limite forte, 12 fraco, 12 mensurável, 11 regular, 12	ordem boa ordem, 11 parcial bem fundada, 11 ordinais, 11
sucessor, 12 supercompacto, 20 complexidade fórmula, 7 termo, 6 conjunto bem ordenado, 5	pif, 2 produto reduzido, 3 propriedade da intersecção finita, 2 da ramificação, 20 de árvore, 20
bem ordenado, 11 estrutura	satisfação segunda ordem, 7
satisfação segunda ordem, 7	Teorema

```
Łoś, 3
     fórmulas positivas, 4
     para \Sigma_1^1-fórmulas, 9
     para L_{\alpha\beta}, 10
  Compacidade, 4
_{\text{termo}}
  complexidade, 6
  definição, 6
  interpretação, 7
     s(t), 7
t^{M}[s], 7
ultrafiltro\\
  \kappa\text{-completo, }9
  \kappa-incompleto, 9
  fino, 20
  normal, 16
     sobre P_{\kappa}(\lambda), 20
  principal, 5
ultraproduto, 3
  de ordinais, 11
```