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Abstract

We give a synthetic proof in absolute geometry (Birkhoff axioms with-
out the parallel postulate) that given any triangle, its medians are con-
current. This means that the same proof is valid in both euclidean and
hyperbolic geometry. We also indicate how to generalize this result.

1 Introduction

It is true both in (real) euclidean and hyperbolic geometry that the medians of
a triangle are concurrent (and this point of concurrence is called the centroid
of the triangle). The proof in the euclidean case uses similarity of triangles and
in the hyperbolic case one uses the Klein model inside the projective plane (see
[1, pp. 30-31 and 229-230], and [5, Exercise 105]). These two geometries differ
only by the parallel axiom, so we can conclude that this result is a theorem
of pure absolute geometry (Birkhoff axioms without the parallel postulate; the
interested reader can provide a justification of this claim).

Here we present a proof of this fact using only the axioms of pure absolute
geometry. The idea is simple. We project a triangle onto an isosceles one, for
which it is easy to prove the result and then go back to the original triangle.
We prove the necessary results on the needed projection in the same system
by proving a particular configuration of Desargues’ theorem. This is done in
section 2. In section 3 we prove the main result. In the conclusion we indicate
how to extend the result.

2 Axioms and basic results on absolute space

The axioms adopted are a weaker form of Birkhoff’s axioms (as adopted in [3]
and [4]). We summarize them here.
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Axiom 1 (Incidence) For each pair of distinct points there is a unique line
containing them; for each set of three distinct points, no two of which lie in
the same line, there is a unique plane containing them; for each pair of distinct
planes, if they intersect, then the intersection is a line; every plane contain three
points, not two of which lie in the same line; there are four points, no three of
which in the same plane.

The following axiom is a weaker version of the ruler axiom in which the field
K of the statement is the field of real numbers.

Axiom 2 (Coordinatization) There is an ordered field K which coordinatize
all the lines, that is, for each line, there is a (chosen) bijection between the
set of points in the line and the elements of the field K. The element of K
corresponding to the point P is called the coordinate of P .

The order or betweenness relation is derived from the field K. We say that
the point B, is in between A and C and write A−B − C if they belong to the
same line and the coordinate of B is in between the coordinates of A and C in
the order of K. Given distinct points A and B, the unique line which contains
them is denoted by ←→AB and the ray with vertex A and points in the direction
of B (that is, P such that P ∈ ←→AB and not P −A−B) is denoted by −−→AB and
the segment AB is the set of points in the line ←→AB containing A and B and
the points P such that A− P −B.

Also the segment congruence is derived from K and ≡ denotes the segment
congruence relation.

Axiom 3 (Pasch’s axiom) Given any plane π and points A, B and C in π
such that A, B and C are not in the same line, and a line ` in π such that `
intersects the segment BC, then ` intersects either the segment AB or AC.

From the previous axioms we can deduce the plane and the space separation
axioms of [4, chapter 4], as the readers can verify by themselves.

An angle is the set of points ∠AOB = −−→OA ∪ −−→OB , where A, B and O are
not in the same line. The triangle 4ABC is the set AB ∩ AC ∩ BC and in
this case we assume that A, B and C are not in the same line.

Axiom 4 (Angle congruence) Given the angle ∠AOB, a plane π, a ray
−−→
PQ ⊂ π the there are points R and S in oposite sides of the line ←→PQ in π such
that ∠QPR ≡ ∠AOB ≡ ∠QPS and the rays −−→PR and −−→PS are unique with
respect to this property; ≡ is an equivalence relation in the set of angles.

We denote the congruence of triangles by ≡ and when we write 4ABC ≡
4DEF , the congruence is given by the correspondence A 7→ D, B 7→ E and
C 7→ F .

Axiom 5 (Side-Angle-Side: SAS) Given the triangles 4ABC and 4DEF ,
if AB ≡ DE , AC ≡ DF and ∠BAC ≡ ∠EDF , then 4ABC ≡ 4DEF .
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We recall that we can deduce all the other congruence criteria (namely ASA,
SSS and SAA, where S stands for side and A for angle; see [3, theorems 6.2.1,
6.2.3 and 6.3.5] or [4, section 6.2]).

We say that a line ` is perpendicular to the plane π if ` ∩ π contains only a
point P and all lines in π containing P are perpendicular to `.

The following result capture the absolute content of Euclid’s Elements [2,
Book XI, propositions 4, 5, 6 and 8].

Lemma 1 Let π1 and π2 be two distinct planes meeting in the line `. If there
is a line `′ ⊂ π1 perpendicular to π2, then all lines in π1 perpendicular to the
line ` are perpendicular to π2.

Proof: We need only to show that if `1 ⊂ π1 is a line perpendicular to ` then
the line `2 ⊂ π2 perpendicular to ` at the point Q in ` ∩ `1 is perpendicular to
`1. We refer to figure 1 for a diagram of this proof.

We may suppose that `′ 6= `1. Let P be the meeting point of ` and `′. Choose
points A ∈ `′ and B ∈ `1 in the same side of π1 with respect to ` and such that
PA ≡ QB . Let `2, `3 ⊂ π2 be perpendicular to ` and such that P ∈ `2 and
Q ∈ `3. Then `′ ⊥ `3 because we have assumed that `′ ⊥ π2. Choose points
C ∈ `2 and D ∈ `3 in the same side of π2 with respect to the line ` and such that
CP ≡ DQ ≡ PA . By Pasch’s axiom (or rather by separation in each plane),
the segments PB and AQ meet at a point E and the segments PD and QC
meet at a point F . By SAS, 4APQ ≡ 4BQP ≡ 4CPQ ≡ 4DQP . Therefore,
again by SAS, 4PEQ ≡ 4QEP ≡ 4PFQ ≡ 4QFP . Consequently, by
SSS, 4PEF ≡ 4QEF . So, by SAS, 4QAC ≡ 4PBD. Finally, by SSS,
4PAC ≡ 4QBD. This means that ∠QBD is a right angle, that is, `2 ⊥ `1, as
required. �
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Figure 1: Diagram for the proof of Lemma 1.

In the case of this lemma we say that the planes π1 and π2 are perpendicular
and denote π1 ⊥ π2.
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3 The centroid

The next result is proved by using the trick of making a controlled central
projection from an arbitrary triangle to an isosceles one in which it is easy to
prove the desired result and then transferring it back to the original triangle.

Theorem 3.1 The medians of a triangle 4ABC are colinear.

Proof: Let L ∈ AB , M ∈ AC and N ∈ BC be the midpoints of these
intervals. We refer to figure 2 for a diagram of this proof.

Firstly, following [5, exercise 105], we show that the perpendicular bissector
of BC is perpendicular to the line ←→LM . For this, let P , Q, R ∈ ←→LM be the feet
of the perpendiculars from A, B and C, that is, ←→AP,

←→
BQ,

←→
CR ⊥ ←→LM . Then,

using the SAA congruence theorem [3, theorem 6.2.1], we have4APL ≡ 4BQL
and 4BQM ≡ 4CRM . From this we conclude that AP ≡ BQ ≡ CR . Now,
by the congruence of convenient triangles in the quadrilateral �PACR, the
line joining the midpoints of BC and PR is a common perpendicular to both
segments.

Now let π1 be the plane containing the triangle 4ABC, and π2 be another
plane intersecting π1 in the line ←→BC. Let A′ ∈ π2 be such that ←→NA′ is the
perpendicular bissector of BC in π2 and let O be any point in ←→AA′ such that
O − A − A′. Let L′ ∈ BA′ and M ′ ∈ CA′ be such that O − L − L′ and
O−M−M ′. These points exist because of the Pasch axiom. The planes π1 and
π2 contain the line ←→BC which is perpendicular to the plane π3 determined by
the points A, N and A′. Let π4 be the plane determined by O, L and M . Then,
by the Lemma 1, π1 ⊥ π4 ⊥ π2. This means that the line ←→NA′ is perpendicular
to both ←→BC and ←→L′M ′. By congruence of the relevant triangles, we conclude
that the segments BM ′ and CL′ meet in a point T ′ ∈ NA′ . But the segment
CL′ is in the plane π5 determined by the points O, C and L and the segment
BM ′ is in the plane π6 determined by the points O, B and M . Let π7 be the
plane determined by O, A and N . Then A′ ∈ π7. Therefore, the line ←→OT ′ is in
π5, π6 and π7. So, if T is the point of ←→OT ′ in π1, then T is the meeting point
of the medians of 4ABC, as required. �

4 Conclusion

The trick of projecting the triangle 4ABC onto an isosceles triangle 4DEF ,
proving the needed (incidence) result for 4DEF and then pulling back the
constructions to 4ABC can be useful in the proof of various results in absolute
geometry. For instance, the centroid theorem we proved here can be generalized
to the appropriate versions of Ceva’s and Menelau’s Theorems. Actually these
theorems are a particular case of the construction of harmonic conjugates in
projective geometry. See [1, pp. 30-31] on how to do this. We can use these
translations to make the needed constructions, prove that they hold for more
convenient triangles and then pull them back in a controlled way to the original
triangle.
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Figure 2: Diagram for the proof of Theorem 3.1.
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